
Solidity Documentation
Release 0.2.0

Ethereum

April 18, 2016

Contents

1 Useful links 3

2 Language Documentation 5

3 Contents 7
3.1 Introduction to Smart Contracts . 7
3.2 Installing Solidity . 12
3.3 Solidity by Example . 15
3.4 Solidity in Depth . 23
3.5 Style Guide . 62
3.6 Common Patterns . 72
3.7 Frequently Asked Questions . 75

i

ii

Solidity Documentation, Release 0.2.0

Solidity is a high-level language whose syntax is similar to that of JavaScript and it is designed to compile to code
for the Ethereum Virtual Machine. As you will see, it is quite easy to create contracts for voting, crowdfunding, blind
auctions, multi-signature wallets and more.

Note: The best way to try out Solidity right now is using the Browser-Based Compiler (it can take a while to load,
please be patient).

Contents 1

https://chriseth.github.io/browser-solidity/

Solidity Documentation, Release 0.2.0

2 Contents

CHAPTER 1

Useful links

• Ethereum

• Browser-Based Compiler

• Changelog

• Story Backlog

• Source Code

• Ethereum Stackexchange

• Gitter Chat

3

https://ethereum.org
https://chriseth.github.io/browser-solidity/
https://github.com/ethereum/wiki/wiki/Solidity-Changelog
https://www.pivotaltracker.com/n/projects/1189488
https://github.com/ethereum/solidity/
https://ethereum.stackexchange.com/
https://gitter.im/ethereum/solidity/

Solidity Documentation, Release 0.2.0

4 Chapter 1. Useful links

CHAPTER 2

Language Documentation

On the next pages, we will first see a simple smart contract written in Solidity followed by the basics about blockchains
and the Ethereum Virtual Machine.

The next section will explain several features of Solidity by giving useful example contracts Remember that you can
always try out the contracts in your browser!

The last and most extensive section will cover all aspects of Solidity in depth.

If you still have questions, you can try searching or asking on the Ethereum Stackexchange site, or come to our gitter
channel. Ideas for improving Solidity or this documentation are always welcome!

See also Russian version ().

5

https://chriseth.github.io/browser-solidity
https://ethereum.stackexchange.com/
https://gitter.im/ethereum/solidity/
https://gitter.im/ethereum/solidity/
https://github.com/ethereum/wiki/wiki/%D0%A0%D1%83%D0%BA%D0%BE%D0%B2%D0%BE%D0%B4%D1%81%D1%82%D0%B2%D0%BE-%D0%BF%D0%BE-Solidity

Solidity Documentation, Release 0.2.0

6 Chapter 2. Language Documentation

CHAPTER 3

Contents

Keyword Index, Search Page

3.1 Introduction to Smart Contracts

3.1.1 A Simple Smart Contract

Let us begin with the most basic example. It is fine if you do not understand everything right now, we will go into
more detail later.

Storage

contract SimpleStorage {
uint storedData;
function set(uint x) {

storedData = x;
}
function get() constant returns (uint retVal) {

return storedData;
}

}

A contract in the sense of Solidity is a collection of code (its functions) and data (its state) that resides at a specific
address on the Ethereum blockchain. The line uint storedData; declares a state variable called storedData of type uint
(unsigned integer of 256 bits). You can think of it as a single slot in a database that can be queried and altered by
calling functions of the code that manages the database. In the case of Ethereum, this is always the owning contract.
And in this case, the functions set and get can be used to modify or retrieve the value of the variable.

To access a state variable, you do not need the prefix this. as is common in other languages.

This contract does not yet do much apart from (due to the infrastructure built by Ethereum) allowing anyone to store
a single number that is accessible by anyone in the world without (feasible) a way to prevent you from publishing this
number. Of course, anyone could just call set again with a different value and overwrite your number, but the number
will still be stored in the history of the blockchain. Later, we will see how you can impose access restrictions so that
only you can alter the number.

7

Solidity Documentation, Release 0.2.0

Subcurrency Example

The following contract will implement the simplest form of a cryptocurrency. It is possible to generate coins out
of thin air, but only the person that created the contract will be able to do that (it is trivial to implement a different
issuance scheme). Furthermore, anyone can send coins to each other without any need for registering with username
and password - all you need is an Ethereum keypair.

Note: This is not a nice example for browser-solidity. If you use browser-solidity to try this example, you cannot
change the address where you call functions from. So you will always be the “minter”, you can mint coins and send
them somewhere, but you cannot impersonate someone else. This might change in the future.

contract Coin {
// The keyword "public" makes those variables
// readable from outside.
address public minter;
mapping (address => uint) public balances;

// Events allow light clients to react on
// changes efficiently.
event Sent(address from, address to, uint amount);

// This is the constructor whose code is
// run only when the contract is created.
function Coin() {

minter = msg.sender;
}
function mint(address receiver, uint amount) {

if (msg.sender != minter) return;
balances[receiver] += amount;

}
function send(address receiver, uint amount) {

if (balances[msg.sender] < amount) return;
balances[msg.sender] -= amount;
balances[receiver] += amount;
Sent(msg.sender, receiver, amount);

}
}

This contract introduces some new concepts, let us go through them one by one.

The line address public minter; declares a state variable of type address that is publicly accessible. The address type is
a 160 bit value that does not allow any arithmetic operations. It is suitable for storing addresses of contracts or keypairs
belonging to external persons. The keyword public automatically generates a function that allows you to access the
current value of the state variable. Without this keyword, other contracts have no way to access the variable and only
the code of this contract can write to it. The function will look something like this:

function minter() returns (address) { return minter; }

Of course, adding a function exactly like that will not work because we would have a function and a state variable with
the same name, but hopefully, you get the idea - the compiler figures that out for you.

The next line, mapping (address => uint) public balances; also creates a public state variable, but it is a more complex
datatype. The type maps addresses to unsigned integers. Mappings can be seen as hashtables which are virtually
initialized such that every possible key exists and is mapped to a value whose byte-representation is all zeros. This
analogy does not go too far, though, as it is neither possible to obtain a list of all keys of a mapping, nor a list of all
values. So either keep in mind (or better, keep a list or use a more advanced data type) what you added to the mapping

8 Chapter 3. Contents

https://chriseth.github.io/browser-solidity

Solidity Documentation, Release 0.2.0

or use it in a context where this is not needed, like this one. The accessor function created by the public keyword is a
bit more complex in this case. It roughly looks like the following:

function balances(address _account) returns (uint balance) {
return balances[_account];

}

As you see, you can use this function to easily query the balance of a single account.

The line event Sent(address from, address to, uint value); declares a so-called “event” which is fired in the last line of
the function send. User interfaces (as well as server appliances of course) can listen for those events being fired on the
blockchain without much cost. As soon as it is fired, the listener will also receive the arguments from, to and value,
which makes it easy to track transactions. In order to listen for this event, you would use

Coin.Sent().watch({}, '', function(error, result) {
if (!error) {

console.log("Coin transfer: " + result.args.amount +
" coins were sent from " + result.args.from +
" to " + result.args.to + ".");

console.log("Balances now:\n" +
"Sender: " + Coin.balances.call(result.args.from) +
"Receiver: " + Coin.balances.call(result.args.to));

}
}

Note how the automatically generated function balances is called from the user interface.

The special function Coin is the constructor which is run during creation of the contract and cannot be called after-
wards. It permanently stores the address of the person creating the contract: msg (together with tx and block) is a
magic global variable that contains some properties which allow access to the blockchain. msg.sender is always the
address where the current (external) function call came from.

Finally, the functions that will actually end up with the contract and can be called by users and contracts alike are
mint and send. If mint is called by anyone except the account that created the contract, nothing will happen. On the
other hand, send can be used by anyone (who already has some of these coins) to send coins to anyone else. Note
that if you use this contract to send coins to an address, you will not see anything when you look at that address on a
blockchain explorer, because the fact that you sent coins and the changed balances are only stored in the data storage
of this particular coin contract. By the use of events it is relatively easy to create a “blockchain explorer” that tracks
transactions and balances of your new coin.

3.1.2 Blockchain Basics

Blockchains as a concept are not too hard to understand for programmers. The reason is that most of the complications
(mining, hashing, elliptic-curve cryptography, peer-to-peer networks, ...) are just there to provide a certain set of
features and promises. Once you accept these features as given, you do not have to worry about the underlying
technology - or do you have to know how Amazon’s AWS works internally in order to use it?

Transactions

A blockchain is a globally shared, transactional database. This means that everyone can read entries in the database
just by participating in the network. If you want to change something in the database, you have to create a so-called
transaction which has to be accepted by all others. The word transaction implies that the change you want to make
(assume you want to change two values at the same time) is either not done at all or completely applied. Furthermore,
while your transaction is applied to the database, no other transaction can alter it.

As an example, imagine a table that lists the balances of all accounts in an electronic currency. If a transfer from one
account to another is requested, the transactional nature of the database ensures that if the amount is subtracted from

3.1. Introduction to Smart Contracts 9

Solidity Documentation, Release 0.2.0

one account, it is always added to the other account. If due to whatever reason, adding the amount to the target account
is not possible, the source account is also not modified.

Furthermore, a transaction is always cryptographically signed by the sender (creator). This makes it straightforward
to guard access to specific modifications of the database. In the example of the electronic currency, a simple check
ensures that only the person holding the keys to the account can transfer money from it.

Blocks

One major obstacle to overcome is what in bitcoin terms is called “double-spend attack”: What happens if two trans-
actions exist in the network that both want to empty an account, a so-called conflict?

The abstract answer to this is that you do not have to care. An order of the transactions will be selected for you, the
transactions will be bundled into what is called a “block” and then they will be executed and distributed among all
participating nodes. If two transactions contradict each other, the one that ends up being second will be rejected and
not become part of the block.

These blocks form a linear sequence in time and that is where the word “blockchain” derives from. Blocks are added
to the chain in rather regular intervals - for Ethereum this is roughly every 17 seconds.

As part of the “order selection mechanism” (which is called “mining”) it may happen that blocks are reverted from
time to time, but only at the “tip” of the chain. The more blocks are reverted the less likely it is. So it might be that
your transactions are reverted and even removed from the blockchain, but the longer you wait, the less likely it will
be.

3.1.3 The Ethereum Virtual Machine

Overview

The Ethereum Virtual Machine or EVM is the runtime environment for smart contracts in Ethereum. It is not only
sandboxed but actually completely isolated, which means that code running inside the EVM has no access to network,
filesystem or other processes. Smart contracts even have limited access to other smart contracts.

Accounts

There are two kinds of accounts in Ethereum which share the same address space: External accounts that are con-
trolled by public-private key pairs (i.e. humans) and contract accounts which are controlled by the code stored
together with the account.

The address of an external account is determined from the public key while the address of a contract is determined at
the time the contract is created (it is derived from the creator address and the number of transactions sent from that
address, the so-called “nonce”).

Apart from the fact whether an account stores code or not, the EVM treats the two types equally, though.

Every account has a persistent key-value store mapping 256 bit words to 256 bit words called storage.

Furthermore, every account has a balance in Ether (in “Wei” to be exact) which can be modified by sending transac-
tions that include Ether.

Transactions

A transaction is a message that is sent from one account to another account (which might be the same or the special
zero-account, see below). It can include binary data (its payload) and Ether.

10 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

If the target account contains code, that code is executed and the payload is provided as input data.

If the target account is the zero-account (the account with the address 0), the transaction creates a new contract. As
already mentioned, the address of that contract is not the zero address but an address derived from the sender and its
number of transaction sent (the “nonce”). The payload of such a contract creation transaction is taken to be EVM
bytecode and executed. The output of this execution is permanently stored as the code of the contract. This means that
in order to create a contract, you do not send the actual code of the contract, but in fact code that returns that code.

Gas

Upon creation, each transaction is charged with a certain amount of gas, whose purpose is to limit the amount of work
that is needed to execute the transaction and to pay for this execution. While the EVM executes the transaction, the
gas is gradually depleted according to specific rules.

The gas price is a value set by the creator of the transaction, who has to pay gas_price * gas up front from the sending
account. If some gas is left after the execution, it is refunded in the same way.

If the gas is used up at any point (i.e. it is negative), an out-of-gas exception is triggered, which reverts all modifications
made to the state in the current call frame.

Storage, Memory and the Stack

Each account has a persistent memory area which is called storage. Storage is a key-value store that maps 256 bit
words to 256 bit words. It is not possible to enumerate storage from within a contract and it is comparatively costly to
read and even more so, to modify storage. A contract can neither read nor write to any storage apart from its own.

The second memory area is called memory, of which a contract obtains a freshly cleared instance for each message
call. Memory can be addressed at byte level, but read and written to in 32 byte (256 bit) chunks. Memory is more
costly the larger it grows (it scales quadratically).

The EVM is not a register machine but a stack machine, so all computations are performed on an area called the stack.
It has a maximum size of 1024 elements and contains words of 256 bits. Access to the stack is limited to the top end
in the following way: It is possible to copy one of the topmost 16 elements to the top of the stack or swap the topmost
element with one of the 16 elements below it. All other operations take the topmost two (or one, or more, depending
on the operation) elements from the stack and push the result onto the stack. Of course it is possible to move stack
elements to storage or memory, but it is not possible to just access arbitrary elements deeper in the stack without first
removing the top of the stack.

Instruction Set

The instruction set of the EVM is kept minimal in order to avoid incorrect implementations which could cause con-
sensus problems. All instructions operate on the basic data type, 256 bit words. The usual arithmetic, bit, logical
and comparison operations are present. Conditional and unconditional jumps are possible. Furthermore, contracts can
access relevant properties of the current block like its number and timestamp.

Message Calls

Contracts can call other contracts or send Ether to non-contract accounts by the means of message calls. Message calls
are similar to transactions, in that they have a source, a target, data payload, Ether, gas and return data. In fact, every
transaction consists of a top-level message call which in turn can create further message calls.

A contract can decide how much of its remaining gas should be sent with the inner message call and how much it
wants to retain. If an out-of-gas exception happens in the inner call (or any other exception), this will be signalled by

3.1. Introduction to Smart Contracts 11

Solidity Documentation, Release 0.2.0

an error value put onto the stack. In this case, only the gas sent together with the call is used up. In Solidity, the calling
contract causes a manual exception by default in such situations, so that exceptions “bubble up” the call stack.

As already said, the called contract (which can be the same as the caller) will receive a freshly cleared instance of
memory and has access to the call payload - which will be provided in a separate area called the calldata. After it
finished execution, it can return data which will be stored at a location in the caller’s memory preallocated by the
caller.

Calls are limited to a depth of 1024, which means that for more complex operations, loops should be preferred over
recursive calls.

Delegatecall / Callcode and Libraries

There exists a special variant of a message call, named delegatecall which is identical to a message call apart from the
fact that the code at the target address is executed in the context of the calling contract and msg.sender and msg.value
do not change their values.

This means that a contract can dynamically load code from a different address at runtime. Storage, current address
and balance still refer to the calling contract, only the code is taken from the called address.

This makes it possible to implement the “library” feature in Solidity: Reusable library code that can be applied to a
contract’s storage in order to e.g. implement a complex data structure.

Logs

It is possible to store data in a specially indexed data structure that maps all they way up to the block level. This feature
called logs is used by Solidity in order to implement events. Contracts cannot access log data after it has been created,
but they can be efficiently accessed from outside the blockchain. Since some part of the log data is stored in bloom
filters, it is possible to search for this data in an efficient and cryptographically secure way, so network peers that do
not download the whole blockchain (“light clients”) can still find these logs.

Create

Contracts can even create other contracts using a special opcode (i.e. they do not simply call the zero address). The
only difference between these create calls and normal message calls is that the payload data is executed and the result
stored as code and the caller / creator receives the address of the new contract on the stack.

Selfdestruct

The only possibility that code is removed from the blockchain is when a contract at that address performs the SELF-
DESTRUCT operation. The remaining Ether stored at that address is sent to a designated target and then the storage
and code is removed.

Note that even if a contract’s code does not contain the SELFDESTRUCT opcode, it can still perform that operation
using delegatecall or callcode.

3.2 Installing Solidity

3.2.1 Browser-Solidity

If you just want to try Solidity for small contracts, you can try browser-solidity which does not need any instal-
lation. If you want to use it without connection to the Internet, you can also just save the page locally or clone

12 Chapter 3. Contents

https://chriseth.github.io/browser-solidity

Solidity Documentation, Release 0.2.0

http://github.com/chriseth/browser-solidity.

3.2.2 NPM / node.js

This is probably the most portable and most convenient way to install Solidity locally.

A platform-independent JavaScript library is provided by compiling the C++ source into JavaScript using Emscripten
for browser-solidity and there is also an NPM package available.

To install it, simply use

npm install solc

Details about the usage of the nodejs package can be found in the repository.

3.2.3 Binary Packages

Binary packages of Solidity together with its IDE Mix are available through the C++ bundle of Ethereum.

3.2.4 Building from Source

Building Solidity is quite similar on MacOS X, Ubuntu and probably other Unices. This guide starts explaining how
to install the dependencies for each platform and then shows how to build Solidity itself.

MacOS X

Requirements:

• OS X Yosemite (10.10.5)

• Homebrew

• Xcode

Set up Homebrew:

brew update
brew upgrade

brew install boost --c++11 # this takes a while
brew install cmake cryptopp miniupnpc leveldb gmp libmicrohttpd libjson-rpc-cpp
For Mix IDE and Alethzero only
brew install xz d-bus
brew install homebrew/versions/v8-315
brew install llvm --HEAD --with-clang
brew install qt5 --with-d-bus # add --verbose if long waits with a stale screen drive you crazy as well

Ubuntu

Below are the build instructions for the latest versions of Ubuntu. The best supported platform as of December 2014
is Ubuntu 14.04, 64 bit, with at least 2 GB RAM. All our tests are done with this version. Community contributions
for other versions are welcome!

Install dependencies:

3.2. Installing Solidity 13

http://github.com/chriseth/browser-solidity
https://github.com/chriseth/browser-solidity#nodejs-usage
https://github.com/ethereum/webthree-umbrella/releases

Solidity Documentation, Release 0.2.0

Before you can build the source, you need several tools and dependencies for the application to get started.

First, update your repositories. Not all packages are provided in the main Ubuntu repository, those you’ll get from the
Ethereum PPA and the LLVM archive.

Note: Ubuntu 14.04 users, you’ll need the latest version of cmake. For this, use: sudo apt-add-repository ppa:george-
edison55/cmake-3.x

Now add all the rest:

sudo apt-get -y update
sudo apt-get -y install language-pack-en-base
sudo dpkg-reconfigure locales
sudo apt-get -y install software-properties-common
sudo add-apt-repository -y ppa:ethereum/ethereum
sudo add-apt-repository -y ppa:ethereum/ethereum-dev
sudo apt-get -y update
sudo apt-get -y upgrade

For Ubuntu 15.04 (Vivid Vervet) or older, use the following command to add the develop packages:

sudo apt-get -y install build-essential git cmake libboost-all-dev libgmp-dev libleveldb-dev libminiupnpc-dev libreadline-dev libncurses5-dev libcurl4-openssl-dev libcryptopp-dev libjson-rpc-cpp-dev libmicrohttpd-dev libjsoncpp-dev libedit-dev libz-dev

For Ubuntu 15.10 (Wily Werewolf) or newer, use the following command instead:

sudo apt-get -y install build-essential git cmake libboost-all-dev libgmp-dev libleveldb-dev libminiupnpc-dev libreadline-dev libncurses5-dev libcurl4-openssl-dev libcryptopp-dev libjsonrpccpp-dev libmicrohttpd-dev libjsoncpp-dev libedit-dev libz-dev

The reason for the change is that libjsonrpccpp-dev is available in the universe repository for newer versions of Ubuntu.

