

spacejam

for automatic differentiation and other looney things

	Introduction

	How to use
	Demo I: Scalar function, scalar input

	Demo II: Scalar function with vector input

	Demo III: Vector function with vector input

	Background
	Numerical Integration: A brief crash couse

	Automatic Differentiation: A brief overview

	Software Organization
	Overview of main modules

	Installation
	Virtual Environment

	Tests

	Implementation Details
	Data Structures

	API
	spacejam.autodiff

	spacejam.dual

	spacejam.integrators

	Example Applications
	Background
	(s = 0) Method

	(s = 1) Method

	(s = 2) Method

	Astronomy Example
	Background

	Initial Conditions

	Equations of Motion

	Simulation

	Ecology Example
	Background

	Initial Conditions

	Equations of population growth

	Simulation

	Future

Introduction

Numerical integration is a powerful tool that can be used to simulate the
evolution of a wide range of systems. Given the initial conditions of your
particular system, spacejam numerically integrates your system using
pre-baked implicit schemes that are powered by automatic differentiation.

In this documentation, we outline the technique of automatic differentiation
and numerical integration, go through the implicit schemes included in our
library, and show some neat applications to astronomy and ecology.

How to use

The following series of demos will step through how to differentiate a wide
variety of functions with spacejam. Check out Installation to get
started.

Demo I: Scalar function, scalar input

This is the simplest case, where the function you provide takes in a single
scalar argument \((x=a)\) and outputs a single scalar value \(f(a)\).

For example, let’s take a look at the function \(f(x) = x^3\), which you
can define below as:

import numpy as np

def f(x):
 return np.array([x**3])

All spacejam needs now is for you to specify a point \(\mathbf p\)
where you would like to evaluate your function at:

p = np.array([5]) # evaluation point

Now, evaluating your function and simultaneously computing the
derivative with spacejam at this point is as easy as:

import spacejam as sj

ad = sj.AutoDiff(f, p)

The real part of ad is now \(f(x=5) = 125\) and the dual part is
\(\left.\frac{\mathrm d f}{\mathrm d x}\right|_{x=5} = 75\) .

These real and dual parts are conveniently stored, respectively, as the r and d
attributes in ad and can easily be printed to examine:

print(f'f(x) evaluated at p:\n{ad.r}\n\n'
 f'derivative of f(x) evaluated at p:\n{ad.d}')

f(x) evaluated at p:
[125.00]

derivative of f(x) evaluated at p:
[75.00]

Note

numpy arrays are used when defining your function and returning
results because spacejam can also operate on multivariable functions and
parameters, which we outline in Demo II: Scalar function with vector input.
and Demo III: Vector function with vector input.

Demo II: Scalar function with vector input

This next demo explores the case where a new example function \(f\) can
accept vector input, for example \(\mathbf p = (x_1, x_2) = (5, 2)\) and
return a single scalar value
\(f(\mathbf p) = f(x_1, x_2) = 3x_1x_2 - 2x_2^3/x_1\)

The dual number objects are created in much the same way as in
Demo I, where:

\[\begin{split}\begin{align*}
p_{x_1} &= f(x_1, x_2) + \epsilon_{x_1} \frac{\partial f}{\partial x_1}
- \epsilon_{x_2} 0\\
p_{x_2} &= f(x_1, x_2) + \epsilon_{x_1} 0
- \epsilon_{x_2} \frac{\partial f}{\partial x_2}
\end{align*}\quad,\end{split}\]

as described in Automatic Differentiation: A brief overview. Internally, this is accomplished with the idx
and x argument in spacejam.dual so that it knows which dual parts need
to be set to zero in the modified dual numbers above. spacejam.autodiff
then performs the following internally:

\[\begin{align*}
f(\mathbf p) + \epsilon_{x_1}\frac{\partial f}{\partial x_1}
- \epsilon_{x_2}\frac{\partial f}{\partial x_2}
\equiv f(\mathbf p) + \epsilon \left[\frac{\partial f}{\partial x_1},
\frac{\partial f}{\partial x_2}\right] = f(\mathbf p) + \epsilon\nabla f
\end{align*}\quad.\]

tl;dr: all that needs to be done is:

import numpy as np
import spacejam as sj

def f(x_1, x_2):
 return np.array([3*x_1*x_2 - 2*x_2**3/x_1])

p = np.array([5, 2]) # evaluation point (x_1, x_2) = (5, 2)

ad = sj.AutoDiff(f, p) # create spacejam object

check out the results
print(f'f(x) evaluated p:\n{ad.r}\n\n'
 f'grad of f(x) evaluated at p:\n{ad.d}')

f(x) evaluated p:
[26.80]

grad of f(x) evaluated at p:
[6.64 10.20]

Demo III: Vector function with vector input

This final demo shows how to use spacejam to simultaneously evaluate the
example vector function:

\[\begin{split}\mathbf{F} = \begin{bmatrix}f_1(x_1, x_2)\\f_2(x_1, x_2)
\\f_{3}(x_1, x_2)\end{bmatrix}
= \begin{bmatrix}
x_1^2 + x_1x_2 + 2 \\ x_1x_2^3 + x_1^2 \\ x_2^3/x_1 + x_1 + x_1^2x_2^2 + x_2^4
\end{bmatrix}\end{split}\]

and its Jacobian:

\[\begin{split}\mathbf J = \begin{bmatrix}
\nabla f_1(x_1, x_2) \\ \nabla f_2(x_1, x_2) \\ \nabla f_3(x_1, x_2)
\end{bmatrix}\quad.\end{split}\]

at the point \(\mathbf{p} = (x_1, x_2) = (1, 2)\) .

The interface with spacejam happens to be exactly the same as in the
previous two demos, only now your \(F(x)\) will return a 1D numpy array
of functions \((f_1, f_2, f_3)\):

your (m) system of equations:
F(x_1, x_2, ..., x_m) = (f1, f2, ..., f_n)
def F(x_1, x_2):
 f_1 = x_1**2 + x_1*x_2 + 2
 f_2 = x_1*x_2**3 + x_1**2
 f_3 = x_1 + x_1**2*x_2**2 + x_2**3/x_1 + x_2**4
 return np.array([f_1, f_2, f_3])

where you want them evaluated at:
p = (x_1, x_2, ..., x_m)
p = np.array([1, 2])

auto differentiate!
ad = sj.AutoDiff(F, p)

check out the results
print(f'F(x) evaluated at p:\n{ad.r}\n\n'
 f'Jacobian of F(x) evaluated at p:\n{ad.d}')

F(x) evaluated at p:
[[5.00]
 [9.00]
 [29.00]]

Jacobian of F(x) evaluated at p:
[[4.00 1.00]
 [10.00 12.00]
 [1.00 48.00]]

Internally, for each \(i\) th entry, in the 1D numpy array
ad._full, the real part is the \(i\) th component of
\(\mathbf{F}(\mathbf{p})\) and the dual part is the corresponding row in
the Jacobian \(\mathbf J\) evaluated at
\(\mathbf p = (x_1, x_2) = (1,2)\) .

