
Solid Django
Release 0.1dev

Reinout van Rees

Jul 06, 2017

Contents

1 Preface 1

2 Getting started TODO 5

3 Models and the admin interface TODO 7

4 Working with views and templates TODO 9

5 Controlling Django with URLs TODO 11

6 Labor division: python packaging TODO 13

7 Advanced views and templates TODO 15

8 Present yourself well: javascript and css TODO 17

9 Secure your website: permissions TODO 19

10 Editing and forms TODO 21

11 Debugging and problem solving TODO 23

12 Hosting and webserver integration TODO 25

13 Maintenance Tasks: Management Commands TODO 27

14 Always available: context processors TODO 29

15 Be a micro manager: middleware TODO 31

16 Neighbor integration: REST TODO 33

17 Buildout: more powerful deployment TODO 35

18 Dig deep: full text search TODO 37

19 Escape the relational confines: NoSQL TODO 39

20 Introducing Python for Django programmers 41

i

21 Full table of contents 53

ii

CHAPTER 1

Preface

Hi, I’m Reinout van Rees. You’re now reading my book on Django, so I’ll give you some background
information on myself and the book, first. You’re free to read the actual Django meat of the book, but
this introduction might be fun, too.

I’ll tell you a bit about my background, about the the background of this book and about the book’s
structure. I’ll tell you how you can pay me luxurious sums for this wonderful piece of timeless prose
and how to give feedback.

Reinout’s background

By education, I’m a civil engineer. A military engineer builds missiles, a civil engineer builds targets.
So if an architect designs something, we get to make sure it doesn’t collapse. And if there’s a big storm
surge barrier or something like that: civil engineers.

By hobby and self-education, I’m a programmer. Pascal in the 1990s, Python since 2000. Mostly Zope
and Plone in the beginning; Django since about three years. So I’ve got a quite diverse background,
especially since I’ve delved into the deep, deep pits of Zope/Plone complexity. Lovely stuff. Learned a
lot. Now I’m working full-time with Django. Lovely stuff!

By profession, I’m both a civil engineer and a programmer at the moment. I work at Nelen & Schuur-
mans in the Netherlands, a firm that does consultancy and IT development for water quality and water
protection clients. So if you don’t want water to flood your house and if you don’t want your water to
stink because of floating dead fish: give us a call. We’ll give you a nice Django website.

By internet visibility, I’m pretty visible. At least in the Python/Django community, because my we-
blog at http://reinout.vanrees.org/weblog/ is mostly about Python and Django. I write down a lot of
what I discover or build, but I also make summaries of each and every (Django) conference or Dutch
Python/Django user group meeting I attend. That sure helps a lot.

By hobby, I am a recumbent cyclist and a medieval swordfighter. The first isn’t of interest here, but the
second one is. Medieval swordfighter, you say? Yes, that’s relevant to the book. I’m picking a medieval
theme as my main example, that’s why.

1

http://reinout.vanrees.org
http://en.wikipedia.org/wiki/Civil_engineering
http://zope.org
http://plone.org
http://www.nelen-schuurmans.nl
http://www.nelen-schuurmans.nl
http://reinout.vanrees.org/weblog/
http://reinout.vanrees.org/weblog/tags/djangocon.html
http://reinout.vanrees.org/weblog/tags/pun.html
http://reinout.vanrees.org/weblog/tags/pun.html
http://reinout.vanrees.org/ligfiets

Solid Django, Release 0.1dev

Background of the book

Just a couple of weeks after 2011’s Djangocon.eu conference I got an email from the pragmatic program-
mers whether I was interested to write a book about Django for them. I’m pretty sure that was because
I just wrote a pretty decent summary of each and every talk on that year’s conference. Liveblogging.
Writing a book! Fun! An honour! But why are they asking me just when I’m moving to another house
with my family?!?

Anyhow, I started writing the book and postponed quite some work on our new house. For about 9
months I was busy writing. They even brought in a co-author (thanks, Harry, for all you did!). But after
9 months is was clear that it was simply taking too much time. Abort abort abort: the book got canceled.

