

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	SOLVCON 0.1.2 documentation

Solvers of Conservation Laws

SOLVCON is a collection of Python [http://www.python.org]-based
conservation-law solvers that use the space-time Conservation Element and
Solution Element (CESE) method [http://www.grc.nasa.gov/WWW/microbus/].
SOLVCON targets at solving problems that can be formulated as a system of
first-order, linear or non-linear partial differential equations (PDEs)
[Lax73]:

[image: \dpd{\bvec{u}}{t} + \sum_{\iota=1}^3 \mathrm{A}^{(\iota)}(\bvec{u})\dpd{\bvec{u}}{x_{\iota}} = \bvec{s}(\bvec{u})]

where [image: \bvec{u}] is the unknown vector, [image: \mathrm{A}^{(1)}],
[image: \mathrm{A}^{(2)}], and [image: \mathrm{A}^{(3)}] the Jacobian matrices,
and [image: \bvec{s}] the source term.

	Visit the project page https://bitbucket.org/solvcon/solvcon

	Report bugs and request features at
https://bitbucket.org/solvcon/solvcon/issues?status=new&status=open

	Ask questions in our mailing list [http://groups.google.com/group/solvcon]: solvcon@googlegroups.com

Install

Please use the development version in the Mercurial [http://mercurial.selenic.com/] repository:

hg clone https://bitbucket.org/solvcon/solvcon

Released source tarballs can be downloaded from
https://bitbucket.org/solvcon/solvcon/downloads, but the development version is
recommended.

Prerequisites

SOLVCON itself depends on the following packages:

	gcc [http://gcc.gnu.org/] 4.3+

	SCons [http://www.scons.org/] 2+

	Python [http://www.python.org/] 2.7

	Cython [http://www.cython.org/] 0.16+

	Numpy [http://www.numpy.org/] 1.5+

	LAPACK [http://www.netlib.org/lapack/]

	NetCDF [http://www.unidata.ucar.edu/software/netcdf/index.html] 4+

	SCOTCH [http://www.labri.fr/perso/pelegrin/scotch/] 5.1+

	Nose [https://nose.readthedocs.org/en/latest/] 1.0+

	gmsh [http://geuz.org/gmsh/] 2.5+

	VTK [http://vtk.org/] 5.6+

Building document of SOLVCON requires the following packages:

	pygraphviz [http://networkx.lanl.gov/pygraphviz/] 1.1+

	Sphinx [http://sphinx.pocoo.org/] 1.1.2+

	Sphinxcontrib issue tracker [http://sphinxcontrib-issuetracker.readthedocs.org/] 0.11

You will also need Mercurial [http://mercurial.selenic.com/] (hg) to clone
the development codebase.

The following command will install the dependencies on Debian jessie:

sudo apt-get install build-essential gcc gfortran scons \
liblapack-pic liblapack-dev libnetcdf-dev libnetcdfc7 netcdf-bin \
libscotch-dev libscotchmetis-dev libscotch-5.1 \
python2.7 python2.7-dev cython python-numpy python-nose gmsh python-vtk \
python-pygraphviz python-sphinx python-sphinxcontrib.issuetracker \
mercurial

On Ubuntu 12.04LTS please use:

sudo apt-get install build-essential gcc gfortran scons \
liblapack-pic liblapack-dev libnetcdf-dev libnetcdf6 netcdf-bin \
libscotch-dev libscotchmetis-dev libscotch-5.1 \
python2.7 python2.7-dev cython python-numpy python-nose gmsh python-vtk \
python-pygraphviz python-sphinx python-sphinxcontrib.issuetracker \
mercurial

Note: For Debian 6.x (squeeze), you need also apt-get install
python-profiler for the Python built-in profiler.

Build

The binary part of SOLVCON should be built with SCons [http://www.scons.org/]:

cd $SCSRC
scons

where $SCSRC indicates the root directory of unpacked source tree.

The source tarball supports distutils and can built alternatively:

python setup.py build_ext --inplace

SOLVCON is designed to work without explicit installation. You can simply set
the environment variable $PYTHONPATH to point to the source code, i.e.,
$SCSRC. Note that the binary code is needed to be compiled.

Note

The Python runtime will search the paths in the environment variable
$PYTHONPATH for Python modules. See
http://docs.python.org/tutorial/modules.html#the-module-search-path for
detail.

Run Tests

Tests should be run with Nose [https://nose.readthedocs.org/en/latest/]:

nosetests

in the project root directory $SCSRC. Another set of tests are collected
in $SCSRC/ftests/ directory, and can be run with:

nosetests ftests/*

Some tests in $SCSRC/ftests/ involve remote procedure call (RPC) that uses
ssh [http://www.openssh.com/], so you need to set up the public key
authentication of ssh.

Manually Build Prerequisites (Optional)

On a cluster or a supercomputer, it is impossible for a user to use package
managers (e.g., apt or yum) to install the prerequisites. It is also
time-consuming to ask support people to install those packages. Building the
required software manually is the most feasible approach to get the
prerequisites. SOLVCON provides a suite of scripts and makefiles to facilitate
the tedious process.

The $SCSRC/ground directory contains scripts to build most of the software
that SOLVCON depends on. The $SCSRC/ground/get script downloads the source
packages to be built. By default, the $SCSRC/ground/Makefile file does not
make large packages related to visualization, e.g., VTK. Visualization
packages must be manually built by specifying the target vislib. The built
files will be automatically installed into the path specified by the
$SCROOT environment variable, which is set to $HOME/opt/scruntime by
default. The $SCROOT/bin/scvars.sh script will be created to export
necessary environment variables for the installed software, and the $SCROOT
environment variable itself.

The $SCSRC/soil directory contains scripts to build gcc [http://gcc.gnu.org/]. The
$SCROOT/bin/scgccvars.sh script will be created to export necessary
environment variables for the self-compiled gcc. The enabled languages include
only C, C++, and Fortran. The default value of $SCROOT remains to be
$HOME/opt/scruntime, while the software will be installed into
$SCROOT/soil. Note: (i) Do not use different $SCROOT when building
$SCSRC/soil and $SCSRC/ground. (ii) On hyper-threading CPUs the NP
environment variable should be set to the actual number of cores, or
compilation of gcc could exhaust system memory.

$SCROOT/bin/scvars.sh and $SCROOT/bin/scgccvars.sh can be separately
sourced. The two sets of packages reside in different directories and do not
mix with each other nor system software. Users can disable these environments
by not sourcing the two scripts.

Some packages have not been incorporated into the dependency building system
described above. Debian or Ubuntu users should install the additional
dependencies by using:

sudo apt-get install build-essential gcc gfortran gcc-multilib m4
libreadline6 libreadline6-dev libncursesw5 libncurses5-dev libbz2-1.0
libbz2-dev libdb4.8 libdb-dev libgdbm3 libgdbm-dev libsqlite3-0
libsqlite3-dev libcurl4-gnutls-dev libhdf5-serial-dev libgl1-mesa-dev
libxt-dev

These building scripts have only been tested with 64-bit Linux.

Documentation

	Tutorial
	Set up the Environment

	Configuration

	Mesh Generation (to Be Added)

	Problem Solver

Architecture Reference

	Solver Architecture
	Unstructured Meshes
	Entities

	Data Structure Defined in solvcon.block

	Low-Level Interface to C Defined in solvcon.mesh

	Numerical Code
	solvcon.case

	solvcon.solver

	solvcon.hook

	solvcon.anchor

	References
	ustmesh_2d_sample.geo

	Input and Output Facilities
	solvcon.io.gmsh

	System Modules
	solvcon.conf

	solvcon.helper

	solvcon.io.gmsh

Application Reference

	Second-Order Linear Solver (solvcon.parcel.linear)
	Numerical Implementation (._algorithm)

	Numerical Controller (.solver)

	Simulation Controller (.case)

	Helpers for Plane Wave (.planewave)

	Helpers for I/O (.inout)

	Velocity-Stress Equation Solver (.velstress)

	Bibliography

Development Support

	Python Style Guide

	Development Plan

	Verification

Other Resources

	Papers and presentations:
	Published Applications of SOLVCON

	PyCon US 2011 talk [http://us.pycon.org/2011/schedule/presentations/50/]: slides [http://solvcon.net/slide/PyCon11_yyc.pdf] and video [http://pycon.blip.tv/file/4882902/]

	Yung-Yu Chen, David Bilyeu, Lixiang Yang, and Sheng-Tao John Yu,
“SOLVCON: A Python-Based CFD Software Framework for Hybrid
Parallelization”,
49th AIAA Aerospace Sciences Meeting,
January 4-7 2011, Orlando, Florida.
AIAA Paper 2011-1065 [http://pdf.aiaa.org/preview/2011/CDReadyMASM11_2388/PV2011_1065.pdf]

	The CESE method:
	The CE/SE working group: http://www.grc.nasa.gov/WWW/microbus/

	The CESE research group at OSU: http://cfd.solvcon.net/research.html

	Selected papers:
	Sin-Chung Chang, “The Method of Space-Time Conservation Element and
Solution Element – A New Approach for Solving the Navier-Stokes and
Euler Equations”, Journal of Computational Physics, Volume 119, Issue
2, July 1995, Pages 295-324. doi: 10.1006/jcph.1995.1137 [http://dx.doi.org/10.1006/jcph.1995.1137]

	Xiao-Yen Wang, Sin-Chung Chang, “A 2D Non-Splitting Unstructured
Triangular Mesh Euler Solver Based on the Space-Time Conservation Element
and Solution Element Method”, Computational Fluid Dynamics Journal,
Volume 8, Issue 2, 1999, Pages 309-325.

	Zeng-Chan Zhang, S. T. John Yu, Sin-Chung Chang, “A Space-Time
Conservation Element and Solution Element Method for Solving the Two- and
Three-Dimensional Unsteady Euler Equations Using Quadrilateral and
Hexahedral Meshes”, Journal of Computational Physics, Volume 175, Issue
1, Jan. 2002, Pages 168-199. doi: 10.1006/jcph.2001.6934 [http://dx.doi.org/10.1006/jcph.2001.6934]

	Related Links

	Other Software for Solving PDEs

Bibliography

	[Lax73]	Peter D. Lax, Hyperbolic Systems of Conservation Laws and the
Mathematical Theory of Shock Waves, Society for Industrial Mathematics,
1973. ISBN 0898711770 [http://www.worldcat.org/title/hyperbolic-systems-of-conservation-laws-and-the-mathematical-theory-of-shock-waves/oclc/798365].

Appendices

Copyright Notice

Copyright (c) 2008, Yung-Yu Chen <yyc@solvcon.net>

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the SOLVCON nor the names of its contributors may be used
to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Release History

	All Previous Versions
	Version 0.1.2

	Version 0.1.1

	Version 0.1

	Version 0.0.7

	Version 0.0.6

	Version 0.0.4

	Version 0.0.3

	Version 0.0.2

	Version 0.0.1

Indices and Tables

	Index

	Module Index

	Search Page

 Copyright 2009-2012, Yung-Yu Chen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SOLVCON 0.1.2 documentation

Tutorial

The goal of SOLVCON is to help code developers to focus on the numerical
algorithms. These computing code can be written in C or other high-speed
languages and interfaced with SOLVCON. SOLVCON has a general work flow that
support mesh loaders (Gmsh [http://www.geuz.org/gmsh/], FLUENT Gambit (R),
and CUBIT [http://cubit.sandia.gov/]), MPI, and VTK. These supportive
functionalities are ready to help developing problem solvers.

Set up the Environment

Assume:

	SOLVCON is compiled without problems. See install for more
information.

	The compiled SOLVCON is located at $SCSRC.

	You are using bash.

Usually we don’t install SOLVCON into the OS, but use environment variable to
enable it, so that it’s easier to modify the source code:

export PYTHONPATH=$SCSRC:$PYTHONPATH

And then the following command:

python -c "import solvcon; print solvcon"

should show you the correct location of SOLVCON.

There are various examples located at $SCSRC/examples. To follow the
examples, you need to:

	Install ParaView [http://www.paraview.org/]. On a Debian/Ubuntu, you can
do it by executing:

sudo apt-get install paraview

	Obtain example data. You can do it by executing:

scons --get-scdata

in $SCSRC.

More information of the verification examples can be found in
Verification.

Configuration

SOLVCON will find each of the solvcon.ini files from current working directory
toward the root, and use their settings. Three settings are recognized in
[SOLVCON] section:

	APPS: Equivelent to the environment variable SOLVCON_APPS.

	LOGFILE: Equivelent to the environment variable SOLVCON_LOGFILE.

	PROJECT_DIR: Equivelent to the environment variable
SOLVCON_PROJECT_DIR. Can be set to empty, which indicates the path where
the configuration file locates.

The configurable environment variables:

	SOLVCON_PROJECT_DIR: the directory holds the applications.

	SOLVCON_LOGFILE: filename for solvcon logfile.

	SOLVCON_APPS: names of the available applications, seperated with
semi-colon. There should be no spaces.

	SOLVCON_FPDTYPE: a string for the numpy dtype object for floating-point.
The default fpdtype to be used is float64 (double).

	SOLVCON_INTDTYPE: a string for the numpy dtype object for integer. The
default intdtype to be used is int32.

	SOLVCON_MPI: flag to use MPI.

Mesh Generation (to Be Added)

Before solving any PDE, you need to define the discretized spatial domain of
the problem by generating the mesh.

Problem Solver

To demonstrate how to develop a problem solver, SOLVCON provides a “fake” one
in solvcon.parcel.fake. The package implements a trivial and
meaningless algorithm which is easy to validate. The related files are all in
the directory $SCSRC/solvcon/parcel/fake. You can follow the source code
and test cases to learn about how to write a problem solver with SOLVCON.

There are two modules, solver and
_algorithm, inside that package.
They provides two classes: FakeSolver and FakeAlgorithm. The former is the
higher-level API and purely written in Python. The latter is implemented with
Cython [http://cython.org] to call low-level C code. The real
number-crunching code is written in C:

	
void fake_calc_soln(sc_mesh_t*msd, sc_fake_algorithm_t*alg)

	(Jump to the code listing). Let
[image: u_j^n] be the solution at [image: j]-th cell and [image: n]-th time
step, and [image: v_j] be the volume at [image: j]-th cell. This function
advances each value in the solution array (sc_fake_algorithm_t.sol and
sc_fake_algorithm_t.soln) by using the following expression:

[image: u_j^n = u_j^{n-\frac{1}{2}} + \frac{\Delta t}{2}v_j]

Total number of values per cell is set in sc_fake_algorithm_t.neq.

	
void fake_calc_dsoln(sc_mesh_t*msd, sc_fake_algorithm_t*alg)

	(Jump to the code listing). Let
[image: (u_{x_{\mu}})_j^n] be the [image: x_{\mu}] component of the gradient of
[image: u_j^n], and [image: (c_{\mu})_j] be the [image: x_{\mu}] component of
the centroid of the [image: j]-th cell. [image: \mu = 1, 2] or [image: \mu = 1, 2, 3]. This function advances each value in the solution gradient array
(sc_fake_algorithm_t.dsol and sc_fake_algorithm_t.dsoln) by
using the following expression:

[image: (u_{x_{\mu}})_j^n = (u_{x_{\mu}})j^{n-\frac{1}{2}} + \frac{\Delta t}{2}(c_{\mu})_j]

Total number of values per cell is set in sc_fake_algorithm_t.neq.

The Python/Cython/C hybrid style may seem complicated, but it is important for
performance. The two C functions are wrapped with the Cython methods
FakeAlgorithm.calc_soln and
FakeAlgorithm.calc_dsoln, respectively.
Then, the higher level FakeSolver will use the lower-level
FakeAlgorithm to
connect the underneath numerical algorithm to the supportive functionalities
prepared in SOLVCON.

fake.solver

This is the higher level module implemented in Python.

	
class solvcon.parcel.fake.solver.FakeSolver(blk, neq=None, **kw)

	This class represents the Python side of a demonstration-only numerical
method. It instantiates a FakeAlgorithm object.
Computation-intensive tasks are delegated to the algorithm object.

[image: Inheritance diagram of FakeSolver]

	
__init__(blk, neq=None, **kw)

	Constructor of FakeSolver.

A Block is a prerequisite:

>>> from solvcon.testing import create_trivial_2d_blk
>>> blk = create_trivial_2d_blk()

But the constructor also needs to know how many equations (i.e., number
of variables per cell). We must provide the neq argument:

>>> _ = FakeSolver(blk)
Traceback (most recent call last):
 ...
ValueError: neq must be int (but got None)
>>> _ = FakeSolver(blk, neq=1.2)
Traceback (most recent call last):
 ...
ValueError: neq must be int (but got 1.2)
>>> svr = FakeSolver(blk, neq=1)

Each time step is composed by two sub time steps, as the CESE method
requires:

>>> svr.substep_run
2

The constructor will create four solution arrays (without
initialization):

>>> [(type(getattr(svr, key)), getattr(svr, key).shape)
... for key in ('sol', 'soln', 'dsol', 'dsoln')]
...
[(<type 'numpy.ndarray'>, (6, 1)), (<type 'numpy.ndarray'>, (6, 1)),
(<type 'numpy.ndarray'>, (6, 1, 2)), (<type 'numpy.ndarray'>, (6, 1,
2))]

	
neq = None

	Number of equations, or number of variables on each cell. Must be
an int.

	
create_alg()

	Create a FakeAlgorithm
object.

>>> from solvcon.testing import create_trivial_2d_blk
>>> blk = create_trivial_2d_blk()
>>> svr = FakeSolver(blk, neq=1)
>>> isinstance(svr.create_alg(), _algorithm.FakeAlgorithm)
True

	
_MMNAMES = ['update', 'calcsoln', 'ibcsoln', 'calccfl', 'calcdsoln', 'ibcdsoln']

	See solvcon.solver.MeshSolver._MMNAMES.

The following six methods build up the numerical algorithm. They are
registered into _MMNAMES with the present order.

	
update(worker=None)

	Update the present solution arrays (sol and dsol)
with the contents in the next solution arrays (dsol and
dsoln).

>>> from solvcon.testing import create_trivial_2d_blk
>>> blk = create_trivial_2d_blk()
>>> svr = FakeSolver(blk, neq=1)
>>> # initialize with different solution arrays.
>>> svr.sol.fill(0)
>>> svr.soln.fill(2)
>>> svr.dsol.fill(0)
>>> svr.dsoln.fill(2)
>>> (svr.sol != svr.soln).all()
True
>>> (svr.dsol != svr.dsoln).all()
True
>>> # update and then solution arrays become the same.
>>> svr.update()
>>> (svr.sol == svr.soln).all()
True
>>> (svr.dsol == svr.dsoln).all()
True

	
calcsoln(worker=None)

	Advance sol to soln. The calculation is
delegated to FakeAlgorithm.calc_soln.

>>> # build a block before creating a solver.
>>> from solvcon.testing import create_trivial_2d_blk
>>> blk = create_trivial_2d_blk()
>>> # create a solver.
>>> svr = FakeSolver(blk, neq=1)
>>> # initialize the solver.
>>> svr.sol.fill(0)
>>> svr.soln.fill(0)
>>> svr.dsol.fill(0)
>>> svr.dsoln.fill(0)
>>> # run the solver.
>>> ret = svr.march(0.0, 0.01, 100)
>>> # calculate and compare the results in soln.
>>> soln = svr.soln[svr.blk.ngstcell:,:]
>>> clvol = np.empty_like(soln)
>>> clvol.fill(0)
>>> for iistep in range(200):
... clvol[:,0] += svr.blk.clvol*svr.time_increment/2
>>> # compare.
>>> (soln==clvol).all()
True

	
ibcsoln(worker=None)

	Interchange BC for the soln array. Only used for parallel
computing.

	
calccfl(worker=None)

	Calculate the CFL number. For FakeSolver, this method does
nothing.

	
calcdsoln(worker=None)

	Advance dsol to dsoln. The calculation is
delegated to FakeAlgorithm.calc_dsoln.

>>> # build a block before creating a solver.
>>> from solvcon.testing import create_trivial_2d_blk
>>> blk = create_trivial_2d_blk()
>>> # create a solver.
>>> svr = FakeSolver(blk, neq=1)
>>> # initialize the solver.
>>> svr.sol.fill(0)
>>> svr.soln.fill(0)
>>> svr.dsol.fill(0)
>>> svr.dsoln.fill(0)
>>> # run the solver.
>>> ret = svr.march(0.0, 0.01, 100)
>>> # calculate and compare the results in dsoln.
>>> dsoln = svr.dsoln[svr.blk.ngstcell:,0,:]
>>> clcnd = np.empty_like(dsoln)
>>> clcnd.fill(0)
>>> for iistep in range(200):
... clcnd += svr.blk.clcnd*svr.time_increment/2
>>> # compare.
>>> (dsoln==clcnd).all()
True

	
ibcdsoln(worker=None)

	Interchange BC for the dsoln array. Only used for parallel
computing.