Building

Run this if you plan on installing Solidity only, ignore errors at the end as they relate only to Alethzero and Mix

git clone --recursive https://github.com/ethereum/webthree-umbrella.git
cd webthree-umbrella
./webthree-helpers/scripts/ethupdate.sh --no-push --simple-pull --project solidity # update Solidity repo
./webthree-helpers/scripts/ethbuild.sh --no-git --project solidity --all --cores 4 -DEVMJIT=0 # build Solidity and others

#enabling DEVMJIT on OS X will not build
#feel free to enable it on Linux

If you opted to install Alethzero and Mix:

git clone --recursive https://github.com/ethereum/webthree-umbrella.git
cd webthree-umbrella && mkdir -p build && cd build
cmake ..

If you want to help developing Solidity, you should fork Solidity and add your personal fork as a second remote:

cd webthree-umbrella/solidity
git remote add personal git@github.com:username/solidity.git

Note that webthree-umbrella uses submodules, so solidity is its own git repository, but its settings are not stored in
.git/config, but in webthree-umbrella/.git/modules/solidity/config.

14 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

3.3 Solidity by Example

3.3.1 Voting

The following contract is quite complex, but showcases a lot of Solidity’s features. It implements a voting contract. Of
course, the main problems of electronic voting is how to assign voting rights to the correct persons and how to prevent
manipulation. We will not solve all problems here, but at least we will show how delegated voting can be done so that
vote counting is automatic and completely transparent at the same time.

The idea is to create one contract per ballot, providing a short name for each option. Then the creator of the contract
who serves as chairperson will give the right to vote to each address individually.

The persons behind the addresses can then choose to either vote themselves or to delegate their vote to a person they
trust.

At the end of the voting time, winningProposal() will return the proposal with the largest number of votes.

/// @title Voting with delegation.
contract Ballot
{

// This declares a new complex type which will
// be used for variables later.
// It will represent a single voter.
struct Voter
{

uint weight; // weight is accumulated by delegation
bool voted; // if true, that person already voted
address delegate; // person delegated to
uint vote; // index of the voted proposal

}
// This is a type for a single proposal.
struct Proposal
{

bytes32 name; // short name (up to 32 bytes)
uint voteCount; // number of accumulated votes

}

address public chairperson;
// This declares a state variable that
// stores a `Voter` struct for each possible address.
mapping(address => Voter) public voters;
// A dynamically-sized array of `Proposal` structs.
Proposal[] public proposals;

/// Create a new ballot to choose one of `proposalNames`.
function Ballot(bytes32[] proposalNames)
{

chairperson = msg.sender;
voters[chairperson].weight = 1;
// For each of the provided proposal names,
// create a new proposal object and add it
// to the end of the array.
for (uint i = 0; i < proposalNames.length; i++)

// `Proposal({...})` creates a temporary
// Proposal object and `proposal.push(...)`
// appends it to the end of `proposals`.
proposals.push(Proposal({

name: proposalNames[i],

3.3. Solidity by Example 15

Solidity Documentation, Release 0.2.0

voteCount: 0
}));

}

// Give `voter` the right to vote on this ballot.
// May only be called by `chairperson`.
function giveRightToVote(address voter)
{

if (msg.sender != chairperson || voters[voter].voted)
// `throw` terminates and reverts all changes to
// the state and to Ether balances. It is often
// a good idea to use this if functions are
// called incorrectly. But watch out, this
// will also consume all provided gas.
throw;

voters[voter].weight = 1;
}

/// Delegate your vote to the voter `to`.
function delegate(address to)
{

// assigns reference
Voter sender = voters[msg.sender];
if (sender.voted)

throw;
// Forward the delegation as long as
// `to` also delegated.
while (voters[to].delegate != address(0) &&

voters[to].delegate != msg.sender)
to = voters[to].delegate;

// We found a loop in the delegation, not allowed.
if (to == msg.sender)

throw;
// Since `sender` is a reference, this
// modifies `voters[msg.sender].voted`
sender.voted = true;
sender.delegate = to;
Voter delegate = voters[to];
if (delegate.voted)

// If the delegate already voted,
// directly add to the number of votes
proposals[delegate.vote].voteCount += sender.weight;

else
// If the delegate did not vote yet,
// add to her weight.
delegate.weight += sender.weight;

}

/// Give your vote (including votes delegated to you)
/// to proposal `proposals[proposal].name`.
function vote(uint proposal)
{

Voter sender = voters[msg.sender];
if (sender.voted) throw;
sender.voted = true;
sender.vote = proposal;
// If `proposal` is out of the range of the array,
// this will throw automatically and revert all

16 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

// changes.
proposals[proposal].voteCount += sender.weight;

}

/// @dev Computes the winning proposal taking all
/// previous votes into account.
function winningProposal() constant

returns (uint winningProposal)
{

uint winningVoteCount = 0;
for (uint p = 0; p < proposals.length; p++)
{

if (proposals[p].voteCount > winningVoteCount)
{

winningVoteCount = proposals[p].voteCount;
winningProposal = p;

}
}

}
}

Possible Improvements

Currently, many transactions are needed to assign the rights to vote to all participants. Can you think of a better way?

3.3.2 Blind Auction

In this section, we will show how easy it is to create a completely blind auction contract on Ethereum. We will start
with an open auction where everyone can see the bids that are made and then extend this contract into a blind auction
where it is not possible to see the actual bid until the bidding period ends.

Simple Open Auction

The general idea of the following simple auction contract is that everyone can send their bids during a bidding period.
The bids already include sending money / ether in order to bind the bidders to their bid. If the highest bid is raised,
the previously highest bidder gets her money back. After the end of the bidding period, the contract has to be called
manually for the beneficiary to receive his money - contracts cannot activate themselves.

contract SimpleAuction {
// Parameters of the auction. Times are either
// absolute unix timestamps (seconds since 1970-01-01)
// or time periods in seconds.
address public beneficiary;
uint public auctionStart;
uint public biddingTime;

// Current state of the auction.
address public highestBidder;
uint public highestBid;

// Set to true at the end, disallows any change
bool ended;

// Events that will be fired on changes.

3.3. Solidity by Example 17

Solidity Documentation, Release 0.2.0

event HighestBidIncreased(address bidder, uint amount);
event AuctionEnded(address winner, uint amount);

// The following is a so-called natspec comment,
// recognizable by the three slashes.
// It will be shown when the user is asked to
// confirm a transaction.

/// Create a simple auction with `_biddingTime`
/// seconds bidding time on behalf of the
/// beneficiary address `_beneficiary`.
function SimpleAuction(uint _biddingTime,

address _beneficiary) {
beneficiary = _beneficiary;
auctionStart = now;
biddingTime = _biddingTime;

}

/// Bid on the auction with the value sent
/// together with this transaction.
/// The value will only be refunded if the
/// auction is not won.
function bid() {

// No arguments are necessary, all
// information is already part of
// the transaction.
if (now > auctionStart + biddingTime)

// Revert the call if the bidding
// period is over.
throw;

if (msg.value <= highestBid)
// If the bid is not higher, send the
// money back.
throw;

if (highestBidder != 0)
highestBidder.send(highestBid);

highestBidder = msg.sender;
highestBid = msg.value;
HighestBidIncreased(msg.sender, msg.value);

}

/// End the auction and send the highest bid
/// to the beneficiary.
function auctionEnd() {

if (now <= auctionStart + biddingTime)
throw; // auction did not yet end

if (ended)
throw; // this function has already been called

AuctionEnded(highestBidder, highestBid);
// We send all the money we have, because some
// of the refunds might have failed.
beneficiary.send(this.balance);
ended = true;

}

function () {
// This function gets executed if a
// transaction with invalid data is sent to

18 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

// the contract or just ether without data.
// We revert the send so that no-one
// accidentally loses money when using the
// contract.
throw;

}
}

Blind Auction

The previous open auction is extended to a blind auction in the following. The advantage of a blind auction is that
there is no time pressure towards the end of the bidding period. Creating a blind auction on a transparent computing
platform might sound like a contradiction, but cryptography comes to the rescue.

During the bidding period, a bidder does not actually send her bid, but only a hashed version of it. Since it is
currently considered practically impossible to find two (sufficiently long) values whose hash values are equal, the
bidder commits to the bid by that. After the end of the bidding period, the bidders have to reveal their bids: They send
their values unencrypted and the contract checks that the hash value is the same as the one provided during the bidding
period.

Another challenge is how to make the auction binding and blind at the same time: The only way to prevent the bidder
from just not sending the money after he won the auction is to make her send it together with the bid. Since value
transfers cannot be blinded in Ethereum, anyone can see the value.

The following contract solves this problem by accepting any value that is at least as large as the bid. Since this can of
course only be checked during the reveal phase, some bids might be invalid, and this is on purpose (it even provides
an explicit flag to place invalid bids with high value transfers): Bidders can confuse competition by placing several
high or low invalid bids.

contract BlindAuction
{

struct Bid
{

bytes32 blindedBid;
uint deposit;

}
address public beneficiary;
uint public auctionStart;
uint public biddingEnd;
uint public revealEnd;
bool public ended;

mapping(address => Bid[]) public bids;

address public highestBidder;
uint public highestBid;

event AuctionEnded(address winner, uint highestBid);

/// Modifiers are a convenient way to validate inputs to
/// functions. `onlyBefore` is applied to `bid` below:
/// The new function body is the modifier's body where
/// `_` is replaced by the old function body.
modifier onlyBefore(uint _time) { if (now >= _time) throw; _ }
modifier onlyAfter(uint _time) { if (now <= _time) throw; _ }

function BlindAuction(uint _biddingTime,

3.3. Solidity by Example 19

Solidity Documentation, Release 0.2.0

uint _revealTime,
address _beneficiary)

{
beneficiary = _beneficiary;
auctionStart = now;
biddingEnd = now + _biddingTime;
revealEnd = biddingEnd + _revealTime;

}

/// Place a blinded bid with `_blindedBid` = sha3(value,
/// fake, secret).
/// The sent ether is only refunded if the bid is correctly
/// revealed in the revealing phase. The bid is valid if the
/// ether sent together with the bid is at least "value" and
/// "fake" is not true. Setting "fake" to true and sending
/// not the exact amount are ways to hide the real bid but
/// still make the required deposit. The same address can
/// place multiple bids.
function bid(bytes32 _blindedBid)

onlyBefore(biddingEnd)
{

bids[msg.sender].push(Bid({
blindedBid: _blindedBid,
deposit: msg.value

}));
}

/// Reveal your blinded bids. You will get a refund for all
/// correctly blinded invalid bids and for all bids except for
/// the totally highest.
function reveal(uint[] _values, bool[] _fake,

bytes32[] _secret)
onlyAfter(biddingEnd)
onlyBefore(revealEnd)

{
uint length = bids[msg.sender].length;
if (_values.length != length || _fake.length != length ||

_secret.length != length)
throw;

uint refund;
for (uint i = 0; i < length; i++)
{

var bid = bids[msg.sender][i];
var (value, fake, secret) =

(_values[i], _fake[i], _secret[i]);
if (bid.blindedBid != sha3(value, fake, secret))

// Bid was not actually revealed.
// Do not refund deposit.
continue;

refund += bid.deposit;
if (!fake && bid.deposit >= value)

if (placeBid(msg.sender, value))
refund -= value;

// Make it impossible for the sender to re-claim
// the same deposit.
bid.blindedBid = 0;

}
msg.sender.send(refund);

20 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

}

// This is an "internal" function which means that it
// can only be called from the contract itself (or from
// derived contracts).
function placeBid(address bidder, uint value) internal

returns (bool success)
{

if (value <= highestBid)
return false;

if (highestBidder != 0)
// Refund the previously highest bidder.
highestBidder.send(highestBid);

highestBid = value;
highestBidder = bidder;
return true;

}

/// End the auction and send the highest bid
/// to the beneficiary.
function auctionEnd()

onlyAfter(revealEnd)
{

if (ended) throw;
AuctionEnded(highestBidder, highestBid);
// We send all the money we have, because some
// of the refunds might have failed.
beneficiary.send(this.balance);
ended = true;

}

function () { throw; }
}

3.3.3 Safe Remote Purchase

contract Purchase
{

uint public value;
address public seller;
address public buyer;
enum State { Created, Locked, Inactive }
State public state;
function Purchase()
{

seller = msg.sender;
value = msg.value / 2;
if (2 * value != msg.value) throw;

}
modifier require(bool _condition)
{

if (!_condition) throw;
_

}
modifier onlyBuyer()
{

if (msg.sender != buyer) throw;

3.3. Solidity by Example 21

Solidity Documentation, Release 0.2.0

_
}
modifier onlySeller()
{

if (msg.sender != seller) throw;
_

}
modifier inState(State _state)
{

if (state != _state) throw;
_

}
event aborted();
event purchaseConfirmed();
event itemReceived();

/// Abort the purchase and reclaim the ether.
/// Can only be called by the seller before
/// the contract is locked.
function abort()

onlySeller
inState(State.Created)

{
aborted();
seller.send(this.balance);
state = State.Inactive;

}
/// Confirm the purchase as buyer.
/// Transaction has to include `2 * value` ether.
/// The ether will be locked until confirmReceived
/// is called.
function confirmPurchase()

inState(State.Created)
require(msg.value == 2 * value)

{
purchaseConfirmed();
buyer = msg.sender;
state = State.Locked;

}
/// Confirm that you (the buyer) received the item.
/// This will release the locked ether.
function confirmReceived()

onlyBuyer
inState(State.Locked)

{
itemReceived();
buyer.send(value); // We ignore the return value on purpose
seller.send(this.balance);
state = State.Inactive;

}
function() { throw; }

}

3.3.4 Micropayment Channel

To be written.

22 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

3.4 Solidity in Depth

This section should provide you with all you need to know about Solidity. If something is missing here, please contact
us on Gitter or make a pull request on Github.

3.4.1 Layout of a Solidity Source File

Source files can contain an arbitrary number of contract definitions and include directives.

Importing other Source Files

Syntax and Semantics

Solidity supports import statements that are very similar to those available in JavaScript (from ES6 on), although
Solidity does not know the concept of a “default export”.

At a global level, you can use import statements of the following form:

import "filename";

...will import all global symbols from “filename” (and symbols imported there) into the current global scope (different
than in ES6 but backwards-compatible for Solidity).

import * as symbolName from "filename";

...creates a new global symbol symbolName whose members are all the global symbols from “filename”.

import {symbol1 as alias, symbol2} from "filename";

...creates new global symbols alias and symbol2 which reference symbol1 and symbol2 from “filename”, respectively.

Another syntax is not part of ES6, but probably convenient:

import "filename" as symbolName;

...is equivalent to import * as symbolName from “filename”;.

Paths

In the above, filename is always treated as a path with / as directory separator, . as the current and .. as the parent
directory. Path names that do not start with . are treated as absolute paths.

To import a file x from the same directory as the current file, use import ”./x” as x;. If you use import “x” as x;
instead, a different file could be referenced (in a global “include directory”).

It depends on the compiler (see below) how to actually resolve the paths. In general, the directory hierarchy does not
need to strictly map onto your local filesystem, it can also map to resources discovered via e.g. ipfs, http or git.

Use in actual Compilers

When the compiler is invoked, it is not only possible to specify how to discover the first element of a path, but
it is possible to specify path prefix remappings so that e.g. github.com/ethereum/dapp-bin/library is remapped to
/usr/local/dapp-bin/library and the compiler will read the files from there. If remapping keys are prefixes of each other,
the longest is tried first. This allows for a “fallback-remapping” with e.g. “” maps to “/usr/local/include/solidity”.

3.4. Solidity in Depth 23

https://gitter.im/ethereum/solidity
https://github.com/ethereum/solidity/pulls

Solidity Documentation, Release 0.2.0

solc:

For solc (the commandline compiler), these remappings are provided as key=value arguments, where the =value part
is optional (and defaults to key in that case). All remapping values that are regular files are compiled (including their
dependencies). This mechanism is completely backwards-compatible (as long as no filename contains a =) and thus
not a breaking change.

So as an example, if you clone github.com/ethereum/dapp-bin/ locally to /usr/local/dapp-bin, you can use the follow-
ing in your source file:

import "github.com/ethereum/dapp-bin/library/iterable_mapping.sol" as it_mapping;

and then run the compiler as

solc github.com/ethereum/dapp-bin/=/usr/local/dapp-bin/ source.sol

Note that solc only allows you to include files from certain directories: They have to be in the directory (or subdirec-
tory) of one of the explicitly specified source files or in the directory (or subdirectory) of a remapping target. If you
want to allow direct absolute includes, just add the remapping =/.

If there are multiple remappings that lead to a valid file, the remapping with the longest common prefix is chosen.

browser-solidity:

The browser-based compiler provides an automatic remapping for github and will also automatically retrieve
the file over the network: You can import the iterable mapping by e.g. import “github.com/ethereum/dapp-
bin/library/iterable_mapping.sol” as it_mapping;.

Other source code providers may be added in the future.

Comments

Single-line comments (//) and multi-line comments (/*...*/) are possible.

// This is a single-line comment.

/*
This is a
multi-line comment.

*/

There are special types of comments called natspec comments (documentation yet to be written). These are introduced
by triple-slash comments (///) or using double asterisks (/** ... */). Right in front of function declarations or state-
ments, you can use doxygen-style tags inside them to document functions, annotate conditions for formal verification
and provide a confirmation text that is shown to users if they want to invoke a function.

3.4.2 Structure of a Contract

Contracts in Solidity are similar to classes in object-oriented languages. Each contract can contain declarations of
State Variables, Functions, Function Modifiers, Events, Structs Types and Enum Types. Furthermore, contracts can
inherit from other contracts.

State Variables

State variables are values which are permanently stored in contract storage.

24 Chapter 3. Contents

https://chriseth.github.io/browser-solidity

Solidity Documentation, Release 0.2.0

contract SimpleStorage {
uint storedData; // State variable
// ...

}

See the Types section for valid state variable types and Visibility and Accessors for possible choices for visibility.

Functions

Functions are the executable units of code within a contract.

contract SimpleAuction {
function bid() { // Function
// ...

}
}

Function Calls can happen internally or externally and have different levels of visibility (Visibility and Accessors)
towards other contracts.

Function Modifiers

Function modifiers can be used to amend the semantics of functions in a declarative way (see Function Modifiers in
contracts section).

contract Purchase {
address public seller;

modifier onlySeller() { // Modifier
if (msg.sender != seller) throw;
_

}

function abort() onlySeller { // Modifier usage
// ...

