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You have reached the Quickstart documentation of SOFT, the Synchrotron-detecting Orbit Following Toolkit. To
get the source code of SOFT, check the SOFT website or SOFT GitHub repository. If you’re looking for the gory
mathematical details of how SOFT is implemented, you should look into the SOFT Manual.
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CHAPTER 1

Introduction

SOFT is a synthetic synchrotron diagnostic that can be applied to study the synchrotron radiation emitted by runaway
electrons in tokamaks. By solving the guiding-center equations of motion in a numeric magnetic equilibrium, the
physics of the system are utilized and allows SOFT to be applied to experimental scenarios.
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CHAPTER 2

Compiling

SOFT is written in C, and as such is straightforward to setup on a Linux system. While SOFT hasn’t been tested on
any other system, it should be possible compile and run on for example Windows and Mac with some additional effort.

2.1 Dependencies

SOFT depends on a number other technologies, some of which are required for compilation, while others can be
compiled in optionally. Technologies that are absolutely mandatory in order to compile SOFT are

• CMake, for preparing necessary build files.

• A C compiler with OpenMP support (such as gcc).

• GNU Scientific Library, for various mathematical operations. If a version of GSL older than 2.0 is used, the
GSL extension interp2d must also be installed.

A number of libraries are also optional for compilation, and can be compiled in for additional functionality. The
optional libraries are

• HDF5 for reading/writing data in HDF5 format.

• MATLAB, for reading/writing data in MATLAB’s *.mat format.

• An MPI library, such as MPICH or OpenMPI. Compiling in support for MPI allows running SOFT across
multiple computers, such as on a supercomputer cluster.

2.2 Obtaining the code

You may clone the latest build from the SOFT GitHub repository via the command line:

$ git clone https://github.com/hoppe93/SOFT.git

or if you have your ssh keys configured with GitHub:
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$ git clone git@github.com:hoppe93/SOFT.git

2.3 Compiling

Once the SOFT source code has been obtained and all required and desired dependencies have been installed, navigate
to the directory cloned from GitHub:

$ cd SOFT

Next, to compile SOFT, create a build directory, navigate to it, run CMake followed by make, using the following
set of commands:

$ mkdir build
$ cd build
$ cmake ../ -DUSE_HDF5=ON -DUSE_MATLAB=ON -DUSE_MPI=OFF
$ make

If the build was successful, the SOFT binary will be found under build/src/soft. The flags starting with -D
specify configuration options, and in the command above we see that in this case SOFT would be configured with
HDF5 and MATLAB support, but without MPI support. This is the default, and would have happened even if those
flags were not specified. To enable/disable compilation for either of these libraries, simply specify ON/OFF as appro-
priate in the above.

2.4 Usage

All configuration of a SOFT run is done in a separate script file, commonly referred to as a pi file (for Particle
Information). As such, running SOFT is as simple as

$ ./soft pi

assuming the pi file has been setup appropriately. There are a large number of options that can be specified in the pi
file, and for this reason the details of using SOFT are left to the How to run SOFT .
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CHAPTER 3

How to run SOFT

All configuration of a SOFT run is done in a separate configuration file, commonly referred to as a pi file. In this
section the basic structure of a pi file will be explained in detail. For detailed information about which options can be
set, pleaes consult the SOFT manual.

3.1 Examples

The best way to learn how to set up run scripts for SOFT is to see examples of such run scripts. A basic pi file can
look like the following:

# Basic SOFT pi file
useequation=guiding-center-relativistic
usetool=sycamera

# Specify magnetic field
magnetic_field=circular # Use analytic magnetic field
magnetic circular { B0=5; major_radius=0.68; minor_radius=0.22; safety_factor=1; }
domain_has_outer_wall=no # Remove outer device walls to prevent from blocking
→˓radiation

# Set phase-space
particles {

t=0,-1
rdyn=0.84,1000
p=3e7,3e7,1
pitch=0.15,0.15,1

}

# Specify properties for the sycamera tool
tool sycamera {

aperture=0.006 # Side length (in m) of (square) detector
cone=delta # Use the cone model (not full angular

→˓distribution)

(continues on next page)
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(continued from previous page)

direction=0,1,0 # Normal vector of detector surface (not
→˓necessarily normalized)

position=0,-1.069,0 # Position vector of detector, relative tokamak
→˓point of symmtetry

product=image # Output a synchrotron image when done
radiation=synchrotron_spectrum # Take spectrum of radiation into account
spectrum=5e-7,1e-6 # Detector spectral range
toroidal_resolution=3500 # Number of steps in toroidal integral
vision_angle=2.0 # Size of field-of-view

}

# Specify properties for the 'image' sycout
sycout image {

pixels=1000
name=image.dat

}

The settings available for SOFT are many more, and for a detailed list of which settings are available, please consult
the SOFT manual. Further examples of pi files for different purposes are:

• distpi – Illustrates how SOFT can be run together with a runaway distribution function.

• hollowpi – An example of simulating a hollow electron beam.