This is done in spacejam.autodiff.AutoDiff._matrix for you with:

Fs = np.empty((F(*p).size, 1)) # initialze empty F(p)
jac = np.empty((F(*p).size, p.size)) # initialize empty J F(p)

for i, f in enumerate(ad._full): # fill in each row of each
 Fs[i] = f.r
 jac[i] = f.d

print(f'formated F(p):\n{Fs}\n\nformated J F(p):\n{jac}')

formated F(p):
[[5.00]
 [9.00]
 [29.00]]

formated J F(p):
[[4.00 1.00]
 [10.00 12.00]
 [1.00 48.00]]

where ad._full looks like:

print(ad._full)

[5.00 + eps [4.00 1.00] 9.00 + eps [10.00 12.00] 29.00 + eps [1.00 48.00]]

Note

You are also free to make your own dual numbers (for example
\(z = 3 + \epsilon\ 4\)) by doing:

z = sj.Dual(3, 4)

print(z)

3.00 + eps 4.00

We also use numpy to overload basic trig functions, exponential,
and natural log, which are not builtins in python. This is accessed by
doing:

result = np.cos(z)
print(result)

-0.99 - eps 0.56

spacejam formats all numbers to two decimal places but internally
the whole number is stored.

Background

Numerical Integration: A brief crash couse

Many physical systems can be expressed as a series of differential equations.
Euler’s method is the simplest numerical procedure for solving these equations
given some initial conditions. In the case of our problem statement:

	We have some initial conditions (such as position and velocity of a planet)
and we want to know what kind of orbit this planet will trace out, given that
only the force acting on it is gravity.

	Using the physical insight that
the “slope” of position over time is velocity, and the “slope” of velocity
over time is acceleration, we can predict, or integrate, how the quantities
will change over time.

	More explicitly, we can use the acceleration
supplied by gravity to predict the velocity of our planet, and then use this
velocity to predict its position a timestep \(\Delta t\) later.

	This gives us a new position and the whole process starts over again at the
next timestep. Here is a schematic of the Euler integration method.

[image: _images/euler_ani.gif]
This plot above could represent the component of the planet’s velocity varies
over time. Specifically, we have some solution curve (black) that we want to
approximate (red), given that we only know two things:

	where we started \((t_0, y_0)\)

	the rate of how where we were changes with time
\(\left(\dot{y}_0 \equiv \frac{\mathrm d y_0}{\mathrm{d} t}
= \frac{y_1 - y_0}{h}\right)\)

The cool thing about this is that even though we do not explicity know what
\(y_1\) is, the fact that we are given \(\dot{y}_0\) from the initial
conditions allows us to bootstrap our way around this. Starting with the
definition of slope, we can use the timestep \(h \equiv \Delta t = t_{n+1}
- t_n\), to find where we will be a timestep later \(\dot{y}_1\):

\[\dot y_0 = \frac{y_1 - y_0}{h}\quad\longrightarrow\quad y_1
= y_0 + h \dot{y}_0\quad.\]

Generalizing to any timestep \(n\):

\[y_{n+1} = y_n + h \dot{y}_n \quad.\]

Whenever all of the \(n+1\) terms are on one side of the equation and the
\(n\) terms are on the other, we have an explicit
numerical method. This can also be extended to \(k\) components
for \(y_n\) with the simple substitution:

\[\begin{split}\newcommand{b}[1]{\mathbf{#1}}
y_n \longrightarrow \b X_n
= \begin{pmatrix}x_1 \\ x_2 \\ \vdots \\ x_k\end{pmatrix},\quad
\dot{y}_n \longrightarrow \b {\dot X}_n
= \begin{pmatrix}\dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_k\end{pmatrix},\quad
y_{n+1} \longrightarrow \b X_{n+1} = \b X_{n} + h \dot{\b X}_n \quad.\end{split}\]

This is intuitively straightforward and easy to implement, but there is a
downside: the solutions do not converge for any given timestep. If the
steps are too large, our numerical estimations are essentially dominated by
progation of error and would return results that are non-physical, and if they
are too small the simulation would take too long to run.

We need a scheme that remains stable and accurate for a wide range of
timesteps, which is what implicit differentiation can accomplish. An
example of one such scheme is:

\[\b X_{n+1} = \b X_{n} + h \dot{\b X}_{n+1} \quad.\]

Now we have \(n+1\) terms on both sides, making this an implicit scheme.
This is know as the backward Euler method [https://en.wikipedia.org/wiki/Backward_Euler_method] and a common way of solving this
and many other similar schemes that build of off this one is by re-casting it
as a root finding problem. For the backward Euler method, this would look like:

\[\b g(\b X_{n+1}) = \b X_{n+1} - \b X_n - h \dot{\b X}_{n+1}\quad.\]

Here, the root of the new function \(\b g\) is the solution to our original
implicit integration equation. The Newton-Raphson method [https://en.wikipedia.org/wiki/Newton%27s_method] is a useful root finding
algorithm, but one of its steps requires the computation of the
\(k \times k\) Jacobian:

\[\begin{align}\begin{aligned}\newcommand{\pd}[2]{\frac{\partial#1}{\partial#2}}\\\begin{split}\b{J}(\b {\dot X}_{n+1})
= \pd{\b {\dot X}_{n+1}}{\b X_{n+1}}
= \begin{pmatrix} \nabla (\dot x_1)_{n+1} \\
 \nabla (\dot x_2)_{n+1} \\
 \vdots \\
 \nabla (\dot x_k)_{n+1} \\
 \end{pmatrix} \quad.\end{split}\end{aligned}\end{align} \]

Note

We avoid using superscript notation here because that will be
reserved for identifying iterates in Newton’s method, which we discuss
in Example Applications.

spacejam can also support systems with a different number of
equations than variables, i.e. non-square Jacobians. See Demo III: Vector function with vector input.

Accurately computing the elements of the Jacobian can be numerically expensive,
so a method to quickly and accurately compute derivatives would be extremely
useful. spacejam provides this capability by computing the Jacobian quickly
and accurately via
automatic differentiation,
which can be used to solve a wide class of problems that depend on implicit
differentiation for numerically stable solutions.

We walk through using
spacejam to implement Newton’s method for the Backward Euler method and
its slightly more sophisticated siblings, the \(s=1\) and \(s=2\)
Adams-Moulton methods [https://en.wikipedia.org/wiki/Linear_multistep_method#Adams%E2%80%93Moulton_methods] in Example Applications. Note: \(s=0\) is just the
original backward Euler method and \(s=1\) is also know as the famous
trapezoid rule. To the best of our knowledge, there is not a cool name for the
\(s=2\) method.

Automatic Differentiation: A brief overview

This is a method to simultaneously compute a function and its derivative to
machine precision. This can be done by introducing the dual number
\(\epsilon^2=0\), where \(\epsilon\ne0\). If we transform some
arbitrary function \(f(x)\) to \(f(x+\epsilon)\) and expand it, we
have:

\[f(x+\epsilon) = f(x) + \epsilon f'(x) + O(\epsilon^2)\quad.\]

By the definition of \(\epsilon\), all second order and higher terms in
\(\epsilon\) vanish and we are left with \(f(x+\epsilon) = f(x) +
\epsilon f'(x)\), where the dual part, \(f'(x)\), of this transformed
function is the derivative of our original function \(f(x)\). If we adhere
to the new system of math introduced by dual numbers, we are able to compute
derivatives of functions exactly.

