Solidity Documentation
=A[0.5.10

Ethereum

201949 01& 11

Contents

Notice for Korean 3
LE 5
8t 32 7
Solidity 3% == 9
Solidity =& 11
A E=1tg Solidity oA &} F1H 13
Language Documentation 15
Contents 17
8.1 AUE AETME LTl . e e 17
8.2 Solidity ATA T AXISE7] e 24
83 AAIEETFETTIE] . . e 28
84 ETIUEITALET] e 38
8.5 HQFEW AIHAFSE . . L e e 118
8.6 FIAT AFESIT] e e 123
8.7 ZAEHME MIEHOIE] e e e 128
8.8 o]EZFAo) A utolg] QIE|HOIA AT L L e 131
8.9 Yul . .o 140
8.10 AEFY Z1O)E e e 148
.11 AP Ol =TEL . L e e e 163
8.12 LA HIL BlAE e e 169
.13 Contributing e e e e e e e e e e e e e e 174
8.14 Frequently Asked Questions L e 179
.15 LLL . . . o o o e 185

Solidity Documentation, £A| 0.5.10

Solidity’= ~AnjE AEHES 51 sto] 72 T2 789 o]yt Solidity= Ct+,
Python, 12|11 JavaScrlth & SFg dro} mtEo]H LU th 121 Ethereum Virtual Machine(EVM)o| A L5 X

=% A5 914
Solidity:= 2] E}¢Jo| o, A}, holHaja] 2|1 Bek Abg At H o] = 3-& A 9t
EA A AT E 4

gt

F4: SolidityE A5ot7] 7H £ HH-2 A Remix (P == tha AFte] AE 4= lFUTh)E AHESH
t P Z YUt Remix= Solidity ARME HAESEE 26k, vl sy, AP 4= Sl= ¥ Behe-A] 7|5he] IDE

Yt

AT ALE Yol At ols) wHEol A7 HEe] ¥1r} A Utk upebd Ante A
oo mA e e Hnetol A Holor o e AL S 2 T =elf Ha, X
)3 45 F9S ok th EG AFg A} SE AN AR T TES o Aok B9} Gk 2L 7
igorghich. iAo 2, B8 A AHH 0.2 Folalore AFEEo] etk o AAE 2H2d] FAIL.
EREEEENE

_l-_lrlr

Contents 1

https://remix.ethereum.org/

Solidity Documentation, £A| 0.5.10

2 Contents

CHAPTER 1

Notice for Korean

obz] Hejo] HMPF AUt 1t s 4 1o St solidity-korea/solidity-docs-kr repo o] H5}7] Pull
Request 44 Zofaha 3 &,

https://github.com/solidity-korea/solidity-docs-kr

Solidity Documentation, £A| 0.5.10

4 Chapter 1. Notice for Korean

CHAPTER 2

rE
19

This documentation is translated into several languages by community volunteers, but the English version stands as a
reference.

» Simplified Chinese (in progress)
* Spanish

¢ Russian (rather outdated)

http://solidity-cn.readthedocs.io
https://solidity-es.readthedocs.io
https://github.com/ethereum/wiki/wiki/%5BRussian%5D-%D0%A0%D1%83%D0%BA%D0%BE%D0%B2%D0%BE%D0%B4%D1%81%D1%82%D0%B2%D0%BE-%D0%BF%D0%BE-Solidity

Solidity Documentation, £A| 0.5.10

6 Chapter 2. H

CHAPTER 3

30
0i0
o
ol
|

Ethereum

Changelog

Story Backlog

Source Code

Ethereum Stackexchange

Gitter Chat

https://ethereum.org
https://github.com/ethereum/solidity/blob/develop/Changelog.md
https://www.pivotaltracker.com/n/projects/1189488
https://github.com/ethereum/solidity/
https://ethereum.stackexchange.com/
https://gitter.im/ethereum/solidity/

Solidity Documentation, £A| 0.5.10

Chapter 3.

CHAPTER 4

Solidity £8 =15

* Remix HI O] A glo] Hupd|o} AEtq] &S AlFch= Behe- 7|5ke] IDE
« IntelliJ IDEA plugin IntelliJ IDEA &]St Solidity 217191 (7]} 2= JetBrains IDE Z)
« Visual Studio Extension Solidity A} 27} Z &= Microsoft Visual Studio 22 1¢1

I

 Package for SublimeText — Solidity language syntax Sublime Text £ 9]t Solidity & 73%7]

* Etheratom &% 7=, B3, A3 &7 (MQE == 9 VM ¥} 98 7159 = A5-5H= Atom editor &2
a9l

» Atom Solidity Linter Solidity linting -2 A]-3-5}= Atom editor Z&] 12l
« Atom Solium Linter Solium 7|4t 2, A8} A o] 715G Atom editor -& Solidity linter
 Solium Solidity oA T & AEFL o]t H L o]|+& A5l &15H7] 3t linter

* Solhint Smart Contract 52 9]¢t Solidity linter. Bt AR & A€l 7ol =, & o] T AFH(YH S
for-loop ol A index M-S i 2 Zokoh A 598 A B4

* Visual Studio Code extension & 7% 7|53} Huld2]E A|Z5F= Microsoft Visual Studio Code =2
gl
e Emacs Solidity & 7} =% 7|53 B3 of 2] &H-2 AF-5}= Emacs editor Z2] 121
« Vim Solidity B 7% 7 7
» Vim Syntastic 1} 3Felo] 7153t Vim editor =] 191
2| o] FAH -5
« Mix IDE 201 ZE o] s ti2fel, 17, 8]250] 7Fs Qt 7]3ke] IDE

* Ethereum Studio ¥ 5t Ethereum &173 o] o St shell A A S A Z5= E(ESHE) ¢4 IDE. Specialized
web IDE that also provides shell access to a complete Ethereum environment.

https://remix.ethereum.org/
https://plugins.jetbrains.com/plugin/9475-intellij-solidity
https://visualstudiogallery.msdn.microsoft.com/96221853-33c4-4531-bdd5-d2ea5acc4799/
https://packagecontrol.io/packages/Ethereum/
https://github.com/0mkara/etheratom
https://atom.io/packages/linter-solidity
https://atom.io/packages/linter-solium
https://github.com/duaraghav8/Solium/
https://github.com/protofire/solhint
http://juan.blanco.ws/solidity-contracts-in-visual-studio-code/
https://github.com/ethereum/emacs-solidity/
https://github.com/tomlion/vim-solidity/
https://github.com/scrooloose/syntastic
https://github.com/ethereum/mix/
https://live.ether.camp/

Solidity Documentation, £A| 0.5.10

10 Chapter 4. Solidity £8 =1

CHAPTER B

Solidity 1S

Dapp Solidity & $18 W= =7, 7] 5], ¥ &9u]

=
Solidity REPL 7JfHE 2}9] 7]4ko 2 Solidity £ H}2 AMR-siE & Qle =7

AN
solgraph Solidity 358 A1715} 8171, WA 2 et 9B AR ANFE BT

evmdis Raw EVM operations X T} =& Z2AMSLE A-25H7] ¢
EVM Disassembler

Doxity Solidity S ¢35+ FA] 2§47

11

https://dapp.readthedocs.io
https://github.com/raineorshine/solidity-repl
https://github.com/raineorshine/solgraph
https://github.com/Arachnid/evmdis
https://github.com/DigixGlobal/doxity

Solidity Documentation, £A| 0.5.10

12 Chapter 5. Solidity ==

CHAPTER O

MED}E| Solidity IHA{QF 2

* solidity-parser Javascript £ 9|3} Solidity T}HA]
* Solidity Grammar for ANTLR 4 Solidity grammar for the ANTLR 4 parser generator

13

https://github.com/ConsenSys/solidity-parser
https://github.com/federicobond/solidity-antlr4

Solidity Documentation, £A| 0.5.10

14 Chapter 6. A EI}E| Solidity ItAM 2t 24

CHAPTER /

Language Documentation

t}-& g0 E& EH, Solidity =2 2% 7FFSF smart contract I} blockchains. of T s 4] GotR L& 517145

o2 A A2 Solidity of| A A5} *7) 5 S AH R ASUTE example contracts =g A& A5}

o o a3}
T X ar R =
AL Bt A o N E 43] ZES APAAL 5 Grke 21 AAutA A
opx e Al ol A= Solidity o] RE SHof thsiA] A= A HEy
olefof] HZo] A2 AT, Ethereum Stackexchange oA HAolu 21 A7shd & Lo gitter A2 oAk

Zhsge
Solidity L} o] £-A1o]] e -2 §18 ofolel ol G4 Ba U)

15

https://remix.ethereum.org
https://ethereum.stackexchange.com/
https://gitter.im/ethereum/solidity/

Solidity Documentation, £A| 0.5.10

16 Chapter 7. Language Documentation

CHAPTER 8

Contents

Keyword Index, Search Page

B40] ghe AL THE AEAE A & 5 LS LAY 7| dARE AR 4l o
AA|S] A Aol 7] whiEol 23 RE 2 olsistA] srobs WAL,

Storage

pragma solidity >=0.4.0 <0.6.0;

contract SimpleStorage {
uint storedData;

function set (uint x) public {
storedData = x;

}

function get () public view returns (uint) {
return storedData;

o, o] % H(0.6.0 WA A7) A =
5 Q= ANELIA 7] 419 Aokl d HA
7t 22 AEE oG Heeloket=AE

,4
R
e
k1
fu
I
2,
9—14
L
O
§=
i
8
o
L)
rr
N
j_q
[
rlr
ol
H
ne,
i)

17

https://en.wikipedia.org/wiki/Pragma_once

Solidity Documentation, £A| 0.5.10

Solidity o] Tl of| A H EHE gt ot I EE(9l) 3 H| o] B (4 H]) 7} Ethereum S-S54 Q1 9] £ F4x0f A5}
uint storedData; + uint (256 H{EQ] B G 3= oFo] F) el Q] storedData
eF AJUTE o] AL HlolE o] Ao A tpE TEFO BN LS X3 M
374k 4 Ql5 Ut Ethereumof| A, 452 HEHEof Z3tEo] 1O set I} get

F4: BE ANRHAELE, 7
string W 273 4= Qg Yy

AT BAGAY (5L FAH) FUILE SAE A2 T TE AFS /A3 2 vlolE wjg
SEEEREIEE EREY

pragma solidity "0.5.0;

contract Coin {
// The keyword "public" makes those variables
// easily readable from outside.
address public minter;
mapping (address => uint) public balances;

// Events allow light clients to react to
// changes efficiently.
event Sent (address from, address to, uint amount);

// This is the constructor whose code is
// run only when the contract is created.
constructor () public {

minter = msg.sender;

}

function mint (address receiver, uint amount) public {
require (msg.sender == minter);
require (amount < 1e60);
balances[receiver] += amount;

}

function send(address receiver, uint amount) public {
require (amount <= balances[msg.sender], "Insufficient balance.");
balances[msg.sender] —= amount;
balances[receiver] += amount;
emit Sent (msg.sender, receiver, amount);

(continues on next page)

18 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

-

ol AEYEE F thEUTh sty A12s] AW R A,
address public minter; & 'Lt F2 7H5e address B1le] W48 A h address Ehg)
160 B E 2] gLo.2 1 ofW 4+ A4he 31 8a17] ekt o] EjlE AEUE Fau} R LA 0| 7] 4
AL) AU public 7|9 Ei H20] F7) 7S AENE vpZo| A Ao 5 QL2 sl G
5o 2 HEolF

o] 719 = gloli the AEHE} o Wo] W2 o] ferih 71 9= AR BT Futdest Aoz
THE & I E = 7} 23 25Ut (G2 external Fview 7|9 B FAFYTH):

Q,
)

it tlo rlo

function minter () returns (address) { return minter; }

22 9] g4s Yoot JYAE o 20| TolA Az sk e AUt T Poklelst o)
no g EARTHE AL olRA 2.

g2 7HFe s 27185 dAH oIS 2 & 4 syt A RE Vs 7182 A S5 EH EA5HY, o] 7]
YE2 ol E Bdo] B 09 ghofl v gyt I8t B 7lof ghs< A7 7P & vl AAsiA =
P =W, W7F F71e Al #31A] SA(FAEE FAISHAY H Y2 dlolE Bele AHgshH | F5Uh AAE
71 2 2] e ARl AHg-sioF Yt public I EE Sl WE AR getter function & ZHT HREY.
tizf ol d Jeella:

function balances (address _account) external view returns (uint) {
return balances|[_account];

-

AL AR, 57 Az o] o8] Lol B o] B4E AL 4 AT
th2 9] event Sent (address from, address to, uint amount); =

send @4 mRA|f Zo| A HAAHUTE §A QIE o] AMH ofELA 0l X = EFA|QI AdelA
OMIEES & H-E-S 5°]A ¥ WolE & QlEYth oHIEZ HAE QS of o] & e

arount. €] QAE 7] WOV, o= EQHE Holeht] waE U oAES T
JavaScript 7 =(Coin ©] web3.jsif H|3t HE-& 5ol THE0| ZEHE AA21 7 gyth & AUt

Coin.Sent () .watch({}, "", function(error, result) {
if ('error) {
console.log("Coin transfer: " + result.args.amount +
" coins were sent from " + result.args.from +
" to " + result.args.to + ".");
console.log("Balances now:\n" +
"Sender: " + Coin.balances.call (result.args.from) +
"Receiver: " + Coin.balances.call (result.args.to));
}
})
A4 E o] A Aol A AHs o = WHEo]Zl 9F balances 7} o] B A £ 1L A=A] @7 FoFRA Q.

AR AEHE A A AAEE SRS ol 1, o Folli AHEE|H) U Th o2 AEAES W A
9o $42 97402 AUtk nsg (tx % block EhHi F8¢ Aol B4 S2A] Fod 5 Qe
R S 5S B &Y meg. sender = 9ol A 2| #4-2 5EF F45 ehylU

npxaro 2 Ag A AEHETL 52T 4 9 P4ES nint 9% send YUTh W mint B SET ALEA}
AEAES WE Afgto] of|m o} AL Pojubx] gtk ol Q147 false BoFE A WE WA Agrol

https://en.wikipedia.org/wiki/Hash_table

Solidity Documentation, £A| 0.5.10

A2 HEopPlEE sl= E4 o4 require 9 o8] EAEHUTH require & & W2 S &35HH F<lo]
YE oA =11, o] = 2p%o) @ HERS o 2]] Ylo] & 4= JlF Yt

W2 send & O[FE 791 B AFRHOIR (0]F] o] 712 717 R 55 PRI WAL ol
FR19| o] T G 7-F, require TEF-2 A5t Ew, 247t o 2N 2] & AHGAFA Al Al-S U T

I
o
Ny
E>
i
EN
>
%
o
b
i
2

225919 AL AASAL T2 ofele A obd Uitk T ol HiEe] BT 2 S (mining, hashing,
elliptic-curve cryptography, peer-to-peer networks, etc.) & ©zx] d#H o] Z | k=2 AHeA Q7]
AUt o]t MME S Wotsd uf of2l@2 1 7o) = 7]l dis] A4 Ba= flsyth ofEe]
AWS7F U 2H 0 2 of B SAHEA|E & At 7 ol ZHe e,

[m
re
12
rx

o,
=
ro
r>~1
)

> I
lo
Hul
ok
Jo
L)
<
m
R
12
2}
o
ne
<
<
rr
i}
o
)
)
o
[>

O,
i
o
o
P
rlo
=
|m
©
=2

21_1‘
2
el

r_%rﬂ
3]

e

Ir ez 10
o,
e
v

o [

o,
%=
o

o |
g M
i
_EL
il
ol _{>‘
39
o
rr
pouy
o
»H
ndl
i
=
=
18
s
v
T
=
o
a
=)
o,
% |
lo,

[m
2
s
r-
al
[m &

7l BE oF HoALh BE Hleltie AS Eehy
ol Eela AL 1 7k H1E 2 g o,

o, RE Azte] A7} s¥] WAL U EEE APFABAIC @ AZolA hE ARE ol Ase 2
Qe o], gloleluo] A0 ERAAL g AR Eo| BALZEO M The Azio] 1 BRI 27}
SFSIThe A WOl G T oW ol42 2o 217} 57 Showl £ w71 glolol A,

SHEU. 34 glolEHol A8 A fAse AL At
7F Az 718 27T ARgANTo] ojA Y detE THA= A

o

r e do
21
|t
offt 4
)
f
SN
[o
jus]
=
—H —
)
ol
o
A=)
)

dlo]Ejuo] Ao] H-L5)= Eo

—T
i

M ¥0 O
B2 e

|m
e

N
2
rlo
ot
oz
r=
M
>
oo
Y
2

O
%
o
fol

=~

ot
S
=

Bromol [0 g2 2 2P T
Sy
30,
>
ni
o)
N,
j_'o_lx‘
iJL‘

O
oM,
o
o
)
e
rok
o
>,

o
ot
°
I

mjz
Jfu

H|E Qo] FEofofat 71 2 Ao BE "0lF A% 2" YY)

il oj® 7] ®71e? shhe] EAHATo] 5T

817} Peer-to-Peer U] =912 0] 4] Zj¢H4]¢]

Tof] tigh 2449l T olelRo] we] 417 4 MRl ok AYYh ANHOR £45E ERYAES

SAE ofelfo] AATTE AuEw, o] g

of GHAUT 193 YEAT] FHolst 2
L =

A7 H= ERAAS A E Aoln] EE9 87 A gyt
olf g EFS2 AlXte] wet A3 o] A E 71 FHIE HH "EEAR1" Y o do] HASUTE EEES 4T
A osf A|Qlo = AZF Yt Ethereum oF 1720t} THE0{ 2118

("AE" o2t =¥le) &
Fo Art dofgdt. o] |4 4= 44
uteba of 2 o] EfA o] S5ARIA Bt Y AA e B-¢= AR, At Adas 28 72

ol gyt

= X
Y
jilu)
=
N
i
iy
1
e
2
lo
ku
e
Ju
il

O

M4
Ro)

N N
N,
e
&
rr
o,
o
H
%0,
rr
i)
o
rr
(il

i

T 1o

20 Chapter 8. Contents

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Elliptic_curve_cryptography
https://en.wikipedia.org/wiki/Peer-to-peer

Solidity Documentation, £A| 0.5.10

8.1.3 Ethereum 7}t 4l

A4
Ethereum 7} 4], EVM~ Ethereum®] AULE AEHEE Hﬁ& AEerQ] AUt o] AL & 5] ZE o] 9l
7] B2l EVM oA AP=E= F == HEHIY u% A A 2H 7] T2 AAE HEE 5 glsUth AR o
AULE AEHEE= E}E ANE HAEHEof o] AgHA o7 ErHsgytt.
AH
Ethereum Wofl= 22 F7HS F-foh= 2714 9] Al £R77F Ad5Uth 5 AR 2 Aol 7HA1 1L 9= 57171,
H[d 7] o7 S5, AEHE AF 2 AT} A AFH Z=of o5 F2rE Yt
IE ARl FAa = w71 o8l Ao vtH AEHE O] A E YA E = A Al Yt (AT A
2] FA49 FARHE HUY R ESA A O] 4= "= Ao Z|HEg)
AA o] Z=F A= ofE AHglo] F T/E L5 EVM YollA= FdsHA ohE - Yot
= AL 256H|EQ] EAEEC] AR 7]-3fo2 5| ujgdH AER] & 7HA] 2 95U 81 BE
AL ESHAE O 2 v 4= 9l = Ether(&}5] = "Wei", I ether = 10%*18 wei) %lgﬂ = 7HA1 AL QA5 Y T

i RS
ERAHE G AR THE ARRESE QI Ho]9lS S 5T ok H2) 02 RAE AE0] w4
A gJuie}. 18] 3 vhel 2] glo] 8" Flo] 2 ="ekat £))9} Ether & ek 4 QU T,
B Aol ZES Eeteln glow TEE AT Ho]z el 91 Hole 2 AZ gyt
I A9 A ghe A=A W Aol 1 B Aol nuil 2 94 A9 A L £
Ao fae AEAE 2 AAeE A BEEAT AAY A8Ae} eatm Ball EAM L] Jof ol
F57) ARHUG. 7 AEAE 44 Edhald Ho] 2EL EVM Hfo| EXE 2 A5E)7] 919 A& HY ot o] 4
QP ololele AEHES FE 2 §7s] AFEUT =, DEAES W57 98] A4 =S Bl tA, A9
wjo] =5 edeks ZES Wijop Sk A Tghch
FH: AEdES} AAEE Sk AEAEY] mEE Hojglgutt o i, A4AT ABe B Yty
AEHES thA] BEa) AL rE T
JtA
E QAL M A, QA0 FhA 7} B Ao ALG R ol EAAA Aae] WA 4o S AT Ba L
F4A) 3 QUi T el 3 e o] ofs) Ae] Fhai 234 nE By

o

7h2 7} & ERAAL e
H

A2 THE ARG A7 S A A JHH « JHA O & AT Adlo] Byt o] ol
Fh27k e o) 2 Ao

oAl o 2 ALg Aol 7] thA] 32 il
AT A7} H TR, ThA 25 o 2] @77 WAlels] A DA WAsE BE

http://www.ethereum-alarm-clock.com/

Solidity Documentation, £A| 0.5.10

AE2Z|, O 22|ef AL

Ethereum 7}/ #Al2 dlo]8f AE2]A], WRe], A=jolz} Z2]= 37kA] goo] glaUH ol& tha el
Agy

72 Aol 2B A o Bk glole o] gyt A FL §Lo 2T ERAA Aol 4 J7Ho=

EAFI)

AEER]E256H|E EA7) 7]-3F FEHE A2 ;q;G/\ IUth AEME o] AEE]A]2 Bk A B3}
of 97 ek V8ol ol St AEAES} 45514 S AEAAE AAY £ 4 i

FRA AL d R ofn 2t wA|Z] Fof Hisf M2 27]ehE AT~

BfolE e chRII LY. £7]7F 8 MEL 256 BES} 8 4 gl e ¢l 256 vlE
MR e Wnel 4= FAE, A U 1A of AT (g

Qqoto 2 SggU k. SRS Aol 714 g AR E|o|of

A0 2 Z7kshch

EVM2 2| A8 sjtlo] ofya A8 Ay B ¢ = YA A=gY . v 1024
Mol 848 714 4 131 2564 E 0] ol 5 matehth. 28 e B 7]ol A Ho] Pofwick

28 AT 167] 045 % e AT BAsL Adde] 848 Wl 167] 84 5 shue} Ak
710] 7Pk, QY5 Aele] 2pe 27(oE QI4tolupel nfet shIelAk, o WESE) B JPA s 1
Aits 28 FAg UL =& o Zlf_’_ 289] AAE 98] 28 R45S AR W22 $71E AL
7R s R A o] 4 ZAstE 948 dolz d2ehs A ¥hs

L

ﬂ

N g
ko

=
J&h 245 A|75HA] o T e

es]
<
<
1o
ox,
ol
i
rlo
M o
B>

2 4 2] ZAE o8 4 e Xe”'it% TS AU BE FHol= 7
glolH %1,25 H] i e 27H(&F2 o H}OlE LN : A AbE
2],)i Ato] QlgUth A7 27 Q= AL JPs g 1 {E@iié A 5] T e AH

HIAIZ =

AR B2 et FEHEE T2 AEAES 2351 ENET} of] A 0.2 Ether S S8 4 2l
Utk WA 7] 2L £417 5417, Hlo] 6] Wo] 2.5, Ether, 7129} 2] 2t 58 7HA|11 Glo] A A7} g AHgH
o AR = EX

AL A39) A7 B2 FAEE 277 BE BE S eyt
=

AEGEL W olA2] 557 G BT ¢ AT AT 4 d&Uh BoF YR 55 F kA HE R
O THE 9.5) 7} WAIs 28o] o2l gto] F/15ie el Hulk o] A% 522 15) LB 740
L2 Solidiyel] 2ol Ak ol Al 18 A 02 S5 Ik W22 55 2del

OPH W, 5EE AEHEL o] v9I7] W] e QAT A0} 35 Hlo]E et HelH g1re] 55 ol e

A2 B Fhg Ut o] SR HW TExto] ofof ojn] I vlme] G ehol A dlolel S e

S QU oY 322 B g 571 AU

522 1024719 Zol2 AGHH o] B AFASF AATZHL} R o] AT A RS EFUch
Ak7h, 7h20] 63/64 Tho] wA A Boll A L D 5 glop], ol A - 02 1000 ol5te] Zlo] A5t figlo]

2~ o1t}

RG]

22 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

HIZ|AH|0|1E & / 22 E2} 210|E2]Z|

2o thargt Wgo] gl WelAolE B o] A9k o Fa0] 1 o] 7]
Qefl A AWETHE 27 msg. sender 9 msg.value 7} gko] BHIA] SH=THE 4l elel mlAlX) 23t 5

il
N
fol
"ﬂkﬂ'
FIF
By
[m
1
|m

o|AL AEHET A F thfet 40 5 FHOR E2th= A ST 2B, @A T4
ZrH2 o123 SEoH= EHES I I EE= T2 H FAA 7FH3 Y
o] -2 Solidityol| A E54gt Hlo]E] X 70| 7h53t AEHE O] AR 2] x]of] A& 7H53t AR 7Hset A E,

W

4717 2] R AAE o gaie] Sus] A AE dlojg 7% HojE S AAshe AR APsFU o] 7%
2} 2] Solidityol 4 o] 7= & 7@s7] 98] A2 Y TH AEAESL 21 HojE S BEw 42d
gk 2249 upgo] A agHo R 3

- =2

Mdrrae S rlo e
24T 1l py
Mo d

71 HloEE-2 bloom filters QFol 27 =] 7] w2, E&2A 0|1 FE2tE o] QP o= Hlo|e 5
SHYT IEhA BE SSAQIERIE S| ERM 28v)e thalA] g2 HEYA Hojsk &
=& ode] S 4 sy
AHA
o o
HEHESL EHG A Ho(Fes] ERYHO R 0 F45 TE6HA] duUhHE AHESte] b2 IEHES
= AT & Asyth o2’ B F o A WiA1R] E 9] Aol HlolzE HlolH 7t Ay k= A Ayt
FE 8 AFEHE H, 220 YA A 0] A HEHE F 42 dhths A QU

£

£} BEARA T2} APAE §UT PEE 240 AEHET} selfdestruct IS AERL
JUt}. 0] A% d& Bthers AAH BHloR $AXT ARelx|oh et ajg Aol A A9,
£H02 AEUES Aot AL £ ofoltiolr SUAE maAguthl, AR JHs B¢
(§19 2717} A A AE A Eo] EtherS A45H7, o5 Ether's @ 740 2 47 gyt

FX: AEHE FEV} selfdestruct & EF5HA] Ytjetr, delegatecall ©]t callcode & A3Y35[1
s

EE H|8/eotd, YH/JH € vl 2 24 disable slof 9t} ofmf, i e = BE
&2l Yol HYth o] =lsf Ether7} A WiehH B e AEHES ARES & §IA HYth

)
il

2~
T

AR 2] £EA] g8 AEHES A ek, BEA sl AEed Holgl ARt 121,
o} £-22] Ethereum 1= E50] o|E B.8514] @ ALtk LA, 2] AEA"E A 2L Holels

shEd A0 4 ARshs Asts thEU S

8.1. ADIE ZIEE 47| 23

https://en.wikipedia.org/wiki/Bloom_filter

Solidity Documentation, £A| 0.5.10

8.2 Solidity I} Mxz|5}7|

8.2.1 A 2|

Solidity ¥ #2]= semantic versioning & 2™ nightly development builds 7} ¥l| 2= 4= & Q] T} nightly
builds= 2150] HAEA 917 A1) r 23 chabAA BASHEIA oA AT WAAG] U & 9%
O Sl A4 WETHS AL AT ofee] 1717 QlaE el AARE AFE T ol HIUh

2
7t AE G E 2HY 91 W2 Solidity oF&ofli= RemixZ =4 gL ol
2efelo] oA Q. ol AR A2l B8 gl QIEYl XM\—O] Lﬂ% g ol A Remix & AH8-5H4
S, https://github.com/ethereum/remix-live/tree/gh-pages 2 7}1A] . A2 YgatoM Q.
9 th FE52 7WE] Solidity Hutd 2] &ZESoE A 16}% & 9Astn WL]E}. 2
Fmo] AT ES el O BS B3] S40] Wasitid AN ek AN YA E AFReA R

8.2.3 npm/ Node.js

Solidity AtA Q1 solcjs S A5t THHERF npm S AF-E-0FA K. solcjs T2 -2 A Ho] 2] offjofl Avg H
Aot Aol HLstk= ‘*H*EE} o A2 71'5& 7ML QFUS. @Y Ht 2] AR§ol7] A= R0l BE

7158 7 Amel e sole & ALgATHR FF3E T solcjs ©] /‘}%‘?3 & 7% o 248 £]o] glguic.

ZA: solc-]s I 2 A E X Emscripteng /\}go}_ C++ solc 9| A oA =] 9151 t}. solc-js€} Emscripten= 5 St
nJrO‘ HAAFEE /\]-4‘101'\/]11} solc-js += Javascript T2 E of A ARE-H 4= 915 Y Th(]l: Remix). ZPA| R U-§-
solc-js A4S ZZSHIA 2.

Flo ot

npm install -g solc

F4: A7Ps e AME o] o 2L solcjs AU

solc _4 B 07} solcjs | 4] Z2F5-6FR] &50] solcjs & AMEZQ] 2L solc T18]a1 geth Z-& =594 S8t
57 34k

8.2.4 Docker

2= Hutd 27t 2ehd 24 Docker =5 A %Qﬂ‘r- stable A7aol& v £ WA o] Zete|o] glow
nightly A& aole FAA o= St HAAIGe] 2ehd /i Bafiz] o] wxdo] Zgte|of ls Ut

docker run ethereum/solc:stable —--version

@7, Docker o] 0|70 Al A melnt Eakelo] glvich Tejng 440 &2 HalE g dds)|
814 & 7H4] 57 Z4L sk gk

8.2.5 Hio|L2| I{7|Z]|

Solidity B0 2] 7] 2] = solidity/releases of| 4] ©]-& 7}5ghth
Ubuntuol 4 A& 7F5-at PPAT 914Ut P4l 2141 vl .2 ol m 2ol

il

sl d27Hs

i
i
=

24 Chapter 8. Contents

https://semver.org
https://remix.ethereum.org/
https://github.com/ethereum/remix-live/tree/gh-pages
https://github.com/ethereum/solc-js
https://github.com/ethereum/solidity/releases

Solidity Documentation, £A| 0.5.10

sudo add-apt-repository ppa:ethereum/ethereum
sudo apt—-get update
sudo apt-get install solc

MarEel 24 A AL AThe obdl Hol S o] 8514 &

sudo add-apt-repository ppa:ethereum/ethereum
sudo add-apt-repository ppa:ethereum/ethereum-dev
sudo apt-get update

sudo apt-get install solc

Q2] T3} snap package 2 B} Q)5 U T o] 7] A= 2| YE= E Linux B 323t of] A 2] g 4~)&t
soleo] S 41 M AL AA|selwl the Beol S ol G514 8-

sudo snap install solc

241 M7 ARREo] ;2 Solidity o] 2|41 7H S HIAESH: o] =& T3 Ao th5S mhEA a:
sudo snap install solc —--edge

7N 2291 241 Bl 2o 2| gt Arch Linux & A] 7] 2] 7} Q)& th:

’pacman -S solidity

2 2]+= HomebrewE £3f] Solidity 1} 2]& build-from-source M7 © 2 s L3}, pre-built bottles = A A]
219151 epgu ot

brew update

brew upgrade

brew tap ethereum/ethereum
brew install solidity

Solidity 2] &4 ¥ o] " st 3L, 715 Hof A 2 Homebrew formulas A 2| 4= 9J&51).
Z15] B.9] solidity.rb A W& &

solidity.rb o] 54 78l raw file Y25 25 w7h4] S| AR A5 wepriA 8.
brew & AHg-oto] A 5H A Q.

18

brew unlink solidity

Install 0.4.8

brew install https://raw.githubusercontent.com/ethereum/homebrew—-ethereum/
—77cce03da9f289e5a3ffe579840d3c5dc0a62717/solidity.rb

Gentoo Linux =5t emerge & o] &3] 2| 4 9J= Solidity I 7] 2| & A& h:

emerge dev-lang/solidity

8.2.6 2A0j|M HIES]Y|
2 42| &5 - Linux

Solidity S Linuxol| 4 = 57] 914 th-& ol g2-g 4|50k gk

ATEQ ESL]
Git for Linux Glthuboﬂ/\ﬂ 5 HASH] 9

et
Az
£
!
v
ro,
i

8.2. Solidity I Ax|5t7| 25

https://snapcraft.io/
https://snapcraft.io/docs/core/install
https://github.com/ethereum/homebrew-ethereum/commits/master/solidity.rb
https://git-scm.com/download/linux

Solidity Documentation, £A| 0.5.10

2o 23| &5 - macOS

macOS 2] 7%, HtEA] A1 WA 9] ‘Xcode<https://developer.apple.com/xcode/download/>¢_ 7} A 2] &]ojoF gt
Yt} o 7]of= Clang C++ compiler, Xcode IDE 9} 71 2] OS XA C++ ofEA o] WESHY] 95t of =
M E-E0] 2Z3tE o] JFHT XeodeE A5 AASHAY A M2 A2, A EgRloA FESH]
gfo] A 2of Fosfiof ettt

sudo xcodebuild -license accept

Q)7 o]= FES Hx5l7] ¢Jsf 0SX WEL Homebrew H7]7] tfUAE Q2 FHch SA] A-SHE thA|
A Z¥stal ﬂt}tﬂ, 0171 Homebrew 217 Sh= Wi Yo

T M2 = - Windows

Solidity] Windows W= 9]4] olaje] o] G258 Ao it

FEEY] S\
Git for Windows Githubol|A] &2~ AASL7] 2ot AmMEael T L.
CMake A=A s HE upd A7

Visual Studio 2017 Build Tools | C++ 1t]
Visual Studio 2017 (Optional) | C++ FHutd & W 7idt 3173,

IDE7} S} Bo| 11, At d 22} 2ol B 2] 2]t Q) © ™M, Visual Studio 2017 Build Tools& A 2] & 4~ 9154 th

Visual Studio 2017- IDE9} T @ g Zlufal2js} ato] B aja] 2w 42} ufalA] IDE
lidity S A 246kl QIThHA, Visual Studio 20170] RE setup= g7 ol & 4= = A=io] & AYYrct

S Visual Studio 2017 Build ToolsW Visual Studio 20179]| 4] A x| sfjofsl= AR A B29Y
* Visual Studio C++ core features
VC++ 2017 v141 toolset (x86,x64)
¢ Windows Universal CRT SDK
* Windows 8.1 SDK

e C++/CLI support

AF
©

Rl
5
=

=
=

|
prFEE BAS) AL, oldle] Weols Agsiae

git clone --recursive https://github.com/ethereum/solidity.git
cd solidity

Solidity 7]2-& F 4T, Solidity T2 AES FA5}w, T WA 97 AF4g 449 A4S F7hehA 2

git remote add personal git@github.com: [username]/solidity.git

2|5 9|

Th
ook
o

macOS, Windows ¢] B2 Linux 8| Z¥to]| H oot = o F ofF 55 AA|5ts =90 23 HETL 54

26 Chapter 8. Contents

https://en.wikipedia.org/wiki/Clang
https://en.wikipedia.org/wiki/Xcode
http://brew.sh
https://github.com/Homebrew/homebrew/blob/master/share/doc/homebrew/FAQ.md#how-do-i-uninstall-homebrew
https://git-scm.com/download/win
https://cmake.org/download/
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/vs/

Solidity Documentation, £A| 0.5.10

’./scripts/install_deps.sh

Windowsef| 4 offjef 254t

scripts\install_deps.bat

HHESQI ”E

=2
'+ 4SS T A S8 PRI D) TN DAY ek
Solidity T2 A E = U5 F4317] 9|5 CMakeS AHggU T WHEH U= K55 £0]7] 9|54 ccacheE A
Z| 5= A o] —’lL]E]- CMake7} A% © 2 ccacheE AT A AUt} Solidity ‘QEE Linux, macOS 9 7| €} Unix
o A % AT} g E Lok

mkdir build
cd build
cmake .. && make

Windowso]| A =:

mkdir build
cd build
cmake -G "Visual Studio 15 2017 Win64"

o] Pgole] Az s WE tjdlE o] solidity.sin 7} B HUth o] 1}d-& tE25HH Visual Studio7}
AYFYrh $2]+= Release 873475 W Eoh= A AU
—

£ o2 E Windows 7 =21 A ofgjelzte] RES UYL 4= 5T

H

cmake —--build . --config Release

8.2.7 CMake =M

CMake /48 &1 AttH cmake .. -LH HH o5 APSHAA L.

STM Solvers

Solidity+= SMT solvers<>ﬂ ol M F &= 9lom, AARA TARH fZEZ S+ A AUt Z} solver=
cmake A4 2|5} B4 5} F 5 Q5UTh

F4: gl mpap W= Anjo] Al o] B £E Yerr)

UE ZoAL OEER Ageles A0} Q7] thiol, AbgelA S A4 o % sy

23 SMT Solver OF H|ZAS}
cmake .. —-DUSE_Z3=0FF

CvC4 SMT Solver 8F H[Z2H45}
cmake .. —-DUSE_CVC4=0FF

z32f cvc4d 2= HlZHHS}
cmake .. -DUSE_CVC4=0FF -DUSE_Z3=0FF

8.2. Solidity I Ax|5t7| 27

Solidity Documentation, £A| 0.5.10

8.2.8 HH ZAIE JAM[5tA £7]

Solidity ¥ Bt v R oz TAFYch
- 3 2
« pre-release B 1, tj7]] develop.YYYY.MM.DD L} nightly.YYYY.MM.DD FE& A
o Ty ZHe Fej 9] AU commit . GITHASH
« E9E 9 Hopd Yol titt AR JHE Zedsh= " 7] s
2704 49 22| gk, A Hol .mod 7} Uk

o] HEES Semver(Semantic Versioning)o] wra} " Qo] o5 AgH Ytt o]7]A] Solidity pre-release B 1+
Semver2] pre-release B 12} Z+11 Solidity A ™ & ZHZ2 Aslx]o] Semver Y E H el o] S LA Tt}

release 9]: 0.4 .8+commit .60ccl668.Emscripten.clang.

pre-release of|: 0.4.9-nightly.2017.1.17+commit.6ecb4aa3.Emscripten.clang

Ga) 27} ol Fof, w7 WAL WAHUTh @A o] A), ¥AL semvers} 87 Aol vt @A
v}, webA, Wl EE G4 prerelease B 1S A2l @ @49 nightly buildH 1 0.2 o] £o] Y.

of:
0. 0.4.07} v EZH C}
1. A &5 nightly build=
olma Bl 98

0.4.1 W olc}
3% - W7 Wl it
NGOl S A5 - AL 0500] Hrf

Z+8 yersion pragma £} S 2= T

8.3 OIS S3t &2|C|g]

—

8.31 EH
cho] FEEL 49s] BASHAT solidityd] B SAESS BolFuth ol Rio| wet REAES 79
g AU B2 A% R84 BAL of$A FEAS Suk2A FG@Holn] olof st 222 oA
ogrstivkel gk AU o714 BE BAE AT 5 QAN Holz Sk o dAZ B AB} "
AR5 2] 3 Aol ehel5] FEA|" 19FEI oA o] Fol A HolZE At
o] ofolt]ofi= gl o] S o shtol A= ES A stel Zbzte] Adntct Fo o5& AR el g
A Saohs AEAE AP 2 ool AR ae) REALS FolT AU
SRS WS FA AYES AHo] A FESAL A4 EEAS AT 5 G T2 Al 19T
% gl

A Y .
3 Agbo] PR, “winningProposal() @4 7P B SIS @ oS Beid AUk

28 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

pragma solidity "70.4.16;

/// @title 99 E£H.

contract Ballot {

/7 OIZE Lo B0 AAEE ME2

/) B RS
/) 2AE &Y

L L.
HAIE 7S AYLt.

struct Voter {
uint weight; // weight = C{HEIO| Ofsf =ZHEL|C}.
bool voted; // B2t O] gi0| trueet™, 1 Af2tE oj0] EH3 A QILIC}.
address delegate; // SEH0 QY& At
uint vote; // SERE Fotol olEA [LJOjE gt

}

/) O|Ze e

X|otof cCHst &QIL|C}.

struct Proposal {
bytes32 name; // ZHEbeH F3 (Z/Of 32HFO0/E)
H

uint voteCount; // &4 &

address public chairperson;

// O|AE 2tzte] Jtset Fa0] s
// “Voter' FRAE HFots HEfHTE LAt
mapping (address => Voter) public voters;

// EXHo=2 FI|7} 2FE pProposal’ RO BYYLILIC.
Proposal[] public proposals;

/// ‘proposalNames' & ofLtE MEo}7]| 2ot ME2L2 FEHAS HELHAL.
function Ballot (bytes32[] proposalNames) public ({

chairperson = msg.sender;

voters[chairperson].weight = 1;

/7 2zkel XEEl X okA OlF o Cffd,

/) MEZ HoHM IAZE BHE0 BiE Z0of ZIFgtLCt.
for (uint i = 0; i < proposalNames.length; i++) {
// ‘Proposal ({...}) creates a temporary

// Proposal object and ‘proposals.push(...)"

// appends it to the end of ‘proposals’.
proposals.push (Proposal ({

name: proposalNames[i],

voteCount: 0

P

}

// “voter' Of7 Of EEHY Cf3t HES HofSHAAIL.

function giveRightToVote (address voter) public ({
// ‘require'Ql Ol£IF “false 2 EILE[H,

/7 ARE FEED ZE HEIUUES statel

// Ether BalanceZ f£Z/Zg/L|Ct.

/gt 2R S2EH O|RAE AFgstE 20| EFg UL
/7 et ZESHEAIL,

// O|AE

s AZE DE HAS 26 HYLCE.

// (OIAE ez vt & oLt

(continues on next page)

8.3. o4& S35t £2|C|E| 29

Solidity Documentation, £A| 0.5.10

o d HolA A A A%

require (
(msg.sender == chairperson) &&
!voters[voter] .voted &&
(voters[voter] .weight == 0)

)i

voters[voter].weight = 1;

/// o 2 RAAONA EHE LY5HHAIL.
function delegate (address to) public {
/7 B RE RFSHHAIL .
Voter storage sender = voters[msg.sender];
require (!sender.voted);

/) AA YL HAEE R & LLCt.
require (to != msg.sender);

// “to'JF Qe5tE Z9F delegationsS RAESHYAIL.

// YetFo 2 olgl EO= OfR g7 w20,

/7 HR 28 HAEH SZ0AM AtEItset JtA 2L

// O BE JrATF BR2stA gXE 2EL).