FakeSolver defines the following solution arrays:

	
FakeSolver.sol = None

	This is the “present” solution array (numpy.ndarray) for
the algorithm with two sub time step.

	
FakeSolver.soln = None

	This is the “next” or “new” solution array
(numpy.ndarray) for the algorithm with two sub time
step.

	
FakeSolver.dsol = None

	This is the “present” solution gradient array
(numpy.ndarray) for the algorithm with two sub time
step.

	
FakeSolver.dsoln = None

	This is the “next” or “new” solution gradient array
(numpy.ndarray) for the algorithm with two sub time
step.

fake._algorithm

This is the lower level module implemented in Cython. It is composed by two
files. $SCSRC/solvcon/parcel/fake/_algorithm.pxd declares the data
structure for C. $SCSRC/solvcon/parcel/fake/_algorithm.pyx defines
the wrapping code.

C API Declaration

The Cython file _algorithm.pxd defines the following type for the
low-level C functions to access the data in a FakeAlgorithm that
proxies FakeSolver:

	
sc_fake_algorithm_t

	
	
int neq

	This should be set to FakeSolver.neq.

	
double time

	This should be set to MeshSolver.time.

	
double time_increment

	This should be set to MeshSolver.time_increment.

	
double* sol

	This should point to the 0-th cell of FakeSolver.sol. Therefore the address of
ghost cells is smaller than sc_fake_algorithm_t.sol.

	
double* soln

	This should point to the 0-th cell of FakeSolver.soln. Therefore the address of
ghost cells is smaller than sc_fake_algorithm_t.soln.

	
double* dsol

	This should point to the 0-th cell of FakeSolver.dsol. Therefore the address of
ghost cells is smaller than sc_fake_algorithm_t.dsol.

	
double* dsoln

	This should point to the 0-th cell of FakeSolver.dsoln. Therefore the address of
ghost cells is smaller than sc_fake_algorithm_t.dsoln.

Wrapper Class

	
class solvcon.parcel.fake._algorithm.FakeAlgorithm

	This class wraps around the C portion of the numerical method.

	
setup_algorithm(svr)

	A FakeAlgorithm object shouldn’t allocate memory. Instead, a
FakeSolver object
should allocate the memory and pass the solver into the algorithm.

	
calc_soln()

	Wraps the C functions fake_calc_soln() (where the algorithm is
defined).

	
calc_dsoln()

	Wraps the C functions fake_calc_dsoln() (where the algorithm is
defined).

C Code Listing

solvcon/parcel/fake/src/fake_calc_soln.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

	/*
 * Copyright (c) 2008, Yung-Yu Chen <yyc@solvcon.net>
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * - Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 * - Neither the name of the SOLVCON nor the names of its contributors may be
 * used to endorse or promote products derived from this software without
 * specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <Python.h>

#include "mesh.h"
#include "_algorithm.h"

void sc_fake_calc_soln(sc_mesh_t *msd, sc_fake_algorithm_t *alg) {
 double *psol, *psoln, *pclvol;
 int icl, ieq;
 psol = alg->sol;
 psoln = alg->soln;
 pclvol = msd->clvol;
 for (icl=0; icl<msd->ncell; icl++) {
 for (ieq=0; ieq<alg->neq; ieq++) {
 psoln[ieq] = psol[ieq] + pclvol[0] * alg->time_increment / 2.0;
 };
 psol += alg->neq;
 psoln += alg->neq;
 pclvol += 1;
 };
};

// vim: set ts=4 et:

solvcon/parcel/fake/src/fake_calc_dsoln.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

	/*
 * Copyright (c) 2008, Yung-Yu Chen <yyc@solvcon.net>
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * - Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 * - Neither the name of the SOLVCON nor the names of its contributors may be
 * used to endorse or promote products derived from this software without
 * specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <Python.h>

#include "mesh.h"
#include "_algorithm.h"

void sc_fake_calc_dsoln(sc_mesh_t *msd, sc_fake_algorithm_t *alg) {
 double *pdsol, *pdsoln, *pclcnd;
 int icl, ieq, idm;
 pdsol = alg->dsol;
 pdsoln = alg->dsoln;
 pclcnd = msd->clcnd;
 for (icl=0; icl<msd->ncell; icl++) {
 for (ieq=0; ieq<alg->neq; ieq++) {
 for (idm=0; idm<msd->ndim; idm++) {
 pdsoln[idm] = pdsol[idm]
 + pclcnd[idm] * alg->time_increment / 2.0;
 };
 pdsol += msd->ndim;
 pdsoln += msd->ndim;
 };
 pclcnd += msd->ndim;
 };
};

// vim: set ts=4 et:

 Copyright 2009-2012, Yung-Yu Chen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SOLVCON 0.1.2 documentation

Solver Architecture

SOLVCON is built upon two keystones: (i) unstructured meshes for spatial
discretization and (ii) two-level loop structure of partial differential
equation (PDE) solvers.

Unstructured Meshes

We usually discretize the spatial domain of interest before solving PDEs with
digital computers. The discretized space is called a mesh [Mavriplis97].
When discretization is done by exploiting regularity in space, like cutting
along each of the Cartesian coordinate axes, the discretized space is called a
structured mesh. If the discretization does not follow any spatial order, we
call the spatial domain an unstructured mesh. Both meshing strategies have
their strength and weakness. Sometimes a structured mesh is also call a
grid. Numerical methods that rely on spatial discretization are called
mesh-based or grid-based. Most PDE-solving methods in production uses are
mesh-based, but meshless methods have their advantages.

To accommodate complex geometry, SOLVCON chose to use unstructured meshes of
mixed elements. Because no structure is assumed for the geometry to be
modeled, the mesh can be automatically generated by using computer programs.
For example, the following image shows a triangular mesh of a two-dimensional
irregular domain:

[image: _images/ustmesh_2d_sample.png]
Two-dimensional sample mesh

which is generated by using the Gmsh [http://geuz.org/gmsh/] commands
listed in ustmesh_2d_sample.geo. On the other hand, creation of structured
meshes often needs a large amount of manual operations and will not be
discussed in this document.

In SOLVCON, we assume a mesh is fully covered by a finite number of
non-overlapping sub-regions, and only composed by these sub-regions. The
sub-regions are called mesh elements. In one-dimensional space, SOLVCON also
defines one type of mesh elements, line, as shown in Figure One-dimensional mesh element.

[image: _images/elm_1d.png]
One-dimensional mesh element

SOLVCON allows two types of two-dimensional mesh elements, quadrilaterals and
triangles, as shown in Figure Two-dimensional mesh elements, and four types of
three-dimensional mesh elements, hexahedra, tetrahedra, prisms, and
pyramids, as shown in Figure Three-dimensional mesh elements.

[image: _images/elm_2d.png]
Two-dimensional mesh elements

[image: _images/elm_3d.png]
Three-dimensional mesh elements

The numbers annotated in the figures are the order of the vertices of the
elements. A SOLVCON mesh can be a mixture of elements of the same dimension,
although it is often composed of one type of element. Two modules provide the
support of the meshes: (i) solvcon.block defines and manages
various look-up tables that form the data structure of the mesh in Python, and
(ii) solvcon.mesh serves as the interface of the mesh data in C.

Entities

Before explaining the data structure of the meshes, we need to introduce some
basic terminologies and definitions. In SOLVCON, a cell means a mesh
element. The dimensionality of a cell equals to that of the mesh it belongs
to, e.g., a two-dimensional mesh is composed by two-dimensional cells. A cell
is assumed to be concave, and enclosed by a set of faces. The dimensionality
of a face is one less than that of a cell. A face is also assumed to be
concave, and formed by connecting a sequence of nodes. The dimensionality of
a node is at least one less than that of a face. Cells, faces, and nodes are
the basic constructs, which we call entities, of a SOLVCON mesh.

Defining the term “entity” for SOLVCON facilitates a unified treatment of two-
and three-dimensional meshes and the corresponding solvers [1]. A cell can be
either two- or three-dimensional, and the associated faces become one- or
two-dimensional, respectively. Because a face is either one- or
two-dimensional, it can always be formed by a sequence of points, which is
zero-dimensional. In this treatment, a point is equivalent to a node defined
in the previous passage.

Take the two-dimensional mesh shown above as an example, triangular elements
are used as the cells. The triangles are formed by three lines
(one-dimensional shapes), which are the faces. Each line has two points
(zero-dimensional). If we have a three-dimensional mesh composed by hexahedral
cells, then the faces should be quadrilaterals (two-dimensional shapes).

All the mesh elements supported by SOLVCON are listed in the following table.
The first column is the name of the element, and the second column is the type
ID used in SOLVCON. The third column lists the dimensionality. The fourth,
fifth, and sixth columns show the number of zero-, one-, and two-dimensional
sub-entities belong to the element type, respectively. Note that the terms
“point” and “line” appear in both the first row and first column, for they are
the only element type in the space of the corresponding dimensionality.

	Name
	Type
	Dim
	Point#
	Line#
	Surface#

	Point
	0
	0
	0
	0
	0

	Line
	1
	1
	2
	0
	0

	Quadrilateral
	2
	2
	4
	4
	0

	Triangle
	3
	2
	3
	3
	0

	Hexahedron
	4
	3
	8
	12
	6

	Tetrahedron
	5
	3
	4
	4
	4

	Prism
	6
	3
	6
	9
	5

	Pyramid
	7
	3
	5
	8
	5

Although SOLVCON doesn’t support one-dimensional solvers, for completeness, we
define the relation between one-dimensional cells (lines) and their
sub-entities as:

	Shape (type)
	Face
	= Point

	Line (0)
	0
	[image: \cdot] 0

	1
	[image: \cdot] 1

That is, as shown in Figure One-dimensional mesh element, a one-dimensional “cell” (line)
has two “faces”, which are essentially point 0 and point 1. Symbol
[image: \cdot] indicates a point.

It will be more practical to illustrate the relation between two-dimensional
cells and their sub-entities in a table (see Figure Two-dimensional mesh elements for point
locations):

	Shape (type)
	Face
	= Line formed by points

	Quadrilateral (2)
	0
	[image: \diagup] 0 1

	1
	[image: \diagup] 1 2

	2
	[image: \diagup] 2 3

	3
	[image: \diagup] 3 0

	Triangle (3)
	0
	[image: \diagup] 0 1

	1
	[image: \diagup] 1 2

	2
	[image: \diagup] 2 0

Symbol [image: \diagup] indicates a line. The orientation of lines of each
two-dimensional shape is defined to follow the right-hand rule. The shape
enclosed by the lines has an area normal vector points to the direction of
[image: +z] (outward paper/screen).

The relation between three-dimensional cells and their sub-entities is defined
in the table (see Figure Three-dimensional mesh elements for point locations):

	Shape (type)
	Face
	= Surface formed by points

	Hexahedron (4)
	0
	[image: \square] 0 3 2 1

	1
	[image: \square] 1 2 6 5

	2
	[image: \square] 4 5 6 7

	3
	[image: \square] 0 4 7 3

	4
	[image: \square] 0 1 5 4

	5
	[image: \square] 2 3 7 6

	Tetrahedron (5)
	0
	[image: \triangle] 0 2 1

	1
	[image: \triangle] 0 1 3

	2
	[image: \triangle] 0 3 2

	3
	[image: \triangle] 1 2 3

	Prism (6)
	0
	[image: \triangle] 0 1 2

	1
	[image: \triangle] 3 5 4

	2
	[image: \square] 0 3 4 1

	3
	[image: \square] 0 2 5 3

	4
	[image: \square] 1 4 5 2

	Pyramid (7)
	0
	[image: \triangle] 0 4 3

	1
	[image: \triangle] 1 4 0

	2
	[image: \triangle] 2 4 1

	3
	[image: \triangle] 3 4 2

	4
	[image: \square] 0 3 2 1

Symbol [image: \square] indicates a quadrilateral, while symbol
[image: \triangle] indicates a triangle.

Because a face is associated to two adjacent cells unless it’s a boundary face,
it needs to identify to which cell it belongs, and to which cell it is
neighbor. The area normal vector of a face is always point from the belonging
cell to neighboring cell. The same rule applies to faces of two-dimensional
meshes (lines) too.

Data Structure Defined in solvcon.block

Real data of unstructured meshes are stored in module
solvcon.block. A simple table for all element types is defined as
elemtype:

	
solvcon.block.elemtype

	A numpy.ndarray object of shape (8, 5) and type int32. This
array is a reference table for element types in SOLVCON. The content is
shown in the first table in Section Entities. Each row represents an
element type. The first column is the index of the element type, the second
the dimensionality, the third column the number of points, the fourth the
number lines, and the fifth the number of surfaces.

Class Block contains descriptive information, look-up tables, and
other miscellaneous information for a SOLVCON mesh. There are three steps
required to fully construct a Block object: (i) instantiation, (ii)
definition, and (iii) build-up. In the first step, when instantiating an
object, shape information must be provided to the constructor to allocate
arrays for look-up tables:

from solvcon.block import Block
blk = Block(ndim=2, nnode=4, ncell=3)

Second, we fill the definition of the look-up tables into the object. We at
least need to provide the node coordinates and the node lists of cells:

blk.ndcrd[:,:] = (0,0), (-1,-1), (1,-1), (0,1)
blk.cltpn[:] = 3
blk.clnds[:,:4] = (3, 0,1,2), (3, 0,2,3), (3, 0,3,1)

Third and finally, we build up the rest of the object by calling:

blk.build_interior()
blk.build_boundary()
blk.build_ghost()

By running the additional code, the block can be saved as a VTK file for viewing:

from solvcon.io.vtkxml import VtkXmlUstGridWriter
iodev = VtkXmlUstGridWriter(blk)
iodev.write('block_2d_sample.vtu')

[image: _images/block_2d_sample.png]
A simple Block object

	
class solvcon.block.Block(ndim=0, nnode=0, nface=0, ncell=0, nbound=0, use_incenter=False)

	This class represents the unstructured meshes used in SOLVCON. As such, in
SOLVCON, an unstructured mesh is also called a block. The following six
attributes can be passed into the constructor. ndim,
nnode, and ncell need to be non-zero to instantiate a
valid block. nface and nbound might be different to
the given value after building up the object. use_incenter is an
optional flag.

	
ndim

	

	Type :	int

Number of dimensionalities of this mesh. Read only after instantiation.

	
nnode

	

	Type :	int

Total number of (non-ghost) nodes of this mesh. Read only after
instantiation.

	
nface

	

	Type :	int

Total number of (non-ghost) faces of this mesh. Read only after
instantiation.

	
ncell

	

	Type :	int

Total number of (non-ghost) cells of this mesh. Read only after
instantiation.

	
nbound

	

	Type :	int

Total number of boundary faces or ghost cells of this mesh. Read only
after instantiation.

	
use_incenter

	

	Type :	bool

Indicates calculating incenters instead of centroids for cells. Default is
False (using centroids of cells).

To construct a block object, SOLVCON needs to know the dimensionalities
(ndim), the number of nodes (nnode), faces
(nface), and cells (ncell), and the number of boundary
faces (nbound) of the mesh. These keyword parameters are taken to
initialize the following properties:

The meshes are mainly defined by three sets of look-up tables (arrays). The
first set is the geometry arrays, which store the coordinate values of mesh
elements:

	
ndcrd

	Coordinates of nodes. It’s a two-dimensional numpy.ndarray
array of shape (nnode, ndim) of type float64.

	
fccnd

	Centroids of faces. It’s a two-dimension numpy.ndarray of
shape (nface, ndim) of type float64.

	
fcnml

	Unit normal vectors of faces. It’s a two-dimension
numpy.ndarray of shape (nface, ndim) of
type float64.

	
fcara

	Areas of faces. The value should always be non-negative. It’s a
one-dimension numpy.ndarray of shape (nface,) of
type float64.

	
clcnd

	Centroids of cells. It’s a two-dimension numpy.ndarray of
shape (ncell, ndim) of type float64.

	
clvol

	Volumes of cells. It’s a one-dimension numpy.ndarray of shape
(ncell,) of type float64.

The second set is the meta-data or type data arrays:

	
fctpn

	Type ID of faces. It’s a one-dimensional numpy.ndarray of
shape (nface,) of type int32.

	
cltpn

	Type ID of cells. It’s a one-dimensional numpy.ndarray of
shape (ncell,) of type int32.

	
clgrp

	Group ID of cells. It’s a one-dimensional numpy.ndarray of
shape (ncell,) of type int32. For a new Block
object, it should be initialized with -1.

The third and last set is the connectivity arrays:

	
fcnds

	Lists of the nodes of each face. It’s a two-dimensional
numpy.ndarray of shape (nface, FCMND+1)
and type int32.

	
fccls

	Lists of the cells connected by each face. It’s a two-dimensional
numpy.ndarray of shape (nface, 4) and type
int32.

	
clnds

	Lists of the nodes of each cell. It’s a two-dimensional
numpy.ndarray of shape (ncell, CLMND+1)
and type int32.

	
clfcs

	Lists of the faces of each cell. It’s a two-dimensional
numpy.ndarray of shape (ncell, CLMFC+1)
and type int32.

Every look-up array has two associated arrays distinguished by different
prefixes: (i) gst (denoting for “ghost”) and (ii) sh (denoting for
“shared”). SOLVCON uses the technique of ghost cells to treat boundary
conditions [Mavriplis97], and the gst arrays store the information for
ghost cells. However, to facilitate efficient indexing in solvers, each of
the ghost arrays should be put in a continuous block of memory adjacent to
its interior counterpart. In SOLVCON, the sh arrays are the continuous
memory blocks for both ghost and interior look-up tables, and a pair of
gst and normal arrays is simply the views of two consecutive,
non-overlapping sub-regions of a memory block. More details of the technique
of ghost cells will be given in module solvcon.mesh.

There are some attributes associated with ghost cells:

	
ngstnode

	

	Type :	int

Number of nodes only associated with ghost cells. Only valid after
build-up. Read only.

	
ngstface

	

	Type :	int

Number of faces only associated with ghost cells. Only valid after
build-up. Read only.

	
ngstcell

	

	Type :	int

Number of ghost cells. Only valid after build-up. Read only.

Three arrays need to be defined before we can build up a Block
object: (i) ndcrd, (ii) cltpn, and (iii)
clnds. With these information, build_interior() builds
up the interior arrays for a Block object.
build_boundary() then organizes the information for boundary
conditions. Finally, build_ghost() builds up the shared and ghost
arrays for the Block object. Only after the build-up process,
the Block object can be used by solvers.

	
build_interior()

	

	Returns:	Nothing.

Building up a Block object includes two steps. First, the
method extracts arrays clfcs, fctpn,
fcnds, and fccls from the defined arrays
cltpn and clnds. If the number of extracted
faces is not the same as that passed into the constructor, arrays
related to faces are recreated.

Second, the method calculates the geometry information and fills the
corresponding arrays.

	
build_boundary(unspec_type=None, unspec_name='unspecified')

	

	Parameters:	
	unspec_type (type) – BC type for the unspecified boundary faces.
Set to None indicates the default to
solvcon.boundcond.unspecified.

	unspec_name (str) – Name for the unspecified BC.

	Returns:	Nothing.

This method iterates over each of the solvcon.boundcond.BC
objects listed in bclist to collect boundary-condition
information and build boundary faces. If a face belongs to only one
cell (i.e., has no neighboring cell), it is regarded as a boundary
face.

Unspecified boundary faces will be collected to form an additional
solvcon.boundcond.BC object. It sets bndfcs for
later use by build_ghost().

	
build_ghost()

	

	Returns:	Nothing.

This method creates the shared arrays, calculates the information for ghost
cells, and reassigns interior arrays as the right portions of the shared
arrays.

A Block object also contains three instance variables for
boundary-condition treatments:

	
bclist

	

	Type :	list

The list of associated solvcon.boundcond.BC objects.

	
nbound

	

	Type :	int

Number of boundary faces. Only valid after build-up. It should equals to
ngstcell.

	
bndfcs

	

	Type :	numpy.ndarray

The array is of shape (nbound, 2) and type int32. Each row
contains the data for a boundary face. The first column is the 0-based
index of the face, while the second column is the serial number of the
associated solvcon.boundcond.BC object.

	
create_msh()

	

	Returns:	An object contains the sc_mesh_t variable for C code to
use data in the Block object.