Rightly so, as it really took too much time. I think my writing style was out of sync with theirs. And the
level of penmanship they require wasn’t what I could manage. I do tend to be a tad verbose... If I can
drag in another sub-subject, I will drag it in. Getting me in line took too much time.

After the cancellation I took time off. Finish the front garden, for instance. And I took a rest from the
relentless book-writing pace. Writing a book really takes a lot of energy! I couldn’t keep it up anymore
so I took a well-deserved rest.

In november 2012, I restarted my book project. Django 1.5’s christmas 2012 release date told me it was
good to get a core part of the book finished by the same time. Somebody had to tell a good story about
class based views, right? First get the core finished, then add the other necessary parts. and if there’s
interest, finish it all off with bonus content.

Book structure

The book is divided up into three parts.

• Django’s foundation: an intro, models, views, templates, URLs. That’s the absolute basic part of
Django that you need to understand.

• Django’s most common building blocks: what you’ll use and customize most of the time when
building your Django websites. Model queries, admin customization, packaging Django applica-
tions, javascript/css, security, editing/forms and hosting/webserver configuration.

• Extras that can be very handy. REST APIs, south automatic database migrations, Python intro for
new programmers, debugging, management commands, context processors, buildout, nosql.

By the time you read this, the book won’t be fully ready yet. I aim to finish the first part to co-incide
with Django 1.5’s christmas 2012 release. I’ll finish the second part in the months after that.

The extras? Those are extra. Some of them I’ll want to write for my own fun. Some of them I’ll write if
there’s interest in my book (see below) :-)

Paying me ridiculous amounts of money

Why am I writing this book? Am I doing it for the money? Mostly not, but partially yes.

I can write. I’ve written a 250 page PhD thesis. I write a lot on my weblog. So writing is fun. And I’ve
had the idea of writing a (second) book in my mind for some time. Being asked to write a Django book
(see above) provided the spark to actually start!

2 Chapter 1. Preface

http://www.pragprog.com
http://www.pragprog.com
http://reinout.vanrees.org/weblog/2012/05/23/djangobook-schluss.html

Solid Django, Release 0.1dev

Writing takes a ridiculous amount of time, though. Time I’m not spending cycling or swordfighting or
fixing up the house or writing software. So a bit of compensation is in order. The goal that I have in
mind is to try and earn 5000 Euro, enough to pay off my remaining study debt. How’s that for a goal?
(I don’t yet know how it stands with taxes, so I might need to actually earn more to get my hands on
5000).

On the other hand, I’m not going to bother with DRM-protected ebooks. Or HTML pages behind a
paywall. You can read the HTML for free and download the PDF right from my website. I am asking
for a donation, though.

So... if this book is useful to you, giving me some money is a good way to say thanks. I’d say something
between 10 and 20 Euro, more or less. Actually, anything is good, but that’s my suggestion. I haven’t
yet given you my bank account details or paypal account, though. The reason? I haven’t finished even
the first part of the book yet. I don’t want to accept money before I’ve finished with that!

Giving me feedback

I’m writing a book on programming and Django. So there’s only one real choice for giving structured
feedback: github. https://github.com/reinout/soliddjango . Open issues or give me pull requests.

If you’ve got generic feedback, it is probably easiest to send me a regular email at reinout@vanrees.org.

Anyway... have fun with the book!

