

solrq - simple python Solr query helper

[image: Build Status] [https://travis-ci.org/swistakm/solrq] [image: Coverage Status] [https://coveralls.io/r/swistakm/solrq] [image: Documentation Status] [https://readthedocs.org/projects/solrq/?badge=latest]

solrq

solrq is a Python Solr query utility. It helps making query strings
for Solr and also helps with escaping reserved characters. solrq is
has no external dependencies and is compatibile with python2.6,
python2.7, python3.3, python3.4, python3.5, pypy and
pypy3. It might be compatibile with other python
releases/implentations but this has not been tested yet or is no longer
tested (e.g python3.2).

pip install solrq

And you’re ready to go!

usage

Everything in solrq is about Q() object. Drop into python repl
and just feed it with bunch of field and search terms to see how it
works:

>>> from solrq import Q
>>> # note: all terms in single Q object are implicitely joined with 'AND'
>>> query = Q(type="animal", species="dog")
>>> query
<Q: type:animal AND species:dog>

>>> # ohh, forgot about cats?
>>> query | Q(type="animal", species="cat")
<Q: (type:animal AND species:dog) OR (type:animal AND species:cat)>

>>># more a cat lover? Let's give them a boost boost
>>> Q(type="animal") & (Q(species="cat")^2 | Q(species="dog"))
<Q: type:animal AND ((species:cat^2) OR species:dog)>

But what to do with this Q? Simply pass it to your Solr library of
choice, like pysolr [https://github.com/toastdriven/pysolr] or
mysolr [https://github.com/RedTuna/mysolr]. Most of python Solr
libraries expect simple string as a query parameter and do not bother
with escaping of reserved characters so you must take care of that by
yourself. This is why solrq integrates so easily. Here is an example
how you can use it with
pysolr [https://github.com/toastdriven/pysolr]:

from solrq import Q
import pysolr

solr = Solr("<your solr url>")

simply using Q object
solr.search(Q(text="easy as f***"))

or explicitely making it string
solr.search(str(Q(text="easy as f***")))

quick reference

Full reference can be found in API reference documentation
page [http://solrq.readthedocs.org/en/latest/api-reference.html] but
here is a short reference.

boosting queries

Use python ^ operator:

>>> Q(text='cat') ^ 2
<Q: text:cat^2>

AND queries

Use python & operator:

>>> Q(text='cat') & Q(text='dog')
<Q: text:cat AND text:dog>

OR queries

Use python | operator:

>>> Q(text='cat') | Q(text='dog')
<Q: text:cat OR text:dog>

NOT queries

Use python ~ operator:

>>> ~ Q(text='cat')
<Q: !text:cat>

ranges

Use solrq.Range wrapper:

>>> from solrq import Range
>>> Q(age=Range(18, 25))
<Q: age:[18 TO 25]>

proximity searches

Use solrq.Proximity wrapper:

>>> from solrq import Proximity
>>> Q(age=Proximity("cat dogs", 5))
<Q: age:"cat\ dogs"~5>

safe strings

All raw string values are treated as unsafe by default and will be
escaped to ensure that final query string will not be broken by some
rougue search value. This of course can be disabled if you know what
you’re doing using Value wrapper:

>>> from solrq import Q, Value
>>> Q(type='foo bar[]')
<Q: type:foo\ bar\[\]>
>>> Q(type=Value('foo bar[]', safe=True))
<Q: type:foo bar[]>

timedeltas, datetimes

Simply as:

>>> from datetime import datetime, timedelta
>>> Q(date=datetime(1970, 1, 1))
<Q: date:"1970-01-01T00:00:00Z">
>>> # note that timedeltas has any sense mostly with ranges
>>> Q(delta=timedelta(days=1))
<Q: delta:NOW+1DAYS+0SECONDS+0MILLISECONDS>

field wildcard

If you need to use wildcards in field names just use dict and unpack it
inside of Q() instead of using keyword arguments:

>>> Q(**{"*_t": "text_to_search"})
<Q: *_t:text_to_search>

contributing

Any contribution is welcome. Issues, suggestions, pull requests -
whatever. There are no strict contribution guidelines beyond PEP-8 and
sanity. Code style is checked with flakes8 and any PR that has failed
build will not be merged.