	Return type:	solvcon.mesh.Mesh

The following code shows how and when to use this method:

>>> blk = Block(ndim=2, nnode=4, nface=6, ncell=3, nbound=3)
>>> blk.ndcrd[:,:] = (0,0), (-1,-1), (1,-1), (0,1)
>>> blk.cltpn[:] = 3
>>> blk.clnds[:,:4] = (3, 0,1,2), (3, 0,2,3), (3, 0,3,1)
>>> blk.build_interior()
>>> # it's OK to get a msh when its content is still invalid.
>>> msh = blk.create_msh()
>>> blk.build_boundary()
>>> blk.build_ghost()
>>> # now the msh is valid for the blk is fully built-up.
>>> msh = blk.create_msh()

In class Block there are also useful constants defined:

	
Block.FCMND

	

	Type :	int

The maximum number of nodes that a face can have. From the first table in
Section Entities, its value should be 4.

	
Block.CLMND

	

	Type :	int

The maximum number of nodes that a cell can have. From the first table in
Section Entities, its value should be 8.

	
Block.CLMFC

	

	Type :	int

The maximum number of faces that a cell can have. From the first table in
Section Entities, its value should be 6.

Low-Level Interface to C Defined in solvcon.mesh

Although it is convenient to have data structure defined in the Python module
solvcon.block, kernel of numerical methods are usually implemented in
C. To bridge Python and C, we use Cython [http://cython.org/] to write an
interfacing module solvcon.mesh. This module enables C code to use
the mesh data held by a solvcon.block.Block object, and allows Python
to use those C functions.

A header file mesh.h contains the essential declarations to use the mesh
data:

	
sc_mesh_t

	This struct is the counterpart of the Python class
solvcon.block.Block in C. It contains four sections of fields in
order.

The first field section is for shape. These fields correspond to the
instance properties (attributes) in solvcon.block.Block of the
same names:

	
int ndim

	

	
int nnode

	

	
int nface

	

	
int ncell

	

	
int nbound

	

	
int ngstnode

	

	
int ngstface

	

	
int ngstcell

	

The second field section is for geometry arrays. These fields correspond to
the instance variables (attributes) in solvcon.block.Block of the
same names:

Note

All arrays in sc_mesh_t are shared arrays but the pointers point
to the start of their interior portion. In this way, access to ghost
information can be efficiently done by using negative indices of nodes,
faces, and cells in the first dimension of these arrays. But negative
indices in higher dimensions of the arrays is meaningless.

	
double* ndcrd

	

	
double* fccnd

	

	
double* fcnml

	

	
double* fcara

	

	
double* clcnd

	

	
double* clvol

	

The third field section is for type/meta arrays. These fields correspond to
the instance variables (attributes) in solvcon.block.Block of the
same names:

	
int* fctpn

	

	
int* cltpn

	

	
int* clgrp

	

The fourth and final field section is for connectivity arrays. These fields
correspond to the instance variables (attributes) in
solvcon.block.Block of the same names:

	
int* fcnds

	

	
int* fccls

	

	
int* clnds

	

	
int* clfcs

	

The SOLVCON C library (libsolvcon.a) contains five mesh-related functions
that are used internally in Mesh. These functions are not meant to
be part of the interface, but can be a reference about the usage of
sc_mesh_t:

	
int sc_mesh_extract_faces_from_cells(sc_mesh_t*msd, intmface, int*pnface, int*clfcs, int*fctpn, int*fcnds, int*fccls)

	This function extracts interior faces from the node lists of the cells given
in the first argument msd. The second argument mface is also an
input, which sets the maximum value of possible number of faces to be
extracted.

The rest of the arguments is outputs. The arrays pointed by the last four
arguments need to be pre-allocated with appropriate size or the memory will
be corrupted.

	
int sc_mesh_calc_metric(sc_mesh_t*msd, intuse_incenter)

	This function calculates the geometry information and stores the calculated
values into the arrays specified in msd. The second argument
use_incenter is a flag. When it is set to 1, the function calculates
and stores the incenter of the cells. Otherwise, the function calculates and
stores the centroids of the cells.

	
void sc_mesh_build_ghost(sc_mesh_t*msd, int*bndfcs)

	Build all information for ghost cells by mirroring information from interior
cells. The arrays in the first argument msd will be altered, but data in
the second argument bndfcs will remain intact. The action includes:

	Define indices and build connectivities for ghost nodes, faces,
and cells. In the same loop, mirror the coordinates of interior
nodes to ghost nodes.

	Compute center coordinates for faces for ghost cells.

	Compute normal vectors and areas for faces for ghost cells.

	Compute center coordinates for ghost cells.

	Compute volume for ghost cells.

It should be noted that all the geometry, type/meta and connectivity data
used in this function are SHARED arrays rather than interior arrays. The
indices for ghost information should be carefully treated. All the ghost
indices are negative in shared arrays.

	
int sc_mesh_build_rcells(sc_mesh_t*msd, int*rcells, int*rcellno)

	This is a utility function used by Mesh.create_csr(). The first
argument msd is input and will not be changed, and the output will be
write to the second and third arguments, rcells and rcellno.
Sufficient memory must be pre-allocated for the output arrays before calling
or memory can be corrupted.

	
int sc_mesh_build_csr(sc_mesh_t*msd, int*rcells, int*adjncy)

	This is a utility function used by Mesh.create_csr(). The first
argument msd and the second argument rcells are input and will not be
changed, while the third argument adjncy is output. Sufficient memory
must be pre-allocated for the output array before calling or memory can be
corrupted.

A Python class Mesh is written by using Cython to convert a
Python-space solvcon.block.Block object into a sc_mesh_t
struct variable for use in C. This class is meant to be subclassed to
implement the core number-crunching algorithm of a numerical method. In
addition, this class also provides functionalities that need the C utility
functions listed above.

	
class solvcon.mesh.Mesh

	This class associates the C functions for mesh operations to the mesh data
and exposes the functions to Python.

	
_msd

	This attribute holds a C struct sc_mesh_t for internal use.

	
setup_mesh(blk)

	

	Parameters:	blk (solvcon.block.Block) – The block object to be copied from.

	
extract_faces_from_cells(max_nfc)

	

	Parameters:	max_nfc (C int) – Maximum value of possible number of faces to be extracted.

	Returns:	Four interior numpy.ndarray for
solvcon.block.Block.clfcs,
solvcon.block.Block.fctpn,
solvcon.block.Block.fcnds, and
solvcon.block.Block.fccls.

Internally calls sc_mesh_extract_face_from_cells().

	
calc_metric()

	

	Returns:	Nothing.

Calculates geometry information including normal vector and area of faces,
and centroid/incenter coordinates and volume of cells. Internally calls
sc_mesh_calc_metric().

	
build_ghost()

	

	Returns:	Nothing.

Builds data for ghost cells. Internally calls
sc_mesh_build_ghost().

	
create_csr()

	

	Returns:	xadj, adjncy

	Return type:	tuple of numpy.ndarray

Builds the connectivity graph in the CSR (compressed storage format) used
by SCOTCH/METIS. Internally calls sc_mesh_build_rcells() and
sc_mesh_build_csr().

	
partition(npart, vwgtarr=None)

	

	Parameters:	
	npart (C int) – Number of parts to be partitioned to.

	vwgtarr (numpy.ndarray) – vwgt weighting settings. Default is None.

	Returns:	A 2-tuple of (i) number of cut edges for the partitioning and (ii)
a numpy.ndarray of shape
(solvcon.block.Block.ncell,) and type int32 that indicates
the partition number of each cell in the mesh.

	Return type:	int, numpy.ndarray

Internally calls METIS_PartGraphKway() of the SCOTCH library for
mesh partitioning.

Numerical Code

The numerical calculations in SOLVCON rely on exploiting a two-level loop
structure, i.e., the temporal loop and the spatial loops. For time-accurate
solvers, there is always an outer loop that coordinates the time-marching. The
outer loop is called the temporal loop, and it should be implemented in
subclasses of MeshCase. Inside the
temporal loop, there can be one or many inner loops that calculate the new
values of the fields. The inner loops are called the spatial loops, and they
should be implemented in subclasses of MeshSolver.

The outer temporal loop is more responsible for coordinating, while the inner
spatial loops is closer to numerical algorithms. These two levels allow us to
segregate code. An object of MeshCase can
be seen as the realization of a simulation case in SOLVCON (as a convention the
object’s name should contain or just be cse). Code in MeshCase is mainly about obtaining settings, input and output,
and provision of the execution environment. On the other hand, we implement
the numerical algorithm in MeshSolver
to manipulate the field data (as a convention the object’s name should contain
or just be svr). Its code shouldn’t involve input nor output (excepting
that for debugging) but needs to take parallelism into account.

Code for data processing should go to MeshHook (as a convention the objects should be named with
hok), which is the companion of MeshCase. Code that processes data close to numerical methods
should go to MeshAnchor (as a
convention the objects should be named with ank), which is the companion of
MeshSolver.

In this section, for conciseness, the terms solver, anchor, case, and hook are
used to denote the classes MeshSolver,
MeshAnchor, MeshCase, and MehsHook or
their instances, respectively. In the issue tracking system [https://bitbucket.org/solvcon/solvcon/issues?status=new&status=open],
solver, anchor, case, and hook form a component “sach” [https://bitbucket.org/solvcon/solvcon/issues?component=sach%20(solver/anchor/case/hook)].

solvcon.case

Module solvcon.case contains code for making a simulation case
(subclasses of solvcon.case.MeshCase). Because a case coordinates
the whole process of a simulation run, for parallel execution, there can be
only one MeshCase object residing in the controller (head) node.

By the design, MeshCase itself cannot be directly used. It must be
subclassed to implement control logic for a specific application. The
application can be a concrete model for a certain physical process, or an
abstraction of a group of related physical processes, which can be further
subclassed.

	
class solvcon.case.MeshCase(**kw)

	Base class for simulation cases based on solvcon.mesh.Mesh.

[image: Inheritance diagram of MeshCase]

init() and run() are the two primary methods responsible
for the execution of the simulation case object. Both methods accept a
keyword parameter “level”:

	run level 0: fresh run (default),

	run level 1: restart run,

	run level 2: initialization only.

	
cleanup(signum=None, frame=None)

	

	Parameters:	
	signum – Signal number.

	frame – Current stack frame.

A signal handler for cleaning up the simulation case on termination or
when errors occur. This method can be overridden in subclasses. The
base implementation is trivial, but usually doesn’t need to be
overridden.

An example to connect this method to a signal:

>>> from .testing import create_trivial_2d_blk
>>> from .solver import MeshSolver
>>> blk = create_trivial_2d_blk()
>>> cse = MeshCase(basefn='meshcase', mesher=lambda *arg: blk,
... domaintype=domain.Domain, solvertype=MeshSolver)
>>> cse.info.muted = True
>>> signal.signal(signal.SIGTERM, cse.cleanup)
0

An example to call this method explicitly:

>>> cse.init()
>>> cse.run()
>>> cse.cleanup()

Initialize

	
MeshCase.init(level=0)

	

	Parameters:	level (int) – Run level; higher level does less work.

	Returns:	Nothing

Load a block and initialize the solver from the geometry information in
the block and conditions in the self case. If parallel run is
specified (through domaintype), split the domain and perform
corresponding tasks.

For a MeshCase to be initialized, some information needs to
be supplied to the constructor:

>>> cse = MeshCase()
>>> cse.info.muted = True
>>> cse.init()
Traceback (most recent call last):
 ...
TypeError: coercing to Unicode: need string or buffer, NoneType found

	Mesh information. We can provide meshfn that specifying the path
of a valid mesh file, or provide mesher, which is a function that
generates the mesh and returns the solvcon.block.Block
object, like the following code:

>>> from solvcon.testing import create_trivial_2d_blk
>>> blk = create_trivial_2d_blk()
>>> cse = MeshCase(mesher=lambda *arg: blk)
>>> cse.info.muted = True
>>> cse.init()
Traceback (most recent call last):
 ...
TypeError: isinstance() arg 2 must be a class, type, or tuple of classes and types

	Type of the spatial domain. This information is used for detemining
sequential or parallel execution, and performing related operations:

>>> cse = MeshCase(mesher=lambda *arg: blk, domaintype=domain.Domain)
>>> cse.info.muted = True
>>> cse.init()
Traceback (most recent call last):
 ...
TypeError: 'NoneType' object is not callable

	The type of solver. It is used to specify the underlying numerical
method:

>>> from solvcon.solver import MeshSolver
>>> cse = MeshCase(mesher=lambda *arg: blk, domaintype=domain.Domain,
... solvertype=MeshSolver)
>>> cse.info.muted = True
>>> cse.init()
Traceback (most recent call last):
 ...
TypeError: cannot concatenate 'str' and 'NoneType' objects

	The base name. It is used to name its output files:

>>> cse = MeshCase(
... mesher=lambda *arg: blk, domaintype=domain.Domain,
... solvertype=MeshSolver, basefn='meshcase')
>>> cse.info.muted = True
>>> cse.init()

Time-March

	
MeshCase.run(level=0)

	

	Parameters:	level (int) – Run level; higher level does less work.

	Returns:	Nothing

Temporal loop for the incorporated solver. A simple example:

>>> from .testing import create_trivial_2d_blk
>>> from .solver import MeshSolver
>>> blk = create_trivial_2d_blk()
>>> cse = MeshCase(basefn='meshcase', mesher=lambda *arg: blk,
... domaintype=domain.Domain, solvertype=MeshSolver)
>>> cse.info.muted = True
>>> cse.init()
>>> cse.run()

Arrangement

	
solvcon.case.arrangements

	The module-level registry for arrangements.

	
MeshCase.arrangements

	The class-level registry for arrangements.

	
classmethod MeshCase.register_arrangement(func, casename=None)

	

	Returns:	Simulation function.

	Return type:	callable

This class method is a decorator that creates a closure (internal
function) that turns the decorated function to an arrangement, and
registers the arrangement into the module-level registry and the
class-level registry. The decorator function should return a
MeshCase object cse, and the closure performs a
simulation run by the following code:

try:
 signal.signal(signal.SIGTERM, cse.cleanup)
 signal.signal(signal.SIGINT, cse.cleanup)
 cse.init(level=runlevel)
 cse.run(level=runlevel)
 cse.cleanup()
except:
 cse.cleanup()
 raise

The usage of this decorator can be exemplified by the following code,
which creates four arrangements (although the first three are
erroneous):

>>> @MeshCase.register_arrangement
... def arg1():
... return None
>>> @MeshCase.register_arrangement
... def arg2(wrongname):
... return None
>>> @MeshCase.register_arrangement
... def arg3(casename):
... return None
>>> @MeshCase.register_arrangement
... def arg4(casename):
... from .testing import create_trivial_2d_blk
... from .solver import MeshSolver
... blk = create_trivial_2d_blk()
... cse = MeshCase(basefn='meshcase', mesher=lambda *arg: blk,
... domaintype=domain.Domain, solvertype=MeshSolver)
... cse.info.muted = True
... return cse

The created arrangements are collected to a class attribute
arrangements, i.e., the class-level registry:

>>> sorted(MeshCase.arrangements.keys())
['arg1', 'arg2', 'arg3', 'arg4']

The arrangements in the class attribute arrangements are
also put into a module-level attribute
solvcon.case.arrangements:

>>> arrangements == MeshCase.arrangements
True

The first example arrangement is a bad one, because it allows no
argument:

>>> arrangements.arg1()
Traceback (most recent call last):
 ...
TypeError: arg1() takes no arguments (1 given)

The second example arrangement is still a bad one, because although it
has an argument, the name of the argument is incorrect:

>>> arrangements.arg2()
Traceback (most recent call last):
 ...
TypeError: arg2() got an unexpected keyword argument 'casename'

The third example arrangement is a bad one for another reason. It
doesn’t return a MeshCase:

>>> arrangements.arg3()
Traceback (most recent call last):
 ...
AttributeError: 'NoneType' object has no attribute 'cleanup'

The fourth example arrangement is finally good:

>>> arrangements.arg4()

solvcon.solver

Module solvcon.solver provides the basic facilities for implementing
numerical methods by subclassing MeshSolver. The base class is
defined as:

	
class solvcon.solver.MeshSolver(blk, time=0.0, time_increment=0.0, enable_mesg=False, **kw)

	Base class for all solving code that take Mesh, which is usually needed to write efficient C/C++ code
for implementing numerical methods.

Here’re some examples about using MeshSolver. The first
example shows that we can’t directly use it. A vanilla
MeshSolver can’t march:

>>> from .testing import create_trivial_2d_blk
>>> svr = MeshSolver(create_trivial_2d_blk())
>>> svr.march(0.0, 0.1, 1)
Traceback (most recent call last):
 ...
TypeError: 'NoneType' object has no attribute '__getitem__'

At minimal we need to override the _MMNAMES class attribute:

>>> class DerivedSolver(MeshSolver):
... _MMNAMES = MeshSolver.new_method_list()
>>> svr = DerivedSolver(create_trivial_2d_blk())
>>> svr.march(0.0, 0.1, 1)
{}

Of course the above derived solver did nothing. Let’s see another example
solver that does non-trivial things:

>>> class ExampleSolver(MeshSolver):
... _MMNAMES = MeshSolver.new_method_list()
... @_MMNAMES.register
... def calcsomething(self, worker=None):
... self.marchret['key'] = 'value'
>>> svr = ExampleSolver(create_trivial_2d_blk())
>>> svr.march(0.0, 0.1, 1)
{'key': 'value'}

Two instance attributes are used to record the temporal information:

	
time = None

	The current time of the solver. By default, time is
initialized to 0.0, which is usually desired value. The default
value can be overridden from the constructor.

	
time_increment = None

	The temporal interval between the current and the next time steps.
It is usually referred to as [image: \Delta t] in the numerical
literature. By default, time_increment is initialized to
0.0, but the default should be overridden from the constructor.

Four instance attributes are used to track the status of time-marching:

	
step_current = None

	It is an int that records the current step of the
solver. It is initialized to 0.

	
step_global = None

	It is similar to step_current, but persists over restart.
Without restarts, step_global should be identical to
step_current.

	
substep_run = None

	The number of sub-steps that a single time step should be split
into. It is initialized to 1 and should be overidden in
subclasses if needed.

	
substep_current = None

	The current sub-step of the solver. It is initialized to 0.

Derived classes of MeshSolver should use the following method
new_method_list() to make a new class variable _MMNAMES
to define numerical methods:

	
static new_method_list()

	

	Returns:	An object to be set to _MMNAMES.

	Return type:	_MethodList

In subclasses of MeshSolver, implementors can use this
utility method to creates an instance of _MethodList, which
should be set to _MMNAMES.

	
_MMNAMES = None

	This class attribute holds the names of the methods to be called in
march(). It is of type _MethodList. The default
value is None and must be reset in subclasses by calling
new_method_list().

Time-Marching

	
MeshSolver.march(time_current, time_increment, steps_run, worker=None)

	

	Parameters:	
	time_current (float) – Starting time of this set of marching steps.

	time_increment (float) – Temporal interval [image: \Delta t] of the time
step.

	steps_run (int) – The count of time steps to run.

	Returns:	marchret

This method performs time-marching. The parameters time_current and
time_increment are used to reset the instance attributes
time and time_increment, respectively.

There is a nested two-level loop in this method for time-marching. The
outer loop iterates for time steps, and the inner loop iterates for sub
time steps. The outer loop runs steps_run times, while the inner
loop runs substep_run times. In total, the inner loop runs
steps_run * substep_run times. In each sub time step
(in the inner loop), the increment of the attribute time is
time_increment/substep_run. The temporal
increment per time step is effectively time_increment, with
a slight error because of round-off.

Before entering and after leaving the outer loop, premarch and postmarch anchors will be run (through the
attribute runanchors). Similarly, before entering and after
leaving the inner loop, prefull and postfull anchors will be run. Inside the
inner loop of sub steps, before and after executing all the marching
methods, presub and
postsub anchors will be run.
Lastly, before and after invoking every marching method, a pair of
anchors will be run. The anchors for a marching method are related to
the name of the marching method itself. For example, if a marching
method is named “calcsome”, anchor precalcsome will be run before
the invocation, and anchor postcalcsome will be run afterward.

Derived classes can set marchret dictionary, and
march() will return the dictionary at the end of execution.
The dictionary is reset to empty at the begninning of the execution.

	
MeshSolver.marchret = None

	Values to be returned by this solver. It will be set to a
dict in march().

	
MeshSolver.runanchors = None

	This instance attribute is of type AnchorList, and the foundation of the anchor
mechanism of SOLVCON. An AnchorList object like this collects a set of
Anchor #: objects, and is
callable. When being called, runanchors iterates the
contained Anchor objects and
invokes the corresponding methods of the individual
Anchor.