• simplepi – The basic example shown above, setting just the most important options.

• orbitpi – Shows how to use the orbit following part of SOFT to simulate particle orbits.

3.2 Basic syntax

Options in a pi file are specified by first giving the name of the option, followed by an equal sign, followed by the
value to assign to the option. White-space around the equal sign is ignored. Typically, everything between the equal
sign and the end-of-line marker is considered part of the assigned value, except for any white-space coming either
directly after the equal sign, or directly before the end-of-line-marker. It is however possible to put several settings on
the same line by separating them with semi-colons (;).

Comments can be given by preceding the comment text with a hashtag symbol (#). Any text following the hashtag on
the same line will be ignored. Note that comments cannot be ended with a semi-colon.

Some options should be assigned vectors of data, such as the direction and rdyn options (among others) in the
above example. Each component of the vector must be separated by a comma, and any white-space surrounding
commas is ignored. Note that all floating-point numbers can be specified using either decimal form (i.e. 1000 or
0.68) or C scientific notation (i.e. 5e-7).

3.3 Environments

Some options in SOFT are considered global and are specified directly in the file, such as for example useequation
and usetool in the example above. Many options are however specific to certain modules of SOFT, and they are
instead specified inside the appropriate option environment.

There are four different environments in SOFT, all of which are syntactically similar. With the exception of the
particles environment (which really just sets what could be considered global options), they are also conceptually
similar.
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The magnetic, tool and sycout environments specify options for a particular SOFT module, and the name of
the module must be specified in the environment header. The settings are then wrapped within curly brackets ({ and
}) and given to the specified module. Note that even if an environment for a module is present in the configuration
file, it does not mean that the module will automatically used. Other options must be set to enable modules.

The basic syntax for an environment environment configuring the module named module is:

environment module {
...

}

The particles environment does not require any module name to specified.

3.3.1 magnetic

The magnetic environment specifies settings for the magnetic equilibrium to use, as well as the surrounding walls.
Currently, there are two different so called magnetic handler modules that can be used. The first and simplest is the
circular magnetic handler which implements simple analytic circular magnetic field with a constant safety factor.
The second magnetic handler, named numeric, allows the specification of a magnetic field numerically from for
example an HDF5 or MATLAB *.mat file.

3.3.2 particles

The particles environment sets a number of options relating to the phase-space of the run. Since it is necessarily
tied to the particles module of SOFT, the module name part of the environment specification given above should be
omitted.

In addition to specifying the bounds of and number of points in phase-space, the particles environment can also
be used to specify a different mass or charge of the simulated particle species.

Note: The orbit tool for tracing particle orbits only allows simulating a single point of phase-space at a time, and
can otherwise give rise to some very anonymous errors.

3.3.3 tool

The tool environment sets the options for particular tool. A tool, in SOFT, is a module which receives information
about a computed orbit and processes it. Currently, there are two tools in SOFT, and these are the orbit and
sycamera tools. The orbit tool simply traces a particle or guiding-center orbit, keeps track of a few addiational
parameters, and outputs it all to a CSV file.

The sycamera tool is the synchrotron camera (or rather detector) tool which gives SOFT its name. A large part of
the SOFT code is dedicated to this module, and the options set by this tool include for example the type of synchrotron
radiation model to use, the number of toroidal steps to take, various detector properties among many other things.

3.3.4 sycout

Due to the great versatility of the sycamera tool, the types of output that could be obtained it are numerous. Since
each of the output types requires its own set of settings, a separate environment for specifying settings to the output
handler of the sycamera tool was created.

The sycout environment thus specifies settings of a sycamera output handler module. To date there are five
different sycout modules, namely

3.3. Environments 9
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Mod-
ule
name

Description

green Generates a Green’s function which relates the distribution of runaways to the resulting spectrum or
image. (Can) allow fast computation of image/spectrum.

image Generates a synthetic synchrotron image.
space3d Stores 3D information about all particles contributing to a synchrotron image allows visualizing the

corresponding surface-of-visibility.
spec-
trome-
ter

Generates a spectrum curve.

topview Stores information about where particles where located in the xy-plane when when they emitted towards
the detector. Allows visualizing the toroidal distribution of particles that are visible to the detector.

10 Chapter 3. How to run SOFT



CHAPTER 4

Magnetic equilibria

There are currently two magnetic handler modules available for SOFT. The circular handler implements a simple
circular magnetic field with a constant safety factor, and is somewhat faster than the alternative. The numeric allows
the magnetic field to be loaded from numeric data, which is interpolated. This handler is often the desired one as it
allows complicated magnetic geometries to be simulated.

4.1 Analytic circular

The circular magnetic handler implements the magnetic field:

𝐵(𝑟, 𝜃) =
𝐵0

1 − (𝑟/𝑅𝑚) cos 𝜃

(︂
𝑟

𝑞(𝑟)𝑅𝑚
�̂� − �̂�

)︂
where 𝑟 is the minor radius, 𝜃 the poloidal angle, 𝐵0 the magnetic field strength on the magnetic axis (𝑟 = 0), 𝑅𝑚 is
the major radius, 𝑞 is the safety factor, �̂� is a unit vector in the poloidal direction and �̂� is a unit vector in the toroidal
direction. While this formula allows arbitrary q-profiles, SOFT currently only implements this magnetic field with a
linear q-profile.