// 0] BF /Y (delegation)2 YA YUXBH,

// CfE Y EofMe Olgfet ZL =2 Ql5

// AOLE HAESES) 2tFs) raztrE £~ QL.

while (voters[to].delegate != address(0)) {
to = voters[to].delegate;

// PelE delegationO] RZI} Qg5 20 A0 51&otx QgL

require (to != msg.sender);

// ‘sender’ £ ZRO0BZ,
// ‘voters[msg.sender].voted' & $Z3&gLIC.
sender.voted = true;
sender.delegate = to;
Voter storage delegate_ = voters[to];
if (delegate_.voted) {
// CES} oo EXE F2,
/) EH FOf FF RIF HYAIL
proposals|[delegate_.vote] .voteCount += sender.weight;
} else {
// CHEZF OF2 SHSIR| QFQHCtH,
// weightOff 2I}5fHAI2.
delegate_.weight += sender.weight;

}

/7 (oA LIgE EEAS EEetY)
/// ‘proposals[proposal].name’ AOtAOf EH ofHAIL.
function vote (uint proposal) public {
Voter storage sender = voters[msg.sender];
require (!sender.voted);
sender.voted = true;
sender.vote = proposal;

// BFef “proposal® O HIZOl HRIE HOfLtEH
// AASL22 throw ot ZE HFAMES EH=E AL},

(continues on next page)

30 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

proposals|[proposal] .voteCount += sender.weight;

}

/// Gdev BE& Ol SHE 12510 £[at AHQHME ALHEiLCE.
function winningProposal () public view
returns (uint winningProposal_)
{
uint winningVoteCount = 0;
for (uint p = 0; p < proposals.length; p++) {
if (proposals[p].voteCount > winningVoteCount) {
winningVoteCount = proposals|[p].voteCount;
winningProposal_ = p;

}

// winningProposal () &+ T Z5f¢
// Ao B EStEl SO indexE A2 CFE
// S3F0| 0|82 BratErLCt.
function winnerName () public view
returns (bytes32 winnerName_)
{

winnerName_ = proposals[winningProposal ()] .name;

}

W H7ts st Aret

—

ot
min

A BE AR ERAL Hofalr] ga) B Adst Ba gk f e die A7 B 5 a7k

8.3.2 Eclol= Ay

o] MA AL, o] e Bekel = A REAES G5 EEFl0] duht 424 HolE AU $el
AN O 7HA S B4 gl o) Al ARske] o] REHES QE7IRto] BUpIA7EA A4 A7
£ B 0] 2P Bakole Ao SHAA DAY T

QAR ofolrloli= Al 7105 LE A0l 150 AAANE B
| AR AR biddens} T52] A A bidyE 19114 Eolit ol
ol SI2svich. BH9F 210 A4 7}2lo) Segioie, 1 ol9] A1 AL 19| £ 5

%ﬂ'—?’:, 3— ZEHEE 119 =5 ¥ $oAE 6 5 ox F HojHopdt
St s 05 A RS AL 4 U,

b e et

ol L
N
-~
Eh)
2,
>
rr
£
_4 O

p

pragma solidity 70.4.21;

contract SimpleAuction {
// =49 OFetO[E]{. AjZt2 Ofef && ofLf 2/LCF.
/) WEZ2E QUA E}QAENIT (seconds since 1970-01-01)
// 22 At (time period) in seconds.
address public beneficiary;

uint public auctionEnd;

(continues on next page)

8.3. o4& S35t £2|C|E| 31

Solidity Documentation, £A| 0.5.10

o d HolA A A A%

// =289 #A et
address public highestBidder;
uint public highestBid;

// OIF 2tH AHA=9 +e& =
mapping (address => uint) pendlngReturns;

// OFZ|8HO| true 2 HZ, Ojifst HHAHEZ &2tz L& LCE.
bool ended;

// HF0| 2dst= OHE
event HighestBidIncreased(address bidder, uint amount);
event AuctionEnded (address winner, uint amount);

// Ofefe] HE 42 "natspec"Oletl Ze|R& ZUIE,
// 3708 &efAlo] elsf 2otE £ QUELICF.
// OlZE RA7F EAMME Cfst Stolg 2F ey

// 2oLt

/1) RHAY RAE CYNISIO] SHB JFAAA| 7|2t _biddingTime '}
/// oAl F 4 '_beneficiary' & X glol=
/// ekt 284S A &g,
function SimpleAuction (
uint _biddingTime,
address _beneficiary
) public {
beneficiary = _beneficiary;
auctionEnd = now + _biddingTime;

}

/// ZOfoll et ZHAX AL ghE
/// O] transactiond} &t 2 L{ZLICF.
/77 e BOHOIA 07|12 Z3fE FREH
/17 ‘if% e £ %’"L/Cf.
function bid() public payable {
// O Qe HRSHR Y&, 2Z&
/) BE FeE 0j0] EAFHC
// YRO|Lt. 'payable' ZIYEE
Va4 0/515 Age Ao Jts StE=E
/7 ot7] lero ghoz 27 E L.

// BOf Z|Z2t0] B
// ElZ0f ifL/Ef.
require (now <= auctionEnd);

// BFSF O] ZHAAMAIZ} G =2 %CtPH, =5
// EEe BELCH
require (msg.value > highestBid);

if (highestBid != 0) {
// ZFEts] highestBidder.send (highestBid) & Af&3f0]
/S EE &Y BUE A2 249 22370 Q&L).

/7 ane NS g2 ZEYEE MU AT+ Y| HRYUUCH,

d2
/) BHe APg0] 159 £8 15 A22 23 &R o= 20l
// gt o rAgtL .

pendingReturns [highestBidder] += highestBid;

(continues on next page)

32

Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

o d HolA A A A%

}

highestBidder = msg.sender;

highestBid = msg.value;

emit HighestBidIncreased (msg.sender, msg.value);

}

/// BIMA gEol Z2{d JHEAA 25 .
function withdraw () public returns (bool) {
uint amount = pendingReturns[msg.sender];
if (amount > 0) {
// BtE AFEOl O] “send Btet O|F0| = =29 YEZH
// 0l g+& CHAl =2g £ I fZ0of
// O0lAE 022 HF5te XE S251LH.

pendingReturns[msg.sender] = 0;

if (!msg.sender.send(amount)) {
// OZIM throwE =228 HR2Jt gauc, 28 o 273,
pendingReturns [msg.sender] = amount;

return false;

}

return true;

}

/// Ol BOE ZU2 21 JtF XHAZ

/) Aol SE .

function auctionEnd() public {
// OlZE CfE = 725 &= 2 JH0/E 2L,
// (i.e. AXEE O|HE ZLUf7LE gt

/7 32FA| EFA

/1. ZUS 0l

/2. 88 £ (A2 HEHs =)

// 3. interacting with other contracts

// If these phases are mixed up, the other contract could call

// back into the current contract and modify the state or cause

// effects (ether payout) to be performed multiple times.

// If functions called internally include interaction with external

// contracts, they also have to be considered interaction with

// external contracts.

// 1. 2
require (now >= auctionEnd); // auction did not yet end
require('ended); // this function has already been called

// 2. I
ended = true;
emit AuctionEnded (highestBidder, highestBid);

// 3. H4=AE
beneficiary.transfer (highestBid);

8.3. Of|lxIE Set £2|CIE| 33

—

Solidity Documentation, £A| 0.5.10

geolc oy

o] 0] 7} o Betel= Hrhz s B|olguiTt Betels uho] o] -2 Zul 717k nizte] gk A1k reo]
Qithe AUt BRI AujS EdAA H AT SR BEE AL B HE T qd SUAE e,
T gastol o2 FxAS T

A 7124 59k, 74 A AL AA 2 T 0] AAAA A B Ro] oh ek, 1 # A9 sj4] WAk 9
2 3kl L £719) (B E3] 17 T AL @A) 445 02 Bohs ohtha o A7) tEe], 714 ANAEL
A0 oJ5] 74AS AU vl 717ke] By £, 714 AAAEL 150] A S AT ASS Eefufost
gtk 258 150 ruahe 4] oL g Bln ZEHEE o4] gl Ar) 717H5 et Al g H el 2wt Ze A

T2 T AL o]jE A AufE #5171 Bl
To] £2 HUE A2 U fdd
olt 2l ghollM Ertlert 2

2 FA0] RIELT} Quiet: 7bA AARFE 27k Aol A o]7)
5k PHe Tu7h £ b AlXeh @] RUES s Ak gt Aol
g % g7 gl orE 1 ghe B 4 et
ofele] ZEREL o BAZ 44 2 AAAA A BT H ofH glolE
3] Eefuli Al SHelslo] 2 4 917] u e, 2ol 7bA AA S
o1& 0] Utk (1AL AAo] &L 741 9] ot W SESA ke o 2
ZEUTh): 7H AAAES B0 B e fast) L 7H AN gozs BB Be A
o

0, o
2

=2,

=
2l
ok

o,

>,

)

-0,

pragma solidity 70.4.21;

contract BlindAuction {
struct Bid {
bytes32 blindedBid;
uint deposit;

}

address public beneficiary;
uint public biddingEnd;
uint public revealEnd;

bool public ended;

mapping (address => Bid[]) public bids;

address public highestBidder;
uint public highestBid;

// Ol 213 AAl19] 5gteEl =25
mapping (address => uint) pendingReturns;

event AuctionEnded(address winner, uint highestBid);

/// Modifieris B4 QYEZS YFsl= Mels greguct.
/// ‘onlyBefore'2 Ofefo| 'bid'0 & 2|
/77 0 M2& B4 23
/// ModifierQ| & &/LICt.
modifier onlyBefore(uint _time) { require(now < _time); _; }
modifier onlyAfter(uint _time) { require(now > _time); _; }

function BlindAuction (
uint _biddingTime,
uint _revealTime,
address _Dbeneficiary
) public ({
beneficiary = _beneficiary;

(continues on next page)

34 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

G B B 5 s)

v
s
aa
/77
a
s
v
s

biddingEnd = now + _biddingTime;
revealEnd = biddingEnd + _revealTime;

‘ blindedBid' = keccak256 (value, fake, secret)2} &t

Jt2{Zl (blinded) Z}HE AA|gLICH.

Oror ZHA ZAIZF E2{Uf= HAHOIM SHIZEZ BHRICHH

HUfZ o= stgets £ BF Y&Lct.

JtE AAIep g ELfR O|CE Ol "value"9f"rake" &= ZE/LICF.
"rfake"E L& HFoll FE5Ix YA FE EHUE UE X THE XHAIE
s/ gL, dejLf 03] 27 HE 258 gL, &2

FAE 0 JHE AHAEE & = USLLC.

function bid(bytes32 _blindedBid)

/7S
/7S
v
/7S
/7S
v

public
payable
onlyBefore (biddingEnd)

bids[msg.sender] .push (Bid({
blindedBid: _blindedBid,
deposit: msg.value

1))

Reveal your blinded bids. You will get a refund for all
correctly blinded invalid bids and for all bids except for

the totally highest.

heizl FE AMAIE EefdLCr. e 2o It RESA g2

HE AHAIEE =HES BE QLo deln Ity &2 JHE AHAIE Aelet
BE I A= =5 Bs AgLct.

function reveal (

uint[] _values,
bool[] _fake,
bytes32[] _secret

public
onlyAfter (biddingEnd)

onlyBefore (revealEnd)

uint length = bids[msg.sender].length;

require (_values.length == length);
require (_fake.length == length);
require (_secret.length == length);

uint refund;
for (uint 1 = 0; i < length; i++) {
var bid = bids[msg.sender] [i];
var (value, fake, secret) =
(_values[i], _fake[i], _secret[i]);
if (bid.blindedBid != keccak256(value, fake, secret)) {
/728 HAlE AR EeLpR] gLt
// Do not refund deposit.
continue;
}
refund += bid.deposit;
if (!fake && bid.deposit >= wvalue) {
if (placeBid(msg.sender, value))
refund —= value;

(continues on next page)

8.3. o4& S35t £2|C|E| 35

Solidity Documentation, £A| 0.5.10

G B B 5 s)

}

// Make it impossible for the sender to re-claim
// the same deposit.
bid.blindedBid = bytes32(0);

}

msg.sender.transfer (refund);

}

// O|ZdE O] g7F O] ZEEE QtojiM O|H AAZ20H 55 & £

// ACtE OO0l ZtA|&= "internal™ gt @ILCf.

/7 (EE IYE ZEHEZOIAM)

function placeBid(address bidder, uint value) internal
returns (bool success)

if (value <= highestBid) {
return false;
}
if (highestBidder != 0) {
/7 Olfo] 2t =2 21 AHAZE &g
pendingReturns [highestBidder] += highestBid;
}
highestBid = value;
highestBidder = bidder;
return true;

/// Withdraw a bid that was overbid.
function withdraw () public {
uint amount = pendingReturns[msg.sender];

if (amount > 0) {
// It is important to set this to zero because the recipient

// can call this function again as part of the receiving call
// before ‘transfer' returns (see the remark above about

// conditions —-> effects —> interaction).

pendingReturns [msg.sender] = 0;

msg.sender.transfer (amount) ;

}

/77 BOIE U tE =2 JHE AHAIE X0
/) &5 err.
function auctionEnd()

public

onlyAfter (revealEnd)

require (!ended) ;

emit AuctionEnded (highestBidder, highestBid);
ended = true;

beneficiary.transfer (highestBid);

36 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

8.3.3 Safe Remote Purchase

pragma solidity 70.4.21;

contract Purchase ({
uint public value;
address public seller;
address public buyer;
enum State { Created, Locked, Inactive }
State public state;

// ‘msg.value 7} Z£S =4S AL
=

/) OHF 4248 282 Zo|g 2Y HYLCt

/) BHES S5 010 E47F OFHA HOI5HH2.

function Purchase () public payable ({
seller = msg.sender;
value = msg.value / 2;
require ((2 * value) == msg.value);

modifier condition (bool _condition) {
require (_condition);

—

modifier onlyBuyer () {

require (msg.sender == buyer);
7

}

modifier onlySeller () {
require (msg.sender == seller);

—r

modifier inState(State _state) {
require (state == _state);

—

event Aborted();
event PurchaseConfirmed();
event ItemReceived();

/// FOIE SHetd O|HZ 2+gLct.
/// 2EGETE Z2)7] Mol BHONRFO) O[5 A Bt
/70 2E OO E £ YsHot.
function abort ()
public
onlySeller
inState (State.Created)

emit Aborted();
state = State.Inactive;
seller.transfer (this.balance);

(continues on next page)

8.3. Of|lxIE Set £2|CIE|

—

37

Solidity Documentation, £A| 0.5.10

G B B 5 s)

/// ORI ZN FOfE =g LCf.
/// EdAMNE 2 « value' ether =& X Sl5lOF BFLCF.
/// O] O|ElE confirmReceived ()7} && €UV
/7 BEAYLLt.
function confirmPurchase ()

public

inState (State.Created)

condition (msg.value == (2 x value))

payable

emit PurchaseConfirmed () ;
buyer = msg.sender;
state = State.Locked;

}

/// TOHRFZF OFO|EHlE EFQFCtd =9l
/// OlAE2 &zl OJHE Z0/Z A gLCt.
function confirmReceived ()

public

onlyBuyer

inState (State.Locked)

emit ItemReceived();

// It is important to change the state first because
// otherwise, the contracts called using 'send’ below
// can call in again here.

/7 BA YEfS YEStE A0 28,

// AR gob, “send & AESIH TEE ZEHEL
/) BAL Ol =2+ QAT Wi gLt

state = State.Inactive;
// NOTE: O|Z2 HAZ Fojztef Hojzf ct stg of= XAE 948 =+

/7 UEE UL - 25 IfE0] AFEE[00FPF BFLICt.

buyer.transfer (value);
seller.transfer (this.balance);

8.3.4 Micropayment Channel
gog rojd oAy
8.4 £c|C|E| M3

o] AAGIAL EeItiE o] el Galo] dotokdt RE FRE AFYIT wet irehel Hrst QIrk Gier 1}
Github & 53f] Pull requestE @ A3 FHA L.

8.4.1 Layout of a Solidity Source File

Source files can contain an arbitrary number of contract definitions, import directives and pragma directives.

38 Chapter 8. Contents

https://gitter.im/ethereum/solidity
https://github.com/ethereum/solidity/pulls

Solidity Documentation, £A| 0.5.10

Pragmas

The pragma keyword can be used to enable certain compiler features or checks. A pragma directive is always local
to a source file, so you have to add the pragma to all your files if you want enable it in all of your project. If you import
another file, the pragma from that file will not automatically apply to the importing file.

Version Pragma

Source files can (and should) be annotated with a so-called version pragma to reject being compiled with future
compiler versions that might introduce incompatible changes. We try to keep such changes to an absolute minimum
and especially introduce changes in a way that changes in semantics will also require changes in the syntax, but this
is of course not always possible. Because of that, it is always a good idea to read through the changelog at least for
releases that contain breaking changes, those releases will always have versions of the form 0.x.0 or x.0.0.

The version pragma is used as follows:

pragma solidity "0.4.0;

Such a source file will not compile with a compiler earlier than version 0.4.0 and it will also not work on a compiler
starting from version 0.5.0 (this second condition is added by using). The idea behind this is that there will be no
breaking changes until version 0. 5. 0, so we can always be sure that our code will compile the way we intended it to.
We do not fix the exact version of the compiler, so that bugfix releases are still possible.

It is possible to specify much more complex rules for the compiler version, the expression follows those used by npm.

ZFX: Using the version pragma will not change the version of the compiler. It will also not enable or disable features
of the compiler. It will just instruct the compiler to check whether its version matches the one required by the pragma.
If it does not match, the compiler will issue an error.

Experimental Pragma

The second pragma is the experimental pragma. It can be used to enable features of the compiler or language that are
not yet enabled by default. The following experimental pragmas are currently supported:

ABIEncoderV2

The new ABI encoder is able to encode and decode arbitrarily nested arrays and structs. It produces less optimal code
(the optimizer for this part of the code is still under development) and has not received as much testing as the old
encoder. You can activate it using pragma experimental ABIEncoderV2;.

SMTChecker

This component has to be enabled when the Solidity compiler is built and therefore it is not available in all Solidity
binaries. The build instructions explain how to activate this option. It is activated for the Ubuntu PPA releases in most
versions, but not for solc-js, the Docker images, Windows binaries or the statically-built Linux binaries.

If you use pragma experimental SMTChecker;, then you get additional safety warnings which are obtained
by querying an SMT solver. The component does not yet support all features of the Solidity language and likely outputs
many warnings. In case it reports unsupported features, the analysis may not be fully sound.

8.4. &z|C|E|M}E7| 39

https://docs.npmjs.com/misc/semver

Solidity Documentation, £A| 0.5.10

Importing other Source Files

Syntax and Semantics

Solidity supports import statements that are very similar to those available in JavaScript (from ES6 on), although
Solidity does not know the concept of a "default export".

At a global level, you can use import statements of the following form:

import "filename";

This statement imports all global symbols from "filename" (and symbols imported there) into the current global scope
(different than in ES6 but backwards-compatible for Solidity). This simple form is not recommended for use, be-
cause it pollutes the namespace in an unpredictable way: If you add new top-level items inside "filename", they will
automatically appear in all files that import like this from "filename". It is better to import specific symbols explicitly.

The following example creates a new global symbol symbolName whose members are all the global symbols from
"filename".

’import * as symbolName from "filename";

If there is a naming collision, you can also rename symbols while importing. This code creates new global symbols
alias and symbol2 which reference symboll and symbol2 from inside "filename", respectively.

’import {symboll as alias, symbol2} from "filename";

Another syntax is not part of ES6, but probably convenient:

’import "filename" as symbolName;

which is equivalent to import * as symbolName from "filename";.

Paths

In the above, £ilename is always treated as a path with / as directory separator, . as the current and . . as the parent
directory. When . or . . is followed by a character except /, it is not considered as the current or the parent directory.
All path names are treated as absolute paths unless they start with the current . or the parent directory . ..

To import a file x from the same directory as the current file, use import "./x" as x;.Ifyouuse import "x"
as x; instead, a different file could be referenced (in a global "include directory").

It depends on the compiler (see below) how to actually resolve the paths. In general, the directory hierarchy does not
need to strictly map onto your local filesystem, it can also map to resources discovered via e.g. ipfs, http or git.

FA: Always use relative imports like import "./filename.sol"; and avoid using . . in path specifiers. In
the latter case, it is probably better to use global paths and set up remappings as explained below.

Use in Actual Compilers

When invoking the compiler, you can specify how to discover the first element of a path, and also path prefix remap-
pings. For example you can setup a remapping so that everything imported from the virtual directory github.com/
ethereum/dapp-bin/library would actually be read from your local directory /usr/local/dapp-bin/
library. If multiple remappings apply, the one with the longest key is tried first. An empty prefix is not allowed.

40 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

The remappings can depend on a context, which allows you to configure packages to import e.g., different versions of
a library of the same name.

solc:

For solc (the commandline compiler), you provide these path remappings as context :prefix=target argu-
ments, where both the context : and the =target parts are optional (target defaults to prefix in this case).
All remapping values that are regular files are compiled (including their dependencies).

This mechanism is backwards-compatible (as long as no filename contains = or :) and thus not a breaking change.
All files in or below the context directory that import a file that starts with prefix are redirected by replacing
prefix by target.

For example, if you clone github.com/ethereum/dapp-bin/ locally to /usr/local/dapp-bin, youcan
use the following in your source file:

’import "github.com/ethereum/dapp-bin/library/iterable_mapping.sol" as it_mapping;

Then run the compiler:

solc github.com/ethereum/dapp-bin/=/usr/local/dapp-bin/ source.sol

As a more complex example, suppose you rely on a module that uses an old version of dapp-bin that you checked out
to /usr/local/dapp-bin_old, then you can run:

solc modulel:github.com/ethereum/dapp-bin/=/usr/local/dapp-bin/ \
module2:github.com/ethereum/dapp-bin/=/usr/local/dapp-bin_old/ \
source.sol

This means that all imports in module?2 point to the old version but imports in modulel point to the new version.

ZF4]: solc only allows you to include files from certain directories. They have to be in the directory (or subdirectory)
of one of the explicitly specified source files or in the directory (or subdirectory) of a remapping target. If you want to
allow direct absolute includes, add the remapping /=/.

If there are multiple remappings that lead to a valid file, the remapping with the longest common prefix is chosen.
Remix:

Remix provides an automatic remapping for GitHub and automatically retrieves the file over the network. You can
import the iterable mapping as above, e.g.

:: import "github.com/ethereum/dapp-bin/library/iterable_mapping.sol" as it_mapping;
Remix may add other source code providers in the future.

Comments

Single-line comments (/ /) and multi-line comments (/* . . . = /) are possible.

// This is a single-line comment.

/ *
This is a
multi-line comment.

*/

8.4. &2|C|E| }RE7| 41

https://remix.ethereum.org/

Solidity Documentation, £A| 0.5.10

ZFX: A single-line comment is terminated by any unicode line terminator (LF, VF, FF, CR, NEL, LS or PS) in utf8
encoding. The terminator is still part of the source code after the comment, so if it is not an ascii symbol (these are
NEL, LS and PS), it will lead to a parser error.

Additionally, there is another type of comment called a natspec comment, for which the documentation is not yet
written. They are written with a triple slash (///) or a double asterisk block(/*+ ... x/) and they should be
used directly above function declarations or statements. You can use Doxygen-style tags inside these comments to
document functions, annotate conditions for formal verification, and provide a confirmation text which is shown to
users when they attempt to invoke a function.

In the following example we document the title of the contract, the explanation for the two input parameters and two
returned values.

pragma solidity >=0.4.0 <0.6.0;

/#*+ @title Shape calculator. x/
contract ShapeCalculator {
/++ @dev Calculates a rectangle's surface and perimeter.
* @param w Width of the rectangle.
* @param h Height of the rectangle.
* @return s The calculated surface.
* @return p The calculated perimeter.
*/
function rectangle (uint w, uint h) public pure returns (uint s, uint p) {
s = w % h;
p =2 % (w + h);

8.4.2 Structure of a Contract

Contracts in Solidity are similar to classes in object-oriented languages. Each contract can contain declarations of
State Variables, Functions, Function Modifiers, Events, Struct Types and Enum Types. Furthermore, contracts can
inherit from other contracts.

There are also special kinds of contracts called libraries and interfaces.
The section about contracts contains more details than this section, which serves to provide a quick overview.

State Variables

State variables are variables whose values are permanently stored in contract storage.

pragma solidity >=0.4.0 <0.6.0;

contract SimpleStorage {
uint storedData; // State variable

/7

See the E} 9] section for valid state variable types and Visibility and Getters for possible choices for visibility.

42 Chapter 8. Contents

https://en.wikipedia.org/wiki/Doxygen

Solidity Documentation, £A| 0.5.10

Functions

Functions are the executable units of code within a contract.

pragma solidity >=0.4.0 <0.6.0;

contract SimpleAuction {
function bid() public payable { // Function
//

—
—

0l

}<~ © = can happen internally or externally and have different levels of visibility towards other contracts.

Function Modifiers

Function modifiers can be used to amend the semantics of functions in a declarative way (see Function Modifiers in
the contracts section).

pragma solidity >=0.4.22 <0.6.0;

contract Purchase ({
address public seller;

modifier onlySeller() { // Modifier
require (
msg.sender == seller,
"Only seller can call this."
)i

—r

function abort () public view onlySeller { // Modifier usage
//

Events

Events are convenience interfaces with the EVM logging facilities.

pragma solidity >=0.4.21 <0.6.0;

contract SimpleAuction {
event HighestBidIncreased(address bidder, uint amount); // Event

function bid() public payable {
//

emit HighestBidIncreased (msg.sender, msg.value); // Triggering event

See Events in contracts section for information on how events are declared and can be used from within a dapp.

8.4. &2|C|E| o S7| 43

Solidity Documentation, £A| 0.5.10

Struct Types

Structs are custom defined types that can group several variables (see 725 7] in types section).

pragma solidity >=0.4.0 <0.6.0;

contract Ballot {
struct Voter { // Struct
uint weight;
bool voted;
address delegate;
uint vote;

Enum Types

Enums can be used to create custom types with a finite set of ’constant values’ (see Enums in types section).

pragma solidity >=0.4.0 <0.6.0;

contract Purchase {
enum State { Created, Locked, Inactive } // Enum

}

8.4.3 EIY

solidity= el Aol 21 W4 40} 2] o] 4 0] Ehelo] A Hlofobsh (i H25 327 Msdlopsi
- Bl T2 AR) AH B doldu . solidity= B 74 9] 712 Ble AlFStH ol & 2ol S Ble
BE 5 Uyt
o=
TSk Bl Ak et ey W Mz F2AEE & sy o2 71 Akl tigt W82 Order
of Precedence of Operators =

\“N

o 52 W47k A) Ghvalue)o] AL B g ERgJoletis BT %, o] Belo] g0 Azt
3 g9, gro] = ApR T

Booleans

bool: 7Heet gk A< true 184l false YUYt
A4kt

o | (=2] BA)

« 55 (=2] AND, "and")

* || (=2 OR, "or")

== @2

o 1= (TA] L)

j=)

44 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

4 Bo] =LY uint 8 oA uint256 744,

int /uint: et 27]9] RoQ= 4 BHY, F29le
Tt 2P Yt uint ¢ int =282 uint256 & int256

83 int8 BB int256 7}Z| SH|E T 2 7] ¢
o] Ayt

A
¢ I QAR <=, <, ==, 1=, >=, > (bool ATGS 7HA)
¢ WE QA s, 1, ~ (SRR HIE o), ~ (M 1)

ol A2 DAY THEVME| DIV opeode2 Hutd Huth). T2t 7 Attt
o A

A lterals (E= 2 E) e EAAR A9 442 AAE 7] gherith.

002 WeriLh00 2 RER Q4H2 51 dekel o9)7h B,

ATE A5t Aio] BhYe 9% mQato] BrS MEUTH x << yEx + 2eny 9 BAGH, x >> v =
x / 2ery O BAGULL. o] S5 ALESHE A9 R5k 3492 o|n]ghch(This means that shifting
negative numbers sign extends.) TR A| L E AANS AdisH=E 39 HEFY o @7 2 o).

A RoSGlE 2 AFE SS AZE A
solidityof| A=, 95 A ZE = VAl at ofj g
Ah. the ZE Y oo = S
gt A T #

AT 14 253 Sk obd solidityo] 4 $hH5H AU A ek 13 257 S A9 S A
g9 St g
T BA Y .

04 A4, REQE 14 257 8ol EAFUL 9=

fixed / ufixed: TSt 37]9] Ho ol
Ereje] s 544 FIE] 48 LtERe] N & 4 olsl A28 Lhe)

ufixedMxN @} fixedMxN o)A M
YU} M- 804 2564 Abo]]

fol HFEA] 85 Uhro] WojAof eyt N 2 03} 80 Afo] €] gho]ojopt
StUth ufixed @} fixed = ZFZ ufixed128x19 9 fixed128x19 o] HA At}
AR
o]I AL <=, <, ==, 1=, >=, > (bool AIFEE 713)

FA: B 25 40k 14 254 50 FRE oL, BE £ 4k B0 £ FES BAS] 919
AL BE 0] $7h 52218), 14 253 9] A9 91As] Folslo] gtk dMHOR HE 57
HPAO A 7] 9] BE BRbo] A% H RS hehf 7] §15) A AR 1 A5 A AL 2L 40 v ERto]
A BES B ojetv] AHg e

8.4. &2|C|E| o S7| 45

Solidity Documentation, £A| 0.5.10

Address

address : 208}0| E(0] 5 2]-& address2] T7])2 &2 4 95U T address Eflo]l=HHrl Qo R E AEH
9] 7]ato] gk
A AR}

o <=, ==, 1= >= and >

FA4: 05002 A&st= HA Y] I EZ E= address BFQ ol 4] oY =] 2] FQEA| T, address BRI 0 2 TP A A $1
=2 5 dsyh

address2| members

e balance @} transfer
W27 0 8™ Address 22 & 2 X514 Q.

balance &4 0]-85}4] address@] 15 X 3|6} transfer 45 0]-85}o] THE addresso] EtherE (wei
@el=2) Bl 5 gy

address x = 0x123;
address myAddress = this;
if (x.balance < 10 && myAddress.balance >= 10) x.transfer (10);

N
1

H]
_w,

E#E addressQl 3¢, IE(Y LA H 2L fallback §57 EA5H= HA-9)= transfer 357} 37
= 7131 tho]d EVMe] S40l8] oh8 5 glgriich. 27} A9 1ok Rsel A oL
A RtetH, Ether 52 AGE1E ™ @A o] AEHE = o Q)& LAYt 774]5“45}

/R]
=
=

%
=
~—

e send

Send:= low-level £=~Fo)| A transfer of H-$EYUth Aol AfjstH AEHELE Zhr]z] ¢4 tj4l send 7}
false & W& AUYrh

74aL: send 5 AR W HIEA] FoJAFR}o] Ql5HH: call stack 2] 710]7} 10242t H5-2 A st (o] A

R —Q—EX}'Oﬂ o A 2 4= dFUth 1Al AR gas7F AF AR E o Nuﬂ@ﬂ\:} a8Eeg

744 St Ether 744’\% L3R4, FA send 9] HEEZE-S 81Q15}AL, transfer & AFRSHA| Q. B2 ¢ £2 UMY
FAATL £ AESHE B AR AU

ok

N

[l

[o]
Mo rrlo

e call,callcode 181

de
Eq, ABIS 4511 St AEHESH 52§51 S15t0] A9 £ AAE ASHE call 47t AT Hv)
QUAko] Bfq] A BE B2 ¥ o115t QA 320l =7} 8 a7 AHAT A2H ok
74| oSl A WA 147} A3k dvo] £ 2 Q1 Bl AUt o] A9, F5 Ao] A HES 5]
Sfef Ql27h A 9217) ke,

elegatecall

address nameReg = 0x72ba7d8e73fe8ebt6beabbbabc8ll6adlbfblle2;
nameReg.call ("register", "MyName");
nameReg.call (bytes4 (keccak256 ("fun (uint256) ")), a);

46 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

call & 5 G40k FRel(crue) oW EVM 9% 2 A7 S(Ealoo) LENE bookear
shetglU o webe elolel AAo] Aoelie B EtelE e Sl dad Tt 2718 e o 9l
oloF FHh.

cgas () ACIHE Aol AT 7HAE 248 4 Y5

’namReg.call.gas(lOOOOOO)("register", "MyName") ; ‘

oot -FAFSHA Al Ethero] g HA| 22T 4= 54tk

’nameReg.call.value(l ether) ("register", "MyName"); ‘

mpz|eto 2, of AlRMAE2 A AR o glom A A flsyth

’nameReg.call.gas(lOOOOOO).value(l ether) ("register", "MyName"); ‘
FA: AYEA = 2 oA ZEA AlbA 3 A ALE AR 4 Ut

o|2 913t AL FhAch grol Wl E4a A7t A=A 2A45}T thA) T o BAE Qo] A
shelshs AU}

0|2} §A37], B delegatecall & ARG 4 Glgrrh: Aol de, Folq Faold 27 RET AH T
02 AEARA, Wi,)2 @A) AEAES] AL LG, delogatecall o AL fe AEAE]
A ol eje] TEE A gobo] SIFA T AHEAL 3% AEUE o] A3t Aolobo] delogatecall s
of] AFRE]7] Agtetz] HtE A Selsfof gy th. homestead TA A7F2| =, callcode g1 E8l= delegatecall
o] Algte PP uto] o] §7HsF=tl, o] M FH+= msg.sender & msg.value o FIot= 75
A B k.

Al 7}A] §F4 call, delegatecall W callcode &= 1S low-level $H=0] 2 2 Solidity 2] EFY] eFAA-S 7
O] Ao e 02 A ALgalora

) S Al 7HA] Hl A REOIA AR 4 AR, Lvalue () #5412 delegatecall oA AR

Obo
olt
X

[H

.gas

address®] WH| S AF&5lE 2 this.balance & 0]856to] @A AEHE O] IHG %

ZFA: callcode &= 33 v]H A A A D o Holat AF-LLS ARSHA] 5T

AL ol G55 lowlevel §20]22 2ol Aol Pt 2]) Foh Aede A 4
glon gref o] 2 2% 49 s AEHE gt Alo] VS YAFHZ TZo| Werd uf e WSS
WAT 4 gyt

1A 37| HIO|E HiY

bytesl, bytes2,bytes3, ..., bytes32. byte is an alias for bytesl.
A AFA}:

o H]I AAbR}: <=, <, ==, =, >= > (bool AI}ZS 7}7])

8.4. £2|C|E| Mt1S7| 47

Solidity Documentation, £A| 0.5.10

- H]E A4 6, |, (HIER BIE o), ~ (W] E B, << (QF AZE), >> (925 A LE)

« QA Tt x 7l bytesT BI0laH, 0 <= k < T] x[k] £k WA vho] E2 wHakstth(el7]

R |
a8)
A ZE ibZ= 2 H|EQEE o] 302 8 el = L 8% v it B E A4S AT 4 dsyth(22 AT
A% o] Astabe] EFQlE g oh. S4THE A X ESH= 79 AR o e)7h Ay ot
Members
* .length = Hio|E uj o] 14 H o] & Hrehtyth(¢] 7] 4-8)

F4: vho] £l AL byte (] &I AHgol 7FsshAR, o] & 79 2 aantt Hsks] 3iuto] 2] B7He st

AUt} bytes S AFR5H=A 0] ¢ WUt

=2 37| Hio|E HlE

[¢]

bytes: §2 7] Hfo]E uj g, ¢ & FZ25HAL. g ebglo] opdueh
string: 52 37|92 UTF-8 Q1FZ = BAtd, g

ZA@ol 2 1ol Hol9 °W HO|E H|o]E| 9] 9= bytes & *}4‘10}1 ‘94 ZAolo] FAL(UTE-8) H
o] 9] -2 OﬂL string & AR&SHA| Q. REeF ol 54 HiolERtE At Uohd, 4 bytesl of|A]
bytes32 & SIS ARSI Q. kst Z7He o Aokst 4= 917 By o)

Address 2|E{E

address |34 HAEES B35t 1624 28 H (S 5H 0xdCad3a6d3569DF655070DEA06cb7A1b2Ccd1D3AF)
o address AUtk AZLH HAES Erbola £at 3942 ~ 41242 2ol9] 16704 <AL A E WAl
A7) Qb el el e g2 gyt

Z4: 25 7o) 2 address] AZA GA1E EIP-55 o A2]5]o] Ut

el 2leE U Y 2lEE

A e E2 09 W90 Ao =g FAHUY A e E2 Ao g YetoldYyth o & 501, 69
L gAE ottt 8714 2l e &L solidityo]] EA]5}2] ¢Fo] Adf 0 %33}11 Fsyrh

23 oloh HEEL o] Aok o] =27k glem . o ofs] HAEYTh 2= 1., .1,1.3 0] 3%
Ytk

A7 ol H 4 AN A F 4 Gl e B T A PE U 210, -2e10, 2e-10, 2. 5e1 2
A7t AFH

Z2F geld 2@412 gE o] ofd epglo g WH 72| (S, 2E o] obd @ AT} A AFEEE A
Aol AUEE G ol Alte] g @ HER QT TS fom Aol £-3Eu AEls-E
”EMW a=d ugyc

oﬂgg , (2%%800 + 1) - 2%%800 ©] AIH= H|E F7+ A}gLo] machine word sizeol] 2 3ts}2] oF-22] 2}

A% 1 (uints BDAUTE AT .5 « 8 o] ARGE (1% F7k0 57} obdl 527 A H A et
341 i

48 Chapter 8. Contents

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-55.md

Solidity Documentation, £A| 0.5.10

T~

=

Aol AR 4 Sl AAAE T QA7 49 St 2 e B Aol AR 4 oyt (] A4h =
shetE 259 7o, HE 4to] 5857 gFom 2|57} A4 ol A5 &
(FE 7S = qlom),

FA: solidity= 7} fre]<ofl tiafl 522k 28 E erdS 7Yt A 2leda gl 2lEEe TX} 25 gt
Jofl Ut ot RE 22} B HE BIA(F, 22 522t 2 E ‘“’*J} JJZ}E”} FAE TAA)L 57 2lE
E’r‘“oﬂ 2otk a2 Szt 2ed 5@A 1 + 292 + 1 BT 9ad 30 s e £ 2" ekglo]

A3 ol WAL A% e do] e eale] Aol Al AR5E WA, BAE fel4E wakgy
thZs5 / 2 27bokdet2.s Ut

F4: 54 elHe BAAe e o] obd AL Gl ASF]E 54 2E el ok Heloz WatEYTh
H|E Sl ohg dl Aol A b o G gol A5 BAHHTHEE L AT FE EEL 2.5 + a L B

HAE SHA gov] mEL Futelsx] gt

uintl128 a = 1;
uintl28 b = 2.5 + a + 0.5;

=22 2| E

2219 g E-e 2uhe gt ARk H o sh| A EH Ut " foo" = 'bar'). solidityo]] A Cof| A 2 trailing
reroesS A LI »foor Mol obd 3okl & AT 4 olefHnt b, 2
4 2 g o] e t}folH bytesl, ..., bytes32 2 ¢AIH HEE 4= QlF Yt AESE 7|2 bytes ¢F
string S 2% WHIE 4 Ql&Utt.

B4 25 EL2 \n, \xNN, \uNNNN 2} Z-& escape characters2 A| QT \xNN & 16714

A4 32 FHof g4
Hlo] E Z AFQl5H= HHH \ uNNNN -2 Unicode codepointZ %] 5f] UTF-8 sequence= 419l gt}

16214 2|E{

719IE hex 7t AEAR B3 SupgEY ALuhS R E4el U thhex"001122FF"),
olofo} 5}0] g2 vol el = E@H

l0214: 2/
A B2
2249 ele| gt Zo] Sast]o] FAsH WA Aol Uit

e 16%
15 <19

2] ©
=1
2~ 3.7
T
=2 le)
=

Enums

G792 solidity A AH§} 0] €l grEE 9 7hA] i PUTh GAFL BE Pet)o /g et el A
tg/\];ﬂ lﬂi%o] 7]- o].;(]u]- OFA]14 k)]E_O‘I._]—l NHH/\]
oA L& SIAAYTE dAZ-

fo
i,
R
52
>
i
O,
o
>,
2
rE
rlot
rlo
r
ul<s
=)
)
oE
4o
mlm
)4(

pragma solidity 70.4.16;

contract test {
enum ActionChoices { GoLeft, GoRight, GoStraight, SitStill }
ActionChoices choice;

(continues on next page)

8.4. &2|C|E| o S7| 49

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

ActionChoices constant defaultChoice = ActionChoices.GoStraight;

function setGoStraight () public {
choice = ActionChoices.GoStraight;

}

// Since enum types are not part of the ABI, the signature of "getChoice"
// will automatically be changed to "getChoice () returns (uint8)"
// for all matters external to Solidity. The integer type used 1s just
// large enough to hold all enum values, i.e. if you have more values,
// ‘uintl6' will be used and so on.
function getChoice () public view returns (ActionChoices) {
return choice;

}

function getDefaultChoice () public pure returns (uint) ({
return uint (defaultChoice);

}

-

a4 EfY)
T4 SAYUTE B4 B0 A Ghel A B 5 om g4 Bl G g4t 529
W, 42 ARSI wakshed] AHSE 4 AUt @4 Bl F R gyt R 9 9E g4
Jyct:

R S 07 WA DEAE O] el uk(e TAA 2, 3 eho] Hafe] gof ALSe 1S ekt
@A FE ful Wl AT $2E 5 Qlach HukstE W T4 @4 AESE O] A AE Hef A Aad
5 g7 ESIUTE G 42 SESHEAL v @A AEHES] P45 YR Ao s T guet nhivia 2

entry label 2 7}A] A& U},
9 G4 addressol @4 A0 TR 915 G5 5ES Fol AL W 5 5Tk

T4 el thet o] mA gy ek

function (<parameter types>) {internal|external} [pure|constant|view|payable]
— [returns (<return types>)]

7R Bl 2], wrek B2 v 9] & 4 glsUth o BhYjo] ofF AR WhekslR] f=tH returns
(<return types>) o] HE 3}

o
__)&‘
i
o%
SiL)
&"
(o]
<)
Q|
o
L
)

EAOT, G B RRGSOIBE, internal ZIYEE A /RS TITh MR, AEAE F4 AAE
712 © & publico]H BFQ] 9] o] F.0 = ARE-E wjgt 7|2 gko] internal YT

A AEAE A ool ISR S T4} BT £ o2 27 o] 2L Ag ek this. £ oldl
Aoz 12 5 avth AAHE Ui TARe 2 esr) 2 Ay,

g Bl Hprh 2719} 2] od2 AH oA, o8 SEohd A elrt BAE YT ghepoll delete S AME F 11
48 ool ASolE SYat A2t BT,

913 F4 o] solidity AL AES] 2ol A ALLTE A%, o15L Foll T AEAT} B address S T
bytes24 E}Q]o 2 217 Y35}= function 02 FHFHUTH

QA AEUEC] 52 G YR GHRE RUFRE A48 4 ASUT £ 8 WR B2 Agelen,
£ uh AT 9§42 AF8Sle W this. £ 2 ARSI 8.