	
MeshSolver.der = None

	Derived data container as a dict.

	
class solvcon.solver._MethodList

	A custom list that provides a decorator for keeping names of
functions.

>>> mmnames = _MethodList()
>>> @mmnames.register
... def func_of_a_name():
... pass
>>> mmnames
['func_of_a_name']

This class is a private helper and should only be used in
solvcon.solver.

Parallel Computing

For distributed-memory parallel computing (i.e., MPI runs), the member
svrn indicates the serial number (0-based) the object is. The value
of svrn comes from blk. Another member, nsvr,
is the total number of collaborative solvers in the parallel run, and is
initialized to None.

solvcon.hook

MeshHook performs custom operations at
certain pre-defined stages.

	
class solvcon.hook.Hook(cse, **kw)

	Organizer class for hooking subroutines for BaseCase.

@ivar cse: Case object.
@itype cse: BaseCase
@ivar info: information output function.
@itype info: callable
@ivar psteps: the interval number of steps between printing.
@itype psteps: int
@ivar kws: excessive keywords.
@itype kws: dict

solvcon.anchor

	
class solvcon.anchor.Anchor(svr, **kw)

	Anchor that called by solver objects at various stages.

@ivar svr: the solver object to be attached to.
@itype svr: solvcon.solver.Solver
@ivar kws: excessive keywords.
@itype kws: dict

References

ustmesh_2d_sample.geo

/*
 * A Gmsh template file for a rectangle domain.
 */
lc = 0.1;
// vertices.
Point(1) = {4,1,0,lc};
Point(2) = {2,2,0,lc};
Point(3) = {0,1,0,lc};
Point(4) = {0,0,0,lc};
Point(5) = {4,0,0,lc};
Point(6) = {3.5, 1,0,lc};
Point(7) = { 3, 1,0,lc};
Point(8) = { 3,0.5,0,lc};
Point(9) = {3.5,0.5,0,lc};
Point(10) = { 1, 1,0,lc};
Point(11) = {0.5, 1,0,lc};
Point(12) = {0.5,0.5,0,lc};
Point(13) = { 1,0.5,0,lc};
Point(14) = { 2,0.8,0,lc};
Point(15) = {1.5,0.2,0,lc};
Point(16) = {2.5,0.2,0,lc};
// lines.
Line(1) = {1,2};
Line(2) = {2,3};
Line(3) = {3,4};
Line(4) = {4,5};
Line(5) = {5,1};
Line(6) = {6,7};
Line(7) = {7,8};
Line(8) = {8,9};
Line(9) = {9,6};
Line(10) = {10,11};
Line(11) = {11,12};
Line(12) = {12,13};
Line(13) = {13,10};
Line(14) = {14,15};
Line(15) = {15,16};
Line(16) = {16,14};
// surface.
Line Loop(1) = {1,2,3,4,5};
Line Loop(2) = {6,7,8,9};
Line Loop(3) = {10,11,12,13};
Line Loop(4) = {14,15,16};
Plane Surface(1) = {1,2,3,4};
// physics.
Physical Line("upper") = {1,2};
Physical Line("left") = {3};
Physical Line("lower") = {4};
Physical Line("right") = {5};
Physical Line("rwin") = {6,7,8,9};
Physical Line("lwin") = {10,11,12,13};
Physical Line("cwin") = {14,15,16};
Physical Surface("domain") = {1};
// vim: set ai et nu ff=unix ft=c:

The following command generate the mesh:

gmsh ustmesh_2d_sample.geo -3

The following command converts the mesh to a VTK file for ParaView:

scg mesh ustmesh_2d_sample.msh ustmesh_2d_sample.vtk

	[Mavriplis97]	(1, 2) D. J. Mavriplis, Unstructured grid techniques, Annual Review
of Fluid Mechanics 29. (1997)

Footnotes

	[1]	SOLVCON focuses on two- and three-dimensional meshes. But if we put an
additional constraint on the mesh elements: Requiring them to be simplices,
it wouldn’t be difficult to extend the data structure of SOLVCON meshes into
higher-dimensional space.

 Copyright 2009-2012, Yung-Yu Chen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SOLVCON 0.1.2 documentation

Input and Output Facilities

solvcon.io.gmsh

	
class solvcon.io.gmsh.Gmsh(stream, load=False)

	Gmsh mesh object. Indices nodes and elements in Gmsh is 1-based (Fortran
convention), but 0-based (C convention) indices are used throughout
SOLVCON. However, physics groups are using 0-based index.

	
__init__(stream, load=False)

	>>> # sample data.
>>> import StringIO
>>> data = """$MeshFormat
... 2.2 0 8
... $EndMeshFormat
... $Nodes
... 3
... 1 -1 0 0
... 2 1 0 0
... 3 0 1 0
... $EndNodes
... $Elements
... 1
... 1 2 2 1 22 1 2 3
... $EndElements
... $PhysicalNames
... 1
... 2 1 "lower"
... $EndPhysicalNames
... $Periodic
... 1
... 0 1 3
... 1
... 1 3
... $EndPeriodic"""

Creation of the object doesn’t load data:

>>> gmsh = Gmsh(StringIO.StringIO(data))
>>> None is gmsh.ndim
True
>>> gmsh.load()
>>> gmsh.ndim
2
>>> gmsh.stream.close() # it's a good habit :-)

We can request to load data on creation by setting load=True. Note
the stream will be closed after creation+loading. The default behavior
is different to load().

>>> gmsh = Gmsh(StringIO.StringIO(data), load=True)
>>> gmsh.ndim
2
>>> gmsh.stream.closed
True

	
nnode

	Number of nodes that is useful for SOLVCON.

	
ncell

	Number of cells that is useful for SOLVCON and interior.

	
load(close=False)

	Load mesh data from storage.

>>> # sample data.
>>> import StringIO
>>> data = """$MeshFormat
... 2.2 0 8
... $EndMeshFormat
... $Nodes
... 3
... 1 -1 0 0
... 2 1 0 0
... 3 0 1 0
... $EndNodes
... $Elements
... 1
... 1 2 2 1 22 1 2 3
... $EndElements
... $PhysicalNames
... 1
... 2 1 "lower"
... $EndPhysicalNames
... $Periodic
... 1
... 0 1 3
... 1
... 1 3
... $EndPeriodic"""

Load the mesh data after creation of the object. Note the stream is
left opened after loading.

>>> stream = StringIO.StringIO(data)
>>> gmsh = Gmsh(stream)
>>> gmsh.load()
>>> stream.closed
False
>>> stream.close() # it's a good habit :-)

We can ask load() to close the stream after loading by using
close=True:

>>> gmsh = Gmsh(StringIO.StringIO(data))
>>> gmsh.load(close=True)
>>> gmsh.stream.closed
True

Private Helpers for Loading and Parsing the Mesh File

These private methods are documented for demonstrating the data structure of
the loaded meshes. Do not rely on their implementation.

	
static _check_meta(stream)

	Load and check the meta data of the mesh. It doesn’t return anything
to be stored.

>>> import StringIO
>>> stream = StringIO.StringIO("""$MeshFormat
... 2.2 0 8
... $EndMeshFormat""")
>>> stream.readline()
'$MeshFormat\n'
>>> Gmsh._check_meta(stream)
{}
>>> stream.readline()
''

	
static _load_nodes(stream)

	Load node coordinates of the mesh data. Because of the internal data
structure of Python, Numpy, and SOLVCON, the loaded nodes
are using the 0-based index.

>>> import StringIO
>>> stream = StringIO.StringIO("""$Nodes
... 3
... 1 -1 0 0
... 2 1 0 0
... 3 0 1 0
... $EndNodes""") # a triangle.
>>> stream.readline()
'$Nodes\n'
>>> Gmsh._load_nodes(stream)
{'nodes': array([[-1., 0., 0.], [1., 0., 0.], [0., 1., 0.]])}
>>> stream.readline()
''

	
classmethod _load_elements(stream, nodes)

	Load element definition of the mesh data. The node indices defined for
each element are still 1-based. It returns cltpn,
eldim, elems, elgeo, elgrp,
ndim, ndmap, and usnds for storage.

>>> from numpy import array
>>> nodes = array([[-1., 0., 0.], [1., 0., 0.], [0., 1., 0.]])
>>> import StringIO
>>> stream = StringIO.StringIO("""$Elements
... 1
... 1 2 2 1 22 1 2 3
... $EndElements""") # a triangle.
>>> stream.readline()
'$Elements\n'
>>> sorted(Gmsh._load_elements(
... stream, nodes).items())
[('cltpn', array([3], dtype=int32)),
 ('eldim', array([2], dtype=int32)),
 ('elems', array([[3, 1, 2, 3, -1, -1, -1, -1, -1]], dtype=int32)),
 ('elgeo', array([22], dtype=int32)),
 ('elgrp', array([1], dtype=int32)),
 ('ndim', 2),
 ('ndmap', array([0, 1, 2], dtype=int32)),
 ('usnds', array([0, 1, 2], dtype=int32))]
>>> stream.readline()
''

	
static _load_physics(stream)

	Load physics groups of the mesh data. Return physics for
storage.

>>> import StringIO
>>> stream = StringIO.StringIO("""$PhysicalNames
... 1
... 2 1 "lower"
... $EndPhysicalNames""")
>>> stream.readline()
'$PhysicalNames\n'
>>> Gmsh._load_physics(stream)
{'physics': ['1', '2 1 "lower"']}
>>> stream.readline()
''

	
static _load_periodic(stream)

	Load periodic definition of the mesh data. Return periodics
for storage.

>>> import StringIO
>>> stream = StringIO.StringIO("""$Periodic
... 1
... 0 1 3
... 1
... 1 3
... $EndPeriodic""") # a triangle.
>>> stream.readline()
'$Periodic\n'
>>> Gmsh._load_periodic(stream)
{'periodics': [{'ndim': 0,
 'stag': 1,
 'nodes': array([[1, 3]], dtype=int32),
 'mtag': 3}]}
>>> stream.readline()
''

	
_parse_physics()

	Parse physics groups of the mesh data. Process physics and
stores intels.

Mesh Definition and Data Attributes

	
ELMAP = {1: (1, 2, 1, [0, 1]), 2: (2, 3, 3, [0, 1, 2]), 3: (2, 4, 2, [0, 1, 2, 3]), 4: (3, 4, 5, [0, 1, 2, 3]), 5: (3, 8, 4, [0, 1, 2, 3, 4, 5, 6, 7]), 6: (3, 6, 6, [0, 2, 1, 3, 5, 4]), 7: (3, 5, 7, [0, 1, 2, 3, 4]), 8: (1, 3, 1, [0, 1]), 9: (2, 6, 3, [0, 1, 2]), 10: (2, 9, 2, [0, 1, 2, 3]), 11: (3, 10, 5, [0, 1, 2, 3]), 12: (3, 27, 4, [0, 1, 2, 3, 4, 5, 6, 7]), 13: (3, 18, 6, [0, 2, 1, 3, 5, 4]), 14: (3, 14, 7, [0, 1, 2, 3, 4]), 15: (0, 1, 0, [0]), 16: (2, 8, 2, [0, 1, 2, 3]), 17: (3, 20, 4, [0, 1, 2, 3, 4, 5, 6, 7]), 18: (3, 15, 6, [0, 2, 1, 3, 5, 4]), 19: (3, 13, 7, [0, 1, 2, 3, 4]), 20: (2, 9, 3, [0, 1, 2]), 21: (2, 10, 3, [0, 1, 2]), 22: (2, 12, 3, [0, 1, 2]), 23: (2, 15, 3, [0, 1, 2]), 24: (2, 15, 3, [0, 1, 2]), 25: (2, 21, 3, [0, 1, 2]), 26: (1, 4, 1, [0, 1]), 27: (1, 5, 1, [0, 1]), 28: (1, 6, 1, [0, 1]), 29: (3, 20, 5, [0, 1, 2, 3]), 30: (3, 35, 5, [0, 1, 2, 3]), 31: (3, 56, 5, [0, 1, 2, 3]), 92: (3, 64, 4, [0, 1, 2, 3, 4, 5, 6, 7]), 93: (3, 125, 4, [0, 1, 2, 3, 4, 5, 6, 7])}

	Element definition map. The key is Gmsh element type ID. The
value is a 4-tuple: (i) dimension, (ii) number of total nodes, (iii)
SOLVCON cell type ID, and (iv) SOLVCON cell node ordering.

	
stream = None

	Input stream (file) of the mesh data.

	
ndim = None

	Number of dimension of this mesh (py:class:int). Stored by
_load_elements().

	
nodes = None

	Three-dimensional coordinates of all nodes
of Gmsh nodes, 3). Note for even two-dimensional meshes the
array still stores three-dimensional coordinates. Stored by
_load_nodes().

	
usnds = None

	Indices (0-based) of the nodes really useful for SOLVCON
(numpy.ndarray). Stored by _load_elements().

	
ndmap = None

	A mapping array from Gmsh node indices (0-based) to SOLVCON node
indices (0-based) (numpy.ndarray). Stored by
_load_elements().

	
cltpn = None

	SOLVCON cell type ID for each Gmsh element
(py:class:numpy.ndarray). Stored by _load_elements().

	
elgrp = None

	Physics group number of each Gmsh element; the first tag
(numpy.ndarray). Stored by _load_elements().

	
elgeo = None

	Geometrical gropu number of each Gmsh element; the second tag
(numpy.ndarray). Stored by _load_elements().

	
eldim = None

	Dimension of each Gmsh element (numpy.ndarray). Stored
by _load_elements().

	
elems = None

	Gmsh node indices (1-based) of each Gmsh element
(numpy.ndarray). Stored by _load_elements().

	
intels = None

	Indices (0-based) of the elements inside the domain
(numpy.ndarray). Stored by _parse_physics().

	
physics = None

	Physics groups as a list of 3-tuples: (i) dimension,
(ii) index (0-based), and (iii) name. If a physics group has the
same dimension as the mesh, it is an interior group. Otherwise, the
physics group must have one less dimension than the mesh, and it
must be used as the boundary definition. Stored by
_load_physics() and then processed by
_parse_physics().

	
periodics = None

	Periodic relation list. Each item is a
dict:. Stored by _load_periodic().

	
class solvcon.io.gmsh.GmshIO

	Proxy to Gmsh file format.

[image: Inheritance diagram of GmshIO]

	
load(stream, bcrej=None, bcmapper=None)

	Load block from stream with BC mapper applied.

 Copyright 2009-2012, Yung-Yu Chen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SOLVCON 0.1.2 documentation

System Modules

solvcon.conf

	
solvcon.conf.env

	The global singleton of Solvcon to provide configuration for
other components of SOLVCON.

	
class solvcon.conf.Solvcon

	The configuration class.

	Variables:	
	pydir – The path of the solvcon package that is running.

	pkgdir – The path that contains solvcon package that is
running.

	libdir – The path of the compiled binary of SOLVCON.

	datadir – The path of the static data of SOLVCON.

	projdir – The path that hosts a SOLVCON project.

	logfile – The stream that saves runtime output.

	logfn – The (absolute) path of the logfile.

	modnames – Names of SOLVCON applications.

	command – Unknown

	mpi – The MPI runtime interface.

	scu – The CUDA runtime interface.

	
__weakref__

	list of weak references to the object (if defined)

	
enable_applications()

	Enable a SOLVCON application by importing the module (or package).

	Returns:	Nothing.

	
find_scdata_mesh()

	Find the mesh directory of the scdata from the current working
directory all the way to the root.

	Returns:	The path to the supplemental SOLVCON mesh data.

	Return type:	str

	
get_entry_point()

	If the entry point is invoked by searching in path, just return it. If
the entry point is invoked by specifying a location, return the
absolute path of the entry script/code.

	Returns:	The invoked name.

	Return type:	str

solvcon.helper

Helping functionalities.

	
class solvcon.helper.Cubit(cmds, ndim, large=False)

	

	Variables:	
	cmds – Commands to be sent to Cubit.

	ndim – Number of dimensions.

	large – Flag to use large file of Genesis/ExodusII or not.

Delegate Cubit command through journaling file and load the generated mesh.

	
__call__()

	

	Returns:	The loaded Genesis object.

	Return type:	solvcon.io.genesis.Genesis

Launch Cubit for generating mesh and then load the generated
Genesis/ExodusII file.

	
__weakref__

	list of weak references to the object (if defined)

	
class solvcon.helper.Gmsh(cmds, preserve=False)

	

	Variables:	cmds – Commands to be sent to gmsh.

Delegate Gmsh command through journaling file and load the generated mesh.

	
__call__(options=None)

	

	Returns:	The loaded Gmsh object.

	Return type:	solvcon.io.gmsh.Gmsh

Launch Gmsh for generating mesh and then load the generated file.

	
__init__(cmds, preserve=False)

	>>> gmh = Gmsh(["lc = 0.1;"])
>>> gmh = Gmsh(["lc = 0.1;"], preserve=True)

	
__weakref__

	list of weak references to the object (if defined)

	
class solvcon.helper.Information(prefix='*', nchar=4, width=80, level=0, muted=False)

	Information logger.

	
__call__(data, travel=0, level=None, has_gap=True)

	

	Parameters:	data (str) – String data to be output.

Output.

	
__weakref__

	list of weak references to the object (if defined)

	
streams

	

	Type :	list

List of output streams.

	
class solvcon.helper.Printer(streams, **kw)

	Print message to a stream.

	
__weakref__

	list of weak references to the object (if defined)

	
solvcon.helper.generate_apidoc(outputdir='doc/api')

	Use epydoc to generate API doc.

	
solvcon.helper.iswin()

	

	Returns:	Flag under windows or not.

	Return type:	bool

	
solvcon.helper.search_in_parents(loc, name)

	

	Parameters:	
	loc (str) – The location to start searching.

	name (str) – The searching target.

	Returns:	The absolute path to the FS item.

	Return type:	str

Search for something in the file system all the way up from the specified
location to the root.

solvcon.io.gmsh

This is a loader for Gmsh format. Currently only the ASCII format is
supported.

For more information about Gmsh ASCII file, please refer to
http://www.geuz.org/gmsh/doc/texinfo/gmsh.html#MSH-ASCII-file-format

 Copyright 2009-2012, Yung-Yu Chen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SOLVCON 0.1.2 documentation

Second-Order Linear Solver (solvcon.parcel.linear)

This package implements a basic second-order, three-dimensional CESE solver
that uses the CFL-insensitive [image: c\mbox{-}\tau] scheme. The basic solver
can be extended to solver for any linear system of first-order hyperbolic PDEs.
An example is the velocity-stress equation solver in .velstress.

Numerical Implementation (._algorithm)

Let

	[image: u_m] be the [image: m]-th solution variable and [image: m = 1, \ldots, M]. [image: M] is the total number of variables.

	[image: u_{mx_{\mu}}] be the component of the gradient of [image: u_m] along
the [image: x_{\mu}] axis in a Cartesian coordinate system. [image: \mu = 1, 2] in two-dimensional space and [image: \mu = 1, 2, 3] in three-dimensional
space.

Common Data Structure

	
sc_linear_algorithm_t

	Basic Information of the Solver

	
int neq

	
double time

	
double time_increment

	sc_linear_algorithm_t.neq is the number of equations or the number
of variables in a mesh cell. sc_linear_algorithm_t.time is the
current time of the solver. sc_linear_algorithm_t.time_increment
is [image: \Delta t].

Parameters to the [image: c\mbox{-}\tau] Scheme

	
int alpha

	
double sigma0

	
double taylor

	
double cnbfac

	
double sftfac

	
double taumin

	
double tauscale

	

Metric Arrays for the CESE Method

	
double *cecnd

	
double *cevol

	
double *sfmrc

	

Group Data

	
int ngroup

	
int gdlen

	
double *grpda

	

Scalar Parameters

	
int nsca

	
double *amsca

	

Vector Parameters

	
int nvec

	
double *amvec

	

Solution Arrays

	
double *sol

	
double *soln

	
double *solt

	
double *dsol

	
double *dsoln

	

	
double *stm

	
double *cfl

	
double *ocfl

	

Metric for CEs & SEs

	
void sc_linear_prepare_ce_3d(sc_mesh_t*msd, sc_linear_algorithm_t*alg)

	
void sc_linear_prepare_ce_2d(sc_mesh_t*msd, sc_linear_algorithm_t*alg)

	Calculate the volume and centroid of conservation elements.

	
void sc_linear_prepare_sf_3d(sc_mesh_t*msd, sc_linear_algorithm_t*alg)

	
void sc_linear_prepare_sf_2d(sc_mesh_t*msd, sc_linear_algorithm_t*alg)

	Calculate the centroid and normal of hyperplanes of conservation elements
and solution elements.