For example, multiplying two dual numbers \(z_1 = a_r + \epsilon a_d\) and
\(z_2 = b_r + \epsilon b_d\) would behave like:

\[\begin{split}z_1 \times z_2 &= (a_r + \epsilon a_d) \times (b_r + \epsilon b_d)
= a_rb_r + \epsilon(a_rb_d + a_db_r) + \epsilon^2 a_db_d \\
&= \boxed{a_rb_r + \epsilon(a_rb_d + a_db_r)}\quad.\end{split}\]

A function like \(f(x) = x^2\) could then be automatically differentiated
to give:

\[f(x) \longrightarrow f(x+\epsilon)
= (x + \epsilon) \times (x + \epsilon)
= x^2 + \epsilon (x\cdot 1 + 1\cdot x) = x^2 + \epsilon\ 2x \quad,\]

where \(f(x) + \epsilon f'(x)\) is returned as expected. Operations like
this can be redefined via operator overloading, which we implement in
Implementation Details. This method is also easily extended to multivariable functions with
the introduction of “dual number basis vectors”
\(\b p_i = i + \epsilon_i 1\), where \(i\) takes on any of the
components of \(\b X_{n}\). For example, the multivariable function
\(f(x, y) = xy\) would transform like:

\[\begin{split}\require{cancel}
x \quad\longrightarrow\quad& \b p_x = x + \epsilon_x + \epsilon_y\ 0 \\
y \quad\longrightarrow\quad& \b p_y = y + \epsilon_x\ 0 + \epsilon_y \\
f(x, y) \quad\longrightarrow\quad& f(\b p) = (x + \epsilon_x + \epsilon_y\ 0)
\times (y + \epsilon_x\ 0 + \epsilon_y) \\
&= xy + \epsilon_y x + \epsilon_x y +
\cancel{\epsilon_x\epsilon_y} \\
&= xy + \epsilon_x y + \epsilon_y x \quad,\end{split}\]

where we now have:

\[\begin{split}f(x+\epsilon_x, y+\epsilon_y)
&= f(x, y) + \epsilon_x\pd{f}{x} + \epsilon_y\pd{f}{y}
= f(x, y) + \epsilon \left[\pd{f}{x},\ \pd{f}{y}\right] \\
&= f(x, y) + \epsilon \nabla f(x, y)\quad.\end{split}\]

This is accomplished internally in spacejam.autodiff.Autodiff._ad with:

 def _ad(self, func, p, kwargs=None):
 """ Internally computes `func(p)` and its derivative(s).

 Notes

 `_ad` returns a nested 1D `numpy.ndarray` to be formatted internally
 accordingly in :any:`spacejam.autodiff.AutoDiff.__init__` .

 Parameters

 func : numpy.ndarray
 function(s) specified by user.
 p : numpy.ndarray
 point(s) specified by user.
 """
 if len(p) == 1: # scalar p
 p_mult = np.array([dual.Dual(p)])

 else:# vector p
 p_mult = [dual.Dual(pi, idx=i, x=p) for i, pi in enumerate(p)]
 p_mult = np.array(p_mult) # convert list to numpy array

 # perform AD with specified function(s)
 if kwargs:
 result = func(*p_mult, **kwargs)
 else:
 result = func(*p_mult)
 return result

The x argument in the spacejam.dual.Dual class above sets the length of
the \(\ p\) dual basis vector and the idx argument sets the proper
index to 1 (with the rest being zero).

Software Organization

Cool tree cartoon of main files:

spacejam
├── LICENSE.txt
├── MANIFEST.in¶
├── README.md
├── requirements.txt
├── setup.cfg
├── setup.py
└── spacejam
 ├── __init__.py
 ├── autodiff.py
 ├── dual.py
 ├── integrators.py
 └── test
 ├── __init__.py
 ├── test_autodiff.py
 ├── test_dual.py
 └── test_integrators.py

Overview of main modules

	spacejam.autodiff: Performs automatic differentiation of user-specified
functions by following dual number rules provided by spacejam.dual

	spacejam.dual: Overloads basic math operations and returns an
automatic differentiation spacejam object

	spacejam.integrators: Suite of implicit integration schemes

Installation

Virtual Environment

For development, or just to have a self contained enviroment to use spacejam
in, run the following commands anywhere on your computer:

python -m venv venv
source venv/bin/activate
pip install spacejam

Optional: If you prefer working in a Jupyter notebook, you can also

Tests

Unit tests are stored in spacejam/tests and each module mentioned above
has its own doctests. TravisCI and Coveralls integration is also provided. You
can run these tests and coverage reports yourself by doing the following:

cd venv/lib/python3.7/site-packages/spacejam
pytest --doctest-modules --cov=. --cov-report term-missing

Check out How to use for a quickstart tutorial.

Implementation Details

Data Structures

	spacejam uses 1D numpy.ndarrays to return partial derivatives, where
the \(j\) th entry contains \(\frac{\partial f_i}{\partial x_j}\) for
\(i = 1, ... m\) and \(j = 1, ... k\). In general, this is for
\(m\) different functions that are a function of \(k\) different
variables.

	The internal convenience function spacejam.autodiff.AutoDiff._matrix
stacks these 1D arrays into an \(m\times k\) numpy.ndarray Jacobian
matrix for ease of viewing, as described in Demo III: Vector function with vector input.

API

spacejam.autodiff

	
class spacejam.autodiff.AutoDiff(func, p, kwargs=None)

	Performs automatic differentiation (AD) on functions input by user.

AD if performed by transforming f(x1, x2, …) to f(p_x1, p_x2, …),
where p_xi is returned from spacejam.dual.Dual .
The final result is then returned in a series of 1D numpy.ndarray or
formatted matrices depending on if the user specified functions F are
multivariable or not.

	
r

	numpy.ndarray – User defined function(s) F evaluated at p.

	
d

	numpy.ndarray – Corresponding derivative, gradient, or Jacobian of user defined
functions(s).

	
__init__(func, p, kwargs=None)

	
	Parameters

	
	func (numpy.ndarray) – user defined function(s).

	p (numpy.ndarray) – user defined point(s) to evaluate derivative/gradient/Jacobian at.

	
_ad(func, p, kwargs=None)

	Internally computes func(p) and its derivative(s).

Notes

_ad returns a nested 1D numpy.ndarray to be formatted internally
accordingly in spacejam.autodiff.AutoDiff.__init__ .

	Parameters

	
	func (numpy.ndarray) – function(s) specified by user.

	p (numpy.ndarray) – point(s) specified by user.

	
_matrix(F, p, result)

	Internally formats result returned by
spacejam.autodiff.AutoDiff._ad into matrices.

	Parameters

	
	F (numpy.ndarray) – functionss specified by user.

	p (numpy.ndarray) – point(s) specified by user.

	result (numpy.ndarray) – Nested 1D numpy.ndarray to be formatted into matrices.

	Returns

	
	Fs (numpy.ndarray) – Column matrix of functions evaluated at points(s).

	jac (numpy.ndarray) – Corresponding Jacobian matrix.

spacejam.dual

	
class spacejam.dual.Dual(real, dual=None, idx=None, x=array(1))

	Creates dual numbers and defines dual number math.