ESH 1532 (= external) $F=0f|= ABI function selector & Ht2kol= E4=SF WY selector 7} 15U T

50 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

pragma solidity 70.4.16;
contract Selector {

function f() public view returns (bytes4) { return this.f.selector;

}

}
W e BF e AR Ste S HolF e AlA:

pragma solidity 70.4.16;

library ArrayUtils {
// internal functions can be used in internal library functions because
// they will be part of the same code context
function map (uint[] memory self, function (uint) pure returns (uint) f)

internal
pure
returns (uint[] memory r)
{
r = new uint([] (self.length);
for (uint i = 0; i < self.length; i++) {
r[{i] = f(self[i]);

}
function reduce (
uint [] memory self,
function (uint, uint) pure returns (uint) £

internal
pure
returns (uint r)

r = self[0];
for (uint i = 1; i < self.length; i++) {
r = f(r, self[i]);

}
function range (uint length) internal pure returns (uint[] memory r) {
r = new uint([] (length);
for (uint i = 0; i < r.length; i++) {
r[i] = i;

contract Pyramid {

using ArrayUtils for »*;

function pyramid(uint 1) public pure returns (uint) {
return ArrayUtils.range(l) .map (square) .reduce (sum);

}

function square (uint x) internal pure returns (uint) ({
return x * x;

}

function sum(uint x, uint y) internal pure returns (uint) {
return x + y;

8.4. £2|C|E| Mt1S7|

51

Solidity Documentation, £A| 0.5.10

9% 4 Brle AHgSH E ThE oA

pragma solidity 70.4.21;

contract Oracle {

struct Request {
bytes data;
function (bytes memory) external callback;

}

Request[] requests;

event NewRequest (uint) ;

function query (bytes data, function (bytes memory) external callback) public {
requests.push (Request (data, callback));
emit NewRequest (requests.length - 1);

}

function reply (uint requestID, bytes response) public ({
// Here goes the check that the reply comes from a trusted source
requests|[requestID].callback (response);

}

contract OracleUser {
Oracle constant oracle = Oracle(0x1234567); // known contract
function buySomething () {
oracle.query ("USD", this.oracleResponse);
}
function oracleResponse (bytes response) public {
require (msg.sender == address (oracle));
// Use the data

—

FH: ATk Qeteldts oA Al Eol gl oba) X Us|A) kit

22 Ep)

B ER9l, 2 g4 256H] Eo] o9 o Bhele 927k ol A7kA T el §S AF A Thelop

g AFSHE 2L Hl @ldto] ® 4 glong, Sol Bt gl S Wme] (54l §18) o
o %

H% =
W) AE S D% ol

A
Cllol&] £z
RE 83} HSle Alo] B2 v A=) F ool AYHALAE Yehh Hold 9177} #7150
ST, Gl sl g el SASAT, Slel JEei) o ol2el S Sl Aol @
AF U o= w7l Hp(iret UH7H W 290 724k tI=e] o], A ‘?ﬂ—’FJ 71232 2B]‘34
K wige] 917 A2IA) 2 JA|s|o] gk
FES Al 1A glo]E $12]9] calldata 7F QloH, of7]ofl= o JIAF A E AL 74 E7Hs5HH A& 0]
eyt o o] o4 il Mgl iy Al Q)= calldata of Al A EHM A9 memory A
A5 gt
glolg A= H4r = HHAS HASH| tlE2of Q3§ th: assignments between storage and memory

and also to a state variable (even from other state variables) always create an independent copy. Assignments to local
storage variables only assign a reference though, and this reference always points to the state variable even if the latter

52 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

is changed in the meantime. ¥, W& 2]o] AA= 2% EFQlofA th2 wralo] A4 ZFZ ed-S o

EARS e gy,

=2 =

m&"
m&"

pragma solidity 70.4.0;

contract C {
uint[] x; // the data location of x 1is storage

// the data location of memoryArray 1s memory
function f (uint[] memoryArray) public {
x = memoryArray; // works, copies the whole array to storage
var v = x; // works, assigns a pointer, data location of y 1is storage
yI171; // fine, returns the 8th element
y.length = 2; // fine, modifies x through y
delete x; // fine, clears the array, also modifies y
// The following does not work; it would need to create a new temporary /
// unnamed array 1in storage, but storage is "statically" allocated:
// v = memoryArray;
// This does not work either, since it would "reset" the pointer, but there
// 1s no sensible location it could point to.
// delete y;
g(x); // calls g, handing over a reference to x
h(x); // calls h and creates an independent, temporary copy 1in memory

}

function g (uint[] storage storageArray) internal {}
function h(uint[] memoryArray) public {}

—

0k
Z3A) dlolE A
o 9B St4~of ufj 7l W (HEhzE w] 2 Gh): calldata
-) WA 2R
71 ol8] 917
o o] wi N (ke gh A2 oh): w e
s BE A Hap AR A
HiE

g2 HutdA] 14 2718 7HE ek Al 4 2718 7HE = dsyth 2E2A] Hjd e ¢, aa0
B8 99| H 5=, thE vjddo] B 4k 917, wHol} FEALLE 91 ik Wme) ALe] A5
wjso] = 4 glo whok BAjH 0 2 Mol A %‘] 1A= ABI Bbj o] ofoF gt
Ik 2 IBAUD 24 GYLTARGLT(x) £ BN FAY D1 WD 1) 2 T
A B aine 918 A S] o) 1 S A AL int (115 GO AotEshs
oe] 3} o] maAol uiH o] 9] v«]o}*ﬂﬁ) A 5 27) vfo) 2 ‘ﬂdl‘H u1nt°ﬂ @%o}ﬂi‘?i x[2][1]
olFA AR (NELE 0FE AlFStH HI2 *d?i#t WP 94 0 2 AEFLE e, x (2] shaves off
one level in the type from the right)

bytes ¢ string BJ] M= 53 FH O v YU bytes &= byte[] & FASIAT calldata® 2
2}l 7 QlH Yt string 2 bytes o FUSIAT (FAZA =) Aolut IEA HTE 580k 5t

8.4. 22|C|E| ItE7| 53

Solidity Documentation, £A| 0.5.10

I8 B2 bytes = AA U byte[] Bt} $A4492 18 E]ojofgtlth o A Esh7] il &Y}

FX4: B2Y s 9] byte-representationo]] L5} A} SFHH, bytes (s) . length / bytes(s) [7] = 'x';
o2 A8 E B} obdd UTE 8] low-level o] 0] o5} QIrk= HAsha 2.

Hl 2 public 0.2 AASIL solidity7} getter S FAATHEE S 4 QG5 UTH =2} QY| AL getter?] T4 ujj 7]

obEy
EEER

new 7|QIEE ARES 7] ®7e] et MiES HR o] A%
length PH o gh& Teto =i v vjd o] 27]& ¥ }

HFQL
s, el
rlo
@;
o
ot
iw

L

pragma solidity 70.4.16;

contract C {
function f (uint len) public pure {

uint[] memory a = new uint([] (7);

bytes memory b = new bytes(len);

// Here we have a.length == 7 and b.length == len
al6] = 8;

HHE 2[E{ / Ql2tel i

pragma solidity 70.4.16;

contract C {
function f () public pure {
g(luint (1), 2, 31);
}
function g (uint[3] _data) public pure {
V2
}
}

Hl G e E o] B2 2AH 2718 7HR]= HlRE Hj ol base type> Fol 8450 FF BFYe WEY
tr [1, 2, 3] 9 EFdL uint8[3] memory YUt} MFsHH AL ZF7Fe] EFYo] uint 8 o]7] &Iyt
2% 7) dizel, 9 AA e A A Q45 uint 2 S| of %‘i’k"]‘:}- A=A =, IPE 2710w v E-S

54 A7]1e mre wjde] @ ¢ fleyth S tad 22 A2 s gyth

// This will not compile.
pragma solidity "0.4.0;

contract C {
function f () public {
// The next line creates a type error because uint[3] memory
// cannot be converted to uint[] memory.
uint[] x = [uint (1), 3, 4]1;

(continues on next page)

54 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

-

o] AOFAFGS FFol AAD Aol AT, BA o] 2lg Ao ol8] W de] ABIE AL Ale] ufe}
w7k2) B A7 A g e

£

length: B ol = 849] 25 A7 ot7] 919t length HH7E EAFU T (| 2]7} obel) A& 2] x]of] 24
&4 €2 length HWH] gh2 MFsto] 2718 24T & 5 U A lengthE Hlojub= 240 4
= A OPE’rLoﬁ/ﬂ A71e] 2do] AAFo g Hed ofdyt. wRe] sid2 AAE o 2717F 2 H

So)9) W Bk A cTei 54 o] A9, Aekel vl sao] ufeh kel £ Qlguch)

push: 54 5179] ~Ee7] WG} bytes (string & A2 push ehs Wy F42 A3 LT of
Pt G Boll A48 F7tokev] AP o] T4t 2L length S sk

7411 Itis not yet possible to use arrays of arrays in external functions. &5 S0 A] vlj & o] v F-& A=A

obz] B7h5g et

~
tlo
rL
it
el
ok
rr
M
A
N
-
or
sk
i
_EL
Q
e}
5
5
s
Q
Q
G
e

Zal: EVMO] SHA| 2]l5), Q] H 8 &3S 52 <

function f () returns (uint[]) T

Hheksl 2 2|9t solidityof| 4] S&E 7-¢ ¥igho] E7F5ghyt.
(o]

A=A U35 &2 HHe

LU
?
_,d
oZ’L
LXQ I
offt
2
o,
R
5%
rlo
N
fu)
_?L
i
N,
1o
=
ng
filo
>
oo
o
rr
P
o
i
Ko

pragma solidity 70.4.16;

contract ArrayContract {
uint [2+%20] m_aLotOfIntegers;
// Note that the following 1is not a pair of dynamic arrays but a
// dynamic array of pairs (i.e. of fixed size arrays of length two).

bool[2] [] m_pairsOfFlags;
// newPairs is stored in memory - the default for function arguments
function setAllFlagPairs (bool[2][] newPairs) public {
// assignment to a storage array replaces the complete array
m_pairsOfFlags = newPairs;

}

function setFlagPair (uint index, bool flagA, bool flagB) public ({
// access to a non-existing index will throw an exception
m_pairsOfFlags[index] [0] = flagA;
m_pairsOfFlags[index] [1] = flagB;

}

function changeFlagArraySize (uint newSize) public {
// 1f the new size 1is smaller, removed array elements will be cleared
m_pairsOfFlags.length = newSize;

}

function clear () public ({

(continues on next page)

8.4. &z|C|E|M}E7| 55

Solidity Documentation, £A| 0.5.10

G B B 5 s)

// these clear the arrays completely
delete m_pairsOfFlags;

delete m_alotOfIntegers;

// identical effect here
m_pairsOfFlags.length = 0;

bytes m_byteData;

function byteArrays (bytes data) public {
// byte arrays ("bytes") are different as they are stored without padding,
// but can be treated identical to "uint8[]"
m_byteData = data;
m_byteData.length += 7;
m_byteDatal[3] = byte(8);
delete m_byteDatal2];

function addFlag(bool[2] flag) public returns (uint) ({
return m_pairsOfFlags.push (flag);

function createMemoryArray (uint size) public pure returns (bytes) {
// Dynamic memory arrays are created using 'new ' :
uint [2] [] memory arrayOfPairs = new uint[2][] (size);
// Create a dynamic byte array:
bytes memory b = new bytes (200);
for (uint 1 = 0; i < b.length; i++)
b[i] = byte(i);
return b;

solidity = of 9] A A g F2A o] FA0.2 A2 B PIshe PES AT,

pragma solidity 70.4.11;

contract CrowdFunding {
// Defines a new type with two fields.
struct Funder {
address addr;
uint amount;

struct Campaign {
address beneficiary;
uint fundingGoal;
uint numFunders;
uint amount;
mapping (uint => Funder) funders;

uint numCampaigns;

(continues on next page)

56 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

mapping (uint => Campaign) campaigns;

function newCampaign (address beneficiary, uint goal) public returns (uint
—campaignID) {
campaignID = numCampaigns++; // campaignID is return variable
// Creates new struct and saves 1in storage. We leave out the mapping type.
campaigns [campaignID] = Campaign (beneficiary, goal, 0, 0);

}

function contribute (uint campaignID) public payable {
Campaign storage c = campaigns[campaignID];
// Creates a new temporary memory sStruct, initialised with the given values
// and copies it over to storage.
// Note that you can also use Funder (msg.sender, msg.value) to initialise.
c.funders[c.numFunders++] = Funder ({addr: msg.sender, amount: msg.value});
c.amount += msg.value;

}

function checkGoalReached (uint campaignID) public returns (bool reached) {
Campaign storage c = campaigns[campaignID];
if (c.amount < c.fundingGoal)
return false;
uint amount = c.amount;
c.amount = 0;
c.beneficiary.transfer (amount) ;
return true;

-

AEGEL G EUGo] A9 Aoke] BAF BE /152 AFoH A2 TEAS olshekov] Bag /]2
20l g2 EFTE TEA S oht f] A AHgE & gom] FEA A el ohR
WS BT 5 gl

AL oY We o) g Erglo] © & QAN TEAZ FUT A el o WS BT & glgch FEA
o 271 frafo} S ol 23l Aloto] WA

BE FF0| g4olH, o8] T4 ghele] (12 A=A dlole] 917]9)) 2|9 Mol TR folshy
A9 o= FEAE B AHcopy)5H] STl B (reference)t A 5HE 2 2] o] 0] Mol PekshEA L AR
4

ﬂJ
Buj
=2
N,
Jhu
rLHl

Yk,

=& campaigns[campaignID].amount = 0 A¥ 2| Mo Pdohz] it 3240 W of 213 3
a2 9l
= T = .

ojz

i3 BFQ}-2 mapping (_KeyType => _ValueType) 2} o] AAFYr} 17|14 KeyType < i, T4
27 e, FEE, A9, F2AE Ae Ao RE f@0] D 5 AFUD _valueType < 03 B2
Zelet ol ehelo)E B 4 Sz,

o & APAAL B E JHSGF 7| 71 2 7] 815 2 byte- representatlonO] 2= 091 zhEFI 9] 7] 2 zh)o] vfE &)= s A]]
o= & & 7 5yt o]« wlB 3 sjAIH 0] 2 9] FARRE Holw ZpolH 2, 7] HiolE = A wjg XVJEW
& @4 keccak256 SfA|Tto] S 2] 9ol ARSHU T

o] = QI5fl, Wi oll= Aol e Hdset)= ol F= 7Iv 242 Nd-S 7HA 2L Q1A g5yt

o2 AR (e W ol A o 2B 23] -z Bt 58 d

8.4. &z|C|E|M}E7| 57

https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hash_table

Solidity Documentation, £A| 0.5.10

jH-S public ©& HEA|SIL solidity”} getter & FHAES & 4= J5UTEH _KeyType 2 getter®] T nfj 7j
HE=o|H _valueType & §He gch
g GA] _ValueType o] H 4 JlEUT getteri= 2}20] _KeyType of tcto] shto] wi7fip& A AH o2

A4 e,

pragma solidity "0.4.0;

contract MappingExample {
mapping (address => uint) public balances;

function update (uint newBalance) public {
balances[msg.sender] = newBalance;
}
}

contract MappingUser {
function f () public returns (uint) ({
MappingExample m = new MappingExample () ;
m.update (100) ;
return m.balances (this);

F4: oL iterablest? eEX|E, 71 $]of] Zk= X (data structure) & THst=71 7Hs Y o} 9| A& iterable map-
ping & F XA 8.

Operators Involving LValues

2Fef a 7} Lvalue2b (5, &9 2 4= 9l 95 E= 77D, vh=2] QUAE oAz A2 4 ds4th:
+

a += eisequivalenttoa = a e. The operators —=, =, /=, $=, | =, &= and "= are defined accordingly. a++
and a—— are equivalentto a += 1/a -= 1 but the expression itself still has the previous value of a. In contrast,
——a and ++a have the same effect on a but return the value after the change.

at=ela=a+ e BARUL QIR =, «=, /= 3=, |=, 5=, "= 94 FUT P4 o7 gy
thattSha—ia += 1/a = 1" 9 SUSA 2 HFAZIAS, BaA 2= 015 oo
HFO0| LOJLIA| §f2 ¢S PIEEUCE. Olet BIHZ, ~"--a & ++a HA] “a* 9] & WA 7| AT, o]
ERAle WA kg ey

delete

delete a it B}99] 27] g€ a o FYFULE &, 452 A9e7 a = o Utk o)A E 482 5 9)
=t o] %, Zol7 0%] & wjdoly Fdet dolo] A vjd el BE QA4S 27| XA of AT
A9, F2A] BE W E 2785

delete & m|Wol obRd ek n|x|x] Bl g o] 7] o) Holn] Autd oz FeiAgA] 917

o g L
spste] @H o] L ujmo] ofu et

pragma solidity 70.4.0;

(continues on next page)

58 Chapter 8. Contents

https://github.com/ethereum/dapp-bin/blob/master/library/iterable_mapping.sol
https://github.com/ethereum/dapp-bin/blob/master/library/iterable_mapping.sol

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

contract DeleteExample {
uint data;
uint[] dataArray;

function f () public {

uint x = data;

delete x; // sets x to 0, does not affect data

delete data; // sets data to 0, does not affect x which still holds a copy

uint[] storage y = dataArray;

delete dataArray; // this sets dataArray.length to zero, but as uint/[] is a_
—complex object, also

// vy 1is affected which is an alias to the storage object

// On the other hand: "delete y" is not valid, as assignments to local_,
—variables

// referencing storage objects can only be made from existing storage,,
—objects.

}

}

72 ErZie| Mgk
AAH S

T A4 A2 O Bdoletd, Antd 2= shute] mdAtAE thE T A4tate] Bt o g oFAlA PRehS
AU 9] 7 -f-olx nrtA dyoh. gt o=z, ofu|7t Fop &A= JH 7T glokd value-type?t
A A Frgto] 7Hs U th uint8 =uint16 2 PAI A PHSE™ int128 = int256 & A4 S
Utk 221t int8 = uint256 o= ¢PA|A FHghE 4 QG thEWsH uint256 = -1 22 & 28F
2 Q7] EGYhH. o], R3 Qe 4= 7y 2 37]9 vlo|Eg Wt F £ A7k I = E7H5¢
Yt} uint160 2 #8753 efdo] 2t address 2& FgHE 4= QlHFUTH

YAIH

ot

tH

rigt

[e] =
w2 7Hs e 4 QAU o A e A FS B U ods glong SIS Al
Hl 2 E o} gy &

int8 vy = -3;
uint x = uint (y);

o] & ZZto] Toj|A, x = 0xfffff. . fd ZS 7FA A 0] 10, (64 hex characters) ©|= 256 H|E 2] 29| H4= B
o] A4 -39 1 ek

2717h 6 AL eplo 2 WAA st | 79, A9 WIS el A Uk

uint32 a = 0x12345678;
uintl6é b = uintlé6(a); // b will be 0x5678 now
Etel 22

8.4. &z|C|E|M}E7| 59

Solidity Documentation, £A| 0.5.10

uint24 x = 0x123;
var y = X;

o714, v o B9l uint24 7h DAY var - §4 o) WSt uhek o) WLo A ALE-E 4 gl

Zat: A A Dol et BfQfo] FEH 7], i= uint 8 BFYIo]al o] B}l o] 7P gho] 2000 Kt 2F7] o
ofgf & ZZFo] HiE RO BoHtE RO} for (var i = 0; 1 < 2000; i++) { ... }

8.0.4 THe| U Mo Wi

ol che

;O

EtherE o 212 @92 W&s}7] 9)5f 2228 d Fof wei, finney, szabo, ether k= HUA} &
FUTh Bther52lE Yehll= A=l 8 doll HuArt 27] o Weivh 2ol Qetal gyt 4. 2

== 2000 finney = true 2 H7}EYth

o filo

>~
4=
the

NFEE

=2 EHE Hof 2= seconds, minutes, hours, days, weeks, years 2} T2 HujAl= A7 HY
SHtl AL 2= 9105 7] 1 sceondso] T TF&3F o] AHEL

i

il

g

¢ 1 == 1 seconds

* 1 minutes == 60 seconds

* 1 hours == 60 minutes

¢ 1 days == 24 hours

* 1 weeks == 7 days

e 1 years == 365 days
o] &S5 AHEol oA AlMtE T W o7 D e gtk kol &&= & QIo = 1 years7} 4 365 days
o FAR of ™ E= 1 days7} @ 24 hourse} 5 A ofHU7kR. &&= 5T o 7] wizol, =Rt
22 efoHefe s gt o2 e Yulo|E wofof gk,
o] FFIAFES ¥4 ol £ U< glavinh Wk daysE BElE JH 42 WEsn AT ogT e Ao
29 % gyt
function f (uint start, uint daysAfter) public {

if (now >= start + daysAfter » 1 days) {

/S
}

}
sS4t videl 34
A v o A0 o] Aofli=(global namespace) S5+ 9} o7t EA5HH o] &2 T2 EXAQl] Tt AHE

AZshd) A-gRY o,

60 Chapter 8. Contents

https://en.wikipedia.org/wiki/Leap_second

Solidity Documentation, £A| 0.5.10

* block.blockhash (uint blockNumber) returns (bytes32): Fo]Z EZ9] A - AA] E=
= ARt 7H 22 25670 9] EFof| to ATt 2H-59t

* block.coinbase (address): @A 2= =222 address

e block.difficulty (uint): @ &2 do|k

* block.gaslimit (uint): A E=E gaslimit

* block.number (uint): @A E2 HS

* block.timestamp (uint): unix epoch ©| 20| Az} E= gfY AT

* gasleft () returns (uint256):&te] 7}A

* msg.data (bytes): &St calldata

e msg.gas (uint): 2] 7}A - 0421 A A A AE QO H gasleft () 2 A=

* msg.sender (address): HA|A] A2} (@A &%)

* msg.sig (bytes4): calldata®] A 4Ht0| E(Z, §t4= A2}

* msg.value (uint): YA X} A A& wei 5=

e now (uint): A E2 e ARl I(block.timestamp 2] HA)

e tx.gasprice (uint): ESA A 9] 71 A 714

e tx.origin (address): E2A A o] BFA12} (full call chain)

F4: msg.sender ¢tmsg.value & TET BE msg O] WH] L2 QR 34 520 ooff vHE 4= Q5T
QIHStE S Fofl= gho| B e g SEE ESHE YT

£
o
ol,
2
filo
2o

el5t7] 96l block.timestamp, now, block.blockhash & AR5} ulAf Q.

2Rl P9I E =2 SolHAH £ oA of| A casino payout functionS AP A] 7] 11 =S 17
£ S1A1of T4l ST WIS Amskeso] At
Yxi opu 220 o ARmaT REAL 02 Ao} FUTh, § s BgEEA,
canonical chain®] 945 = 55 9] EL9] AT Abo]o] 9270l ek ALV

)
=0

o2k 4N

22 W
)
g
o

el rgl

ML
Ju
1o,
_q‘l; —
oo,
[>T

J
1o
o
julss
[>
o,
K
rr

A7} 437}%3& AL obdUth 74 H T 2567 B2 9] 49

ofl2] 22|

assert (bool condition): X710 F=X5 2] FOR |95 WAAAGUT - 7 ofl 2o ARg-EU

require (bool condition): £710] F5%7 ¢LO o9 S WANYUTE- Q2 Ei 9% 40| of o]
AHg U th

revert (): AP Fekskn WA g HEYUL

8.4. &z|C|E|M}E7| 61

Solidity Documentation, £A| 0.5.10

g

£3 % o453} 3

ok

A
e

addmod (uint x, uint y, uint k) returns (uint): compute (x + y) % k where the addition is
performed with arbitrary precision and does not wrap around at 2+x256. Assert that k != 0 starting from
version 0.5.0.

mulmod (uint x, uint y, uint k) returns (uint): compute (x » y) % k where the multiplica-
tion is performed with arbitrary precision and does not wrap around at 2+ x256. Assert that k != 0 starting
from version 0.5.0.

keccak256(...) returns (bytes32): (rightly packed) 21X} 2] Ethereum-SHA-3 (Keccak-256) A E A
At

sha256(...) returns (bytes32): (rightly packed) 2?12} 2] SHA-256 SA|E AAFGUTh

sha3(...) returns (bytes32): keccak256 2] ¥

ripemdl160(...) returns (bytes20): (tightly packed) 212} 2] RIPEMD-160 SjA| S AAtgUch

ecrecover (bytes32 hash, uint8 v, bytes32 r, bytes32 s) returns (address): B
T4 A o 2 HE addresset AR 70 71 F6HH LF/FAIN 02 vhekty o (A8 < A])

1ol A "tightly packed"= IA}7} 1 (padding) §lo] AAH-E oJn|tyth o] AL th3o] BF FUsirt= AL

oju]ghich:

keccak256 ("ab", "c")

keccak256 ("abc™)

keccak256 (0x616263)

keccak256 (6382179)
(

keccak256 (97, 98, 99)

mido] "gsirtH, WA FHES Fofl g
keccak256 (uint16 (0x12)) 9 gt}
9 %

ARl A4E AWSHEE WA M vlE £we Agste] AEHFULh keccak256(0) ==
keccak256 (uint8(0)) 9} keccak256(0x12345678) == keccak256 (uint32 (0x12345678))
= oo ohgt oA gL,

Zzlo]Hl BEEZZ]9o] o4 sha256, ripemdl60 = ecrecover S AP Out-of-GasHE|7F & 4~ U5
o} 1 o]f= o]t AE°] precompiled contracts2}l! E2]-9= FHIE LS| W2 Yk 121 o]
AEAEL 02 T5o] AWA WAAZ T ol Folut A= EATL(E ASAE T} st 259
SA]gk). E26HA] = FEHER fAZ]E Blj=7 4 84 218 7] 9 Out-of-Gas o2& LAY A1 Y T}
o] ZAof thet s 22 AA AEHEE AHEoE7] Aol 1 weig ZF AEH Eof MEsH=A Yt o] A sl
A2 glsyT

st

& 9)&Urth keccak256 ("\x00\x12") =

Address 2

<address>.balance (uint256): Address 2] ZFH(Wei T©9])

<address>.transfer (uint256 amount): SO &l FIE O] WeiE Address 2 AU ATA] o8&
AR 7121 2300 gasE st o] gh2 HAS 4= glsyh

<address>.send (uint256 amount) returns (bool): Fo]Z oFIFE 9] Weis Address 2 &3
O A A] £alse £ WS} 2300 gasS AT o e WAL 4 Y.

<address>.call(...) returns (bool): 29 ¥l £Fo A9 cALL & +HF Yt AT false &
WIS} LE gasE A o] 2 B A g,

<address>.callcode(...) returns (bool): 2% HHl £F0fA 2] CALLCODE & =33t} A A
false B Weeha BT gasE WLk of b WA PSR

62 Chapter 8. Contents

https://ethereum.stackexchange.com/q/1777/222

Solidity Documentation, £A| 0.5.10

<address>.delegatecall(...) returns (bool): =%
Uch A false 5 WHgHelal E gasE D5t o] gk

ZEA| ST Y82 Address A& ZFZSHAIA|

ool
021
for
i
N
é

m]o L

2 gy

4
X
Q
[W)]
'_l
'_l
Q
(@]
[0}
[0)]
1o,
>
oo
Mo
)
o3l
i)
)
&2
(o]
i)
o
-{Oll
2
N,

this (current contract’s type): A 2] AEME, Address 2 HYA| A W 75},
|

selfdestruct (address recipient): @A|9 FAEHEE u}~

Yet.

suicide (address recipient): selfdestruct 2] ¥
7}

wot ol @A AEHEC RE G AHAHOR 5

oA Address 2 %3+

oll
B
I
fle
N

8.4.5 Expressions and Control Structures

Input Parameters and Output Parameters

As in Javascript, functions may take parameters as input; unlike in Javascript and C, they may also return arbitrary
number of parameters as output.

Input Parameters

The input parameters are declared the same way as variables are. The name of unused parameters can be omitted.
For example, suppose we want our contract to accept one kind of external calls with two integers, we would write
something like:

pragma solidity >=0.4.16 <0.6.0;

contract Simple {
uint sum;
function taker (uint _a, uint _Db) public {
sum = _a + _b;

}

Input parameters can be used just as any other local variable can be used, they can also be assigned to.

8.4. &z|C|E|M}E7| 63

Solidity Documentation, £A| 0.5.10

Output Parameters

The output parameters can be declared with the same syntax after the returns keyword. For example, suppose we
wished to return two results: the sum and the product of the two given integers, then we would write:

pragma solidity >=0.4.16 <0.6.0;

contract Simple {
function arithmetic (uint _a, uint _Db)
public
pure
returns (uint o_sum, uint o_product)

o_sum = _a + _Db;

o_product = _a * _b;

The names of output parameters can be omitted. The output values can also be specified using return statements,
which are also capable of returning multiple values. Return parameters can be used as any other local variable and
they are zero-initialized; if they are not explicitly set, they stay zero.

Control Structures

Most of the control structures known from curly-braces languages are available in Solidity:

There is: 1 £, else, while, do, for, break, continue, return, with the usual semantics known from C or
JavaScript.

Parentheses can not be omitted for conditionals, but curly brances can be omitted around single-statement bodies.

Note that there is no type conversion from non-boolean to boolean types as there is in C and JavaScript, so 1 £ (1)
{ ... 1} isnotvalid Solidity.

Returning Multiple Values

When a function has multiple output parameters, return (v0, v1, ..., wvn) canreturn multiple values. The
number of components must be the same as the number of output parameters.

s 52
L a4 55

AN A @A contract®] G4t AP AOR(RFAOR) EX AR O 5% D 5 gt

pragma solidity >=0.4.16 <0.6.0;

contract C {
function g (uint a) public pure returns (uint ret) { return a + £(); }
function f () internal pure returns (uint ret) { return g(7) + £(); }

64 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

O W4 calls 2 EVM U] 155 jumps2 1o 8 4 Q5w o] 12 @) £o) el sl 95k o v S
©2 529 4ol that Mz e 2 Wsto] g Aubao|th. 2L contract Fo] AT A0 2 52
S

T g

You should still avoid excessive recursion, as every internal function call uses up at least one stack slot and there are
at most 1024 slots available.

HAA this.g(8); 2 c.g(2); (ge= contract AIAEIA)LS GGt SH callsy ot 184 S= Jumps7]-
oFel HAIA call& S 91 oA B ik A contraurt o} =] 33514 9247] Wl AN B calls
o e

Hog &Eojof gth 98 55 9)5) BE 54 arguments= o 2] o] 24}

= SEAS L
= contracts 2] g=

=ofof gt

ZFA: A function call from one contract to another does not create its own transaction, it is a message call as part of
the overall transaction.

il

THE contracts O] oFr-5 F-5 W, cally} 917 H A Weiet gasi= 242} .value () 2} .gas () 2 FAIE 5 3

ek

pragma solidity >=0.4.0 <0.6.0;

contract InfoFeed {
function info () public payable returns (uint ret) { return 42; }

contract Consumer {
InfoFeed feed;
function setFeed(InfoFeed addr) public { feed = addr; }
function callFeed() public { feed.info.value(10).gas(800) (); }

You need to use the modifier payable with the info function because otherwise, the . value () option would not
be available.

7311: Be careful that feed.info.value (10) .gas (800) only locally sets the value and amount of gas
sent with the function call, and the parentheses at the end perform the actual call. So in this case, the function is
not called.

&2 &9 contractZ} EAISHA] FAGARTE =S ZSHA] b= the HollAl), &% contract7}

= A A2 57 gas7h gloH o2& ‘Q*Eﬂl%’a“%;}

|t
> >

7311: Any interaction with another contract imposes a potential danger, especially if the source code of the contract
is not known in advance. The current contract hands over control to the called contract and that may potentially do
just about anything. Even if the called contract inherits from a known parent contract, the inheriting contract is only
required to have a correct interface. The implementation of the contract, however, can be completely arbitrary and
thus, pose a danger. In addition, be prepared in case it calls into other contracts of your system or even back into
the calling contract before the first call returns. This means that the called contract can change state variables of the

8.4. &z|C|E|M}E7| 65

Solidity Documentation, £A| 0.5.10

calling contract via its functions. Write your functions in a way that, for example, calls to external functions happen
after any changes to state variables in your contract so your contract is not vulnerable to a reentrancy exploit.

A1d ==1} Y st parameters

o9 AofA B 4= e AA™E () 2 Fo T, g EE arguments= <=4 2} Aglo] o] 5o 7 2% =
o 5 YT} argument hs = o *LOJOM parameters 2] o] 50| AA|sljof AT A= LA B2 &
2~ o1z},

V=]

pragma solidity >=0.4.0 <0.6.0;

contract C {
mapping (uint => uint) data;

function f () public {

set ({value: 2, key: 3});

function set (uint key, uint value) public ({
datalkey] = value;

H|7{El 84 parameter 0|2

AFE-517] 942 parameters(55] g parameters)©] o 5-& A A 4 G4 ©]2 parameters®] o] -2 2 e
ZABAR A2 5 Gaieh

-

pragma solidity >=0.4.16 <0.6.0;

contract C {
// omitted name for parameter
function func (uint k, uint) public pure returns (uint) ({
return k;

Creating Contracts via new

A contract can create other contracts using the new keyword. The full code of the contract being created has to be
known when the creating contract is compiled so recursive creation-dependencies are not possible.

pragma solidity >0.4.99 <0.6.0;

contract D {
uint public x;
constructor (uint a) public payable {
X = aj;

(continues on next page)

66 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

contract C {
Dd=new D(4); // will be executed as part of C's constructor

function createD (uint arg) public {
D newD new D (argqg);
newD.x () ;

function createAndEndowD (uint arg, uint amount) public payable {
// Send ether along with the creation
D newD (new D) .value (amount) (arg);
newD.x () ;

As seen in the example, it is possible to send Ether while creating an instance of D using the .value () option, but
it is not possible to limit the amount of gas. If the creation fails (due to out-of-stack, not enough balance or other
problems), an exception is thrown.

Order of Evaluation of Expressions

The evaluation order of expressions is not specified (more formally, the order in which the children of one node in
the expression tree are evaluated is not specified, but they are of course evaluated before the node itself). It is only
guaranteed that statements are executed in order and short-circuiting for boolean expressions is done. See Order of
Precedence of Operators for more information.

Assignment

Destructuring Assignments and Returning Multiple Values

Solidity internally allows tuple types, i.e. a list of objects of potentially different types whose number is a constant at
compile-time. Those tuples can be used to return multiple values at the same time. These can then either be assigned
to newly declared variables or to pre-existing variables (or LValues in general).

Tuples are not proper types in Solidity, they can only be used to form syntactic groupings of expressions.

pragma solidity >0.4.23 <0.6.0;

contract C {
uint[] data;

function f () public pure returns (uint, bool, uint) {
return (7, true, 2);

function g () public ({
// Variables declared with type and assigned from the returned tuple,
// not all elements have to be specified (but the number must match).

(uint x, , uint y) = £();
// Common trick to swap values ——- does not work for non-value storage types.
(2, y) = (v, x);

// Components can be left out (also for variable declarations).

(continues on next page)

8.4. &z|C|E|M}E7| 67

Solidity Documentation, £A| 0.5.10

(o]" o] Ao A%

(data.length, ,) = f£(); // Sets the length to 7

It is not possible to mix variable declarations and non-declaration assignments, i.e. the following is not valid: (x,
uint y) = (1, 2);

F=&]: Prior to version 0.5.0 it was possible to assign to tuples of smaller size, either filling up on the left or on the right
side (which ever was empty). This is now disallowed, so both sides have to have the same number of components.

73 31: Be careful when assigning to multiple variables at the same time when reference types are involved, because
it could lead to unexpected copying behaviour.

Complications for Arrays and Structs

The semantics of assignments are a bit more complicated for non-value types like arrays and structs. Assigning 7o a
state variable always creates an independent copy. On the other hand, assigning to a local variable creates an inde-
pendent copy only for elementary types, i.e. static types that fit into 32 bytes. If structs or arrays (including bytes
and string) are assigned from a state variable to a local variable, the local variable holds a reference to the original
state variable. A second assignment to the local variable does not modify the state but only changes the reference.
Assignments to members (or elements) of the local variable do change the state.

Scoping and Declarations

A variable which is declared will have an initial default value whose byte-representation is all zeros. The "default
values" of variables are the typical "zero-state" of whatever the type is. For example, the default value for a bool
is false. The default value for the uint or int types is 0. For statically-sized arrays and bytes1 to bytes32,
each individual element will be initialized to the default value corresponding to its type. Finally, for dynamically-sized
arrays, bytes and st ring, the default value is an empty array or string.

Scoping in Solidity follows the widespread scoping rules of C99 (and many other languages): Variables are visible
from the point right after their declaration until the end of the smallest { }-block that contains the declaration. As
an exception to this rule, variables declared in the initialization part of a for-loop are only visible until the end of the
for-loop.

Variables and other items declared outside of a code block, for example functions, contracts, user-defined types, etc.,
are visible even before they were declared. This means you can use state variables before they are declared and call
functions recursively.

As a consequence, the following examples will compile without warnings, since the two variables have the same name
but disjoint scopes.

pragma solidity >0.4.99 <0.6.0;
contract C {
function minimalScoping () pure public {
{
uint same;
same = 1;

(continues on next page)

68 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

uint same;
same = 3;

As a special example of the C99 scoping rules, note that in the following, the first assignment to x will actually assign
the outer and not the inner variable. In any case, you will get a warning about the outer variable being shadowed.

pragma solidity >0.4.99 <0.6.0;
// This will report a warning
contract C {
function f () pure public returns (uint) {

uint x = 1;

{
x = 2; // this will assign to the outer variable
uint x;

}

return x; // x has value 2

Before version 0.5.0 Solidity followed the same scoping rules as JavaScript, that is, a variable declared
anywhere within a function would be in scope for the entire function, regardless where it was declared.
The following example shows a code snippet that used to compile but leads to an error starting from
version 0.5.0.

pragma solidity >0.4.99 <0.6.0;
// This will not compile
contract C {
function f () pure public returns (uint) {
X = 2;
uint x;
return x;

Error handling: Assert, Require, Revert and Exceptions

Solidity uses state-reverting exceptions to handle errors. Such an exception will undo all changes made to the state
in the current call (and all its sub-calls) and also flag an error to the caller. The convenience functions assert and
require can be used to check for conditions and throw an exception if the condition is not met. The assert
function should only be used to test for internal errors, and to check invariants. The require function should be used
to ensure valid conditions, such as inputs, or contract state variables are met, or to validate return values from calls to
external contracts. If used properly, analysis tools can evaluate your contract to identify the conditions and function
calls which will reach a failing assert. Properly functioning code should never reach a failing assert statement; if
this happens there is a bug in your contract which you should fix.

There are two other ways to trigger exceptions: The revert function can be used to flag an error and revert the
current call. It is possible to provide a string message containing details about the error that will be passed back to the

8.4. &z|C|E|M}E7| 69

Solidity Documentation, £A| 0.5.10

caller.

ZF2A: There used to be a keyword called throw with the same semantics as revert () which was deprecated in
version 0.4.13 and removed in version 0.5.0.

When exceptions happen in a sub-call, they "bubble up" (i.e. exceptions are rethrown) automatically. Exceptions to
this rule are send and the low-level functions call, delegatecall and staticcall — those return false as
their first return value in case of an exception instead of "bubbling up".

Z11: The low-level functions call, delegatecall and staticcall return t rue as their first return value
if the called account is non-existent, as part of the design of EVM. Existence must be checked prior to calling if
desired.

Catching exceptions is not yet possible.

In the following example, you can see how require can be used to easily check conditions on inputs and how
assert can be used for internal error checking. Note that you can optionally provide a message string for require,
but not for assert.

pragma solidity >0.4.99 <0.6.0;

contract Sharer {
function sendHalf (address payable addr) public payable returns (uint balance) {
require (msg.value $ 2 == 0, "Even value required.");
uint balanceBeforeTransfer = address (this) .balance;
addr.transfer (msg.value / 2);
// Since transfer throws an exception on failure and
// cannot call back here, there should be no way for us to
// still have half of the money.
assert (address (this) .balance == balanceBeforeTransfer - msg.value / 2);
return address (this) .balance;

An assert-style exception is generated in the following situations:
1. If you access an array at a too large or negative index (i.e. x [1] where 1 >= x.lengthori < 0).
If you access a fixed-length bytesN at a too large or negative index.
If you divide or modulo by zero (e.g. 5 / Oor23 % 0).
If you shift by a negative amount.

If you convert a value too big or negative into an enum type.

AN i

If you call a zero-initialized variable of internal function type.
7. If you call assert with an argument that evaluates to false.

A require-style exception is generated in the following situations:
1. Calling require with an argument that evaluates to false.

2. If you call a function via a message call but it does not finish properly (i.e. it runs out of gas, has no matching
function, or throws an exception itself), except when a low level operation call, send, delegatecall,
callcode or staticcall is used. The low level operations never throw exceptions but indicate failures by
returning false.

70 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

3. If you create a contract using the new keyword but the contract creation does not finish properly (see above for
the definition of "not finish properly").

4. If you perform an external function call targeting a contract that contains no code.

5. If your contract receives Ether via a public function without payable modifier (including the constructor and
the fallback function).

6. If your contract receives Ether via a public getter function.
7. Ifa .transfer () fails.

Internally, Solidity performs a revert operation (instruction 0xfd) for a require-style exception and executes an
invalid operation (instruction Oxfe) to throw an assert-style exception. In both cases, this causes the EVM to
revert all changes made to the state. The reason for reverting is that there is no safe way to continue execution, because
an expected effect did not occur. Because we want to retain the atomicity of transactions, the safest thing to do is to
revert all changes and make the whole transaction (or at least call) without effect. Note that assert-style exceptions
consume all gas available to the call, while require-style exceptions will not consume any gas starting from the
Metropolis release.

The following example shows how an error string can be used together with revert and require:

pragma solidity >0.4.99 <0.6.0;

contract VendingMachine {
function buy (uint amount) public payable {
if (amount > msg.value / 2 ether)

revert ("Not enough Ether provided.");
// Alternative way to do it:
require (

amount <= msg.value / 2 ether,
"Not enough Ether provided."
)i
// Perform the purchase.

The provided string will be abi-encoded as if it were a call to a function Error (string). In the above exam-
ple, revert ("Not enough Ether provided."); will cause the following hexadecimal data be set as error
return data:

0x08c379a0 // Function,,
—selector for Error(string)
0x0020 // Data offset
0x001a // String length
0x4e6f7420656e6f7567682045746865722070726£f76696465642e000000000000 // String data

8.4.6 Contracts
Contracts in Solidity are similar to classes in object-oriented languages. They contain persistent data in state variables

and functions that can modify these variables. Calling a function on a different contract (instance) will perform an
EVM function call and thus switch the context such that state variables are inaccessible.

Creating Contracts

Contracts can be created "from outside" via Ethereum transactions or from within Solidity contracts.

8.4. &2|C|E| o S7| 71

Solidity Documentation, £A| 0.5.10

IDEs, such as Remix, make the creation process seamless using Ul elements.

Creating contracts programmatically on Ethereum is best done via using the JavaScript API web3.js. It has a function
called web3.eth.Contract to facilitate contract creation.

When a contract is created, its constructor (a function declared with the const ructor keyword) is executed once.
A constructor is optional. Only one constructor is allowed, which means overloading is not supported.

After the constructor has executed, the final code of the contract is deployed to the blockchain. This code includes all
public and external functions and all functions that are reachable from there through function calls. The deployed code
does not include the constructor code or internal functions only called from the constructor.

Internally, constructor arguments are passed ABI encoded after the code of the contract itself, but you do not have to
care about this if you use web3. js.

If a contract wants to create another contract, the source code (and the binary) of the created contract has to be known
to the creator. This means that cyclic creation dependencies are impossible.

pragma solidity >=0.4.22 <0.6.0;

contract OwnedToken {
// TokenCreator 1is a contract type that is defined below.
// It is fine to reference it as long as it 1is not used
// to create a new contract.
TokenCreator creator;
address owner;
bytes32 name;

// This is the constructor which registers the

// creator and the assigned name.

constructor (bytes32 _name) public {
// State variables are accessed via their name
// and not via e.g. this.owner. This also applies
// to functions and especially in the constructors,
// you can only call them like that ("internally"),
// because the contract itself does not exist yet.
owner = msg.sender;
// We do an explicit type conversion from “address’
// to ‘TokenCreator and assume that the type of
// the calling contract is TokenCreator, there is
// no real way to check that.
creator = TokenCreator (msg.sender);
name = _name;

function changeName (bytes32 newName) public {
// Only the creator can alter the name —-—
// the comparison is possible since contracts
// are explicitly convertible to addresses.
if (msg.sender == address (creator))
name = newName;

function transfer (address newOwner) public {
// Only the current owner can transfer the token.
if (msg.sender != owner) return;

// We also want to ask the creator if the transfer
// is fine. Note that this calls a function of the

(continues on next page)

72 Chapter 8. Contents

https://remix.ethereum.org/
https://github.com/ethereum/web3.js
https://web3js.readthedocs.io/en/1.0/web3-eth-contract.html#new-contract

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

// contract defined below. If the call fails (e.g.
// due to out-of-gas), the execution also fails here.
if (creator.isTokenTransferOK (owner, newOwner))

owner = newOwner;

contract TokenCreator ({
function createToken (bytes32 name)
public
returns (OwnedToken tokenAddress)

// Create a new Token contract and return its address.
// From the JavaScript side, the return type is simply
// ‘address', as this is the closest type available in
// the ABI.

return new OwnedToken (name) ;

function changeName (OwnedToken tokenAddress, bytes32 name) public ({
// Again, the external type of ‘tokenAddress' 1is
// simply ‘address’.
tokenAddress.changeName (name) ;

function isTokenTransferOK (address currentOwner, address newOwner)
public
pure
returns (bool ok)

// Check some arbitrary condition.
return keccak256 (abi.encodePacked (currentOwner, newOwner)) [0] == 0x7f;

Visibility and Getters

Since Solidity knows two kinds of function calls (internal ones that do not create an actual EVM call (also called a
"message call") and external ones that do), there are four types of visibilities for functions and state variables.