One thing: if you submit a PR please do not rebase it later unless you
are asked for that explicitely. Reviewing pull requests that suddenly
had their history rewritten just drives me crazy.

testing

Tests are run using tox. Simply install it and run:

pip install tox
tox

And that’s all.

Detailed documentation

	API reference

Indices and tables

	Index

	Module Index

	Search Page

API reference

	
class solrq.Proximity(raw, distance, safe=False)

	Bases: solrq.Value

Wrapper around proximity value searches.

	Parameters:	
	raw (str) – string of words for proximity search.

	distance (int) – distance between words.

Examples

>>> Proximity('foo bar', 4)
<Proximity: "foo\ bar"~4>
>>> Proximity('foo bar', 4, True)
<Proximity: "foo bar"~4>

Note

Proximity will in fact accept any type as a raw value that has
__str__ method defined so it is developer’s responsibility to
make sure that raw has a reasonable value.

	
class solrq.Q(children=None, op=<bound method type.and_ of <class 'solrq.QOperator'>>, **kwargs)

	Bases: object

Class for handling Solr queries in a semantic way.

	Parameters:	
	children (iterable) – iterable of children Q objects. Note: can’t
be used with kwargs.

	op (callable) – operator to join query parts.

	kwargs (dict) – list of query parts. Note: can’t be used with children.

Examples

>>> Q(foo="bar")
<Q: foo:bar>
>>> str(Q(foo="bar"))
'foo:bar'

>>> Q(text="Skyrim")
<Q: text:Skyrim>

>>> Q(language="EN", text="Skyrim")
<Q: ...>

>>> ~(Q(language="EN", text="cat") | Q(language="PL", text="dog"))
<Q: !((... AND ...) OR (... AND ...))>

Note

it is possible to specify query params that are not valid python
argument names using dictionary unpacking e.g.:

>>> Q(**{"*_t": "text_to_search"})
<Q: *_t:text_to_search>

	
compile(extra_parenthesis=False)

	Compile Q object into query string.

	Parameters:	extra_parenthesis (bool) – add extra parenthesis to children query.

	Returns:	compiled query string.

	Return type:	str

Examples

>>> (Q(type="animal") & Q(name="cat")).compile()
'type:animal AND name:cat'
>>> (Q(type="animal") & Q(name="cat")).compile(True)
'(type:animal AND name:cat)'

	
class solrq.QOperator

	Bases: object

Simply a namespace for handling Q object operator routines.

	
classmethod and_(qs_list)

	Perform ‘and’ operator routine.

	Parameters:	qs_list (iterable) – iterable of “compiled” query strings.

	Returns:	query strings joined with Solr AND operator as single
string.

	Return type:	str

	
classmethod boost(qs_list, factor)

	Perform ‘boost’ operator routine.

	Parameters:	
	qs_list (iterable) – single element list with compiled query string

	factor (float or int) – boost factor

	Returns:	compiled query string followed with ‘~’ and boost factor

	Return type:	str

Note

this operator routine is not intended to be directly used as
Q object argument but rather as a component for actual
operator e.g:

>>> from functools import partial
>>> Q(children=[Q(a='b')], op=partial(QOperator.boost, factor=2))
<Q: a:b^2>

	
classmethod not_(qs_list)

	Perform ‘not’ operator routine.

	Parameters:	qs_list (iterable) – single item iterable of “compiled” query
strings.

	Returns:	
	string with containing Solr ! operator followed by query.

	string.

	Return type:	str

Note

qs_list must be a list despite ‘not’ operator accepts only
single query string here, to avoid more complexity in Q
objects initialization.

	
classmethod or_(qs_list)

	Perform ‘or’ operator routine.

	Parameters:	qs_list (iterable) – iterable of “compiled” query strings.

	Returns:	query strings joined with Solr OR operator as single string.

	Return type:	str

	
class solrq.Range(from_, to, safe=None, boundaries='inclusive')

	Bases: solrq.Value

Wrapper around range values.

Wraps two values with Solr’s [<from> TO <to>] syntax (defaults to
inclusive boundaries) with respect to restricted character escaping.

Wraps two values with Solr’s [<from> TO <to>] (defaults to inclusive
boundaries) syntax with respect to restricted character escaping.