The magnetic field shown above has three free parameters, namely the field strength 𝐵0, the tokamak major radius
𝑅𝑚 and safety factor 𝑞(𝑟) = 𝑞0. These parameters must be specified by the user, and are set by specifying the options
B0, major_radius and safety_factor respectively in the magnetic circular environment. For SOFT
to be able to determine when a particle escapes confinement and hits the wall, the minor radius of the device must also
be specified. A circular cross section is assumed. All options for the circular magnetic handler are set according to

magnetic circular {
B0 = 5
major_radius = 0.68
minor_radius = 0.22
safety_factor = 1

}

11
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4.2 Numeric

One of the great strengths of SOFT is that magnetic equilibrias can be specified as numeric data, allowing complicated
magnetic configurations, and in particular, experimentally measured data, to be plugged into SOFT. Specifying a
numeric equilibrium in the pi file is as simple as

magnetic_handler=numeric
magnetic numeric {

name=/path/to/magnetic/equilibrium.mat
}

Currently, the equilibrium data can be stored in either a HDF5, (MATLAB) MAT or SDT file. Both HDF5 and
MATLAB files can be created easily with user-friendly tools such as Python or MATLAB, while SDT (for Semi-
Descriptive Text) is a SOFT-specific text-based format which is likely the best choice if the magnetic equilibrium is
generated using a small C/C++ program which is difficult to interface with HDF5 or MATLAB.

Since SOFT assumes the magnetic field to be toroidally symmetric, the magnetic field components in a poloidal plane
must be specified. SOFT uses a cylindrical coordinate system for specifying the magnetic field, so that 𝐵 = 𝐵𝑟𝑟 +
𝐵𝑧�̂�+𝐵𝜑�̂�, where 𝐵𝑟𝑟 denotes the component radially out from the point of symmetry of the tokamak, 𝐵𝑧�̂� denotes
the component in the vertical direction, and 𝐵𝜑�̂� denotes the component in the toroidal direction, perpendicular to the
poloidal plane in which the magnetic field is given.

4.2.1 Variables

Both HDF5, MATLAB and SDT files have a variable concept where data within the file is named. Because of this,
SOFT looks for certain variables in the datasets, loads them and gives them meaning in the code. The following
variables must be present in all SOFT magnetic equilibrium files:

Variable Type Description
Br m-by-n matrix Radial component of magnetic field (radius-by-z).
Bphi m-by-n matrix Toroidal component of magnetic field (radius-by-z).
Bz m-by-n matrix Vertical component of magnetic field (radius-by-z).
desc String A longer description of the equilibrium. Must be present, but may be empty.
maxis 1-by-2 vector Specifies the location of the magnetic axis in the (𝑅, 𝑧)-plane.
name String Name of the equilibrium. Must be present, but may be empty.
r 1-by-m vector List radial points in which the components of the magnetic are given.
separatrix 2-by-many vec-

tor
List of contour points marking the separatrix in the (𝑅, 𝑧)-plane.

wall 2-by-many vec-
tor

List of contour points marking the bounds of the device in the poloidal plane.

z 1-by-n vector List of vertical points in which the components of the magnetic field are
given.

Note: Only one of the separatrix and wall variables is required to be present in the equilibrium file. Both
may be present, and in that case the domain contour to use can be specified as an additional option to the numeric
magnetic handler. By default the wall contour will be used if available.

12 Chapter 4. Magnetic equilibria



CHAPTER 5

Distribution functions

In SOFT, distribution functions depend on three variables, namely the major radius 𝜌 at which the guiding-center orbit
was initiated, the momentum 𝑝 of the particle, as well as the cosine of the pitch angle 𝜉 = cos 𝜃p in the outer midplane.

5.1 File format

Distribution functions are given to SOFT as Matlab MAT-files. SOFT expects the following variables to be present in
the file:

Name Description
description String describing the distribution function.
f Actual distribution function. An 𝑛𝑟-by-𝑛𝑝𝑛𝜉 matrix (see below).
name String naming the distribution function.
p Vector containing points of momentum. Size 1-by-𝑛𝑝.
punits String describing the units of p. Either ev, normalized or si.
r Vector containing radial points. Size 1-by-𝑛𝑟.
xi Vector containing (cosine of) pitch angle points. Size 1-by-𝑛𝜉.

The most important variable in a SOFT distribution function file is f, which is the actual distribution function. The
variable is stored as a matrix with each row representing a momentum-space distribution function, i.e. with the radial
coordinate changing along the row index.

Each row of f corresponds to a momentum-space distribution function, shaped as one long 𝑛𝑝 × 𝑛𝜉 vector. The
elements are ordered into 𝑛𝜉 groups of 𝑛𝑝 elements, so that the first 𝑛𝑝 elements of the vector corresponds to holding
𝜉 fixed and varying 𝑝.