Functions have to be specified as being external, public, internal or private. For state variables,
external is not possible.

external: External functions are part of the contract interface, which means they can be called from other contracts
and via transactions. An external function f cannot be called internally (i.e. £ () does not work, butthis. f ()
works). External functions are sometimes more efficient when they receive large arrays of data.

public: Public functions are part of the contract interface and can be either called internally or via messages. For
public state variables, an automatic getter function (see below) is generated.

internal: Those functions and state variables can only be accessed internally (i.e. from within the current contract
or contracts deriving from it), without using this.

private: Private functions and state variables are only visible for the contract they are defined in and not in derived
contracts.

8.4. &2|C|E| o S7| 73

Solidity Documentation, £A| 0.5.10

ZF4]: Everything that is inside a contract is visible to all observers external to the blockchain. Making something
private only prevents other contracts from accessing and modifying the information, but it will still be visible to
the whole world outside of the blockchain.

The visibility specifier is given after the type for state variables and between parameter list and return parameter list
for functions.

pragma solidity >=0.4.16 <0.6.0;

contract C {
function f (uint a) private pure returns (uint b) { return a + 1; }
function setData (uint a) internal { data = a; }
uint public data;

In the following example, D, can call c.getData () to retrieve the value of data in state storage, but is not able to
call £. Contract E is derived from C and, thus, can call compute.

pragma solidity >=0.4.0 <0.6.0;

contract C {
uint private data;

function f (uint a) private pure returns(uint b) { return a + 1; }

function setData (uint a) public { data = a; }

function getData () public view returns (uint) { return data; }

function compute (uint a, uint b) internal pure returns (uint) { return a + Db; }

// This will not compile
contract D {
function readData() public {
C c = new C();
uint local = c¢.f(7); // error: member ‘f 1s not visible
c.setData (3);
local = c.getDatal();
local = c.compute(3, 5); // error: member ‘compute 1s not visible

contract E is C {
function g () public {
C c = new C();
uint val = compute (3, 5); // access to internal member (from derived to,,
—parent contract)

}

Getter Functions

The compiler automatically creates getter functions for all public state variables. For the contract given below, the
compiler will generate a function called data that does not take any arguments and returns a uint, the value of the
state variable data. State variables can be initialized when they are declared.

74 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

pragma solidity >=0.4.0 <0.6.0;

contract C {
uint public data = 42;

contract Caller {
C c = new C();
function f () public view returns (uint) {
return c.data();

The getter functions have external visibility. If the symbol is accessed internally (i.e. without this.), it evaluates to
a state variable. If it is accessed externally (i.e. with this.), it evaluates to a function.

pragma solidity >=0.4.0 <0.6.0;

contract C {
uint public data;
function x () public returns (uint) ({
data = 3; // internal access
return this.data(); // external access

If you have a public state variable of array type, then you can only retrieve single elements of the array via the
generated getter function. This mechanism exists to avoid high gas costs when returning an entire array. You can use
arguments to specify which individual element to return, for example data (0) . If you want to return an entire array
in one call, then you need to write a function, for example:

pragma solidity >=0.4.0 <0.6.0;

contract arrayExample {
// public state variable
uint[] public myArray;

// Getter function generated by the compiler

/%

function myArray (uint i) returns (uint) |
return myArray[i];

}

*/

// function that returns entire array
function getArray () returns (uint[] memory) {
return myArray;

Now you can use getArray () to retrieve the entire array, instead of myArray (1), which returns a single element
per call.

The next example is more complex:

pragma solidity >=0.4.0 <0.6.0;

(continues on next page)

8.4. &2|C|E| o S7| 75

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

contract Complex {
struct Data {
uint a;
bytes3 b;
mapping (uint => uint) map;
}
mapping (uint => mapping(bool => Datal[])) public data;

It generates a function of the following form. The mapping in the struct is omitted because there is no good way to
provide the key for the mapping:

function data (uint argl, bool arg2, uint arg3) public returns (uint a, bytes3 b) {
a = datalargl] [arg2] [arg3].a;
b = datalargl] [arg2] [arg3].b;

Function Modifiers

Modifiers can be used to easily change the behaviour of functions. For example, they can automatically check a
condition prior to executing the function. Modifiers are inheritable properties of contracts and may be overridden by
derived contracts.

pragma solidity >0.4.99 <0.6.0;

contract owned ({
constructor () public { owner = msg.sender; }
address payable owner;

// This contract only defines a modifier but does not use
// it: it will be used in derived contracts.
// The function body 1is inserted where the special symbol
// '_; ' 1in the definition of a modifier appears.
// This means that i1f the owner calls this function, the
// function is executed and otherwise, an exception is
// thrown.
modifier onlyOwner {
require (
msg.sender == owner,
"Only owner can call this function."

contract mortal is owned {
// This contract inherits the ‘onlyOwner ' modifier from
// ‘owned' and applies it to the ‘close’ function, which
// causes that calls to ‘close’ only have an effect if
// they are made by the stored owner.
function close() public onlyOwner {
selfdestruct (owner) ;

(continues on next page)

76 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

G B B 5 s)

contract priced {
// Modifiers can receive arguments:
modifier costs(uint price) {
if (msg.value >= price) {

—r

contract Register is priced, owned {
mapping (address => bool) registeredAddresses;
uint price;

constructor (uint initialPrice) public { price = initialPrice; }

// It is important to also provide the

// ‘payable' keyword here, otherwise the function will

// automatically reject all Ether sent to it.

function register () public payable costs(price) {
registeredAddresses[msg.sender] = true;

function changePrice (uint _price) public onlyOwner {
price = _price;

contract Mutex {
bool locked;
modifier noReentrancy () {
require (
!'locked,
"Reentrant call."
)
locked = true;
p—

locked = false;

/// This function is protected by a mutex, which means that
/// reentrant calls from within ‘msg.sender.call' cannot call 'f' again.
/// The ‘return 7' statement assigns 7 to the return value but still

/// executes the statement ‘locked = false' in the modifier.
function f () public noReentrancy returns (uint) {

(bool success,) = msg.sender.call("");

require (success);

return 7;

Multiple modifiers are applied to a function by specifying them in a whitespace-separated list and are evaluated in the
order presented.

8.4. &2|C|E| s 77

Solidity Documentation, £A| 0.5.10

7331: In an earlier version of Solidity, return statements in functions having modifiers behaved differently.

Explicit returns from a modifier or function body only leave the current modifier or function body. Return variables
are assigned and control flow continues after the "_" in the preceding modifier.

Arbitrary expressions are allowed for modifier arguments and in this context, all symbols visible from the function are
visible in the modifier. Symbols introduced in the modifier are not visible in the function (as they might change by
overriding).

Constant State Variables

State variables can be declared as constant. In this case, they have to be assigned from an expression which is
a constant at compile time. Any expression that accesses storage, blockchain data (e.g. now, address (this) .
balance or block.number) or execution data (msg.value or gasleft ()) or makes calls to external con-
tracts is disallowed. Expressions that might have a side-effect on memory allocation are allowed, but those that might
have a side-effect on other memory objects are not. The built-in functions keccak256, sha256, ripemdl160,
ecrecover, addmod and mulmod are allowed (even though they do call external contracts).

The reason behind allowing side-effects on the memory allocator is that it should be possible to construct complex
objects like e.g. lookup-tables. This feature is not yet fully usable.

The compiler does not reserve a storage slot for these variables, and every occurrence is replaced by the respective
constant expression (which might be computed to a single value by the optimizer).

Not all types for constants are implemented at this time. The only supported types are value types and strings.

pragma solidity >=0.4.0 <0.6.0;

contract C {
uint constant x = 32%%x22 + 8;
string constant text = "abc";
bytes32 constant myHash = keccak256 ("abc");

Functions

View Functions

Functions can be declared view in which case they promise not to modify the state.

ZF4]: If the compiler’s EVM target is Byzantium or newer (default) the opcode STATICCALL is used for view
functions which enforces the state to stay unmodified as part of the EVM execution. For library view functions
DELEGATECALL is used, because there is no combined DELEGATECALL and STATICCALL. This means library
view functions do not have run-time checks that prevent state modifications. This should not impact security nega-
tively because library code is usually known at compile-time and the static checker performs compile-time checks.

The following statements are considered modifying the state:
1. Writing to state variables.
2. Emitting events.

3. Creating other contracts.

78 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

. Using selfdestruct.

. Sending Ether via calls.

4
5
6. Calling any function not marked view or pure.
7. Using low-level calls.

8

. Using inline assembly that contains certain opcodes.

pragma solidity >0.4.99 <0.6.0;

contract C {
function f (uint a, uint b) public view returns (uint) {
return a « (b + 42) + now;

N
1%

: constant on functions used to be an alias to view, but this was dropped in version 0.5.0.

F2A: Getter methods are automatically marked view.

ZF2: Prior to version 0.5.0, the compiler did not use the STATICCALL opcode for view functions. This enabled
state modifications in view functions through the use of invalid explicit type conversions. By using STATICCALL
for view functions, modifications to the state are prevented on the level of the EVM.

Pure Functions

Functions can be declared pure in which case they promise not to read from or modify the state.

ZFA: If the compiler’s EVM target is Byzantium or newer (default) the opcode STATICCALL is used, which does
not guarantee that the state is not read, but at least that it is not modified.

In addition to the list of state modifying statements explained above, the following are considered reading from the
state:

1. Reading from state variables.

2. Accessing address (this) .balance or <address>.balance.

3. Accessing any of the members of block, tx, msg (with the exception of msg.sigand msg.data).
4. Calling any function not marked pure.

5. Using inline assembly that contains certain opcodes.

pragma solidity >0.4.99 <0.6.0;

contract C {
function f (uint a, uint b) public pure returns (uint) ({
return a « (b + 42);

8.4. &2|C|E| o S7| 79

Solidity Documentation, £A| 0.5.10

ZFA: Prior to version 0.5.0, the compiler did not use the STATICCALL opcode for pure functions. This enabled
state modifications in pure functions through the use of invalid explicit type conversions. By using STATICCALL
for pure functions, modifications to the state are prevented on the level of the EVM.

Z331: Itis not possible to prevent functions from reading the state at the level of the EVM, it is only possible to
prevent them from writing to the state (i.e. only view can be enforced at the EVM level, pure can not).

7Z331: Before version 0.4.17 the compiler did not enforce that pure is not reading the state. It is a compile-time
type check, which can be circumvented doing invalid explicit conversions between contract types, because the
compiler can verify that the type of the contract does not do state-changing operations, but it cannot check that the
contract that will be called at runtime is actually of that type.

Fallback Function

A contract can have exactly one unnamed function. This function cannot have arguments, cannot return anything and
has to have external visibility. It is executed on a call to the contract if none of the other functions match the given
function identifier (or if no data was supplied at all).

Furthermore, this function is executed whenever the contract receives plain Ether (without data). Additionally, in order
to receive Ether, the fallback function must be marked payab1le. If no such function exists, the contract cannot receive
Ether through regular transactions.

In the worst case, the fallback function can only rely on 2300 gas being available (for example when send or transfer
is used), leaving little room to perform other operations except basic logging. The following operations will consume
more gas than the 2300 gas stipend:

» Writing to storage

* Creating a contract

¢ Calling an external function which consumes a large amount of gas
* Sending Ether

Like any function, the fallback function can execute complex operations as long as there is enough gas passed on to it.

ZF2: Even though the fallback function cannot have arguments, one can still use msqg.data to retrieve any payload
supplied with the call.

Z411: The fallback function is also executed if the caller meant to call a function that is not available. If you want
to implement the fallback function only to receive ether, you should add a check like require (msg.data.
length == 0) to prevent invalid calls.

Z11: Contracts that receive Ether directly (without a function call, i.e. using send or transfer) but do not
define a fallback function throw an exception, sending back the Ether (this was different before Solidity v0.4.0).
So if you want your contract to receive Ether, you have to implement a payable fallback function.

80 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

Z331: A contract without a payable fallback function can receive Ether as a recipient of a coinbase transaction
(aka miner block reward) or as a destination of a sel fdestruct.

A contract cannot react to such Ether transfers and thus also cannot reject them. This is a design choice of the EVM
and Solidity cannot work around it.

It also means that address (this) .balance can be higher than the sum of some manual accounting imple-
mented in a contract (i.e. having a counter updated in the fallback function).

pragma solidity >0.4.99 <0.6.0;

contract Test {
// This function is called for all messages sent to
// this contract (there is no other function).
// Sending Ether to this contract will cause an exception,
// because the fallback function does not have the ‘payable’
// modifier.
function() external { x = 1; }
uint x;

// This contract keeps all Ether sent to it with no way
// to get it back.
contract Sink {

function() external payable { }

contract Caller {
function callTest (Test test) public returns (bool) {

(bool success,) = address(test).call (abi.encodeWithSignature (
—"nonExistingFunction()"));

require (success);

// results in test.x becoming == 1.

// address (test) will not allow to call " ‘send'’ directly, since ' ‘test'' has_

—no payable
// fallback function. It has to be converted to the ' ‘address payable ' type,

—via an

// intermediate conversion to "~ ‘uintl60'’ to even allow calling ' ‘send’ on,
—1it.

address payable testPayable = address(uintl60 (address(test)));

// If someone sends ether to that contract,
// the transfer will fail, i.e. this returns false here.
return testPayable.send (2 ether);

Function Overloading

A contract can have multiple functions of the same name but with different parameter types. This process is called
"overloading" and also applies to inherited functions. The following example shows overloading of the function £ in
the scope of contract A.

8.4. &z|C|E|M}E7| 81

Solidity Documentation, £A| 0.5.10

pragma solidity >=0.4.16 <0.6.0;

contract A {
function f (uint _in) public pure returns (uint out) {
out = _in;

function f (uint _in, bool _really) public pure returns (uint out) {
if (_really)
out = _in;

Overloaded functions are also present in the external interface. It is an error if two externally visible functions differ
by their Solidity types but not by their external types.

pragma solidity >=0.4.16 <0.6.0;

// This will not compile
contract A {
function f (B _in) public pure returns (B out) {
out = _in;

function f (address _in) public pure returns (address out) {
out = _in;

contract B {

}

Both £ function overloads above end up accepting the address type for the ABI although they are considered different
inside Solidity.

Overload resolution and Argument matching

Overloaded functions are selected by matching the function declarations in the current scope to the arguments supplied
in the function call. Functions are selected as overload candidates if all arguments can be implicitly converted to the
expected types. If there is not exactly one candidate, resolution fails.

F4]: Return parameters are not taken into account for overload resolution.

pragma solidity >=0.4.16 <0.6.0;

contract A {
function f (uint8 _in) public pure returns (uint8 out) {
out = _inj;

function f (uint256 _in) public pure returns (uint256 out) {
out = _in;

82 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

Calling £ (50) would create a type error since 50 can be implicitly converted both to uint8 and uint256 types.
On another hand £ (256) would resolve to £ (uint256) overload as 256 cannot be implicitly converted to uint8.

Events

Solidity events give an abstraction on top of the EVM’s logging functionality. Applications can subscribe and listen to
these events through the RPC interface of an Ethereum client.

Events are inheritable members of contracts. When you call them, they cause the arguments to be stored in the trans-
action’s log - a special data structure in the blockchain. These logs are associated with the address of the contract,
are incorporated into the blockchain, and stay there as long as a block is accessible (forever as of the Frontier and
Homestead releases, but this might change with Serenity). The Log and its event data is not accessible from within
contracts (not even from the contract that created them).

It is possible to request a simple payment verification (SPV) for logs, so if an external entity supplies a contract with
such a verification, it can check that the log actually exists inside the blockchain. You have to supply block headers
because the contract can only see the last 256 block hashes.

You can add the attribute indexed to up to three parameters which adds them to a special data structure known as
"topics" instead of the data part of the log. If you use arrays (including st ring and bytes) as indexed arguments,
its Keccak-256 hash is stored as a topic instead, this is because a topic can only hold a single word (32 bytes).

All parameters without the indexed attribute are ABI-encoded into the data part of the log.

Topics allow you to search for events, for example when filtering a sequence of blocks for certain events. You can also
filter events by the address of the contract that emitted the event.

For example, the code below uses the web3.js subscribe ("logs") method to filter logs that match a topic with a
certain address value:

var options = {
fromBlock: O,
address: web3.eth.defaultAccount,
topics: ["0x00", _,
—null, null]
}i
web3.eth.subscribe('logs', options, function (error, result) {
if (l!error)
console.log(result);
})
.on("data", function (log) {
console.log(log);
})
.on("changed", function (log) {
}) i

The hash of the signature of the event is one of the topics, except if you declared the event with the anonymous
specifier. This means that it is not possible to filter for specific anonymous events by name.

pragma solidity >=0.4.21 <0.6.0;

contract ClientReceipt {
event Deposit (
address indexed _ from,
bytes32 indexed _id,
uint _value

)i

(continues on next page)

8.4. &z|C|E|M}E7| 83

https://web3js.readthedocs.io/en/1.0/web3-eth-subscribe.html#subscribe-logs

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

function deposit (bytes32 _id) public payable ({
// Events are emitted using ‘emit', followed by
// the name of the event and the arguments
// (if any) in parentheses. Any such invocation
// (even deeply nested) can be detected from
// the JavaScript API by filtering for ‘Deposit’.
emit Deposit (msg.sender, _id, msg.value);

The use in the JavaScript API is as follows:

var abi = /# abi as generated by the compiler */;
var ClientReceipt = web3.eth.contract (abi);
var clientReceipt = ClientReceipt.at ("0x1234...ab67" /% address x/);

var event = clientReceipt.Deposit();

// watch for changes
event .watch (function (error, result) {
// result contains non-indexed arguments and topics
// given to the ‘Deposit’ call.
if (!error)
console.log(result);
1)

// Or pass a callback to start watching immediately
var event = clientReceipt.Deposit (function (error, result) {
if (!error)
console.log(result);

)i

The output of the above looks like the following (trimmed):

{

"returnValues": {
" from": "Ox1111l...FFFFCCCC",
"_id": "0x50...sd5adb20",
" _wvalue": "0x420042"
}I
"raw": {
"data": "Ox7f...91385",

"topics": ["Oxfd4...bdead7", "Ox7f...1a91385"]

Low-Level Interface to Logs

It is also possible to access the low-level interface to the logging mechanism via the functions 10g0, 1logl, 1og2,
log3 and 1log4. logi takes i + 1 parameter of type bytes32, where the first argument will be used for the data
part of the log and the others as topics. The event call above can be performed in the same way as

pragma solidity >=0.4.10 <0.6.0;

(continues on next page)

84 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

contract C {
function f () public payable {
uint256 _id = 0x420042;
log3(
bytes32 (msg.value),

—bytes32 (0x50cb9fe53daad9737b786ab3646£04d0150dc50ef4e75£59509d83667ad5adb20),
bytes32 (uint256 (msg.sender)),
bytes32(_id)
)

where the long hexadecimal number is equal to keccak256 ("Deposit (address,bytes32,uint256)"),
the signature of the event.

Additional Resources for Understanding Events

e Javascript documentation
* Example usage of events

* How to access them in js

Inheritance

Solidity supports multiple inheritance by copying code including polymorphism.

All function calls are virtual, which means that the most derived function is called, except when the contract name is
explicitly given.

When a contract inherits from other contracts, only a single contract is created on the blockchain, and the code from
all the base contracts is copied into the created contract.

The general inheritance system is very similar to Python’s, especially concerning multiple inheritance, but there are
also some differences.

Details are given in the following example.

pragma solidity >0.4.99 <0.6.0;

contract owned ({
constructor () public { owner = msg.sender; }
address payable owner;

// Use ‘is’' to derive from another contract. Derived
// contracts can access all non-private members including
// internal functions and state variables. These cannot be
// accessed externally via 'this’, though.
contract mortal is owned {
function kill () public {
if (msg.sender == owner) selfdestruct (owner);

(continues on next page)

8.4. &z|C|E|M}E7| 85

https://github.com/ethereum/wiki/wiki/JavaScript-API#contract-events
https://github.com/debris/smart-exchange/blob/master/lib/contracts/SmartExchange.sol
https://github.com/debris/smart-exchange/blob/master/lib/exchange_transactions.js
https://docs.python.org/3/tutorial/classes.html#inheritance

Solidity Documentation, £A| 0.5.10

G B B 5 s)

// These abstract contracts are only provided to make the
// interface known to the compiler. Note the function
// without body. If a contract does not implement all
// functions it can only be used as an interface.
contract Config {

function lookup (uint id) public returns (address adr);

contract NameReg {
function register (bytes32 name) public;
function unregister () public;

// Multiple inheritance is possible. Note that ‘owned' 1is
// also a base class of ‘mortal’, yet there is only a single
// instance of ‘owned' (as for virtual inheritance in C++).
contract named is owned, mortal {
constructor (bytes32 name) public {
Config config = Config(0xD5£9D8D94886E70b06E474c3fB14Fd43E2£23970) ;
NameReg (config.lookup(l)) .register (name) ;

// Functions can be overridden by another function with the same name and

// the same number/types of inputs. If the overriding function has different
// types of output parameters, that causes an error.

// Both local and message-based function calls take these overrides

// into account.

function kill () public {

if (msg.sender == owner) {
Config config = Config(0xD5f9D8D94886E70b06E474c3fB14Fd43E2£23970);
NameReg (config.lookup(l)) .unregister();

// It is still possible to call a specific
// overridden function.
mortal.kill();

// If a constructor takes an argument, it needs to be
// provided in the header (or modifier—invocation-style at
// the constructor of the derived contract (see below)).
contract PriceFeed is owned, mortal, named("GoldFeed") ({
function updatelInfo (uint newInfo) public {
if (msg.sender == owner) info = newlInfo;

function get () public view returns (uint r) { return info; }

uint info;

Note that above, we callmortal.kill () to "forward" the destruction request. The way this is done is problematic,
as seen in the following example:

pragma solidity >=0.4.22 <0.6.0;

(continues on next page)

86 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

contract owned ({
constructor () public { owner = msg.sender; }
address payable owner;

contract mortal is owned {
function kill () public {
if (msg.sender == owner) selfdestruct (owner);

contract Basel is mortal {
function kill () public { /# do cleanup 1 »/ mortal.kill(); }

contract Base2 is mortal {
function kill() public { /x do cleanup 2 »/ mortal.kill(); }

contract Final is Basel, Base2 {

}

AcalltoFinal.kill () willcallBase2.kil1 asthe most derived override, but this function will bypass Basel .
kill, basically because it does not even know about Basel. The way around this is to use super:

pragma solidity >=0.4.22 <0.6.0;

contract owned {
constructor () public { owner = msg.sender; }
address payable owner;

contract mortal is owned {
function kill () public {
if (msg.sender == owner) selfdestruct (owner);

contract Basel is mortal {
function kill () public { /% do cleanup 1 %/ super.kill(); }

contract Base2 is mortal {
function kill() public { /x do cleanup 2 x/ super.kill(); }

contract Final is Basel, Base2 {

}

If Base2 calls a function of super, it does not simply call this function on one of its base contracts. Rather, it calls
this function on the next base contract in the final inheritance graph, so it will call Basel.kill () (note that the
final inheritance sequence is — starting with the most derived contract: Final, Base2, Basel, mortal, owned). The actual
function that is called when using super is not known in the context of the class where it is used, although its type is
known. This is similar for ordinary virtual method lookup.

8.4. &z|C|E|M}E7| 87

Solidity Documentation, £A| 0.5.10

Constructors

A constructor is an optional function declared with the constructor keyword which is executed upon contract
creation, and where you can run contract initialisation code.

Before the constructor code is executed, state variables are initialised to their specified value if you initialise them
inline, or zero if you do not.

After the constructor has run, the final code of the contract is deployed to the blockchain. The deployment of the
code costs additional gas linear to the length of the code. This code includes all functions that are part of the public
interface and all functions that are reachable from there through function calls. It does not include the constructor code
or internal functions that are only called from the constructor.

Constructor functions can be either public or internal. If there is no constructor, the contract will assume the
default constructor, which is equivalent to constructor () public {}.For example:

pragma solidity >0.4.99 <0.6.0;

contract A {
uint public a;

constructor (uint _a) internal {
a = _a;

contract B is A(1l) {
constructor () public {}

A constructor set as internal causes the contract to be marked as abstract.

Z431: Prior to version 0.4.22, constructors were defined as functions with the same name as the contract. This
syntax was deprecated and is not allowed anymore in version 0.5.0.

Arguments for Base Constructors

The constructors of all the base contracts will be called following the linearization rules explained below. If the base
constructors have arguments, derived contracts need to specify all of them. This can be done in two ways:

pragma solidity >=0.4.22 <0.6.0;

contract Base {
uint x;
constructor (uint _x) public { x = _x; }

// Either directly specify in the inheritance 1list...
contract Derivedl is Base (7) {
constructor () public {}

// or through a "modifier" of the derived constructor.
contract Derived2 is Base {

(continues on next page)

88 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

constructor (uint _y) Base(_y *» _y) public {}

One way is directly in the inheritance list (1s Base (7)). The other is in the way a modifier is invoked as part of
the derived constructor (Base (_y * _y)). The first way to do it is more convenient if the constructor argument is
a constant and defines the behaviour of the contract or describes it. The second way has to be used if the constructor
arguments of the base depend on those of the derived contract. Arguments have to be given either in the inheritance
list or in modifier-style in the derived constructor. Specifying arguments in both places is an error.

If a derived contract does not specify the arguments to all of its base contracts’ constructors, it will be abstract.

Multiple Inheritance and Linearization

Languages that allow multiple inheritance have to deal with several problems. One is the Diamond Problem. Solidity
is similar to Python in that it uses "C3 Linearization" to force a specific order in the directed acyclic graph (DAG) of
base classes. This results in the desirable property of monotonicity but disallows some inheritance graphs. Especially,
the order in which the base classes are given in the is directive is important: You have to list the direct base contracts
in the order from "most base-like" to "most derived". Note that this order is the reverse of the one used in Python.

Another simplifying way to explain this is that when a function is called that is defined multiple times in different
contracts, the given bases are searched from right to left (left to right in Python) in a depth-first manner, stopping at
the first match. If a base contract has already been searched, it is skipped.

In the following code, Solidity will give the error "Linearization of inheritance graph impossible".

pragma solidity >=0.4.0 <0.6.0;

contract X {}

contract A is X {}

// This will not compile
contract C is A, X {}

The reason for this is that C requests X to override A (by specifying A, X in this order), but A itself requests to override
X, which is a contradiction that cannot be resolved.

Inheriting Different Kinds of Members of the Same Name

‘When the inheritance results in a contract with a function and a modifier of the same name, it is considered as an error.
This error is produced also by an event and a modifier of the same name, and a function and an event of the same
name. As an exception, a state variable getter can override a public function.

Abstract Contracts

Contracts are marked as abstract when at least one of their functions lacks an implementation as in the following
example (note that the function declaration header is terminated by ;):

pragma solidity >=0.4.0 <0.6.0;

contract Feline {
function utterance () public returns (bytes32);

8.4. &z|C|E|M}E7| 89

https://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem
https://en.wikipedia.org/wiki/C3_linearization

Solidity Documentation, £A| 0.5.10

Such contracts cannot be compiled (even if they contain implemented functions alongside non-implemented func-
tions), but they can be used as base contracts:

pragma solidity >=0.4.0 <0.6.0;
contract Feline {

function utterance() public returns (bytes32);

contract Cat is Feline {
function utterance() public returns (bytes32) { return "miaow"; }

If a contract inherits from an abstract contract and does not implement all non-implemented functions by overriding,
it will itself be abstract.

Note that a function without implementation is different from a Function Type even though their syntax looks very
similar.

Example of function without implementation (a function declaration):

’function foo (address) external returns (address);

Example of a Function Type (a variable declaration, where the variable is of type function):

’function(address) external returns (address) foo;

Abstract contracts decouple the definition of a contract from its implementation providing better extensibility and self-
documentation and facilitating patterns like the Template method and removing code duplication. Abstract contracts
are useful in the same way that defining methods in an interface is useful. It is a way for the designer of the abstract
contract to say "any child of mine must implement this method".

Interfaces
Interfaces are similar to abstract contracts, but they cannot have any functions implemented. There are further restric-
tions:
¢ They cannot inherit other contracts or interfaces.
* All declared functions must be external.
* They cannot declare a constructor.
» They cannot declare state variables.
Some of these restrictions might be lifted in the future.

Interfaces are basically limited to what the Contract ABI can represent, and the conversion between the ABI and an
interface should be possible without any information loss.

Interfaces are denoted by their own keyword:

pragma solidity >=0.4.11 <0.6.0;

interface Token {
enum TokenType { Fungible, NonFungible }
struct Coin { string obverse; string reverse; }
function transfer (address recipient, uint amount) external;

90 Chapter 8. Contents

https://en.wikipedia.org/wiki/Template_method_pattern

Solidity Documentation, £A| 0.5.10

Contracts can inherit interfaces as they would inherit other contracts.

Types defined inside interfaces and other contract-like structures can be accessed from other contracts: Token.
TokenType or Token.Coin.

Libraries

Libraries are similar to contracts, but their purpose is that they are deployed only once at a specific address and their
code is reused using the DELEGATECALL (CALLCODE until Homestead) feature of the EVM. This means that if
library functions are called, their code is executed in the context of the calling contract, i.e. this points to the calling
contract, and especially the storage from the calling contract can be accessed. As a library is an isolated piece of source
code, it can only access state variables of the calling contract if they are explicitly supplied (it would have no way to
name them, otherwise). Library functions can only be called directly (i.e. without the use of DELEGATECALL) if they
do not modify the state (i.e. if they are view or pure functions), because libraries are assumed to be stateless. In
particular, it is not possible to destroy a library.

ZFA: Until version 0.4.20, it was possible to destroy libraries by circumventing Solidity’s type system. Starting from
that version, libraries contain a mechanism that disallows state-modifying functions to be called directly (i.e. without
DELEGATECALL).

Libraries can be seen as implicit base contracts of the contracts that use them. They will not be explicitly visible in the
inheritance hierarchy, but calls to library functions look just like calls to functions of explicit base contracts (L. £ ()

if L is the name of the library). Furthermore, internal functions of libraries are visible in all contracts, just as if
the library were a base contract. Of course, calls to internal functions use the internal calling convention, which means
that all internal types can be passed and types stored in memory will be passed by reference and not copied. To realize
this in the EVM, code of internal library functions and all functions called from therein will at compile time be pulled
into the calling contract, and a regular JUMP call will be used instead of a DELEGATECALL.

The following example illustrates how to use libraries (but manual method be sure to check out using for for a more
advanced example to implement a set).

pragma solidity >=0.4.22 <0.6.0;

library Set {
// We define a new struct datatype that will be used to
// hold its data in the calling contract.
struct Data { mapping(uint => bool) flags; }

// Note that the first parameter is of type "storage
// reference" and thus only its storage address and not
// its contents is passed as part of the call. This is a
// special feature of library functions. It is idiomatic
// to call the first parameter ‘"self’, if the function can
// be seen as a method of that object.
function insert (Data storage self, uint value)

public

returns (bool)

if (self.flags([value])

return false; // already there
self.flags[value] = true;
return true;

function remove (Data storage self, uint value)

(continues on next page)

8.4. &z|C|E|M}E7| 91

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

public
returns (bool)

if (!self.flags([value])

return false; // not there
self.flags[value] = false;
return true;

function contains (Data storage self, uint value)
public
view
returns (bool)

return self.flags([valuel;

contract C {
Set.Data knownValues;

function register (uint value) public {
// The library functions can be called without a
// specific instance of the library, since the
// "instance" will be the current contract.
require (Set.insert (knownValues, value));

}

// In this contract, we can also directly access knownValues.flags, 1f we want.

Of course, you do not have to follow this way to use libraries: they can also be used without defining struct data
types. Functions also work without any storage reference parameters, and they can have multiple storage reference
parameters and in any position.

The calls to Set.contains, Set.insert and Set.remove are all compiled as calls (DELEGATECALL) to
an external contract/library. If you use libraries, be aware that an actual external function call is performed. msg.
sender, msg.value and this will retain their values in this call, though (prior to Homestead, because of the use
of CALLCODE, msg. sender and msg.value changed, though).

The following example shows how to use types stored in memory and internal functions in libraries in order to imple-
ment custom types without the overhead of external function calls:

pragma solidity >=0.4.16 <0.6.0;

library BigInt ({
struct bigint {
uint[] limbs;

function fromUint (uint x) internal pure returns (bigint memory r) ({
r.limbs = new uint[] (1);
r.limbs[0] = x;

function add(bigint memory _a, bigint memory _Db) internal pure returns (bigint,
—memory r) {
r.limbs = new uint[] (max(_a.limbs.length, _b.limbs.length));

(continues on next page)

92 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

uint carry = 0;
for (uint 1 = 0; 1 < r.limbs.length; ++1i) {
uint a = limb(_a, 1i);
uint b = limb(_b, 1i);
r.limbs[i] = a + b + carry;
if (a + b<a |l (a + b ==uint(-1) && carry > 0))
carry = 1;
else
carry = 0;

}
if (carry > 0) {
// too bad, we have to add a limb
uint [] memory newLimbs = new uint[] (r.limbs.length + 1);
uint i;
for (i = 0; 1 < r.limbs.length; ++1i)
newLimbs([i] = r.limbs[i];
newLimbs[i] = carry;
r.limbs = newLimbs;

function limb (bigint memory _a, uint _limb) internal pure returns (uint) {
return _limb < _a.limbs.length ? _a.limbs[_limb] : 0;

function max (uint a, uint b) private pure returns (uint) {
return a > b ? a : b;

contract C {
using BigInt for BigInt.bigint;

function f () public pure {
BigInt.bigint memory x = BigInt.fromUint (7);
BigInt.bigint memory y = BigInt.fromUint (uint (-1));
BigInt.bigint memory z = x.add(y);
assert (z.limb (1) > 0);

As the compiler cannot know where the library will be deployed at, these addresses have to be filled into the final
bytecode by a linker (see F &l 712 A-§5]7] for how to use the commandline compiler for linking). If the
addresses are not given as arguments to the compiler, the compiled hex code will contain placeholders of the form
__Set (where Set is the name of the library). The address can be filled manually by replacing all those 40
symbols by the hex encoding of the address of the library contract.

ZF4: Manually linking libraries on the generated bytecode is discouraged, because it is restricted to 36 characters.
You should ask the compiler to link the libraries at the time a contract is compiled by either using the ——1ibraries
option of solc orthe libraries key if you use the standard-JSON interface to the compiler.

Restrictions for libraries in comparison to contracts:
* No state variables

e Cannot inherit nor be inherited

8.4. &z|C|E|M}E7| 93

Solidity Documentation, £A| 0.5.10

¢ Cannot receive Ether

(These might be lifted at a later point.)

Call Protection For Libraries

As mentioned in the introduction, if a library’s code is executed using a CALL instead of a DELEGATECALL or
CALLCODE, it will revert unless a view or pure function is called.

The EVM does not provide a direct way for a contract to detect whether it was called using CALL or not, but a contract
can use the ADDRESS opcode to find out "where" it is currently running. The generated code compares this address to
the address used at construction time to determine the mode of calling.

More specifically, the runtime code of a library always starts with a push instruction, which is a zero of 20 bytes at
compilation time. When the deploy code runs, this constant is replaced in memory by the current address and this
modified code is stored in the contract. At runtime, this causes the deploy time address to be the first constant to be
pushed onto the stack and the dispatcher code compares the current address against this constant for any non-view and
non-pure function.

Using For

The directive using A for B; can be used to attach library functions (from the library A) to any type (B). These
functions will receive the object they are called on as their first parameter (like the self variable in Python).

The effect of using A for =; is that the functions from the library A are attached to any type.

In both situations, all functions in the library are attached, even those where the type of the first parameter does not
match the type of the object. The type is checked at the point the function is called and function overload resolution is
performed.

The using A for B; directive is active only within the current contract, including within all of its functions, and
has no effect outside of the contract in which it is used. The directive may only be used inside a contract, not inside
any of its functions.

By including a library, its data types including library functions are available without having to add further code.

Let us rewrite the set example from the Libraries in this way:

pragma solidity >=0.4.16 <0.6.0;

// This is the same code as before, just without comments
library Set {
struct Data { mapping(uint => bool) flags; }

function insert (Data storage self, uint value)
public
returns (bool)

if (self.flags[value])

return false; // already there
self.flags[value] = true;
return true;

function remove (Data storage self, uint value)
public
returns (bool)

(continues on next page)

94 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

G B B 5 s)

if (!self.flags[value])

return false; // not there
self.flags[value] = false;
return true;

function contains (Data storage self, uint value)
public
view
returns (bool)

return self.flags[value];

contract C {

using Set for Set.Data; // this is the crucial change
Set .Data knownValues;

function register (uint value) public {
// Here, all variables of type Set.Data have
// corresponding member functions.
// The following function call is identical to
// ‘Set.insert (knownValues, value)’
require (knownValues.insert (value));

It is also possible to extend elementary types in that way:

pragma solidity >=0.4.16 <0.6.0;

library Search {

function indexOf (uint[] storage self, uint value)
public
view
returns (uint)
for (uint 1 = 0; i < self.length; i++)

if (self[i] == value) return i;
-1);

return uint (-1

contract C {
using Search for uint(];
uint[] data;

function append(uint value) public ({
data.push (value);

function replace (uint _old, uint _new) public {
// This performs the library function call
uint index = data.indexOf (_old);
if (index == uint(-1))

(continues on next page)

8.4. &z|C|E|M}E7| 95

Solidity Documentation, £A| 0.5.10

(o]" o] Ao A%

data.push (_new) ;
else
data[index] = _new;

}

Note that all library calls are actual EVM function calls. This means that if you pass memory or value types, a copy
will be performed, even of the self variable. The only situation where no copy will be performed is when storage
reference variables are used.

8.4.7 Solidity Assembly

Solidity defines an assembly language that you can use without Solidity and also as "inline assembly" inside Solidity
source code. This guide starts with describing how to use inline assembly, how it differs from standalone assembly,
and specifies assembly itself.

Inline Assembly
You can interleave Solidity statements with inline assembly in a language close to the one of the virtual machine. This
gives you more fine-grained control, especially when you are enhancing the language by writing libraries.

As the EVM is a stack machine, it is often hard to address the correct stack slot and provide arguments to opcodes
at the correct point on the stack. Solidity’s inline assembly helps you do this, and with other issues that arise when
writing manual assembly.

Inline assembly has the following features:

* functional-style opcodes: mul (1, add (2, 3))

e assembly-local variables: let x := add(2, 3) let y := mload(0x40) x := add(x, Vy)

* access to external variables: function f (uint x) public { assembly { x := sub(x, 1) }
}

e loops: for { let 1 := 0 } 1t(i, x) { 1 := add(i, 1) } { vy := mul(2, y) }

e if statements: if slt(x, 0) { x := sub(0, x) }

e switch statements: switch x case 0 { y := mul(x, 2) } default { y := 0 }

e function calls: function f(x) -> y { switch x case 0 { y := 1 } default { y :=

mul (x, f(sub(x, 1))) } }

7Z331: Inline assembly is a way to access the Ethereum Virtual Machine at a low level. This bypasses several
important safety features and checks of Solidity. You should only use it for tasks that need it, and only if you are
confident with using it.

Syntax

Assembly parses comments, literals and identifiers in the same way as Solidity, so you can use the usual // and /%
x/ comments. Inline assembly is marked by assembly { ... } and inside these curly braces, you can use the
following (see the later sections for more details):

* literals, i.e. 0x123, 42 or "abc" (strings up to 32 characters)

96 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

* opcodes in functional style, e.g. add (1, mlod(0))

e variable declarations, e.g. let x := 7, let x := add(y, 3) or let x (initial value of empty (0) is
assigned)

¢ identifiers (assembly-local variables and externals if used as inline assembly), e.g. add (3, x),
sstore(x_slot, 2)

e assignments, e.g. x := add(y, 3)

* blocks where local variables are scoped inside, e.g. { let x := 3 { let y := add(x, 1) } }
The following features are only available for standalone assembly:

e direct stack control via dupl, swapl, ...

* direct stack assignments (in "instruction style"), e.g. 3 =: x

e labels, e.g. name :

* jump opcodes

ZF2: Standalone assembly is supported for backwards compatibility but is not documented here anymore.

At the end of the assembly { ... } block, the stack must be balanced, unless you require it otherwise. If it is
not balanced, the compiler generates a warning.

Example

The following example provides library code to access the code of another contract and load it into a byt es variable.
This is not possible with "plain Solidity" and the idea is that assembly libraries will be used to enhance the Solidity
language.

pragma solidity >=0.4.0 <0.6.0;

library GetCode {
function at (address _addr) public view returns (bytes memory o_code) {

assembly {
// retrieve the size of the code, this needs assembly
let size := extcodesize (_addr)

// allocate output byte array — this could also be done without assembly
// by using o_code = new bytes (size)

o_code := mload(0x40)

// new "memory end" including padding

mstore (0x40, add(o_code, and(add(add(size, 0x20), 0x1f), not(0x1f))))

// store length in memory

mstore (o_code, size)

// actually retrieve the code, this needs assembly

extcodecopy (_addr, add(o_code, 0x20), 0, size)

Inline assembly is also beneficial in cases where the optimizer fails to produce efficient code, for example:

pragma solidity >=0.4.16 <0.6.0;

library VectorSum {

(continues on next page)

8.4. &z|C|E|M}E7| 97

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

// This function is less efficient because the optimizer currently fails to
// remove the bounds checks in array access.
function sumSolidity (uint[] memory _data) public pure returns (uint o_sum) {
for (uint i1 = 0; i < _data.length; ++1i)
o_sum += _datali];

// We know that we only access the array in bounds, so we can avoid the check.
// 0x20 needs to be added to an array because the first slot contains the

// array length.

function sumAsm(uint[] memory _data) public pure returns (uint o_sum) {

for (uint i = 0; i < _data.length; ++1) {
assembly {
o_sum := add(o_sum, mload(add(add(_data, 0x20), mul (i, 0x20))))

// Same as above, but accomplish the entire code within inline assembly.
function sumPureAsm(uint[] memory _data) public pure returns (uint o_sum) {

assembly {
// Load the length (first 32 bytes)
let len := mload(_data)

// Skip over the length field.

//

// Keep temporary variable so it can be incremented in place.
//

// NOTE: incrementing _data would result in an unusable

// _data variable after this assembly block

let data := add(_data, 0x20)

// Iterate until the bound 1s not met.

for
{ let end := add(data, mul(len, 0x20)) }
1t (data, end)
{ data := add(data, 0x20) }
{
o_sum := add(o_sum, mload(data))

Opcodes

This document does not want to be a full description of the Ethereum virtual machine, but the following list can be
used as a reference of its opcodes.

If an opcode takes arguments (always from the top of the stack), they are given in parentheses. Note that the order
of arguments can be seen to be reversed in non-functional style (explained below). Opcodes marked with — do not
push an item onto the stack, those marked with « are special and all others push exactly one item onto the stack.
Opcodes marked with F, H, B or C are present since Frontier, Homestead, Byzantium or Constantinople, respectively.
Constantinople is still in planning and all instructions marked as such will result in an invalid instruction exception.

In the following, mem [a. . .b) signifies the bytes of memory starting at position a up to but not including position b

98 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

and storage [p] signifies the storage contents at position p.
The opcodes pushi and jumpdest cannot be used directly.

In the grammar, opcodes are represented as pre-defined identifiers.