	Parameters:	
	from (object) – start of range, same as parameter raw in
Value.

	to (object) – end of range, same as parameter raw in Value.

	boundaries (str) – type of boundaries for the range. Defaults to
'inclusive'. Allowed values are:

	
	inclusive, ii, or []: translates to

	[<from> TO <to>]

	
	exclusive, ee, or {}: translates to

	{<from> TO <to>}

	ei, or {]: translates to {<from> TO <to>]

	ie, or [}: translates to [<from> TO <to>}

Examples

Simpliest range that matches all documents with some field set:

>>> Range('*', '*', safe=True)
<Range: [* TO *]>

Note that there are shortucts already provided:

>>> Range(ANY, ANY)
<Range: [* TO *]>
>>> SET
<Range: [* TO *]>

Other data types:

>>> Range(0, 20)
<Range: [0 TO 20]>
>>> Range(timedelta(days=2), timedelta())
<Range: [NOW+2DAYS+0SECONDS+0MILLISECONDS TO NOW]>

To use exclusive or mixed boundaries use boundaries argument:

>>> Range(0, 20, boundaries='exclusive')
<Range: {0 TO 20}>
>>> Range(0, 20, boundaries='ei')
<Range: {0 TO 20]>
>>> Range(0, 20, boundaries='[}')
<Range: [0 TO 20}>

Note

We could treat any iterables always as ranges when initializing
Q objects but “explicit is better than implicit” and also
this would require to handle value representation there and we don’t
want to do that.

	
BOUNDARY_BRACKETS = {'exclusive': '{}', 'ei': '{]', 'inclusive': '[]', 'ee': '{}', '{]': '{]', '[]': '[]', 'ii': '[]', '[}': '[}', '{}': '{}', 'ie': '[}'}

	

	
class solrq.Value(raw, safe=False)

	Bases: object

Wrapper around query values.

It allows easy handling of character escaping and further query value
translations.

By default it escapes all restricted characters so query can’t be easily
broken with unsafe strings. Also it recognizes timedelta and
datetime objects so they can be represented in format that Solr can
recognize (useful with ranges, see: Range)

	Parameters:	
	raw (object) – raw value object. Must be string, datetime, timedelta
or have __str__ method defined.

	safe (bool) – set to True to turn off character escaping.

Examples

In most cases you will pass string:

>>> Value("foo bar")
<Value: foo\ bar>

But it can be anything that has __str__ method:

>>> Value(1)
<Value: 1>
>>> Value(timedelta(days=1))
<Value: NOW+1DAYS+0SECONDS+0MILLISECONDS>
>>> Value(Value("foo"))
<Value: foo>

To get final query string just make it str:

>>> str(Value("foo bar"))
'foo\\ bar'

Note that raw strings are not safe by default:

>>> Value('foo [] bar')
<Value: foo\ \[\]\ bar>
>>> Value("foo [] bar", safe=True)
<Value: foo [] bar>

	
ESCAPE_RE = <_sre.SRE_Pattern object>

	

	
TIMEDELTA_FORMAT = 'NOW{days:+d}DAYS{secs:+d}SECONDS{mills:+d}MILLISECONDS'

	

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 solrq	

Index

 A
 | B
 | C
 | E
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | V

A

 	
 	and_() (solrq.QOperator class method)

B

 	
 	boost() (solrq.QOperator class method)

 	
 	BOUNDARY_BRACKETS (solrq.Range attribute)

C

 	
 	compile() (solrq.Q method)

E

 	
 	ESCAPE_RE (solrq.Value attribute)

N

 	
 	not_() (solrq.QOperator class method)

O

 	
 	or_() (solrq.QOperator class method)

P

 	
 	Proximity (class in solrq)

Q

 	
 	Q (class in solrq)

 	
 	QOperator (class in solrq)

R

 	
 	Range (class in solrq)

S

 	
 	solrq (module)

T

 	
 	TIMEDELTA_FORMAT (solrq.Value attribute)

V

 	
 	Value (class in solrq)

 [image: Build Status] [https://travis-ci.org/swistakm/solrq] [image: Coverage Status] [https://coveralls.io/r/swistakm/solrq] [image: Documentation Status] [https://readthedocs.org/projects/solrq/?badge=latest]

solrq

solrq is a Python Solr query utility. It helps making query strings
for Solr and also helps with escaping reserved characters. solrq is
has no external dependencies and is compatibile with python2.6,
python2.7, python3.3, python3.4, python3.5, pypy and
pypy3. It might be compatibile with other python
releases/implentations but this has not been tested yet or is no longer
tested (e.g python3.2).