The name and description variables are fairly arbitrary and are only included to provide the user with basic
information about the distribution function.

The p, r and xi variables are vectors consisting of 𝑛𝑝, 𝑛𝑟 and 𝑛𝜉 elements respectively. Together, the vectors specify
the grid in momentum, radius and (cosine of) pitch angle on which the distribution function is defined.

13
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To allow users to specify momentum coordinates in the units most convenient for them, and more importantly to
prevent mix-ups of used units, the variable punits must be provided specifying the units used for the momentum
variable. Allowed values are ev (for momentum in eV/𝑚𝑐), normalized (for 𝑝 ≡ 𝛾𝛽, where 𝛾 is the electron’s
Lorentz factor and 𝛽 is the electron’s speed normalized to the speed of light) and si (for SI units, i.e. kg · m/s).

Note: Even though CODE is commonly used to generate distribution functions for SOFT, plain CODE distribution
functions are not directly compatible with SOFT. The distribution function given as output by CODE consists of a
set of Legendre polynomial coefficients used in evaluating the distribution function 𝑓(𝑝, 𝜉). SOFT on the other hand
requires the function values to be already evaluated.

5.2 Helper tools for CODE/NORSE

A nice graphical helper tool has been developed for analyzing CODE/NORSE distributions and generating distribu-
tions readable by SOFT. The tool is called codeviz and is available on GitHub.

14 Chapter 5. Distribution functions
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CHAPTER 6

Geometric kernels

The way SOFT is constructed makes it possible to rewrite the “SOFT equation” on the form

𝐼𝑖𝑗 =

∫︁
d𝜌d𝑝‖d𝑝⊥ 𝑓(𝜌, 𝑝‖, 𝑝⊥)𝐼𝑖𝑗(𝜌, 𝑝‖, 𝑝⊥,𝑥0)

where 𝐼𝑖𝑗 is the brightness of pixel (𝑖, 𝑗), and 𝐼𝑖𝑗 denotes the geometric kernel function for a particular detec-
tor/tokamak combination, that connects the distribution of runaways of a particular velocity and initial position, with
the image seen by a particular camera in a specific tokamak. The great benefit of this formulation is that only a set of
multiplications are required to produce the synchrotron radiation image seen by a camera. A similar formulation for
the synchrotron spectrum exists.

The format of the Green’s function is specified in the pi-file using the dimensions option. The value of this
option is a set of characters denoting each of the variables that should appear in the Green’s function. For example,
dimensions = r12ijwould generate a Green’s function containing information about radius, velocity coordinate
1, velocity coordinate 2 as well as both pixels of the image. The possible characters and their meaning are:

Function Description
1 Velocity coordinate 1. Depends on which coordinates are used in the pi-file.
2 Velocity coordinate 2. Depends on which coordinates are used in the pi-file.
i The “y”-axis of the image.
j The “x”-axis of the image.
r Radial coordinate.
w Spectrum wavelength.

To generate a geometric kernel function with SOFT, create a new sycout environment in your pi file with the format

sycout green {
format=mat
output=greenW.mat
function=r12ij
pixels=60

}

All options for the green sycout are documented in the Parameter reference.

15
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6.1 Output file

The file generated by SOFT containing the geometric kernel function will contain the variables listed in the table
below. The actual geometric kernel functions is found as a vector named func which can be reshaped to be handled
more easily.

Variable Type Description
func 1-by-𝑛𝜌𝑛1𝑛2𝑛𝜆𝑛𝑖𝑛𝑗

vector
Geometric kernel function

param1 1-by-𝑛1 vector Velocity parameter #1
param1name String Name of velocity parameter #1. E.g. ppar.
param2 1-by-𝑛2 vector Velocity parameter #2
param2name String Name of velocity parameter #2. E.g. pperp.
pixels Integer Number of pixels
r 1-by-𝑛𝜌 vector List of radial points
stokesparams Integer 1 if elements are Stokes parameters. 0 if only intensities are stored.
type String Type of geometric kernel. Either of the functions listed in the table

above.
wavelengths 1-by-𝑛𝜆 vector List of wavelength points.

6.2 Working with kernel function

To more easily work with the geometric kernel function it should be reshaped into an appropriately dimensioned array.
In Matlab, this can be done through

load softOutput % Kernel function assumed to be located in 'softOutput.mat'

% Get number of elements in each dimension
nw = length(wavelengths);
n1 = length(param1);
n2 = length(param2);
nr = length(r);

% Reshape kernel function
Ihat = reshape(func, [pixels, pixels, nw, n2, n1, nr]);

% Access image at radius #1, param1 #2, param2 #3 and wavelength #4
I = squeeze(Ihat(:, :, 4, 3, 2, 1));

and similarly in Python

import numpy as np
import scipy.io

# Load mat-file
matfile = scipy.io.loadmat('softOutput.mat')

# Set variables
func = matfile['func'][0]
pixels = matfile['pixels'][0][0]
param1 = matfile['param1'][0]
param1name = matfile['param1name'][0]

(continues on next page)
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(continued from previous page)

# ...and the same for all other variables...

# Get number of elements in each dimension
nr = r.size
n1 = param1.size
n2 = param2.size
nw = wavelengths.size

# Reshape kernel function
Ihat = np.reshape(func, (nr, n1, n2, nw, pixels, pixels))

Note: The order in which the number of elements are given to reshape is very significant!