Instruction Explanation
stop F | stop execution, identical
to return(0,0)
add(x, y) X+y
sub(x, y) X-y
mul(x, y) X *y
div(x, y) x/y
sdiv(x, y) x /'y, for signed numbers in two’s complement
mod(x, y) X%y
smod(X, y) X % y, for signed numbers in two’s complement
exp(x, y) X to the power of y
not(x) ~X, every bit of x is negated
1t(x, y) 1if x <y, O otherwise
gt(x,y) 1 if x >y, O otherwise
slt(x, y) 1 if x <y, 0 otherwise, for signed numbers in two’s complement
sgt(x, y) 1 if x >y, O otherwise, for signed numbers in two’s complement
eq(x, y) 1 if x ==y, 0 otherwise
iszero(x) 1 if x == 0, 0 otherwise
and(x, y) bitwise and of x and y
or(x, y) bitwise or of x and y
xor(X, y) bitwise xor of x and y
byte(n, x) nth byte of x, where the most significant byte is the Oth byte
shl(x, y) logical shift left y by x bits
shr(x, y) logical shift right y by x bits
sar(Xx, y) arithmetic shift right y by x bits

addmod(x, y, m)

(X +y) % m with arbitrary precision arithmetic

mulmod(Xx, y, m)

(X *y) % m with arbitrary precision arithmetic

signextend(i, X)

sign extend from (i*8+7)th bit counting from least significant

keccak256(p, n)

keccak(mem[p...(p+n)))

jump(label)

jump to label / code position

jumpi(label, cond)

jump to label if cond is nonzero

pc

current position in code

pop(x) remove the element pushed by x

dupl ... dupl6 copy nth stack slot to the top (counting from top)
swapl ... swapl6 swap topmost and nth stack slot below it
mload(p) mem[p...(p+32))

mstore(p, v)

mem[p...(p+32)) :=v

mstore8(p, V)

mem[p] := v & Oxff (only modifies a single byte)

eo|Bes1iesi ResiResiResiResiResiRes] Res] ResiResiResi BesRes] Resi ResiRes] Hesl Res| Res | N@ | H@ 1 @] sl ResiBes|Res] Res] Resl Resi ResiResi Res] Resi ResiRes] fies| Res| Res | Resi Resl Res|

sload(p) storage[p]

sstore(p, V) storage[p] :=v

msize size of memory, i.e. largest accessed memory index
gas gas still available to execution

address address of the current contract / execution context
balance(a) wei balance at address a

caller call sender (excluding delegatecall)
callvalue wei sent together with the current call

8.4. £2|C|E| Mt1S7|

99

Solidity Documentation, £A| 0.5.10

Instruction Explanation

calldataload(p) call data starting from position p (32 bytes)

calldatasize size of call data in bytes

calldatacopy(t, f, s) copy s bytes from calldata at position f to mem at position t
codesize size of the code of the current contract / execution context
codecopy(t, f, s) copy s bytes from code at position f to mem at position t
extcodesize(a) size of the code at address a

extcodecopy(a, t, f, s) like codecopy(t, f, s) but take code at address a
returndatasize size of the last returndata

returndatacopy(t, f, s) copy s bytes from returndata at position f to mem at position t
extcodehash(a) code hash of address a

create(v, p, n)

create new contract with code mem[p...(p+n)) and send v wei and return the new

create2(v, p, n, s)

create new contract with code mem[p...(p+n)) at address keccak256(0xff . this . s

call(g, a, v, in, insize, out, outsize)

call contract at address a with input mem[in...(in+insize)) providing g gas and v v

callcode(g, a, v, in, insize, out, outsize)

identical to call but only use the code from a and stay in the context of the curr

delegatecall(g, a, in, insize, out, outsize)

identical to callcode but also keep caller and callvalue

staticcall(g, a, in, insize, out, outsize)

identical to call (g, a, 0, in, insize, out, outsize) butdo not

return(p, s)

end execution, return data mem[p...(p+s))

revert(p, s)

end execution, revert state changes, return data mem|[p...(p+s))

selfdestruct(a) end execution, destroy current contract and send funds to a
invalid end execution with invalid instruction
logO(p, s) log without topics and data mem|[p...(p+s))

logl(p, s, t1)

log with topic t1 and data mem([p...(p+s))

log2(p, s, t1, t2)

log with topics tl, t2 and data mem[p...(p+s))

log3(p, s, t1, 2, t3)

log with topics tl, t2, t3 and data mem][p...(p+s))

log4(p, s, t1, 12,13, t4)

log with topics tl, t2, t3, t4 and data mem[p...(p+s))

eI Res|Res] Resl ResiResiBes|ResiBes] ResiResiResiBesi ResiRes| Mol Res] Reel RusiBos| ResiN@ Resl N@ R Rovd Besl Be sl Rl Res i esl Besl Bes!

origin transaction sender
gasprice gas price of the transaction
blockhash(b) hash of block nr b - only for last 256 blocks excluding current
coinbase current mining beneficiary
timestamp timestamp of the current block in seconds since the epoch
number current block number
difficulty difficulty of the current block
gaslimit block gas limit of the current block
Literals

You can use integer constants by typing them in decimal or hexadecimal notation and an appropriate PUSH1 instruction
will automatically be generated. The following creates code to add 2 and 3 resulting in 5 and then computes the bitwise
and with the string "abc". The final value is assigned to a local variable called x. Strings are stored left-aligned and

cannot be longer than 32 bytes.

assembly { let x := and("abc", add(3,

2)) 1}

Functional Style

For a sequence of opcodes, it is often hard to see what the actual arguments for certain opcodes are. In the following
example, 3 is added to the contents in memory at position 0x80.

100

Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

’3 0x80 mload add 0x80 mstore

Solidity inline assembly has a "functional style" notation where the same code would be written as follows:

’mstore(OxSO, add (mload (0x80), 3))

If you read the code from right to left, you end up with exactly the same sequence of constants and opcodes, but it is
much clearer where the values end up.

If you care about the exact stack layout, just note that the syntactically first argument for a function or opcode will be
put at the top of the stack.

Access to External Variables, Functions and Libraries

You can access Solidity variables and other identifiers by using their name. For variables stored in the memory data
location, this pushes the address, and not the value onto the stack. Variables stored in the storage data location are
different, as they might not occupy a full storage slot, so their "address" is composed of a slot and a byte-offset inside
that slot. To retrieve the slot pointed to by the variable x, you use x_slot, and to retrieve the byte-offset you use
x_offset.

Local Solidity variables are available for assignments, for example:

pragma solidity >=0.4.11 <0.6.0;

contract C {
uint b;
function f (uint x) public view returns (uint r) {
assembly {
r := mul (x, sload(b_slot)) // ignore the offset, we know it 1is zero

}

Z331: If you access variables of a type that spans less than 256 bits (for example uint 64, address, bytes16
or byte), you cannot make any assumptions about bits not part of the encoding of the type. Especially, do not
assume them to be zero. To be safe, always clear the data properly before you use it in a context where this is im-
portant: uint32 x = f£(); assembly { x := and(x, Oxffffffff) /+ now use x x/ } To
clean signed types, you can use the signextend opcode.

Labels

Support for labels has been removed in version 0.5.0 of Solidity. Please use functions, loops, if or switch statements
instead.

Declaring Assembly-Local Variables

You can use the 1let keyword to declare variables that are only visible in inline assembly and actually only in the
current { . .. }-block. What happens is that the 1et instruction will create a new stack slot that is reserved for the
variable and automatically removed again when the end of the block is reached. You need to provide an initial value
for the variable which can be just 0, but it can also be a complex functional-style expression.

8.4. &2|C|E| o S7| 101

Solidity Documentation, £A| 0.5.10

pragma solidity >=0.4.16 <0.6.0;

contract C {
function f (uint x) public view returns (uint b) {
assembly {
let v := add(x, 1)
mstore (0x80, wv)
{
let yv := add(sload(v), 1)
b :=vy
} // y is "deallocated" here
b := add(b, wv)
} // v is "deallocated" here

Assighments

Assignments are possible to assembly-local variables and to function-local variables. Take care that when you assign
to variables that point to memory or storage, you will only change the pointer and not the data.

Variables can only be assigned expressions that result in exactly one value. If you want to assign the values returned
from a function that has multiple return parameters, you have to provide multiple variables.

{

let v := 0

let g := add(v, 2)
function f() -> a, b { }
let ¢, d := f()

The if statement can be used for conditionally executing code. There is no "else" part, consider using "switch" (see
below) if you need multiple alternatives.

{
if eg(value, 0) { revert(0, 0) 1}

The curly braces for the body are required.

Switch

You can use a switch statement as a very basic version of "if/else". It takes the value of an expression and compares it to
several constants. The branch corresponding to the matching constant is taken. Contrary to the error-prone behaviour
of some programming languages, control flow does not continue from one case to the next. There can be a fallback or
default case called default.

{
let x = 0
switch calldataload(4)

(continues on next page)

102 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(o]" o] Ao A%

case 0 {

x := calldataload(0x24)
}
default {

x := calldataload(0x44)

}
sstore (0, div(x, 2))

The list of cases does not require curly braces, but the body of a case does require them.

Loops

Assembly supports a simple for-style loop. For-style loops have a header containing an initializing part, a condition
and a post-iteration part. The condition has to be a functional-style expression, while the other two are blocks. If the
initializing part declares any variables, the scope of these variables is extended into the body (including the condition
and the post-iteration part).

The following example computes the sum of an area in memory.

{

let x := 0
for { let 1 := 0 } 1t(i, 0x100) { i := add(i, 0x20) } {
x := add(x, mload(i))

}

For loops can also be written so that they behave like while loops: Simply leave the initialization and post-iteration
parts empty.

{

let x := 0
let i := 0
for { } 1t (i, O0x100) { } { // while (i < 0x100)
x := add(x, mload(i))
i := add(i, 0x20)
}
}
Functions

Assembly allows the definition of low-level functions. These take their arguments (and a return PC) from the stack
and also put the results onto the stack. Calling a function looks the same way as executing a functional-style opcode.

Functions can be defined anywhere and are visible in the block they are declared in. Inside a function, you cannot
access local variables defined outside of that function. There is no explicit return statement.

If you call a function that returns multiple values, you have to assign them to a tuple usinga, b := £ (x) or let
a, b := f(x).

The following example implements the power function by square-and-multiply.

{

function power (base, exponent) —-> result {

(continues on next page)

8.4. &z|C|E|M}E7| 103

Solidity Documentation, £A| 0.5.10

(o]" o] Ao A%

switch exponent

case 0 { result := 1 }
case 1 { result := base }
default {
result := power (mul (base, base), div(exponent, 2))
switch mod (exponent, 2)
case 1 { result := mul (base, result) }

Things to Avoid

Inline assembly might have a quite high-level look, but it actually is extremely low-level. Function calls, loops, ifs
and switches are converted by simple rewriting rules and after that, the only thing the assembler does for you is re-
arranging functional-style opcodes, counting stack height for variable access and removing stack slots for assembly-
local variables when the end of their block is reached.

Conventions in Solidity

In contrast to EVM assembly, Solidity knows types which are narrower than 256 bits, e.g. uint24. In order to make
them more efficient, most arithmetic operations just treat them as 256-bit numbers and the higher-order bits are only
cleaned at the point where it is necessary, i.e. just shortly before they are written to memory or before comparisons
are performed. This means that if you access such a variable from within inline assembly, you might have to manually
clean the higher order bits first.

Solidity manages memory in a very simple way: There is a "free memory pointer" at position 0x40 in memory. If
you want to allocate memory, just use the memory starting from where this pointer points at and update it accordingly.
There is no guarantee that the memory has not been used before and thus you cannot assume that its contents are zero
bytes. There is no built-in mechanism to release or free allocated memory. Here is an assembly snippet that can be
used for allocating memory:

function allocate (length) -> pos {
pos := mload (0x40)
mstore (0x40, add(pos, length))

The first 64 bytes of memory can be used as "scratch space" for short-term allocation. The 32 bytes after the free
memory pointer (i.e. starting at 0x60) is meant to be zero permanently and is used as the initial value for empty
dynamic memory arrays. This means that the allocatable memory starts at 0x80, which is the initial value of the free
memory pointer.

Elements in memory arrays in Solidity always occupy multiples of 32 bytes (yes, this is even true for byte [], but not
for bytes and st ring). Multi-dimensional memory arrays are pointers to memory arrays. The length of a dynamic
array is stored at the first slot of the array and followed by the array elements.

7411 Statically-sized memory arrays do not have a length field, but it might be added later to allow better con-
vertibility between statically- and dynamically-sized arrays, so please do not rely on that.

104 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

Standalone Assembly

The assembly language described as inline assembly above can also be used standalone and in fact, the plan is to use
it as an intermediate language for the Solidity compiler. In this form, it tries to achieve several goals:

1. Programs written in it should be readable, even if the code is generated by a compiler from Solidity.
2. The translation from assembly to bytecode should contain as few "surprises" as possible.
3. Control flow should be easy to detect to help in formal verification and optimization.

In order to achieve the first and last goal, assembly provides high-level constructs like for loops, 1 f and switch
statements and function calls. It should be possible to write assembly programs that do not make use of explicit
SWAP, DUP, JUMP and JUMPI statements, because the first two obfuscate the data flow and the last two obfuscate
control flow. Furthermore, functional statements of the form mul (add (x, y), 7) are preferred over pure opcode
statements like 7 y x add mul because in the first form, it is much easier to see which operand is used for which
opcode.

The second goal is achieved by compiling the higher level constructs to bytecode in a very regular way. The only
non-local operation performed by the assembler is name lookup of user-defined identifiers (functions, variables, ...),
which follow very simple and regular scoping rules and cleanup of local variables from the stack.

Scoping: An identifier that is declared (label, variable, function, assembly) is only visible in the block where it was
declared (including nested blocks inside the current block). It is not legal to access local variables across function
borders, even if they would be in scope. Shadowing is not allowed. Local variables cannot be accessed before they
were declared, but functions and assemblies can. Assemblies are special blocks that are used for e.g. returning runtime
code or creating contracts. No identifier from an outer assembly is visible in a sub-assembly.

If control flow passes over the end of a block, pop instructions are inserted that match the number of local variables
declared in that block. Whenever a local variable is referenced, the code generator needs to know its current relative
position in the stack and thus it needs to keep track of the current so-called stack height. Since all local variables are
removed at the end of a block, the stack height before and after the block should be the same. If this is not the case,
compilation fails.

Using switch, for and functions, it should be possible to write complex code without using jump or jumpi
manually. This makes it much easier to analyze the control flow, which allows for improved formal verification and
optimization.

Furthermore, if manual jumps are allowed, computing the stack height is rather complicated. The position of all local
variables on the stack needs to be known, otherwise neither references to local variables nor removing local variables
automatically from the stack at the end of a block will work properly.

Example:

We will follow an example compilation from Solidity to assembly. We consider the runtime bytecode of the following
Solidity program:

pragma solidity >=0.4.16 <0.6.0;

contract C {
function f (uint x) public pure returns (uint y) {
y = 1;
for (uint 1 = 0; 1 < x; 1i++)
y = 2 % yji

The following assembly will be generated:

8.4. &z|C|E|M}E7| 105

Solidity Documentation, £A| 0.5.10

mstore (0x40, 0x80) // store the "free memory pointer"
// function dispatcher
switch div(calldataload(0), exp (2, 226))
case 0xb3de648b {
let r := f(calldataload(4))
let ret := Eallocate(@x20)
mstore (ret, r)
return (ret, 0x20)
}
default { revert (0, 0) }
// memory allocator
function Eallocate(size) -> pos {
pos := mload(0x40)
mstore (0x40, add(pos, size))
}
// the contract function
function f(x) > y {
y =1
for { let 1 := 0 } 1t(i, x) { 1 := add(i, 1) } {
y = mul(2, vy)

Assembly Grammar

The tasks of the parser are the following:

* Turn the byte stream into a token stream, discarding C++-style comments (a special comment exists for source
references, but we will not explain it here).

* Turn the token stream into an AST according to the grammar below

* Register identifiers with the block they are defined in (annotation to the AST node) and note from which point
on, variables can be accessed.

The assembly lexer follows the one defined by Solidity itself.

Whitespace is used to delimit tokens and it consists of the characters Space, Tab and Linefeed. Comments are regular
JavaScript/C++ comments and are interpreted in the same way as Whitespace.

Grammar:

AssemblyBlock = '{' AssemblyItemx '}'
AssemblyItem =
Identifier |
AssemblyBlock |
AssemblyExpression |
AssemblyLocalDefinition |
AssemblyAssignment |
AssemblyStackAssignment |
LabelDefinition |
AssemblyIf |
AssemblySwitch |
AssemblyFunctionDefinition |
AssemblyFor |

(continues on next page)

106 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

'break' |
'continue' |
SubAssembly
AssemblyExpression = AssemblyCall | Identifier | AssemblyLiteral
AssemblyLiteral = NumberLiteral | StringlLiteral | HexLiteral
Identifier = [a-zA-Z_[§]] [a-zA-Z_0-9]+«
AssemblyCall = Identifier '(' (AssemblyExpression (',' AssemblyExpression)x)? ")'
AssemblyLocalDefinition = 'let' IdentifierOrList (':=' AssemblyExpression)?
AssemblyAssignment = IdentifierOrList ':=' AssemblyExpression
IdentifierOrList = Identifier | ' (' IdentifierList ")’
IdentifierList = Identifier (',' Identifier)x
AssemblyStackAssignment = '=:' Identifier
LabelDefinition = Identifier ':'
AssemblyIf = '"if' AssemblyExpression AssemblyBlock
AssemblySwitch = 'switch' AssemblyExpression AssemblyCasex
('default' AssemblyBlock)?
AssemblyCase = 'case' AssemblyExpression AssemblyBlock
AssemblyFunctionDefinition = 'function' Identifier '(' IdentifierList? ')’
("=>" '"('" IdentifierList '")')? AssemblyBlock
AssemblyFor = 'for' (AssemblyBlock | AssemblyExpression)
AssemblyExpression (AssemblyBlock | AssemblyExpression) AssemblyBlock
SubAssembly = 'assembly' Identifier AssemblyBlock
NumberLiteral = HexNumber | DecimalNumber
HexLiteral = 'hex' ('"'" ([0-9a-fA-F]1{2})« """ | '"\'"" ([0-9a-fA-Fl{2})+ '"\'")
StringLiteral = """ ([*"\x\n\\] | "\\' .)x '™’
HexNumber = 'Ox' [0-9a-fA-F]+
DecimalNumber = [0-9]+

8.4.8 Miscellaneous
Layout of State Variables in Storage

Statically-sized variables (everything except mapping and dynamically-sized array types) are laid out contiguously in
storage starting from position 0. Multiple items that need less than 32 bytes are packed into a single storage slot if
possible, according to the following rules:

 The first item in a storage slot is stored lower-order aligned.
* Elementary types use only that many bytes that are necessary to store them.
* If an elementary type does not fit the remaining part of a storage slot, it is moved to the next storage slot.

* Structs and array data always start a new slot and occupy whole slots (but items inside a struct or array are
packed tightly according to these rules).

74 11: When using elements that are smaller than 32 bytes, your contract’s gas usage may be higher. This is because
the EVM operates on 32 bytes at a time. Therefore, if the element is smaller than that, the EVM must use more
operations in order to reduce the size of the element from 32 bytes to the desired size.

It is only beneficial to use reduced-size arguments if you are dealing with storage values because the compiler will
pack multiple elements into one storage slot, and thus, combine multiple reads or writes into a single operation.
When dealing with function arguments or memory values, there is no inherent benefit because the compiler does
not pack these values.

8.4. &2|C|E| o S7| 107

Solidity Documentation, £A| 0.5.10

Finally, in order to allow the EVM to optimize for this, ensure that you try to order your storage variables and
struct members such that they can be packed tightly. For example, declaring your storage variables in the order
of uint128, uintl128, uint256 instead of uintl128, uint256, uint128, as the former will only
take up two slots of storage whereas the latter will take up three.

The elements of structs and arrays are stored after each other, just as if they were given explicitly.

Mappings and Dynamic Arrays

Due to their unpredictable size, mapping and dynamically-sized array types use a Keccak-256 hash computation to
find the starting position of the value or the array data. These starting positions are always full stack slots.

The mapping or the dynamic array itself occupies a slot in storage at some position p according to the above rule (or
by recursively applying this rule for mappings of mappings or arrays of arrays). For dynamic arrays, this slot stores
the number of elements in the array (byte arrays and strings are an exception, see below). For mappings, the slot is
unused (but it is needed so that two equal mappings after each other will use a different hash distribution). Array data
is located at keccak256 (p) and the value corresponding to a mapping key k is located at keccak256 (k . p)
where . is concatenation. If the value is again a non-elementary type, the positions are found by adding an offset of
keccak256(k . p).

So for the following contract snippet:

pragma solidity >=0.4.0 <0.6.0;

contract C {
struct s { uint a; uint b; }

uint x;
mapping (uint => mapping (uint => s)) data;
}
The position of data[4][9].b 1is at keccak256(uint256(9) . keccak256 (uint256 (4)

uint256(1))) + 1.

bytes and string

bytes and string are encoded identically. For short byte arrays, they store their data in the same slot where the
length is also stored. In particular: if the data is at most 31 bytes long, it is stored in the higher-order bytes (left
aligned) and the lowest-order byte stores length * 2. For byte arrays that store data which is 32 or more bytes
long, the main slot stores length * 2 + 1 and the data is stored as usual in keccak256 (slot). This means
that you can distinguish a short array from a long array by checking if the lowest bit is set: short (not set) and long
(set).

Z2]: Handling invalidly encoded slots is currently not supported but may be added in the future.

Layout in Memory

Solidity reserves four 32-byte slots, with specific byte ranges (inclusive of endpoints) being used as follows:
* 0x00 - 0x3f (64 bytes): scratch space for hashing methods

* 0x40 - 0x5f (32 bytes): currently allocated memory size (aka. free memory pointer)

108 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

* 0x60 - 0x7£ (32 bytes): zero slot

Scratch space can be used between statements (i.e. within inline assembly). The zero slot is used as initial value for
dynamic memory arrays and should never be written to (the free memory pointer points to 0x80 initially).

Solidity always places new objects at the free memory pointer and memory is never freed (this might change in the
future).

74 11: There are some operations in Solidity that need a temporary memory area larger than 64 bytes and therefore
will not fit into the scratch space. They will be placed where the free memory points to, but given their short
lifetime, the pointer is not updated. The memory may or may not be zeroed out. Because of this, one shouldn’t
expect the free memory to point to zeroed out memory.

While it may seem like a good idea to use msize to arrive at a definitely zeroed out memory area, using such a
pointer non-temporarily without updating the free memory pointer can have adverse results.

Layout of Call Data

The input data for a function call is assumed to be in the format defined by the ABI specification. Among others, the
ABI specification requires arguments to be padded to multiples of 32 bytes. The internal function calls use a different
convention.

Arguments for the constructor of a contract are directly appended at the end of the contract’s code, also in ABI
encoding. The constructor will access them through a hard-coded offset, and not by using the codesize opcode,
since this of course changes when appending data to the code.

Internals - Cleaning Up Variables

When a value is shorter than 256-bit, in some cases the remaining bits must be cleaned. The Solidity compiler is
designed to clean such remaining bits before any operations that might be adversely affected by the potential garbage
in the remaining bits. For example, before writing a value to the memory, the remaining bits need to be cleared because
the memory contents can be used for computing hashes or sent as the data of a message call. Similarly, before storing
a value in the storage, the remaining bits need to be cleaned because otherwise the garbled value can be observed.

On the other hand, we do not clean the bits if the immediately following operation is not affected. For instance, since
any non-zero value is considered t rue by JUMP I instruction, we do not clean the boolean values before they are used
as the condition for JUMPI.

In addition to the design principle above, the Solidity compiler cleans input data when it is loaded onto the stack.

Different types have different rules for cleaning up invalid values:

Type Valid Values Invalid Values Mean

enum of n members | Ountiln- 1 exception

bool Oorl 1

signed integers sign-extended word | currently silently wraps; in the future exceptions will be thrown
unsigned integers higher bits zeroed currently silently wraps; in the future exceptions will be thrown

Internals - The Optimizer

The Solidity optimizer operates on assembly, so it can be and also is used by other languages. It splits the sequence
of instructions into basic blocks at JUMPs and JUMPDESTs. Inside these blocks, the instructions are analysed and
every modification to the stack, to memory or storage is recorded as an expression which consists of an instruction

8.4. &z|C|E|M}E7| 109

Solidity Documentation, £A| 0.5.10

and a list of arguments which are essentially pointers to other expressions. The main idea is now to find expressions
that are always equal (on every input) and combine them into an expression class. The optimizer first tries to find each
new expression in a list of already known expressions. If this does not work, the expression is simplified according
to rules like constant + constant = sum_of_constantsorX = 1 = X. Since this is done recursively,
we can also apply the latter rule if the second factor is a more complex expression where we know that it will always
evaluate to one. Modifications to storage and memory locations have to erase knowledge about storage and memory
locations which are not known to be different: If we first write to location x and then to location y and both are input
variables, the second could overwrite the first, so we actually do not know what is stored at x after we wrote to y. On
the other hand, if a simplification of the expression x - y evaluates to a non-zero constant, we know that we can keep
our knowledge about what is stored at x.

At the end of this process, we know which expressions have to be on the stack in the end and have a list of modifications
to memory and storage. This information is stored together with the basic blocks and is used to link them. Furthermore,
knowledge about the stack, storage and memory configuration is forwarded to the next block(s). If we know the targets
of all JUMP and JUMPT instructions, we can build a complete control flow graph of the program. If there is only one
target we do not know (this can happen as in principle, jump targets can be computed from inputs), we have to erase
all knowledge about the input state of a block as it can be the target of the unknown JUMP. If a JUMP I is found whose
condition evaluates to a constant, it is transformed to an unconditional jump.

As the last step, the code in each block is completely re-generated. A dependency graph is created from the expressions
on the stack at the end of the block and every operation that is not part of this graph is essentially dropped. Now code
is generated that applies the modifications to memory and storage in the order they were made in the original code
(dropping modifications which were found not to be needed) and finally, generates all values that are required to be on
the stack in the correct place.

These steps are applied to each basic block and the newly generated code is used as replacement if it is smaller. If a
basic block is split at a JUMP I and during the analysis, the condition evaluates to a constant, the JUMPT is replaced
depending on the value of the constant, and thus code like

uint x = 7;
datal[7] = 9;
if (datalx]
return 2;
else
return 1;

= x + 2)

is simplified to code which can also be compiled from

datal[7] = 9;
return 1;

even though the instructions contained a jump in the beginning.

Source Mappings

As part of the AST output, the compiler provides the range of the source code that is represented by the respective
node in the AST. This can be used for various purposes ranging from static analysis tools that report errors based on
the AST and debugging tools that highlight local variables and their uses.

Furthermore, the compiler can also generate a mapping from the bytecode to the range in the source code that generated
the instruction. This is again important for static analysis tools that operate on bytecode level and for displaying the
current position in the source code inside a debugger or for breakpoint handling.

Both kinds of source mappings use integer identifiers to refer to source files. These are regular array indices into a list
of source files usually called "sourceList", which is part of the combined-json and the output of the json / npm
compiler.

110 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

ZFA]: In the case of instructions that are not associated with any particular source file, the source mapping assigns an
integer identifier of —1. This may happen for bytecode sections stemming from compiler-generated inline assembly
statements.

The source mappings inside the AST use the following notation:
s:l:f

Where s is the byte-offset to the start of the range in the source file, 1 is the length of the source range in bytes and £
is the source index mentioned above.

The encoding in the source mapping for the bytecode is more complicated: It is a list of s:1: f: j separated by ;.
Each of these elements corresponds to an instruction, i.e. you cannot use the byte offset but have to use the instruction
offset (push instructions are longer than a single byte). The fields s, 1 and f are as above and j can be either i, o or -
signifying whether a jump instruction goes into a function, returns from a function or is a regular jump as part of e.g.
a loop.

In order to compress these source mappings especially for bytecode, the following rules are used:
* If a field is empty, the value of the preceding element is used.
e Ifa : is missing, all following fields are considered empty.
This means the following source mappings represent the same information:
1:2:1;1:9:1;2:1:2;2:1:2;2:1:2
1:2:1;:9;2:1:2;;

Tips and Tricks

* Use delete on arrays to delete all its elements.

» Use shorter types for struct elements and sort them such that short types are grouped together. This can lower
the gas costs as multiple SSTORE operations might be combined into a single (SSTORE costs 5000 or 20000
gas, so this is what you want to optimise). Use the gas price estimator (with optimiser enabled) to check!

* Make your state variables public - the compiler will create geters for you automatically.

* If you end up checking conditions on input or state a lot at the beginning of your functions, try using Function
Modifiers.

* Initialize storage structs with a single assignment: x = MyStruct ({a: 1, b: 2});

ZFA: If the storage struct has tightly packed properties, initialize it with separate assignments: x.a = 1; x.b =
2; . In this way it will be easier for the optimizer to update storage in one go, thus making assignment cheaper.

Cheatsheet

Order of Precedence of Operators

The following is the order of precedence for operators, listed in order of evaluation.

8.4. &2|C|E| o S7| 111

Solidity Documentation, £A| 0.5.10

Precedence | Description Operator

1 Postfix increment and decrement ++, ——
New expression new <typename>
Array subscripting <array>[<index>]
Member access <object>.<member>
Function-like call <func> (<args...>)
Parentheses (<statement>)

2 Prefix increment and decrement +4, ——
Unary minus -
Unary operations delete
Logical NOT !
Bitwise NOT ~

3 Exponentiation *

4 Multiplication, division and modulo | *, /, %

5 Addition and subtraction +, —

6 Bitwise shift operators <<, >>

7 Bitwise AND &

8 Bitwise XOR A

9 Bitwise OR \

10 Inequality operators <, >, <=, >=

11 Equality operators ==, |=

12 Logical AND &&

13 Logical OR ||

14 Ternary operator <conditional> ? <if-true> : <if-false>

15 Assignment operators = |=, "=, &=, <<=, >>= 4=, —=, =, /=, %=

16 Comma operator ’

Global Variables

* abi.decode (bytes memory encodedData, (...)) returns (...): ABI-decodes the pro-
vided data. The types are given in parentheses as second argument. Example: (uint a, uint[2] memory
b, bytes memory c) = abi.decode(data, (uint, uint[2], bytes))
* abi.encode(...) returns (bytes memory):ABI-encodes the given arguments
e abi.encodePacked(...) returns (bytes memory): Performs packed encoding of the given ar-
guments
* abi.encodeWithSelector (bytes4 selector, ...) returns (bytes memory): ABI-encodes the given ar;

starting from the second and prepends the given four-byte selector

* abi.encodeWithSignature (string memory signature, ...) returns (bytes
memory) : Equivalentto abi .encodeWithSelector (bytes4 (keccak256 (bytes (signature)),
)0
e block.coinbase (address payable): current block miner’s address
* block.difficulty (uint): current block difficulty
* block.gaslimit (uint): current block gaslimit
¢ block.number (uint): current block number

* block.timestamp (uint): current block timestamp

* gasleft () returns (uint256):remaining gas

112 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

* msg.data (bytes): complete calldata

* msg.sender (address payable): sender of the message (current call)

* msg.value (uint): number of wei sent with the message

* now (uint): current block timestamp (alias for block.timestamp)

* tx.gasprice (uint): gas price of the transaction

* tx.origin (address payable): sender of the transaction (full call chain)

* assert (bool condition): abort execution and revert state changes if condition is false (use for inter-
nal error)

* require (bool condition): abort execution and revert state changes if condition is false (use for mal-
formed input or error in external component)

* require (bool condition, string memory message): abort execution and revert state changes
if condition is false (use for malformed input or error in external component). Also provide error message.

e revert (): abort execution and revert state changes

* revert (string memory message): abort execution and revert state changes providing an explanatory
string

* blockhash (uint blockNumber) returns (bytes32): hash of the given block - only works for
256 most recent blocks

* keccak256 (bytes memory) returns (bytes32):compute the Keccak-256 hash of the input
* sha256 (bytes memory) returns (bytes32):computethe SHA-256 hash of the input
* ripemdl60 (bytes memory) returns (bytes20):compute the RIPEMD-160 hash of the input

e ecrecover (bytes32 hash, uint8 v, bytes32 r, bytes32 s) returns (address):
recover address associated with the public key from elliptic curve signature, return zero on error

* addmod (uint x, uint y, uint k) returns (uint):compute (x + y) % k where the addi-
tion is performed with arbitrary precision and does not wrap around at 2+ x256. Assert that k != 0 starting
from version 0.5.0.

e mulmod (uint x, uint y, uint k) returns (uint):compute (x * y) % k where the mul-
tiplication is performed with arbitrary precision and does not wrap around at 2+x256. Assert that k != 0
starting from version 0.5.0.

e this (current contract’s type): the current contract, explicitly convertible to address or address
payable

* super: the contract one level higher in the inheritance hierarchy

e selfdestruct (address payable recipient): destroy the current contract, sending its funds to the
given address

¢ <address>.balance (uint256): balance of the Address in Wei

* <address payable>.send(uint256 amount) returns (bool): send given amount of Wei to
Address, returns false on failure

* <address payable>.transfer (uint256 amount): send given amount of Wei to Address, throws
on failure

ZF2A: Donotrelyonblock.timestamp, now and blockhash as a source of randomness, unless you know what
you are doing.

8.4. &z|C|E|M}E7| 113

Solidity Documentation, £A| 0.5.10

Both the timestamp and the block hash can be influenced by miners to some degree. Bad actors in the mining com-
munity can for example run a casino payout function on a chosen hash and just retry a different hash if they did not
receive any money.

The current block timestamp must be strictly larger than the timestamp of the last block, but the only guarantee is that
it will be somewhere between the timestamps of two consecutive blocks in the canonical chain.

ZF4]: The block hashes are not available for all blocks for scalability reasons. You can only access the hashes of the
most recent 256 blocks, all other values will be zero.

ZFA: In version 0.5.0, the following aliases were removed: suicide as alias for selfdestruct, msg.gas as
alias for gasleft,block.blockhash as alias for blockhash and sha3 as alias for keccak256.

Function Visibility Specifiers

function myFunction() <visibility specifier> returns (bool) {
return true;

}

e public: visible externally and internally (creates a getter function for storage/state variables)
* private: only visible in the current contract
* external: only visible externally (only for functions) - i.e. can only be message-called (via this. func)

e internal: only visible internally

Modifiers

¢ pure for functions: Disallows modification or access of state.

* view for functions: Disallows modification of state.

* payable for functions: Allows them to receive Ether together with a call.

e constant for state variables: Disallows assignment (except initialisation), does not occupy storage slot.
* anonymous for events: Does not store event signature as topic.

* indexed for event parameters: Stores the parameter as topic.

Reserved Keywords

These keywords are reserved in Solidity. They might become part of the syntax in the future:

abstract,after,alias, apply, auto, case, catch, copyof,default,define, final, immutable,
implements, in, inline, let, macro, match, mutable, null, of, override, partial, promise,
reference, relocatable, sealed, sizeof, static, supports, switch, try, type, typedef,
typeof, unchecked.

114 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

Language Grammar

SourceUnit = (PragmaDirective | ImportDirective | ContractDefinition) x

// Pragma actually parses anything up to the trailing ';' to be fully forward-
—compatible.

PragmaDirective = 'pragma' Identifier ([";]1+) ';'
ImportDirective = 'import' StringlLiteral ('as' Identifier)? ';'
| "import' ('x' | Identifier) ('as' Identifier)? 'from' StringLiteral ';'
| 'import' '{' Identifier ('as' Identifier)? (',' Identifier ('as'
—Identifier)?)% '}' '"from' StringLiteral ';'
ContractDefinition = ('contract' | 'library' | 'interface') Identifier
('"is' InheritanceSpecifier (',' InheritanceSpecifier)x*)?

'{'" ContractPart* '}'

ContractPart = StateVariableDeclaration | UsingForDeclaration

| StructDefinition | ModifierDefinition | FunctionDefinition |
—FEventDefinition | EnumDefinition
InheritanceSpecifier = UserDefinedTypeName ('(' Expression (',' Expression)x ')')?
StateVariableDeclaration = TypeName ('public' | 'internal' | 'private' | 'constant'
—)* Identifier ('=' Expression)? ';'
UsingForDeclaration = 'using' Identifier 'for' ('x' | TypeName) ';'
StructDefinition = 'struct' Identifier '{'

(VariableDeclaration ';' (VariableDeclaration ';')*) '}'

ModifierDefinition 'modifier' Identifier ParameterList? Block

ModifierInvocation = Identifier ('(' ExpressionList? ')')?
FunctionDefinition = 'function' Identifier? ParameterList

(ModifierInvocation | StateMutability | 'external' | 'public'
—'internal' | 'private')=«

('returns' ParameterList)? (';' | Block)
EventDefinition = 'event' Identifier EventParameterList 'anonymous'? ';'
EnumValue = Identifier
EnumDefinition = 'enum' Identifier '{' EnumValue? (',' EnumValue)x '}'
ParameterList = ' (' (Parameter (',' Parameter)x)? ')'
Parameter = TypeName StoragelLocation? Identifier?
EventParameterList = ' (' (EventParameter (',' EventParameter)x)? ')'

EventParameter = TypeName 'indexed'? Identifier?

FunctionTypeParameterList = ' (' (FunctionTypeParameter (',' FunctionTypeParameter) x_,
;})? I)l
FunctionTypeParameter = TypeName StoragelLocation?

// semantic restriction: mappings and structs (recursively) containing mappings
// are not allowed in argument lists
VariableDeclaration = TypeName StorageLocation? Identifier

TypeName = ElementaryTypeName
| UserDefinedTypeName

(continues on next page)

8.4. &2|C|E| o S7| 115

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

Mapping

ArrayTypeName
FunctionTypeName

('address' 'payable')

UserDefinedTypeName = Identifier ('.' Identifier)=«

Mapping = 'mapping' ' (' ElementaryTypeName '=>' TypeName ')'
ArrayTypeName = TypeName '[' Expression? ']'
FunctionTypeName = 'function' FunctionTypeParameterList ('internal' | 'external' |
—StateMutability)«
('returns' FunctionTypeParameterList)?

StorageLocation = 'memory' | 'storage' | 'calldata'
StateMutability = 'pure' | 'view' | 'payable'
Block = '"{' Statementx '}'

Statement = IfStatement | WhileStatement | ForStatement | Block |_
—InlineAssemblyStatement |

(DoWhileStatement | PlaceholderStatement | Continue | Break | Return |
Throw | EmitStatement | SimpleStatement) ';'
ExpressionStatement = Expression
IfStatement = 'if' ' (' Expression ')' Statement ('else' Statement)?
WhileStatement = 'while' ' (' Expression ')' Statement

PlaceholderStatement = '_'
SimpleStatement = VariableDefinition | ExpressionStatement

ForStatement = 'for' '(' (SimpleStatement)? ';' (Expression)? ';',|

— (ExpressionStatement)? ')' Statement

InlineAssemblyStatement = 'assembly' StringLiteral? InlineAssemblyBlock
DoWhileStatement = 'do' Statement 'while' ' (' Expression ')'

Continue = 'continue'

Break = 'break'

Return = 'return' Expression?

Throw = 'throw'

EmitStatement = 'emit' FunctionCall

VariableDefinition = (VariableDeclaration | '(' VariableDeclaration? (','_
—VariableDeclaration?)= ')') ('=' Expression)?

// Precedence by order (see github.com/ethereum/solidity/pull/732)

Expression
= Expression ('++' | '-=")
| NewExpression
| IndexAccess
| MemberAccess
| FunctionCall
| '"(' Expression ')'
[("t | '"~" | 'delete' | '"++' | '—-=' | '+' | '-') Expression
| Expression 'xx' Expression
| Expression ('x' | '/' | '$') Expression
| Expression ('+' | '-') Expression
| Expression ('<<' | '>>') Expression
| Expression '&' Expression
| Expression '~' Expression
| Expression '|' Expression
| Expression ('<' | '>' | '<=' | '>=') Expression
| Expression ('==' | '!=') Expression
| Expression '&&' Expression

(continues on next page)

116 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

| Expression '||' Expression

| Expression '?' Expression ':' Expression

| Expression ('=' ["[=" | "?=" | '&=" | '<<=" | '">>=' | '+=' | '-=! k=" | /="
—| '%=') Expression

|

PrimaryExpression

PrimaryExpression = BooleanLiteral

NumberLiteral

HexLiteral

StringLiteral
TupleExpression

Identifier
ElementaryTypeNameExpression

Expressionlist = Expression (',' Expression)«

NameValuelList = Identifier ':' Expression (',' Identifier ':' Expression)«
FunctionCall = Expression '(' FunctionCallArguments ')'
FunctionCallArguments = '{' NameValueList? '}'

ExpressionList?

NewExpression = 'new' TypeName
MemberAccess = Expression '.' Identifier
IndexAccess = Expression '[' Expression? ']'
BooleanLiteral = 'true' | 'false'
NumberLiteral = (HexNumber | DecimalNumber) (' ' NumberUnit)?
NumberUnit = 'wei' | 'szabo' | 'finney' | 'ether'
| 'seconds' | 'minutes' | 'hours' | 'days' | 'weeks' | 'years'

HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2}) '"' | "\'' ([0-9a-fA-F]{2})~ '"\'")
StringLiteral = ""' ([""\r\n\\] | "\\' .)x '™
Identifier = [a-zA-Z_S] [a-zA-Z_S$0-9]«
HexNumber = '0Ox' [0-9a-fA-F]1+
DecimalNumber = [0-9]+ ('.'" [0-9]%)? ([eE] [0-9]1+)7
TupleExpression = ' (' (Expression? (',' Expression?)x)2 ')'

| '['" (Expression (',' Expression)x)2 ']'
ElementaryTypeNameExpression = ElementaryTypeName
ElementaryTypeName = 'address' | 'bool' | 'string' | Int | Uint | Byte | Fixed |
—Ufixed
Int = 'int' | '"int8' | 'intl6' | 'int24' | 'int32' | 'int40' | 'int48' | 'int56'
—'inte64' | '"int72' | '"int80' | 'int88' | 'int96' | 'intl1l04' | 'intl112' | 'intl20' |
—'int128"' | 'intl136' | 'intl144' | 'intl1l52' | 'intle60' | 'intl68' | 'intl76' | 'int184
—' | '"int192' | 'int200' | 'int208' | 'int216' | 'int224' | 'int232' | 'int240' |
—'int248' | 'int256'
Uint = 'uint' | 'uint8' | 'uintl6' | 'uint24' | 'uint32' | 'uint40' | 'uint48' |
—'uint56' | 'uint64' | 'uint72' | 'uint80' | 'uint88' | 'uint96' | 'uintl04' |
—'uintl112' | 'uintl120' | 'uintl28' | 'uintl36' | 'uintl44' | 'uintl52' | 'uintle0' |
—'uintl68' | 'uintl76' | 'uintl84' | 'uintl192' | 'uint200' | 'uint208' | 'uint216'
—'uint224' | 'uint232' | 'uint240' | 'uint248' | 'uint256'
Byte = 'byte' | 'bytes' | 'bytesl' | 'bytes2' | 'bytes3' | 'bytes4d' | 'bytes5' |
—'bytes6' | 'bytes7' | 'bytes8' | 'bytes9' | 'bytesl0' | 'bytesll' | 'b§%@§@@90Wnﬂ1W%ﬂ

—'bytesl3' | 'bytesl4' | 'bytesl5' | 'bytesl6' | 'bytesl7' | 'bytesl8' | 'bytesl9'

byte Qgtiszi' [tbytesZz'™ | '"bytesz3"™ | 'bytesz4d' ['bytesZ5' ['byteszo’
8‘4bf%g HEI#} Z s28"' | 'bytes29' | 'bytes30' | 'bytes3l' | 'bytes32' {17

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

Fixed = 'fixed' | ('"fixed' [0-9]+ 'x' [0-9]+)

Ufixed = 'ufixed' | ('ufixed' [0-9]+ 'x' [0-9]+)

InlineAssemblyBlock = '{' AssemblyItemx '}'

AssemblyItem = Identifier | FunctionalAssemblyExpression | InlineAssemblyBlock |

—AssemblyVariableDeclaration | AssemblyAssignment | AssemblylLabel | NumberLiteral |
—StringlLiteral | HexLiteral

AssemblyExpression = Identifier | FunctionalAssemblyExpression | NumberLiteral |
—StringlLiteral | HexLiteral

AssemblyVariableDeclaration = 'let' Identifier ':=' AssemblyExpression
AssemblyAssignment = (Identifier ':=' AssemblyExpression) | ('=:' Identifier)
AssemblylLabel = Identifier ':'

FunctionalAssemblyExpression = Identifier ' (' AssemblyItem? (',' AssemblyItem)x ')'

B>
=
m

3¢

2,

i

o

_?L

rir

fu}
ku
=

i

_0|L

rir

pouy
rlo

2

Jintc)

R

G2

R

rlj

n

ru

>,

o

o,
[¢]

o,

£

v

ru

1o

H1

ku

)

of

>,

N

rir

i

=

rir
pors
rlo

Sa|tEo| 4 RE AntE AEUES} B4 0 R AgE T giio] £ATES ST 5 A A7 B
U} webA ofdl me Zwo] nejAete 56 o Fa gt

= Hoto] dupit A1s Aofehs A= ARl met ey th 7, 9 AH| A
S/WE ORI, 7 HE Y 4= SlojoFsiH, off mioll= R EANR FEHE= :

HlAo] o] o2 FHEE AT ZAH7E H2] odAN 27 Aot 2 JEE Hedthd §S 24
g7t 9%,

o] ol A= 2ok EAS T LA B PSS e Th ST o] gheig sl o] ot
%, 2nte EUE Yol ¥ 17} geehs, Autdeut BAE Al 817k S 4 ek of7] %

QA 23Fol, o] BAL OF A2 J|uke] RA0]7] o], Hete] thek ZAH AZITHA FAglo] 8L
78l A7) Wk .