Time Marching

	
void sc_linear_calc_soln_3d(sc_mesh_t*msd, sc_linear_algorithm_t*alg)

	
void sc_linear_calc_soln_2d(sc_mesh_t*msd, sc_linear_algorithm_t*alg)

	Calculate the solutions of the next half time step ([image: (u_m)_j^{n+1/2})]
based on the informaiton at the current time step ([image: n]).

	
void sc_linear_calc_solt_3d(sc_mesh_t*msd, sc_linear_algorithm_t*alg)

	
void sc_linear_calc_solt_2d(sc_mesh_t*msd, sc_linear_algorithm_t*alg)

	Calculate the changing rate of solutions ([image: (u_mt)_j^n]).

	
void sc_linear_calc_jaco_3d(sc_mesh_t*msd, sc_linear_algorithm_t*alg, inticl, doublefcn[NEQ][NDIM], doublejacos[NEQ][NEQ][NDIM])

	
void sc_linear_calc_jaco_2d(sc_mesh_t*msd, sc_linear_algorithm_t*alg, inticl, doublefcn[NEQ][NDIM], doublejacos[NEQ][NEQ][NDIM])

	Calculate the Jacobian matrices.

	
void sc_linear_calc_dsoln_3d(sc_mesh_t*msd, sc_linear_algorithm_t*alg)

	
void sc_linear_calc_dsoln_2d(sc_mesh_t*msd, sc_linear_algorithm_t*alg)

	Calculate the gradient of solutions of the next half time step
([image: (u_{mx_{\mu}})_j^{n+1/2}]) based on the information at the current
time step ([image: n]).

	
void sc_linear_calc_cfl_3d(sc_mesh_t*msd, sc_linear_algorithm_t*alg)

	
void sc_linear_calc_cfl_2d(sc_mesh_t*msd, sc_linear_algorithm_t*alg)

	Calculate the CFL number based on the eigenvalues of the linear Jacobian
matrices.

Plane Wave Solution

	
void sc_linear_calc_planewave_3d(sc_mesh_t*msd, sc_linear_algorithm_t*alg, double*asol, double*adsol, double*amp, double*ctr, double*wvec, doubleafreq)

	
void sc_linear_calc_planewave_2d(sc_mesh_t*msd, sc_linear_algorithm_t*alg, double*asol, double*adsol, double*amp, double*ctr, double*wvec, doubleafreq)

	Calculate the plane-wave solutions.

Wrapper for Numerical Code

	
class solvcon.parcel.linear.LinearAlgorithm

	This class wraps around the C functions for the second-order CESE method.

Numerical Controller (.solver)

	
class solvcon.parcel.linear.solver.LinearSolver(blk, **kw)

	This class controls the underneath algorithm LinearAlgorithm.

[image: Inheritance diagram of LinearSolver]

	
class solvcon.parcel.linear.solver.LinearPeriodic(**kw)

	General periodic boundary condition for sequential runs.

[image: Inheritance diagram of LinearPeriodic]

Simulation Controller (.case)

	
class solvcon.parcel.linear.case.LinearCase(**kw)

	Basic case with linear CESE method.

[image: Inheritance diagram of LinearCase]

Helpers for Plane Wave (.planewave)

	
class solvcon.parcel.linear.planewave.PlaneWaveSolution(**kw)

	

	
class solvcon.parcel.linear.planewave.PlaneWaveAnchor(svr, planewaves=None, **kw)

	Use PlaneWaveSolution to calculate plane-wave solutions for
LinearSolver.

[image: Inheritance diagram of PlaneWaveAnchor]

	
planewaves = None

	Sequence of PlaneWaveSolution objects.

	
class solvcon.parcel.linear.planewave.PlaneWaveHook(svr, planewaves=None, **kw)

	
[image: Inheritance diagram of PlaneWaveHook]

	
planewaves = None

	Sequence of PlaneWaveSolution objects.

	
norm = None

	A dict holding the calculated norm.

Helpers for I/O (.inout)

	
class solvcon.parcel.linear.inout.MeshInfoHook(cse, show_bclist=False, perffn=None, **kw)

	Print mesh information.

[image: Inheritance diagram of MeshInfoHook]

	
show_bclist = None

	Flag to show the list of boundary conditions. Default is False.

	
perffn = None

	Performance file name.

	
class solvcon.parcel.linear.inout.ProgressHook(cse, linewidth=50, **kw)

	Print simulation progess.

[image: Inheritance diagram of ProgressHook]

	
linewidth = None

	The maximum width for progress mark.

	
class solvcon.parcel.linear.inout.FillAnchor(svr, mappers=None, **kw)

	Fill the specified arrays of a LinearSolver with corresponding value.

[image: Inheritance diagram of FillAnchor]

	
mappers = None

	A dict maps the names of attributes of the
MeshAnchor.svr #: to the
filling value.

	
class solvcon.parcel.linear.inout.CflAnchor(svr, rsteps=None, **kw)

	Counting CFL numbers. Use MeshSolver.marchret to return results. Implements
postmarch() method.

[image: Inheritance diagram of CflAnchor]

	
rsteps = None

	Steps to run (int).

	
class solvcon.parcel.linear.inout.CflHook(cse, name='cfl', cflmin=0.0, cflmax=1.0, fullstop=True, rsteps=None, **kw)

	Makes sure CFL number is bounded and print averaged CFL number over time.
Reports CFL information per time step and on finishing. Implements (i)
postmarch() and (ii) postloop() methods.

[image: Inheritance diagram of CflHook]

	
rsteps = None

	Steps to run.

	
name = None

	Name of the CFL tool.

	
cflmin = None

	Miminum CFL value.

	
cflmax = None

	Maximum CFL value.

	
fullstop = None

	Flag to stop when CFL is out of bound. Default is True.

	
aCFL = None

	Accumulated CFL.

	
mCFL = None

	Mean CFL.

	
hnCFL = None

	Hereditary minimum CFL.

	
hxCFL = None

	Hereditary maximum CFL.

	
aadj = None

	Number of adjusted CFL accumulated since last report.

	
haadj = None

	Total number of adjusted CFL since simulation started.

	
class solvcon.parcel.linear.inout.MarchSaveAnchor(svr, anames=None, compressor=None, fpdtype=None, psteps=None, vtkfn_tmpl=None, **kw)

	Save solution data into VTK XML format for a solver.

[image: Inheritance diagram of MarchSaveAnchor]

	
anames = None

	The arrays in LinearSolver or
MeshSolver.der to be
saved.

	
compressor = None

	Compressor for binary data. Can be either 'gz' or ''.

	
fpdtype = None

	String for floating point data type (NumPy convention).

	
psteps = None

	The interval in step to save data.

	
vtkfn_tmpl = None

	The template string for the VTK file.

	
class solvcon.parcel.linear.inout.PMarchSave(cse, anames=None, compressor='gz', fpdtype=None, altdir='', altsym='', vtkfn_tmpl=None, **kw)

	Save the geometry and variables in a case when time marching in parallel
VTK XML format.

[image: Inheritance diagram of PMarchSave]

	
anames = None

	The arrays in LinearSolver or
MeshSolver.der to be
saved. Format is (name, inder, ndim), (name, inder, ndim) ... For
ndim > 0 the array is a spatial vector, for ndim == 0 a simple
scalar, and ndim < 0 a list of scalar.

	
compressor = None

	Compressor for binary data. Can be either 'gz' or ''.

	
fpdtype = None

	String for floating point data type (NumPy convention).

	
altdir = None

	The alternate directory to save the VTK files.

	
altsym = None

	The symbolic link in basedir pointing to the alternate directory to
save the VTK files.

	
vtkfn_tmpl = None

	The template string for the VTK file.

	
pextmpl = None

	

Velocity-Stress Equation Solver (.velstress)

See [1] for the basic formulation.

Solver Logic (.velstress.logic)

	
class solvcon.parcel.linear.velstress.logic.VslinPWSolution(**kw)

	Plane-wave solutions for the velocity-stress equations.

	
class solvcon.parcel.linear.velstress.logic.VslinSolver(blk, mtrldict=None, **kw)

	Basic elastic solver.

	
mtrldict = None

	A dict that maps names to Material object.

	
mtrllist = None

	A list of all Material
objects.

	
class solvcon.parcel.linear.velstress.logic.VslinCase(**kw)

	Case for anisotropic elastic solids.

Material Definition (.velstress.material)

	
solvcon.parcel.linear.velstress.material.mltregy = {'GaAs': <class 'solvcon.parcel.linear.velstress.material.GaAs'>, 'Acmite': <class 'solvcon.parcel.linear.velstress.material.Acmite'>, 'Trigonal': <class 'solvcon.parcel.linear.velstress.material.Trigonal'>, 'Monoclinic': <class 'solvcon.parcel.linear.velstress.material.Monoclinic'>, 'Cubic': <class 'solvcon.parcel.linear.velstress.material.Cubic'>, 'BariumTitanate': <class 'solvcon.parcel.linear.velstress.material.BariumTitanate'>, 'Orthorhombic': <class 'solvcon.parcel.linear.velstress.material.Orthorhombic'>, 'Material': <class 'solvcon.parcel.linear.velstress.material.Material'>, 'ZnO': <class 'solvcon.parcel.linear.velstress.material.ZnO'>, 'Albite': <class 'solvcon.parcel.linear.velstress.material.Albite'>, 'RickerSample': <class 'solvcon.parcel.linear.velstress.material.RickerSample'>, 'Beryl': <class 'solvcon.parcel.linear.velstress.material.Beryl'>, 'AlphaUranium': <class 'solvcon.parcel.linear.velstress.material.AlphaUranium'>, 'Isotropic': <class 'solvcon.parcel.linear.velstress.material.Isotropic'>, 'Zinc': <class 'solvcon.parcel.linear.velstress.material.Zinc'>, 'CdS': <class 'solvcon.parcel.linear.velstress.material.CdS'>, 'Tetragonal': <class 'solvcon.parcel.linear.velstress.material.Tetragonal'>, 'Triclinic': <class 'solvcon.parcel.linear.velstress.material.Triclinic'>, 'Hexagonal': <class 'solvcon.parcel.linear.velstress.material.Hexagonal'>, 'RickerSampleLight': <class 'solvcon.parcel.linear.velstress.material.RickerSampleLight'>, 'AlphaQuartz': <class 'solvcon.parcel.linear.velstress.material.AlphaQuartz'>}

	Registry class for the name of types.

	
class solvcon.parcel.linear.velstress.material.Material(rho=None, al=None, be=None, ga=None, **kw)

	Material properties. The constitutive relation needs not be symmetric.

	
rho = None

	Density.

	
al = None

	Alpha angle.

	
be = None

	Beta angle.

	
ga = None

	Gamma angle.

	
origstiff = None

	Stiffness matrix in the crystal coordinate.

	
stiff = None

	Stiffness matrix in the transformed global coordinate.

Bibliography

	[1]	Yung-Yu Chen, Lixiang Yang, and Sheng-Tao John Yu, “Hyperbolicity of
Velocity-Stress Equations for Waves in Anisotropic Elastic Solids”, Journal
of Elasticity, Volume 106, Number 2, Feb. 2012, Page 149-164. doi:
10.1007/s10659-011-9315-8 <http://dx.doi.org/10.1007/s10659-011-9315-8>.

 Copyright 2009-2012, Yung-Yu Chen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SOLVCON 0.1.2 documentation

Python Style Guide

It’s important to have consistent coding style. Quoted from
http://google-styleguide.googlecode.com/svn/trunk/pyguide.html:

BE CONSISTENT.

If you’re editing code, take a few minutes to look at the code around you and
determine its style. If they use spaces around all their arithmetic
operators, you should too. If their comments have little boxes of hash marks
around them, make your comments have little boxes of hash marks around them
too.

The point of having style guidelines is to have a common vocabulary of coding
so people can concentrate on what you’re saying rather than on how you’re
saying it. We present global style rules here so people know the vocabulary,
but local style is also important. If code you add to a file looks
drastically different from the existing code around it, it throws readers out
of their rhythm when they go to read it. Avoid this.

Import

Only import modules, like:

modules in standard library.
import os
import sys

modules from third-party.
import numpy as np

modules in the current project.
import solvcon as sc
from solvcon import boundcond
from solvcon.io import vtkxml

explicit relative import is OK.
from . import solver
from . import case

Never import multiple modules in one line:

BAD BAD BAD
import os, sys

Never do implicit relative import:

BAD for modules in the current project.
import block

Py3k Compatibility

Enable three Py3k features by adding the following line at top of modules:

from __future__ import division, absolute_import, print_function

Indentation

Always use four white spaces for indentation. Never use a tab. Below is
an example vim mode line for Python:

vim: set ff=unix fenc=utf8 ft=python ai et sw=4 ts=4 tw=79:

It’s good to limit a line to 79 characters. Width of everyone’s monitor is
different.

File Format

	Always use UTF-8 as file encoding.

	Always use UNIX text file format [http://en.wikipedia.org/wiki/Newline];
NEVER use DOS text file format.

Blank Lines

Major sections are seperated by two blank lines, while lower-level entities use
one blank line.

import os
import sys

class Class(object):
 def __init__(self):
 pass

 def method(self):
 pass

class Another(object):
 def __init__(self):
 pass

Naming

Here show some naming rules that help readability. These conventions should be
followed as much as possible, so that the code can be self-explanary.

	Names of frequently used instances should use 3 letters:
	blk: Block.

	svr: MeshSolver.

	ank: MeshAnchor.

	cse: MeshCase.

	hok: MeshHook.

	The following two-character names have specific meaning:
	nd: node/vertex.

	fc: face.

	cl: cell.

	The following prefices often (but not always) have specific meanings:
	nxx: number of xx.

	mxx: maximum number of xx.

	Names of iterating counters start with i, j, k, e.g., icl
denoting a counter of cell.
	However standalone i, j, and k should NEVER be used to name a
variable. Variables must not use only one character.

	Trivial indexing variables can be named as it, jt, or kt.

For example,

	clnnd means number of nodes belonging to a cell.

	FCMND means maximum number of nodes for a face.

	icl means the first-level (iterating) index of cell.

	jfc means the second-level (iterating) index of face.

	Some special iterators used in code, such as:
	clfcs[icl,ifl]: get the ifl-th face in icl-th cell.

	fcnds[ifc,inf]: get the inf-th fact in ifc-th face.

Other than the above specific rules, here is a table for other stuff:

General Naming Convention

	Type
	Public
	Internal

	Packages
	lower_with_under
	

	Modules
	lower_with_under
	_lower_with_under

	Classes
	CapWords
	_CapWords

	Exceptions
	CapWords
	

	Functions
	lower_with_under()
	_lower_with_under()

	Global/Class Constants
	CAPS_WITH_UNDER
	_CAPS_WITH_UNDER

	Global/Class Variablesi
	lower_with_under
	_lower_with_under

	Instance Variables
	lower_with_under
	_lower_with_under (protected) or __lower_with_under (private)

	Method Names
	lower_with_under()
	_lower_with_under() (protected) or __lower_with_under() (private)

	Function/Method Parameters
	lower_with_under
	

	Local Variables
	lower_with_under
	

It’s good to name functions or methods as verb_objective(), such that code
can look like:

function.
make_some_action(from_this, with_that)
method.
some_object.do_something(with_some_information)

Copyright Notice

SOLVCON uses the BSD license [http://opensource.org/licenses/BSD-3-Clause].
When creating a new file, put the following text at the top of the file
(replace <Year> with the year you create the file and <Your Name> with
your name and maybe email):

-*- coding: UTF-8 -*-
#
Copyright (c) <Year>, <Your Name>
#
All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
#
- Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
- Neither the name of the SOLVCON nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The first line tells Python interpreter to use UTF-8, as required in File
Format. It is not part of the copyright notice.

 Copyright 2009-2012, Yung-Yu Chen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SOLVCON 0.1.2 documentation

Development Plan

Version 0.1.3

	Incorporate the two-dimensional aero-/hydro-acoustic solver.

Version 0.1.4

	Replicate all solvers that is derived from solvcon.kerpak.cuse to use the Cython-based solver system.

	Deprecate solvcon.kerpak.cese series solvers.

Version 0.1.5

	Move all solvers out of solvcon.kerpak to another structure.

	Discard the solvcon.kerpak namespace.

Version 0.1.6

	Use mpi4py instead of interfacing an arbitrary MPI library with ctypes.

	Replace ctypes with Cython for a more robust interface to C/C++ code.

Version 0.2

	Organize verification, documentation, and examples for the included solvers.

Further Items

	Consolidate the class hierarchy within solvcon.io sub-package.

	Improve the BC hierarchy to allow storing per-object data.

 Copyright 2009-2012, Yung-Yu Chen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SOLVCON 0.1.2 documentation

Verification

Set up Jenkins Slave

If you have extra machines, we welcome you to set them up as Jenkins slaves for
SOLVCON. The first step is to contact the site admin to set up a node for you.
Then, you can configure your machines as headless slaves. If you are running
Debian or Ubuntu, we’ve prepared the configuration scripts for you: (i) the
init script file /etc/init.d/jenkins-slave and (ii) the default file
/etc/default/jenkins-slave. To run the slave, you need at least two
prerequisite packages and they can be installed by:

apt-get install daemon sun-java6-jre

Before starting the slave, don’t forget to supply the settings
JENKINS_SLAVE_USER and JENKINS_SLAVE_HOME in the default file
/etc/default/jenkins-slave.

If everything runs correctly, then you can install the init script to rc.d:

update-rc.d jenkins-slave defaults

so that the slave can automatically run on machine start-up.

In the directory contrib/ of the source package of SOLVCON,
/etc/init.d/jenkins-slave, /etc/default/jenkins-slave, and a install
script that does the above actions are supplied for your convenience.

File Listings

/etc/init.d/jenkins-slave

#! /bin/sh
BEGIN INIT INFO
Provides: jenkins-slave
Required-Start: $remote_fs $syslog
Required-Stop: $remote_fs $syslog
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Example initscript
Description: This file should be used to construct scripts to be
placed in /etc/init.d.
END INIT INFO

Author: Yung-Yu Chen <yyc@solvcon.net>
#
Please remove the "Author" lines above and replace them
with your own name if you copy and modify this script.