The above examples are for a function of type r12ij.

6.2. Working with kernel function 17
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CHAPTER 7

Polarization information

When radiation=synchrotron_spectrum SOFT will also store information about the polarization of the
detected radiation. Using the polimage and polspectrometer sycouts, it is possible to generate output files
containing the polarization information in image or spectrum format. In this section usage and interpretation of the
data will be briefly be discussed.

7.1 What information does SOFT store?

SOFT stores the four Stokes parameters, 𝑆, 𝑄, 𝑈 and 𝑉 , averaged over the relevant parameters (depending on which
model is being used). The emitted synchrotron power per unit frequency, per unit solid angle, can be written in terms
of the two quantities 𝐴‖ and 𝐴⊥ as

d2𝑃

d𝜔dΩ
∝

⃒⃒
−𝜖‖𝐴‖ + 𝜖⊥𝐴⊥

⃒⃒2
.

where 𝜖‖ is a vector corresponding to polarization in the gyration plane, and 𝜖⊥ to polarization in the plane orthogonal
to that. It can be shown that the Stokes parameters can be expressed using 𝐴‖ and 𝐴⊥ through

𝐼 ∝ 𝐴2
‖ +𝐴2

⊥,

𝑄 ∝
(︁
𝐴2

⊥ −𝐴2
‖

)︁
cos 2𝛽,

𝑈 ∝
(︁
𝐴2

⊥ −𝐴2
‖

)︁
sin 2𝛽,

𝑉 ∝ 2𝐴‖𝐴⊥ cos 2𝛽.

The angle 𝛽 is the angle between the plane of parallel polarization and the plane in which the horizontal polarization is
measured. The first Stokes parameter, 𝐼 , is just the intensity of the radiation as obtained also from the SOFT image
sycout.

The fourth Stokes parameter 𝑉 is often quoted as identically zero in the literature, a result stemming from that the
object 𝐴‖𝐴⊥ is odd in the angle 𝜓 between the guiding-center’s emission cone and a line-of-sight. When averaged
over all emission angles, the contribution to 𝑉 therefore cancels identically. In the angular and spectral distribution
implemented in SOFT however, we do not neglect the finite emission width, and therefore obtain a finite contribution
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to the 𝑉 parameter, since it is possible for only part of the emission cone to overlap the detector (corresponding to
“cut-offs” in the integration over emission angle).

For a derivation of the full d2𝑃
d𝜔dΩ , see for example Jackson’s “Electrodynamics”, Landau-Lifshitz “The Classical

Theory of Fields” or Mathias Hoppe’s Master’s thesis (link).

7.2 File format

The polimage sycout of SOFT outputs a variable-based file (such as SDT, HDF5 or Matlab) containing the following
variables:

Variable Description
detectorPosition Vector specifying the position of the detector
detectorDirection Central viewing direction of the detector
detectorVisang Vision angle of the detector
StokesI Stokes 𝐼 parameter
StokesQ Stokes 𝑄 parameter
StokesU Stokes 𝑈 parameter
StokesV Stokes 𝑉 parameter
wall Wall data used for the simulation
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CHAPTER 8

3D emission maps

Due to the highly anisotropic nature of bremsstrahlung and synchrotron radiation combined with the fact that radiation
is only detected if it’s emitted directly at the detector, a given detector can only measure radiation from particles in a
certain regions of space. It can be shown that these regions of space all satisfy (approximately) the condition

�̂�(𝑥) · 𝑥−𝑋

|𝑥−𝑋|
= cos 𝜃p, (8.1)

where �̂� is the magnetic field unit vector, 𝑥 is the particle’s position, 𝑋 is the detector’s position and 𝜃p denotes the
particle’s pitch angle (note that the pitch angle also varies as the particle moves in the inhomogeneous magnetic field,
and therefore picks up a dependence on 𝑥). The solution to this equation, i.e. the points 𝑥 satisfying it, trace out a
surface in real space which we refer to as the surface-of-visibility. When the detector is located in the midplane, this
surface typically takes the shape of a twisted cylinder.