8.5.1 QO|AFgt

Q! Mot 2are|

snte AEUE o] BE ARl M0 BelPUch Aol A W Ul AR W4} “privaten 0.2 4191

F|Qlrh el & uhE A .

qro} ghAlo] A2Abo] WA IS ura A ek, WS AASHE 0] oL E §-88 & gl

3 <= AojdE B)A EAFA B
Aol BAl AE 22 7 e Aol HojE = sy dE S0l U=

118 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

pragma solidity 70.4.0;

/7 B22F EgtE TEQLICH. AL&SFR| OfAHR!
contract Fund {

/// Z1ESHE O Ether FE mapping

mapping (address => uint) shares;

/) AEE QEote g

function withdraw () public {

if (msg.sender.send(shares[msg.sender]))
shares[msg.sender] = 0;

Lo o] ZE= HRP /Ao A

send G A4 gase] £HIREE Aofsl] dhe], 2 BAE 4 gA
oﬂ, z,:/‘k_];q-t 1;_]—173 oz “w1thdraw“3 /\1 oﬂ o1-
AEH

gas

£ 7123 Gt Ethere] 150 4} 20] A4S 25
A T UAEE A oR %%% ““withdraw* 01/_,] A3

= E A}l BLE Etherg 714Z4 4 omp—
S| SIUch. Aol Tt B A o] 7= % call -2 B WL g

SE BT I1AE 4 9leAw R

pragma solidity "0.4.0;

/7 20 EotEl TEQILICH, ALESHA| OfAR!
contract Fund {

/// HEHMEO| Ether FEH mapping

mapping (address => uint) shares;

/) AEE QESHE g

function withdraw () public {

if (msg.sender.call.value (shares[msg.sender]) ())

shares[msg.sender] = 0;

AAY ZAL 19t7] YA = ofafje} o] Checks-Effects-Interactions I €12 AF8-SF 4~ Q<51 T

pragma solidity 70.4.11;

contract Fund {

/// TIESHEQS] Ether HE mapping

mapping(address => uint) shares;

/77 AEE Este g

function withdraw () public {
var share = shares[msg.sender];
shares[msg.sender] = 0;
msg.sender.transfer (share);

-

A1) BA - Ether 1404 B o2} 348 5551 ol Ao A 490F 4 Ut Yoo}, of el
£ shte] Aol Be AEAEES 714 2 92 AR, o] uj, shite] AEAEs} 2 AEAES 553 4
olehs A obs|opgh o

Loops that do not have a fixed number of iterations, for example, loops that depend on storage values, have to be used
carefully: Due to the block gas limit, transactions can only consume a certain amount of gas. Either explicitly or just
due to normal operation, the number of iterations in a loop can grow beyond the block gas limit which can cause the
complete contract to be stalled at a certain point. This may not apply to constant functions that are only executed

3 119

8.5. HOF =M Ng{A}

e
ool

Solidity Documentation, £A| 0.5.10

to read data from the blockchain. Still, such functions may be called by other contracts as part of on-chain operations
and stall those. Please be explicit about such cases in the documentation of your contracts.

Ether EL}j11 gt7]

* Neither contracts nor "external accounts" are currently able to prevent that someone sends them Ether. Contracts
can react on and reject a regular transfer, but there are ways to move Ether without creating a message call. One
way is to simply "mine to" the contract address and the second way is using selfdestruct (x).

* If a contract receives Ether (without a function being called), the fallback function is executed. If it does not have
a fallback function, the Ether will be rejected (by throwing an exception). During the execution of the fallback
function, the contract can only rely on the "gas stipend" (2300 gas) being available to it at that time. This stipend
is not enough to access storage in any way. To be sure that your contract can receive Ether in that way, check
the gas requirements of the fallback function (for example in the "details" section in Remix).

 There is a way to forward more gas to the receiving contract using addr.call.value (x) (). This is essen-
tially the same as addr.transfer (x), only that it forwards all remaining gas and opens up the ability for
the recipient to perform more expensive actions (and it only returns a failure code and does not automatically
propagate the error). This might include calling back into the sending contract or other state changes you might
not have thought of. So it allows for great flexibility for honest users but also for malicious actors.

* If you want to send Ether using address.transfer, there are certain details to be aware of:

1. If the recipient is a contract, it causes its fallback function to be executed which can, in turn, call back the
sending contract.

2. Sending Ether can fail due to the call depth going above 1024. Since the caller is in total control of the
call depth, they can force the transfer to fail; take this possibility into account or use send and make sure
to always check its return value. Better yet, write your contract using a pattern where the recipient can
withdraw Ether instead.

3. Sending Ether can also fail because the execution of the recipient contract requires more than the allotted
amount of gas (explicitly by using require, assert, revert, throw or because the operation is just
too expensive) - it "runs out of gas"” (OOG). If you use t rans fer or send with a return value check, this
might provide a means for the recipient to block progress in the sending contract. Again, the best practice
here is to use a "withdraw" pattern instead of a "send" pattern.

Mk

A8 200]

External function calls can fail any time because they exceed the maximum call stack of 1024. In such situations,
Solidity throws an exception. Malicious actors might be able to force the call stack to a high value before they interact
with your contract.

Note that . send () does not throw an exception if the call stack is depleted but rather returns false in that case.
The low-level functions .call (), .callcode () and .delegatecall () behave in the same way.

tx.origin

Never use tx.origin for authorization. Let’s say you have a wallet contract like this:

pragma solidity "0.4.11;

// THIS CONTRACT CONTAINS A BUG - DO NOT USE
contract TxUserWallet {
address owner;

(continues on next page)

120 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

function TxUserWallet () public {
owner = msg.sender;

function transferTo (address dest, uint amount) public ({
require (tx.origin == owner);
dest.transfer (amount) ;

Now someone tricks you into sending ether to the address of this attack wallet:

pragma solidity 70.4.11;
interface TxUserWallet {

function transferTo (address dest, uint amount) public;

contract TxAttackWallet {
address owner;

function TxAttackWallet () public {
owner = msg.sender;

function () public ({
TxUserWallet (msg.sender) .transferTo (owner, msg.sender.balance);

If your wallet had checked msg. sender for authorization, it would get the address of the attack wallet, instead of
the owner address. But by checking tx.origin, it gets the original address that kicked off the transaction, which is
still the owner address. The attack wallet instantly drains all your funds.

Minor Details

e Infor (var 1 = 0; 1 < arrayName.length; i++) { ... },thetypeof i willbe uint8,be-
cause this is the smallest type that is required to hold the value 0. If the array has more than 255 elements, the

loop will not terminate.

* The constant keyword for functions is currently not enforced by the compiler. Furthermore, it is not enforced
by the EVM, so a contract function that "claims" to be constant might still cause changes to the state.

» Types that do not occupy the full 32 bytes might contain "dirty higher order bits". This is especially important
if you access msg . data - it poses a malleability risk: You can craft transactions that call a function £ (uint8
x) with a raw byte argument of Ox££f000001 and with 0x00000001. Both are fed to the contract and
both will look like the number 1 as far as x is concerned, but msg.data will be different, so if you use
keccak256 (msg.data) for anything, you will get different results.

121

o
o
H
re
i
e
kJ
fnd
>
ogk

Solidity Documentation, £A| 0.5.10

8.5.2 Recommendations
Restrict the Amount of Ether

Restrict the amount of Ether (or other tokens) that can be stored in a smart contract. If your source code, the compiler
or the platform has a bug, these funds may be lost. If you want to limit your loss, limit the amount of Ether.

Keep it Small and Modular

Keep your contracts small and easily understandable. Single out unrelated functionality in other contracts or into
libraries. General recommendations about source code quality of course apply: Limit the amount of local variables,
the length of functions and so on. Document your functions so that others can see what your intention was and whether
it is different than what the code does.

Use the Checks-Effects-Interactions Pattern

Most functions will first perform some checks (who called the function, are the arguments in range, did they send
enough Ether, does the person have tokens, etc.). These checks should be done first.

As the second step, if all checks passed, effects to the state variables of the current contract should be made. Interaction
with other contracts should be the very last step in any function.

Early contracts delayed some effects and waited for external function calls to return in a non-error state. This is often
a serious mistake because of the re-entrancy problem explained above.

Note that, also, calls to known contracts might in turn cause calls to unknown contracts, so it is probably better to just
always apply this pattern.

Include a Fail-Safe Mode

While making your system fully decentralised will remove any intermediary, it might be a good idea, especially for
new code, to include some kind of fail-safe mechanism:

You can add a function in your smart contract that performs some self-checks like "Has any Ether leaked?", "Is the
sum of the tokens equal to the balance of the contract?" or similar things. Keep in mind that you cannot use too much
gas for that, so help through off-chain computations might be needed there.

If the self-check fails, the contract automatically switches into some kind of "failsafe” mode, which, for example,
disables most of the features, hands over control to a fixed and trusted third party or just converts the contract into a
simple "give me back my money" contract.

8.5.3 Formal Verification

Using formal verification, it is possible to perform an automated mathematical proof that your source code fulfills a
certain formal specification. The specification is still formal (just as the source code), but usually much simpler.

Note that formal verification itself can only help you understand the difference between what you did (the specification)
and how you did it (the actual implementation). You still need to check whether the specification is what you wanted
and that you did not miss any unintended effects of it.

122 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

8.6 AmAUZ] ALE5}7

8.6.1 HAM MU AIE3}/|

1

: o] AL ref:‘solcjs <solcjs><of| Z-& &]x] k&1 tt.

N

Solidity #7492 Y= thAl &= shu= Solidity §3 9 Hoted 2 Ql solc " g =
830l DE SM0| O3t HUiS ABYLICH. ALl it 12 =2 (PR EM E2) B 53
2ot HiojH2| 2 OS2 RH TtA AL 1147}0“ 0|27|7}A| CjUst 2242 A4M o

f. OFok ctol mpolot AHMmQ! 517|& USHCHH, " “solc --bin sourceFile.sol '8 AHFIMSL.
Bjo|f27t 22 & HYUCH QA9 HESEES BIZ| (deploy) SH7IH0 solc ——op

C
o
9]
0
P
o
|
|
oF
®
e
o]
I
T

M

--bin sourceFile.sol' '& O0|&c5t0 ZOUst= =0t 2|ASH)| (Optimizer) & 2"@‘,|§} AlZ|M|
2. giof 230 ZEE T2 HEfO| solc of ATE 22 ABCHA, OIOIE - sole o
outputDirectory —-bin --ast —--asm sourceFile.sol & AF&5to] 28 mfdE2 2% &3l
Z 3y ys5H= Aol 22 AUt

wEyd) Antd = A5 A o2 ot A A O 2 HE 9 H (imported) L &2 915Ut} 12 of2fj o]
2 “prefix=path & A1 §-3] | ctol A EF A= S AT A HFU

solc github.com/ethereum/dapp-bin/=/usr/local/lib/dapp-bin/ =/usr/local/lib/fallback_,
—file.sol

o|AL HAzARog /usr/local/lib/dapp-bin" " Of2H0| QU= *github.com/ethereum/
dapp-bin/ "2 A|&Sh= A2 ZAMSIEtn ZOUO|A XAl CH. 2| BFeF AY|of s ot
2S 2| xRttt %*HF%'aE /usr/local/lib/fallback"% A SAYUC. (SHo
UEAE S UA[BCL.) solc 2 9120] A W CHA o) WAMo= AATIY APt
FAlE CleE2] R0 U= THY A|AECZ FE ﬂfo' NABZ 2 OUSS A OM'—l':f
Jd2{22 " import /etc/passwd"-“gl- 2 A2 22 MY T (remapping) L2A

HeLAO| olgER %ﬂrmw a
s Shel Oy el 2ok A <4 e
gch 2714991 Azl 27 9] 519 o
Satn ol Be o8 W 5 AUt

groF AE A E 7} wref:‘libraries <libraries>*& AR89t H, BFO]EZ E7} ¢ LibraryName 9] 5}9] #A4
(substrings)& ZIFSIh= A& OFO}OF"L‘%‘:} 71 Aol FA1] ol B Y] FATFAIYEAS onlste FAR
“solet g AR D 4 AF YT

¥zl FolBejE] FAE AFSH] AsiA AMEC] “libraries "Math:0x12345678901234567890

Heap:0xabcdef0123456"“E F7}otel 2] mpA(RHEo] shte] holBejg])o] Exge A7kl “—libraries

fileName*‘ & AF-&5}0] ““solc“ & APSHA| &

grop sole’ I} S link SH3 W 52 HCY, DE A Y S8 20
_ LibraryName___ @4e] A7) gk (163152 915 Fhuol el S dh4slo] @A) 917

A7 FHytherer Ql#o] swdine &2 HE 2 01274013}134 J7AL stdouto 2 XA Yth. —-libraries’

Aelet 2 M4 2 0] FR0 ‘:'Ali"—l':f -0** 3

groF ““solc* 7} ¥4 “‘—standard-json‘ 3} 97 2& HQUTHH, TR HE Y=ol 4] JISON d(ofefel)=

Zlejgrc 18] 1 5% 2 o] ISONZ 8 & wheigh .

o},
o] 9AE aantel A2
& import 2014 s1&HUT 1o the RE ASE A4

I_./\E

-allow-paths /sampl e/path,/another/sample/

rk'l ol
N,

rIr
mln

m é ™

8.6. ZmAU ALEs}7| 123

Solidity Documentation, £A| 0.5.10

“sole S 5l 7 %ﬁiﬁﬂr Zro] Autdd] APIo| o4l AHE-H Ut} o]
=), o] HWJH R HﬁHH“} A8

)

—_-—

// Required: Source code language, such as "Solidity", "serpent", "111", "assembly",
— etc.
language: "Solidity",
// Required
sources:
{
// 07101 O] 7= &AA3RE MASO| "HdY (global) " O|SSYUUCE.
// YRE= YIS S O E IYS ALY & AL
"myFile.sol":
{
// MEHA . AA MO keccak256 BHA|
// OlA2 urLE Sl YREE F2 WES &3SV fIsi AZEUCt.
"keccak256": "0x123..."
// Required (BFf "content"7} AF2E[R| UUCIH OF2HE EML): AANIAUS URL
// URL(s) should be imported in this order and the result checked against the
// keccak256 hash (if available). If the hash doesn't match or none of the
// URLE 07| otof AEE <£|OfOf2t BfLICE. 12| A= keccak256 SHAJO| CHsH
// ERISHOE BfL|Ct. 7f—°J B0l . 2Hof SHAIZE SR| EALE 43Tt urLO| QICtH
/7 Ol7F ghdsior i,
"urls":
[
"bzzr://56ab...",
"ipfs://Qma...",
"file:///tmp/path/to/file.sol"

[I0|I

]
}’
"mortal":
{
// Optional: AAMRO| keccak256 dffA|

"keccak256": "0x234..."
// Required (S} "urls"7t AMZE|Z| F2B): A4 MAUS 2[HE LHE
"content": "contract mortal is owned { function kill() { if (msg.sender ==

—owner) selfdestruct (owner); } }"
}
}I
// Optional
settings:
{
// Optional: AYLIO| HAE 2AE

remappings: [":g/dir"],
// Optional: 2|&3F}7| (enabled defaults to false)
optimizer: {

enabled: true,
runs: 500
}I

(continues on next page)

124 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

evmVersion: "byzantium", // Version of the EVM to compile for. Affects type,_
—checking and code generation. Can be homestead, tangerineWhistle, spuriousDragon,
—byzantium or constantinople
// Metadata settings (optional)
metadata: {
// URLO| Oftl 2|E{™H L§Z0t AIRSIMS. (7123t : false)
uselLiteralContent: true
}I
// 2fojE2{2|Ee 4. QoF RE 2t0|E2{2|7t 0f7|0 FO0{2|2| Qb=CiH, A2 =3 C[O|E{7t CE A
Bx[2] g2 MYE 2T & AFUC.
libraries: {
/7 2ERl 2 Fl= 20|22{27t AREE AAmUQ| OIS YLICE.
// Brof YOl AEE[UCHH, A WHO| AHEE =0, O &4 MU MY
// Btof O 7|7t Bl 2atFol2te, A2 MY 22 XYL
"myFile.sol": {
"MyLib": "0x123123..."

oX
tu
N
ne
Wi
ol
=
=]
o
.
a

}
// The following can be used to select desired outputs.
// Of2fe] DEL YUABts 2L MeASt=C| ALRE 4 UBLICH.

ZiC

= =
// Bef 0] ’I":7f ref ECiE, ANQRE E2en EfYe M3 HUICH J2iLt of2f2RE ofm3 of2
NI =

// R 2RO F= If

ne
=)
[
=)
K
4n
rE
=2

= UEHE O|FYUCt. O7|M €l AY0|F2 THE AAHE Lt

[—/
EfgiLICt,
// star?} ZAEREQl TE LS 2R5t= ZOt.
//

// Offl= 7tset 23 EfYYULCE.

// abi - ABI

// ast - BE AATUOI AST

// legacyAST - BE AAMAUO| legacy AST

// devdoc - HEZ} EM (natspec)

// userdoc - AFMEA} M (natspec)

// metadata - OEIH|O|E]

// ir - desugaringO|dQ| AZ22 O{MEz2| HAI

// evm.assembly - desugaringO|Z9| MZ2 O{MEZ| A
// evm.legacyAssembly - O] AEI2US| gsonHHA! O{HlE2|
// evm.bytecode.object — HIO|E TE ZHH|

// evm.bytecode.opcodes - Opcodes EZ|AE

// evm.bytecode.sourceMap - AA YW (C|HIG {E8H

ari

// evm.bytecode.linkReferences - a|3 Z* (if unlinked object)

// evm.deployedBytecodex - HjZEE |'0|E_|_E (evm.bytecodel} =USt SMHE 7+3)

// evm.methodIdentifiers - SlA|Et e 2|AE

// evm.gasEstimates - 7tA& e

// ewasm.wast - eWASM S-expressions format (not supported atm)

// ewasm.wasm — eWASM HIO|E{2| G|O|E{ (not supported atm)

//

// Note that using a using “evm , ‘evm.bytecode', ‘ewasm , etc. will select every

// target part of that output. Additionally, '*° can be used as a wildcard to_
—request everything.
//
outputSelection: {
// Enable the metadata and bytecode outputs of every single contract.
"*": {
"x": ["metadata", "evm.bytecode"]
}I
// Enable the abi and opcodes output of MyContract defined in file def.

(continues on next page)

8.6. I AL 125

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

"def": {
"MyContract": ["abi", "evm.bytecode.opcodes"]
}I
// Enable the source map output of every single contract.
Il*ll: {
"x": ["evm.bytecode.sourceMap"]
}I
// Enable the legacy AST output of every single file.
ll*ll: {

"v. ["legacyAST"]

f—

Rl

e

—_~

// MEHA . of2{L} A} YA SHER| LIEFLER| 9SLICEH.
errors: [

{
// Optional: A4 IAOH 2%|,
sourceLocation: {

file: "sourceFile.sol",
start: O,
end: 100
]’
// 98& . "TIypeError", "InternalCompilerError", "Exception"§ I} Z2 0| Ef

// Of2ff EY 2|AEE HAMSL.
type: "TypeError",

// 2|RA : "general", "ewasm"s3Zf &2 Of2{7t st AXHE
component: "general",

// 92A ("error" or "warning")

severity: "error",

/) olR 3

message: "Invalid keyword"

[/ MER . AA QXE BEH BAS UE 0N

— o=
formattedMessage: "sourceFile.so0l:100: Invalid keyword"
}
1y

// Old2 MY & £2¥E ETYUC. O|A2 outputSelection HAHO| 2lsi Algte|n HHd & USY
C}.
sources: {
"sourceFile.sol": {
// Identifier (used in source maps)
id: 1,
// The AST object
ast: {1},

// The legacy AST object
legacyAST: {}
}
}I
// O|AE HEE £2 Z2HEZ LGELCE. O|AR outputSelectiondAO| Qlsf AHste|l HAHA £ U
LiCt.
contracts: {

o>

(continues on next page)

126 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(o]" o] Ao A%

"sourceFile.sol": {
// BHZE ALEE Qo)7t HEHE 0|82
"ContractName": {

// O|E2|2 #EE ap1. QHF H|OJQICHH, Of

// https://github.com/ethereum/wiki/wiki/Ethereum-Contract—-ABI

abi: [,
// CIEHOlE] &8 BME
metadata: "{...}",

// AMEA M (natspec)
userdoc: {},
/7 WL XA
devdoc: {},

// S BH

nn
’

SolsiEN 2.

=

(natspec)

(string)
ir:
// EVM-related outputs
evm: {
// Assembly (string)
assembly: "",
// Ol AEFUOl Oj4dl=2
legacyAssembly: {1},
// BIOJE ZES} ZNsH WE.
bytecode: {
// 1614 QI HIO|E REQL|CE.
object: "00fe",
// OPcodes Z|AE (string) YLIC}.

nn
’

(object) YLICt.

opcodes:
[/ BAHRN oA
sourceMap: "",
// FOACHHE, O
linkReferences:

"libraryFile.sol": {
// Byte offsets into the bytecode.

a

>
2
=

WLRLICY.

[e]3=X
[

A s

Ag AEL[A
{

—located there.
"Libraryl": [
{ start: 0, length: 20 },
{ start: 200, length: 20 }
]
}
}
}V
// #1eb Z2 20[0FR YL(Ct.
deployedBytecode: { 1},
// oAl & B|AE QLICE.
methodIdentifiers: {
"delegate (address)": "5cl19a95c"
}V
// Function gas estimates
// 7tA o2 g Ayt
gasEstimates: {
creation: {
codeDepositCost: "420000",
executionCost: "infinite",
totalCost: "infinite"

b
external: {
"delegate (address) ":

}y

"25000"

Az

A LT

o WE

rc

ZAIE2 ZOtoF gLCt.

rir

HiES LEFLICE

=

=

Solsh HMR.

=

Linking replaces the 20 bytes,,

(continues on next page)

8.6.

Hdorde] Argsto|

127

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

internal: {
"heavyLifting()": "infinite"
}
}
}I
// 2t HE ewasvYLCh.
ewasm: {
// S—expressions YAIQLICE.
wast: "",
// Binary format (hex string)
// HIOH2| ¥Al (hex string)
wasm: ""

ofl2] Bt

1. "JSONError" : JSON 9122 278 3 4]0] 21757 eIk oA 2] json © HAE 7} opduich. 1
QlojE AAH 7] et 5.

2. "IOError" : 109} YL E 1}%

2|9t ZF2AE0] dFUH

"ParserError” : £AAF E = oo YF o U]} 5t

"DocstringParsingError" : 7 = B-=-o]| 4] NatSpec B] 1= 24 = 4 gl5Uth

"SyntaxError" : Syntactical error’="continue"7} "for" HH2- 9] Hof| A AR] E=A So] 9l).

"DeclarationError" : -8-§ 5}2] AL} &-& o] St gl =(unresolvable), 21 H 2} o] ===t} oA "iden-
tifier not found" A]'@2}7} WA= 2] & O

7. "TypeError" : 3 835}2] ¢F2 EFQ] W7, §-aotA] ¢k I (assignment) 53 Z-2 type systemU] 2] of 21
ek,

8. "UnimplementedFeatureError" : 7]%5-0] At & of] 25| A Y= 2| <5t} 5hAwt v] 2] HA A= 2| 4=
A= A gy

9. "internalCompilerError" : Zu}d & o] o]l ZE == YjE o] B - o] AL BEA| 2 A B L] o] A of ghch.
10. "Exception" : Zm}el2] & o] oFei2|7] ¢he Al - o] AL BARA B]ojof gt
11, "CompilerError” : & a}7] 9-& Anfola] A 8] A1 - o] A& EA|2A] F|ofof ghich,
12. "FatalError” : 2|4 @57} up2 7] A2 54 ghg - o] A2 A 7] S ofof gc.
13. "Warning" : @<= 311, AL 2 & Et 514 = S|4, 7155l chH o g 4 of gyt

S

8.7 AEE OjEfT0|E]

Solidity ATt el @7 A= @ RS HEsln 9l AEUE wety o g ISONTHLS AFH o2
AT O] 2198 Al o] Autele] M, ALEH 44, ABISH NatSpec BAIS Helsto] Mk SHHaHA
ZENES} 4T Aol £ATES AS T ATt

128 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

7}

x

o] Hujdej= veft| o] 1} o] Swarm SHA|E ZF HEHE &2 ot & %) B9
Hm 5o HE ol § A fol A AL S HA Sl

02 AR dAMA & = RS Swarm(EE TR AH[A)o| Hetdo]E] md-& AlASoF Fruct.
ContractName_meta.Json &f &&= 02 A O]-t solc —-metadata HHo]E AF&5lo] ofd-S vt
Yt o] mpdofl = AAF Eof thgk Swarm 27t E9tE| o] glon s HE AAuAdy vEtH ol Hd-& PYRE
st g

wlefelol 8 mhele Theat 2 FALS AU okl o] oAl Aol 92 4 Ql WAleE AlgE YT 44
3k 9 A10] ety o] B WS SutEA| AHEaof shil, BUE Mo 2 Zolu LE A 9] 72 1ast
@402 JPslof Gtk FHL AT+ GEUTh o7k 021 Aol Aoz AaF U

—_—

// EHa o DEIHOIE YAlo|l HA
version: "1",
/) e AADE AOjE J|BHOR AU

// "ot WA (sub-version)"S MEHSHL|CE.
language: "Solidity",
// B AOIYHO| Cist MEATE, WE2
// AOfof| et CEUCE.
compiler: {
// solidityOf T4 . ZOUHS| HH
version: "0.4.6+commit.2dabbdf0.Emscripten.clang",
// MEE AR 2 O] £YE et ZMAY Bio|H2(2| SHA|
keccak256: "0x123..."
}I
// B AOY A4 TY /A4 |fY, 7= O oYY
sources:
{
"myFile.sol": {
// T o AA TR keccak256 i Al
"keccak256": "0x123.
// "4 ("content"E MROV\I e o OfHE 7R) . AATUO
// dEE ury, TREELE CIA AHUHORZ|BF, Swarm URLS
// HEeU .

"urls": ["bzzr://56ab..."]
}I
"mortal": {
// T o AA IO keccak256 SffA|
"keccak256": "0x234..."
// B (rurl"S AMESHR| Y= ShH o AA M9l literal WE // TODO : Review needed
"content": "contract mortal is owned { function kill() { if (msg.sender ==

—owner) selfdestruct (owner); } }"
}
}I
/7 B AOYY ME
settings:
{
// SolidityOf Z4 . WO HHE 22 // TODO : Review needed
]

remappings: [":g/dir"],
// MEH AN - 2|ASE AE (71EZ : false)
optimizer: {

enabled: true,

runs: 500
b
// SolidityOf E : O] OEHH|OIE7} 2HdEl
// HEZMEL 2t0|E2{2|o] Mt 0|F
compilationTarget: {

(continues on next page)

8.7. ZIEZHE 0j|E}C|O]E{ 129

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

"myFile.sol": "MyContract"
by
// solidityOf T4 . ALRE 2fo|EZ2|9| 4
libraries: {

"MyLib": "0x123123..."

/) T . HEMHE Ot MAME HE

=T — —— oo
output:
{ // He . ZEMEO| apr FHO|
abi: [1,
// B HEHEOQ| Natspec ALEA 2A
userdoc: [1,
// E HEZHEO| Natspec 7HEZ 2M
devdoc: [... 1,

8.7.1 Byte = =0||A DJ|E}T|O|E] siA|Q] Q1R

o= wetdlole] Tl AMGHE T WiHE AU 4 97| thRol, W3 ("bzzr0": <Swarm hash>)
= CBOR <hitps:/ftools.ietf.org/html/rfc7049> Q7P © 2 HAH U Q1Y o] A|ZFRE-S 27|71 £]2] k7] o
woll, Z2o]7F 2 Hio] E Hjqlitiet Q1Y o = F7hg Y. Solidity FHutd & o] A W2 vl 2 byteZ =0] £
nheg Frbe

Oxal 0x65 '"b" 'z' 'z' 'r' '0' 0x58 0x20 <32 bytes swarm hash> 0x00 0x29

2
E

o,
filo
o
_|>~
s
s
%0,
jul)s
i
i

8.7.2 A& QUE{H|0|A ‘4/d I NatSpec?| AtE

w|efe|o] B i the w2 Al 0.2 AHG B U th AE S E o} 4§ 5ol 74 8 Aol Mist 32 A7 A4
5191 ©] Swarm S A A AEHE O =8 HAG T o] THUL §J9} Ze T2 ISONOR t5d Hirk

3, Wallet> NatSpec AF-§-2F £ 4 & AHg-5to] AEHEQ}N Ao 2kg & wfjutrt EAZA Aol tiet5<l 8 47}
A A-EAFNA ZRl WM A E EA] S & AFHH-

8.7.3 AADE HZ AIRH

Zmtel S g9lsts] 918}, Hetdlold o] a2 S Swamol A A2 HA & 4 gt Lup2 v
o] Zmtel (A" AntA o] YR 521 W) & EHG AH O T YA TEPUE A} byteT ==
24 EHH EL CREATE opeode H|o]E] 9] o E]9} vl Ptk o] 84|17} byteT = 0] Ro]7] whRo]
wletd|o] g7} 450 & ZHHU L Jojulol el A4 g2 Elo] el o FAsofshe, o] Sleju|o] 20| et
vl 2 g wo] AbgRol A HZ = ofof Fuct.

130 Chapter 8. Contents

https://github.com/ethereum/wiki/wiki/Ethereum-Natural-Specification-Format

Solidity Documentation, £A| 0.5.10

8.8 0|=2|#[0]d Hto|L{2| AUE{H[o] A HE

8.8.1 7|2 C|z}ol

ol&d Aol viold 2 Aol AE AR Bl E AEHE ff FEHE JoargolE, o|H 2= AHA
AM HFEHESI 22§ st BF P duUt o] Aol ekole A o, Brelol w2t Hojg = d2d

o] AUrth 17y AAR Astr] 7w Be t)ZE 517] Qe A7|utE @ LTk

HEZHE] QIE w0 A ?:—’F% Ao gt Bl Aoz =izl Areet Aol 7Pt A WA Y S

AEHA Ut Be FEHEA = Hutd Bhlofl AH8d #9le e AEHEL] e Ho] A o7t C"E’r—7

e it
o AL Qle o] 27k FAo| Lt ge] @
2] Ethereum e A thol 7% 5 A4

4 82L 919 52 vlolH o] 3 dufo| B 52§42 AT Th TAL ¢4 A1 H 0| Keceak (SHA-
3) 4191 3 (el el ehol A 4tolE ek of AU AL J12 B2 ERe] A4 a0z Ao R,
TS B9l O B2 Bl B o] Gl g4 o] . w) W RS Bl AG A ki Tl HER 7

F4: @40 W el o] AU A 0| ¥ bo] opduth &eltle @4 0 EE)E SHelshl L.

8.8.3 2z} olag
oAl B Blo] ERE Q1F T H {7y o] 1Y 2 ThE FaoA e ARgEYT (o : Hieh gt o[l E
A4t F4-2 A HSHE 4 ol EFlE FA WA 0 R AmgHU
8.8.4 Types
The following elementary types exist:
e uint<M>: unsigned integer type of M bits, 0 < M <= 256, M % 8 == 0. e.g. uint32, uints,
uint256.

int<M>: two’s complement signed integer type of M bits, 0 < M <= 256,M % ==

address: equivalent to uint 160, except for the assumed interpretation and language typing. For computing
the function selector, address is used.

e uint, int: synonyms for uint256, int 256 respectively. For computing the function selector, uint256
and int 256 have to be used.

bool: equivalent to uint 8 restricted to the values 0 and 1. For computing the function selector, boo1l is used.

fixed<M>x<N>: signed fixed-point decimal number of M bits, 8 <= M <= 256,M % 8 ==0,and 0 < N
<= 80, which denotes the value vasv / (10 xx N).

ufixed<M>x<N>: unsigned variant of £ixed<M>x<N>.

fixed, ufixed: synonyms for fixedl128x19, ufixedl128x19 respectively. For computing the function
selector, fixed128x19 and ufixedl128x19 have to be used.

8.8. 0|S2[A|0]d Hio|L{2| QlE{m|o| A 2 131

Solidity Documentation, £A| 0.5.10

* bytes<M>: binary type of M bytes, 0 < M <= 32.

e function: an address (20 bytes) folled by a function selector (4 bytes). Encoded identical to bytes24.
The following (fixed-size) array type exists:

* <type>[M]: a fixed-length array of M elements, M > 0, of the given type.
The following non-fixed-size types exist:

* bytes: dynamic sized byte sequence.

* string: dynamic sized unicode string assumed to be UTF-8 encoded.

e <type>[]: a variable-length array of elements of the given type.

Types can be combined to a tuple by enclosing a finite non-negative number of them inside parentheses, separated by
commas:

e (T1,T2,...,Tn): tuple consisting of the types T1, ..., Tn,n >= 0

It is possible to form tuples of tuples, arrays of tuples and so on.

FA: Solidity supports all the types presented above with the same names with the exception of tuples. The ABI tuple
type is utilised for encoding Solidity st ructs.

8.8.5 Formal Specification of the Encoding

We will now formally specify the encoding, such that it will have the following properties, which are especially useful
if some arguments are nested arrays:

Properties:

1. The number of reads necessary to access a value is at most the depth of the value inside the argument array
structure, i.e. four reads are needed to retrieve a_i [k] [1] [r]. In a previous version of the ABI, the number
of reads scaled linearly with the total number of dynamic parameters in the worst case.

2. The data of a variable or array element is not interleaved with other data and it is relocatable, i.e. it only uses
relative "addresses"

We distinguish static and dynamic types. Static types are encoded in-place and dynamic types are encoded at a sepa-
rately allocated location after the current block.

Definition: The following types are called "dynamic":
* bytes
* string
e T[] forany T
e T[k] for any dynamic T and any k > 0
e (T1,...,Tk) ifany Tiisdynamicfor1 <= i <= k
All other types are called "static".
Definition: 1en (a) is the number of bytes in a binary string a. The type of 1en (a) is assumed to be uint256.

We define enc, the actual encoding, as a mapping of values of the ABI types to binary strings such that
len (enc (X)) depends on the value of X if and only if the type of X is dynamic.

Definition: For any ABI value X, we recursively define enc (X) , depending on the type of X being

132 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(Tl,...,Tk) fork >= 0 andany types T1, ..., Tk
enc(X) = head(X(1)) ... head(X(k-1)) tail(X(0)) ... tail(X(k-1))

where X (1) is the 1th component of the value, and head and tail are defined for T1i being a static type as

head (X (1)) = enc(X(i)) andtail (X (i)) = "" (the empty string)
and as
head (X (1)) = enc(len(head(X(0)) ... head(X(k-1)) tail(X(0))

tail(X(i-1)))) tail(X(i)) = enc (X (1))
otherwise, i.e. if T1i is a dynamic type.

Note that in the dynamic case, head (X (1)) is well-defined since the lengths of the head parts only depend
on the types and not the values. Its value is the offset of the beginning of tail (X (i)) relative to the start of
enc (X).

T [k] for any T and k:

enc (X) = enc ((X[0], ..., X[k=11))

i.e. it is encoded as if it were a tuple with k elements of the same type.

T[] where X has k elements (k is assumed to be of type uint256):

enc (X) = enc(k) enc([X[1], ..., X[k]])

i.e. it is encoded as if it were an array of static size k, prefixed with the number of elements.
bytes, of length k (which is assumed to be of type uint256):

enc (X) = enc(k) pad_right (X), i.e. the number of bytes is encoded as a uint256 followed by
the actual value of X as a byte sequence, followed by the minimum number of zero-bytes such that
len (enc (X)) is a multiple of 32.

string:

enc (X) = enc(enc_utf8 (X)), ie. X is utf-8 encoded and this value is interpreted as of bytes type
and encoded further. Note that the length used in this subsequent encoding is the number of bytes of the utf-8
encoded string, not its number of characters.

uint<M>: enc (X) is the big-endian encoding of X, padded on the higher-order (left) side with zero-bytes such
that the length is 32 bytes.

address: asinthe uint160 case

int<M>: enc (X) is the big-endian two’s complement encoding of X, padded on the higher-order (left) side
with 0x f f for negative X and with zero bytes for positive X such that the length is 32 bytes.

bool: asinthe uint 8 case, where 1 is used for t rue and 0 for false

fixed<M>x<N>:enc (X) isenc (X * 10+xN) where X %= 10N isinterpreted asa int256.
fixed: asinthe fixed128x19 case

ufixed<M>x<N>:enc (X) isenc (X * 10x*N) where X » 10x*Nisinterpreted asa uint256.
ufixed: asinthe ufixed128x19 case

bytes<M>: enc (X) is the sequence of bytes in X padded with trailing zero-bytes to a length of 32 bytes.

Note that for any X, len (enc (X)) is a multiple of 32.

8.8.

0{=2|#|0|d vto[L{2| AUE{To] A HH 133

Solidity Documentation, £A| 0.5.10

8.8.6 Function Selector and Argument Encoding

All in all, a call to the function £ with parameters a_1, ..., a_nisencoded as
function_selector (f) enc((a_l, ..., a_n))

and the return values v_1, ..., v_k of £ are encoded as
enc((v_1l, ..., v_k))

i.e. the values are combined into a tuple and encoded.

8.8.7 Examples

Given the contract:

pragma solidity 70.4.16;

contract Foo {
function bar (bytes3[2]) public pure {}
function baz (uint32 x, bool y) public pure returns (bool r) { r = x > 32 || y; }
function sam(bytes, bool, uint[]) public pure {}

}

Thus for our Foo example if we wanted to call baz with the parameters 69 and t rue, we would pass 68 bytes total,
which can be broken down into:

* Oxcdcd77c0: the Method ID. This is derived as the first 4 bytes of the Keccak hash of the ASCII form of the
signature baz (uint32,bool).

¢ 0x0045: the first
parameter, a uint32 value 69 padded to 32 bytes

* 0x0001: the second
parameter - boolean t rue, padded to 32 bytes

In total:

Oxcdcd77cOO045000OOOOOOOOOO#OOOOOOOOOOOM

It returns a single bool. If, for example, it were to return false, its output would be the single byte array
0x00, a single bool.

If we wanted to call bar with the argument ["abc", "def"], we would pass 68 bytes total, broken down into:
e Oxfce353f6: the Method ID. This is derived from the signature bar (bytes3[2]).

* 0x61626300: the first
part of the first parameter, a bytes3 value "abc" (left-aligned).

* 0x64656600: the second
part of the first parameter, a bytes3 value "def" (left-aligned).

In total:

Oxfce353f66l6263000OOO646566000OOOO¢OOOOOOOOOOOM

If we wanted to call sam with the arguments "dave", true and [1, 2, 3], we would pass 292 bytes total, broken
down into:

134 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

* 0xa5643bf2: the Method ID. This is derived from the signature sam (bytes,bool,uint256[]). Note
that uint is replaced with its canonical representation uint256.

* 0x0060: the loca-
tion of the data part of the first parameter (dynamic type), measured in bytes from the start of the arguments
block. In this case, 0x60.

* 0x0001: the second
parameter: boolean true.

* 0x00a0: the loca-
tion of the data part of the third parameter (dynamic type), measured in bytes. In this case, 0xa0.

* 0x0004: the data
part of the first argument, it starts with the length of the byte array in elements, in this case, 4.

* 0x6461766500: the con-
tents of the first argument: the UTF-8 (equal to ASCII in this case) encoding of "dave", padded on the right to
32 bytes.

* 0x0003: the data
part of the third argument, it starts with the length of the array in elements, in this case, 3.

* 0x0001: the first
entry of the third parameter.

* 0x0002: the second
entry of the third parameter.

* 0x0003: the third
entry of the third parameter.

In total:

Oxa5643bf2000OOO6000OOOOOOOOOOO(#OOOOOOOOOOOO(

8.8.8 Use of Dynamic Types

A call to a function with the signature £ (uint, uint32[],bytesl10, bytes) with values (0x123, [0x456,
0x789], "1234567890", "Hello, world!") isencoded in the following way:

We take the first four bytes of sha3 ("f (uint256,uint32[],bytesl0,bytes)"),ie. 0x8be65246. Then
we encode the head parts of all four arguments. For the static types uint256 and bytes10, these are directly the
values we want to pass, whereas for the dynamic types uint 32 [] and bytes, we use the offset in bytes to the start
of their data area, measured from the start of the value encoding (i.e. not counting the first four bytes containing the
hash of the function signature). These are:

* 0x000123 (0x123
padded to 32 bytes)

* 0x0080 (offset to
start of data part of second parameter, 4*32 bytes, exactly the size of the head part)

* 0x3132333435363738393000
("1234567890" padded to 32 bytes on the right)

* 0x00e0 (offset to
start of data part of fourth parameter = offset to start of data part of first dynamic parameter + size of data
part of first dynamic parameter = 4*32 + 3*32 (see below))

After this, the data part of the first dynamic argument, [0x456, 0x789] follows:

8.8. 0|S2[A|0]d Hio|L{2| QlE{m|o| A 2 135

Solidity Documentation, £A| 0.5.10

* 0x0002 (number of
elements of the array, 2)

* 0x000456 (first ele-
ment)

¢ 0x000789 (second el-
ement)

Finally, we encode the data part of the second dynamic argument, "Hello, world!":

¢ 0x000d (number of
elements (bytes in this case): 13)

* 0x48656c6c6£f2c20776£726c642100000000000000000000000000000000000000 ("Hello,
world!" padded to 32 bytes on the right)

All together, the encoding is (newline after function selector and each 32-bytes for clarity):

0x8be65246
000123
0080
3132333435363738393000
00e0
0002
000456
000789
0004d
48656c6c6£2c20776£726c642100000000000000000000000000000000000000

8.8.9 Events

Events are an abstraction of the Ethereum logging/event-watching protocol. Log entries provide the contract’s address,
a series of up to four topics and some arbitrary length binary data. Events leverage the existing function ABI in order
to interpret this (together with an interface spec) as a properly typed structure.

Given an event name and series of event parameters, we split them into two sub-series: those which are indexed and
those which are not. Those which are indexed, which may number up to 3, are used alongside the Keccak hash of the
event signature to form the topics of the log entry. Those which are not indexed form the byte array of the event.

In effect, a log entry using this ABI is described as:
* address: the address of the contract (intrinsically provided by Ethereum);

* topics[0]: keccak (EVENT_NAME+" ("+EVENT_ARGS.map (canonical_type_of).join (",
")+")") (canonical_type_of is a function that simply returns the canonical type of a given argument,
e.g. for uint indexed foo, it would return uint256). If the event is declared as anonymous the
topics[0] is not generated;

* topics[n]: EVENT_INDEXED_ARGS[n - 1](EVENT_INDEXED_ARGSiSﬂmSCﬂeSOfEVENT_ARGS
that are indexed);

e data: abi_serialise (EVENT_NON_INDEXED_ARGS) (EVENT_NON_INDEXED_ARGS is the series
of EVENT_ARGS that are not indexed, abi_serialise is the ABI serialisation function used for returning a
series of typed values from a function, as described above).

For all fixed-length Solidity types, the EVENT_INDEXED_ARGS array contains the 32-byte encoded value directly.
However, for types of dynamic length, which include string, bytes, and arrays, EVENT_INDEXED_ARGS will
contain the Keccak hash of the encoded value, rather than the encoded value directly. This allows applications to ef-
ficiently query for values of dynamic-length types (by setting the hash of the encoded value as the topic), but leaves

136 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

applications unable to decode indexed values they have not queried for. For dynamic-length types, application develop-
ers face a trade-off between fast search for predetermined values (if the argument is indexed) and legibility of arbitrary
values (which requires that the arguments not be indexed). Developers may overcome this tradeoff and achieve both
efficient search and arbitrary legibility by defining events with two arguments — one indexed, one not — intended to
hold the same value.