A real number a is taken in and its dual counterpart a + eps [1.00] is
returned to facilitate automatic differentiation in
spacejam.autodiff .

Notes

The dual part can optionally be returned as a “dual basis vector”
[0 1 0] if the user function f is multivariable and the partial
derivative \(\partial f / \partial x_2\) is desired, for example.

	
r

	float – real part of spacejam.dual.Dual .

	
d

	numpy.ndarray – dual part of spacejam.dual.Dual .

	
__add__(other)

	Returns the addition of self and other

	Parameters

	
	self (Dual object) –

	other (Dual object, float, or int) –

	Returns

	z

	Return type

	Dual object that is the sum of self and other

Examples

>>> z = Dual(1, 2) + Dual(3, 4)
>>> print(z)
4.00 + eps 6.00
>>> z = 2 + Dual(1, 2)
>>> print(z)
3.00 + eps 2.00

	
__init__(real, dual=None, idx=None, x=array(1))

	
	Parameters

	
	real (int/float) – real part of spacejam.dual.Dual .

	dual (float) – dual part of spacejam.dual.Dual (default 1.00) .

	idx (int (default None)) – index in dual part of dual basis vector.

	x (numpy.ndarray (default [1])) – set size of pre-allocated array for dual basis vector.

	
__mul__(other)

	Returns the product of self and other

	Parameters

	
	self (Dual object) –

	other (Dual object, float, or int) –

	Returns

	z

	Return type

	Dual object that is the product of self and other

Examples

>>> z = Dual(1, 2) * Dual(3, 4)
>>> print(z)
3.00 + eps 10.00
>>> z = 2 * Dual(1, 2)
>>> print(z)
2.00 + eps 4.00

	
__neg__()

	Returns negation of self

Examples

>>> z = Dual(1, 2)
>>> print(-z)
-1.00 - eps 2.00

	
__pos__()

	Returns self

Examples

>>> z = Dual(1, 2)
>>> print(+z)
1.00 + eps 2.00

	
__pow__(other)

	Performs (self.r + eps self.d) ** (other.r + eps other.d)

	Parameters

	
	self (Dual object) –

	other (Dual object, float, or int) –

	Returns

	z

	Return type

	Dual object that is self raised to the other power

Examples

>>> z = Dual(1, 2) ** Dual(3, 4)
>>> print(z)
1.00 + eps 6.00

	
__radd__(other)

	Returns the addition of self and other

	Parameters

	
	self (Dual object) –

	other (Dual object, float, or int) –

	Returns

	z

	Return type

	Dual object that is the sum of self and other

Examples

>>> z = Dual(1, 2) + Dual(3, 4)
>>> print(z)
4.00 + eps 6.00
>>> z = 2 + Dual(1, 2)
>>> print(z)
3.00 + eps 2.00

	
__repr__()

	Prints self in the form a_r + eps a_d, where self = Dual(a_r, a_d),
a_r and a_d are the real and dual part of self, respectively,
and both terms are automatically rounded to two decimal places

	Returns

	z

	Return type

	Dual object that is the product of self and other

Examples

>>> z = Dual(1, 2)
>>> print(z)
1.00 + eps 2.00

	
__rmul__(other)

	Returns the product of self and other

	Parameters

	
	self (Dual object) –

	other (Dual object, float, or int) –

	Returns

	z

	Return type

	Dual object that is the product of self and other

Examples

>>> z = Dual(1, 2) * Dual(3, 4)
>>> print(z)
3.00 + eps 10.00
>>> z = 2 * Dual(1, 2)
>>> print(z)
2.00 + eps 4.00

	
__rsub__(other)

	Returns the subtraction of other from self

	Parameters

	
	self (Dual object) –

	other (Dual object, float, or int) –

	Returns

	z – difference of other and self

	Return type

	Dual object

Examples

>>> z = 2 - Dual(1, 2)
>>> print(z)
1.00 - eps 2.00

	
__rtruediv__(other)

	Returns the quotient of other and self

	Parameters

	
	self (Dual object) –

	other (Dual object, float, or int) –

	Returns

	z

	Return type

	Dual object that is the product of self and other

Examples

>>> z = 2 / Dual(1, 2)
>>> print(z)
2.00 - eps 4.00

	
__sub__(other)

	Returns the subtraction of self and other

	Parameters

	
	self (Dual object) –

	other (Dual object, float, or int) –

	Returns

	z – difference of self and other

	Return type

	Dual object

Notes

Subtraction does not commute in general.
A specialized __rsub__ is required.

Examples

>>> z = Dual(1, 2) - Dual(3, 4)
>>> print(z)
-2.00 - eps 2.00
>>> z = Dual(1, 2) - 2
>>> print(z)
-1.00 + eps 2.00

	
__truediv__(other)

	Returns the quotient of self and other

	Parameters

	
	self (Dual object) –

	other (Dual object, float, or int) –

	Returns

	z

	Return type

	Dual object that is the quotient of self and other

Examples

>>> z = Dual(1, 2) / 2
>>> print(z)
0.50 + eps 1.00
>>> z = Dual(3, 4) / Dual(1, 2)
>>> print(z)
3.00 - eps 2.00

	
cos()

	Returns the cosine of a

	Parameters

	self (Dual object) –

	Returns

	z

	Return type

	cosine of self

Examples

>>> z = np.cos(Dual(0, 1))
>>> print(z)
1.00 + eps -0.00

	
exp()

	Returns e**self

	Parameters

	self (Dual object) –

	Returns

	z

	Return type

	e**self

Examples

>>> z = np.exp(Dual(1, 2))
>>> print(z)
2.72 + eps 5.44

	
sin()

	Returns the sine of a

	Parameters

	self (Dual object) –

	Returns

	z

	Return type

	sine of self

Examples

>>> z = np.sin(Dual(0, 1))
>>> print(z)
0.00 + eps 1.00

	
tan()

	Returns the tangent of a

	Parameters

	self (Dual object) –

	Returns

	z

	Return type

	tangent of self

Examples

>>> z = np.tan(Dual(0,1))
>>> print(z)
0.00 + eps 1.00

spacejam.integrators

	
spacejam.integrators.amsi(func, X_old, h=0.001, X_tol=0.1, i_tol=100.0, kwargs=None)

	First order Adams-Moulton method (AKA Trapezoid)

	Parameters

	
	func (function) – User defined function to be integrated.

	X_old (numpy.ndarray) – Initial input to user function

	h (float (default 1E-3)) – Timestep

	X_tol (float (default 1E-1)) – Minimum difference between Newton-Raphson iterates to terminate on.

	i_tol (int (default 1E2)) – Maximum number of Newton-Raphson iterations. Entire simulation
terminates if this number is exceeded.

	kwargs (dict (default None)) – optional arguments to be supplied to user defined function.

	Returns

	X_new – Final X_n+1 found from root finding of implicit method

	Return type

	numpy.ndarray

	
spacejam.integrators.amsii(func, X_n, X_nn, h=0.001, X_tol=0.1, i_tol=100.0, kwargs=None)

	Second order Adams-Moulton method

	Parameters

	
	func (function) – User defined function to be integrated.