8.1 Solving for surface-of-visibility

Using SOFT it is possible to solve (8.1), accounting for the finite detector size. This is done by adding the sycout
space3d (see space3d for a parameter reference) to your SOFT runscript. As with every sycout, you must also add
a line product=space3d to the tool sycamera block. One example definition of the sycout is a follows

sycout space3d {
output=outfile.mat
type=pixels
pixels=200
point0=-0.5,-0.25,-0.25
point1=0.5,0.25,0.25

}

The output parameter specifies the name of the output file, and the type parameter specifies the algorithm to use
for storing 3D information. Setting type=pixels means SOFT will divide the space into 𝑁3 cells, where 𝑁 is the
value assigned to the pixels parameter, between the two edge points point0 and point1 (see the figure below;
the red dots indicate the locations of the edge points). During the SOFT run, each cell records the radiation being
emitted from the box and accumulates it.
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The other value available for type is real, which stores the exact coordinates of each point that contributes to the
final image. This means that the output will be more detailed, but it will also grow with each particle.

8.2 Visualizing

Visualization of space3d files is complicatd by the fact that each point represents emitted light, which adds together
along lines of sights. A simple C program has been written by Mathias for generating sequences of PNG images from
S3D output files. The program is available on GitHub: s3dvid.
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CHAPTER 9

Parameter reference

There are a number of settings that can be specified in a pi file, and each of the SOFT modules introduces its own set
of options. In this section a complete list of all the options that can be set in a pi file are given.

Contents

• Global options

• Particle settings

• Magnetic settings

– circular

– numeric

• sycout settings

– green

– image

– space3d

– spectrometer

– topview

9.1 Global options

debug

Default value: 0
Example line: debug=1
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Allowed values: 0 or 1

If set to 1, debug output will be generated and written to stdout during the run. Default value is 0.

domain_has_outer_wall

Default value: yes
Example line: domain_has_outer_wall=no
Allowed values: yes or no

If set to no, ignores all points of the wall/separatrix outside 𝑅 = 𝑅𝑚, where 𝑅𝑚 denotes the radial coordinate
of the magnetic axis. This will allows the placement of a detector outside the device. The mid-pole will still be
present to block out radiation.

interptimestep

Default value:
Example line:
Allowed values:

TODO

magnetic_field

Default value: None
Example line: magnetic_field=numeric
Allowed values: circular and numeric

Specifies the name of the magnetic field handler module to use. Either circular or numeric.

maxtimestep

Default value: None
Example line: maxtimestep=1e-11
Allowed values: Any positive real value

Sets the maximum allowed size of a timestep in the equation solver (whichever it may be). If the adaptive
timestep becomes larger than this, it is automatically adjusted to this value. By default there is no limit on how
long the timestep can be.

nodrifts

Default value: no
Example line: nodrifts=yes
Allowed values: yes or no

If set to yes, ignores the drift terms in the first-order guiding-center equations of motion (effectively solving the
zeroth-order guiding-center equations of motion). This option only influences behaviour of the code when the
guiding-center equations of motion are solved. By default the value of this option is no so that the drift terms
are kept.

progress

Default value: 0
Example line: progress=10
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Allowed values: Any non-negative integer

Specifies how many times during the run SOFT should print information about the current progress. Information
will be printed in uniform steps as particles (defined as points in phase-space) are completed.

threads

Default value: Number of threads suggested by OpenMP
Example line: threads=3
Allowed values: Any positive integer (no upper limit)

Overrides the number of threads started by each (MPI) process. By default, SOFT will start the number of
threads indicated by the OMP_NUM_THREADS environment variable in each process.

tolerance

Default value: 1e-12
Example line: tolerance=4e-13
Allowed values: Any positive real number

Specifices the tolerance in the RKF45 solver. The default tolerance is set by the tool used in the run. The orbit
tool defaults to a tolerance of 10−7, while the sycamera defaults to a tolerance of 10−12.

useequation

Default value: None
Example line: useequation=guiding-center-relativistic
Allowed values: guiding-center, guiding-center-relativistic, particle,
particle-relativistic.

Determines which set of equations of motion to solve. Note that the sycamera tool requires that the
(relativistic) guiding-center equations of motion be solved. Possible values for this option are particle,
particle-relativistic, guiding-center and guiding-center-relativistic.

usetool

Default value: None
Example line: usetool=sycamera
Allowed values: orbit, sycamera

Sets the name of the tool to use. Can either be orbit (which traces orbits), or sycamera (which computes
various synchrotron-radiation quantities for runaway electrons).

9.2 Particle settings

charge

Default value: One electron charge (i.e. -1)
Example line: charge=4
Allowed values: orbit, sycamera

The charge of the particle to simulate, in units of the elementary charge (𝑒 ≈ 1.602 × 10−19 C). The default
value is -1, i.e. the electron charge.
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cospitch

Default value: None
Example line: cospitch=1,0.95,100
Allowed values: A number ∈ [0, 1]; A number ∈ [0, 1]; any positive integer

Specifies the range of cosines of the particle’s pitch anle with which to initiate orbits. The first argument
specifies the first value in the range to give to particles, while the second argument argument specifies the last
value in the range. The third argument specifies the total number of values to simulate. Example: cospitch
= 0.999,0.97,10, while initiate ten particles with cosine of the pitch angle values between 0.97 and 0.999.