8.8.10 JSON
The JSON format for a contract’s interface is given by an array of function and/or event descriptions. A function
description is a JSON object with the fields:
* type: "function", "constructor",or "fallback" (the unnamed "default” function);
¢ name: the name of the function;
e inputs: an array of objects, each of which contains:
— name: the name of the parameter;
— type: the canonical type of the parameter (more below).
— components: used for tuple types (more below).
* outputs: an array of objects similar to input s, can be omitted if function doesn’t return anything;
* payable: true if function accepts ether, defaults to false;

e stateMutability: astring with one of the following values: pure (specified to not read blockchain state),
view (specified to not modify the blockchain state), nonpayable and payable (same as payable above).

e constant: true if function is either pure or view
type can be omitted, defaulting to "function".
Constructor and fallback function never have name or out puts. Fallback function doesn’t have inputs either.
Sending non-zero ether to non-payable function will throw. Don’t do it.
An event description is a JSON object with fairly similar fields:
* type: always "event"
¢ name: the name of the event;

e inputs: an array of objects, each of which contains:

name: the name of the parameter;

type: the canonical type of the parameter (more below).

— components: used for tuple types (more below).

— indexed: true if the field is part of the log’s topics, false if it one of the log’s data segment.
e anonymous: true if the event was declared as anonymous.

For example,

pragma solidity "0.4.0;

contract Test
function Test () public { b = 0x12345678901234567890123456789012; }
event Event (uint indexed a, bytes32 Db);
event Event2 (uint indexed a, bytes32 b);

(continues on next page)

8.8. 0|S2[A|0]d Hio|L{2| QlE{m|o| A 2 137

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

function foo (uint a) public { Event(a, b); }
bytes32 b;
}

would result in the JSON:

[{

"type":"event",

"inputs": [{"name":"a","type":"uint256","indexed":true}, {"name":"b", "type":"bytes32",
—"indexed":false}],

"name" :"Event"

b A

"type":"event",

"inputs": [{"name":"a","type":"uint256","indexed":true}, {"name":"b", "type":"bytes32",
—"indexed":false}],

"name" :"Event2"

oo Ao

"type":"function",

"inputs": [{"name":"a","type":"uint256"}],

"name":"foo",

"outputs": []

}]

Handling tuple types

Despite that names are intentionally not part of the ABI encoding they do make a lot of sense to be included in the
JSON to enable displaying it to the end user. The structure is nested in the following way:

An object with members name, type and potentially components describes a typed variable. The canonical type
is determined until a tuple type is reached and the string description up to that point is stored in t ype prefix with the
word tuple, i.e. it will be tuple followed by a sequence of [] and [k] with integers k. The components of the
tuple are then stored in the member component s, which is of array type and has the same structure as the top-level
object except that indexed is not allowed there.

As an example, the code

pragma solidity 70.4.19;
pragma experimental ABIEncoderV2;

contract Test {
struct S { uint a; uint[] b; T[] c; }
struct T { uint x; uint y; }
function £(S s, T t, uint a) public { }
function g () public returns (S s, T t, uint a) {}

would result in the JSON:

[

"name" . "f",
"type": "function",
"inputs": [

{

"name" : "S",

(continues on next page)

138 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

"type": "tuple",
"components": [
{
"name": "a",
"type": "uint256"

"nameﬂ: "b",
"type": "uint256[]"

"name": "C",
"type": "tuple[} ",
"components": [
{
"name": "X",
"type": "uint256"
s
"name": "y",
"type": "uint256"

"name": "t",
"type": "tuple",
"components": [
{
"name": "x",
"type": "uint256"

"name" : nyu,

"type": "uint256"

]
}o
{
"name": "a",
"type": "uint256"
}

1,
"outputs": []

8.8.11 Non-standard Packed Mode

Solidity supports a non-standard packed mode where:
* no function selector is encoded,

* types shorter than 32 bytes are neither zero padded nor sign extended and

8.8. 0|S2[A|0]d Hio|L{2| QlE{m|o| A 2 139

Solidity Documentation, £A| 0.5.10

* dynamic types are encoded in-place and without the length.

As an example encoding int1l, bytesl, uintl6, string withvalues-1, 0x42, 0x2424, "Hello,
world!" results in

0xff42242448656c6c6£2c20776f726c6421
o intl (-1)
o bytesl (0x42)
s uintl6 (0x2424)
AANNANANNNNNNANANANNANAAAA gering ("Hello, world!") without a length field

More specifically, each statically-sized type takes as many bytes as its range has and dynamically-sized types like
string, bytes or uint [] are encoded without their length field. This means that the encoding is ambiguous as
soon as there are two dynamically-sized elements.

8.9 vul

Yul (previously also called JULIA or IULIA) is an intermediate language that can compile to various different backends
(EVM 1.0, EVM 1.5 and eWASM are planned). Because of that, it is designed to be a usable common denominator
of all three platforms. It can already be used for "inline assembly" inside Solidity and future versions of the Solidity
compiler will even use Yul as intermediate language. It should also be easy to build high-level optimizer stages for
Yul.

ZF4]: Note that the flavour used for "inline assembly" does not have types (everything is u256) and the built-in
functions are identical to the EVM opcodes. Please resort to the inline assembly documentation for details.

The core components of Yul are functions, blocks, variables, literals, for-loops, if-statements, switch-statements, ex-
pressions and assignments to variables.

Yul is typed, both variables and literals must specify the type with postfix notation. The supported types are bool,
u8, s8,u32,s32,u64,s64,ul28,s128,u256 and s256.

Yul in itself does not even provide operators. If the EVM is targeted, opcodes will be available as built-in functions,
but they can be reimplemented if the backend changes. For a list of mandatory built-in functions, see the section below.

The following example program assumes that the EVM opcodes mul, div and mod are available either natively or as
functions and computes exponentiation.

{

function power (base:u256, exponent:u256) —> result:u256

{

switch exponent

case 0:u256 { result := 1:u256 }
case 1:u256 { result := base }
default
{
result := power (mul (base, base), div(exponent, 2:u256))
switch mod (exponent, 2:u256)
case 1:u256 { result := mul (base, result) }

It is also possible to implement the same function using a for-loop instead of with recursion. Here, we need the EVM
opcodes 1t (less-than) and add to be available.

140 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

function power (base:u256, exponent:u256) —-> result:u256

{

result := 1:u256
for { let 1 := 0:u256 } 1lt (i, exponent) { i := add(i, 1:u256) }
{

result := mul (result, base)

8.9.1 Specification of Yul

This chapter describes Yul code. It is usually placed inside a Yul object, which is described in the following chapter.

Grammar:

Block = "{' Statement+ '}'
Statement =
Block |
FunctionDefinition |
VariableDeclaration |
Assignment |
If |
Expression |
Switch |
ForLoop |
BreakContinue
FunctionDefinition =
'function' Identifier ' (' TypedIdentifierList? ')'
('->'" TypedIdentifierList)? Block
VariableDeclaration =

'let' TypedIdentifierList (':=' Expression)?
Assignment =
IdentifierList ':=' Expression
Expression =
FunctionCall | Identifier | Literal
If =
'if' Expression Block
Switch =
'switch' Expression (Case+ Default? | Default)
Case =
'case' Literal Block
Default =
'default' Block
ForLoop =
'for' Block Expression Block Block
BreakContinue =
'break' | 'continue'
FunctionCall =
Identifier '"(' (Expression (',' Expression)x)? ')’
Identifier = [aszfz_E] [aszfZ_Eof9]*
IdentifierList = Identifier (',' Identifier)«
TypeName = Identifier | BuiltinTypeName
BuiltinTypeName = 'bool' | [us] ('8" | '32" | '64' | "128' | '256")
TypedIdentifierList = Identifier ':' TypeName (',' Identifier ':' TypeName) *

(continues on next page)

8.9. Yul 141

Solidity Documentation, £A| 0.5.10

(o]" o] Ao A%

Literal =
(NumberLiteral | StringLiteral | HexLiteral | Trueliteral | FalselLiteral) ':'
—TypeName
NumberLiteral = HexNumber | DecimalNumber
HexLiteral = 'hex' ('"' ([0-9a—-fA-F]{2}) """ | "\'"'" ([0-9a—-fA-F]{2}) '\'")
StringLiteral = """ ([*"\x\n\\] | "\\'" .)» '™
TruelLiteral = 'true'
FalselLiteral = 'false'
HexNumber = '0Ox' [0-9a-fA-F]+
DecimalNumber = [0-9]+

Restrictions on the Grammar

Switches must have at least one case (including the default case). If all possible values of the expression is covered,
the default case should not be allowed (i.e. a switch with a bool expression and having both a true and false case
should not allow a default case).

Every expression evaluates to zero or more values. Identifiers and Literals evaluate to exactly one value and function
calls evaluate to a number of values equal to the number of return values of the function called.

In variable declarations and assignments, the right-hand-side expression (if present) has to evaluate to a number of
values equal to the number of variables on the left-hand-side. This is the only situation where an expression evaluating
to more than one value is allowed.

Expressions that are also statements (i.e. at the block level) have to evaluate to zero values.
In all other situations, expressions have to evaluate to exactly one value.

The continue and break statements can only be used inside loop bodies and have to be in the same function as
the loop (or both have to be at the top level). The condition part of the for-loop has to evaluate to exactly one value.

Literals cannot be larger than the their type. The largest type defined is 256-bit wide.

Scoping Rules

Scopes in Yul are tied to Blocks (exceptions are functions and the for loop as explained below) and all declarations
(FunctionDefinition, VariableDeclaration) introduce new identifiers into these scopes.

Identifiers are visible in the block they are defined in (including all sub-nodes and sub-blocks). As an exception,
identifiers defined in the "init" part of the for-loop (the first block) are visible in all other parts of the for-loop (but not
outside of the loop). Identifiers declared in the other parts of the for loop respect the regular syntatical scoping rules.
The parameters and return parameters of functions are visible in the function body and their names cannot overlap.

Variables can only be referenced after their declaration. In particular, variables cannot be referenced in the right hand
side of their own variable declaration. Functions can be referenced already before their declaration (if they are visible).

Shadowing is disallowed, i.e. you cannot declare an identifier at a point where another identifier with the same name
is also visible, even if it is not accessible.

Inside functions, it is not possible to access a variable that was declared outside of that function.
Formal Specification
We formally specify Yul by providing an evaluation function E overloaded on the various nodes of the AST. Any

functions can have side effects, so E takes two state objects and the AST node and returns two new state objects and a
variable number of other values. The two state objects are the global state object (which in the context of the EVM is

142 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

the memory, storage and state of the blockchain) and the local state object (the state of local variables, i.e. a segment
of the stack in the EVM). If the AST node is a statement, E returns the two state objects and a "mode", which is used
for the break and continue statements. If the AST node is an expression, E returns the two state objects and as
many values as the expression evaluates to.

The exact nature of the global state is unspecified for this high level description. The local state L is a mapping of
identifiers i to values v, denotedas L[1] = wv.

For an identifier v, let $v be the name of the identifier.

We will use a destructuring notation for the AST nodes.

E(G, L, <{stl, ..., Stn}>: Block) =
let G1, L1, mode = E(G, L, Stl, ..., Stn)
let L2 be a restriction of L1 to the identifiers of L
Gl, L2, mode
E(G, L, Stl, ..., Stn: Statement) =
if n is zero:
G, L, regular
else:
let G1, L1, mode = E(G, L, Stl)
if mode is regular then
E(G1, L1, St2, ..., Stn)
otherwise
Gl, L1, mode
E(G, L, FunctionDefinition) =
G, L, regular

E(G, L, <let wvarl, ..., varn := rhs>: VariableDeclaration) =
E(G, L, <varl, ..., varn := rhs>: Assignment)

E(G, L, <let varl, ..., varn>: VariableDeclaration) =
let L1 be a copy of L where Ll[Evari] =0 for i =1, ..., n
G, L1, regular

E(G, L, <varl, ..., varn := rhs>: Assignment) =
let G1, L1, vl1l, ..., vn = E(G, L, rhs)
let L2 be a copy of Ll where L2[Evari] =vi for i =1, ..., n
G, L2, regular

E(G, L, <for { il, ..., in } condition post body>: ForLoop) =
if n >= 1:

let G1, L1, mode = E(G, L, i1, ..., in)

// mode has to be regular due to the syntactic restrictions
let G2, L2, mode = E(Gl, L1, for {} condition post body)
// mode has to be regular due to the syntactic restrictions
let L3 be the restriction of L2 to only variables of L
G2, L3, regular
else:
let G1, L1, v = E(G, L, condition)
if v is false:
Gl, L1, regular
else:
let G2, L2, mode = E(Gl, L, body)
if mode is break:
G2, L2, regular
else:
G3, L3, mode = E (G2, L2, post)
E(G3, L3, for {} condition post body)
E(G, L, break: BreakContinue) =
G, L, break
E(G, L, continue: BreakContinue) =
G, L, continue

(continues on next page)

8.9. Yul 143

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

E(G, L, <if condition body>: If) =
let GO, LO, v = E(G, L, condition)
if v is true:

E (GO, L0, body)

else:
GO, LO, regular
E(G, L, <switch condition case 11:tl stl ... case ln:tn stn>: Switch) =
E(G, L, switch condition case 11:tl stl ... case ln:tn stn default {})
E(G, L, <switch condition case 11:tl stl ... case 1ln:tn stn default st'>: Switch) =

let GO, LO, v = E(G, L, condition)

// 1 =1 .. n

// Evaluate literals, context doesn't matter
let _, _, vl = E(GO, LO, 11)

let _, _, vn = E(GO, LO, 1n)

if there exists smallest i such that vi = v:
E (GO, LO, sti)

else:
E (GO, LO, st')

E(G, L, <name>: Identifier) =
G, L, L[Ename]

E(G, L, <fname(argl, ..., argn)>: FunctionCall) =
Gl, L1, vn = E(G, L, argn)

G(n-1), L(n-1), v2 = E(G(n-2), L(n-2), arg2)

Gn, Ln, vl = E(G(n-1), L(n-1), argl)

Let <function fname (paraml, ..., paramn) -> retl, ..., retm block>
be the function of name Efname visible at the point of the call.
Let L' be a new local state such that

L' [$parami] = vi and L'[Ereti] = 0 for all 1i.
Let G'', L''", mode = E(Gn, L', block)
G'', Ln, L''[$ret1], ..., L' [[fretm]

E(G, L, 1l: HexLiteral) G, L, hexString(l),
where hexString decodes 1 from hex and left-aligns it into 32 bytes
E(G, L, 1l: StringLiteral) = G, L, utf8EncodelLeftAligned(l),
where utf8EncodelLeftAligned performs a utf8 encoding of 1
and aligns it left into 32 bytes
E(G, L, n: HexNumber) = G, L, hex(n)
where hex is the hexadecimal decoding function
E(G, L, n: DecimalNumber) = G, L, dec(n),
where dec is the decimal decoding function

Type Conversion Functions

Yul has no support for implicit type conversion and therefore functions exist to provide explicit conversion. When

converting a larger type to a shorter type a runtime exception can occur in case of an overflow.
Truncating conversions are supported between the following types:

* bool

* u32

* u64d

e u256

144 Chapter 8.

Contents

Solidity Documentation, £A| 0.5.10

¢ 5256

For each of these a type conversion function exists having the prototype in the form of
<input_type>to<output_type> (x:<input_type>) -> y:<output_type>, such as
u32tobool (x:u32) -> y:bool, u256tou32(x:u256) -> y:u32 or s256tou256(x:5256)
-> y:u256.

FX: u32tobool (x:u32) -> y:bool can be implemented as y := not (iszerou256(x)) and
booltou32 (x:bool) —-> y:u32 canbe implemented as switch x case true:bool { y := 1:u32
} case false:bool { y := 0:u32 }

Low-level Functions

The following functions must be available:

Logic
not(x:bool) -> z:bool logical not
and(x:bool, y:bool) -> z:bool logical and
or(x:bool, y:bool) -> z:bool logical or
xor(x:bool, y:bool) -> z:bool xor
Arithmetic
addu256(x:u256, y:u256) -> z:u256 X+y
subu256(x:u256, y:u256) -> z:u256 X-y
mulu256(x:u256, y:u256) -> z:u256 x*y
divu256(x:u256, y:u256) -> z:u256 x/y

divs256(x:5256, y:s256) -> 7:5256

x /'y, for signed numbers in two’s comple:

modu256(x:u256, y:u256) -> z:u256

X%y

mods256(x:s256, y:s256) -> z:s256

X %y, for signed numbers in two’s compl

signextendu256(i:u256, x:u256) -> z:u256

sign extend from (i*8+7)th bit counting ft

expu256(x:u256, y:u256) -> z:u256

X to the power of y

addmodu256(x:u256, y:u256, m:u256) -> z:u256

(X +y) % m with arbitrary precision arith:

mulmodu256(x:u256, y:u256, m:u256) -> z:u256

(X *y) % m with arbitrary precision arithi

1tu256(x:u256, y:u256) -> z:bool

true if x <y, false otherwise

gtu256(x:u256, y:u256) -> z:bool

true if x >y, false otherwise

sltu256(x:s256, y:s256) -> z:bool

true if x <y, false otherwise (for signed n

sgtu256(x:5256, y:s256) -> z:bool

true if x >y, false otherwise (for signed n

equ256(x:u256, y:u256) -> z:bool

true if x ==y, false otherwise

iszerou256(x:u256) -> z:bool

true if x == 0, false otherwise

notu256(x:u256) -> z:u256

~X, every bit of x is negated

andu256(x:u256, y:u256) -> z:u256

bitwise and of x and y

oru256(x:u256, y:u256) -> z:u256

bitwise or of x and y

xoru256(x:u256, y:u256) -> z:u256

bitwise xor of x and y

shlu256(x:u256, y:u256) -> z:u256

logical left shift of x by y

shru256(x:u256, y:u256) -> z:u256

logical right shift of x by y

saru256(x:u256, y:u256) -> z:u256

arithmetic right shift of x by y

byte(n:u256, x:u256) -> v:u256

nth byte of x, where the most significant t

Memory and storage

mload(p:u256) -> v:u256

mem[p..(p+32))

mstore(p:u256, v:u256)

mem[p..(p+32)) :=v

mstore8(p:u256, v:u256)

mem[p] := v & Oxff - only modifies a sing

8.9. Yul

145

Solidity Documentation, £A| 0.5.10

sload(p:u256) -> v:u256

storage|[p]

sstore(p:u256, v:u256)

storage[p] :=v

msize() -> size:u256

size of memory, i.e. largest accessed mem

Execution control

create(v:u256, p:u256, n:u256)

create new contract with code mem|[p..(p-

create2(v:u256, p:u256, n:u256, s:u256)

create new contract with code mem[p...(p

call(g:u256, a:u256, v:u256, in:u256, insize:u256, out:u256, outsize:u256) -> r:u256

call contract at address a with input mem|

callcode(g:u256, a:u256, v:u256, in:u256, insize:u256, out:u256, outsize:u256) -> r:u256

identical to call but only use the code fi

delegatecall(g:u256, a:u256, in:u256, insize:u256, out:u256, outsize:u256) -> r:u256

identical to callcode, but also keep ca

abort()

abort (equals to invalid instruction on EV!

return(p:u256, s:u256)

end execution, return data mem[p..(p+s))

revert(p:u256, s:u256)

end execution, revert state changes, return

selfdestruct(a:u256)

end execution, destroy current contract an

log0(p:u256, s:u256)

log without topics and data mem[p..(p+s)

log1(p:u256, s:u256, t1:u256)

log with topic t1 and data mem([p..(p+s))

log2(p:u256, s:u256, t1:u256, t2:u256)

log with topics t1, t2 and data mem][p..(p+

log3(p:u256, s:u256, t1:u256, t2:u256, t3:u256)

log with topics t, t2, t3 and data mem[p..(

logd(p:u256, s:u256, t1:u256, t2:u256, t3:u256, t4:u256)

log with topics tl, t2, t3, t4 and data mem

State queries

blockcoinbase() -> address:u256

current mining beneficiary

blockdifficulty() -> difficulty:u256

difficulty of the current block

blockgaslimit() -> limit:u256

block gas limit of the current block

blockhash(b:u256) -> hash:u256

hash of block nr b - only for last 256 bloc

blocknumber() -> block:u256

current block number

blocktimestamp() -> timestamp:u256

timestamp of the current block in seconds

txorigin() -> address:u256

transaction sender

txgasprice() -> price:u256

gas price of the transaction

gasleft() -> gas:u256

gas still available to execution

balance(a:u256) -> v:u256

wei balance at address a

this() -> address:u256

address of the current contract / execution

caller() -> address:u256

call sender (excluding delegatecall)

callvalue() -> v:u256

wei sent together with the current call

calldataload(p:u256) -> v:u256

call data starting from position p (32 byte

calldatasize() -> v:u256

size of call data in bytes

calldatacopy(t:u256, f:u256, s:u256)

copy s bytes from calldata at position f to

codesize() -> size:u256

size of the code of the current contract / e

codecopy(t:u256, f:u256, s:u256)

copy s bytes from code at position f to me

extcodesize(a:u256) -> size:u256

size of the code at address a

extcodecopy(a:u256, t:u256, f:u256, s:u256)

like codecopy(t, f, s) but take code at addr

extcodehash(a:u256)

code hash of address a

Others

discard(unused:bool)

discard value

discardu256(unused:u256)

discard value

splitu256tou64(x:u256) -> (x1:u64, x2:u64, x3:u64, x4:u64)

split u256 to four u64’s

combineu64tou256(x1:u64, x2:u64, x3:u64, x4:u64) -> (x:u256)

combine four u64’s into a single u256

keccak256(p:u256, s:u256) -> v:u256

keccak(mem[p...(p+s)))

Backends

Backends or targets are the translators from Yul to a specific bytecode. Each of the backends can expose functions
prefixed with the name of the backend. We reserve evm__ and ewasm__ prefixes for the two proposed backends.

146

Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

Backend: EVM

The EVM target will have all the underlying EVM opcodes exposed with the evm_ prefix.

Backend: "EVM 1.5"

TBD

Backend: eWASM

TBD

8.9.2 Specification of Yul Object

Grammar:

TopLevelObject = 'object' '{' Code? (Object | Data)» '}'

Object = 'object' StringLiteral '{' Code? (Object | Data)= '}'

Code = 'code' Block

Data = 'data' Stringliteral HexLiteral

HexLiteral = 'hex' ('"' ([0-9a-fA-F]1{2}) """ | "\'"'" ([0-9a-fA-F]l{2}) '\'")
StringLiteral = """ ([*"\x\n\\] | "\\'" .)» '™

Above, Block refers to Block in the Yul code grammar explained in the previous chapter.

An example Yul Object is shown below:

// Code consists of a single object. A single "code" node is the code of the object.
// Every (other) named object or data section is serialized and
// made accessible to the special built-in functions datacopy / dataoffset / datasize

object {
code {
let size = datasize("runtime™)
let offset = allocate(size)

// This will turn into a memory->memory copy for eWASM and
// a codecopy for EVM

datacopy (dataoffset ("runtime"), offset, size)

// this is a constructor and the runtime code is returned
return (offset, size)

data "Table2" hex"4123"

object "runtime" {
code {
// runtime code

let size = datasize("Contract2")

let offset = allocate(size)

// This will turn into a memory->memory copy for eWASM and
// a codecopy for EVM

datacopy (dataoffset ("Contract2"), offset, size)

// constructor parameter is a single number 0x1234
mstore (add (offset, size), 0x1234)

create (offset, add(size, 32))

(continues on next page)

8.9. Yul 147

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

}

// Embedded object. Use case 1is that the outside is a factory contract,
// and Contract2 is the code to be created by the factory
object "Contract2" {
code {
// code here ...

}

object "runtime" {
code {
// code here ...
}
}

data "Tablel" hex"4123"

8.10 AE}2 710|=

8.10.1 A7}
o] 7}o] £ Solidity =S 24T v A0k & 319 4] ool AHFU Tk B Lhe FHo] AT 7|29
FHE AAD % 13 AZko] A|LHAA Fho S vk 4 gl ok
B XA E o] 247he] At sto| 8 W AYUth $E5H: A\ He] WS, TR AES] AEkd Tfol=
2 94402 tgyrt.
o] 7}o] = PHARG T2 Trol 4] peps style guide & gt
7ho] £0] B3 Solidity =S AT 1 H19] WS delseli Zlo] opdUth 7ol 20] Bl WA 2
FA5H ZYUIT sol 4] peps Q18- o] Hahe T At Glgvich

()] k%ﬂ%f E%f

1A|917 S oh L. i) 94 7]
o Wk el A Q. thE o2 Bl Al Lhe WS A . Tl ol nt A A5
ohA])

8.10.2 3L 0|02
=027

S 7|uitt 4 Amo] A5 ARG

& or ATHjO|A

148 Chapter 8. Contents

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/#a-foolish-consistency-is-the-hobgoblin-of-little-minds

Solidity Documentation, £A| 0.5.10

9] A9 BaE 2740) Wl £ Aol F o,

contract A {

contract B {

contract C {

No:

contract A {

}
contract B {

contract C {

-

contract A {
function spam() public;
function ham() public;

contract B is A {
function spam() public {

}

function ham() public {

No:

contract A {
function spam() public {

(continues on next page)

8.10. AElY 710|= 149

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

}

function ham() public {

—

b

ICH

o

4o

PEP 8 recommendation of 79 (or 99) =2] Y852 XA H T&o] = AdYrch

S 2 e 22 7ol Eakele A 8.

L A HAA QA= o= 22 dofl 2o]#] 5yt

2. & o] S x| AR
3. 247k Q1A 7 Znjek 1A o
4. E=dle); AT S0 24 FAE 4 A shAl 8.
droE
Yes:
thisFunctionCallIsReallyLong (
longArgumentl,
longArgument2,
longArgument3

)i

No:

thisFunctionCallIsReallyLong (longArgumentl,
longArgument?2,
longArgument3

)

thisFunctionCallIsReallyLong (longArgumentl,
longArgument?2,
longArgument3

)i

thisFunctionCallIsReallyLong (
longArgumentl, longArgument2,
longArgument3

)i

thisFunctionCallIsReallyLong (
longArgumentl,

longArgument2,

longArgument3

)i

thisFunctionCallIsReallyLong (
longArgumentl,
longArgument2,
longArgument3) ;

150

Chapter 8. Contents

https://www.python.org/dev/peps/pep-0008/#maximum-line-length

Solidity Documentation, £A| 0.5.10

g
Yes
thisIsALongNestedMapping[being] [set] [to_some_value] = someFunction (
argumentl,
argument?2,
argument3,
argument4
)
No:
thisIsALongNestedMapping[being] [set] [to_some_value] = someFunction (argumentl,
argument2,
argument3,
argument4) ;

olHlE eole}
Yes:

rel

event LongAndLotsOfArgs (
adress sender,
adress recipient,
uint256 publicKey,
uint256 amount,
bytes32[] options

)i

LongAndLotsOfArgs (
sender,
recipient,
publicKey,
amount,
options

)i

No:

event LongAndLotsOfArgs (adress sender,
adress recipient,
uint256 publicKey,
uint256 amount,
bytes32[] options);

LongAndLotsOfArgs (sender,
recipient,
publicKey,
amount,
options);

o
A2 T 1Y

UTF-8 o|L} ASCII Q17 = A5

e

Yrt.

8.10. AElY 710|= 151

Solidity Documentation, £A| 0.5.10

URE

import "owned";

contract A {

}

contract B is owned {

}

No:

contract A {

}

import "owned";

contract B is owned {

—

a4 &M
SAE AW 5% Ve e G450l LA, ARG a7t ol UEAE 4 B 5 A 282
Fuot.
Fre e e £4E BaUT
- AR

* (ttH) fallback function
* external
* public
* internal
* private
1% WA= constant g npx|atof] A Q.

Yes:

contract A {
function A () public {

}

(continues on next page)

152 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

function() public {

}

// External functions

VA

// External functions that are constant

VA

// Public functions
VAR

// Internal functions

VA

// Private functions

VA

No:

contract A {

// External functions

V2

// Private functions

V2

// Public functions
/S

function A () public {
}

function() public {

}

// Internal functions

VA

-

-

oz
ok
e,
E=)
2
Eha
1o
o
1=
fijo
Sl

+ 2 HstAl8: &, 5, diET HHkE

HE
2
me
rlo
o,
Tlo
mY
rek
N
lo
o
+

¢

spam (ham([1], Coin({name: "ham"}));

No:

8.10. AElY 710|= 153

Solidity Documentation, £A| 0.5.10

spam(ham[1], Coin({ name: "ham" }));

Exception:

’function singleline () public { spam(); }

Foht AulRE vk Ao 2o 39

Yes:

’function spam(uint i, Coin coin) public;

No:

’function spam(uint i , Coin coin) public ;

e g muy oE AitAter A2 wEee o] UE 9 A

Yes:

X 1;

y 2;
long_variable = 3;
No:

X = 1;
y = 2;
long_variable = 3;

fallback 14 QFof] -8 @) oA &

Yes:

function() public {

}

No:

function () public {

}

22 7|

AEHE, eouele, g5t A] Y§2 He SR L oS whefof gk

154 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

contract Coin {
struct Bank {
address owner;
uint balance;

No:

contract Coin
{
struct Bank {
address owner;
uint balance;

BA A7} if, else, while 18|11 for 2 AT L A AUttt 5] if, while, for oA &A% S
fe) =]
R T

2t = Yoo FAARE 7HA AL Qe el 2 g AT 5 sy

Yes:

if (x < 10)
x += 1;

No:

if (x < 10)

someArray.push (Coin ({
name: 'spam',
value: 42

1))

8.10. AElY 710|= 155

Solidity Documentation, £A| 0.5.10

elseltelse if TEZ7Hif B A if ZO B o T2 E9 else F0| fA5jof t. o] AL
e 25 Pee) 72 743 ool gy
Yes:

if (x < 3

) A
x += 1

7
} else if (x > 7) {
x —= 1;
} else {
x = 5;
}
if (x < 3)
x += 1;
else
x —= 1;
No:
if (x < 3) {
x += 1;
}
else {
x —= 1;
}
Bt Mo
e G5 MY A P4 h R0 o BHL Mool ge o gk Bl Bol G4 Al

function increment (uint x) public pure returns (uint) ({
return x + 1;

function increment (uint x) public pure onlyowner returns (uint) ({
return x + 1;

No:

function increment (uint x) public pure returns (uint)
{

return x + 1;

function increment (uint x) public pure returns (uint) {
return x + 1;

function increment (uint x) public pure returns (uint) ({
return x + 1;

}

(continues on next page)

156 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

function increment (uint x) public pure returns (uint) {
return x + 1;}

PRS2

mlm
el
&

L

rin
o

Zeol] o el 2 Aol A S WAH 02 A4,
Yes:

function explicitlyPublic (uint val) public {
doSomething () ;

No:

function implicitlyPublic (uint wval) {
doSomething () ;

o] A Alojat= ALY 7]t B} ofo] g th
Yes:

function kill () public onlyowner {
selfdestruct (owner) ;

No:
function kill () onlyowner public {
selfdestruct (owner) ;
}
Tt B2 QA 2T S W, 7 Qv e Sojxy)2 @ B4 A4S e DR du B
F¥e B9 2o Ao % 24 APt
Yes

function thisFunctionHasLotsOfArguments (
address a,
address Db,
address c,
address d,
address ¢,
address f

public

doSomething () ;

No:

function thisFunctionHasLotsOfArguments (address a, address b, address c,
address d, address e, address f) public {
doSomething () ;

(continues on next page)

8.10. AElY 710|= 157

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

function thisFunctionHasLotsOfArguments (address a,
address Db,
address c,
address d,
address e,
address f) public ({
doSomething () ;

function thisFunctionHasLotsOfArguments (

address a,

address Db,

address c,

address d,

address e,

address f) public {

doSomething () ;

Ao 2HE 7131 71 $H40] A 7} AolaHs 77te] £-& 7hAn] At e,

Yes:

function thisFunctionNameIsReallyLong (address x, address y, address z)
public
onlyowner
priced
returns (address)

doSomething () ;

function thisFunctionNameIsReallyLong (
address x,
address vy,
address z,

public

onlyowner

priced

returns (address)

doSomething () ;

No:

function thisFunctionNameIsReallyLong (address x, address y, address z)
public
onlyowner
priced

returns (address) {
doSomething () ;

function thisFunctionNameIsReallyLong (address x, address y, address z)
public onlyowner priced returns (address)

(continues on next page)

158 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

doSomething () ;

function thisFunctionNameIsReallylLong (address x, address y, address z)
public
onlyowner
priced
returns (address) {
doSomething () ;

f—

59
Mo
TN
lo,
i
)
1=}
ki
=)
)
o
o
o
Ao
rlo
B
4
o,
my,
=9,
1z
o
=2
>
re
il
i
)
TN
o
Hd
rr
i
o3

A& ool ghct.
Yes:

function thisFunctionNameIsReallyLong (
address a,
address Db,
address c

public

returns (
address someAddressName,
uint256 LongArgument,
uint256 Argument

doSomething ()

return (
veryLongReturnArgl,
veryLongReturnArg2,
veryLongReturnArg3
)i

No:

function thisFunctionNameIsReallyLong (
address a,
address b,
address c

public

returns (address someAddressName,
uint256 LongArgument,
uint256 Argument)

doSomething ()
return (veryLongReturnArgl,

veryLongReturnArgl,
veryLongReturnArgl) ;

b
o oZ

QA7 BT A
£ gojme i

3

37
A

o

1o,

5 A9, AR} AAAG 97] o2& v Aoj e} 2L Al o= A Fof 7] A7
A e,

2]

8.10. AElY 710|= 159

Solidity Documentation, £A| 0.5.10

Yes:

contract A is B, C, D {
function A (uint paraml, uint param2, uint param3, uint param4, uint paramb)
B (paraml)
C(param2, param3)
D (paramé)
public

// do something with paramb

No:

contract A is B, C, D {
function A (uint paraml, uint param2, uint param3, uint param4, uint paramb)
B (paraml)
C(param2, param3)
D (param4)
public
{

// do something with paramb

contract A is B, C, D {
function A (uint paraml, uint param2, uint param3, uint param4, uint paramb)
B (paraml)
C(param2, param3)
D (paramé)
public {
// do something with paramb

—

-

UL FL P45 AT) F Zo] BT A 4 Qg
34

function shortFunction() public { doSomething(); }

4 A G o] FFolS et s 1A S

=
oro.mE AR H49) Tehe Yelok 9]

Eo|7] iyt o] 7holE g Ao BE A€ HFAE
ot .

of

TODO

W Mot

Y W52 AAE 1), eI FBE Afo] FHE T4 uink
Yes

uint[] x;

160 Chapter 8. Contents

Al 0.5.10

=
=

Solidity Documentation,

No:

’uint [1 x;

__oo

At

t

~O0
T

|

7|Et

Yes:

"fOO";

str

".

'To be or not to be...

"Hamlet says,

str

No:

= 'bar';

str

-Oscar Wilde';

everyone else is already taken."

'"Be yourself;

str

« @Az} Apole] B

Yes:

= 100 / 10;

X
X

=Yy && zj

X

No:

3+4;
v&&zy

X 4=

X

Yes:

X = 2%%3 + 5;
X = 2%y + 3%xz;

* (a-b);

(at+b)

X

No:

X = 2%x 3 + 5;

X = ytz;
x +=1;

8.10.3 HH 11

161

AE} 710|E

8.10.

Solidity Documentation, £A| 0.5.10

* lowercase

* lower_case_with_underscores

e UPPERCASE

e UPPER_CASE_WITH_UNDERSCORES

* CapitalizedWords (or CapWords)

* mixedCase (A A7} AEA}=2 CapitalizedWords 2} Tt 2 t}H)

* Capitalized_Words_With_Underscores

FA: CapWords AEFAoA o]y dS AMEE W o|UAd REE A2 Ut =, HttpServerError thA4l
HTTPServerErrorE AR8-6F= 2 Ut} mixedCase AEBF Ao A] o] & AHG S ® o] E S HZ A2 25|, o] F
ol g0 g XA Wl ARAE AFEI) =, XMLHTTPRequest 1 Tt xmIHTTPRequest©] W51 th.

mstjor & EEH

©1-BAY ol 9 287
+ 0- 274 oh o
© 1- B eyed] iR

7 W% 0|82 AHg S AL 8. FF 54 13} 03 5] ojele W} gl o,

Sk

ZEMEQ} alo|E 22| 0|2

—_—

AEHES}L FolH#g]lE: CapWords AEYES AFRSYrh o): SimpleToken, SmartBank,
CertificateHashRepository,Player.

724 0|F

FZ A& CapWords AEFY-S AFR-SHU T o: MyCoin, Position, PositionXY.

O|HIE 0|

oju

oJHIE+= CapWords AEFY-S ARESUtT}. ¢f: Deposit, Transfer, Approval, BeforeTransfer,
AfterTransfer.

poh

14 018

A7 obd = mixedCase AEFI-S AFESIUTE of: getBalance, transfer, verifyOwner,
addMember, changeOwner.

162 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

pol

14 Q12 O]

Ofru

St °1z}= mixedCase AEFYS ARESHUTE o initialSupply, account, recipientAddress,
senderAddress, newOwner.

ALY AEA| A F2SH= gtolHelg] b8 AT o, L2 A= 49 A HA QIAfo{of 6t self 2=
o152 AU,

294, Atef 14 0|

ol

mixedCase AEFL S AFRSHUTE o: totalSupply, remainingSupply, balancesOf, creatorAddress,
isPreSale, tokenExchangeRate.

A
4%

grr wEL W QEAS
CONTRACT_VERSION.

>
oo
o
Iy
.

of: MAX_BLOCKS, TOKEN_NAME, TOKEN_TICKER,

Aozt o|F

mixedCase A~EFY g3t} 9): onlyBy, onlyAfter, onlyDuringThePreSale.

mO
filo
>

dAHL CapWords AEFL-S AFRSHU T of: TokenGroup, Frame, HashStyle, CharacterLocation.

ol
oR

=2 44|

* single_trailing_underscore_

o] 2.2 Aok o] Fo] dJoolsl 35T uf Al E Utk

U ALY
TODO

8.11 A} A0|= Df&

8.11.1 ZIESHEQ|Me| &3

A2 Ethergs &+

Effect o] 5 7|33l 9lo] 7P AYsI= e 57 99-g A-45Hs AU, Effecte] 27
H Sz Sgong
= - = DA———

SH= 7P AP el i A3 transfer & TE5HE A0l AAW, AAA RIS
HAASHA] g5 YTt security_consideration H| o]z o A4 H Qo] T3l o] &ol & 4= 15yt

£-© King of the Ether o4 472 ot 248 "richest'7} w17 915} 714 @& £2 AEHER $F5H 47
2o AL
oh-o] AEHECA FAlo] 'richest' S MSHITHA, AEA "richest’ 7} D Ao ZDE 71FS el e AY

Yet.

8.11. A} A0|= T{E 163

https://www.kingoftheether.com/

Solidity Documentation, £A| 0.5.10

pragma solidity >0.4.99 <0.6.0

contract WithdrawalContract ({
address public richest;
uint public mostSent;

mapping (address => uint) pendingWithdrawals;
constructor () public payable {

richest = msg.sender;

mostSent = msg.value;

function becomeRichest () public payable returns (bool) ({
if (msg.value > mostSent) {

pendingWithdrawals[richest] += msg.value;

richest = msg.sender;
mostSent = msg.value;
return true;

} else {

return false;

function withdraw () public {
uint amount = pendingWithdrawals[msg.sender];
// e|HE A (re-entrancy) SEE Of&fsf7] 2of
/7 &5t Ao EREQ stES 022 J|Yd] FHAIL.
pendingWithdrawals[msg.sender] = 0;
msg.sender.transfer (amount) ;

a2 A2l Sed o gridil se Ay

pragma solidity >0.4.99 <0.6.0;

contract SendContract {
address payable public richest;
uint public mostSent;

constructor () public payable {
richest = msg.sender;
mostSent = msg.value;

function becomeRichest () public payable returns (bool) ({
if (msg.value > mostSent) {
/7 oAl efelo] ZAel 2elol g + YZLCr. (OfefolM &

richest.transfer (msg.value);

richest = msg.sender;
mostSent = msg.value;
return true;

} else {

return false;

164

Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

£ Ao, FEA) QFotslof & 22, A7} A5 fallback -8 71 AEAE F25 richest 2 Y5
AEAES G 5 gt 4 % ook AU h (I 550] revert () 5 AHg 87U T3] 2300 o] Afe]
728 TS B A AN 2 M) TR A, "poisoned” AEMES 7| ZL transfer 71915 $2
o] 27 2 Yu}e} AEWES} B2o] becomerichest & Alu} & Ao| 1, o] HEAE] gla] AeE
gmlﬂ;ﬁmuqa

é“::
fu o
rEI
mln

R AN

8.11.2 stz M|~

ARt A A= HE A E oA o] vk Ql sl luyth. dobgof & A2, thEARE oY A FE 7 FAl e HE
E ZH9 W8S d=AS ZZ AR 2 4 flohs AdUth 4255 Ao gn HEAES ¢ ¢7] o|dA
S 5 QU sHAT AEHETL HlolE S elo g b, thE RE AIGE £ gAY HolHE ole &
F=AdY et

U2 AEHEE o] AEHE AHE QA £ 5IE2 P2 Al & & 55Ut AHSE public 02 A
SHA] = 7 o] AIRM2 HEER ATyt

Attt FEHE FE & $AstAU A EHE 45 55 & 5 e AR AT T 4 &Y thgol &
2 A digt gAY

function modifiers S A}-2-51H o]& A|HS w9 Lot 7] A & 4= Q5 UTH

pragma solidity >=0.4.22 <0.6.0;

contract AccessRestriction {
// OIAEE AEEAOIM e EL .
// O§I7|A, ‘msg.sender’ &
// 0l Aets ddste AZLYHLCt.
address public owner = msg.sender;
uint public creationTime = now;

/) T=EAE AHESHY g*"O/
// BE2E HEY
/7 O +=F2p7
/B B3
// R0 E3tetE HAR}
// FI7HEH L.
modifier onlyBy (address _account)
{
require (
msg.sender == _account,
"Sender not authorized."
)i
/7o B O BYSHR OtMR ! +FAH0f
/) AtE E oo, ;o HA g
// B2ELZ XL L),

}

/// _newOwner' & 0] Z1E2HE |

/77 M ARAZE BHELCH,

function changeOwner (address _newOwner)
public
onlyBy (owner)

(continues on next page)

8.11. A} A0|= T{E 165

Solidity Documentation, £A| 0.5.10

G B B 5 s)

owner = _newOwner;

modifier onlyAfter (uint _time) {
require (
now >= _time,
"Function called too early."
)i

—r

/) Lrd JEE ARHAL.
///) ZESET YKEl
/77 ALOoF B & g £ YUt
function disown ()

public

onlyBy (owner)

onlyAfter (creationTime + 6 weeks)

delete owner;

/7 O] =Zzf
/58 2
/) =
// g
// Ol Solidity 0.4.
/)i OlFel BE
modifier costs (uint _amount) {

4
H
rl

require (
msg.value >= _amount,
"Not enough Ether provided."
)
7
if (msg.value > _amount)
msg.sender.transfer (msg.value - _amount);

function forceOwnerChange (address _newOwner)
public
payable
costs (200 ether)

owner = _newOwner;

/7 ZIRRe] oA 2

if (uint (owner) & 0 == 1)
// Ol Solidity 0.4.0 O[|&Q/
// HIAOIME StE 5 YUS L.
return;

// 23 280 Cfgt gtE

—

Fet el tisiA & tha Al A Ayt

o
A
fol
e
2
=)
o
_IO
=
>
il
=
=
st
ol
32
rir
e
i)
Jm

166 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

8.11.3 AMEf {4l
AEHEE= TF A AAMHE S YTh oA Tell, AEHEFO| 2] 54351 thE 5o 25
SEHE oHe @A S AL syt @ 252 FF IS B AEHES b2 B = A A7y
o (53] AEHE Hdo] FTAg Q1 73-¢-oll) ok, At of 54 A3 oA A7 gAlof AHg L 2 g 3= 2 0]
ARy

A& S0l "SFRIE dS sk DA A AlFste] "SH At A0 R = e AR HEshe
Lol &4 AEHET} ST

o] el FHlE RATF ot AEHE of Frd Abg= Uo7 Adl] &= 84S AHE & Alsy
Ol

o9 AA o)A, A2} at Stage &= @57 EA DA AT S EEEE B FU T
A% timed transitions = 2= $Fpof| A AFR &= £~A A timeTransitions ©f 93] A€ Utt.
UEAEO 2, 577} transitionext £ B4 BRE U, AEHOR b AR Yot 517 al 4

89 5 et

pragma solidity >=0.4.22 <0.6.0;

contract StateMachine {
enum Stages {
AcceptingBlindedBids,
RevealBids,
AnotherStage,
AreWeDoneYet,
Finished

}

// O &0 S HHAQILICE.
Stages public stage = Stages.AcceptingBlindedBids;

uint public creationTime = now;

modifier atStage (Stages _stage) {
require (
stage == _stage,
"Function cannot be called at this time."
)i

—r

function nextStage () internal ({
stage = Stages (uint (stage) + 1);
}

// timed transitions& T ofAAIL.