}
}

Events

Events are convenience interfaces with the EVM logging facilities.

contract SimpleAuction {
event HighestBidIncreased(address bidder, uint amount); // Event

function bid() {
// ...
HighestBidIncreased(msg.sender, msg.value); // Triggering event

}
}

See Events in contracts section for information on how events are declared and can be used from within a dapp.

3.4. Solidity in Depth 25

Solidity Documentation, Release 0.2.0

Structs Types

Structs are custom defined types that can group several variables (see Structs in types section).

contract Ballot {
struct Voter { // Struct
uint weight;
bool voted;
address delegate;
uint vote;

}
}

Enum Types

Enums can be used to create custom types with a finite set of values (see Enums in types section).

contract Purchase {
enum State { Created, Locked, Inactive } // Enum

}

3.4.3 Types

Solidity is a statically typed language, which means that the type of each variable (state and local) needs to be specified
(or at least known - see Type Deduction below) at compile-time. Solidity provides several elementary types which can
be combined to complex types.

Value Types

The following types are also called value types because variables of these types will always be passed by value, i.e.
they are always copied when they are used as function arguments or in assignments.

Booleans

bool: The possible values are constants true and false.

Operators:

• ! (logical negation)

• && (logical conjunction, “and”)

• || (logical disjunction, “or”)

• == (equality)

• != (inequality)

The operators || and && apply the common short-circuiting rules. This means that in the expression f(x) || g(y), if f(x)
evaluates to true, g(y) will not be evaluated even if it may have side-effects.

26 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

Integers

int• / uint•: Signed and unsigned integers of various sizes. Keywords uint8 to uint256 in steps of 8 (unsigned of 8 up
to 256 bits) and int8 to int256. uint and int are aliases for uint256 and int256, respectively.

Operators:

• Comparisons: <=, <, ==, !=, >=, > (evaluate to bool)

• Bit operators: &, |, ^ (bitwise exclusive or), ~ (bitwise negation)

• Arithmetic operators: +, -, unary -, unary +, *, /, % (remainder), ** (exponentiation)

Division always truncates (it just maps to the DIV opcode of the EVM), but it does not truncate if both operators are
literals (or literal expressions).

Address

address: Holds a 20 byte value (size of an Ethereum address). Address types also have members(see [Functions on
addresses](#functions-on-addresses)) and serve as base for all contracts.

Operators:

• <=, <, ==, !=, >= and >

Members of Addresses

• balance and send

It is possible to query the balance of an address using the property balance and to send Ether (in units of wei) to an
address using the send function:

address x = 0x123;
address myAddress = this;
if (x.balance < 10 && myAddress.balance >= 10) x.send(10);

Note: If x is a contract address, its code (more specifically: its fallback function, if present) will be executed together
with the send call (this is a limitation of the EVM and cannot be prevented). If that execution runs out of gas or fails
in any way, the Ether transfer will be reverted. In this case, send returns false.

• call, callcode and delegatecall

Furthermore, to interface with contracts that do not adhere to the ABI, the function call is provided which takes an
arbitrary number of arguments of any type. These arguments are padded to 32 bytes and concatenated. One exception
is the case where the first argument is encoded to exactly four bytes. In this case, it is not padded to allow the use of
function signatures here.

address nameReg = 0x72ba7d8e73fe8eb666ea66babc8116a41bfb10e2;
nameReg.call("register", "MyName");
nameReg.call(bytes4(sha3("fun(uint256)")), a);

call returns a boolean indicating whether the invoked function terminated (true) or caused an EVM exception (false).
It is not possible to access the actual data returned (for this we would need to know the encoding and size in advance).

In a similar way, the function delegatecall can be used: The difference is that only the code of the given address is
used, all other aspects (storage, balance, ...) are taken from the current contract. The purpose of delegatecall is to use
library code which is stored in another contract. The user has to ensure that the layout of storage in both contracts is

3.4. Solidity in Depth 27

Solidity Documentation, Release 0.2.0

suitable for delegatecall to be used. Prior to homestead, only a limited variant called callcode was available that did
not provide access to the original msg.sender and msg.value values.

All three functions call, delegatecall and callcode are very low-level functions and should only be used as a last resort
as they break the type-safety of Solidity.

Note: All contracts inherit the members of address, so it is possible to query the balance of the current contract using
this.balance.

Fixed-size byte arrays

bytes1, bytes2, bytes3, ..., bytes32. byte is an alias for bytes1.

Operators:

• Comparisons: <=, <, ==, !=, >=, > (evaluate to bool)

• Bit operators: &, |, ^ (bitwise exclusive or), ~ (bitwise negation)

• Index access: If x is of type bytesI, then x[k] for 0 <= k < I returns the k th byte (read-only).

Members:

• .length yields the fixed length of the byte array (read-only).

Dynamically-sized byte array

bytes: Dynamically-sized byte array, see Arrays. Not a value-type!

string: Dynamically-sized UTF8-encoded string, see Arrays. Not a value-type!

As a rule of thumb, use bytes for arbitrary-length raw byte data and string for arbitrary-length string (utf-8) data. If you
can limit the length to a certain number of bytes, always use one of bytes1 to bytes32 because they are much cheaper.

Integer Literals

Integer Literals are arbitrary precision integers until they are used together with a non-literal. In var x = 1 - 2;, for
example, the value of 1 - 2 is -1, which is assigned to x and thus x receives the type int8 – the smallest type that
contains -1, although the natural types of 1 and 2 are actually uint8.

It is even possible to temporarily exceed the maximum of 256 bits as long as only integer literals are used for the
computation: var x = (0xffffffffffffffffffff * 0xffffffffffffffffffff) * 0; Here, x will have the value 0 and thus the type uint8.

Warning: Divison on integer literals used to truncate in earlier versions, but it will actually convert into a rational
number in the future, i.e. 1/2 is not equal to 0, but to 0.5.

String Literals

String Literals are written with double quotes (“abc”). As with integer literals, their type can vary, but they are
implicitly convertible to bytes• if they fit, to bytes and to string.

28 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

Enums

Enums are one way to create a user-defined type in Solidity. They are explicitly convertible to and from all integer
types but implicit conversion is not allowed.

contract test {
enum ActionChoices { GoLeft, GoRight, GoStraight, SitStill }
ActionChoices choice;
ActionChoices constant defaultChoice = ActionChoices.GoStraight;
function setGoStraight()
{

choice = ActionChoices.GoStraight;
}
// Since enum types are not part of the ABI, the signature of "getChoice"
// will automatically be changed to "getChoice() returns (uint8)"
// for all matters external to Solidity. The integer type used is just
// large enough to hold all enum values, i.e. if you have more values,
// `uint16` will be used and so on.
function getChoice() returns (ActionChoices)
{

return choice;
}
function getDefaultChoice() returns (uint)
{

return uint(defaultChoice);
}

}

Reference Types

Complex types, i.e. types which do not always fit into 256 bits have to be handled more carefully than the value-types
we have already seen. Since copying them can be quite expensive, we have to think about whether we want them to
be stored in memory (which is not persisting) or storage (where the state variables are held).

Data location

Every complex type, i.e. arrays and structs, has an additional annotation, the “data location”, about whether it is stored
in memory or in storage. Depending on the context, there is always a default, but it can be overridden by appending
either storage or memory to the type. The default for function parameters (including return parameters) is memory, the
default for local variables is storage and the location is forced to storage for state variables (obviously).

There is also a third data location, “calldata”, which is a non-modifyable non-persistent area where function arguments
are stored. Function parameters (not return parameters) of external functions are forced to “calldata” and it behaves
mostly like memory.

Data locations are important because they change how assignments behave: Assignments between storage and memory
and also to a state variable (even from other state variables) always create an independent copy. Assignments to local
storage variables only assign a reference though, and this reference always points to the state variable even if the
latter is changed in the meantime. On the other hand, assignments from a memory stored reference type to another
memory-stored reference type does not create a copy.

contract c {
uint[] x; // the data location of x is storage
// the data location of memoryArray is memory
function f(uint[] memoryArray) {
x = memoryArray; // works, copies the whole array to storage

3.4. Solidity in Depth 29

Solidity Documentation, Release 0.2.0

var y = x; // works, assigns a pointer, data location of y is storage
y[7]; // fine, returns the 8th element
y.length = 2; // fine, modifies x through y
delete x; // fine, clears the array, also modifies y
// The following does not work; it would need to create a new temporary /
// unnamed array in storage, but storage is "statically" allocated:
// y = memoryArray;
// This does not work either, since it would "reset" the pointer, but there
// is no sensible location it could point to.
// delete y;
g(x); // calls g, handing over a reference to x
h(x); // calls h and creates an independent, temporary copy in memory

}
function g(uint[] storage storageArray) internal {}
function h(uint[] memoryArray) {}

}

Summary

Forced data location:

• parameters (not return) of external functions: calldata

• state variables: storage

Default data location:

• parameters (also return) of functions: memory

• all other local variables: storage

Arrays

Arrays can have a compile-time fixed size or they can be dynamic. For storage arrays, the element type can be arbitrary
(i.e. also other arrays, mappings or structs). For memory arrays, it cannot be a mapping and has to be an ABI type if
it is an argument of a publicly-visible function.

An array of fixed size k and element type T is written as T[k], an array of dynamic size as T[]. As an example, an array
of 5 dynamic arrays of uint is uint[][5] (note that the notation is reversed when compared to some other languages).
To access the second uint in the third dynamic array, you use x[2][1] (indices are zero-based and access works in the
opposite way of the declaration, i.e. x[2] shaves off one level in the type from the right).

Variables of type bytes and string are special arrays. A bytes is similar to byte[], but it is packed tightly in calldata.
string is equal to bytes but does not allow length or index access (for now).

So bytes should always be preferred over byte[] because it is cheaper.

Note: If you want to access the byte-representation of a string s, use bytes(s).length / bytes(s)[7] = ‘x’;. Keep in mind
that you are accessing the low-level bytes of the utf-8 representation, and not the individual characters!

Allocating Memory Arrays Creating arrays with variable length in memory can be done using the new keyword.
As opposed to storage arrays, it is not possible to resize memory arrays by assigning to the .length member.

contract C {
function f(uint len) {
uint[] memory a = new uint[](7);

30 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

bytes memory b = new bytes(len);
// Here we have a.length == 7 and b.length == len
a[6] = 8;

}
}

Members

length: Arrays have a length member to hold their number of elements. Dynamic arrays can be resized in storage (not
in memory) by changing the .length member. This does not happen automatically when attempting to access
elements outside the current length. The size of memory arrays is fixed (but dynamic, i.e. it can depend on
runtime parameters) once they are created.

push: Dynamic storage arrays and bytes (not string) have a member function called push that can be used to append
an element at the end of the array. The function returns the new length.

Warning: It is not yet possible to use arrays of arrays in external functions.

Warning: Due to limitations of the EVM, it is not possible to return dynamic content from external function calls.
The function f in contract C { function f() returns (uint[]) { ... } } will return something if called from web3.js, but
not if called from Solidity.
The only workaround for now is to use large statically-sized arrays.

contract ArrayContract {
uint[2**20] m_aLotOfIntegers;
// Note that the following is not a pair of arrays but an array of pairs.
bool[2][] m_pairsOfFlags;
// newPairs is stored in memory - the default for function arguments
function setAllFlagPairs(bool[2][] newPairs) {
// assignment to a storage array replaces the complete array
m_pairsOfFlags = newPairs;

}
function setFlagPair(uint index, bool flagA, bool flagB) {
// access to a non-existing index will throw an exception
m_pairsOfFlags[index][0] = flagA;
m_pairsOfFlags[index][1] = flagB;

}
function changeFlagArraySize(uint newSize) {
// if the new size is smaller, removed array elements will be cleared
m_pairsOfFlags.length = newSize;

}
function clear() {
// these clear the arrays completely
delete m_pairsOfFlags;
delete m_aLotOfIntegers;
// identical effect here
m_pairsOfFlags.length = 0;

}
bytes m_byteData;
function byteArrays(bytes data) {
// byte arrays ("bytes") are different as they are stored without padding,
// but can be treated identical to "uint8[]"
m_byteData = data;
m_byteData.length += 7;
m_byteData[3] = 8;

3.4. Solidity in Depth 31

Solidity Documentation, Release 0.2.0

delete m_byteData[2];
}
function addFlag(bool[2] flag) returns (uint) {
return m_pairsOfFlags.push(flag);

}
function createMemoryArray(uint size) returns (bytes) {
// Dynamic memory arrays are created using `new`:
uint[2][] memory arrayOfPairs = new uint[2][](size);
// Create a dynamic byte array:
bytes memory b = new bytes(200);
for (uint i = 0; i < b.length; i++)

b[i] = byte(i);
return b;

}
}

Structs

Solidity provides a way to define new types in the form of structs, which is shown in the following example:

contract CrowdFunding {
// Defines a new type with two fields.
struct Funder {
address addr;
uint amount;

}
struct Campaign {
address beneficiary;
uint fundingGoal;
uint numFunders;
uint amount;
mapping (uint => Funder) funders;

}
uint numCampaigns;
mapping (uint => Campaign) campaigns;
function newCampaign(address beneficiary, uint goal) returns (uint campaignID) {
campaignID = numCampaigns++; // campaignID is return variable
// Creates new struct and saves in storage. We leave out the mapping type.
campaigns[campaignID] = Campaign(beneficiary, goal, 0, 0);

}
function contribute(uint campaignID) {
Campaign c = campaigns[campaignID];

// Creates a new temporary memory struct, initialised with the given values
// and copies it over to storage.
// Note that you can also use Funder(msg.sender, msg.value) to initialise.

c.funders[c.numFunders++] = Funder({addr: msg.sender, amount: msg.value});
c.amount += msg.value;

}
function checkGoalReached(uint campaignID) returns (bool reached) {
Campaign c = campaigns[campaignID];
if (c.amount < c.fundingGoal)

return false;
c.beneficiary.send(c.amount);
c.amount = 0;
return true;

}
}

32 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

The contract does not provide the full functionality of a crowdfunding contract, but it contains the basic concepts
necessary to understand structs. Struct types can be used inside mappings and arrays and they can itself contain
mappings and arrays.

It is not possible for a struct to contain a member of its own type, although the struct itself can be the value type of a
mapping member. This restriction is necessary, as the size of the struct has to be finite.

Note how in all the functions, a struct type is assigned to a local variable (of the default storage data location). This
does not copy the struct but only stores a reference so that assignments to members of the local variable actually write
to the state.

Of course, you can also directly access the members of the struct without assigning it to a local variable, as in cam-
paigns[campaignID].amount = 0.

Mappings

Mapping types are declared as mapping _KeyType => _ValueType, where _KeyType can be almost any type except for
a mapping and _ValueType can actually be any type, including mappings.

Mappings can be seen as hashtables which are virtually initialized such that every possible key exists and is mapped
to a value whose byte-representation is all zeros. The similarity ends here, though: The key data is not actually stored
in a mapping, only its sha3 hash used to look up the value.

Because of this, mappings do not have a length or a concept of a key or value being “set”.

Mappings are only allowed for state variables (or as storage reference types in internal functions).

Operators Involving LValues

If a is an LValue (i.e. a variable or something that can be assigned to), the following operators are available as
shorthands:

a += e is equivalent to a = a + e. The operators -=, *=, /=, %=, a |=, &= and ^= are defined accordingly. a++ and
a– are equivalent to a += 1 / a -= 1 but the expression itself still has the previous value of a. In contrast, –a and ++a
have the same effect on a but return the value after the change.

delete

delete a assigns the initial value for the type to a. I.e. for integers it is equivalent to a = 0, but it can also be used on
arrays, where it assigns a dynamic array of length zero or a static array of the same length with all elements reset. For
structs, it assigns a struct with all members reset.

delete has no effect on whole mappings (as the keys of mappings may be arbitrary and are generally unknown). So if
you delete a struct, it will reset all members that are not mappings and also recurse into the members unless they are
mappings. However, individual keys and what they map to can be deleted.

It is important to note that delete a really behaves like an assignment to a, i.e. it stores a new object in a.

contract DeleteExample {
uint data;
uint[] dataArray;
function f() {
uint x = data;
delete x; // sets x to 0, does not affect data
delete data; // sets data to 0, does not affect x which still holds a copy
uint[] y = dataArray;
delete dataArray; // this sets dataArray.length to zero, but as uint[] is a complex object, also

3.4. Solidity in Depth 33

Solidity Documentation, Release 0.2.0

// y is affected which is an alias to the storage object
// On the other hand: "delete y" is not valid, as assignments to local variables
// referencing storage objects can only be made from existing storage objects.

}
}

Conversions between Elementary Types

Implicit Conversions

If an operator is applied to different types, the compiler tries to implicitly convert one of the operands to the type of
the other (the same is true for assignments). In general, an implicit conversion between value-types is possible if it
makes sense semantically and no information is lost: uint8 is convertible to uint16 and int128 to int256, but int8 is
not convertible to uint256 (because uint256 cannot hold e.g. -1). Furthermore, unsigned integers can be converted to
bytes of the same or larger size, but not vice-versa. Any type that can be converted to uint160 can also be converted to
address.

Explicit Conversions

If the compiler does not allow implicit conversion but you know what you are doing, an explicit type conversion is
sometimes possible:

int8 y = -3;
uint x = uint(y);

At the end of this code snippet, x will have the value 0xfffff..fd (64 hex characters), which is -3 in two’s complement
representation of 256 bits.

If a type is explicitly converted to a smaller type, higher-order bits are cut off:

uint32 a = 0x12345678;
uint16 b = uint16(a); // b will be 0x5678 now

Type Deduction

For convenience, it is not always necessary to explicitly specify the type of a variable, the compiler automatically
infers it from the type of the first expression that is assigned to the variable:

uint20 x = 0x123;
var y = x;

Here, the type of y will be uint20. Using var is not possible for function parameters or return parameters.

Warning: The type is only deduced from the first assignment, so the loop in the following snippet is infinite, as i
will have the type uint8 and any value of this type is smaller than 2000. for (var i = 0; i < 2000; i++) { ... }

3.4.4 Units and Globally Available Variables

Ether Units

A literal number can take a suffix of wei, finney, szabo or ether to convert between the subdenominations of Ether,
where Ether currency numbers without a postfix are assumed to be “wei”, e.g. 2 ether == 2000 finney evaluates to

34 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

true.

Time Units

Suffixes of seconds, minutes, hours, days, weeks and years after literal numbers can be used to convert between units
of time where seconds are the base unit and units are considered naively in the following way:

• 1 == 1 second

• 1 minutes == 60 seconds

• 1 hours == 60 minutes

• 1 days == 24 hours

• 1 weeks = 7 days

• 1 years = 365 days

Take care if you perform calendar calculations using these units, because not every year equals 365 days and not
even every day has 24 hours because of leap seconds. Due to the fact that leap seconds cannot be predicted, an exact
calendar library has to be updated by an external oracle.

These suffixes cannot be applied to variables. If you want to interpret some input variable in e.g. days, you can do it
in the following way:

function f(uint start, uint daysAfter) {
if (now >= start + daysAfter * 1 days) { ... }

}

Special Variables and Functions

There are special variables and functions which always exist in the global namespace and are mainly used to provide
information about the blockchain.