gc_position

Default value: Yes
Example line: gc_position=no
Allowed values: yes or no

If set to yes, assumes that the position given specifies the guiding-center position when solving the guiding-
center equations of motion. If set to no, the program instead assumes that the particle position is specified and
compensates accordingly when solving the guiding-center equations of motion. Has no effect when solving the
full particle orbit.

mass

Default value: One electron mass (0.000548579909 u)
Example line: mass=2
Allowed values: Any positive real number

The particle mass in unified atomic mass units (u). The default value is 0.000548579909, corresponding to the
electron mass.

p

Default value: None
Example line: p=1e6,1.2e7,10
Allowed values: Any real number; any real number; any positive integer

Specifies the range of momenta with which to initiate orbits. The first argument specifies the first momentum
value to give to particles while the second argument specifies the last momentum value. The third argument
specifies the total number of momentum values to simulate. Example: p = 3e7,4e7,5.

pitch

Default value: None
Example line: pitch=0.05,0.15,14
Allowed values: A number ∈ [0, 𝜋]; a number ∈ [0, 𝜋]; any positive integer

Specifies the range of pitch angles with which to initiate orbits. The first argument specifies the first pitch angle
to give to particles while the second argument specifies the last pitch angle. The third argument specifies the
total number of pitch angles to simulate. Example: pitch = 0.03,0.25,15.

ppar

Default value: None
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Example line: ppar=1e6,1.2e7,14
Allowed values: Any real number; any real number; any positive integer

Specifies the range of parallel momenta with which to initiate orbits. The first argument specifies the first
parallel momentum to give to particles while the second argument specifies the last momentum value. The third
argument specifies the total number of momentum values to simulate. Example: ppar = 3e7,4e7,5.

pperp

Default value: None
Example line: pperp=1e6,1.2e7,14
Allowed values: Any real number; any real number; any positive integer

Specifies the range of perpendicular momenta with which to initiate orbits. The first argument specifies the first
perpendicular momentum to give to particles while the second argument specifies the last momentum value. The
third argument specifies the total number of momentum values to simulate. Example: pperp = 3e6,7e6,
15.

r

Default value: None
Example line: r=0.68,0.84,14
Allowed values: Any real number inside device; any real number inside device; any positive integer

Specifies the range of radii with which to initiate orbits. The first argument specifies the first radius to give to
particles while the second argument specifies the last radius. The third argument specifies the total number of
radii to simulate. Example: r = 0.68,0.84,80.

rdyn

Default value: None
Example line: rdyn=0.84,14
Allowed values: Any real number inside device; any positive integer

Specifies the outermost radius at which to initiate orbits, as well as the number of radii to drop particles on.
The innermost radius is automatically set as the magnetic axis, and particles will only be dropped at a radius in
the interval if their “effective magnetic axis” radial location is less than the currently simulated. The “effective
magnetic axis” arises due to orbit drifts, and if it’s presence is not properly accounted for, weird bright or
dark spots will show up in synchrotron image (when orbit drifts are taken into account). Example: rdyn =
0.84,80.

t

Default value: 0,-1
Example line: t=0,1e-6
Allowed values: Any real number; any real number

The first argument of this parameter specifies the reference time. For most purposes this parameter is most
conveniently set to 0. The second argument specifies the end time, at which point an orbit should be considered
finished and no longer followed. If the second argument is less than the reference time (the first argument), the
orbit will be followed for one full poloidal orbit, or until the simulation clock is greater than minus the end time.
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9.3 Magnetic settings

Two different magnetic handler modules are provided with SOFT. These are the circular module, implementing
a simple analytical magnetic field with a circular cross-section and constant safety factor, as well as the numeric
module, which loads 2D numeric magnetic fields.

Performance-wise, the numeric module is somewhat slower than the circular model, due to that the former
interpolates the 2D magnetic field with a cubic spline. The difference is however only about a factor of two.

9.3.1 circular

B0

Default value: 1
Example line: B0=5.2
Allowed values: Any real number

Specifies the magnetic field strength on the magnetic axis, i.e. on the circle 𝑅 = 𝑅m, 𝑍 = 0. In units of Tesla.

major_radius

Default value: 1
Example line: major_radius=2
Allowed values: Any positive real number

Specifies the major radius of the tokamak. In units of meter.

minor_radius

Default value: 1
Example line: minor_radius=1
Allowed values: Any real number

Specifies the minor radius of the device. In units of meter. This parameter only influences the location of the
walls of the tokamak, and does not affect the magnetic field.

safety_factor

Default value: 1
Example line: B0=1
Allowed values: Any real number

The safety factor, or 𝑞-factor of the tokamak magnetic field. In this analytical model of the magnetic field, the
safety factor is a constant.