Part 1: Django’s foundation

1.5. Giving me feedback 3

https://github.com/reinout/soliddjango
mailto:reinout@vanrees.org

Solid Django, Release 0.1dev

4 Chapter 1. Preface

CHAPTER 2

Getting started TODO

TODO

5

Solid Django, Release 0.1dev

6 Chapter 2. Getting started TODO

CHAPTER 3

Models and the admin interface TODO

TODO

7

Solid Django, Release 0.1dev

8 Chapter 3. Models and the admin interface TODO

CHAPTER 4

Working with views and templates TODO

TODO

9

Solid Django, Release 0.1dev

10 Chapter 4. Working with views and templates TODO

CHAPTER 5

Controlling Django with URLs TODO

TODO

Part 2: Django’s common building blocks

11

Solid Django, Release 0.1dev

12 Chapter 5. Controlling Django with URLs TODO

CHAPTER 6

Labor division: python packaging TODO

TODO

13

Solid Django, Release 0.1dev

14 Chapter 6. Labor division: python packaging TODO

CHAPTER 7

Advanced views and templates TODO

TODO

15

Solid Django, Release 0.1dev

16 Chapter 7. Advanced views and templates TODO

CHAPTER 8

Present yourself well: javascript and css TODO

TODO

17

Solid Django, Release 0.1dev

18 Chapter 8. Present yourself well: javascript and css TODO

CHAPTER 9

Secure your website: permissions TODO

TODO

19

Solid Django, Release 0.1dev

20 Chapter 9. Secure your website: permissions TODO

CHAPTER 10

Editing and forms TODO

TODO

21

Solid Django, Release 0.1dev

22 Chapter 10. Editing and forms TODO

CHAPTER 11

Debugging and problem solving TODO

TODO

23

Solid Django, Release 0.1dev

24 Chapter 11. Debugging and problem solving TODO

CHAPTER 12

Hosting and webserver integration TODO

TODO

Part 3: Django’s extras

25

Solid Django, Release 0.1dev

26 Chapter 12. Hosting and webserver integration TODO

CHAPTER 13

Maintenance Tasks: Management Commands TODO

TODO

27

Solid Django, Release 0.1dev

28 Chapter 13. Maintenance Tasks: Management Commands TODO

CHAPTER 14

Always available: context processors TODO

TODO

29

Solid Django, Release 0.1dev

30 Chapter 14. Always available: context processors TODO

CHAPTER 15

Be a micro manager: middleware TODO

TODO

31

Solid Django, Release 0.1dev

32 Chapter 15. Be a micro manager: middleware TODO

CHAPTER 16

Neighbor integration: REST TODO

TODO

33

Solid Django, Release 0.1dev

34 Chapter 16. Neighbor integration: REST TODO

CHAPTER 17

Buildout: more powerful deployment TODO

TODO

35

Solid Django, Release 0.1dev

36 Chapter 17. Buildout: more powerful deployment TODO

CHAPTER 18

Dig deep: full text search TODO

TODO

37

Solid Django, Release 0.1dev

38 Chapter 18. Dig deep: full text search TODO

CHAPTER 19

Escape the relational confines: NoSQL TODO

TODO

Appendices

39

Solid Django, Release 0.1dev

40 Chapter 19. Escape the relational confines: NoSQL TODO

CHAPTER 20

Introducing Python for Django programmers

Understanding the basics of Python is critical for programming in Django. Fortunately, Python is easy
to learn if you already know another language. This appendix gives you a high level overview to help
you understand Django code if you’re new to Python.

First I’ll explain Python as an interpreted and dynamically typed language, followed by the main data
types and flow control (loops and conditions). Structure within Python files and structure between Python
files are next. To close off the chapter I look at Python’s philosophy.

Interpreted and dynamically typed

You don’t have to compile Python code every time you make a change. Python handles compiling and
optimization behind the scenes. You can try out a Python statement, for example a print statement, and
see the results immediately. Run python (or the full path to Python if necessary) on your commandline
to display a Python prompt (which looks like >>>):

>>> print("Wow, a Python prompt!")
Wow, a Python prompt!
>>> exit() # Or ctrl-d or ctrl-z.

All your regular Python code will be in files with the .py extension.

Python is a dynamically typed language, so it doesn’t perform static type checks. You do not have to
declare your variables or the type of your variables in Python. Assigning a variable is done with a single
equals sign:

>>> greeting = "Hello, variable"
>>> print(greeting)
Hello, variable

Just assign variables and use them.

41

Solid Django, Release 0.1dev

Data in Python

Python uses the same basic data types found in other languages. To program in Django, you need to
understand the difference in how Python handles that data as opposed to other languages.

Numbers

When you use only whole numbers, Python treats the number as an integer data type. If you use a
decimal, the type is a float.

Python handles division differently than many other languages. As long as there’s at least one non-
integer number, division works exactly as it would on any calculator in the world. However, when there
are only integers, Python rounds the result to always return an integer.