Block and Transaction Properties

• block.coinbase (address): current block miner’s address

• block.difficulty (uint): current block difficulty

• block.gaslimit (uint): current block gaslimit

• block.number (uint): current block number

• block.blockhash (function(uint) returns (bytes32)): hash of the given block - only for 256 most recent blocks

• block.timestamp (uint): current block timestamp

• msg.data (bytes): complete calldata

• msg.gas (uint): remaining gas

• msg.sender (address): sender of the message (current call)

• msg.sig (bytes4): first four bytes of the calldata (i.e. function identifier)

• msg.value (uint): number of wei sent with the message

• now (uint): current block timestamp (alias for block.timestamp)

• tx.gasprice (uint): gas price of the transaction

3.4. Solidity in Depth 35

https://en.wikipedia.org/wiki/Leap_second

Solidity Documentation, Release 0.2.0

• tx.origin (address): sender of the transaction (full call chain)

Note: The values of all members of msg, including msg.sender and msg.value can change for every external function
call. This includes calls to library functions.

If you want to implement access restrictions in library functions using msg.sender, you have to manually supply the
value of msg.sender as an argument.

Note: The block hashes are not available for all blocks for scalability reasons. You can only access the hashes of the
most recent 256 blocks, all other values will be zero.

Mathematical and Cryptographic Functions

addmod(uint x, uint y, uint k) returns (uint): compute (x + y) % k where the addition is performed with arbitrary
precision and does not wrap around at 2**256.

mulmod(uint x, uint y, uint k) returns (uint): compute (x * y) % k where the multiplication is performed with arbi-
trary precision and does not wrap around at 2**256.

sha3(...) returns (bytes32): compute the Ethereum-SHA-3 hash of the (tightly packed) arguments

sha256(...) returns (bytes32): compute the SHA-256 hash of the (tightly packed) arguments

ripemd160(...) returns (bytes20): compute RIPEMD-160 hash of the (tightly packed) arguments

ecrecover(bytes32, uint8, bytes32, bytes32) returns (address): recover public key from elliptic curve signature - ar-
guments are (data, v, r, s)

In the above, “tightly packed” means that the arguments are concatenated without padding. This means that the
following are all identical:

sha3("ab", "c")
sha3("abc")
sha3(0x616263)
sha3(6382179)
sha3(97, 98, 99)

If padding is needed, explicit type conversions can be used: sha3(“x00x12”) is the same as sha3(uint16(0x12)).

It might be that you run into Out-of-Gas for sha256, ripemd160 or ecrecover on a private blockchain. The reason for
this is that those are implemented as so-called precompiled contracts and these contracts only really exist after they
received the first message (although their contract code is hardcoded). Messages to non-existing contracts are more
expensive and thus the execution runs into an Out-of-Gas error. A workaround for this problem is to first send e.g. 1
Wei to each of the contracts before you use them in your actual contracts. This is not an issue on the official or test
net.

Contract Related

this (current contract’s type): the current contract, explicitly convertible to address

selfdestruct(address): destroy the current contract, sending its funds to the given address

Furthermore, all functions of the current contract are callable directly including the current function.

36 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

3.4.5 Expressions and Control Structures

Control Structures

Most of the control structures from C/JavaScript are available in Solidity except for switch and goto. So there is: if,
else, while, for, break, continue, return, ? :, with the usual semantics known from C / JavaScript.

Parentheses can not be omitted for conditionals, but curly brances can be omitted around single-statement bodies.

Note that there is no type conversion from non-boolean to boolean types as there is in C and JavaScript, so if (1) { ... }
is not valid Solidity.

Function Calls

Internal Function Calls

Functions of the current contract can be called directly (“internally”), also recursively, as seen in this nonsensical
example:

contract c {
function g(uint a) returns (uint ret) { return f(); }
function f() returns (uint ret) { return g(7) + f(); }

}

These function calls are translated into simple jumps inside the EVM. This has the effect that the current memory is
not cleared, i.e. passing memory references to internally-called functions is very efficient. Only functions of the same
contract can be called internally.

External Function Calls

The expression this.g(8); is also a valid function call, but this time, the function will be called “externally”, via a
message call and not directly via jumps. Functions of other contracts have to be called externally. For an external call,
all function arguments have to be copied to memory.

When calling functions of other contracts, the amount of Wei sent with the call and the gas can be specified:

contract InfoFeed {
function info() returns (uint ret) { return 42; }

}
contract Consumer {
InfoFeed feed;
function setFeed(address addr) { feed = InfoFeed(addr); }
function callFeed() { feed.info.value(10).gas(800)(); }

}

Note that the expression InfoFeed(addr) performs an explicit type conversion stating that “we know that the type of the
contract at the given address is InfoFeed” and this does not execute a constructor. We could also have used function
setFeed(InfoFeed _feed) { feed = _feed; } directly. Be careful about the fact that feed.info.value(10).gas(800) only
(locally) sets the value and amount of gas sent with the function call and only the parentheses at the end perform the
actual call.

Named Calls and Anonymous Function Parameters

Function call arguments can also be given by name, in any order, and the names of unused parameters (especially
return parameters) can be omitted.

3.4. Solidity in Depth 37

Solidity Documentation, Release 0.2.0

contract c {
function f(uint key, uint value) { ... }
function g() {
// named arguments
f({value: 2, key: 3});

}
// omitted parameters
function func(uint k, uint) returns(uint) {
return k;

}
}

Order of Evaluation of Expressions

The evaluation order of expressions is not specified (more formally, the order in which the children of one node in
the expression tree are evaluated is not specified, but they are of course evaluated before the node itself). It is only
guaranteed that statements are executed in order and short-circuiting for boolean expressions is done.

Assignment

Destructuring Assignments and Returning Multiple Values

Solidity internally allows tuple types, i.e. a list of objects of potentially different types whose size is a constant at
compile-time. Those tuples can be used to return multiple values at the same time and also assign them to multiple
variables (or LValues in general) at the same time:

contract C {
uint[] data;
function f() returns (uint, bool, uint) {
return (7, true, 2);

}
function g() {
// Declares and assigns the variables. Specifying the type explicitly is not possible.
var (x, b, y) = f();
// Assigns to a pre-existing variable.
(x, y) = (2, 7);
// Common trick to swap values -- does not work for non-value storage types.
(x, y) = (y, x);
// Components can be left out (also for variable declarations).
// If the tuple ends in an empty component,
// the rest of the values are discarded.
(data.length,) = f(); // Sets the length to 7
// The same can be done on the left side.
(,data[3]) = f(); // Sets data[3] to 2
// Components can only be left out at the left-hand-side of assignments, with
// one exception:
(x,) = (1,);
// (1,) is the only way to specify a 1-component tuple, because (1) is
// equivalent to 1.

}
}

38 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

Complications for Arrays and Structs

The semantics of assignment are a bit more complicated for non-value types like arrays and structs. Assigning to a state
variable always creates an independent copy. On the other hand, assigning to a local variable creates an independent
copy only for elementary types, i.e. static types that fit into 32 bytes. If structs or arrays (including bytes and string)
are assigned from a state variable to a local variable, the local variable holds a reference to the original state variable.
A second assignment to the local variable does not modify the state but only changes the reference. Assignments to
members (or elements) of the local variable do change the state.

Exceptions

There are some cases where exceptions are thrown automatically (see below). You can use the throw instruction to
throw an exception manually. The effect of an exception is that the currently executing call is stopped and reverted
(i.e. all changes to the state and balances are undone) and the exception is also “bubbled up” through Solidity function
calls (exceptions are send and the low-level functions call, delegatecall and callcode, those return false in case of an
exception).

Catching exceptions is not yet possible.

In the following example, we show how throw can be used to easily revert an Ether transfer and also how to check the
return value of send:

contract Sharer {
function sendHalf(address addr) returns (uint balance) {

if (!addr.send(msg.value/2))
throw; // also reverts the transfer to Sharer

return this.balance;
}

}

Currently, there are three situations, where exceptions happen automatically in Solidity:

1. If you access an array beyond its length (i.e. x[i] where i >= x.length)

2. If a function called via a message call does not finish properly (i.e. it runs out of gas or throws an exception
itself).

3. If a non-existent function on a library is called or Ether is sent to a library.

Internally, Solidity performs an “invalid jump” when an exception is thrown and thus causes the EVM to revert all
changes made to the state. The reason for this is that there is no safe way to continue execution, because an expected
effect did not occur. Because we want to retain the atomicity of transactions, the safest thing to do is to revert all
changes and make the whole transaction (or at least call) without effect.

Inline Assembly

For more fine-grained control especially in order to enhance the language by writing libraries, it is possible to interleave
Solidity statements with inline assembly in a language close to the one of the virtual machine. Due to the fact that
the EVM is a stack machine, it is often hard to address the correct stack slot and provide arguments to opcodes at
the correct point on the stack. Solidity’s inline assembly tries to facilitate that and other issues arising when writing
manual assembly by the following features:

• functional-style opcodes: mul(1, add(2, 3)) instead of push1 3 push1 2 add push1 1 mul

• assembly-local variables: let x := add(2, 3) let y := mload(0x40) x := add(x, y)

• access to external variables: function f(uint x) { assembly { x := sub(x, 1) } }

3.4. Solidity in Depth 39

Solidity Documentation, Release 0.2.0

• labels: let x := 10 repeat: x := sub(x, 1) jumpi(repeat, eq(x, 0))

We now want to describe the inline assembly language in detail.

Warning: Inline assembly is still a relatively new feature and might change if it does not prove useful, so please
try to keep up to date.

Example

The following example provides library code to access the code of another contract and load it into a bytes variable.
This is not possible at all with “plain Solidity” and the idea is that assembly libraries will be used to enhance the
language in such ways.

library GetCode {
function at(address _addr) returns (bytes o_code) {

assembly {
// retrieve the size of the code, this needs assembly
let size := extcodesize(_addr)
// allocate output byte array - this could also be done without assembly
// by using o_code = new bytes(size)
o_code := mload(0x40)
// new "memory end" including padding
mstore(0x40, add(o_code, and(add(add(size, 0x20), 0x1f), bnot(0x1f))))
// store length in memory
mstore(o_code, size)
// actually retrieve the code, this needs assembly
extcodecopy(_addr, add(o_code, 0x20), 0, size)

}
}

}

Inline assemmbly could also be beneficial in cases where the optimizer fails to produce efficient code. Please be aware
that assembly is much more difficult to write because the compiler does not perform checks, so you should use it for
complex things only if you really know what you are doing.

library VectorSum {
// This function is less efficient because the optimizer currently fails to
// remove the bounds checks in array access.
function sumSolidity(uint[] _data) returns (uint o_sum) {

for (uint i = 0; i < _data.length; ++i)
o_sum += _data[i];

}
// We know that we only access the array in bounds, so we can avoid the check.
// 0x20 needs to be added to an array because the first slot contains the
// array length.
function sumAsm(uint[] _data) returns (uint o_sum) {

for (uint i = 0; i < _data.length; ++i)
assembly { o_sum := mload(add(add(_data, 0x20), i)) }

}
}

Syntax

Inline assembly parses comments, literals and identifiers exactly as Solidity, so you can use the usual // and /* */
comments. Inline assembly is initiated by assembly { ... } and inside these curly braces, the following can be used (see

40 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

the later sections for more details)

• literals, i.e. 0x123, 42 or “abc” (strings up to 32 characters)

• opcodes (in “instruction style”), e.g. mload sload dup1 sstore, for a list see below

• opcode in functional style, e.g. add(1, mlod(0))

• labels, e.g. name:

• variable declarations, e.g. let x := 7 or let x := add(y, 3)

• identifiers (externals, labels or assembly-local variables), e.g. jump(name), 3 x add

• assignments (in “instruction style”), e.g. 3 =: x

• assignments in functional style, e.g. x := add(y, 3)

• blocks where local variables are scoped inside, e.g. { let x := 3 { let y := add(x, 1) } }

Opcodes

This document does not want to be a full description of the Ethereum virtual machine, but the following list can be
used as a reference of its opcodes.

If an opcode takes arguments (always from the top of the stack), they are given in parentheses. Note that the order of
arguments can be seed to be reversed in non-functional style (explained below). Opcodes marked with - do not push
an item onto the stack, those marked with * are special and all others push exactly one item onte the stack.

In the following, mem[a...b) signifies the bytes of memory starting at position a up to (excluding) position b and
storage[p] signifies the storage contents at position p.

The opcodes pushi and jumpdest cannot be used directly.

stop - stop execution, identical to return(0,0)

add(x, y) x + y
sub(x, y) x - y
mul(x, y) x * y
div(x, y) x / y
sdiv(x, y) x / y, for signed numbers in two’s complement
mod(x, y) x % y
smod(x, y) x % y, for signed numbers in two’s complement
exp(x, y) x to the power of y
bnot(x) ~x, every bit of x is negated
lt(x, y) 1 if x < y, 0 otherwise
gt(x, y) 1 if x > y, 0 otherwise
slt(x, y) 1 if x < y, 0 otherwise, for signed numbers in two’s complement
sgt(x, y) 1 if x > y, 0 otherwise, for signed numbers in two’s complement
eq(x, y) 1 if x == y, 0 otherwise
not(x) 1 if x == 0, 0 otherwise
and(x, y) bitwise and of x and y
or(x, y) bitwise or of x and y
xor(x, y) bitwise xor of x and y
byte(n, x) nth byte of x, where the most significant byte is the 0th byte
addmod(x, y, m) (x + y) % m with arbitrary precision arithmetics

Continued on next page

3.4. Solidity in Depth 41

Solidity Documentation, Release 0.2.0

Table 3.1 – continued from previous page
mulmod(x, y, m) (x * y) % m with arbitrary precision arithmetics
signextend(i, x) sign extend from (i*8+7)th bit counting from least significant
sha3(p, n) keccak(mem[p...(p+n)))
jump(label) - jump to label / code position
jumpi(label, cond) - jump to label if cond is nonzero
pc current position in code
pop * remove topmost stack slot
dup1 ... dup16 copy ith stack slot to the top (counting from top)
swap1 ... swap1 * swap topmost and ith stack slot below it
mload(p) mem[p..(p+32))
mstore(p, v) - mem[p..(p+32)) := v
mstore8(p, v) - mem[p] := v & 0xff - only modifies a single byte
sload(p) storage[p]
sstore(p, v) - storage[p] := v
msize size of memory, i.e. largest accessed memory index
gas gas still available to execution
address address of the current contract / execution context
balance(a) wei balance at address a
caller call sender (excluding delegatecall)
callvalue wei sent together with the current call
calldataload(p) call data starting from position p (32 bytes)
calldatasize size of call data in bytes
calldatacopy(t, f, s) - copy s bytes from calldata at position f to mem at position t
codesize size of the code of the current contract / execution context
codecopy(t, f, s) - copy s bytes from code at position f to mem at position t
extcodesize(a) size of the code at address a
extcodecopy(a, t, f, s) - like codecopy(t, f, s) but take code at address a
create(v, p, s) create new contract with code mem[p..(p+s)) and send v wei and return the new address
call(g, a, v, in, insize, out, outsize) call contract at address a with input mem[in..(in+insize)] providing g gas and v wei and output area mem[out..(out+outsize)] returting 1 on error (out of gas)
callcode(g, a, v, in, insize, out, outsize) identical to call but only use the code from a and stay in the context of the current contract otherwise
delegatecall(g, a, in, insize, out, outsize) identical to callcode but also keep caller and callvalue
return(p, s) * end execution, return data mem[p..(p+s))
selfdestruct(a) * end execution, destroy current contract and send funds to a
log0(p, s) - log without topics and data mem[p..(p+s))
log1(p, s, t1) - log with topic t1 and data mem[p..(p+s))
log2(p, s, t1, t2) - log with topics t1, t2 and data mem[p..(p+s))
log3(p, s, t1, t2, t3) - log with topics t1, t2, t3 and data mem[p..(p+s))
log4(p, s, t1, t2, t3, t4) - log with topics t1, t2, t3, t4 and data mem[p..(p+s))
origin transaction sender
gasprice gas price of the transaction
blockhash(b) hash of block nr b - only for last 256 blocks excluding current
coinbase current mining beneficiary
timestamp timestamp of the current block in seconds since the epoch
number current block number
difficulty difficulty of the current block
gaslimit block gas limit of the current block

42 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

Literals

You can use integer constants by typing them in decimal or hexadecimal notation and an appropriate PUSHi instruction
will automatically be generated. The following creates code to add 2 and 3 resulting in 5 and then computes the bitwise
and with the string “abc”. Strings are stored left-aligned and cannot be longer than 32 bytes.

assembly { 2 3 add "abc" and }

Functional Style

You can type opcode after opcode in the same way they will end up in bytecode. For example adding 3 to the contents
in memory at position 0x80 would be

3 0x80 mload add 0x80 mstore

As it is often hard to see what the actual arguments for certain opcodes are, Solidity inline assembly also provides a
“functional style” notation where the same code would be written as follows

mstore(0x80, add(mload(0x80), 3))

Functional style and instructional style can be mixed, but any opcode inside a functional style expression has to return
exactly one stack slot (most of the opcodes do).

Note that the order of arguments is reversed in functional-style as opposed to the instruction-style way. If you use
functional-style, the first argument will end up on the stack top.

Access to External Variables

Solidity variables and other identifiers can be accessed by simply using their name. For storage and memory variables,
this will push the address and not the value onto the stack. Also note that non-struct and non-array storage variable
addresses occupy two slots on the stack: One for the address and one for the byte offset inside the storage slot. In
assignments (see below), we can even use local Solidity variables to assign to.

contract c {
uint b;
function f(uint x) returns (uint r) {

assembly {
b pop // remove the offset, we know it is zero
sload
x
mul
=: r // assign to return variable r

}
}

}

Labels

Another problem in EVM assembly is that jump and jumpi use absolute addresses which can change easily. Solidity
inline assembly provides labels to make the use of jumps easier. The following code computes an element in the
Fibonacci series.

3.4. Solidity in Depth 43

Solidity Documentation, Release 0.2.0

{
let n := calldataload(4)
let a := 1
let b := a

loop:
jumpi(loopend, eq(n, 0))
a add swap1
n := sub(n, 1)
jump(loop)

loopend:
mstore(0, a)
return(0, 0x20)

}

Please note that automatically accessing stack variables can only work if the assembler knows the current stack height.
This fails to work if the jump source and target have different stack heights. It is still fine to use such jumps, you
should just not access any stack variables (even assembly variables) in that case.

Furthermore, the stack height analyser goes through the code opcode by opcode (and not according to control flow),
so in the following case, the assembler will have a wrong impression about the stack height at label two:

{
jump(two)
one:

// Here the stack height is 1 (because we pushed 7),
// but the assembler thinks it is 0 because it reads
// from top to bottom.
// Accessing stack variables here will lead to errors.
jump(three)

two:
7 // push something onto the stack
jump(one)

three:
}

Declaring Assembly-Local Variables

You can use the let keyword to declare variables that are only visible in inline assembly and actually only in the current
{...}-block. What happens is that the let instruction will create a new stack slot that is reserved for the variable and
automatically removed again when the end of the block is reached. You need to provide an initial value for the variable
which can be just 0, but it can also be a complex functional-style expression.

contract c {
function f(uint x) returns (uint b) {

assembly {
let v := add(x, 1)
mstore(0x80, v)
{

let y := add(sload(v), 1)
b := y

} // y is "deallocated" here
b := add(b, v)

} // v is "deallocated" here
}

}

44 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

Assignments

Assignments are possible to assembly-local variables and to function-local variables. Take care that when you assign
to variables that point to memory or storage, you will only change the pointer and not the data.