	X_n (numpy.ndarray) – X_n

	X_nn (numpy.ndarray) – X_n-1

	h (float (default 1E-3)) – Timestep

	X_tol (float (default 1E-1)) – Minimum difference between Newton-Raphson iterates to terminate on.

	i_tol (int (default 1E2)) – Maximum number of Newton-Raphson iterations. Entire simulation
terminates if this number is exceeded.

	kwargs (dict (default None)) – optional arguments to be supplied to user defined function.

	Returns

	X_new – Final X_n+1 found from root finding of implicit method

	Return type

	numpy.ndarray

	
spacejam.integrators.amso(func, X_old, h=0.001, X_tol=0.1, i_tol=100.0, kwargs=None)

	Zeroth order Adams-Moulton method (AKA Backward Euler)

	Parameters

	
	func (function) – User defined function to be integrated.

	X_old (numpy.ndarray) – Initial input to user function

	h (float (default 1E-3)) – Timestep

	X_tol (float (default 1E-1)) – Minimum difference between Newton-Raphson iterates to terminate on.

	i_tol (int (default 1E2)) – Maximum number of Newton-Raphson iterations. Entire simulation
terminates if this number is exceeded.

	kwargs (dict (default None)) – optional arguments to be supplied to user defined function.

	Returns

	X_new – Final X_n+1 found from root finding of implicit method

	Return type

	numpy.ndarray

Examples

>>>

Example Applications

Background

spacejam can be used to simulate a wide range of physical systems. To
accomplish this, we provide an integration suite of implicit solvers that draw
from the first three orders of the Adams-Moulton [https://en.wikipedia.org/wiki/Linear_multistep_method#Adamss%E2%80%93Moulton_methods] methods. These methods can
be accessed from spacejam.integrators and each use the root finding
Newton-Raphson method with an initial forward Euler guess. We will now describe
each implicit scheme and how to go about using it with spacejam.

(s = 0) Method

As we saw in Numerical Integration: A brief crash couse, this is a numerical scheme to solve the implicit
equation:

\[\begin{align}\begin{aligned}\newcommand{b}[1]{\mathbf{#1}}\\\b X_{n+1} = \b X_{n} + h \dot{\b X}_{n+1}\end{aligned}\end{align} \]

by re-casting it as the root finding problem:

\[\b g(\b X_{n+1}) = \b X_{n+1} - \b X_n - h \dot{\b X}_{n+1}\quad.\]

In 1D, the Newton-Raphson method successively finds better and better
approximations to the root of a function \(f(x)\) in the following way:

[image: _images/NewtonIteration_Ani.gif]

	Make a guess next to one of the roots you want

	Draw the corresponding tangent line (red) at this guess evaluated on the
original function (blue)

	Trace this tangent line to where it intercepts the x-axis

	Make this intercept your new guess

	Rinse and repeat until your latest guess is close enough (your tolerance) to
the root you wanted to approximate in the first place

The equation for this can be quickly derived by solving for the next root
iterate \(x_{n+1}\) from the definition of the derivative:

\[\text{slope} = \frac{\text{rise}}{\text{run}}\quad\longrightarrow\quad
f'(x_n) = \frac{f(x_n)}{x_n - x_{n+1}}\quad\longrightarrow\quad
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \quad .\]

This is naturally extended to vector functions that accept multi-valued input by
using the multi-variable version of the derivative, the Jacobian \(\b J\):

\[\begin{align}\begin{aligned}\newcommand{\pd}[2]{\frac{\partial#1}{\partial#2}}\\\b X_{n+1} = \b X_{n} - \b J[\b f(\b X_n)]^{-1} \b f(\b X_n) \quad,\end{aligned}\end{align} \]

where:

\[\begin{split}\b J[\b f(\b X_n)]_{ij} &= \pd{f_i}{x_j} \quad, \\
\b f\left(\b X_n\right) &= [f_1, f_2, \cdots, f_m] \quad, \\
\b X_n &= [x_1, x_2, \cdots, x_k] \quad.\end{split}\]

For these examples, \(m=k\),
\(\b f = \b {\dot X}_n = [\dot x_1, \dot x_2, \cdots, \dot x_m]_n\),
\(1 \le i,j \le k\) .

Applying this to our backward Euler equation:

\[\begin{split}0 &= \b g\left(\b X_{n+1}\right) = \b X_{n+1} - \b X_n - h \dot{\b X}_{n+1} \quad, \\
\b X_{n+1}^{(i+1)} &= \b X_{n+1}^{(i)} -
\b D\left[\b g\left(\b X_{n+1}\right)^{(i)}\right]^{-1} \b g\left(\b X_{n+1}\right)^{(i)} \quad.\end{split}\]

Here, \((i)\) and \((i+1)\) have been used to avoid confusion with the
\(n\) and \(n+1\) iterate used in the 1D example above, and the root to
this equation is the solution \(\b X_{n+1}\) to our original implicit
equation. The Jacobian \(\b J\) is hiding inside of \(\b D\) and we
can make it show itself by just performing the multi-variable derivative that
is required of the Newton-Raphson method:

\[\require{cancel}
\b D\left[\b g\left(\b X_{n+1}\right)^{(i)}\right]
= \pd{\b g\left(\b X_{n+1}\right)^{(i)}}{\b X_{n+1}^{(i)}}
= \pd{\b X_{n+1}^{(i)}}{\b X_{n+1}^{(i)}}
- \cancelto{0}{\pd{\b X_{n}^{(i)}}{\b X_{n+1}^{(i)}}}
 - \pd{h \b {\dot X}_{n+1}}{\b X_{n+1}^{(i)}}
= \b I - h\b{J}\left[\left(\b {\dot X}_{n+1}\right)^{(i)}\right] \quad,\]

where \(\b I\) is the identity matrix. All that is needed now is an initial
guess for \(\b X_{n+1}^{(0)}\) to jump start Newton’s method. A single
forward Euler step should do:

\[\begin{split}\b X_{n+1}^{(0)} &= \b X_{n}^{(0)} + h \b {\dot X}_n^{(0)}\quad, \\
\b {\dot X}_n^{(0)}
&= \begin{bmatrix}
 \dot{x}_1 (t=0) \\
 \dot{x}_2 (t=0) \\
 \vdots \\
 \dot{x}_k (t=0)
\end{bmatrix}\quad.\end{split}\]

In this framework, both the real and dual part of the dual object returned by
spacejam will be used. To summarize:

	The user supplies the system of equations \(\b {\dot X}_{n}\)
and initial conditions \(\b {\dot X}_{n}^{(0)}\) .

	The user implements the integration scheme using the real part returned
from spacejam for \(\b {\dot X}_{n}^{(i)}\) and the dual part
as \(\b{J}\left[\left(\b {\dot X}_{n+1}\right)^{(i)}\right]\) .

(s = 1) Method

A similar implementation can be made with the next order up in this family of
implicit methods. In this scheme we have:

\[\b X_{n+1} = \b X_n + \frac{1}{2}h\left(\b {\dot X_{n+1}} + \b {\dot X_n}\right)\quad.\]

Applying the same treatment of turning this into a root finding problem and
applying Newton’s method gives the similar result:

\[\begin{split}\b g(\b X_{n+1}) &= \b X_{n+1} - \b X_n
- \frac{h}{2} \b {\dot X_{n+1}}
- \frac{h}{2} \b {\dot X_n} \quad, \\
\b X_{n+1}^{(i+1)} &= \b X_{n+1}^{(i)}
- \b D\left[\b g\left(\b X_{n+1}\right)^{(i)}\right]^{-1}
 \b g\left(\b X_{n+1}\right)^{(i)} \quad, \\
\b D &= \b I
- \frac{h}{2}\b J\left[\left(\b {\dot X_{n+1}}\right)^{(i)}\right] \quad .\end{split}\]

In this new scheme, \(\b D\) has an extra factor of \(1/2\) on its
Jacobian in the backward and now spacejam will also be computing
\(\b {\dot X_n}\).