Type this into your Python prompt for an example of Python’s division:

>>> type(2)
<type 'int'>
>>> type(2.0)
<type 'float'>
>>> 3/2
1
>>> 3.0/2
1.5
>>> 3/2.0
1.5

As you can see in the code, 3 divided by 2 returns 1 when using only whole numbers. When you add a
decimal point to either integer, the result is 1.5 (which is what we would normally expect). Remember,
in Python, add a decimal to integers to save yourself from strange calculations.

Note: In Python 3, this slightly weird behaviour will be gone. 3 / 2 will just be 1.5 as you’d expect.

Strings

Strings (a number of characters) are surrounded by double or single quotes in Python. Either choice is
fine. Here’s an example:

>>> ''
''
>>> 'string'
'string'
>>> "a book's apostroph"
"a book's apostroph"
>>> 'a book\'s apostroph'
"a book's apostroph"

The last two examples show that you can use single quotes as-is inside a double quote string (and vice
versa) or that you can escape them with a backslash.

There are two cases where you need something else than a regular string: for international characters
and for regular expressions.

42 Chapter 20. Introducing Python for Django programmers

Solid Django, Release 0.1dev

International characters: unicode strings

International characters are those characters outside of the ASCII characters range. Basically everything
except a-z, A-Z, numbers and a few characters like -/+:;. If you use international characters (chinese
signs, IKEA product names), you need to use unicode strings. Unicode is the world-wide standard for
encoding all possible characters.

Django always gives you unicode strings when you retrieve strings from a web form or from a database,
so you do not have to worry about the local encodings. To save yourself headaches, you should also
always use unicode strings. Because if you don’t, Python will have to do the conversion between your
strings and unicode itself. And which encoding are your strings in? Does Python have to guess? Search
online for unicodedecodeerror to give you an idea of the mess you can be in.

Python uses 7 bit ascii for its strings if you don’t tell it otherwise. To get a unicode string, prefix the
string with a u:

>>> 'regular string'
'regular string'
>>> u'unicode string'
u'unicode string'

The u-prefix is tedious to type all the time. Python 3 uses unicode strings by default (handy!). To get
the same unicode-only behaviour, add a special import near the top of your files:

.. literalinclude:: /code/python/with_charset.py

When you want to use a non-ascii character in Python code, one way is with a unicode code:

>>> print(u'latin small letter e with diaeresis is \u00eb')
latin small letter e with diaeresis is ë

The last example shows one way to enter non-ASCII characters in Python code—a \u followed by the
unicode code for the character (which you can find on the unicode website)_. 00eb in this example is
the code for an ë.

When you’re writing Python files, it is easier to tell Python which character set to use, and let Python
handle the conversion to unicode. You do this with a comment on the first line of the file:

-*- coding: utf-8 -*-
print("The Dutch word for seas is zeeën.")

Many code editors also recognize the dash-star-dash pattern on the first line. This allows you to use
non-ASCII characters in your editor instead of looking up the unicode code (which can be a hassle).
The character set used most is utf-8 (an 8-bit unicode encoding).

Regular expressions: raw strings

Django uses regular expressions in its URL configuration, see Controlling Django with URLs TODO.
You use backslashes a lot in regular expression syntax. The problem is, Python also uses backslashes to
give some characters in a string a special meaning. For examples:

>>> print("A string with two newlines.\n\nAnd a second line.")
A string with two newlines.

And a second line.

20.2. Data in Python 43

https://en.wikipedia.org/wiki/Unicode
https://duckduckgo.com/?q=unicodedecodeerror
https://duckduckgo.com/?q=unicodedecodeerror
http://unicode.org/charts/
http://www.diveintopython.net/regular_expressions/

Solid Django, Release 0.1dev

>>> print("And \ttabs \twork \t\talso.")
And tabs work also.
>>> print("And also \b , though you won't see output.")
And also , though you won't see output.

You see here that Python treats \n and \t as newline and tab characters respectively. \b is the ancient
bell (or beep) signal.