There are two kinds of assignments: Functional-style and instruction-style. For functionaly-style assignments (vari-
able := value), you need to provide a value in a functional-style expression that results in exactly one stack value and
for instruction-style (=: variable), the value is just taken from the stack top. For both ways, the colon points to the
name of the variable.

assembly {
let v := 0 // functional-style assignment as part of variable declaration
let g := add(v, 2)
sload(10)
=: v // instruction style assignment, puts the result of sload(10) into v

}

Things to Avoid

Inline assembly might have a quite high-level look, but it actually is extremely low-level. The only thing the assembler
does for you is re-arranging functional-style opcodes, managing jump labels, counting stack height for variable access
and removing stack slots for assembly-local variables when the end of their block is reached. Especially for those
two last cases, it is important to know that the assembler only counts stack height from top to bottom, not necessarily
following control flow. Furthermore, operations like swap will only swap the contents of the stack but not the location
of variables.

Conventions in Solidity

In contrast to EVM assembly, Solidity knows types which are narrower than 256 bits, e.g. uint24. In order to make
them more efficient, most arithmetic operations just treat them as 256 bit numbers and the higher-order bits are only
cleaned at the point where it is necessary, i.e. just shortly before they are written to memory or before comparisons
are performed. This means that if you access such a variable from within inline assembly, you might have to manually
clean the higher order bits first.

Solidity manages memory in a very simple way: There is a “free memory pointer” at position 0x40 in memory. If you
want to allocate memory, just use the memory from that point on and update the pointer accordingly.

Elements in memory arrays in Solidity always occupy multiples of 32 bytes (yes, this is even true for byte[], but not
for bytes and string). Multi-dimensional memory arrays are pointers to memory arrays. The length of a dynamic array
is stored at the first slot of the array and then only the array elements follow.

Warning: Statically-sized memory arrays do not have a length field, but it will be added soon to allow better
convertibility between statically- and dynamically-sized arrays, so please do not rely on that.

3.4.6 Contracts

Contracts in Solidity are what classes are in object oriented languages. They contain persistent data in state variables
and functions that can modify these variables. Calling a function on a different contract (instance) will perform an
EVM function call and thus switch the context such that state variables are inaccessible.

3.4. Solidity in Depth 45

Solidity Documentation, Release 0.2.0

Creating Contracts

Contracts can be created “from outside” or from Solidity contracts. When a contract is created, its constructor (a
function with the same name as the contract) is executed once.

From web3.js, i.e. the JavaScript API, this is done as follows:

// The json abi array generated by the compiler
var abiArray = [
{
"inputs":[

{"name":"x","type":"uint256"},
{"name":"y","type":"uint256"}

],
"type":"constructor"

},
{
"constant":true,
"inputs":[],
"name":"x",
"outputs":[{"name":"","type":"bytes32"}],
"type":"function"

}
];

var MyContract = web3.eth.contract(abiArray);
// deploy new contract
var contractInstance = MyContract.new(

10,
{from: myAccount, gas: 1000000}

);

Internally, constructor arguments are passed after the code of the contract itself, but you do not have to care about this
if you use web3.js.

If a contract wants to create another contract, the source code (and the binary) of the created contract has to be known
to the creator. This means that cyclic creation dependencies are impossible.

contract OwnedToken {
// TokenCreator is a contract type that is defined below.
// It is fine to reference it as long as it is not used
// to create a new contract.
TokenCreator creator;
address owner;
bytes32 name;
// This is the constructor which registers the
// creator and the assigned name.
function OwnedToken(bytes32 _name) {

owner = msg.sender;
// We do an explicit type conversion from `address`
// to `TokenCreator` and assume that the type of
// the calling contract is TokenCreator, there is
// no real way to check that.
creator = TokenCreator(msg.sender);
name = _name;

}
function changeName(bytes32 newName) {

// Only the creator can alter the name --
// the comparison is possible since contracts

46 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

// are implicitly convertible to addresses.
if (msg.sender == creator) name = newName;

}
function transfer(address newOwner) {

// Only the current owner can transfer the token.
if (msg.sender != owner) return;
// We also want to ask the creator if the transfer
// is fine. Note that this calls a function of the
// contract defined below. If the call fails (e.g.
// due to out-of-gas), the execution here stops
// immediately.
if (creator.isTokenTransferOK(owner, newOwner))

owner = newOwner;
}

}

contract TokenCreator {
function createToken(bytes32 name)

returns (OwnedToken tokenAddress)
{

// Create a new Token contract and return its address.
// From the JavaScript side, the return type is simply
// "address", as this is the closest type available in
// the ABI.
return new OwnedToken(name);

}
function changeName(OwnedToken tokenAddress, bytes32 name) {

// Again, the external type of "tokenAddress" is
// simply "address".
tokenAddress.changeName(name);

}
function isTokenTransferOK(

address currentOwner,
address newOwner

) returns (bool ok) {
// Check some arbitrary condition.
address tokenAddress = msg.sender;
return (sha3(newOwner) & 0xff) == (bytes20(tokenAddress) & 0xff);

}
}

Visibility and Accessors

Since Solidity knows two kinds of function calls (internal ones that do not create an actual EVM call (also called a
“message call”) and external ones that do), there are four types of visibilities for functions and state variables.

Functions can be specified as being external, public, internal or private, where the default is public. For state variables,
external is not possible and the default is internal.

external: External functions are part of the contract interface, which means they can be called from other contracts
and via transactions. An external function f cannot be called internally (i.e. f() does not work, but this.f() works).
External functions are sometimes more efficient when they receive large arrays of data.

public: Public functions are part of the contract interface and can be either called internally or via messages. For
public state variables, an automatic accessor function (see below) is generated.

internal: Those functions and state variables can only be accessed internally (i.e. from within the current contract or
contracts deriving from it), without using this.

3.4. Solidity in Depth 47

Solidity Documentation, Release 0.2.0

private: Private functions and state variables are only visible for the contract they are defined in and not in derived
contracts.

Note: Everything that is inside a contract is visible to all external observers. Making something private only prevents
other contract from accessing and modifying the information, but it will still be visible to the whole world outside of
the blockchain.

The visibility specifier is given after the type for state variables and between parameter list and return parameter list
for functions.

contract c {
function f(uint a) private returns (uint b) { return a + 1; }
function setData(uint a) internal { data = a; }
uint public data;

}

Other contracts can call c.data() to retrieve the value of data in state storage, but are not able to call f. Contracts derived
from c can call setData to alter the value of data (but only in their own state).

Accessor Functions

The compiler automatically creates accessor functions for all public state variables. The contract given below will
have a function called data that does not take any arguments and returns a uint, the value of the state variable data.
The initialization of state variables can be done at declaration.

The accessor functions have external visibility. If the symbol is accessed internally (i.e. without this.), it is a state
variable and if it is accessed externally (i.e. with this.), it is a function.

contract test {
uint public data = 42;

}

The next example is a bit more complex:

contract complex {
struct Data { uint a; bytes3 b; mapping(uint => uint) map; }
mapping(uint => mapping(bool => Data[])) public data;

}

It will generate a function of the following form:

function data(uint arg1, bool arg2, uint arg3) returns (uint a, bytes3 b)
{

a = data[arg1][arg2][arg3].a;
b = data[arg1][arg2][arg3].b;

}

Note that the mapping in the struct is omitted because there is no good way to provide the key for the mapping.

Function Modifiers

Modifiers can be used to easily change the behaviour of functions, for example to automatically check a condition prior
to executing the function. They are inheritable properties of contracts and may be overridden by derived contracts.

48 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

contract owned {
function owned() { owner = msg.sender; }
address owner;

// This contract only defines a modifier but does not use
// it - it will be used in derived contracts.
// The function body is inserted where the special symbol
// "_" in the definition of a modifier appears.
// This means that if the owner calls this function, the
// function is executed and otherwise, an exception is
// thrown.
modifier onlyowner { if (msg.sender != owner) throw; _ }

}
contract mortal is owned {

// This contract inherits the "onlyowner"-modifier from
// "owned" and applies it to the "close"-function, which
// causes that calls to "close" only have an effect if
// they are made by the stored owner.
function close() onlyowner {

selfdestruct(owner);
}

}
contract priced {

// Modifiers can receive arguments:
modifier costs(uint price) { if (msg.value >= price) _ }

}
contract Register is priced, owned {

mapping (address => bool) registeredAddresses;
uint price;
function Register(uint initialPrice) { price = initialPrice; }
function register() costs(price) {

registeredAddresses[msg.sender] = true;
}
function changePrice(uint _price) onlyowner {

price = _price;
}

}

Multiple modifiers can be applied to a function by specifying them in a whitespace-separated list and will be evaluated
in order. Explicit returns from a modifier or function body immediately leave the whole function, while control flow
reaching the end of a function or modifier body continues after the “_” in the preceding modifier. Arbitrary expressions
are allowed for modifier arguments and in this context, all symbols visible from the function are visible in the modifier.
Symbols introduced in the modifier are not visible in the function (as they might change by overriding).

Constants

State variables can be declared as constant (this is not yet implemented for array and struct types and not possible for
mapping types).

contract C {
uint constant x = 32**22 + 8;
string constant text = "abc";

}

This has the effect that the compiler does not reserve a storage slot for these variables and every occurrence is replaced
by their constant value.

The value expression can only contain integer arithmetics.

3.4. Solidity in Depth 49

Solidity Documentation, Release 0.2.0

Fallback Function

A contract can have exactly one unnamed function. This function cannot have arguments and is executed on a call to
the contract if none of the other functions matches the given function identifier (or if no data was supplied at all).

Furthermore, this function is executed whenever the contract receives plain Ether (witout data). In such a context,
there is very little gas available to the function call, so it is important to make fallback functions as cheap as possible.

contract Test {
function() { x = 1; }
uint x;

}

// This contract rejects any Ether sent to it. It is good
// practise to include such a function for every contract
// in order not to loose Ether.
contract Rejector {

function() { throw; }
}

contract Caller {
function callTest(address testAddress) {

Test(testAddress).call(0xabcdef01); // hash does not exist
// results in Test(testAddress).x becoming == 1.
Rejector r = Rejector(0x123);
r.send(2 ether);
// results in r.balance == 0

}
}

Events

Events allow the convenient usage of the EVM logging facilities, which in turn can be used to “call” JavaScript
callbacks in the user interface of a dapp, which listen for these events.

Events are inheritable members of contracts. When they are called, they cause the arguments to be stored in the
transaction’s log - a special data structure in the blockchain. These logs are associated with the address of the contract
and will be incorporated into the blockchain and stay there as long as a block is accessible (forever as of Frontier and
Homestead, but this might change with Serenity). Log and event data is not accessible from within contracts (not even
from the contract that created a log).

SPV proofs for logs are possible, so if an external entity supplies a contract with such a proof, it can check that the
log actually exists inside the blockchain (but be aware of the fact that ultimately, also the block headers have to be
supplied because the contract can only see the last 256 block hashes).

Up to three parameters can receive the attribute indexed which will cause the respective arguments to be searched for:
It is possible to filter for specific values of indexed arguments in the user interface.

If arrays (including string and bytes) are used as indexed arguments, the sha3-hash of it is stored as topic instead.

The hash of the signature of the event is one of the topics except if you declared the event with anonymous specifier.
This means that it is not possible to filter for specific anonymous events by name.

All non-indexed arguments will be stored in the data part of the log.

contract ClientReceipt {
event Deposit(

address indexed _from,
bytes32 indexed _id,

50 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

uint _value
);
function deposit(bytes32 _id) {

// Any call to this function (even deeply nested) can
// be detected from the JavaScript API by filtering
// for `Deposit` to be called.
Deposit(msg.sender, _id, msg.value);

}
}

The use in the JavaScript API would be as follows:

var abi = /* abi as generated by the compiler */;
var ClientReceipt = web3.eth.contract(abi);
var clientReceipt = ClientReceipt.at(0x123 /* address */);

var event = clientReceipt.Deposit();

// watch for changes
event.watch(function(error, result){

// result will contain various information
// including the argumets given to the Deposit
// call.
if (!error)

console.log(result);
});

// Or pass a callback to start watching immediately
var event = clientReceipt.Deposit(function(error, result) {

if (!error)
console.log(result);

});

Low-Level Interface to Logs

It is also possible to access the low-level interface to the logging mechanism via the functions log0, log1, log2, log3
and log4. logi takes i + 1 parameter of type bytes32, where the first argument will be used for the data part of the log
and the others as topics. The event call above can be performed in the same way as

log3(
msg.value,
0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20,
msg.sender,
_id

);

where the long hexadecimal number is equal to sha3(“Deposit(address,hash256,uint256)”), the signature of the event.

Additional Resources for Understanding Events

• Javascript documentation

• Example usage of events

• How to access them in js

3.4. Solidity in Depth 51

https://github.com/ethereum/wiki/wiki/JavaScript-API#contract-events
https://github.com/debris/smart-exchange/blob/master/lib/contracts/SmartExchange.sol
https://github.com/debris/smart-exchange/blob/master/lib/exchange_transactions.js

Solidity Documentation, Release 0.2.0

Inheritance

Solidity supports multiple inheritance by copying code including polymorphism.

All function calls are virtual, which means that the most derived function is called, except when the contract is explic-
itly given.

Even if a contract inherits from multiple other contracts, only a single contract is created on the blockchain, the code
from the base contracts is always copied into the final contract.

The general inheritance system is very similar to Python’s, especially concerning multiple inheritance.

Details are given in the following example.

contract owned {
function owned() { owner = msg.sender; }
address owner;

}

// Use "is" to derive from another contract. Derived
// contracts can access all non-private members including
// internal functions and state variables. These cannot be
// accessed externally via `this`, though.
contract mortal is owned {

function kill() {
if (msg.sender == owner) selfdestruct(owner);

}
}

// These abstract contracts are only provided to make the
// interface known to the compiler. Note the function
// without body. If a contract does not implement all
// functions it can only be used as an interface.
contract Config {

function lookup(uint id) returns (address adr);
}
contract NameReg {

function register(bytes32 name);
function unregister();

}

// Multiple inheritance is possible. Note that "owned" is
// also a base class of "mortal", yet there is only a single
// instance of "owned" (as for virtual inheritance in C++).
contract named is owned, mortal {

function named(bytes32 name) {
Config config = Config(0xd5f9d8d94886e70b06e474c3fb14fd43e2f23970);
NameReg(config.lookup(1)).register(name);

}

// Functions can be overridden, both local and
// message-based function calls take these overrides
// into account.
function kill() {

if (msg.sender == owner) {
Config config = Config(0xd5f9d8d94886e70b06e474c3fb14fd43e2f23970);
NameReg(config.lookup(1)).unregister();
// It is still possible to call a specific
// overridden function.
mortal.kill();

52 Chapter 3. Contents

https://docs.python.org/3/tutorial/classes.html#inheritance

Solidity Documentation, Release 0.2.0

}
}

}

// If a constructor takes an argument, it needs to be
// provided in the header (or modifier-invocation-style at
// the constructor of the derived contract (see below)).
contract PriceFeed is owned, mortal, named("GoldFeed") {

function updateInfo(uint newInfo) {
if (msg.sender == owner) info = newInfo;

}

function get() constant returns(uint r) { return info; }

uint info;
}

Note that above, we call mortal.kill() to “forward” the destruction request. The way this is done is problematic, as
seen in the following example:

contract mortal is owned {
function kill() {

if (msg.sender == owner) selfdestruct(owner);
}

}
contract Base1 is mortal {

function kill() { /* do cleanup 1 */ mortal.kill(); }
}
contract Base2 is mortal {

function kill() { /* do cleanup 2 */ mortal.kill(); }
}
contract Final is Base1, Base2 {
}

A call to Final.kill() will call Base2.kill as the most derived override, but this function will bypass Base1.kill, basically
because it does not even know about Base1. The way around this is to use super:

contract mortal is owned {
function kill() {

if (msg.sender == owner) selfdestruct(owner);
}

}
contract Base1 is mortal {

function kill() { /* do cleanup 1 */ super.kill(); }
}
contract Base2 is mortal {

function kill() { /* do cleanup 2 */ super.kill(); }
}
contract Final is Base2, Base1 {
}

If Base1 calls a function of super, it does not simply call this function on one of its base contracts, it rather calls
this function on the next base contract in the final inheritance graph, so it will call Base2.kill() (note that the final
inheritance sequence is – starting with the most derived contract: Final, Base1, Base2, mortal, owned). The actual
function that is called when using super is not known in the context of the class where it is used, although its type is
known. This is similar for ordinary virtual method lookup.

3.4. Solidity in Depth 53

Solidity Documentation, Release 0.2.0

Arguments for Base Constructors

Derived contracts need to provide all arguments needed for the base constructors. This can be done at two places:

contract Base {
uint x;
function Base(uint _x) { x = _x; }

}
contract Derived is Base(7) {

function Derived(uint _y) Base(_y * _y) {
}

}

Either directly in the inheritance list (is Base(7)) or in the way a modifier would be invoked as part of the header of the
derived constructor (Base(_y * _y)). The first way to do it is more convenient if the constructor argument is a constant
and defines the behaviour of the contract or describes it. The second way has to be used if the constructor arguments
of the base depend on those of the derived contract. If, as in this silly example, both places are used, the modifier-style
argument takes precedence.

Multiple Inheritance and Linearization

Languages that allow multiple inheritance have to deal with several problems, one of them being the Diamond Problem.
Solidity follows the path of Python and uses “C3 Linearization” to force a specific order in the DAG of base classes.
This results in the desirable property of monotonicity but disallows some inheritance graphs. Especially, the order in
which the base classes are given in the is directive is important. In the following code, Solidity will give the error
“Linearization of inheritance graph impossible”.

contract X {}
contract A is X {}
contract C is A, X {}

The reason for this is that C requests X to override A (by specifying A, X in this order), but A itself requests to override
X, which is a contradiction that cannot be resolved.

A simple rule to remember is to specify the base classes in the order from “most base-like” to “most derived”.

Abstract Contracts

Contract functions can lack an implementation as in the following example (note that the function declaration header
is terminated by ;):

contract feline {
function utterance() returns (bytes32);

}

Such contracts cannot be compiled (even if they contain implemented functions alongside non-implemented func-
tions), but they can be used as base contracts:

contract Cat is feline {
function utterance() returns (bytes32) { return "miaow"; }

}

If a contract inherits from an abstract contract and does not implement all non-implemented functions by overriding,
it will itself be abstract.

54 Chapter 3. Contents

https://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem
https://en.wikipedia.org/wiki/C3_linearization

Solidity Documentation, Release 0.2.0

Libraries

Libraries are similar to contracts, but their purpose is that they are deployed only once at a specific address and their
code is reused using the DELEGATECALL (CALLCODE until homestead) feature of the EVM. This means that if
library functions are called, their code is executed in the context of the calling contract, i.e. this points to the calling
contract and especially the storage from the calling contract can be accessed. As a library is an isolated piece of source
code, it can only access state variables of the calling contract if they are explicitly supplied (it would have to way to
name them, otherwise).