Do NOT "set -e"

PATH should only include /usr/* if it runs after the mountnfs.sh script
PATH=/sbin:/usr/sbin:/bin:/usr/bin
DESC="jenkins slave"
NAME=jenkins-slave
#DAEMON=/usr/bin/java
DAEMON=/usr/bin/daemon
SCRIPTNAME=/etc/init.d/$NAME

WGET=wget
SU=/bin/su

Read configuration variable file if it is present
[-r /etc/default/$NAME] && . /etc/default/$NAME

Load the VERBOSE setting and other rcS variables
. /lib/init/vars.sh

Define LSB log_* functions.
Depend on lsb-base (>= 3.2-14) to ensure that this file is present
and status_of_proc is working.
. /lib/lsb/init-functions

PIDFILE=$JENKINS_SLAVE_ROOT/$NAME.pid
DAEMON_ARGS="--user=$JENKINS_SLAVE_USER --output=$JENKINS_SLAVE_LOG "\
"--pidfile=$PIDFILE --command=java -- "\
"-jar $JENKINS_SLAVE_JAR -jnlpUrl $JENKINS_NODE_URL"

#
Function that starts the daemon/service
#
do_start()
{
	# Return
	# 0 if daemon has been started
	# 1 if daemon was already running
	# 2 if daemon could not be started
	["$JENKINS_SLAVE_USER" = ""] && return 2
	["$JENKINS_SLAVE_HOME" = ""] && return 2
	start-stop-daemon --start --quiet --pidfile $PIDFILE --exec $DAEMON --test > /dev/null \
		|| return 1
	mkdir $JENKINS_SLAVE_ROOT > /dev/null 2>&1 || true
	chown $JENKINS_SLAVE_USER $JENKINS_SLAVE_ROOT
	cd $JENKINS_SLAVE_ROOT
	$SU -l $JENKINS_SLAVE_USER -c \
		"wget -q -r $JENKINS_SLAVE_JAR_URL -O $JENKINS_SLAVE_JAR"
	# XXX: a hack to make ssh key-auth work for solvcon.helper.get_username().
	export LOGNAME=$JENKINS_SLAVE_USER
	# XXX: similar to the hack, but not of real use.
	export USER=$JENKINS_SLAVE_USER
	export USERNAME=$JENKINS_SLAVE_USER
	export HOME=$JENKINS_SLAVE_HOME
	start-stop-daemon --start --pidfile $PIDFILE --exec $DAEMON \
		-- $DAEMON_ARGS || return 2
}

#
Function that stops the daemon/service
#
do_stop()
{
	# Return
	# 0 if daemon has been stopped
	# 1 if daemon was already stopped
	# 2 if daemon could not be stopped
	# other if a failure occurred
	#start-stop-daemon --stop --retry=TERM/30/KILL/5 --pidfile $PIDFILE --name $NAME
	RETVAL="$?"
	#["$RETVAL" = 2] && return 2
	# Wait for children to finish too if this is a daemon that forks
	# and if the daemon is only ever run from this initscript.
	# If the above conditions are not satisfied then add some other code
	# that waits for the process to drop all resources that could be
	# needed by services started subsequently. A last resort is to
	# sleep for some time.
	start-stop-daemon --stop --oknodo --retry=TERM/30/KILL/5 --exec $DAEMON
	["$?" = 2] && return 2
	RETVAL="$?"
	# Many daemons don't delete their pidfiles when they exit.
	rm -f $PIDFILE
	return "$RETVAL"
}

#
Function that sends a SIGHUP to the daemon/service
#
do_reload() {
	#
	# If the daemon can reload its configuration without
	# restarting (for example, when it is sent a SIGHUP),
	# then implement that here.
	#
	start-stop-daemon --stop --signal 1 --quiet --pidfile $PIDFILE --name $NAME
	return 0
}

case "$1" in
 start)
	["$VERBOSE" != no] && log_daemon_msg "Starting $DESC" "$NAME"
	do_start
	case "$?" in
		0|1) ["$VERBOSE" != no] && log_end_msg 0 ;;
		2) ["$VERBOSE" != no] && log_end_msg 1 ;;
	esac
	;;
 stop)
	["$VERBOSE" != no] && log_daemon_msg "Stopping $DESC" "$NAME"
	do_stop
	case "$?" in
		0|1) ["$VERBOSE" != no] && log_end_msg 0 ;;
		2) ["$VERBOSE" != no] && log_end_msg 1 ;;
	esac
	;;
 restart|force-reload)
	#
	# If the "reload" option is implemented then remove the
	# 'force-reload' alias
	#
	log_daemon_msg "Restarting $DESC" "$NAME"
	do_stop
	case "$?" in
	 0|1)
		do_start
		case "$?" in
			0) log_end_msg 0 ;;
			1) log_end_msg 1 ;; # Old process is still running
			*) log_end_msg 1 ;; # Failed to start
		esac
		;;
	 *)
	 	# Failed to stop
		log_end_msg 1
		;;
	esac
	;;
 *)
	#echo "Usage: $SCRIPTNAME {start|stop|restart|reload|force-reload}" >&2
	echo "Usage: $SCRIPTNAME {start|stop|status|restart|force-reload}" >&2
	exit 3
	;;
esac

:

/etc/default/jenkins-slave

defaults for jenkins continuous integration slave.

usually set to host name.
JENKINS_SLAVE_NAME=`hostname`

slave admin must provide this.
JENKINS_SLAVE_USER=

usually the home of the local slave user.
JENKINS_SLAVE_HOME=

slave admin must set which host to connect to.
JENKINS_MASTER_LOCATION="ci.solvcon.net"

slave admin doesn't need to change these.
JENKINS_SLAVE_ROOT="$JENKINS_SLAVE_HOME/$JENKINS_SLAVE_NAME"
JENKINS_SLAVE_JAR="$JENKINS_SLAVE_ROOT/slave.jar"
JENKINS_SLAVE_LOG="$JENKINS_SLAVE_ROOT/slave.log"
JENKINS_SLAVE_JAR_URL="http://$JENKINS_MASTER_LOCATION/jnlpJars/slave.jar"
JENKINS_NODE_URL="http://$JENKINS_MASTER_LOCATION/computer/$JENKINS_SLAVE_NAME/slave-agent.jnlp"

 Copyright 2009-2012, Yung-Yu Chen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	SOLVCON 0.1.2 documentation

All Previous Versions

Version 0.1.2

Release date: 2013/8/8 (GMT+0800)

This release starts to document by using Sphinx and renew the architecture of
problem solvers.

Changes:

	Remove the SCons METIS builder and the corresponding options of
--download, --extract, and --apply-patches. Now the SCOTCH
library is used for graph partitioning with its METIS interface.

	Move the counter of lines of code in SOLVCON from SCons into a standalone
script contrib/countloc, and thus remove the SCons option --count.

	Remove the SCons option --cmpvsn. For changing the command of C
compiler, you can now set the environment variable CC to whatever the
command you want.

	Renovate the documentation by using Sphinx. (#61 [https://bitbucket.org/solvcon/solvcon/issue/61/])

	Add a directory contrib/verify_scripts to collect scripts for running
verification examples.

	Design a new hierarchy for solvers by using Cython. (#59 [https://bitbucket.org/solvcon/solvcon/issue/59/], #60 [https://bitbucket.org/solvcon/solvcon/issue/60/], #62 [https://bitbucket.org/solvcon/solvcon/issue/62/], #63 [https://bitbucket.org/solvcon/solvcon/issue/63/],
#65 [https://bitbucket.org/solvcon/solvcon/issue/65/])
	A new series of “sach” (MeshSolver,
MeshAnchor, MeshCase, and MeshHook)
is built.

	The new sach is built upon pure Python Block and Cython Mesh.

Version 0.1.1

Release date: 2012/1/21 (GMT+0800)

This release adds a loader of Gmsh mesh format and fixes several bugs.

New features:

	Add a loader for Gmsh ASCII mesh format. The loader locates in
solvcon.io.gmsh and is implemented as pure Python code. scg mesh command
line tool can recognize the format. Issue #52 [https://bitbucket.org/solvcon/solvcon/issue/52/].

	Revamp the dependency building system to support older OSes and proxies that
need authentication. Issue #53 [https://bitbucket.org/solvcon/solvcon/issue/53/].

	Extract the SCons commands for building the Epydoc and Sphinx document from
SConstruct into standalone SCons tools. Two new tools are added in the
directory site_scons/site_tools/: sphinx.py and scons_epydoc.py.
Note that the SCons tool for Epydoc cannot be named as epydoc.py or the
name collides with the real epydoc package.

	Add Gmsh and Sphinx into ground/.

Bug-fix:

	Issue #49 [https://bitbucket.org/solvcon/solvcon/issue/49/]: “No Vtk for final time step”. Output timing of CollectHook and
MarchSave.

	Issue #54 [https://bitbucket.org/solvcon/solvcon/issue/54/]: “Shared objects are not found under Mac OS X”.

	Issue #38 [https://bitbucket.org/solvcon/solvcon/issue/38/]: “soln/dsoln shouldn’t be hard-coded”.

Version 0.1

Release date: 2011/8/11 (GMT-0500)

This release marks a milestone of SOLVCON. Future development of SOLVCON will
focus on production use. The planned directions include (i) the high-order
CESE method, (ii) improving the scalability by consolidating the
distributed-memory parallel code, (iii) expanding the capabilities of the
existing solver kernels, and (iv) incorporating more physical processes.

New features:

	Glue BCs are added. A pair of collocated BCs can now be glued together to
work as an internal interface. The glued BCs helps to dynamically turn on or
off the BC pair.

	solvcon.kerpak.cuse series solver kernels are changed to use OpenMP for
multi-threaded computing. They were using a thread pool built-in SOLVCON for
multi-threading. OpenMP makes multi-threaded functions more flexible in
argument specification.

	Add the soil/ directory for providing building helpers for GCC 4.6.1.
Note, the name gcc/ is deliberately avoided for the directory, because of
a bug in gcc itself (bug id 48306
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=48306).

	Add -j command line option for building dependencies in the ground/
directory and the soil/ directory. Note that ATLAS doesn’t work with
make -j N.

Bug-fix:

	METIS changes its download URL. Modify SConstruct accordingly.

Version 0.0.7

Release date: 2011/6/8 (GMT-0500)

In this release, SOLVCON starts to support using incenters or centroids for
constructing basic Conservation Elements (BCEs) of the CESE method. Incenters
are only enabled for simplex cells. Three more examples for supersonic flows
are also added, in addition to the new capability.

New features:

	A set of building scripts for dependencies of SOLVCON is written in
ground/ directory. A Python script ground/get download all depended
source tarballs according to ground/get.ini. A make file
ground/Makefile directs the building with targets binary, python,
vtk. The targets must be built in order. An environment variable
$SCPREFIX can be set when making to specify the destination of
installation. The make file will create a shell script
$SCROOT/bin/scvars.sh exporting necessary environment variables for using
the customized runtime. $SCROOT is the installing destination (i.e.,
$SCPREFIX), and is set in the shell script as well.

	The center of a cell can now be calculated as an incenter. Use of incenter
or centroid is controlled by a keyword parameter use_incenter of
solvcon.block.Block constructor. This enables incenter-based CESE
implementation that will benefit calculating Navier-Stokes equations in the
future.

	More examples for compressible inviscid flows are provided.

Bug-fix:

	A bug in coordiate transformation for wall boundary conditions of gas
dynamics module (solvcon.kerpak.gasdyn).

Version 0.0.6

Release date: 2011/5/18 (GMT-0500)

This release also contains enhancements planned for 0.0.5, which would not be
released. SOLVCON now partially supports GPU clusters. Solvers for linear
equations and the velocity-stress equations are updated. The CESE base solver
is enhanced.

New features:

	Support GPU clusters. SOLVCON can spread decomposed sub-domains to multiple
GPU devices distributed over network. Currently only one GPU device per
compute node is supported.

	A generic solver for linear equations: solvcon.kerpak.lincuse. The new
version of generic linear solver support both CPU and CPU.

	A velocity-stress equaltions solver is ported to be based on
solvcon.kerpak.lincuse. The new solver is packaged in
solvcon.kerpak.vslin.

	Add W-3 weighting scheme to solvcon.kerpak.cuse. W-3 scheme is more
stable than W-1 and W-2.

Bug-fixes:

	Consolidate reading quadrilateral mesh from CUBIT/Genesis/ExodusII; CUBIT
uses ‘SHELL4’ for 2D quad.

	Update SCons scripts for the upgrade of METIS to 4.0.3.

Version 0.0.4

Release date: 2011/3/2 (GMT-0500)

This release enhances pre-procesing and start-up for large-scale simulations.
Unstructured meshes using up to 66 million elements have been tested. Two new
options to solvcon.case.BlockCase are added: (i) io.domain.with_arrs
and (ii) io.domain.with_whole. They can be used to turn off arrays in the
Collective object. By omitting those arrays on head node, memory usage is
significantly reduced. Available memory on head node will not constrain the
size of simulations.

Bug-fix:

	Issue #12 [https://bitbucket.org/solvcon/solvcon/issue/12/]: Order of variables for in situ visualization can be specified to
make the order of data arrays of VTK poly data consistent among head and
slave nodes.

Version 0.0.3

Release date: 2011/2/20 (GMT-0500)

The biggest improvement of this release is the addition of CUDA-enabled, CESE
base solver kernel solvcon.kerpak.cuse. cuse module is designed to use
either pthread on CPU or CUDA on GPU. The release also contains many important
features for future development, including interface with CUBIT, incorporation
of SCOTCH-5.1 for partitioning large graph.

New features:

	Add ctypes-based netCDF reading support in solvcon.io.netcdf.

	Add Cubit/Genesis/ExodosII reader in solvcon.io.genesis.

	Add Cubit invocation helper for on-the-fly mesh generation.

	Add special CESE solver for linear equations in solvcon.kerpak.lincese.

	Add 2/3D anisotropic, linear elastic solver based on linear CESE solver in
solvcon.kerpak.elaslin.

	Add an example for custom solver in examples/misc/elas3d.

	Add a ctypes-based CUDA wrapper in solvcon.scuda.

	Add CUDA-enabled 2nd-order CESE solver.

	Add non-slip wall to solvcon.kerpak.gasdyn.

Changes:

	Refactor coupling of periodic boundary condition.

	Remove *ptr in solvcon.dependency.

	Correct sol() to soln() and dsol() to dsoln() in BC.

	Move sol()/soln() and dsol()/dsoln() from solvcon.boundcond to kerpak.

	Remove FORTRAN-related code.

	Create include/ directory and put header files in it.

	By default, use SCOTCH-5.1 instead of METIS-4. METIS-4 fails on allocating
memory for meshes with more than 35 million cells. If SCOTCH cannot be found
in system, fall back to METIS-4.

	Refactor solvcon.domain.Collective.split().

Version 0.0.2

	Bring in anisotropic elastic solver.

	Implement proof-of-concept in situ visualization.

	Refactor str_path property in solvcon.batch.Batch.

Version 0.0.1

	The first alpha release: a technology preview.

 Copyright 2009-2012, Yung-Yu Chen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	SOLVCON 0.1.2 documentation

 Python Module Index

 a |
 b |
 c |
 h |
 i |
 m |
 p |
 s

 			

 		
 a	

 	
 	
 solvcon.anchor	

 			

 		
 b	

 	
 	
 solvcon.block	

 			

 		
 c	

 	
 	
 solvcon.case	

 	
 	
 solvcon.conf	

 			

 		
 h	

 	
 	
 solvcon.helper	

 	
 	
 solvcon.hook	

 			

 		
 i	

 	[image: -]
 	
 solvcon.io	

 	
 	
 solvcon.io.gmsh	

 			

 		
 m	

 	
 	
 solvcon.mesh	

 			

 		
 p	

 	[image: -]
 	
 solvcon.parcel	

 	
 	
 solvcon.parcel.fake	

 	
 	
 solvcon.parcel.fake._algorithm	

 	
 	
 solvcon.parcel.fake.solver	

 	
 	
 solvcon.parcel.linear	

 	
 	
 solvcon.parcel.linear._algorithm	

 	
 	
 solvcon.parcel.linear.case	

 	
 	
 solvcon.parcel.linear.inout	

 	
 	
 solvcon.parcel.linear.planewave	

 	
 	
 solvcon.parcel.linear.solver	

 	
 	
 solvcon.parcel.linear.velstress	

 	
 	
 solvcon.parcel.linear.velstress.logic	

 	
 	
 solvcon.parcel.linear.velstress.material	

 			

 		
 s	

 	
 	
 solvcon	

 	
 	
 solvcon.solver	

 Copyright 2009-2012, Yung-Yu Chen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	SOLVCON 0.1.2 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

_

 	

 	__call__() (solvcon.helper.Cubit method)

 	

 	(solvcon.helper.Gmsh method)

 	(solvcon.helper.Information method)

 	__init__() (solvcon.helper.Gmsh method)

 	

 	(solvcon.io.gmsh.Gmsh method)

 	(solvcon.parcel.fake.solver.FakeSolver method)

 	__weakref__ (solvcon.conf.Solvcon attribute)

 	

 	(solvcon.helper.Cubit attribute)

 	(solvcon.helper.Gmsh attribute)

 	(solvcon.helper.Information attribute)

 	(solvcon.helper.Printer attribute)

 	_check_meta() (solvcon.io.gmsh.Gmsh static method)

 	_load_elements() (solvcon.io.gmsh.Gmsh class method)

 	_load_nodes() (solvcon.io.gmsh.Gmsh static method)

 	

 	_load_periodic() (solvcon.io.gmsh.Gmsh static method)

 	_load_physics() (solvcon.io.gmsh.Gmsh static method)

 	_MethodList (class in solvcon.solver)

 	_MMNAMES (solvcon.parcel.fake.solver.FakeSolver attribute)

 	

 	(solvcon.solver.MeshSolver attribute)

 	_msd (solvcon.mesh.Mesh attribute)

 	_parse_physics() (solvcon.io.gmsh.Gmsh method)

A

 	

 	aadj (solvcon.parcel.linear.inout.CflHook attribute)

 	aCFL (solvcon.parcel.linear.inout.CflHook attribute)

 	al (solvcon.parcel.linear.velstress.material.Material attribute)

 	altdir (solvcon.parcel.linear.inout.PMarchSave attribute)

 	

 	altsym (solvcon.parcel.linear.inout.PMarchSave attribute)

 	anames (solvcon.parcel.linear.inout.MarchSaveAnchor attribute)

 	

 	(solvcon.parcel.linear.inout.PMarchSave attribute)

 	Anchor (class in solvcon.anchor)

 	arrangements (in module solvcon.case)

 	

 	(solvcon.case.MeshCase attribute)

B

 	

 	bclist (solvcon.block.Block attribute)

 	be (solvcon.parcel.linear.velstress.material.Material attribute)

 	Block (class in solvcon.block)

 	bndfcs (solvcon.block.Block attribute)

 	

 	build_boundary() (solvcon.block.Block method)

 	build_ghost() (solvcon.block.Block method)

 	

 	(solvcon.mesh.Mesh method)

 	build_interior() (solvcon.block.Block method)

C

 	

 	calc_dsoln() (solvcon.parcel.fake._algorithm.FakeAlgorithm method)

 	calc_metric() (solvcon.mesh.Mesh method)

 	calc_soln() (solvcon.parcel.fake._algorithm.FakeAlgorithm method)

 	calccfl() (solvcon.parcel.fake.solver.FakeSolver method)

 	calcdsoln() (solvcon.parcel.fake.solver.FakeSolver method)

 	calcsoln() (solvcon.parcel.fake.solver.FakeSolver method)

 	CflAnchor (class in solvcon.parcel.linear.inout)

 	CflHook (class in solvcon.parcel.linear.inout)

 	cflmax (solvcon.parcel.linear.inout.CflHook attribute)

 	cflmin (solvcon.parcel.linear.inout.CflHook attribute)

 	clcnd (solvcon.block.Block attribute)

 	cleanup() (solvcon.case.MeshCase method)

 	

 	clfcs (solvcon.block.Block attribute)

 	clgrp (solvcon.block.Block attribute)

 	CLMFC (solvcon.block.Block attribute)

 	CLMND (solvcon.block.Block attribute)

 	clnds (solvcon.block.Block attribute)

 	cltpn (solvcon.block.Block attribute)

 	

 	(solvcon.io.gmsh.Gmsh attribute)

 	clvol (solvcon.block.Block attribute)

 	compressor (solvcon.parcel.linear.inout.MarchSaveAnchor attribute)

 	

 	(solvcon.parcel.linear.inout.PMarchSave attribute)

 	create_alg() (solvcon.parcel.fake.solver.FakeSolver method)

 	create_csr() (solvcon.mesh.Mesh method)

 	create_msh() (solvcon.block.Block method)

 	Cubit (class in solvcon.helper)

D

 	

 	der (solvcon.solver.MeshSolver attribute)

 	dsol (solvcon.parcel.fake.solver.FakeSolver attribute)

 	

 	dsoln (solvcon.parcel.fake.solver.FakeSolver attribute)

E

 	

 	eldim (solvcon.io.gmsh.Gmsh attribute)

 	elems (solvcon.io.gmsh.Gmsh attribute)

 	elemtype (in module solvcon.block)

 	elgeo (solvcon.io.gmsh.Gmsh attribute)

 	elgrp (solvcon.io.gmsh.Gmsh attribute)

 	

 	ELMAP (solvcon.io.gmsh.Gmsh attribute)

 	enable_applications() (solvcon.conf.Solvcon method)

 	env (in module solvcon.conf)

 	extract_faces_from_cells() (solvcon.mesh.Mesh method)

F

 	

 	fake_calc_dsoln (C function)

 	fake_calc_soln (C function)

 	FakeAlgorithm (class in solvcon.parcel.fake._algorithm)

 	FakeSolver (class in solvcon.parcel.fake.solver)

 	fcara (solvcon.block.Block attribute)

 	fccls (solvcon.block.Block attribute)

 	fccnd (solvcon.block.Block attribute)

 	FCMND (solvcon.block.Block attribute)

 	

 	fcnds (solvcon.block.Block attribute)

 	fcnml (solvcon.block.Block attribute)

 	fctpn (solvcon.block.Block attribute)

 	FillAnchor (class in solvcon.parcel.linear.inout)

 	find_scdata_mesh() (solvcon.conf.Solvcon method)

 	fpdtype (solvcon.parcel.linear.inout.MarchSaveAnchor attribute)

 	

 	(solvcon.parcel.linear.inout.PMarchSave attribute)

 	fullstop (solvcon.parcel.linear.inout.CflHook attribute)

G

 	

 	ga (solvcon.parcel.linear.velstress.material.Material attribute)

 	generate_apidoc() (in module solvcon.helper)

 	get_entry_point() (solvcon.conf.Solvcon method)

 	

 	Gmsh (class in solvcon.helper)

 	

 	(class in solvcon.io.gmsh)

 	GmshIO (class in solvcon.io.gmsh)

H

 	

 	haadj (solvcon.parcel.linear.inout.CflHook attribute)

 	hnCFL (solvcon.parcel.linear.inout.CflHook attribute)