Here you have a problem. A \b means “whitespace at the start or end of a word” in a regular expression.
To preserve the backslash in the string, you need to escape it with another backslash:

>>> print("This \b is not preserved")
This is not preserved
>>> print("This \\b is properly preserved")
This \b is properly preserved

To retain a backslash in a Python string, you need to put in two backslashes. If you have an elaborate
regular expression with lots of backslashes, all those double backslashes are error-prone and make the
regular expression harder to read.

Python gives you a special kind of string that preserves all backslashes: a raw string. Just put an r in
front of the string’s quotes:

>>> print("The basic solution is a double backslash: \\b")
The basic solution is a double backslash: \b
>>> print(r"Alternative: a raw string. \b stays \b")
Alternative: a raw string. \b stays \b

Remember, you only need a raw string’s special treatment of backslash characters for regular expres-
sions.

Collections: lists, tuples and dictionaries

Python has the most common collection datastructures built in, including syntax that makes them easy
to use.

Dictionary

A dictionary is a key/value mapping. It is often called a hash table in other languages. In Python, you
create it by using curly braces:

>>> my_data = {'name': 'Reinout',
... 'city': 'Nieuwegein',
... 'country': 'The Netherlands'}
>>> my_data.keys()
['city', 'name', 'country']
>>> my_data['city']
'Nieuwegein'
>>> my_data['continent'] = 'Eurasia'
>>> my_data.keys()
['city', 'continent', 'name', 'country']

my_data in the example above starts out as a dictionary with three keys (name, city and country). You
can access the values by asking for the key in square brackets.

44 Chapter 20. Introducing Python for Django programmers

Solid Django, Release 0.1dev

You can always add additional items to a dictionary, like my_data['continent'] =
'Eurasia' as in the example. Note that a key’s value can be whatever you want: a string, a class,
even a list or another dict.

List

A list in Python is a modifiable list of values; you can sort it in-place and add or remove items. You
write it with square brackets:

>>> my_kids = ['Rianne', 'Floris']
>>> my_kids.append('Elizabeth')
>>> my_kids
['Rianne', 'Floris', 'Elizabeth']
>>> my_kids[0]
'Rianne'
>>> my_kids[-1]
'Elizabeth'

Accessing items happens with square brackets just as it does with dictionaries. A list’s index starts at
zero, so my_kids[0] gives you the first kid. A negative index starts from the end, so my_kids[-1]
gives you the last one.

You can change the list by appending or removing items (the latter sounds a bit harsh when you’re
talking about kids).

Tuple

A tuple is like a list, only immutable. Once created, it cannot be changed. This is handy for configura-
tion; in a Django settings file, you’ll see tuples rather than lists. If you want to add something, you need
to create a new tuple. You create one by using regular parentheses and at least one comma:

>>> my_parents = ('Alie', 'Herman')
>>> my_parents[0]
'Alie'

Like lists, you access tuple items with an index between square brackets.

You must watch out with those parentheses that indicate a tuple. Parentheses are also used for grouping,
like (1 + 2) * 3. What makes a tuple a tuple is that there is at least one comma between the
parentheses. So ('reinout') is the string 'reinout', but ('reinout',) is a one-item tuple.

Boolean and nothing

True and False are Python’s boolean values. None is used as no value.

In your Python code, you often want to test whether something is empty or whether something exists.
For instance, if an address field is empty then print a warning. Python treats the following as False:
None, an empty string, zero, an empty list, empty tuple, or an empty dictionary.

20.2. Data in Python 45

Solid Django, Release 0.1dev

Flow control and indentation

To control data, Python has conditions and loops like other languages, but it also has list comprehensions,
a friendly and modern way to work without using a loop. To use any of these, you first need to understand
Python’s indentation rules.