(s = 2) Method

In this final scheme we have:

\[\b X_{n+1} = \b X_n + h\left(\frac{5}{12} \b{\dot X_{n+1}}
+ \frac{2}{3} \b{\dot X_n}
- \frac{1}{12} \b{\dot X_{n-1}}\right)\quad.\]

The corresponding \(\b g\) and \(\b D\) are then:

\[\begin{split}\b g &= \b X_{n+1} - \b X_n - h\left(\frac{5}{12} \b{\dot X_{n+1}}
+ \frac{2}{3} \b{\dot X_n}
- \frac{1}{12} \b{\dot X_{n-1}}\right) \quad, \\
\b D &= \b I - \frac{5h}{12}
\b J\left[\left(\b {\dot X_{n+1}}\right)^{(i)}\right] \quad .\end{split}\]

Note

Each of the three methods above are implemented in
spacejam.integrators. The tolerance determining when to end
Newton-Raphson iterations and the break point in number of iterations
can also respectively be controlled by the keyword arguments X_tol
and i_tol in all integrator functions.

We demonstrate each method in our example systems below.

Astronomy Example

Background

In this example, we will integrate the orbits of a hypothetical
three-body star-planet-moon system. This exercise is motivated by
the first potential discovery of an exomoon made not too long ago [https://www.space.com/42008-first-exomoon-discovery-kepler-1625b.html].

In 2D Cartesian coordinates, the equations of motion that govern the orbit of
body \(A\) due to bodies \(B\) and \(C\) are:

\[\begin{split}&\bullet \dot x_A = v_{x_A} \\
&\bullet \dot y_A = v_{y_A} \\
&\bullet \dot v_{x_A} = \frac{G m_B}{d_{AB}^3}(x_B - x_A)
 + \frac{G m_C}{d_{AC}}(x_C - x_A) \\
&\bullet \dot v_{y_A} = \frac{G m_B}{d_{AB}^3}(y_B - y_A)
 + \frac{G m_C}{d_{AC}}(y_C - y_A) \quad,\end{split}\]

where the following definitions are given:

	\((x_i, y_i)\): positional coordinates of body \(i\), with
mass \(m_i\)

	\((v_{x_i}, v_{y_i})\): components of body \(i\)‘s velocity

	\(d_{ij}\): distance between body \(i\) and body \(j\)

	\(G\): Universal Gravitational Constant (as far as we know)

We will be using an external package (astropy) [http://www.astropy.org/] that is not included in
spacejam for this demonstration. This step is totally optional, but it
makes using units and physical constants a lot more convenient.

Initial Conditions

For this toy model, let’s place a \(10\) Jupiter mass exoplanet
\(0.01\ \text{AU}\) to the left of a sun-like star, which we place at the
origin. Let’s also have this exoplanet orbit this star with the typical
Keplerian velocity \(v = \sqrt{GM/r}\), starting in the negative \(y\)
direction, where \(M\) is the mass of the star and r is the distance of
this exoplanet from its star.

Next, let’s place an exomoon with \(1/1000\) th the mass of the exoplanet
about \(110,000\ \text{km}\) to the left of this exoplanet. This ensures
that the exomoon is within its gravitational sphere of influence [https://en.wikipedia.org/wiki/Hill_sphere]. Let’s also
have this exomoon start moving with Keplerian speed in the negative \(y\)
direction. note: this would be the sum of the exoplanet’s velocity and the
Keplerian speed of the moon due to just the gravitational influence of the
exoplanet.

Finally, let’s pick a time step that goes something like a tenth of the time it
would initially take the exomoon to fall straight into the planet if it didn’t
happen to have any Keplerian speed. To a certain extent, this choice is pretty
arbitrary because of implicit schemes’ relative insensitivity to time step size
relative to those for explicit schemes, but our implicit solving implementation
does partially rely on an explicit scheme, so it’s still important to consider.

import numpy as np
from astropy import units as u
from astropy import constants as c

constants
solMass = (1 * u.solMass).cgs.value
solRad = (1 * u.solRad).cgs.value
jupMass = (1 * u.jupiterMass).cgs.value
jupRad = (1 * u.jupiterRad).cgs.value
earthMass = (1 * u.earthMass).cgs.value
earthRad = (1 * u.earthRad).cgs.value
G = (1 * c.G).cgs.value
AU = (1 * u.au).cgs.value
year = (1 * u.year).cgs.value
day = (1 * u.day).cgs.value
earth_v = (30 * u.km/u.s).value
moon_v = (1 * u.km/u.s).cgs.value

mass ratio of companion to secondary
q = 0.001
primary
host_mass = solMass
host_rad = solRad
secondary
scndry_mass = 10*jupMass
scndry_rad = 1.7*jupRad
scndry_x = -0.01*AU
scndry_y = 0.0
scndry_vx = 0.0
scndry_vy = -np.sqrt(G*host_mass/np.abs(scndry_x)) # assuming Keplerian for now
companion
cmpn_mass = q*scndry_mass
cmpn_rad = 0.3*scndry_rad
hill_sphere = np.abs(scndry_x) * (scndry_mass / (3*host_mass))**(1/3)
cmpn_x = scndry_x - 0.5 * hill_sphere
cmpn_y = scndry_y
cmpn_vx = 0.0
cmpn_vy = scndry_vy - np.sqrt(G*scndry_mass/(0.5 * hill_sphere))

m_1 = host_mass # host star
m_2 = scndry_mass #m_1 / 5000 # hot jupiter
m_3 = cmpn_mass # companion

m1: primary (hardcoded)
x_1 = 0.0
y_1 = 0.0
vx_1 = 0.0
vy_1 = 0.0

m2: secondary
x_2 = scndry_x
y_2 = scndry_y # doesn't matter where it starts on y because of symmetry of system
vx_2 = scndry_vx
vy_2 = scndry_vy # assuming Keplerian for now

m3: companion
x_3 = cmpn_x
y_3 = cmpn_y
vx_3 = cmpn_vx
vy_3 = cmpn_vy

characteristic timescale set by secondary's orbital timescale
T0 = 2*np.pi*np.sqrt(np.abs(scndry_x)**3/(G*m_1))
tmax = 2.5*T0

uold_1 = np.array([x_1, y_1, vx_1, vy_1])
uold_2 = np.array([x_2, y_2, vx_2, vy_2])
uold_3 = np.array([x_3, y_3, vx_3, vy_3])

m1_coord = uold_1
m2_coord = uold_2
m3_coord = uold_3

r0 = np.sqrt((uold_3[0] - uold_2[0])**2 + (uold_3[1] - uold_2[1])**2)
v0 = np.sqrt(uold_3[2]**2 + uold_3[3]**2)
f = -1
h = 10**(f) * r0 / v0
N = 1500 # number of steps to run sim