pip install solrq

And you’re ready to go!

usage

Everything in solrq is about Q() object. Drop into python repl
and just feed it with bunch of field and search terms to see how it
works:

>>> from solrq import Q
>>> # note: all terms in single Q object are implicitely joined with 'AND'
>>> query = Q(type="animal", species="dog")
>>> query
<Q: type:animal AND species:dog>

>>> # ohh, forgot about cats?
>>> query | Q(type="animal", species="cat")
<Q: (type:animal AND species:dog) OR (type:animal AND species:cat)>

>>># more a cat lover? Let's give them a boost boost
>>> Q(type="animal") & (Q(species="cat")^2 | Q(species="dog"))
<Q: type:animal AND ((species:cat^2) OR species:dog)>

But what to do with this Q? Simply pass it to your Solr library of
choice, like pysolr [https://github.com/toastdriven/pysolr] or
mysolr [https://github.com/RedTuna/mysolr]. Most of python Solr
libraries expect simple string as a query parameter and do not bother
with escaping of reserved characters so you must take care of that by
yourself. This is why solrq integrates so easily. Here is an example
how you can use it with
pysolr [https://github.com/toastdriven/pysolr]:

from solrq import Q
import pysolr

solr = Solr("<your solr url>")

simply using Q object
solr.search(Q(text="easy as f***"))

or explicitely making it string
solr.search(str(Q(text="easy as f***")))

quick reference

Full reference can be found in API reference documentation
page [http://solrq.readthedocs.org/en/latest/api-reference.html] but
here is a short reference.

boosting queries

Use python ^ operator:

>>> Q(text='cat') ^ 2
<Q: text:cat^2>

AND queries

Use python & operator:

>>> Q(text='cat') & Q(text='dog')
<Q: text:cat AND text:dog>

OR queries

Use python | operator:

>>> Q(text='cat') | Q(text='dog')
<Q: text:cat OR text:dog>

NOT queries

Use python ~ operator:

>>> ~ Q(text='cat')
<Q: !text:cat>

ranges

Use solrq.Range wrapper:

>>> from solrq import Range
>>> Q(age=Range(18, 25))
<Q: age:[18 TO 25]>

proximity searches

Use solrq.Proximity wrapper:

>>> from solrq import Proximity
>>> Q(age=Proximity("cat dogs", 5))
<Q: age:"cat\ dogs"~5>

safe strings

All raw string values are treated as unsafe by default and will be
escaped to ensure that final query string will not be broken by some
rougue search value. This of course can be disabled if you know what
you’re doing using Value wrapper:

>>> from solrq import Q, Value
>>> Q(type='foo bar[]')
<Q: type:foo\ bar\[\]>
>>> Q(type=Value('foo bar[]', safe=True))
<Q: type:foo bar[]>

timedeltas, datetimes

Simply as:

>>> from datetime import datetime, timedelta
>>> Q(date=datetime(1970, 1, 1))
<Q: date:"1970-01-01T00:00:00Z">
>>> # note that timedeltas has any sense mostly with ranges
>>> Q(delta=timedelta(days=1))
<Q: delta:NOW+1DAYS+0SECONDS+0MILLISECONDS>

field wildcard

If you need to use wildcards in field names just use dict and unpack it
inside of Q() instead of using keyword arguments:

>>> Q(**{"*_t": "text_to_search"})
<Q: *_t:text_to_search>

contributing

Any contribution is welcome. Issues, suggestions, pull requests -
whatever. There are no strict contribution guidelines beyond PEP-8 and
sanity. Code style is checked with flakes8 and any PR that has failed
build will not be merged.

One thing: if you submit a PR please do not rebase it later unless you
are asked for that explicitely. Reviewing pull requests that suddenly
had their history rewritten just drives me crazy.

testing

Tests are run using tox. Simply install it and run:

pip install tox
tox

And that’s all.

 nav.xhtml

 Table of Contents

 		solrq - simple python Solr query helper

 		API reference

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