Indentation

The indentation in Python confuses many programmers when they are first learning the language. Most
programming languages use something like curly braces to group statements, such as the blocks within
an “if/else”. Here is a JavaScript example:

if (kind === "2") {
map_type = G_PHYSICAL_MAP;

} else {
map_type = G_NORMAL_MAP;

}

You see the indentation in the JavaScript, but it’s not mandatory. It just helps humans read the code.
Python, on the other hand, makes the indentation mandatory. The beginning and end of a block of code
isn’t indicated by curly braces but by the start and end of indentation:

if kind == 2:
map_type = G_PHYSICAL_MAP

else:
map_type = G_NORMAL_MAP

This looks less cluttered. Since all Python code has the same indentation rules, reading code is easy and
predictable. Python code should always be indented in steps of four spaces; never use tabs. Any good
editor for Python will use four spaces because Python’s style guide strongly recommends it.

Conditions

Python handles conditions with if. If you have more than one condition, you can add one or more
elif statements. And else gives you a catch-all at the end. Here is an example:

if 2 == 3:
print("equal")

if 2 != 3:
print("not equal")

temperature = 3
if temperature == 0:

print("Temperature is zero")
elif temperature < 0:

print("Temperature is below zero")
else:

print("Temperature is above zero")

story = {'prince': True,
'princess': False,
'horse_color': 'black'}

46 Chapter 20. Introducing Python for Django programmers

http://www.python.org/dev/peps/pep-0008/#tabs-or-spaces

Solid Django, Release 0.1dev

if story['prince'] and not story['horse_color'] == 'white':
print("You need a white horse to rescue the princess.")

if story['prince'] or story['princess']:
print("We have a prince or princess, so it is a fairy tale.")

== and != test for equality and inequality. Everything that results in a boolean value can be used as
a condition. See also Boolean and nothing. You can combine conditions with and and or and negate
with not.

Loops

Python has for and while loops. You’ll almost exclusively see for loops:

for name in ['Reinout', 'Maurits']:
print(name)

for i in range(10):
print("Django")

for index, name in enumerate(['Reinout', 'Maurits']):
print(index, name)
Prints '0 Reinout' and '1 Maurits'

Two useful tricks are range and enumerate. The first is for iterating a fixed number of times.
range(10) produces 0, 1, 2, .., 9. The second is for looping over a set of values and for
numbering them. You recieve both an index (zero-based) and the actual value.

Dictionaries are common in Python, so you also often have to loop over the keys or the values (or both)
of dictionaries:

cities = {'Nieuwegein': 'The Netherlands',
'Utrecht': 'The Netherlands',
'Ulmen': 'Germany',
'Toronto': 'Canada'}

for city in cities:
print(city)
Prints the key, so Nieuwegein, Utrecht, etc.

for city in cities.keys():
print(city)
Also the keys.

for country in cities.values():
print(country)
Prints the value, so Germany, Canada, etc.

for city, country in cities.items():
print(city, country)
.items() returns both key and value.

If you loop over a dictionary without any methods, you really loop over the dictionary’s keys, just like
you would when using .keys(). Use .values() if you want to loop over the values instead. You

20.3. Flow control and indentation 47

Solid Django, Release 0.1dev

may loop over both keys and values with the .items() method, this returns (key, value) tuples.

List comprehensions

You often write small loops to modify lists. You can loop over the list to remove empty items or calculate
a new value for each of the list’s items. Python has an alternative to writing these small loops: list
comprehensions. With a list comprehension you can filter and/or modify a list in one line of code
instead of using a loop to do the same work. The best way to show you is with an example:

some_file_text = """

Blank line above.
Here is some text

And some more

"""

lines = some_file_text.split('\n')
print(len(lines)) # 8 lines

Filtering empty lines with a loop:
result = []
for line in lines:

line = line.strip() # Strip end-of-line and spaces.
if line:

result.append(line)

print(len(result)) # 3, three lines with actual text.

Alternative: a list comprehension.
comprehension = [line for line in lines if line.strip()]
print(len(comprehension)) # Also 3.

You can also modify a list:
uppercase = [line.upper() for line in comprehension]
print(uppercase[0]) # Returns BLANK LINE ABOVE.

The example takes a string with a couple of empty lines and filters out the empty lines. First, it uses a
for loop by checking if a line is not empty and, if not, by appending it to the result. After that it does
the same with a simple one-line list comprehension, which takes the form [new for old in list
if condition]. Once you get used to the syntax, a list comprehension is much shorter and easier to
read than a loop.