Store initial positions and velocities
uold_1 = np.array([x_1, y_1, vx_1, vy_1]) # star
uold_2 = np.array([x_2, y_2, vx_2, vy_2]) # exoplanet
uold_3 = np.array([x_3, y_3, vx_3, vy_3]) # exomoon

Equations of Motion

The system of differential equations governing our system look like:

def f(x, y, vx, vy, uold_b=None, mb=0, uold_c=None, mc=0):
 # position and velocity
 r_a = np.array([x, y])
 v_a = np.array([vx, vy])

 r_b = uold_b[:2]
 r_c = uold_c[:2]

 # position vector pointing from one of the two masses to m_i
 d_ab = np.linalg.norm(r_b - r_a)
 d_ac = np.linalg.norm(r_c - r_a)

 # calulating accelerations
 gx = G*mb/d_ab**3 * (r_b[0] - x) + (G*mc/d_ac**3) * (r_c[0] - x)
 gy = G*mb/d_ab**3 * (r_b[1] - y) + (G*mc/d_ac**3) * (r_c[1] - y)

 # return derivatives
 f1 = vx
 f2 = vy
 f3 = gx
 f4 = gy
 return np.array([f1, f2, f3, f4])

Simulation

Our toy model can now be run with spacejam and its included suite of
integrators to produce the following orbits.

(s = 0)

import spacejam as sj

X_1 = np.zeros((N, uold_1.size))
X_1[0] = uold_1
X_2 = np.zeros((N, uold_2.size))
X_2[0] = uold_2
X_3 = np.zeros((N, uold_3.size))
X_3[0] = uold_3

for n in range(N-1):
 kwargs_1 = {'uold_b': X_2[n], 'mb': m_2, 'uold_c': X_3[n], 'mc': m_3}
 X_1[n+1] = sj.integrators.amso(f, X_1[n], h=h, kwargs=kwargs_1)

 kwargs_2 = {'uold_b': X_1[n], 'mb': m_1, 'uold_c': X_3[n], 'mc': m_3}
 X_2[n+1] = sj.integrators.amso(f, X_2[n], h=h, kwargs=kwargs_2)

 kwargs_3 = {'uold_b': X_1[n], 'mb': m_1, 'uold_c': X_2[n], 'mc': m_2}
 X_3[n+1] = sj.integrators.amso(f, X_3[n], h=h, kwargs=kwargs_3)

 # stop iterating if Newton-Raphson method does not converge
 if X_1[n+1] is None or X_2[n+1] is None or X_3[n+1] is None:
 break

[image: _images/s0.png]

Note

Axes are scaled by the initial distance of the exoplanet from its host
star and oriented in the usual XY fashion.

This integration scheme actually fails partway through the simulation.
spacejam provides the following suggestions to fix this in its error
message:

SystemExit:
Sorry, spacejam did not converge for s=0 A-M method.
Try adjusting X_tol, i_tol, or using another integrator.

We will follow the last suggestion and use the higher order s=1 scheme instead.

(s = 1)

X_1 = np.zeros((N, uold_1.size))
X_1[0] = uold_1
X_2 = np.zeros((N, uold_2.size))
X_2[0] = uold_2
X_3 = np.zeros((N, uold_3.size))
X_3[0] = uold_3

for n in range(N-1):
 kwargs_1 = {'uold_b': X_2[n], 'mb': m_2, 'uold_c': X_3[n], 'mc': m_3}
 X_1[n+1] = sj.integrators.amsi(f, X_1[n], h=h, kwargs=kwargs_1)

 kwargs_2 = {'uold_b': X_1[n], 'mb': m_1, 'uold_c': X_3[n], 'mc': m_3}
 X_2[n+1] = sj.integrators.amsi(f, X_2[n], h=h, kwargs=kwargs_2)

 kwargs_3 = {'uold_b': X_1[n], 'mb': m_1, 'uold_c': X_2[n], 'mc': m_2}
 X_3[n+1] = sj.integrators.amsi(f, X_3[n], h=h, kwargs=kwargs_3)

 # stop iterating if Newton-Raphson method does not converge
 if X_1[n+1] is None or X_2[n+1] is None or X_3[n+1] is None:
 break

[image: _images/s1.png]
It works! Let’s go up another order.

(s = 2)

X_1 = np.zeros((N, uold_1.size))
X_1[0] = uold_1
X_2 = np.zeros((N, uold_2.size))
X_2[0] = uold_2
X_3 = np.zeros((N, uold_3.size))
X_3[0] = uold_3

This method requires the 2nd step as well to get started. Will
just use a forward Euler guess for this
kwargs_1 = {'uold_b': X_2[0], 'mb': m_2, 'uold_c': X_3[0], 'mc': m_3}
ad = sj.AutoDiff(f, X_1[0], kwargs=kwargs_1)
X_1[1] = X_1[0] + h*ad.r.flatten()

kwargs_2 = {'uold_b': X_1[0], 'mb': m_1, 'uold_c': X_3[0], 'mc': m_3}
ad = sj.AutoDiff(f, X_2[0], kwargs=kwargs_2)
X_2[1] = X_2[0] + h*ad.r.flatten()

kwargs_3 = {'uold_b': X_1[0], 'mb': m_1, 'uold_c': X_2[0], 'mc': m_2}
ad = sj.AutoDiff(f, X_3[0], kwargs=kwargs_3)
X_3[1] = X_3[0] + h*ad.r.flatten()

for n in range(1, N-1):
 kwargs_1 = {'uold_b': X_2[n], 'mb': m_2, 'uold_c': X_3[n], 'mc': m_3}
 X_1[n+1] = sj.integrators.amsii(f, X_1[n], X_1[n-1],
 h=h, kwargs=kwargs_1)

 kwargs_2 = {'uold_b': X_1[n], 'mb': m_1, 'uold_c': X_3[n], 'mc': m_3}
 X_2[n+1] = sj.integrators.amsii(f, X_2[n], X_2[n-1],
 h=h, kwargs=kwargs_2)

 kwargs_3 = {'uold_b': X_1[n], 'mb': m_1, 'uold_c': X_2[n], 'mc': m_2}
 X_3[n+1] = sj.integrators.amsii(f, X_3[n], X_3[n-1],
 h=h, kwargs=kwargs_3)

 # stop iterating if Newton-Raphson method does not converge
 if X_1[n+1] is None or X_2[n+1] is None or X_3[n+1] is None:
 break

[image: _images/s2.png]

Note

All plots for this example were styled with the external package
seaborn [https://seaborn.pydata.org/index.html] and created with the following snippet below:

import matplotlib.pyplot as plt
import seaborn as sns

sns.set_style('darkgrid')

fig, ax = plt.subplots(figsize=(6, 6))
ax.set_aspect('equal', 'datalim')

normalize plot axes
a_0 = np.linalg.norm(m2_coord)

custom colors
c1 = sns.xkcd_palette(["pinkish orange"])[0]
c2 = sns.xkcd_palette(["amber"])[0]
c3 = sns.xkcd_palette(["windows blue"])[0]

ax.plot(X_1[:,0]/a_0, X_1[:,1]/a_0, c=c1, label='star')
ax.plot(X_2[:,0]/a_0, X_2[:,1]/a_0, c=c2, label='exoplanet')
ax.plot(X_3[:,0]/a_0, X_3[:,1]/a_0, c=c3, label='exomoon')

ax.legend()

Static images can be a bit difficult to interpret, so we also included a
stylized movie for the final plot.