The following example illustrates how to use libraries (but be sure to check out using for for a more advanced example
to implement a set).

library Set {
// We define a new struct datatype that will be used to
// hold its data in the calling contract.
struct Data { mapping(uint => bool) flags; }
// Note that the first parameter is of type "storage
// reference" and thus only its storage address and not
// its contents is passed as part of the call. This is a
// special feature of library functions. It is idiomatic
// to call the first parameter 'self', if the function can
// be seen as a method of that object.
function insert(Data storage self, uint value)

returns (bool)
{

if (self.flags[value])
return false; // already there

self.flags[value] = true;
return true;

}
function remove(Data storage self, uint value)

returns (bool)
{

if (!self.flags[value])
return false; // not there

self.flags[value] = false;
return true;

}
function contains(Data storage self, uint value)

returns (bool)
{

return self.flags[value];
}

}
contract C {

Set.Data knownValues;
function register(uint value) {

// The library functions can be called without a
// specific instance of the library, since the
// "instance" will be the current contract.
if (!Set.insert(knownValues, value))

throw;
}
// In this contract, we can also directly access knownValues.flags, if we want.

}

Of course, you do not have to follow this way to use libraries - they can also be used without defining struct data types,
functions also work without any storage reference parameters, can have multiple storage reference parameters and in
any position.

3.4. Solidity in Depth 55

Solidity Documentation, Release 0.2.0

The calls to Set.contains, Set.insert and Set.remove are all compiled as calls (DELEGATECALL‘s) to an external
contract/library. If you use libraries, take care that an actual external function call is performed. ‘msg.sender,
msg.value and this will retain their values in this call, though (prior to Homestead, msg.sender and msg.value changed,
though).

As the compiler cannot know where the library will be deployed at, these addresses have to be filled into the final
bytecode by a linker (see [Using the Commandline Compiler](#using-the-commandline-compiler) on how to use the
commandline compiler for linking). If the addresses are not given as arguments to the compiler, the compiled hex code
will contain placeholders of the form __Set______ (where Set is the name of the library). The address can be filled
manually by replacing all those 40 symbols by the hex encoding of the address of the library contract.

Restrictions for libraries in comparison to contracts:

• no state variables

• cannot inherit nor be inherited

(these might be lifted at a later point)

Using For

The directive using A for B; can be used to attach library functions (from the library A) to any type (B). These functions
will receive the object they are called on as their first parameter (like the self variable in Python).

The effect of using A for *; is that the functions from the library A are attached to any type.

In both situations, all functions, even those where the type of the first parameter does not match the type of the object,
are attached. The type is checked at the point the function is called and function overload resolution is performed.

The using A for B; directive is active for the current scope, which is limited to a contract for now but will be lifted to
the global scope later, so that by including a module, its data types including library functions are available without
having to add further code.

Let us rewrite the set example from the Libraries in this way:

// This is the same code as before, just without comments
library Set {

struct Data { mapping(uint => bool) flags; }
function insert(Data storage self, uint value)

returns (bool)
{

if (self.flags[value])
return false; // already there

self.flags[value] = true;
return true;

}
function remove(Data storage self, uint value)

returns (bool)
{

if (!self.flags[value])
return false; // not there

self.flags[value] = false;
return true;

}
function contains(Data storage self, uint value)

returns (bool)
{

return self.flags[value];
}

}

56 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

contract C {
using Set for Set.Data; // this is the crucial change
Set.Data knownValues;
function register(uint value) {

// Here, all variables of type Set.Data have
// corresponding member functions.
// The following function call is identical to
// Set.insert(knownValues, value)
if (!knownValues.insert(value))

throw;
}

}

It is also possible to extend elementary types in that way:

library Search {
function indexOf(uint[] storage self, uint value) {

for (uint i = 0; i < self.length; i++)
if (self[i] == value) return i;

return uint(-1);
}

}

contract C {
using Search for uint[];
uint[] data;
function append(uint value) {

data.push(value);
}
function replace(uint _old, uint _new) {

// This performs the library function call
uint index = data.find(_old);
if (index == -1)

data.push(_new);
else

data[index] = _new;
}

}

Note that all library calls are actual EVM function calls. This means that if you pass memory or value types, a copy
will be performed, even of the self variable. The only situation where no copy will be performed is when storage
reference variables are used.

3.4.7 Miscellaneous

Layout of State Variables in Storage

Statically-sized variables (everything except mapping and dynamically-sized array types) are laid out contiguously in
storage starting from position 0. Multiple items that need less than 32 bytes are packed into a single storage slot if
possible, according to the following rules:

• The first item in a storage slot is stored lower-order aligned.

• Elementary types use only that many bytes that are necessary to store them.

• If an elementary type does not fit the remaining part of a storage slot, it is moved to the next storage slot.

3.4. Solidity in Depth 57

Solidity Documentation, Release 0.2.0

• Structs and array data always start a new slot and occupy whole slots (but items inside a struct or array are
packed tightly according to these rules).

The elements of structs and arrays are stored after each other, just as if they were given explicitly.

Due to their unpredictable size, mapping and dynamically-sized array types use a sha3 computation to find the starting
position of the value or the array data. These starting positions are always full stack slots.

The mapping or the dynamic array itself occupies an (unfilled) slot in storage at some position p according to the above
rule (or by recursively applying this rule for mappings to mappings or arrays of arrays). For a dynamic array, this slot
stores the number of elements in the array (byte arrays and strings are an exception here, see below). For a mapping,
the slot is unused (but it is needed so that two equal mappings after each other will use a different hash distribution).
Array data is located at sha3(p) and the value corresponding to a mapping key k is located at sha3(k . p) where . is
concatenation. If the value is again a non-elementary type, the positions are found by adding an offset of sha3(k . p).

bytes and string store their data in the same slot where also the length is stored if they are short. In particular: If the
data is at most 31 bytes long, it is stored in the higher-order bytes (left aligned) and the lowest-order byte stores length
* 2. If it is longer, the main slot stores length * 2 + 1 and the data is stored as usual in sha3(slot).

So for the following contract snippet:

contract c {
struct S { uint a; uint b; }
uint x;
mapping(uint => mapping(uint => S)) data;

}

The position of data[4][9].b is at sha3(uint256(9) . sha3(uint256(4) . uint256(1))) + 1.

Esoteric Features

There are some types in Solidity’s type system that have no counterpart in the syntax. One of these types are the types
of functions. But still, using var it is possible to have local variables of these types:

contract FunctionSelector {
function select(bool useB, uint x) returns (uint z) {
var f = a;
if (useB) f = b;
return f(x);

}
function a(uint x) returns (uint z) {
return x * x;

}
function b(uint x) returns (uint z) {
return 2 * x;

}
}

Calling select(false, x) will compute x * x and select(true, x) will compute 2 * x.

Internals - the Optimizer

The Solidity optimizer operates on assembly, so it can be and also is used by other languages. It splits the sequence
of instructions into basic blocks at JUMPs and JUMPDESTs. Inside these blocks, the instructions are analysed and
every modification to the stack, to memory or storage is recorded as an expression which consists of an instruction
and a list of arguments which are essentially pointers to other expressions. The main idea is now to find expressions
that are always equal (on every input) and combine them into an expression class. The optimizer first tries to find each
new expression in a list of already known expressions. If this does not work, the expression is simplified according

58 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

to rules like constant + constant = sum_of_constants or X * 1 = X. Since this is done recursively, we can also apply
the latter rule if the second factor is a more complex expression where we know that it will always evaluate to one.
Modifications to storage and memory locations have to erase knowledge about storage and memory locations which
are not known to be different: If we first write to location x and then to location y and both are input variables, the
second could overwrite the first, so we actually do not know what is stored at x after we wrote to y. On the other hand,
if a simplification of the expression x - y evaluates to a non-zero constant, we know that we can keep our knowledge
about what is stored at x.

At the end of this process, we know which expressions have to be on the stack in the end and have a list of modifications
to memory and storage. This information is stored together with the basic blocks and is used to link them. Furthermore,
knowledge about the stack, storage and memory configuration is forwarded to the next block(s). If we know the targets
of all JUMP and JUMPI instructions, we can build a complete control flow graph of the program. If there is only one
target we do not know (this can happen as in principle, jump targets can be computed from inputs), we have to erase
all knowledge about the input state of a block as it can be the target of the unknown JUMP. If a JUMPI is found whose
condition evaluates to a constant, it is transformed to an unconditional jump.

As the last step, the code in each block is completely re-generated. A dependency graph is created from the expressions
on the stack at the end of the block and every operation that is not part of this graph is essentially dropped. Now code
is generated that applies the modifications to memory and storage in the order they were made in the original code
(dropping modifications which were found not to be needed) and finally, generates all values that are required to be on
the stack in the correct place.

These steps are applied to each basic block and the newly generated code is used as replacement if it is smaller. If a
basic block is split at a JUMPI and during the analysis, the condition evaluates to a constant, the JUMPI is replaced
depending on the value of the constant, and thus code like

var x = 7;
data[7] = 9;
if (data[x] != x + 2)

return 2;
else

return 1;

is simplified to code which can also be compiled from

data[7] = 9;
return 1;

even though the instructions contained a jump in the beginning.

Using the Commandline Compiler

One of the build targets of the Solidity repository is solc, the solidity commandline compiler. Using solc –help provides
you with an explanation of all options. The compiler can produce various outputs, ranging from simple binaries and
assembly over an abstract syntax tree (parse tree) to estimations of gas usage. If you only want to compile a single
file, you run it as solc –bin sourceFile.sol and it will print the binary. Before you deploy your contract, activate the
optimizer while compiling using solc –optimize –bin sourceFile.sol. If you want to get some of the more advanced
output variants of solc, it is probably better to tell it to output everything to separate files using solc -o outputDirectory
–bin –ast –asm sourceFile.sol.

The commandline compiler will automatically read imported files from the filesystem, but it is also possible to provide
path redirects using prefix=path in the following way:

solc github.com/ethereum/dapp-bin/=/usr/local/lib/dapp-bin/ =/usr/local/lib/fallback file.sol

This essentially instructs the compiler to search for anything starting with github.com/ethereum/dapp-bin/ under
/usr/local/lib/dapp-bin and if it does not find the file there, it will look at /usr/local/lib/fallback (the empty prefix
always matches). solc will not read files from the filesystem that lie outside of the remapping targets and outside of

3.4. Solidity in Depth 59

Solidity Documentation, Release 0.2.0

the directories where explicitly specified source files reside, so things like import “/etc/passwd”; only work if you add
=/ as a remapping.

If there are multiple matches due to remappings, the one with the longest common prefix is selected.

If your contracts use [libraries](#libraries), you will notice that the bytecode contains substrings of the form __Li-
braryName______. You can use solc as a linker meaning that it will insert the library addresses for you at those
points:

Either add –libraries “Math:0x12345678901234567890 Heap:0xabcdef0123456” to your command to provide an
address for each library or store the string in a file (one library per line) and run solc using –libraries fileName.

If solc is called with the option –link, all input files are interpreted to be unlinked binaries (hex-encoded) in the
__LibraryName____-format given above and are linked in-place (if the input is read from stdin, it is written to stdout).
All options except –libraries are ignored (including -o) in this case.

Tips and Tricks

• Use delete on arrays to delete all its elements.

• Use shorter types for struct elements and sort them such that short types are grouped together. This can lower
the gas costs as multiple SSTORE operations might be combined into a single (SSTORE costs 5000 or 20000
gas, so this is what you want to optimise). Use the gas price estimator (with optimiser enabled) to check!

• Make your state variables public - the compiler will create getters for you for free.

• If you end up checking conditions on input or state a lot at the beginning of your functions, try using Function
Modifiers.

• If your contract has a function called send but you want to use the built-in send-function, use ad-
dress(contractVariable).send(amount).

• If you do not want your contracts to receive ether when called via send, you can add a throwing fallback function
function() { throw; }.

• Initialise storage structs with a single assignment: x = MyStruct({a: 1, b: 2});

Pitfalls

Unfortunately, there are some subtleties the compiler does not yet warn you about.

• In for (var i = 0; i < arrayName.length; i++) { ... }, the type of i will be uint8, because this is the smallest type
that is required to hold the value 0. If the array has more than 255 elements, the loop will not terminate.

Cheatsheet

Global Variables

• block.coinbase (address): current block miner’s address

• block.difficulty (uint): current block difficulty

• block.gaslimit (uint): current block gaslimit

• block.number (uint): current block number

• block.blockhash (function(uint) returns (bytes32)): hash of the given block - only works for 256 most recent
blocks

60 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

• block.timestamp (uint): current block timestamp

• msg.data (bytes): complete calldata

• msg.gas (uint): remaining gas

• msg.sender (address): sender of the message (current call)

• msg.value (uint): number of wei sent with the message

• now (uint): current block timestamp (alias for block.timestamp)

• tx.gasprice (uint): gas price of the transaction

• tx.origin (address): sender of the transaction (full call chain)

• sha3(...) returns (bytes32): compute the Ethereum-SHA3 hash of the (tightly packed) arguments

• sha256(...) returns (bytes32): compute the SHA256 hash of the (tightly packed) arguments

• ripemd160(...) returns (bytes20): compute RIPEMD of 256 the (tightly packed) arguments

• ecrecover(bytes32, uint8, bytes32, bytes32) returns (address): recover public key from elliptic curve signature

• addmod(uint x, uint y, uint k) returns (uint): compute (x + y) % k where the addition is performed with arbitrary
precision and does not wrap around at 2**256.

• mulmod(uint x, uint y, uint k) returns (uint): compute (x * y) % k where the multiplication is performed with
arbitrary precision and does not wrap around at 2**256.

• this (current contract’s type): the current contract, explicitly convertible to address

• super: the contract one level higher in the inheritance hierarchy

• selfdestruct(address): destroy the current contract, sending its funds to the given address

• <address>.balance: balance of the address in Wei

• <address>.send(uint256) returns (bool): send given amount of Wei to address, returns false on failure.

Function Visibility Specifiers

function myFunction() <visibility specifier> returns (bool) {
return true;

}

• public: visible externally and internally (creates accessor function for storage/state variables)

• private: only visible in the current contract

• external: only visible externally (only for functions) - i.e. can only be message-called (via this.fun)

• internal: only visible internally

Modifiers

• constant for state variables: Disallows assignment (except initialisation), does not occupy storage slot.

• constant for functions: Disallows modification of state - this is not enforced yet.

• anonymous for events: Does not store event signature as topic.

• indexed for event parameters: Stores the parameter as topic.

3.4. Solidity in Depth 61

Solidity Documentation, Release 0.2.0

3.5 Style Guide

3.5.1 Introduction

This guide is intended to provide coding conventions for writing solidity code. This guide should be thought of as
an evolving document that will change over time as useful conventions are found and old conventions are rendered
obsolete.

Many projects will implement their own style guides. In the event of conflicts, project specific style guides take
precedence.

The structure and many of the recommendations within this style guide were taken from python’s pep8 style guide.

The goal of this guide is not to be the right way or the best way to write solidity code. The goal of this guide is
consistency. A quote from python’s pep8 captures this concept well.

A style guide is about consistency. Consistency with this style guide is important. Consistency within
a project is more important. Consistency within one module or function is most important. But most
importantly: know when to be inconsistent – sometimes the style guide just doesn’t apply. When in
doubt, use your best judgment. Look at other examples and decide what looks best. And don’t hesitate to
ask!

3.5.2 Code Layout

Indentation

Use 4 spaces per indentation level.

Tabs or Spaces

Spaces are the preferred indentation method.

Mixing tabs and spaces should be avoided.

Blank Lines

Surround top level declarations in solidity source with two blank lines.

Yes:

contract A {
...

}

contract B {
...

}

contract C {
...

}

No:

62 Chapter 3. Contents

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/#a-foolish-consistency-is-the-hobgoblin-of-little-minds

Solidity Documentation, Release 0.2.0

contract A {
...

}
contract B {

...
}

contract C {
...

}

Within a contract surround function declarations with a single blank line.

Blank lines may be omitted between groups of related one-liners (such as stub functions for an abstract contract)

Yes:

contract A {
function spam();
function ham();

}

contract B is A {
function spam() {

...
}

function ham() {
...

}
}

No:

contract A {
function spam() {

...
}
function ham() {

...
}

}

Source File Encoding

UTF-8 or ASCII encoding is preferred.

Imports

Import statements should always be placed at the top of the file.

Yes:

import "owned";

contract A {

3.5. Style Guide 63

Solidity Documentation, Release 0.2.0

...
}

contract B is owned {
...

}

No:

contract A {
...

}

import "owned";

contract B is owned {
...

}

Whitespace in Expressions

Avoid extraneous whitespace in the following situations:

• Immediately inside parenthesis, brackets or braces.

Yes: spam(ham[1], Coin({name: “ham”}));

No: spam(ham[1], Coin({ name: “ham” }));

• Immediately before a comma, semicolon:

Yes: function spam(uint i, Coin coin);

No: function spam(uint i , Coin coin) ;

• More than one space around an assignment or other operator to align with another:

Yes:

x = 1;
y = 2;
long_variable = 3;

No:

x = 1;
y = 2;
long_variable = 3;

Control Structures

The braces denoting the body of a contract, library, functions and structs should:

• open on the same line as the declaration

• close on their own line at the same indentation level as the beginning of the declaration.

• The opening brace should be proceeded by a single space.

64 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

Yes:

contract Coin {
struct Bank {

address owner;
uint balance;

}
}

No:

contract Coin
{

struct Bank {
address owner;
uint balance;

}
}

The same recommendations apply to the control structures if, else, while, and for.

Additionally there should be a single space between the control structures if, while, and for and the parenthetic block
representing the conditional, as well as a single space between the conditional parenthetic block and the opening brace.

Yes:

if (...) {
...

}

for (...) {
...

}

No:

if (...)
{

...
}

while(...){
}

for (...) {
...;}

For control structures who’s body contains a single statement, omitting the braces is ok if the statement is contained
on a single line.

Yes:

if (x < 10)
x += 1;

No:

if (x < 10)
someArray.push(Coin({

name: 'spam',
value: 42

}));

3.5. Style Guide 65

Solidity Documentation, Release 0.2.0

For if blocks which have an else or else if clause, the else should be placed on it’s own line following the previous
closing parenthesis. The parenthesis for the else block should follow the same rules as the other conditional control
structures.

Yes:

if (x < 3) {
x += 1;

}
else {

x -= 1;
}

if (x < 3)
x += 1;

else
x -= 1;

No:

if (x < 3) {
x += 1;

} else {
x -= 1;

}

Function Declaration

For short function declarations, it is recommended for the opening brace of the function body to be kept on the same
line as the function declaration.

The closing brace should be at the same indentation level as the function declaration.

The opening brace should be preceeded by a single space.