Structure within files

Within a single .py Python file, you can have variables and functions. Python is also an object oriented
language, so you can have classes as well.

You are not required to use classes; simple variables and functions are fine. Django itself uses all three.
Django models are always classes, a URL configuration uses only functions, and Django views can be
either functions or classes.

48 Chapter 20. Introducing Python for Django programmers

Solid Django, Release 0.1dev

Functions and arguments

Python functions are defined with def like this:

def print_names():
"""Print names."""
print('Reinout')
print('Maurits')

def print_name(name):
"""Print(the name passed as argument."""
print(name)

def print_default_name(name='Reinout'):
"""Print(the name (default is Reinout)."""
print(name)

You call them like this:
print_names() # Prints Reinout and Maurits.
print_name('Maurits') # Prints Maurits.
print_default_name() # Prints Reinout.
print_default_name('Maurits') # Prints Maurits.

The last two functions contain arguments. Python has two kinds of arguments: positional arguments
and keyword arguments. A positional argument only has a name; a keyword argument has a name and
default value.

Positional arguments are passed in exactly the order they are written. The position, literally, must match
the order you want them passed. Positional arguments cannot be optional. When you have a limited
number of arguments with a clear order, positional arguments work well.

In all other circumstances, you’ll probably want to use keyword arguments. A keyword argument has
the following advantages:

• Every keyword argument has a default value.

• The order in which the keyword arguments are passed doesn’t matter.
your_method(a='aa', b='bb') is the same as your_method(b='bb', a='aa').

• Your functions are easier to evolve. If you decide to add a positional argument, you need to update
all the places where you call your function. A keyword argument has a default value, which means
you can leave most calls to your function alone.

For flexibility, keyword arguments are best. You should restrict positional arguments to those arguments
that are absolutely essential to the function and will never change.

Classes

Python supports object oriented programming. You can define classes. Here is an example of defining,
instantiating, and using a class:

class Author(object):
subject = 'Anything'

20.4. Structure within files 49

Solid Django, Release 0.1dev

def __init__(self, name):
self.name = name

def info(self):
"""Print author's name and subject."""
print(self.name + ' writes about ' + self.subject)

class DjangoBookAuthor(Author):
subject = 'Django'

You use them like this:
author = Author('Rianne')
author2 = DjangoBookAuthor('Reinout')
author.info()
Outputs 'Rianne writes about Anything'.
author2.info()
Outputs 'Reinout writes about Django'.
print(author2.name)
Outputs 'Reinout'.

The example shows two ways to create a class. Both use the class statement. The first way subclasses
from Python’s base object class. The second way subclasses from an existing class.

A class, like in any object oriented language, contains variables and functions. To be consistent with
object oriented terminology, Python calls the variables in a class attributes and the functions methods.

You instantiate a class by calling it, like in the example. When you call the class, Python calls the class’s
specially-named __init__() method. If __init__() accepts arguments, you can pass them. In
the example, you pass the name of the author as an argument when creating the class; this ends up as the
name argument on the __init__() method.

By the way, every method must start with a mandatory first argument called a self argument. When
you call a method on an object, Python automatically passes the object as this first argument.

Structure between files

Python files have the extension py and you can group them in directories (packages in Python-speak).
You can use py files from the same or another package with importing.

Django is split up into many different packages by design because grouping similar code in cohesive
packages helps keep Django’s code neat and organized. You can do likewise with your own code by
grouping related code into its own package.

Modules and packages

Python uses specific terminology for Python files and directories. A single Python file is a module and
several modules grouped into a directory is a package.

Python does not treat every directory with modules as a package though, it wants you to explicitly mark
it as a package by adding a __init__.py file to the directory. The file can be empty, though I always
add a # Package comment in those otherwise-empty files, it can help you when you need to manually
merge code from patches.

50 Chapter 20. Introducing Python for Django programmers

Solid Django, Release 0.1dev

Packages can be nested by adding subdirectories. Each subdirectory should have its __init__.py to
mark it as a package.