/7 O =3xE P oAgoffoF ghict. g ged,
// Guards?} MEZ28 CSAHE Defstz %2 A uct.
modifier timedTransitions () {

if (stage == Stages.AcceptingBlindedBids &&
now >= creationTime + 10 days)
nextStage () ;
if (stage == Stages.RevealBids &&

now >= creationTime + 12 days)

(continues on next page)

8.11. Z}= M0|= IfjEd 167

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

nextStage () ;
// CfE Bl Zefo] ofsf MetElLCt.

—r

/) =AMt 28!
function bid()
public
payable
timedTransitions

atStage (Stages.AcceptingBlindedBids)

// Rele oZIM dRAE PR g ALt

function reveal ()

public

timedTransitions

atStage (Stages.RevealBids)
{
}

/70 32 g0t REE F
// ttE HAZ Ols gL Ct.
modifier transitionNext ()

{

nextStage () ;

function g()
public
timedTransitions
atStage (Stages.AnotherStage)
transitionNext

function h{()
public
timedTransitions
atStage (Stages.AreWeDoneYet)
transitionNext

function 1i ()
public
timedTransitions
atStage (Stages.Finished)

168

Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

8.12 22l H1 2|A2E

ot & Il E T, Solidity ot 2jofl A dejxl Hel ¥l M9 JSON ZH 4] 2| ~ES ZF %A
7l AAE Github repository o4 & ~HE|Z UL o] BAEE 033 WA717] A%e Sabrie], 1
H Aol A A O 2 g2 AP SR MIES 2 AE] WA sy

bugs_by_version json 21l &= thE shdo] A5, ol B4 Hutd e Ho| JFS F= WIS gelst
= AHE 4 YE YT

sto

0|
—~

B
l>_l

AEHE

r_
i
i)
o
|m
i)
|m
1o
o
fol
2
oo
_0|L
rir
i
il
o flo
i
N
2,
=)
)
_VL
o
)
>.
mlm
nN‘
oll
o
et
i
i)

o A

lul
N
N

A Lr
B> |m
1o &

[>
mm o
g oy
LN

44ma§%wmamqm4i

%&EOEEQﬂMHﬂﬂOQE

l‘-lj_

YAto] E o] URL, A=A}
=94 5117]'3}_0‘% Zz o] Antd] WA, AejA}et

DA (fixed) ojWst M 1% T3E] 2] ¢ke 2 xo] Antle] BjA
HESH 7SN H o2 IR H A, A=A

AZE W19 AR o9 Bg, g, BE, 55 JEUE gHAEA 9 WA sdw 24 &g, Fgor

A WA S EES Tl

Z7A 98 dot= 2. @A o] A= F-&% optimize %
optimizerZ #of gruth Z o] Fojx|z] ¢to W, W17} ot 7HEFEEH U

AA o] o= AntE HEHETL WIS 7IA Y =4 Yl E Bilsks of 87k AP sy A
WA AA F8-2 Javascript AFAI QU T} o] = W17 Qe A AA FE("source-regex") 2} L] oHO}:?:}
Ytk A2 sh= o] glotd, M17F EAsHR] ¢S 7He Aol w5y W 2, A5k o] I,
H 7L &2 %ﬁ—‘/]ﬂr AEAe o171 14°H/‘1 stripping F4-& 2] F, &2 FEof| HARE A]-8-5fjof
Sttt THA AAF 582 Solidity =2 7389] A3 AST("ast-compact-json-path")o| A HA} & mjj &1 ¢}
o S8 A = JsonPath A2 JY T Solidity ASTS] 3 =71 2] e shtete AA|6HA] = 7,

=
i
H
ol
55
olt
3N

- = -

W17t 24 8 4 Qs

"name": "ExpExponentCleanup",

"summary": "Using the ** operator with an exponent of type shorter than 256
—bits can result in unexpected values."

"description": "Higher order bits in the exponent are not properly cleaned,
—before the EXP opcode is applied if the type of the exponent expression is smaller
—than 256 bits and not smaller than the type of the base. In that case, the result,
—might be larger than expected if the exponent is assumed to lie within the value,
—range of the type. Literal numbers as exponents are unaffected as are exponents or,
—bases of type uint256.",

(continues on next page)

8.12. &2 K1 2|AE 169

https://github.com/ethereum/solidity/blob/develop/docs/bugs.json
https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json

Solidity Documentation, £A| 0.5.10

o d HolA A A A%

"fixed": "0.4.25",
"severity": "medium/high",
"check": {"regex-source": "["/]\\x\\x *x["/0-9 1"}
}I
{
"name": "EventStructWrongData",
"summary": "Using structs in events logged wrong data.",
"description": "If a struct is used in an event, the address of the struct is_
—logged instead of the actual data.",
"introduced": "0.4.17",
"fixed": "0.4.25",
"severity": "very low",
"check": {"ast-compact-json-path": "$..[?(@.nodeType === 'EventDefinition')]..
—[? (Q@.nodeType === 'UserDefinedTypeName' && (@.typeDescriptions.typeString.startsWith (
—'struct'))]"}
}I
{
"name": "NestedArrayFunctionCallDecoder",
"summary": "Calling functions that return multi-dimensional fixed-size arrays,

—can result in memory corruption.",

"description": "If Solidity code calls a function that returns a multi-
—dimensional fixed-size array, array elements are incorrectly interpreted as memory,,
—pointers and thus can cause memory corruption if the return values are accessed.
—Calling functions with multi-dimensional fixed-size arrays is unaffected as is_,
—returning fixed-size arrays from function calls. The regular expression only checks_
—1f such functions are present, not if they are called, which is required for the,
—contract to be affected.",

"introduced": "0.1.4",

"fixed": "0.4.22",

"severity": "medium",

"check": {"regex-source": "returns[”; {1*\\[\\s*["\\] \\t\\r\\n\\v\\f] [*
SANTTFANTIANNSH AN [\ \s* [N ANENNE\ADA\ANVANE] [A\NTT+\NNT [G T+ {0 ™)

}I
{

"name": "OneOfTwoConstructorsSkipped",

"summary": "If a contract has both a new-style constructor (using the_
—constructor keyword) and an old-style constructor (a function with the same name as_
—the contract) at the same time, one of them will be ignored.",

"description": "If a contract has both a new-style constructor (using the
—constructor keyword) and an old-style constructor (a function with the same name as_
—the contract) at the same time, one of them will be ignored. There will be a_,
—compiler warning about the old-style constructor, so contracts only using new-style,
—constructors are fine.",

"introduced": "0.4.22",

"fixed": "0.4.23",

"severity": "very low"

"name": "ZeroFunctionSelector",

"summary": "It is possible to craft the name of a function such that it is_
—executed instead of the fallback function in very specific circumstances.",

"description": "If a function has a selector consisting only of zeros, is_
—payable and part of a contract that does not have a fallback function and at most,
—five external functions in total, this function is called instead of the fallback,,
—function if Ether is sent to the contract without data.",

"fixed": "0.4.18",

"severity": "very low"

(continues on next page)

170 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

o d HolA A A A%

"name": "DelegateCallReturnvValue",

"summary": "The low-level .delegatecall() does not return the execution,
—outcome, but converts the value returned by the functioned called to a boolean,,
—~instead.",

"description": "The return value of the low-level .delegatecall() function is_
—taken from a position in memory, where the call data or the return data resides._
—This value is interpreted as a boolean and put onto the stack. This means if the,

—called function returns at least 32 zero bytes, .delegatecall() returns false even,
—1if the call was successuful.",
"introduced": "0.3.0",
"fixed": "0.4.15",
"severity": "low"
}I
{
"name": "ECRecoverMalformedInput",
"summary": "The ecrecover () builtin can return garbage for malformed input.",
"description": "The ecrecover precompile does not properly signal failure for,

—malformed input (especially in the 'v' argument) and thus the Solidity function can,
—return data that was previously present in the return area in memory.",

"fixed": "0.4.14",
"severity": "medium"
}’
{
"name": "SkipEmptyStringLiteral",
"summary": "If \"\" is used in a function call, the following function_
—arguments will not be correctly passed to the function.",
"description": "If the empty string literal \"\" is used as an argument in a_

—function call, it is skipped by the encoder. This has the effect that the encoding,
—of all arguments following this is shifted left by 32 bytes and thus the function,
—call data is corrupted.",

"fixed": "0.4.12",

"severity": "low"

}I
{

"name": "ConstantOptimizerSubtraction",

"summary": "In some situations, the optimizer replaces certain numbers in the
—code with routines that compute different numbers.",

"description”: "The optimizer tries to represent any number in the bytecode,,
—by routines that compute them with less gas. For some special numbers, an incorrect,
—routine is generated. This could allow an attacker to e.g. trick victims about a_,
—specific amount of ether, or function calls to call different functions (or none at,_
—all).",

"link": "https://blog.ethereum.org/2017/05/03/solidity-optimizer-bug/",

"fixed": "0.4.11",

"severity": "low",

"conditions": {

"optimizer": true

"name": "IdentityPrecompileReturnIgnored",
"summary": "Failure of the identity precompile was ignored.",
"description": "Calls to the identity contract, which is used for copying,,

—memory, ignored its return value. On the public chain, calls to the identity,,
—precompile can be made in a way that they never fail, but this might be different

—on private chains.", (continues on next page)

8.12. &2 K1 2|AE 171

Solidity Documentation, £A| 0.5.10

o d HolA A A A%

"severity": "low",
"fixed": "0.4.7"
}I
{
"name": "OptimizerStateKnowledgeNotResetForJumpdest",
"summary": "The optimizer did not properly reset its internal state at jump,,
—destinations, which could lead to data corruption.",
"description": "The optimizer performs symbolic execution at certain stages._

—At jump destinations, multiple code paths join and thus it has to compute a common,,
—state from the incoming edges. Computing this common state was simplified to Jjust_,
—use the empty state, but this implementation was not done properly. This bug cang,
—cause data corruption.",

"severity": "medium",
"introduced": "0.4.5",
"fixed": "0.4.6",
"conditions": {

"optimizer": true

"name": "HighOrderByteCleanStorage",

"summary": "For short types, the high order bytes were not cleaned properly,,
—and could overwrite existing data.",

"description": "Types shorter than 32 bytes are packed together into the same
—32 byte storage slot, but storage writes always write 32 bytes. For some types, the
—higher order bytes were not cleaned properly, which made it sometimes possible to,,
—overwrite a variable in storage when writing to another one.",

—

"link": "https://blog.ethereum.org/2016/11/01/security-alert-solidity-
—variables-can-overwritten-storage/",
"severity": "high",
"introduced": "0.1.6",
"fixed": "0.4.4"
}’
{
"name": "OptimizerStaleKnowledgeAboutSHA3",
"summary": "The optimizer did not properly reset its knowledge about SHA3

—operations resulting in some hashes (also used for storage variable positions) not,,
—being calculated correctly.",

"description": "The optimizer performs symbolic execution in order to save re-—
—evaluating expressions whose value is already known. This knowledge was not_
—properly reset across control flow paths and thus the optimizer sometimes thought,,
—that the result of a SHA3 operation is already present on the stack. This could,,
—result in data corruption by accessing the wrong storage slot.",

"severity": "medium",

"fixed": "0.4.3",

"conditions": {

"optimizer": true

"name": "LibrariesNotCallableFromPayableFunctions",

"summary": "Library functions threw an exception when called from a call that,
—received Ether.",

"description": "Library functions are protected against sending them Ether
—through a call. Since the DELEGATECALL opcode forwards the information about how_,
—much Ether was sent with a call, the library function incorrectly assumed that
—Ether was sent to the library and threw an exception.",

(continues on next page)

172 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

o d HolA A A A%

"severity": "low",
"introduced": "0.4.0",
"fixed": "0.4.2"
}I
{
"name": "SendFailsForZeroEther",
"summary": "The send function did not provide enough gas to the recipient if_

—no Ether was sent with it.",

"description": "The recipient of an Ether transfer automatically receives a
—certain amount of gas from the EVM to handle the transfer. In the case of a zero-
—transfer, this gas is not provided which causes the recipient to throw an exception.

—
"severity": "low",
"fixed": "0.4.0"
}I
{
"name": "DynamicAllocationInfiniteLoop",
"summary": "Dynamic allocation of an empty memory array caused an infinite
—~loop and thus an exception.",
"description": "Memory arrays can be created provided a length. If this_,

—length is zero, code was generated that did not terminate and thus consumed all gas.

o
"severity": "low",
"fixed": "0.3.6"
}I
{
"name": "OptimizerClearStateOnCodePathJoin",
"summary": "The optimizer did not properly reset its internal state at Jjump,,
—destinations, which could lead to data corruption.",
"description": "The optimizer performs symbolic execution at certain stages._

—At jump destinations, multiple code paths join and thus it has to compute a common,,
—state from the incoming edges. Computing this common state was not done correctly.
—This bug can cause data corruption, but it is probably quite hard to use for_
—targeted attacks.",

"severity": "low",
"fixed": "0.3.6",
"conditions": {
"optimizer": true
}
}I
{
"name": "CleanBytesHigherOrderBits",
"summary": "The higher order bits of short bytesNN types were not cleaned

—before comparison.",

"description": "Two variables of type bytesNN were considered different if
—their higher order bits, which are not part of the actual value, were different. An_
—attacker might use this to reach seemingly unreachable code paths by providing,,
—incorrectly formatted input data.",

"severity": "medium/high",
"fixed": "0.3.3"
}’
{
"name": "ArrayAccessCleanHigherOrderBits",
"summary": "Access to array elements for arrays of types with less than 32

—bytes did not correctly clean the higher order bits, causing corruption in other
—array elements.",
"description": "Multiple elements of an array of values that are shorter than,

—~17 bytes are packed into the same storage slot. Writing to a single elé%@ﬁ%m%@l¥%kﬁ§F)
—an array did not properly clean the higher order bytes and thus could lead to data,,

8.12, St T a|AE 173

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

"severity": "medium/high",
"fixed": "0.3.1"
}I
{
"name": "AncientCompiler",
"summary": "This compiler version is ancient and might contain several

—undocumented or undiscovered bugs.",

"description": "The list of bugs is only kept for compiler versions starting,
—from 0.3.0, so older versions might contain undocumented bugs.",

"severity": "high",

"fixed": "0.3.0"

8.13 Contributing

Help is always appreciated!

To get started, you can try 4~ 0j/4] B =3}7] in order to familiarize yourself with the components of Solidity and the
build process. Also, it may be useful to become well-versed at writing smart-contracts in Solidity.

In particular, we need help in the following areas:
* Improving the documentation
* Responding to questions from other users on StackExchange and the Solidity Gitter

* Fixing and responding to Solidity’s GitHub issues, especially those tagged as up-for-grabs which are meant as
introductory issues for external contributors.

Please note that this project is released with a Contributor Code of Conduct. By participating in this project - in the
issues, pull requests, or Gitter channels - you agree to abide by its terms.

8.13.1 How to Report Issues

To report an issue, please use the GitHub issues tracker. When reporting issues, please mention the following details:
* Which version of Solidity you are using
* What was the source code (if applicable)
e Which platform are you running on
* How to reproduce the issue
e What was the result of the issue
* What the expected behaviour is

Reducing the source code that caused the issue to a bare minimum is always very helpful and sometimes even clarifies
a misunderstanding.

8.13.2 Workflow for Pull Requests

In order to contribute, please fork off of the develop branch and make your changes there. Your commit messages
should detail why you made your change in addition to what you did (unless it is a tiny change).

174 Chapter 8. Contents

https://ethereum.stackexchange.com
https://gitter.im/ethereum/solidity
https://github.com/ethereum/solidity/issues
https://github.com/ethereum/solidity/issues?q=is%3Aopen+is%3Aissue+label%3Aup-for-grabs
https://raw.githubusercontent.com/ethereum/solidity/develop/CODE_OF_CONDUCT.md
https://github.com/ethereum/solidity/issues

Solidity Documentation, £A| 0.5.10

If you need to pull in any changes from develop after making your fork (for example, to resolve potential merge
conflicts), please avoid using git merge and instead, git rebase your branch. This will help us review your
change more easily.

Additionally, if you are writing a new feature, please ensure you add appropriate test cases under test/ (see below).

However, if you are making a larger change, please consult with the Solidity Development Gitter channel (different
from the one mentioned above, this one is focused on compiler and language development instead of language use)
first.

New features and bugfixes should be added to the Changelog.md file: please follow the style of previous entries,
when applicable.

Finally, please make sure you respect the coding style for this project. Also, even though we do CI testing, please test
your code and ensure that it builds locally before submitting a pull request.

Thank you for your help!

8.13.3 Running the compiler tests
There is a script at scripts/tests.sh which executes most of the tests and runs aleth automatically if it is in
the path, but does not download it, so it most likely will not work right away. Please read on for the details.

Solidity includes different types of tests. Most of them are bundled in the application called soltest. Some of them
require the aleth client in testing mode, some others require 1ibz3 to be installed.

To run a basic set of tests that neither require aleth nor 1ibz3, run ./scripts/soltest.sh --no-ipc
——-no-smt. This script will run build/test/soltest internally.

ZF4]: Those working in a Windows environment wanting to run the above basic sets without aleth or libz3 in Git Bash,
you would have to do: . /build/test/RelWithDebInfo/soltest.exe -- --no-ipc --no-smt. If
you’re running this in plain Command Prompt, use .\build\test\RelWithDebInfo\soltest.exe —-
--no—-ipc —--no-smt.

The option ——no-smt disables the tests that require 1ibz3 and ——no-ipc disables those that require aleth.

If you want to run the ipc tests (those test the semantics of the generated code), you need to install aleth and run it in
testing mode: aleth —-test -d /tmp/testeth (make sure to rename it).

Then you run the actual tests: . /scripts/soltest.sh ——ipcpath /tmp/testeth/geth.ipc.

To run a subset of tests, filters can be used: ./scripts/soltest.sh -t TestSuite/TestName
——ipcpath /tmp/testeth/geth.ipc, where TestName can be a wildcard *.

The script scripts/tests. sh also runs commandline tests and compilation tests in addition to those found in
soltest.

The CI even runs some additional tests (including solc—js and testing third party Solidity frameworks) that require
compiling the Emscripten target.

ZFX: Some versions of aleth cannot be used for testing. We suggest using the same version that is used by the So-
lidity continuous integration tests. Currently the CI uses d66lac4fecOaeffbedcdcl95£67£5ded0c798278
of aleth.

8.13. Contributing 175

https://gitter.im/ethereum/solidity-dev
https://raw.githubusercontent.com/ethereum/solidity/develop/CODING_STYLE.md
https://github.com/ethereum/cpp-ethereum/releases/download/solidityTester/aleth_2018-06-20_artful

Solidity Documentation, £A| 0.5.10

Writing and running syntax tests

Syntax tests check that the compiler generates the correct error messages for invalid code and properly accepts valid
code. They are stored in individual files inside tests/libsolidity/syntaxTests. These files must contain
annotations, stating the expected result(s) of the respective test. The test suite will compile and check them against the
given expectations.

Example: . /test/libsolidity/syntaxTests/double_stateVariable_declaration.sol

contract test {
uint256 variable;
uintl28 variable;

}

/) ==

// DeclarationError: (36-52): Identifier already declared.

A syntax test must contain at least the contract under test itself, followed by the separator // —-—-. The following
comments are used to describe the expected compiler errors or warnings. The number range denotes the location in
the source where the error occurred. In case the contract should compile without any errors or warning, the section
after the separator has to be empty and the separator can be left out completely.

In the above example, the state variable variable was declared twice, which is not allowed. This will result in a
DeclarationError stating that the identifier was already declared.

The tool that is being used for those tests is called isoltest and can be found under . /test/tools/. Itis an
interactive tool which allows editing of failing contracts using your preferred text editor. Let’s try to break this test by
removing the second declaration of variable:

contract test {
uint256 variable;
}
/) -
// DeclarationError: (36-52): Identifier already declared.

Running . /test/isoltest again will result in a test failure:

syntaxTests/double_stateVariable_declaration.sol: FAIL
Contract:
contract test {
uint256 variable;

Expected result:

DeclarationError: (36-52): Identifier already declared.
Obtained result:

Success

isoltest prints the expected result next to the obtained result, but also provides a way to change edit / update / skip
the current contract or to even quit. It offers several options for failing tests:

 edit: isoltest tries to open the contract in an editor so you can adjust it. It either uses the editor given on the
command line (as isoltest —--editor /path/to/editor), in the environment variable EDITOR or
just /usr/bin/editor (in this order).

 update: Updates the contract under test. This either removes the annotation which contains the exception not
met or adds missing expectations. The test will then be run again.

* skip: Skips the execution of this particular test.

* quit: Quits isoltest.

176 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

Automatically updating the test above will change it to

contract test {
uint256 variable;

}

/) -

and re-run the test. It will now pass again:

Re-running test case...
syntaxTests/double_stateVariable_declaration.sol: OK

FA: Please choose a name for the contract file that explains what it tests, e.g.
double_variable_declaration.sol. Do not put more than one contract into a single file, unless you
are testing inheritance or cross-contract calls. Each file should test one aspect of your new feature.

8.13.4 Running the Fuzzer via AFL

Fuzzing is a technique that runs programs on more or less random inputs to find exceptional execution states (seg-
mentation faults, exceptions, etc). Modern fuzzers are clever and do a directed search inside the input. We have a
specialized binary called solfuzzer which takes source code as input and fails whenever it encounters an internal
compiler error, segmentation fault or similar, but does not fail if e.g. the code contains an error. This way, internal
problems in the compiler can be found by fuzzing tools.

We mainly use AFL for fuzzing. You need to download and install AFL packages from your repos (afl, afl-clang) or
build them manually. Next, build Solidity (or just the solfuzzer binary) with AFL as your compiler:

cd build

E if needed

make clean

cmake .. -DCMAKE_C_COMPILER=path/to/afl-gcc -DCMAKE_CXX_ COMPILER=path/to/afl-g++
make solfuzzer

At this stage you should be able to see a message similar to the following:

Scanning dependencies of target solfuzzer

[98%] Building CXX object test/tools/CMakeFiles/solfuzzer.dir/fuzzer.cpp.o
afl-cc 2.52b by <lcamtungoogle.com>

afl-as 2.52b by <lcamtungoogle.com>

[+] Instrumented 1949 locations (64-bit, non-hardened mode, ratio 100%).
[100%] Linking CXX executable solfuzzer

If the instrumentation messages did not appear, try switching the cmake flags pointing to AFL’s clang binaries:

E if previously failed

make clean

cmake .. -DCMAKE_C_COMPILER=path/to/afl-clang -DCMAKE_CXX_ COMPILER=path/to/afl-clang++
make solfuzzer

Othwerise, upon execution the fuzzer will halt with an error saying binary is not instrumented:

afl-fuzz 2.52b by <lcamtungoogle.com>
(truncated messages)
[#] Validating target binary...

(continues on next page)

8.13. Contributing 177

http://lcamtuf.coredump.cx/afl/

Solidity Documentation, £A| 0.5.10

(o]" o] Ao A%

[-] Looks like the target binary is not instrumented! The fuzzer depends on
compile-time instrumentation to isolate interesting test cases while
mutating the input data. For more information, and for tips on how to
instrument binaries, please see /usr/share/doc/afl-doc/docs/README.

When source code is not available, you may be able to leverage QEMU
mode support. Consult the README for tips on how to enable this.

(It is also possible to use afl-fuzz as a traditional, "dumb" fuzzer.
For that, you can use the -n option - but expect much worse results.)

[-] PROGRAM ABORT : No instrumentation detected
Location : check_binary (), afl-fuzz.c:6920

Next, you need some example source files. This will make it much easier for the fuzzer to find errors. You can either
copy some files from the syntax tests or extract test files from the documentation or the other tests:

mkdir /tmp/test_cases

cd /tmp/test_cases

E extract from tests:

path/to/solidity/scripts/isolate_tests.py path/to/solidity/test/libsolidity/
—SolidityEndToEndTest.cpp

E extract from documentation:

path/to/solidity/scripts/isolate_tests.py path/to/solidity/docs docs

The AFL documentation states that the corpus (the initial input files) should not be too large. The files themselves
should not be larger than 1 kB and there should be at most one input file per functionality, so better start with a small
number of input files. There is also a tool called af1-cmin that can trim input files that result in similar behaviour of
the binary.

Now run the fuzzer (the —m extends the size of memory to 60 MB):

afl-fuzz —m 60 -i /tmp/test_cases -o /tmp/fuzzer_reports —- /path/to/solfuzzer

The fuzzer will create source files that lead to failures in /tmp/fuzzer_reports. Often it finds many similar
source files that produce the same error. You can use the tool scripts/uniqueErrors. sh to filter out the unique
erTors.

8.13.5 Whiskers

Whiskers is a string templating system similar to Mustache. It is used by the compiler in various places to aid read-
ability, and thus maintainability and verifiability, of the code.

The syntax comes with a substantial difference to Mustache: the template markers { { and } } are replaced by < and >
in order to aid parsing and avoid conflicts with /nline Assembly (The symbols < and > are invalid in inline assembly,
while { and } are used to delimit blocks). Another limitation is that lists are only resolved one depth and they will not
recurse. This may change in the future.

A rough specification is the following:

Any occurrence of <name> is replaced by the string-value of the supplied variable name without any escaping
and without iterated replacements. An area can be delimited by <#name>. . .</name>. It is replaced by as many
concatenations of its contents as there were sets of variables supplied to the template system, each time replacing any
<inner> items by their respective value. Top-level variables can also be used inside such areas.

178 Chapter 8. Contents

https://mustache.github.io

Solidity Documentation, £A| 0.5.10

8.14 Frequently Asked Questions

This list was originally compiled by fivedogit.

8.14.1 Basic Questions

What is the transaction "payload”?

This is just the bytecode "data" sent along with the request.

Create a contract that can be killed and return funds
First, a word of warning: Killing contracts sounds like a good idea, because "cleaning up" is always good, but as seen
above, it does not really clean up. Furthermore, if Ether is sent to removed contracts, the Ether will be forever lost.

If you want to deactivate your contracts, it is preferable to disable them by changing some internal state which causes
all functions to throw. This will make it impossible to use the contract and ether sent to the contract will be returned
automatically.

Now to answering the question: Inside a constructor, msg.sender 1is the creator. Save it. Then
selfdestruct (creator) ; tokill and return funds.

example

Note that if you import "mortal" at the top of your contracts and declare contract SomeContract is
mortal { ... andcompile with a compiler that already has it (which includes Remix), then ki1l () is taken care
of for you. Once a contract is "mortal”, then you can contractname.kill.sendTransaction ({from:eth.
coinbase}), just the same as my examples.

Can you return an array or a string from a solidity function call?

Yes. See array_receiver_and_returner.sol.

Is it possible to in-line initialize an array like so: string[] myarray = ["a", "b"];

Yes. However it should be noted that this currently only works with statically sized memory arrays. You can even
create an inline memory array in the return statement.

Example:

pragma solidity >=0.4.16 <0.6.0;

contract C {
function f() public pure returns (uint8[5] memory) {
string[4] memory adaArr = ["This", "is", "an", "array"];
adaArr[0] = "That";
return [1, 2, 3, 4, 51;

Can a contract function return a struct?

Yes, but only in internal function calls or if pragma experimental "ABIEncoderV2"; isused.

8.14. Frequently Asked Questions 179

mailto:fivedogit@gmail.com
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/05_greeter.sol
https://remix.ethereum.org/
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/60_array_receiver_and_returner.sol

Solidity Documentation, £A| 0.5.10

If | return an enum, | only get integer values in web3.js. How to get the named values?

Enums are not supported by the ABI, they are just supported by Solidity. You have to do the mapping yourself for
now, we might provide some help later.

Can state variables be initialized in-line?

Yes, this is possible for all types (even for structs). However, for arrays it should be noted that you must declare them
as static memory arrays.

Examples:

pragma solidity >=0.4.0 <0.6.0;

contract C {
struct S {
uint a;
uint b;

}

S public x = S(1, 2);
string name = "Ada";
string[4] adaArr = ["This", "is", "an", "array"];

}

contract D {
C c = new C();

}

How do structs work?

See struct_and_for_loop_tester.sol.

How do for loops work?

Very similar to JavaScript. Such as the following example:
for (uint 1 = 0; 1 < a.length; i ++) { al[i] = 1i; }

See struct_and_for_loop_tester.sol.

What are some examples of basic string manipulation (substring, indexO£, charAt, etc)?
There are some string utility functions at stringUtils.sol which will be extended in the future. In addition, Arachnid
has written solidity-stringutils.

For now, if you want to modify a string (even when you only want to know its length), you should always convert it to
abytes first:

pragma solidity >=0.4.0 <0.6.0;

contract C {
string s;

(continues on next page)

180 Chapter 8. Contents

https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/65_struct_and_for_loop_tester.sol
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/65_struct_and_for_loop_tester.sol
https://github.com/ethereum/dapp-bin/blob/master/library/stringUtils.sol
https://github.com/Arachnid/solidity-stringutils

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

function append(byte c) public {
bytes (s) .push(c);
}

function set (uint i, byte c) public {
bytes (s) [1] = c;

Can | concatenate two strings?

Yes, you can use abi.encodePacked:

pragma solidity >=0.4.0 <0.6.0;

library ConcatHelper {
function concat (bytes memory a, bytes memory b)
internal pure returns (bytes memory) {
return abi.encodePacked(a, b);

Why is the low-level function .call () less favorable than instantiating a contract with a variable
(ContractB b;) and executing its functions (b.doSomething () ;)?

If you use actual functions, the compiler will tell you if the types or your arguments do not match, if the function does
not exist or is not visible and it will do the packing of the arguments for you.

See ping.sol and pong.sol.

When returning a value of say uint type, is it possible to return an undefined or "null"-like value?

This is not possible, because all types use up the full value range.

You have the option to throw on error, which will also revert the whole transaction, which might be a good idea if
you ran into an unexpected situation.

If you do not want to throw, you can return a pair:

pragma solidity >0.4.23 <0.6.0;

contract C {
uint[] counters;

function getCounter (uint index)
public
view
returns (uint counter, bool error) {
if (index >= counters.length)
return (0, true);
else
return (counters[index], false);

(continues on next page)

8.14. Frequently Asked Questions 181

https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/45_ping.sol
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/45_pong.sol

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

function checkCounter (uint index) public view {
(uint counter, bool error) = getCounter (index);
if (error) {
// Handle the error
} else {
// Do something with counter.
require (counter > 7, "Invalid counter value");

Are comments included with deployed contracts and do they increase deployment gas?

No, everything that is not needed for execution is removed during compilation. This includes, among others, comments,
variable names and type names.

What happens if you send ether along with a function call to a contract?

It gets added to the total balance of the contract, just like when you send ether when creating a contract. You can only
send ether along to a function that has the payable modifier, otherwise an exception is thrown.

8.14.2 Advanced Questions

How do you get a random number in a contract? (Implement a self-returning gambling contract.)
Getting randomness right is often the crucial part in a crypto project and most failures result from bad random number
generators.

If you do not want it to be safe, you build something similar to the coin flipper but otherwise, rather use a contract that
supplies randomness, like the RANDAO.

Get return value from non-constant function from another contract

The key point is that the calling contract needs to know about the function it intends to call.

See ping.sol and pong.sol.

How do you create 2-dimensional arrays?

See 2D_array.sol.

Note that filling a 10x10 square of uint 8 + contract creation took more than 800, 000 gas at the time of this writing.
17x17 took 2, 000, 000 gas. With the limit at 3.14 million... well, there’s a pretty low ceiling for what you can create
right now.

Note that merely "creating" the array is free, the costs are in filling it.

Note2: Optimizing storage access can pull the gas costs down considerably, because 32 uint 8 values can be stored
in a single slot. The problem is that these optimizations currently do not work across loops and also have a problem
with bounds checking. You might get much better results in the future, though.

182 Chapter 8. Contents

https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/35_coin_flipper.sol
https://github.com/randao/randao
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/45_ping.sol
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/45_pong.sol
https://github.com/fivedogit/solidity-baby-steps/blob/master/contracts/55_2D_array.sol

Solidity Documentation, £A| 0.5.10

What happens to a struct’s mapping when copying over a struct?

This is a very interesting question. Suppose that we have a contract field set up like such:

struct User {
mapping (string => string) comments;

function somefunction public {
User userl;
userl.comments["Hello"] = "World";
User user2 = userl;

In this case, the mapping of the struct being copied over into user?2 is ignored as there is no "list of mapped keys".
Therefore it is not possible to find out which values should be copied over.

How do I initialize a contract with only a specific amount of wei?

Currently the approach is a little ugly, but there is little that can be done to improve it. In the case of a contract
A calling a new instance of contract B, parentheses have to be used around new B because B.value would
refer to a member of B called value. You will need to make sure that you have both contracts aware of each other’s
presence and that contract B has a payable constructor. In this example:

pragma solidity >0.4.99 <0.6.0;
contract B {

constructor () public payable {}
contract A {

B child;

function test () public {
child = (new B).value(10) (); //construct a new B with 10 wei

Can a contract function accept a two-dimensional array?

If you want to pass two-dimensional arrays across non-internal functions, you most likely need to use pragma
experimental "ABIEncoderVa";.

What is the relationship between bytes32 and string? Why is it that bytes32 somevar =
"stringliteral"; works and what does the saved 32-byte hex value mean?

The type bytes32 can hold 32 (raw) bytes. In the assignment bytes32 samevar = "stringliteral";,
the string literal is interpreted in its raw byte form and if you inspect somevar and see a 32-byte hex value, this is
just "stringliteral™ in hex.

The type bytes is similar, only that it can change its length.

Finally, st ring is basically identical to bytes only that it is assumed to hold the UTF-8 encoding of a real string.
Since string stores the data in UTF-8 encoding it is quite expensive to compute the number of characters in the
string (the encoding of some characters takes more than a single byte). Because of that, string s; s.length

8.14. Frequently Asked Questions 183

Solidity Documentation, £A| 0.5.10

is not yet supported and not even index access s [2]. But if you want to access the low-level byte encoding of the
string, you can use bytes (s) . length and bytes (s) [2] which will result in the number of bytes in the UTF-8
encoding of the string (not the number of characters) and the second byte (not character) of the UTF-8 encoded string,
respectively.

Can a contract pass an array (static size) or string or bytes (dynamic size) to another contract?

Sure. Take care that if you cross the memory / storage boundary, independent copies will be created:

pragma solidity >=0.4.16 <0.6.0;

contract C {
uint[20] x;

function f () public {

g(x);
h(x);

function g (uint[20] memory y) internal pure ({
yl[2] = 3;
}

function h(uint[20] storage y) internal {
y[3] = 4;

The call to g (x) will not have an effect on x because it needs to create an independent copy of the storage value in
memory. On the other hand, h (x) successfully modifies x because only a reference and not a copy is passed.

Sometimes, when | try to change the length of an array with ex: arrayname.length = 7; I get a
compiler error Value must be an lvalue. Why?

You can resize a dynamic array in storage (i.e. an array declared at the contract level) with arrayname.length =
<some new length>;.If you get the "lvalue" error, you are probably doing one of two things wrong.
1. You might be trying to resize an array in "memory", or

2. You might be trying to resize a non-dynamic array.

pragma solidity >=0.4.18 <0.6.0;

// This will not compile
contract C {
int8[] dynamicStorageArray;
int8[5] fixedStorageArray;

function f () public ({

int8[] memory memArr; // Case 1

memArr.length++; // illegal

int8[5] storage storageArr = fixedStorageArray; // Case 2
storageArr.length++; // illegal
int8[] storage storageArr2 = dynamicStorageArray;

(continues on next page)

184 Chapter 8. Contents

Solidity Documentation, £A| 0.5.10

(oA H ol A M A<

storageArr2.length++; // legal

Important note: In Solidity, array dimensions are declared backwards from the way you might be used to declaring
them in C or Java, but they are access as in C or Java.

For example, int8[] [5] somearray; are 5 dynamic int8 arrays.

The reason for this is that T[5] is always an array of 5 T’s, no matter whether T itself is an array or not (this is not
the case in C or Java).

Is it possible to return an array of strings (string[]) from a Solidity function?

Only when pragma experimental "ABIEncoderV2"; isused.

What does the following strange check do in the Custom Token contract?

require ((balanceOf[_to] + _value) >= balanceOf[_tol);

Integers in Solidity (and most other machine-related programming languages) are restricted to a certain range. For
uint256, thisis O up to 2+x256 - 1. If the result of some operation on those numbers does not fit inside this
range, it is truncated. These truncations can have serious consequences, so code like the one above is necessary to
avoid certain attacks.

Why are explicit conversions between fixed-size bytes types and integer types failing?
Since version 0.5.0 explicit conversions between fixed-size byte arrays and integers are only allowed, if both types have
the same size. This prevents unexpected behaviour when truncating or padding. Such conversions are still possible, but

intermediate casts are required that make the desired truncation and padding convention explicit. See types-conversion-
elementary-types for a full explanation and examples.

Why can number literals not be converted to fixed-size bytes types?

Since version 0.5.0 only hexadecimal number literals can be converted to fixed-size bytes types and only if the number
of hex digits matches the size of the type. See types-conversion-literals for a full explanation and examples.

More Questions?

If you have more questions or your question is not answered here, please talk to us on gitter or file an issue.

8.15 LLL

LLL-2 s-expressions &

Solidity 4| %F 4= LLL
Qg fA5H At E)

o oE

o
=
whelel7l wghE o] 9lon] oAl B el sh9]Al ARl Soliditye} B-6-ghich. shA T, nt

il
i)
it
3
ol
rlo
EQ,
>
i
v

8.15. LLL 185

https://en.bitcoin.it/wiki/Value_overflow_incident
https://gitter.im/ethereum/solidity
https://github.com/ethereum/solidity/issues

Solidity Documentation, £A| 0.5.10

=193 2350 Gt @ AEHA gaU

$ cmake -DLLL=ON ..
$ cmake —--build .

7al: LLL FEHo] 2 AlFH A k2710, &% Solidity #1740l A 21412 A% P

186 Chapter 8. Contents

1=
o

A

abi, 130
abstract contract, 89
access

restricting, 165
account, 21

addmod, 61, 112
address, 21, 45, 48
anonymous, 114
application binary interface, 130
array, 52, 53
allocating, 54
length, 55
literals, 54
push, 55
asm, 96, 140
assembly, 96, 140
assert, 61, 69, 112
assignment, 58, 67
destructuring, 67

B

balance, 21, 45, 62, 112

base
constructor, 88

base class, 85

block, 20, 60, 112
number, 60, 112
timestamp, 60, 112

bool, 44

break, 64

Bugs, 168

byte array, 47

bytes, 49

bytes32, 47

C

C3 linearization, 89
call, 45, 62

callcode, 22, 45, 62, 91
cast, 59
coding style, 148
coin, 19
coinbase, 60, 112
commandline compiler, 123
comment, 41
common subexpression elimination, 109
compiler

commandline, 123
constant, 78, 114
constant propagation, 109
constructor, 71, 87

arguments, 72
continue, 64
contract, 42, 71

abstract, 89

base, 85

creation, 71

interface, 90
contract creation, 23
contract verification, 128
contracts

creating, 66
cryptography, 61, 112

D

data, 60, 112

days, 60

deactivate, 23
declarations, 68

default value, 68
delegatecall, 22, 45, 62, 91
delete, 58

deriving, 85

difficulty, 60, 112
do/while, 64

E

ecrecover, 61, 112

187

Solidity Documentation, £A| 0.5.10

else, 64

enum, 42, 49
escrow, 36

ether, 60
ethereum virtual machine, 21
event, 19, 42, 83
evm, 21
evmasm, 96, 140
exception, 69
experimental, 39
external, 73, 114

F

fallback function, 80

false, 44

finney, 60

fixed, 45

fixed point number, 45

for, 64

function, 42
call, 22, 64
external, 64
fallback, 80
getter, 74
internal, 64
modifier, 42, 76, 165, 167
pure, 79
view, 78

function type, 50

functions, 78

G

gas, 21, 60, 112
gas price, 21, 60, 112
getter

function, 74
goto, 64

H

hours, 60

if, 64
import, 39
indexed, 114
inheritance, 85
multiple, 89
inline
arrays, 54
installing, 23
instruction, 22
int, 45
integer, 45
interface contract, 90

internal, 73, 114
iulia, 140

J

julia, 140

K

keccak256, 61, 112

L

length, 55
library, 22, 91, 94
linearization, 89
linker, 123
literal, 48, 49
address, 48
rational, 48
string, 49
location, 52
log, 23, 84
Ivalue, 58

M

mapping, 19, 57, 107
memory, 21, 52
message call, 22
metadata, 128
minutes, 60
modifiers, 114

msg, 60, 112
mulmod, 61, 112

N

natspec, 41
new, 54, 66
now, 60, 112
number, 60, 112

O

optimizer, 109
origin, 60, 112
overload, 81

P

parameter, 63
input, 63
output, 63

payable, 114

pragma, 38, 39

precedence, 111

private, 73, 114

public, 73, 114

purchase, 36

188

Solidity Documentation, £A| 0.5.10

pure, 114
pure function, 79
push, 55

R

reference type, 52
remote purchase, 36
require, 61, 69, 112
return, 64

revert, 61, 69, 112
ripemd160, 61, 112

S

scoping, 68

seconds, 60
self-destruct, 23
selfdestruct, 23, 63, 112
send, 45, 62, 112
sender, 60, 112

set, 91

sha256, 61, 112

solc, 123

source file, 39

source mappings, 110
stack, 21

state machine, 166
state variable, 42, 107
storage, 21, 21, 52, 107
string, 49

struct, 42, 52, 56
style, 148
subcurrency, 18
super, 112

switch, 64

szabo, 60

T

this, 63, 112

throw, 69

time, 60

timestamp, 60, 112

transaction, 20, 21

transfer, 45, 62

true, 44

type, 44
conversion, 59
deduction, 59
function, 50
reference, 52
struct, 56
value, 44

uint, 45
using for, 91, 94

V

value, 60, 112
value type, 44
var, 59

version, 39

view, 114

view function, 78
visibility, 73, 114

W

weeks, 60

weli, 60

while, 64
withdrawal, 163

Y

years, 60
yul, 140

189

	Notice for Korean
	번역
	유용한 링크
	Solidity 통합 도구들
	Solidity 도구들
	서드파티 Solidity 파서와 문법
	Language Documentation
	Contents
	스마트 컨트랙트 소개
	Solidity 컴파일러 설치하기
	예제를 통한 솔리디티
	솔리디티 파고들기
	보안 측면 고려사항
	컴파일러 사용하기
	컨트랙트 메타데이터
	어플리케이션 바이너리 인터페이스 설명
	Yul
	스타일 가이드
	자주 쓰이는 패턴
	알려진 버그 리스트
	Contributing
	Frequently Asked Questions
	LLL