Yes:

function increment(uint x) returns (uint) {
return x + 1;

}

function increment(uint x) public onlyowner returns (uint) {
return x + 1;

}

No:

function increment(uint x) returns (uint)
{

return x + 1;
}

function increment(uint x) returns (uint){
return x + 1;

}

66 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

function increment(uint x) returns (uint) {
return x + 1;
}

function increment(uint x) returns (uint) {
return x + 1;}

The visibility modifiers for a function should come before any custom modifiers.

Yes:

function kill() public onlyowner {
selfdestruct(owner);

}

No:

function kill() onlyowner public {
selfdestruct(owner);

}

For long function declarations, it is recommended to drop each arguent onto it’s own line at the same indentation level
as the function body. The closing parenthesis and opening bracket should be placed on their own line as well at the
same indentation level as the function declaration.

Yes:

function thisFunctionHasLotsOfArguments(
address a,
address b,
address c,
address d,
address e,
address f,

) {
do_something;

}

No:

function thisFunctionHasLotsOfArguments(address a, address b, address c,
address d, address e, address f) {
do_something;

}

function thisFunctionHasLotsOfArguments(address a,
address b,
address c,
address d,
address e,
address f) {

do_something;
}

function thisFunctionHasLotsOfArguments(
address a,
address b,
address c,
address d,
address e,

3.5. Style Guide 67

Solidity Documentation, Release 0.2.0

address f) {
do_something;

}

If a long function declaration has modifiers, then each modifier should be dropped to it’s own line.

Yes:

function thisFunctionNameIsReallyLong(address x, address y, address z)
public
onlyowner
priced
returns (address)

{
do_something;

}

function thisFunctionNameIsReallyLong(
address x,
address y,
address z,

)
public
onlyowner
priced
returns (address)

{
do_something;

}

No:

function thisFunctionNameIsReallyLong(address x, address y, address z)
public
onlyowner
priced
returns (address) {

do_something;
}

function thisFunctionNameIsReallyLong(address x, address y, address z)
public onlyowner priced returns (address)

{
do_something;

}

function thisFunctionNameIsReallyLong(address x, address y, address z)
public
onlyowner
priced
returns (address) {
do_something;

}

For constructor functions on inherited contracts who’s bases require arguments, it is recommended to drop the base
constructors onto new lines in the same manner as modifiers if the function declaration is long or hard to read.

Yes:

68 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

contract A is B, C, D {
function A(uint param1, uint param2, uint param3, uint param4, uint param5)

B(param1)
C(param2, param3)
D(param4)

{
// do something with param5

}
}

No:

contract A is B, C, D {
function A(uint param1, uint param2, uint param3, uint param4, uint param5)
B(param1)
C(param2, param3)
D(param4)
{

// do something with param5
}

}

contract A is B, C, D {
function A(uint param1, uint param2, uint param3, uint param4, uint param5)

B(param1)
C(param2, param3)
D(param4) {
// do something with param5

}
}

These guidelines for function declarations are intended to improve readability. Authors should use their best judgement
as this guide does not try to cover all possible permutations for function declarations.

Mappings

TODO

Variable Declarations

Declarations of array variables should not have a space between the type and the brackets.

Yes:

uint[] x;

No:

uint [] x;

Other Recommendations

• Surround operators with a single space on either side.

Yes:

3.5. Style Guide 69

Solidity Documentation, Release 0.2.0

x = 3;
x = 100 / 10;
x += 3 + 4;
x |= y && z;

No:

x=3;
x = 100/10;
x += 3+4;
x |= y&&z;

• Operators with a higher priority than others can exclude surrounding whitespace in order to denote precedence.
This is meant to allow for improved readability for complex statement. You should always use the same amount
of whitespace on either side of an operator:

Yes:

x = 2**3 + 5;
x = 2*y + 3*z;
x = (a+b) * (a-b);

No:

x = 2** 3 + 5;
x = y+z;
x +=1;

3.5.3 Naming Conventions

Naming conventions are powerful when adopted and used broadly. The use of different conventions can convey
significant meta information that would otherwise not be immediately available.

The naming recommendations given here are intended to improve the readability, and thus they are not rules, but rather
guidelines to try and help convey the most information through the names of things.

Lastly, consistency within a codebase should always supercede any conventions outlined in this document.

Naming Styles

To avoid confusion, the following names will be used to refer to different naming styles.

• b (single lowercase letter)

• B (single uppercase letter)

• lowercase

• lower_case_with_underscores

• UPPERCASE

• UPPER_CASE_WITH_UNDERSCORES

• CapitalizedWords (or CapWords)

• mixedCase (differs from CapitalizedWords by initial lowercase character!)

• Capitalized_Words_With_Underscores

70 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

Note: When using abbreviations in CapWords, capitalize all the letters of the abbreviation. Thus HTTPServerError
is better than HttpServerError.

Names to Avoid

• l - Lowercase letter el

• O - Uppercase letter oh

• I - Uppercase letter eye

Never use any of these for single letter variable names. They are often indistinguishable from the numerals one and
zero.

Contract and Library Names

Contracts should be named using the CapWords style.

Events

Events should be named using the CapWords style.

Function Names

Functions should use mixedCase.

Function Arguments

When writing library functions that operate on a custom struct, the struct should be the first argument and should
always be named self.

Local and State Variables

Use mixedCase.

Constants

Constants should be named with all capital letters with underscores separating words. (for example:MAX_BLOCKS)

Modifiers

Function modifiers should use lowercase words separated by underscores.

Avoiding Collisions

• single_trailing_underscore_

This convention is suggested when the desired name collides with that of a built-in or otherwise reserved name.

3.5. Style Guide 71

Solidity Documentation, Release 0.2.0

General Recommendations

TODO

3.6 Common Patterns

3.6.1 Restricting Access

Restricting access is a common pattern for contracts. Note that you can never restrict any human or computer from
reading the content of your transactions or your contract’s state. You can make it a bit harder by using encryption, but
if your contract is supposed to read the data, so will everyone else.

You can restrict read access to your contract’s state by other contracts. That is actually the default unless you declare
make your state variables public.

Furthermore, you can restrict who can make modifications to your contract’s state or call your contract’s functions and
this is what this page is about.

The use of function modifiers makes these restrictions highly readable.

contract AccessRestriction {
// These will be assigned at the construction
// phase, where `msg.sender` is the account
// creating this contract.
address public owner = msg.sender;
uint public creationTime = now;

// Modifiers can be used to change
// the body of a function.
// If this modifier is used, it will
// prepend a check that only passes
// if the function is called from
// a certain address.
modifier onlyBy(address _account)
{

if (msg.sender != _account)
throw;

// Do not forget the "_"! It will
// be replaced by the actual function
// body when the modifier is invoked.
_

}

/// Make `_newOwner` the new owner of this
/// contract.
function changeOwner(address _newOwner)

onlyBy(owner)
{

owner = _newOwner;
}

modifier onlyAfter(uint _time) {
if (now < _time) throw;
_

}

/// Erase ownership information.

72 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

/// May only be called 6 weeks after
/// the contract has been created.
function disown()

onlyBy(owner)
onlyAfter(creationTime + 6 weeks)

{
delete owner;

}

// This modifier requires a certain
// fee being associated with a function call.
// If the caller sent too much, he or she is
// refunded, but only after the function body.
// This is dangerous, because if the function
// uses `return` explicitly, this will not be
// done!
modifier costs(uint _amount) {

if (msg.value < _amount)
throw;

_
if (msg.value > _amount)

msg.sender.send(_amount - msg.value);
}

function forceOwnerChange(address _newOwner)
costs(200 ether)

{
owner = _newOwner;
// just some example condition
if (uint(owner) & 0 == 1)

// in this case, overpaid fees will not
// be refunded
return;

// otherwise, refund overpaid fees
}

}

A more specialised way in which access to function calls can be restricted will be discussed in the next example.

3.6.2 State Machine

Contracts often act as a state machine, which means that they have certain stages in which they behave differently or
in which different functions can be called. A function call often ends a stage and transitions the contract into the next
stage (especially if the contract models interaction). It is also common that some stages are automatically reached at
a certain point in time.

An example for this is a blind auction contract which starts in the stage “accepting blinded bids”, then transitions to
“revealing bids” which is ended by “determine auction autcome”.

Function modifiers can be used in this situation to model the states and guard against incorrect usage of the contract.

Example

In the following example, the modifier atStage ensures that the function can only be called at a certain stage.

Automatic timed transitions are handled by the modifier timeTransitions, which should be used for all functions.

3.6. Common Patterns 73

Solidity Documentation, Release 0.2.0

Note: Modifier Order Matters. If atStage is combined with timedTransitions, make sure that you mention it after
the latter, so that the new stage is taken into account.

Finally, the modifier transitionNext can be used to automatically go to the next stage when the function finishes.

Note: Modifier May be Skipped. Since modifiers are applied by simply replacing code and not by using a function
call, the code in the transitionNext modifier can be skipped if the function itself uses return. If you want to do that,
make sure to call nextStage manually from those functions.

contract StateMachine {
enum Stages {

AcceptingBlindedBids,
RevealBids,
AnotherStage,
AreWeDoneYet,
Finished

}
// This is the current stage.
Stages public stage = Stages.AcceptingBlindedBids;

uint public creationTime = now;

modifier atStage(Stages _stage) {
if (stage != _stage) throw;
_

}
function nextStage() internal {

stage = Stages(uint(stage) + 1);
}
// Perform timed transitions. Be sure to mention
// this modifier first, otherwise the guards
// will not take the new stage into account.
modifier timedTransitions() {

if (stage == Stages.AcceptingBlindedBids &&
now >= creationTime + 10 days)

nextStage();
if (stage == Stages.RevealBids &&

now >= creationTime + 12 days)
nextStage();

// The other stages transition by transaction
}

// Order of the modifiers matters here!
function bid()

timedTransitions
atStage(Stages.AcceptingBlindedBids)

{
// We will not implement that here

}
function reveal()

timedTransitions
atStage(Stages.RevealBids)

{
}

74 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

// This modifier goes to the next stage
// after the function is done.
// If you use `return` in the function,
// `nextStage` will not be called
// automatically.
modifier transitionNext()
{

_
nextStage();

}
function g()

timedTransitions
atStage(Stages.AnotherStage)
transitionNext

{
// If you want to use `return` here,
// you have to call `nextStage()` manually.

}
function h()

timedTransitions
atStage(Stages.AreWeDoneYet)
transitionNext

{
}
function i()

timedTransitions
atStage(Stages.Finished)

{
}

}

3.7 Frequently Asked Questions

This list was originally compiled by [fivedogit](mailto:fivedogit@gmail.com).

3.7.1 Basic Questions

What is Solidity?

Solidity is the DEV-created (i.e. Ethereum Foundation-created), Javascript-inspired language that can be used to
create smart contracts on the Ethereum blockchain. There are other languages you can use as well (LLL, Serpent, etc).
The main points in favour of Solidity is that it is statically typed and offers many advanced features like inheritance,
libraries, complex user-defined types and a bytecode optimizer.

Solidity contracts can be compiled a few different ways (see below) and the resulting output can be cut/pasted into a
geth console to deploy them to the Ethereum blockchain.

There are some contract examples by fivedogit and there should be a test contract for every single feature of Solidity.

How do I compile contracts?

Probably the fastest way is the online compiler.

3.7. Frequently Asked Questions 75

mailto:fivedogit@gmail.com
https://github.com/fivedogit/solidity-baby-steps/tree/master/contracts/
https://github.com/ethereum/solidity/blob/develop/test/libsolidity/SolidityEndToEndTest.cpp
https://chriseth.github.io/browser-solidity/

Solidity Documentation, Release 0.2.0

You can also use the solc binary which comes with cpp-ethereum to compile contracts or an emerging option is to use
Mix, the IDE.

Create and publish the most basic contract possible

A quite simple contract is the greeter

Is it possible to do something on a specific block number? (e.g. publish a contract or execute a
transaction)

Transactions are not guaranteed to happen on the next block or any future specific block, since it is up to the miners
to include transactions and not up to the submitter of the transaction. This applies to function calls/transactions and
contract creation transactions.

If you want to schedule future calls of your contract, you can use the alarm clock.

What is the transaction “payload”?

This is just the bytecode “data” sent along with the request.

Is there a decompiler available?

There is no decompiler to Solidity. This is in principle possible to some degree, but for example variable names will
be lost and great effort will be necessary to make it look similar to the original source code.

Bytecode can be decompiled to opcodes, a service that is provided by several blockchain explorers.

Contracts on the blockchain should have their original source code published if they are to be used by third parties.

Does selfdestruct() free up space in the blockchain?

It removes the contract bytecode and storage from the current block into the future, but since the blockchain stores
every single block (i.e. all history), this will not actually free up space on full/achive nodes.

Create a contract that can be killed and return funds

First, a word of warning: Killing contracts sounds like a good idea, because “cleaning up” is always good, but as seen
above, it does not really clean up. Furthermore, if Ether is sent to removed contracts, the Ether will be forever lost.

If you want to deactivate your contracts, rather disable them by changing some internal state which causes all functions
to throw. This will make it impossible to use the contract and ether sent to the contract will be returned automatically.

Now to answering the question: Inside a constructor, msg.sender is the creator. Save it. Then selfdestruct(creator); to
kill and return funds.

example

Note that if you import “mortal” at the top of your contracts and declare contract SomeContract is mortal { ... and
compile with a compiler that already has it (which includes browser-solidity), then kill() is taken care of for you.
Once a contract is “mortal”, then you can contractname.kill.sendTransaction({from:eth.coinbase}), just the same as
my examples.

76 Chapter 3. Contents

https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/05_greeter.sol
http://www.ethereum-alarm-clock.com/
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/05_greeter.sol
https://chriseth.github.io/browser-solidity/

Solidity Documentation, Release 0.2.0

Store Ether in a contract

The trick is to create the contract with {from:someaddress, value: web3.toWei(3,”ether”)...}

See endowment_retriever.sol.

Use a non-constant function (req sendTransaction) to increment a variable in a contract

See value_incrementer.sol.

Get contract address in Solidity

Short answer: The global variable this is the contract address.

See basic_info_getter.

Long answer: this is a variable representing the current contract. Its type is the type of the contract. Since any contract
type basically inherits from the address type, this is always convertible to address and in this case contains its own
address.

What is the difference between a function marked constant and one that is not?

constant functions can perform some action and return a value, but cannot change state (this is not yet enforced by
the compiler). In other words, a constant function cannot save or update any variables within the contract or wider
blockchain. These functions are called using c.someFunction(...) from geth or any other web3.js environment.

“non-constant” functions (those lacking the constant specifier) must be called with
c.someMethod.sendTransaction({from:eth.accounts[x], gas: 1000000}); That is, because they can change state,
they have to have a gas payment sent along to get the work done.

Get a contract to return its funds to you (not using selfdestruct(...)).

This example demonstrates how to send funds from a contract to an address.

See endowment_retriever.

What is a mapping and how do we use them?

A mapping is very similar to a K->V hashmap. If you have a state variable of type mapping (string -> uint) x;, then
you can access the value by x[”somekeystring”].

How can I get the length of a mapping?

Mappings are a rather low-level data structure. It does not store the keys and it is not possible to know which or how
many values are “set”. Actually, all values to all possible keys are set by default, they are just initialised with the zero
value.

In this sense, the attribute length for a mapping does not really apply.

If you want to have a “sized mapping”, you can use the iterable mapping (see below) or just a dynamically-sized array
of structs.

3.7. Frequently Asked Questions 77

https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/30_endowment_retriever.sol
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/20_value_incrementer.sol
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/15_basic_info_getter.sol
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/30_endowment_retriever.sol

Solidity Documentation, Release 0.2.0

Are mappings iterable?

Mappings themselves are not iterable, but you can use a higher-level datastructure on top of it, for example the iterable
mapping.

Can I put arrays inside of a mapping? How do I make a mapping of a mapping?

Mappings are already syntactically similar to arrays as they are, therefore it doesn’t make much sense to store an array
in them. Rather what you should do is create a mapping of a mapping.

An example of this would be:

contract c {
struct myStruct {

uint someNumber;
string someString;

}
mapping(uint => mapping(string => myStruct)) myDynamicMapping;
function storeInMapping() {

myDynamicMapping[1]["Foo"] = myStruct(2, "Bar");
}

}

Can you return an array or a string from a solidity function call?

Yes. See array_receiver_and_returner.sol.

What is problematic, though, is returning any variably-sized data (e.g. a variably-sized array like uint[]) from a fuction
called from within Solidity. This is a limitation of the EVM and will be solved with the next protocol update.

Returning variably-sized data as part of an external transaction or call is fine.

How do you represent double/float in Solidity?

This is not yet possible.

Is it possible to in-line initialize an array like so: string[] myarray = [”a”, “b”];

Yes. However it should be noted that this currently only works with statically sized memory arrays. You can even
create an inline memory array in the return statement. Pretty cool, huh?

Example:

contract C {
function f() returns (uint8[5]) {

string[4] memory AdaArr = ["This", "is", "an", "array"];
return ([1, 2, 3, 4, 5]);

}
}

78 Chapter 3. Contents

https://github.com/ethereum/dapp-bin/blob/master/library/iterable_mapping.sol
https://github.com/ethereum/dapp-bin/blob/master/library/iterable_mapping.sol
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/60_array_receiver_and_returner.sol

Solidity Documentation, Release 0.2.0

What are events and why do we need them?

Let us suppose that you need a contract to alert the outside world when something happens. The contract can fire an
event, which can be listened to from web3 (inside geth or a web application). The main advantage of events is that
they are stored in a special way on the blockchain so that it is very easy to search for them.

What are the different function visibilities?

The visibility specifiers do not only change the visibility but also the way functions can be called. In general, functions
in the same contract can also be called internally (which is cheaper and allows for memory types to be passed by
reference). This is done if you just use f(1,2). If you use this.f(1,2) or otherContract.f(1,2), the function is called
externally.

Internal function calls have the advantage that you can use all Solidity types as parameters, but you have to stick to the
simpler ABI types for external calls.

• external: all, only externally

• public: all (this is the default), externally and internally

• internal: only this contract and contracts deriving from it, only internally

• private: only this contract, only internally

Do contract constructors have to be publicly visible?

You can use the visibility specifiers, but they do not yet have any effect. The constructor is removed from the contract
code once it is deployed,

Can a contract have multiple constructors?

No, a contract can have only one constructor.

More specifically, it can only have one function whose name matches that of the constructor.

Having multiple constructors with different number of arguments or argument types, as it is possible in other languages
is not allowed in Solidity.

Is a constructor required?

No. If there is no constructor, a generic one without arguments and no actions will be used.

Are timestamps (now, block.timestamp) reliable?

This depends on what you mean by “reliable”. In general, they are supplied by miners and are therefore vulnerable.

Unless someone really messes up the blockchain or the clock on your computer, you can make the following assump-
tions:

You publish a transaction at a time X, this transaction contains same code that calls now and is included in a block
whose timestamp is Y and this block is included into the canonical chain (published) at a time Z.

The value of now will be identical to Y and X <= Y <= Z.

Never use now or block.hash as a source of randomness, unless you know what you are doing!

3.7. Frequently Asked Questions 79

Solidity Documentation, Release 0.2.0

Can a contract function return a struct?

Yes, but only in “internal” function calls.