Importing modules and packages

Different Python files in different directories also means you need to be able to refer to them in some
way so that you can use them. In Python this is called importing. You import modules and packages
with the import xyz or from abc import xyz statement:

Import a whole package or module.
import os
import os.path
Import something specific from a module.
from os.path import exists

Available because of import 'os' or 'os.path':
os.path.exists('.')
Available because of directly importing it:
exists('.')

With the import xyz style you import a whole package or module with its full path. For instance,
importing os makes everything inside that package available using the os name, like os, os.path
and os.path.exists.

With the second style, from abc import xyz, you import something specific without needing to
use the full path. In the example, you can just use exists because you imported it specifically; in this
case you do not need to use the full os.path.exists path name.

In both cases, you use Python’s dotted path notation. In this notation, every dot steps deeper into the
package/module tree; for example os.path.exists calls the exists function in the path module
in the os module.

The core philosphy of Python

Philosophy is build into Python. No really. And as I know you’re not ready to believe me on my word
yet: fire up Python and type import this at the prompt:

$ python
>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.

20.6. The core philosphy of Python 51

Solid Django, Release 0.1dev

There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Sure, there are some jokes in there, but most of the lines are for real and several are often quoted in
Django discussions! Let me highlight three:

Explicit is better than implicit Sometimes it is handy to automatically make something happen. Add
a specially-named file to your project and everything in there is automatically registered as a URL
or so. The problem is that you need to know all the special magic rules.

Explicit is often clearer. Django’s configuration file has a ROOT_URLCONF parameter, pointing
at a specific Python file with a URLconf in it. This itself is an explicit list of which URLs match
what. There can be no confusion over which URL matches what because everything is explicit.

Readability counts Simply keeping this one in mind will help you a lot. Single-character variable
names are no good. Don’t abbreviate too much. Use naming to help you. You yourself will
read your own code again in half a year’s time: can you still understand it then? Does dh
= sgst * 1.4 still make sense then? Would dike_height = suggested_height *
SAFETY_FACTOR be clearer? Don’t skimp on names. They don’t have an 8-character restriction.

And look at Python’s use of indentation. Couple that with flat is better than nested. If you go too
deep and use too many loops and if statements, Python’s mandatory indentation will show you
that you went too far. Python helps you to keep your code clean this way. It comes with a build-in
suggestion to split up your code a bit.

Now is better than never A good example is Django’s configuration. It is simply a Python file, so you
can do everything you want with it. Import other files, read in configuration from a text file, you
name it. It is not the most elegant solution, but when Django got made, they needed a pragmatic
solution.

Why spend years arguing? Why sink a lot of effort in finding something that can take all use
cases? You’ll be waiting forever. A good enough solution now is preferable to something perfect
that might never come.

What we learned

We learned the most common Python language elements. Enough to get started with Django and enough
to understand the example code througout this book.

For exercises, I’ll keep it simple: learn more about Python. Try it out. The best place to start is dive into
Python, it will take you through Python in a gentle way. For lots of exercises, look at learn Python the
hard way.

52 Chapter 20. Introducing Python for Django programmers

http://www.diveintopython.net/
http://www.diveintopython.net/
http://learnpythonthehardway.org/
http://learnpythonthehardway.org/

CHAPTER 21

Full table of contents

Part 1: Django’s foundation

Part 2: Django’s common building blocks

Part 3: Django’s extras

Appendices

53

	Preface
	Getting started TODO
	Models and the admin interface TODO
	Working with views and templates TODO
	Controlling Django with URLs TODO
	Labor division: python packaging TODO
	Advanced views and templates TODO
	Present yourself well: javascript and css TODO
	Secure your website: permissions TODO
	Editing and forms TODO
	Debugging and problem solving TODO
	Hosting and webserver integration TODO
	Maintenance Tasks: Management Commands TODO
	Always available: context processors TODO
	Be a micro manager: middleware TODO
	Neighbor integration: REST TODO
	Buildout: more powerful deployment TODO
	Dig deep: full text search TODO
	Escape the relational confines: NoSQL TODO
	Introducing Python for Django programmers
	Full table of contents