 Future

Future

	Improve UI

	Read in user-defined equations (e.g. json, yaml)

	Generalize algorithms

	Add support for systems with time-dependent system of equations

	Add IMEX schemes to integration suite

	Add vector support

	Make spacejam object indexable so you can do stuff like this:

Z = sj.Dual([1, 2], [3, 4])

print(z[0], z[1])

1.00 + eps 3.00, 2.00 + eps 4.00

 Python Module Index

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 spacejam	

 	
 	
 spacejam.autodiff	

 	
 	
 spacejam.dual	

 	
 	
 spacejam.integrators	

 Index

Index

 _
 | A
 | C
 | D
 | E
 | R
 | S
 | T

_

 	
 	__add__() (spacejam.dual.Dual method)

 	__init__() (spacejam.autodiff.AutoDiff method)

 	(spacejam.dual.Dual method)

 	__mul__() (spacejam.dual.Dual method)

 	__neg__() (spacejam.dual.Dual method)

 	__pos__() (spacejam.dual.Dual method)

 	__pow__() (spacejam.dual.Dual method)

 	__radd__() (spacejam.dual.Dual method)

 	
 	__repr__() (spacejam.dual.Dual method)

 	__rmul__() (spacejam.dual.Dual method)

 	__rsub__() (spacejam.dual.Dual method)

 	__rtruediv__() (spacejam.dual.Dual method)

 	__sub__() (spacejam.dual.Dual method)

 	__truediv__() (spacejam.dual.Dual method)

 	_ad() (spacejam.autodiff.AutoDiff method)

 	_matrix() (spacejam.autodiff.AutoDiff method)

A

 	
 	amsi() (in module spacejam.integrators)

 	amsii() (in module spacejam.integrators)

 	
 	amso() (in module spacejam.integrators)

 	AutoDiff (class in spacejam.autodiff)

C

 	
 	cos() (spacejam.dual.Dual method)

D

 	
 	d (spacejam.autodiff.AutoDiff attribute)

 	(spacejam.dual.Dual attribute)

 	
 	Dual (class in spacejam.dual)

E

 	
 	exp() (spacejam.dual.Dual method)

R

 	
 	r (spacejam.autodiff.AutoDiff attribute)

 	(spacejam.dual.Dual attribute)

S

 	
 	sin() (spacejam.dual.Dual method)

 	spacejam.autodiff (module)

 	
 	spacejam.dual (module)

 	spacejam.integrators (module)

T

 	
 	tan() (spacejam.dual.Dual method)

_static/minus.png

_static/plus.png

_images/lv_0.png
2.00

1.75

1.50

population

0.75

0.50

Lotka Volterra System Example

—— prey —— predator 14
c
S
T 12
=
Q.
o
[e%
5 1.0
©
o
o
o8
0.6
200 400 600 800 1000

step

0.50

0.75

1.00 1.25
prey population

1.50

1.75

2.00

_static/s1.png
1.0

0.5

0.0

-1.0

— star
~——— exoplanet
—— exomoon

-1.0

0.0

0.5

1.0

_images/lv_1.png
2.00

1.75

population
N
oo
[$)] o

N
o
o

o
3
3

0.50

Lotka Volterra System Example

—— prey ——— predator 14
c
S
T 12
=
Q.
o
[e%
5 1.0
©
o
o
=08
0.6
0 200 400 600 800 1000

step

0.50

0.75

1.00 1.25
prey population

1.50

1.75

2.00

_static/s2.png
1.0

0.5

0.0

-1.0

— star
——— exoplanet
—— exomoon

-1.0

0.0

0.5

1.0

_images/NewtonIteration_Ani.gif
>

» X

Funktion
Tangente

_images/euler_ani.gif
Euler's Method

dy
ey
ot = Ty

is Eule

formula to
imate the solutions.

appro
y(t)=
o a1 =V, + it ¥)

(1) s the solution of this
differential equation

_static/s0.png
0.0

— star
——— exoplanet
—— exomoon

-1.0

0.0

_images/s1.png
1.0

0.5

0.0

-1.0

— star
~——— exoplanet
—— exomoon

-1.0

0.0

0.5

1.0

_images/s2.png
1.0

0.5

0.0

-1.0

— star
——— exoplanet
—— exomoon

-1.0

0.0

0.5

1.0

_images/lv_2.png
2.00

1.75

population
N
oo
[$)] o

N
o
o

o
3
3

0.50

Lotka Volterra System Example

—— prey ——— predator 14
c
S
T 12
=
Q.
o
[e%
5 1.0
©
o
o
=08
0.6
0 200 400 600 800 1000

step

0.50

0.75

1.00 1.25
prey population

1.50

1.75

2.00

_static/up-pressed.png

_images/s0.png
0.0

— star
——— exoplanet
—— exomoon

-1.0

0.0

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 spacejam

 		
 Introduction

 		
 How to use

 		
 Demo I: Scalar function, scalar input

 		
 Demo II: Scalar function with vector input

 		
 Demo III: Vector function with vector input

 		
 Background

 		
 Numerical Integration: A brief crash couse

 		
 Automatic Differentiation: A brief overview

 		
 Software Organization

 		
 Overview of main modules

 		
 Installation

 		
 Virtual Environment

 		
 Tests

 		
 Implementation Details

 		
 Data Structures

 		
 API

 		
 spacejam.autodiff

 		
 spacejam.dual

 		
 spacejam.integrators

 		
 Example Applications

 		
 Background

 		
 (s = 0) Method

 		
 (s = 1) Method

 		
 (s = 2) Method

 		
 Astronomy Example

 		
 Background

 		
 Initial Conditions

 		
 Equations of Motion

 		
 Simulation

 		
 Ecology Example

 		
 Background

 		
 Initial Conditions

 		
 Equations of population growth

 		
 Simulation

 		
 Future

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/lv_0.png
2.00

1.75

1.50

population

0.75

0.50

Lotka Volterra System Example

—— prey —— predator 14
c
S
T 12
=
Q.
o
[e%
5 1.0
©
o
o
o8
0.6
200 400 600 800 1000

step

0.50

0.75

1.00 1.25
prey population

1.50

1.75

2.00

_static/lv_1.png
2.00

1.75

population
N
oo
[$)] o

N
o
o

o
3
3

0.50

Lotka Volterra System Example

—— prey ——— predator 14
c
S
T 12
=
Q.
o
[e%
5 1.0
©
o
o
=08
0.6
0 200 400 600 800 1000

step

0.50

0.75

1.00 1.25
prey population

1.50

1.75

2.00

_static/file.png

_static/lv_2.png
2.00

1.75

population
N
oo
[$)] o

N
o
o

o
3
3

0.50

Lotka Volterra System Example

—— prey ——— predator 14
c
S
T 12
=
Q.
o
[e%
5 1.0
©
o
o
=08
0.6
0 200 400 600 800 1000

step

0.50

0.75

1.00 1.25
prey population

1.50

1