 	

 	Hook (class in solvcon.hook)

 	hxCFL (solvcon.parcel.linear.inout.CflHook attribute)

I

 	

 	ibcdsoln() (solvcon.parcel.fake.solver.FakeSolver method)

 	ibcsoln() (solvcon.parcel.fake.solver.FakeSolver method)

 	Information (class in solvcon.helper)

 	

 	init() (solvcon.case.MeshCase method)

 	intels (solvcon.io.gmsh.Gmsh attribute)

 	iswin() (in module solvcon.helper)

L

 	

 	LinearAlgorithm (class in solvcon.parcel.linear)

 	LinearCase (class in solvcon.parcel.linear.case)

 	LinearPeriodic (class in solvcon.parcel.linear.solver)

 	

 	LinearSolver (class in solvcon.parcel.linear.solver)

 	linewidth (solvcon.parcel.linear.inout.ProgressHook attribute)

 	load() (solvcon.io.gmsh.Gmsh method)

 	

 	(solvcon.io.gmsh.GmshIO method)

M

 	

 	mappers (solvcon.parcel.linear.inout.FillAnchor attribute)

 	march() (solvcon.solver.MeshSolver method)

 	marchret (solvcon.solver.MeshSolver attribute)

 	MarchSaveAnchor (class in solvcon.parcel.linear.inout)

 	Material (class in solvcon.parcel.linear.velstress.material)

 	mCFL (solvcon.parcel.linear.inout.CflHook attribute)

 	Mesh (class in solvcon.mesh)

 	

 	MeshCase (class in solvcon.case)

 	MeshInfoHook (class in solvcon.parcel.linear.inout)

 	MeshSolver (class in solvcon.solver)

 	mltregy (in module solvcon.parcel.linear.velstress.material)

 	mtrldict (solvcon.parcel.linear.velstress.logic.VslinSolver attribute)

 	mtrllist (solvcon.parcel.linear.velstress.logic.VslinSolver attribute)

N

 	

 	name (solvcon.parcel.linear.inout.CflHook attribute)

 	nbound (solvcon.block.Block attribute), [1]

 	ncell (solvcon.block.Block attribute)

 	

 	(solvcon.io.gmsh.Gmsh attribute)

 	ndcrd (solvcon.block.Block attribute)

 	ndim (solvcon.block.Block attribute)

 	

 	(solvcon.io.gmsh.Gmsh attribute)

 	ndmap (solvcon.io.gmsh.Gmsh attribute)

 	neq (solvcon.parcel.fake.solver.FakeSolver attribute)

 	new_method_list() (solvcon.solver.MeshSolver static method)

 	

 	nface (solvcon.block.Block attribute)

 	ngstcell (solvcon.block.Block attribute)

 	ngstface (solvcon.block.Block attribute)

 	ngstnode (solvcon.block.Block attribute)

 	nnode (solvcon.block.Block attribute)

 	

 	(solvcon.io.gmsh.Gmsh attribute)

 	nodes (solvcon.io.gmsh.Gmsh attribute)

 	norm (solvcon.parcel.linear.planewave.PlaneWaveHook attribute)

O

 	

 	origstiff (solvcon.parcel.linear.velstress.material.Material attribute)

P

 	

 	partition() (solvcon.mesh.Mesh method)

 	perffn (solvcon.parcel.linear.inout.MeshInfoHook attribute)

 	periodics (solvcon.io.gmsh.Gmsh attribute)

 	pextmpl (solvcon.parcel.linear.inout.PMarchSave attribute)

 	physics (solvcon.io.gmsh.Gmsh attribute)

 	PlaneWaveAnchor (class in solvcon.parcel.linear.planewave)

 	PlaneWaveHook (class in solvcon.parcel.linear.planewave)

 	

 	planewaves (solvcon.parcel.linear.planewave.PlaneWaveAnchor attribute)

 	

 	(solvcon.parcel.linear.planewave.PlaneWaveHook attribute)

 	PlaneWaveSolution (class in solvcon.parcel.linear.planewave)

 	PMarchSave (class in solvcon.parcel.linear.inout)

 	Printer (class in solvcon.helper)

 	ProgressHook (class in solvcon.parcel.linear.inout)

 	psteps (solvcon.parcel.linear.inout.MarchSaveAnchor attribute)

R

 	

 	register_arrangement() (solvcon.case.MeshCase class method)

 	rho (solvcon.parcel.linear.velstress.material.Material attribute)

 	rsteps (solvcon.parcel.linear.inout.CflAnchor attribute)

 	

 	(solvcon.parcel.linear.inout.CflHook attribute)

 	

 	run() (solvcon.case.MeshCase method)

 	runanchors (solvcon.solver.MeshSolver attribute)

S

 	

 	sc_fake_algorithm_t (C type)

 	sc_fake_algorithm_t.dsol (C member)

 	sc_fake_algorithm_t.dsoln (C member)

 	sc_fake_algorithm_t.neq (C member)

 	sc_fake_algorithm_t.sol (C member)

 	sc_fake_algorithm_t.soln (C member)

 	sc_fake_algorithm_t.time (C member)

 	sc_fake_algorithm_t.time_increment (C member)

 	sc_linear_algorithm_t (C type)

 	sc_linear_algorithm_t.alpha (C member)

 	sc_linear_algorithm_t.amsca (C member)

 	sc_linear_algorithm_t.amvec (C member)

 	sc_linear_algorithm_t.cecnd (C member)

 	sc_linear_algorithm_t.cevol (C member)

 	sc_linear_algorithm_t.cfl (C member)

 	sc_linear_algorithm_t.cnbfac (C member)

 	sc_linear_algorithm_t.dsol (C member)

 	sc_linear_algorithm_t.dsoln (C member)

 	sc_linear_algorithm_t.gdlen (C member)

 	sc_linear_algorithm_t.grpda (C member)

 	sc_linear_algorithm_t.neq (C member)

 	sc_linear_algorithm_t.ngroup (C member)

 	sc_linear_algorithm_t.nsca (C member)

 	sc_linear_algorithm_t.nvec (C member)

 	sc_linear_algorithm_t.ocfl (C member)

 	sc_linear_algorithm_t.sfmrc (C member)

 	sc_linear_algorithm_t.sftfac (C member)

 	sc_linear_algorithm_t.sigma0 (C member)

 	sc_linear_algorithm_t.sol (C member)

 	sc_linear_algorithm_t.soln (C member)

 	sc_linear_algorithm_t.solt (C member)

 	sc_linear_algorithm_t.stm (C member)

 	sc_linear_algorithm_t.taumin (C member)

 	sc_linear_algorithm_t.tauscale (C member)

 	sc_linear_algorithm_t.taylor (C member)

 	sc_linear_algorithm_t.time (C member)

 	sc_linear_algorithm_t.time_increment (C member)

 	sc_linear_calc_cfl_2d (C function)

 	sc_linear_calc_cfl_3d (C function)

 	sc_linear_calc_dsoln_2d (C function)

 	sc_linear_calc_dsoln_3d (C function)

 	sc_linear_calc_jaco_2d (C function)

 	sc_linear_calc_jaco_3d (C function)

 	sc_linear_calc_planewave_2d (C function)

 	sc_linear_calc_planewave_3d (C function)

 	sc_linear_calc_soln_2d (C function)

 	sc_linear_calc_soln_3d (C function)

 	sc_linear_calc_solt_2d (C function)

 	sc_linear_calc_solt_3d (C function)

 	sc_linear_prepare_ce_2d (C function)

 	sc_linear_prepare_ce_3d (C function)

 	sc_linear_prepare_sf_2d (C function)

 	sc_linear_prepare_sf_3d (C function)

 	sc_mesh_build_csr (C function)

 	sc_mesh_build_ghost (C function)

 	sc_mesh_build_rcells (C function)

 	sc_mesh_calc_metric (C function)

 	sc_mesh_extract_faces_from_cells (C function)

 	sc_mesh_t (C type)

 	

 	sc_mesh_t.clcnd (C member)

 	sc_mesh_t.clfcs (C member)

 	sc_mesh_t.clgrp (C member)

 	sc_mesh_t.clnds (C member)

 	sc_mesh_t.cltpn (C member)

 	sc_mesh_t.clvol (C member)

 	sc_mesh_t.fcara (C member)

 	sc_mesh_t.fccls (C member)

 	sc_mesh_t.fccnd (C member)

 	sc_mesh_t.fcnds (C member)

 	sc_mesh_t.fcnml (C member)

 	sc_mesh_t.fctpn (C member)

 	sc_mesh_t.nbound (C member)

 	sc_mesh_t.ncell (C member)

 	sc_mesh_t.ndcrd (C member)

 	sc_mesh_t.ndim (C member)

 	sc_mesh_t.nface (C member)

 	sc_mesh_t.ngstcell (C member)

 	sc_mesh_t.ngstface (C member)

 	sc_mesh_t.ngstnode (C member)

 	sc_mesh_t.nnode (C member)

 	search_in_parents() (in module solvcon.helper)

 	setup_algorithm() (solvcon.parcel.fake._algorithm.FakeAlgorithm method)

 	setup_mesh() (solvcon.mesh.Mesh method)

 	show_bclist (solvcon.parcel.linear.inout.MeshInfoHook attribute)

 	sol (solvcon.parcel.fake.solver.FakeSolver attribute)

 	soln (solvcon.parcel.fake.solver.FakeSolver attribute)

 	Solvcon (class in solvcon.conf)

 	solvcon (module)

 	solvcon.anchor (module)

 	solvcon.block (module)

 	solvcon.case (module)

 	solvcon.conf (module)

 	solvcon.helper (module)

 	solvcon.hook (module)

 	solvcon.io (module)

 	solvcon.io.gmsh (module), [1]

 	solvcon.mesh (module)

 	solvcon.parcel.fake (module)

 	solvcon.parcel.fake._algorithm (module)

 	solvcon.parcel.fake.solver (module)

 	solvcon.parcel.linear (module)

 	solvcon.parcel.linear._algorithm (module)

 	solvcon.parcel.linear.case (module)

 	solvcon.parcel.linear.inout (module)

 	solvcon.parcel.linear.planewave (module)

 	solvcon.parcel.linear.solver (module)

 	solvcon.parcel.linear.velstress (module)

 	solvcon.parcel.linear.velstress.logic (module)

 	solvcon.parcel.linear.velstress.material (module)

 	solvcon.solver (module)

 	step_current (solvcon.solver.MeshSolver attribute)

 	step_global (solvcon.solver.MeshSolver attribute)

 	stiff (solvcon.parcel.linear.velstress.material.Material attribute)

 	stream (solvcon.io.gmsh.Gmsh attribute)

 	streams (solvcon.helper.Information attribute)

 	substep_current (solvcon.solver.MeshSolver attribute)

 	substep_run (solvcon.solver.MeshSolver attribute)

T

 	

 	time (solvcon.solver.MeshSolver attribute)

 	

 	time_increment (solvcon.solver.MeshSolver attribute)

U

 	

 	update() (solvcon.parcel.fake.solver.FakeSolver method)

 	use_incenter (solvcon.block.Block attribute)

 	

 	usnds (solvcon.io.gmsh.Gmsh attribute)

V

 	

 	VslinCase (class in solvcon.parcel.linear.velstress.logic)

 	VslinPWSolution (class in solvcon.parcel.linear.velstress.logic)

 	

 	VslinSolver (class in solvcon.parcel.linear.velstress.logic)

 	vtkfn_tmpl (solvcon.parcel.linear.inout.MarchSaveAnchor attribute)

 	

 	(solvcon.parcel.linear.inout.PMarchSave attribute)

 Copyright 2009-2012, Yung-Yu Chen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.1.2

 _images/inheritance-478bf5dad339ac6c867f9e6e6a4ae4366865a7ba.png
solvcon.hook.MeshHook

solvconparcel inear.nout. MeshinfoHook

_images/ustmesh_2d_sample.png
RERNAAAAS

_images/math/7de3b8b044035b79475a227cec5aabbf3ce4cf5e.png

_static/minus.png

_images/math/8122aa89ea6e80784c6513d22787ad86e36ad0cc.png

_images/inheritance-047d8f12eeac260491cca614aad6c1287c5eca80.png
solvcon.hook.MeshHook

solvcon parcel inear.inout PMarchsave

_images/math/1cb6684c5802c8cef4fc4817b62b498c96d0ad72.png

_static/block_2d_sample.png

_images/math/08f140fda88137f0dca6af51b4944e766eb85968.png

search.html

 Navigation

 		
 index

 		
 modules |

 		SOLVCON 0.1.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009-2012, Yung-Yu Chen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.1.2

_static/comment-close.png

_images/math/5d181dc91452c444c341ad879a82af91ce948cba.png

_static/up-pressed.png

_images/math/8de57ffe632e97239572dd7d58fd50e4e2201136.png

_images/inheritance-6540112fd6aad5df08a200f3b5654c7001e7b9e8.png
solvcon.anchor.Meshanchor

solvcon parcel inear.inout. MarchSaveAnchor

_images/inheritance-07f88192cf790f0d253d05d18c31d774f141ff66.png
solvcon.solverMeshSolver

4.(solvcon.parcel fake solver FakeSolver

_images/inheritance-d2c5fedcc495c0838fd1c3b4acfd8f4b190a4ad2.png
solvon.case_core Caselnfo ——s|

solvcon.case MeshCase

_images/math/8f1fb66751f2ee2626c75303485dba473c39a2f2.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_images/inheritance-6c6444bb62f0e4dd1c18f1bfe6c20d563745cf76.png
solvcon.anchor.Meshanchor

s

solvcon parcel inear.planewave PlaneWaveAnchor

_images/math/ddc905e03a5402b0a516e6547d32c8986949586c.png

_static/file.png

_static/elm_3d.png
> Ep By

_images/math/882f5337510fdd48cd30ef688759552965f94310.png
ou du
i W) 28 _
ot +L§ AY(u) % =

_images/math/8f7f5e808b3d5a7243e5cd31d80c52df1c250bdf.png
(tm

ianly

_images/math/7c1987f1638e1b511e73c9f6df0948c60290a6b3.png

_images/elm_2d.png
0

2

0

2

_images/math/d3c2586b96def1f6353cf935c81163f7dbf369de.png
+z

_images/math/705ba03f7720f99b233c1aeaf51a46e513890466.png

_images/inheritance-d07a1af8fae9de6864e06bfc9c0affb3831da106.png
solvcon.boundcond BC | ——»{

solvcon boundcond periodic ——s]

solvon parcel linear.solverLinearPeriodic

_images/math/174fadd07fd54c9afe288e96558c92e0c1da733a.png

_images/math/ea30271836d1c395e9be391e8677dc9e5826b9c3.png

_static/down-pressed.png

_images/inheritance-b825a31a96d3ee6fbe995646577f380922fe971b.png
solvcon.io.core Formatio

|| solvcon.io.gmsh Gmshio

_images/math/7f87e56f7b0671e2cf8f321de4549ab50e89db90.png

_images/elm_3d.png
> Ep By

_static/comment-bright.png

_images/math/6fb5311981c695b63b7748a783f6bbf6dd7dbcd7.png

_images/math/68329ac82ec96cdeca10040d53842224ad314684.png

_static/ustmesh_2d_sample.png
RERNAAAAS

_images/math/7485817bd1eefa27dea3094fa7a1e84fdd3f8ab1.png
(ttma,

i +1/2

_images/math/5d1e4485dc90c450e8c76826516c1b2ccb8fce16.png

_images/math/a1ffc0a012620941fe660cedabff822ce7162eca.png

_images/math/02e5f3a729ba328fcad3491f00c67f1d12b85caf.png

_images/inheritance-d4285fb0ca6fd7f93efbc708796a0b1706cafae3.png
solvcon.anchor.Meshanchor

L

solvconparcel finear.inout FilAnchor

_images/math/a9690102ffc4b54c0a25dd2b05176718545d2137.png
7= (u,)j" 7+ S
7" + - (e

_images/math/d7e28a8011280dc422c75bd813bbe6fc40c12a63.png

_images/math/b6cf65b1f2fbdf388e3daeff9b96b34d3399d777.png

_static/elm_2d.png
0

2

0

2

_images/math/b0d9437afae4120ff73738cf210b2ddc649cf3aa.png

_images/inheritance-1d476d28649f59c6216b414236ff02ca50f818bf.png
solvon.case_core Caselnfo ——s|

solvcon.case MeshCase | ——»f

solvcon parcel inear.case LinearCase

_images/math/fc4b2f8037d450f5919a73e35afeeb0149a0971c.png

_static/up.png

_images/math/4dcbe3dc23360ca9b93911cca8dfbecdd4531b00.png

_static/elm_1d.png

_static/plus.png

_images/math/a30653ff7efe20c0e6c83190e828ecce97ffc608.png

link.html

 Navigation

 		
 index

 		
 modules |

 		SOLVCON 0.1.2 documentation »

Related Links

This page collects information about software related to SOLVCON:

		Grid generator
		CUBIT [http://cubit.sandia.gov/]: an advanced mesh generator developed at Sandia [http://www.sandia.gov/] National
Laboratories. CUBIT has a very easy-to-use graphical interface and a
comprehensive and productive command line interface. CUBIT can generate
very large meshes and supports parallel mesh generation.

		FLUENT GAMBIT: a mesh generator widely used for CFD. GAMBIT is supported
by ANSYS [http://www.ansys.com/].

		Numerical library
		LAPACK [http://www.netlib.org/lapack/] (Linear Algebra PACKage): the de facto tool set for linear algebra.
LAPACK solves linear systems, eigen problems, and singular value problems.

		METIS [http://glaros.dtc.umn.edu/gkhome/views/metis]: a software library for graph partitioning, developed by George
Karypis [http://glaros.dtc.umn.edu/gkhome/] at University of Minnesota, Twin Cities.

		numpy [http://numpy.scipy.org/]: the de facto software package for N-dimensional array in Python [http://python.org/].
numpy is the core of scipy [http://www.scipy.org/], a comprehensive tool box for scientific
computing in Python.

		GPU computing
		CUDA [http://www.nvidia.com/object/cuda_home_new.html] (Compute Unified Device Architecture): CUDA is the most widely used
programming environment for General-Purpose Graphic Processing Unit (GPGPU)
computing. CUDA is developed and provided by NVIDIA [http://www.nvidia.com/]. It supports only
the hardware made by NVIDIA, in general.

		I/O and Visualization
		NetCDF [http://www.unidata.ucar.edu/software/netcdf/index.html]: a library for array data in scientific applications. The file
format has several versions, and the newer ones are based on HDF5 [http://www.hdfgroup.org/HDF5/]. The
Genesis/ExodusII mesh format is based on netCDF.

		ParaView [http://www.paraview.org/]: a powerful, open-source post-processing tool developed by
Kitware [http://www.kitware.com/], Inc. ParaView support parallel visualization, and provides a
comprehensive set of functionalities. ParaView is scriptable by using
Python [http://python.org/]. It is build upon VTK [http://www.vtk.org/].

		VTK [http://www.vtk.org/] (Visualization Toolkit): an open-source software library for computer
graphics and visualization. It is developed with C++ and provides a
Python [http://python.org/] interface. It is very easy to invoke VTK in Python. For example,
MayaVi [http://code.enthought.com/projects/mayavi/] is a Python package that uses VTK.

		Miscellaneous
		Epydoc [http://epydoc.sf.net/]: a tool for generating API documentation for Python
packages/modules. Epydoc supports multiple text markups, including
epytext [http://epydoc.sourceforge.net/epytextintro.html], reStructuredText [http://docutils.sourceforge.net/rst.html], and Javadoc [http://java.sun.com/j2se/javadoc/].

		MPI (Message-Passing Interface): the de facto standard for
distributed-memory parallel computing. Multiple implementations of the
standard exist, including MPICH [http://www.mcs.anl.gov/research/projects/mpich2/], MVAPICH [http://mvapich.cse.ohio-state.edu/], Open MPI [http://www.open-mpi.org/], etc.

		nose [http://somethingaboutorange.com/mrl/projects/nose/]: a comprehensive test runner for Python code. nose supports many
unit test discovery modes and makes running unit tests easy.

		SCons [http://www.scons.org/]: a software construction tool. SCons is fundamentally a huge set of
rule implemented in Python, and manipulated in Python. The control files
of SCons are nothing more than Python scripts that follow the special
context management imposed by SCons. SCons is a convenient replacement of
make [http://www.gnu.org/software/make/].