If I return an enum, I only get integer values in web3.js. How to get the named values?

Enums are not supported by the ABI, they are just supported by Solidity. You have to do the mapping yourself for
now, we might provide some help later.

What is the deal with “function () { ... }” inside Solidity contracts? How can a function not have a
name?

This function is called “fallback function” and it is called when someone just sent Ether to the contract without
providing any data or if someone messed up the types so that they tried to call a function that does not exist.

The default behaviour (if no fallback function is explicitly given) in these situations is to just accept the call and do
nothing. This is desireable in many cases, but should only be used if there is a way to pull out Ether from a contract.

If the contract is not meant to receive Ether with simple transfers, you should implement the fallback function as

function() { throw; }

this will cause all transactions to this contract that do not call an existing function to be reverted, so that all Ether is
sent back.

Another use of the fallback function is to e.g. register that your contract received ether by using an event.

Attention: If you implement the fallback function take care that it uses as little gas as possible, because send() will
only supply a limited amount.

Is it possible to pass arguments to the fallback function?

The fallback function cannot take parameters.

Under special circumstances, you can send data. If you take care that none of the other functions is invoked, you can
access the data by msg.data.

Can state variables be initialized in-line?

Yes, this is possible for all types (even for structs). However, for arrays it should be noted that you must declare them
as static memory arrays.

Examples:

contract C {
struct S { uint a; uint b; }
S public x = S(1, 2);
string name = "Ada";
string[4] memory AdaArr = ["This", "is", "an", "array"];

}
contract D {

C c = new C();
}

80 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

What is the “modifier” keyword?

Modifiers are a way to prepend or append code to a function in order to add guards, initialisation or cleanup function-
ality in a concise way.

For examples, see the features.sol.

How do structs work?

See struct_and_for_loop_tester.sol.

How do for loops work?

Very similar to JavaScript. There is one point to watch out for, though:

If you use for (var i = 0; i < a.length; i ++) { a[i] = i; }, then the type of i will be inferred only from 0, whose type
is uint8. This means that if a has more than 255 elements, your loop will not terminate because i can only hold values
up to 255.

Better use for (uint i = 0; i < a.length...

See struct_and_for_loop_tester.sol.

What character set does Solidity use?

Solidity is character set agnostic concerning strings in the source code, although utf-8 is recommended. Identifiers
(variables, functions, ...) can only use ASCII.

What are some examples of basic string manipulation (substring, indexOf, charAt, etc)?

There are some string utility functions at stringUtils.sol which will be extended in the future.

For now, if you want to modify a string (even when you only want to know its length), you should always convert it to
a bytes first:

contract C {
string s;
function append(byte c) {

bytes(s).push(c);
}
function set(uint i, byte c) {

bytes(s)[i] = c;
}

}

Can I concatenate two strings?

You have to do it manually for now.

3.7. Frequently Asked Questions 81

https://github.com/ethereum/dapp-bin/blob/master/library/features.sol
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/65_struct_and_for_loop_tester.sol
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/65_struct_and_for_loop_tester.sol
https://github.com/ethereum/dapp-bin/blob/master/library/stringUtils.sol

Solidity Documentation, Release 0.2.0

Why is the low-level function .call() less favorable than instantiating a contract with a variable (Con-
tractB b;) and executing its functions (b.doSomething();)?

If you use actual functions, the compiler will tell you if the types or your arguments do not match, if the function does
not exist or is not visible and it will do the packing of the arguments for you.

See ping.sol and pong.sol.

Is unused gas automatically refunded?

Yes and it is immediate, i.e. done as part of the transaction.

When returning a value of say “uint” type, is it possible to return an “undefined” or “null”-like value?

This is not possible, because all types use up the full value range.

You have the option to throw on error, which will also revert the whole transaction, which might be a good idea if you
ran into an unexpected situation.

If you do not want to throw, you can return a pair:

contract C {
uint[] counters;
function getCounter(uint index)

returns (uint counter, bool error) {
if (index >= counters.length) return (0, true);
else return (counters[index], false);

}
function checkCounter(uint index) {

var (counter, error) = getCounter(index);
if (error) { ... }
else { ... }

}
}

Are comments included with deployed contracts and do they increase deployment gas?

No, everything that is not needed for execution is removed during compilation. This includes, among others, com-
ments, variable names and type names.

What happens if you send ether along with a function call to a contract?

It gets added to the total balance of the contract, just like when you send ether when creating a contract.

Is it possible to get a tx receipt for a transaction executed contract-to-contract?

No, a function call from one contract to another does not create its own transaction, you have to look in the overall
transaction. This is also the reason why several block explorer do not show Ether sent between contracts correctly.

82 Chapter 3. Contents

https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/45_ping.sol
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/45_pong.sol

Solidity Documentation, Release 0.2.0

What is the memory keyword? What does it do?

The Ethereum Virtual Machine has three areas where it can store items.

The first is “storage”, where all the contract state variables reside. Every contract has its own storage and it is persistent
between function calls and quite expensive to use.

The second is “memory”, this is used to hold temporary values. It is erased between (external) function calls and is
cheaper to use.

The third one is the stack, which is used to hold small local variables. It is almost free to use, but can only hold a
limited amount of values.

For almost all types, you cannot specify where they should be stored, because they are copied everytime they are used.

The types where the so-called storage location is important are structs and arrays. If you e.g. pass such variables in
function calls, their data is not copied if it can stay in memory or stay in storage. This means that you can modify their
content in the called function and these modifications will still be visible in the caller.

There are defaults for the storage location depending on which type of variable it concerns:

• state variables are always in storage

• function arguments are always in memory

• local variables always reference storage

Example:

contract C {
uint[] data1;
uint[] data2;
function appendOne() {

append(data1);
}
function appendTwo() {

append(data2);
}
function append(uint[] storage d) {

d.push(1);
}

}

The function append can work both on data1 and data2 and its modifications will be stored permanently. If you
remove the storage keyword, the default is to use memory for function arguments. This has the effect that at the point
where append(data1) or append(data2) is called, an independent copy of the state variable is created in memory and
append operates on this copy (which does not support .push - but that is another issue). The modifications to this
independent copy do not carry back to data1 or data2.

A common mistake is to declare a local variable and assume that it will be created in memory, although it will be
created in storage:

/// THIS CONTRACT CONTAINS AN ERROR
contract C {

uint someVariable;
uint[] data;
function f() {

uint[] x;
x.push(2);
data = x;

}
}

3.7. Frequently Asked Questions 83

Solidity Documentation, Release 0.2.0

The type of the local variable x is uint[] storage, but since storage is not dynamically allocated, it has to be assigned
from a state variable before it can be used. So no space in storage will be allocated for x, but instead it functions only
as an alias for a pre-existing variable in storage.

What will happen is that the compiler interprets x as a storage pointer and will make it point to the storage slot 0 by
default. This has the effect that someVariable (which resides at storage slot 0) is modified by x.push(2).

The correct way to do this is the following:

contract C {
uint someVariable;
uint[] data;
function f() {

uint[] x = data;
x.push(2);

}
}

Can a regular (i.e. non-contract) ethereum account be closed permanently like a contract can?

No. Non-contract accounts “exist” as long as the private key is known by someone or can be generated in some way.

What is the difference between bytes and byte[]?

bytes is usually more efficient: When used as arguments to functions (i.e. in CALLDATA) or in memory, every single
element of a byte[] is padded to 32 bytes which wastes 31 bytes per element.

Is it possible to send a value while calling an overloaded function?

It’s a known missing feature. https://www.pivotaltracker.com/story/show/92020468 as part of
https://www.pivotaltracker.com/n/projects/1189488

Best solution currently see is to introduce a special case for gas and value and just re-check whether they are present
at the point of overload resolution.

3.7.2 Advanced Questions

How do you get a random number in a contract? (Implement a self-returning gambling contract.)

Getting randomness right is often the crucial part in a crypto project and most failures result from bad random number
generators.

If you do not want it to be safe, you build something similar to the coin flipper but otherwise, rather use a contract that
supplies randomness, like the RANDAO.

Get return value from non-constant function from another contract

The key point is that the calling contract needs to know about the function it intends to call.

See ping.sol and pong.sol.

84 Chapter 3. Contents

https://www.pivotaltracker.com/story/show/92020468
https://www.pivotaltracker.com/n/projects/1189488
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/35_coin_flipper.sol
https://github.com/randao/randao
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/45_ping.sol
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/45_pong.sol

Solidity Documentation, Release 0.2.0

Get contract to do something when it is first mined

Use the constructor. Anything inside it will be executed when the contract is first mined.

See replicator.sol.

Can a contract create another contract?

Yes, see replicator.sol.

Note that the full code of the created contract has to be included in the creator contract. This also means that cyclic
creations are not possible (because the contract would have to contain its own code) - at least not in a general way.

How do you create 2-dimensional arrays?

See 2D_array.sol.

Note that filling a 10x10 square of uint8 + contract creation took more than 800,000 gas at the time of this writing.
17x17 took 2,000,000 gas. With the limit at 3.14 million... well, there’s a pretty low ceiling for what you can create
right now.

Note that merely “creating” the array is free, the costs are in filling it.

Note2: Optimizing storage access can pull the gas costs down considerably, because 32 uint8 values can be stored in
a single slot. The problem is that these optimizations currently do not work across loops and also have a problem with
bounds checking. You might get much better results in the future, though.

What does p.recipient.call.value(p.amount)(p.data) do?

Every external function call in Solidity can be modified in two ways:

1. You can add Ether together with the call

2. You can limit the amount of gas available to the call

This is done by “calling a function on the function”:

f.gas(2).value(20)() calls the modified function f and thereby sending 20 Wei and limiting the gas to 2 (so this function
call will most likely go out of gas and return your 20 Wei).

In the above example, the low-level function call is used to invoke another contract with p.data as payload and
p.amount Wei is sent with that call.

What happens to a struct’s mapping when copying over a struct?

This is a very interesting question. Suppose that we have a contract field set up like such:

struct user{
mapping(string => address) usedContracts;

}
function somefunction{

user user1;
user1.usedContracts["Hello"] = "World";
user user2 = user1;

}

In this case, the mapping of the struct being copied over into the userList is ignored as there is no “list of mapped
keys”. Therefore it is not possible to find out which values should be copied over.

3.7. Frequently Asked Questions 85

https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/50_replicator.sol
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/50_replicator.sol
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/55_2D_array.sol

Solidity Documentation, Release 0.2.0

How do I initialize a contract with only a specific amount of wei?

Currently the approach is a little ugly, but there is little that can be done to improve it. In the case of a contract A
calling a new instance of contract B, parentheses have to be used around new B because B.value would refer to a
member of B called value. You will need to make sure that you have both contracts aware of each other’s presence. In
this example:

contract B {}
contract A {

address child;
function test() {

child = (new B).value(10)(); //construct a new B with 10 wei
}

}

Can a contract function accept a two-dimensional array?

This is not yet implemented for external calls and dynamic arrays - you can only use one level of dynamic arrays.

What is the relationship between bytes32 and string? Why is it that ‘bytes32 somevar = “stringlit-
eral”;’ works and what does the saved 32-byte hex value mean?

The type bytes32 can hold 32 (raw) bytes. In the assignment bytes32 samevar = “stringliteral”;, the string literal is
interpreted in its raw byte form and if you inspect somevar and see a 32-byte hex value, this is just “stringliteral” in
hex.

The type bytes is similar, only that it can change its length.

Finally, string is basically identical to bytes only that it is assumed to hold the utf-8 encoding of a real string. Since
string stores the data in utf-8 encoding it is quite expensive to compute the number of characters in the string (the
encoding of some characters takes more than a single byte). Because of that, string s; s.length is not yet supported
and not even index access s[2]. But if you want to access the low-level byte encoding of the string, you can use
bytes(s).length and bytes(s)[2] which will result in the number of bytes in the utf-8 encoding of the string (not the
number of characters) and the second byte (not character) of the utf-8 encoded string, respectively.

Can a contract pass an array (static size) or string or bytes (dynamic size) to another contract?

Sure. Take care that if you cross the memory / storage boundary, independent copies will be created:

contract C {
uint[20] x;
function f() {
g(x);
h(x);

}
function g(uint[20] y) {
y[2] = 3;

}
function h(uint[20] storage y) {
y[3] = 4;

}

The call to g(x) will not have an effect on x because it needs to create an independent copy of the storage value in
memory (the default storage location is memory). On the other hand, h(x) successfully modifies x because only a
reference and not a copy is passed.

86 Chapter 3. Contents

Solidity Documentation, Release 0.2.0

Sometimes, when I try to change the length of an array with ex: “arrayname.length = 7;” I get a
compiler error “Value must be an lvalue”. Why?

You can resize a dynamic array in storage (i.e. an array declared at the contract level) with arrayname.length = <some
new length>;. If you get the “lvalue” error, you are probably doing one of two things wrong.

1. You might be trying to resize an array in “memory”, or

2. You might be trying to resize a non-dynamic array.

int8[] memory memArr; // Case 1
memArr.length++; // illegal
int8[5] storageArr; // Case 2
somearray.length++; // legal
int8[5] storage storageArr2; // Explicit case 2
somearray2.length++; // legal

Important note: In Solidity, array dimensions are declared backwards from the way you might be used to declaring
them in C or Java, but they are access as in C or Java.

For example, int8[][5] somearray; are 5 dynamic int8 arrays.

The reason for this is that T[5] is always an array of 5 T‘s, no matter whether ‘T itself is an array or not (this is not the
case in C or Java).

Is it possible to return an array of strings (string[]) from a Solidity function?

Not yet, as this requires two levels of dynamic arrays (string is a dynamic array itself).

If you issue a call for an array, it is possible to retrieve the whole array? Or must you write a helper
function for that?

The automatic accessor function for a public state variable of array type only returns individual elements. If you want
to return the complete array, you have to manually write a function to do that.

What could have happened if an account has storage value/s but no code? Example:
http://test.ether.camp/account/5f740b3a43fbb99724ce93a879805f4dc89178b5

The last thing a constructor does is returning the code of the contract. The gas costs for this depend on the length
of the code and it might be that the supplied gas is not enough. This situation is the only one where an “out of gas”
exception does not revert changes to the state, i.e. in this case the initialisation of the state variables.

https://github.com/ethereum/wiki/wiki/Subtleties

After a successful CREATE operation’s sub-execution, if the operation returns x, 5 * len(x) gas is subtracted from the
remaining gas before the contract is created. If the remaining gas is less than 5 * len(x), then no gas is subtracted, the
code of the created contract becomes the empty string, but this is not treated as an exceptional condition - no reverts
happen.

How do I use .send()?

If you want to send 20 Ether from a contract to the address x, you use x.send(20 ether);. Here, x can be a plain address
or a contract. If the contract already explicitly defines a function send (and thus overwrites the special function), you
can use address(x).send(20 ether);.

3.7. Frequently Asked Questions 87

https://github.com/ethereum/wiki/wiki/Subtleties

Solidity Documentation, Release 0.2.0

What does the following strange check do in the Custom Token contract?

if (balanceOf[_to] + _value < balanceOf[_to]) throw;

Integers in Solidity (and most other machine-related programming languages) are restricted to a certain range. For
uint256, this is 0 up to 2**256 - 1. If the result of some operation on those numbers does not fit inside this range, it is
truncated. These truncations can have serious consequences, so code like the one above is necessary to avoid certain
attacks.

More Questions?

If you have more questions or your question is not answered here, please talk to us on gitter or file an issue.

88 Chapter 3. Contents

https://en.bitcoin.it/wiki/Value_overflow_incident
https://gitter.im/ethereum/solidity
https://github.com/ethereum/solidity/issues

Index

A
abstract contract, 54
access

restricting, 72
accessor

function, 48
account, 10
addmod, 36, 60
address, 10, 27
anonymous, 61
array, 29, 30

allocating, 30
length, 31
push, 31

asm, 39
assembly, 39
assignment, 33, 38

destructuring, 38
auction

blind, 17
open, 17

B
balance, 10, 27, 36, 60
ballot, 15
base

constructor, 53
base class, 51
blind auction, 17
block, 10, 35, 60

number, 35, 60
timestamp, 35, 60

bool, 26
break, 37
byte array, 28
bytes32, 28

C
C3 linearization, 54
call, 27

callcode, 12, 27, 54
cast, 34
coding style, 61
coin, 9
coinbase, 35, 60
commandline compiler, 59
comment, 24
common subexpression elimination, 58
compiler

commandline, 59
constant, 49, 61
constant propagation, 58
constructor

arguments, 46
continue, 37
contract, 24, 45

abstract, 54
base, 51
creation, 45

contract creation, 12
cryptography, 36, 60

D
data, 35, 60
days, 35
delegatecall, 12, 27, 54
delete, 33
deriving, 51
difficulty, 35, 60

E
ecrecover, 36, 60
else, 37
enum, 24, 28
escrow, 21
ether, 34
ethereum virtual machine, 10
event, 9, 24, 50
evm, 10
evmasm, 39

89

Solidity Documentation, Release 0.2.0

exception, 39
external, 47, 61

F
fallback function, 49
false, 26
finney, 34
for, 37
function, 24

accessor, 48
call, 11, 37
external, 37
fallback, 49
internal, 37
modifier, 24, 48, 72, 73

G
gas, 11, 35, 60
gas price, 11, 35, 60
goto, 37

H
hours, 35

I
if, 37
import, 23
indexed, 61
inheritance, 51

multiple, 54
instruction, 11
int, 26
integer, 26
internal, 47, 61

L
length, 31
library, 12, 54, 56
linearization, 54
linker, 59
literal, 28

integer, 28
string, 28

location, 29
log, 12, 51
lvalue, 33

M
mapping, 8, 33, 57
memory, 11, 29
message call, 11
minutes, 35
modifiers, 61
msg, 35, 60

mulmod, 36, 60

N
natspec, 24
new, 30
now, 35, 60
number, 35, 60

O
open auction, 17
optimizer, 58
origin, 35, 60

P
private, 47, 61
public, 47, 61
purchase, 21
push, 31

R
reference type, 29
remote purchase, 21
return, 37
ripemd160, 36, 60

S
seconds, 35
selfdestruct, 12, 36, 60
send, 27, 36, 60
sender, 35, 60
set, 55
sha256, 36, 60
sha3, 36, 60
solc, 59
source file, 23
stack, 11
state machine, 73
state variable, 24, 57
storage, 10, 11, 29, 57
string, 28
struct, 24, 29, 32
style, 61
subcurrency, 7
super, 36, 60
switch, 37
szabo, 34

T
this, 36, 60
throw, 39
time, 35
timestamp, 35, 60
transaction, 9, 10

90 Index

Solidity Documentation, Release 0.2.0

true, 26
type, 26

conversion, 34
deduction, 34
reference, 29
struct, 32
value, 26

U
uint, 26
using for, 55, 56

V
value, 35, 60
value type, 26
var, 34
visibility, 47, 61
voting, 15

W
weeks, 35
wei, 34
while, 37

Y
years, 35

Index 91

	Useful links
	Language Documentation
	Contents
	Introduction to Smart Contracts
	Installing Solidity
	Solidity by Example
	Solidity in Depth
	Style Guide
	Common Patterns
	Frequently Asked Questions