You may also want to check Other Software for Solving PDEs

 © Copyright 2009-2012, Yung-Yu Chen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.1.2

_images/math/009cf3eeb0ff3789cc057632947cadb200ab4663.png

_images/inheritance-364790ae6c9bce9620280013e25e441e08e46757.png
solvcon.hook.MeshHook

L

solvconparcel inearinout. ProgressHook

_images/elm_1d.png

concept.html

 Navigation

 		
 index

 		
 modules |

 		SOLVCON 0.1.2 documentation »

Concepts behind SOLVCON

SOLVCON [http://solvcon.net/] is a software framework. What does that mean?

A software framework dictates how you can write a software program. Since
SOLVCON [http://solvcon.net/] is targeting to simulation codes, it guides, or requires, programmers
to write the scientific codes in a specific way. Therefore, when using
SOLVCON [http://solvcon.net/], you can say that we lose some of our freedom in coding.

Note

SOLVCON [http://solvcon.net/] is designed for scientific codes that solve PDEs in a
time-accurate way, and uses the unstructured mesh. When I mention
scientific codes or simulation codes later, I mean the specific category
of codes.

Why doing so? It’s all about supportive tasks. There are always
supportive tasks to be done before one can actually make a scientific code to
work. For the solving methods with a grid, such as FDM [http://en.wikipedia.org/wiki/Finite_difference_method], FDTD [http://en.wikipedia.org/wiki/FDTD], FEM [http://en.wikipedia.org/wiki/Finite_element_method], FVM [http://en.wikipedia.org/wiki/Finite_volume_method], and CESE [http://www.grc.nasa.gov/WWW/microbus/], the spatial domain is discretized
into small pieces (the mesh), and various boundary conditions are applied to
the boundaries. In order to use the numerical method to solve the problem
described by the PDEs in the spatial domain, you have to:

		Construct and/or load the mesh into memory for your solver.

		Build the mapping between the boundaries to the boundary conditions.

		Initialize the computing domain with certain initial conditions, before you
can march the solver. Often, the conditions are not trivial.

		Post-process or store the results. Usually, you want to do it after or at
the time of solving.

		Parallelize the code using domain-decomposition technique. Not rarely, a
serial code is not fast enough, or just can’t model big problems.

Your precious time has to be spent in these merely supportive, but non-trivial
tasks, because you can not function the numerical algorithm before finishing
them. A lot of scientific codes have a significant portion, usually more than
half, and sometimes 80%, dedicated to these supportive functionalities.

The supportive coding is important, but not so important as the numerical
algorithms or the physical problems, for computational physicists. We
definitely want to concentrate our brain cells in the problems, rather than in
the off-topic coding. However, these supportive tasks not only occupy our
working hours, but also the way people implement them is usually inefficient
and hard to maintain. A lot of the implementations involve low-speed
intermediate temporary files and lengthy ad-hoc shell scripts. The non-ideal
practices make our codes to be less useful. For example, it’s easy to find
codes can run only on the environment on which they are developed, or the
post-processing portion takes longer time to finish than solving.

There should be a better way to finish the tedious tasks. SOLVCON [http://solvcon.net/] is designed
to free you from these headaches, for the specific category of scientific
codes. It saves you a lot of coding, and provides a lot of functionalities to
your code. Those are what we trade some of our freedom in coding for.

Stereotyped Simulation

I start the discussion of the concepts of SOLVCON [http://solvcon.net/] from what a simulation code
usually looks like.

A scientific code usually has a kernel, which implements the numerical method
as the solving algorithm. The solving kernel is the inner-most part of the
code, and it iterates over all the spatial elements (cells). To solve the PDEs
time-accurately, you have to time-march the solving kernel. There will be a
loop (called marching loop, time loop or temporal loop) that do the
time-marching.

The cell loop (or called space loop or spatial loop) and the marching loop are
the main structure of the simulation code. They are the most essential parts
to a simulation. All other things are designed to support these two loops.

Before one can loop over the cells, the structure of the discretized spatial
domain has to be know. At this point, the code need to load or create the mesh
that describe the domain, where the governing equations are applied to.

All PDEs need initial conditions and boundary conditions and then can be
solved. Usually the PDEs describe fields, so that the initial conditions are
nothing more then how we initialize the solution variables. The boundary
conditions are more complicated, since they have to be applied time to time in
the marching loop.

Mathematically, with enough conditions, the PDEs can be solved. Numerically,
the problem can be solved only after a right logic to execute the solver. With
all the defined loops, mesh, initial conditions, and boundary conditions, there
needs a wrapping logic to conduct the simulation in a right way. Also in the
wrapping logic, we tell the code when and how to do the post-processing, or the
preparation of the post-processing, so that the solution can be analyzed.

Hence, we know that the following components, if they can be decoupled, compose
the simulation code:

		Mesh. It defines the computing domain, including the connectivity and
geometry of fundamental elements.

		Solving kernel. It implements the cell loop, and is the essential part
of the solving numerical algorithm.

		Boundary-condition treatments. It couples with the solving kernel in a
certain way.

		Logics for initial conditions. It initialize the fields to be simulated.

		Conductor for the simulation. The marching loop should be implemented in
this part, and other supportive tasks such as input, output, and just-in-time
post-processing are connected to the marching loop.

Of course, if one wants to write parallel code, there are more things to do,
but the structure is pretty much the same as the described.

Model of SOLVCON

SOLVCON [http://solvcon.net/] abstracts the common structure that almost all the simulation codes
share, and makes it a framework. That is, instead of construct the must-have
skeleton by your own, you get it from SOLVCON [http://solvcon.net/]. All you need is to know where
to put what code in.

For example, there are more than 7,000 lines of well-organized code in
SOLVCON [http://solvcon.net/], and you need to write less than 2,000 lines of code for one- and
two-dimensional stress wave simulation and corresponding post-processing. Then
you enjoy automatically available features like parallelization, mixed-typed
unstructured mesh, and input and output components.

The essential part of SOLVCON [http://solvcon.net/] is the mesh definition, rather than anything
else such as the solving algorithm. It makes good sense for people having
experience in implementing their own solver. The most time-consuming part of
the implementation could be to figure out how to correctly manipulate the
unstructured connectivities for various types of fundamental elements. Only
after one has a right definition of the spatial domain, the numerical algorithm
can be correctly tested. SOLVCON [http://solvcon.net/] defines the connectivities for seven
different elements in two- and three-dimensional space, including triangles,
quadrilaterals, tetrahedra, prisms, pyramids, and hexahedra. All the
fundamental elements can be mixed up (in the same rank of spatial domain, that
is, you can not mix elements in two-dimensional space with others in
three-dimensional space). The mesh is defined in solvcon.block.Block.

For the real solving work, SOLVCON [http://solvcon.net/] puts the cell loop and the marching loop in
solvcon.solver and solvcon.case, respectively. The two
sub-packages contains definitions for one- and multi-dimensional solvers and
cases. The solvers care only for the cell loop, while the cases need to
connect the marching loop with various supportive tasks. The
boundary-condition treatments are invoked from the solvers, since they are
usually applied to the solution in each time-marching. All the boundary
conditions are subclasses of solvcon.boundcond.BC.

Because most of the simulation codes pursue the utmost performance, the cell
loop is usually implemented with FORTRAN or C/C++, and called from a wrapper
method in the Python solver classes.

The cases (defined in solvcon.case) are versatile, since they not only
define the marching loop, but also conduct how the simulation should run. A
case (instance) contains all the needed information about a simulation. These
information includes, for example, the mesh to be loaded, the solver to be
used, the boundary-condition mappings, the related parameters, and many others.

In order to assist the cases to manage various supportive of specific pre- and
post-processing tasks, a family of classes based on Hook are defined
also in solvcon.case. The programmer can implement optional features as
hooks, so that they can be plug-and-play to the simulation cases. For example,
there is solvcon.case.core.ProgressHook pre-defined, which reports the
progress of a simulation case to the terminal. There are also other
pre-defined hooks you can use out-of-box.

In order to perform a simulation and make the result analyzable, usually the
programmer need to implement two different customized hooks of
Initializer and Calculator, for initializing the solution
fields and post-processing, respectively.

Since the internal of the one- and multi-dimensional meshes are very different,
the solver, cases, and hooks class hierarchies contain both one- and
multi-dimensional versions. There are some shared features across the two
categories. Sometimes there are general hooks can be applied to both kinds of
cases, such as solvcon.case.core.ProgressHook. However, usually you
have to implement the logics for either categories, since they are so
different.

Hierarchical Structure

The following list roughly demonstrates the structure of SOLVCON [http://solvcon.net/]:

		solvcon – The top-level namespace.
		block – Definition of the multi-dimensional unstructured mesh.

		solver – Framework to implement cell loop for the solving kernel.

		case – Simulation case definition and the hook framework.

		boundcond – Framework for boundary-condition treatments.

		dependency – Helpers to load and use external dynamically linked
libraries.

		io – Input and output facilities.

		helper – Miscellaneous helper facilities.

		rpc – Inter-process communication and remote procedure call.

		domain – Domain-decomposition logic.

		conf – Configuration information for the runtime.

		gendata – Some internal generic data structure.

Below the top-level namespace, there are more than ten sub-packages or
sub-modules within the top package solvcon. The modules listed are
ordered by how much a programmer needs to know about them.

The programmer should be very familiar with the first 4 modules: block,
solver, case, and boundcond, because they define the main
structure of the simulation code. You should understand the APIs in these 4
modules, and then subclass the base classes.

The next 3 modules: dependency, io, and helper should also
be useful in your program, since they are the utility modules. Next, modules
rpc and domain are for parallelization through domain
decomposition. The rest modules conf and gendata are mostly used
internally and usually you don’t need to touch them.

How to Organize Your Simulation Code

SOLVCON [http://solvcon.net/] is a framework, not the solver itself. That is, SOLVCON [http://solvcon.net/] is a tool or
a library that helps you to create your solving code. Since SOLVCON [http://solvcon.net/] is
written (mostly) in the Python programming language, your code will be a Python
program as well.

Justification for Python

There are a lot of advantages to build the simulation code using a high-level
language such as Python. One big advantage of using Python as the “driver” of
your simulation is that, you don’t need to design an input file anymore!
Because of the scripting ability of Python, you don’t need to “compile” Python
code into the executable form before running. You run it on the fly. The
source itself can be fed to the Python runtime (VM) and runs. That is, the
simulation code itself acts as the input file. Whenever you want to change any
of the parameter, you can directly make the change and run. No compilation is
needed.

This is not to say you write everything in Python in the simulation code.
Python is a dynamic language, and by the nature it is way too slow for
implementing the numerical algorithm that hogs computing power. Python is just
unsuitable to “squeeze” all the performance out of the hardware. In order to
gain the wanted performance, the solving kernel usually has to be implement in
FORTRAN.

Note

If you don’t have experience or preference in any of the number
crunching languages, I would like to suggest you to start coding the
number-crunching part in FORTRAN 90/95. Not FORTRAN 77, C, nor C++,
although any language should be fine. For some people it sounds weird, but
FORTRAN provides really good facilities for implementing numerical
algorithms involving spatial meshes.

When you program in FORTRAN 90/95 with Python, it is good to stay away from
the fancy module things provided by the language. Usually you don’t need it
when used with Python. Avoiding them can save you from a lot of headaches.

If you want to write a code that makes use of special hardware such as GPUs,
FORTRAN might not be ideal. There are different considerations.

Usually a dynamic language such as Python is not considered to be used in
implementation of a scientific code, just because it’s not fast enough.
However, the languages suit number crunching are too primitive to write an
easy-to-use and flexible framework for general problems or physical models. For
the balance, to mix Python with another number crunching programming language,
usually FORTRAN, is a reasonable take, and the result turns out to be very
good. Codes developed using SOLVCON [http://solvcon.net/] are just as fast as their pure-FORTRAN
counterpart, and sometimes even faster.

Big Picture

There is an entry point for every program on the earth. The entry point for
the simulation code using SOLVCON [http://solvcon.net/] would be a driving script written in
Python. The driving script dictates how to run the simulation code, and is
responsible for all the setting-up and finalizing things.

A simple driving script would look like this:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

		from tolkien import case as casemd
@casemd.TolkienCase.register_simulation
def cstest(casename=None, meshname='middleearth_22k.neu.gz',
 th=0.0, ph=0.0, mtrlname='Dust', core_width=0.02, valin=1.0,
 time_increment=7.5e-7, nsteps=20, psteps=1, ssteps=10,
 **kw
):
 from solvcon.boundcond import bctregy
 bcmap = {
 'left': (bctregy.TolkienNonrefl, {}),
 'right': (bctregy.TolkienNonrefl, {}),
 }
 case = casemd.TolkienCase(basedir=basedir, basefn=casename,
 fn_neu=meshname, bcmap=bcmap, steps_run=nsteps,
 time_increment=time_increment,
 **kw
)
 case.execution.runhooks.append(casemd.Init(case,
 core_width=core_width, valin=valin, mtrlname=mtrlname, th=th, ph=ph,
))
 case.execution.runhooks.append(casemd.Calc(case, psteps=ssteps))
 return case
def main():
 import sys
 from solvcon.case.core import simulations
 simulations[sys.argv[1]](submit=False)
if __name__ == '__main__':
 main()

The function cstest() is called an arrangement in the code, because
it arranges a simulation case, and finally returns the case object which is set
up. The decorator in the second line will push the arrangement into a
dictionary-like registry singleton located at
solvcon.case.core.simulations.

Once an arrangement is registered, you can access it from the registry, as the
driver script does in line 26. There will be a generated wrapper which is
responsible for calling the relevant methods of the case to initialize and run
the case itself.

The driving script import a package named tolkien, and it is the place
which you should put your definition of simulation case classes and solver in.
It usually has a structure similar to:

		tolkien – Top-level namespace.
		solver – Define the solver for the physical model by subclassing a
base solver class in solvcon.solver.

		boundcond – Define the corresponding boundary conditions.

		case – Define the customized simulation case by subclassing a base
case class in solvcon.case.

Also, there is usually code written in FORTRAN to serve as the kernel of the
solver classes in the module tolkien.solver. You can use SCons [http://www.scons.org/] to
build the FORTRAN code into a dynamically-linked library and load it by the aid
of solvcon.dependency.

Pros and Cons

To organize a simulation code in this way gives us very high flexibility to
manage the simulation code. You can reuse all the code in your simulation
package (in the previous case, it’s tolkien). Since the driving script
is a Python script, you have full control over it to do anything. If you
really want a traditional input file, nothing stops you.

You can use the way how solvcon is structured to organize your
simulation code. It makes good sense since you are using SOLVCON [http://solvcon.net/]. However,
it’s also OK for you to take other way to organize your code. The only thing
you need to do is to make use of SOLVCON [http://solvcon.net/].

No matter how you use SOLVCON [http://solvcon.net/], it would save you from a lot of coding for the
features it provides.

Although SOLVCON [http://solvcon.net/] is convenient, it does impose limitation to how you can write
your code. The entry point has to be a Python script. Sometimes it’s
cumbersome, but usually there are workarounds. SOLVCON [http://solvcon.net/] would be a good tool,
but it’s not a free lunch.

 © Copyright 2009-2012, Yung-Yu Chen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.1.2

_images/inheritance-1f136f1752d57b29b7ffd56029c4dc2e25b54a42.png
solvcon.hook.MeshHook

solvcon parcel inear.planewave PlaneWaveHook

link_other.html

 Navigation

 		
 index

 		
 modules |

 		SOLVCON 0.1.2 documentation »

Other Software for Solving PDEs

There has been a number of great projects dedicated to solving general partial
differential equations. You may want to check them out when evaluating whether
SOLVCON is the right tool for you. This is not a comprehensive list of
existing software.

		FEniCS [http://www.fenicsproject.org/]/DOLFIN: a PDE-solving tool writtin in C++ with a Python [http://www.python.org/] interface,
developed at Simula [http://simula.no/] Research Laboratory. FEniCS/DOLFIN is based on finite
element method (FEM).

		FiPy [http://www.ctcms.nist.gov/fipy/]: a PDE solver written in Python [http://www.python.org/] at National Institute of Standards and
Technology (NIST [http://www.nist.gov/]). FiPy is based on projction method with finite volume
(FV) formulation.

		hpFEM/Hermes [http://hpfem.org/hermes/]: a C++ library for FEM and hp-FEM/hp-DG solvers with
hp-adaptive algorithms, developed at University of Nevada, Reno.

		hpGEM [http://wwwhome.math.utwente.nl/~hpgemdev/]: a C++ software framework for discontinuous Galerkin (DG) method
developed at University of Twente [http://www.math.utwente.nl/nacm/].

		Kestrel [http://pdf.aiaa.org/preview/2010/CDReadyMASM10_1812/PV2010_511.pdf]: a parallelized CFD solver for high-resolution solutions of gas
dynamics, and is constructed by using Python [http://www.python.org/].

		SfePy [http://sfepy.org/]: a FEM solver for PDEs, written in Python [http://www.python.org/] and C/FORTRAN. SfePy
stresses on mixing languages.

		Sundance [http://www.math.ttu.edu/~kelong/Sundance/html/index.html]: a FEM solver for PDEs, written in C++. Sundance uses Trilinos [http://trilinos.sandia.gov/]
for parallel computing.

Additionally, there are other more general tools of which the purpose is to
help building PDE solvers.

		Hypre [http://acts.nersc.gov/hypre/]: a library for solving large and sparse linear systems in parallel.

		PETSc [http://www.mcs.anl.gov/petsc/petsc-as/]: a tool set for constructing parallel PDE solvers. A large portion of
PETSc is for linear algebra. PETSc is developed at Argonne [http://www.anl.gov/] National
Laboratory.

		Trilinos [http://trilinos.sandia.gov/]: a collection of software packages for linear algebra, parallel
processing, I/O, and thus solving PDEs. Trilinos is developed at Sandia [http://www.sandia.gov/]
National Laboratories.

 © Copyright 2009-2012, Yung-Yu Chen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.1.2

_static/stack.png
driving scripts I

application
[elaslin J| vslin |
| euler I [gasdyn |
[lincese JI[lincuse |
calculation | CESETT) [CUSe)

employment

... (solver packages)

batch I i0 I visual_vtk I command I

| hook

| [anchor

!

execution __case | [__solver , _boundcond J
[domain || rpc I | scuda I | conf |
| block I | mpy J [mthread]| gendata |
connection || [dependency |
distributed shared
foundation mesh parallel parallel utility

user

machine

_static/SOLVCON.png

_images/math/f5047d1e0cbb50ec208923a22cd517c55100fa7b.png

_images/math/548c1da8c3773fea558cd4fec2cf592a8f4cf215.png

_images/math/42628ab5952aa041b3649af187c7f256cfb4fe9d.png
s

_images/inheritance-732dc0c1c67c585a9a0b0d8d887f4e62586974de.png
solvcon.anchor.Meshanchor

solvon parcel inear.inout.CRlanchor

_images/inheritance-e1d1ae5571ce78cc9eb4c4b97777568bc1d10567.png
solvcon.solverMeshSolver

4-(solvcon.parcel inear.solver.LinearSolver

_images/inheritance-b806a315569366e2f15f22a6d09f05163117ef82.png
solvcon.hook.MeshHook

solvon parcelfinear.inout.CHook

_images/math/d1bd6824699d5dd40f407a816176c561f4426b37.png

_images/block_2d_sample.png

pub_app.html

 Navigation

 		
 index

 		
 modules |

 		SOLVCON 0.1.2 documentation »

Published Applications of SOLVCON

		Po-Hsien Lin, Yung-Yu Chen, and S.-T. John Yu,
“Density-Velociy Equations with Bulk Modulus for Computational
Hydro-Acoustics”,
Theoretical and Computational Fluid Dynamics,
Accepted.
doi: 10.1007/s00162-013-0301-6 [http://dx.doi.org/10.1007/s00162-013-0301-6]

		Lixiang Yang, Yung-Yu Chen, and Sheng-Tao John Yu,
“Velocity-Stress Equations for Waves in Solids of Hexagonal Symmetry Solved
by the Space-Time CESE Method”,
ASME Journal of Vibration and Acoustics,
Volume 133, Issue 2, April 2011, Page 021001 (13 pages).
doi: 10.1115/1.4002170 [http://dx.doi.org/10.1115/1.4002170]

		Yung-Yu Chen, Lixiang Yang, and Sheng-Tao John Yu,
“Simulations of Waves in Elastic Solids of Cubic Symmetry by the
Conservation Element and Solution Element Method”,
Wave Motion,
Volume 48, Issue 1, Jan. 2011, Pages 39-61.
doi: 10.1016/j.wavemoti.2010.07.001 [http://dx.doi.org/10.1016/j.wavemoti.2010.07.001]

 © Copyright 2009-2012, Yung-Yu Chen.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.1.2