9.3.2 numeric

axis

Default value: Set in equilibrium file
Example line: axis=0.68,-0.002
Allowed values: Any positive real number; any real number
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Specifies the location of the magnetic axis in a poloidal plane. The first coordinate specifies the major radial
location (𝑅) of the axis, and the second coordinate specifies the vertical location (𝑍) of the axis. SOFT requires
the magnetic equilibrium data file to give this value, but under some circumstances it may be desirable to
override the value set in the equilibrium file, in which case this parameter can be used.

file

Default value: None
Example line: file=/path/to/magnetic/equilibrium.mat
Allowed values: Any real number

Specifies the name of the file containing the magnetic equilibrium data to use. The format that this file must
have is described under Magnetic equilibria. The format of the file is determined by analyzing the file name
extension. All file formats supported by the SOFT file interface can be used.

format

Default value: auto
Example line: format=mat
Allowed values: auto, hdf5 or mat

Overrides the format specifier for the magnetic equilibrium data file. auto is the default, which causes SOFT
to determine the file format based on the filename extension. hdf5 causes SOFT to interpret the data file as an
HDF5 file. mat causes SOFT to interpret the data file as a Matlab MAT file.

wall

Default value: any
Example line: wall=separatrix
Allowed values: any, separatrix, wall

Specifies which type of wall should be used. Equilibrium data files can contain two types of “walls”, namely
the actual tokamak wall cross-section or the separatrix/last closed flux surface. SOFT only requires one of these
two types to be present in the data file, and with any set, the tokamak wall will be first be considered, but if
it’s not present in the file, the separatrix will be used instead. The wall and separatrix options forces the
use of either of the two types. The wall is the structure beyond which particles will be considered as lost and no
longer followed.

9.4 sycout settings

A sycout (short for SYnchrotron Camera OUTput) is an output module that is coupled to the sycamera tool of SOFT.
Currently the following sycouts are available:

• green – Generates a Green’s function

• image – Generates a camera image

• polimage – Generates a camera image with polarization information

• polspectrometer – Generates a spectrum with polarization information

• space3d – Stores 3D information about the contributions to an image

• spectrometer – Generates a spectrum

• topview – Stores X and Y coordinates of contributions to an image. Creates a top-down “map” of contributions.
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9.4.1 green

The green sycout allows you to generate Green’s functions for images, spectra or any kind of function you can imag-
ine. Green’s functions are sometimes also known as weight functions and are essentially mappings from a distribution
function to a quantity such as an image, spectrum or combination thereof.

Instructions on how to use this sycout are available under :ref:‘geomkern‘.

format

Default value: Auto-determined from output filename extension
Example line: format=mat
Allowed values: h5, hdf5, mat, out, sdt

Overrides the default setting for what file format to store the output in. If not set, the output file format is
determined based on the filename extension of the output file. h5 and hdf5 forces HDF5 output. mat forces
Matlab MAT output. out and sdt forces SOFT self-descriptive text (SDT) format output (text-based).

function

Default value: None
Example line: function=r12ij
Allowed values: Any (non-repeating) combination of the characters 1, 2, i, j, r, w

Sets the shape and contents of the Green’s function. A more detailed description of how this option works can
be found under Geometric kernels.

output

Default value: None
Example line: output=outputfile.mat
Allowed values: Any non-line-breaking string

Sets the name of the output file. The format of the output file is determined based on the extension part of this
setting unless the format option has also been specified. By extension is meant everything that comes after the
last dot (.).

pixels

Default value: None
Example line: pixels=520
Allowed values: Any positive integer

Sets the number of pixels of the image, i.e. the number of elements in each of the i and j dimensions. Only
required if either i or j appears in the function option.

stokesparams

Default value: no
Example line: stokesparams=yes
Allowed values: yes or no

If set to yes, each of the four Stokes parameters I, U, Q and V will be stored in the Green’s function (thereby
giving it an extra dimension with four elements). If set to no, only the intensity parameter is stored, which is
the value commonly measured by spectrometers and cameras.
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suboffseti

suboffsetj

Default value: 0
Example line: suboffseti=20
Allowed values: Any non-negative integer

Green’s functions for images tend to become quite large, and in many cases much of the Green’s function is zero
and provides no interesting information. In these cases, a subset of the image can be stored so that the correct
wide-angle image distortion is still present. These offset parameters specify the offsets in the i and j directions
respectively from which the image that is to be stored should start.

subpixels

Default value: Same as ‘‘pixels‘‘
Example line: subpixels=30
Allowed values: Any positive integer

Specifies the number of pixels in each of the i and j directions of the subset image. Since the subset im-
age must lie within the full image, suboffseti``+``subpixels and suboffsetj``+``subpixels
must both be less than or equal to pixels.

9.4.2 image

The image sycout generates a camera image.

brightness

Default value: intensity
Example line: brightness=histogram
Allowed values: bw, histogram, intensity

Specifies how pixels should be colored. With bw (for black-and-white), pixels are simply marked if they receive
a contribution. Thus, if any radiation hits the pixel during the run, the pixel will contain the value 1 at the end
of the run and 0 otherwise.

The histogram option specifies that each hit in a pixel should increase the value of the pixel by 1. The
radiation intensity reaching the pixel is not considered.

The intensity option takes the emitted radiation intensity into account, including spectral effects (if enabled
through other options).

includeseparatrix

Default value: yes
Example line: includeseparatrix=no
Allowed values: no and yes

Specifies whether or not to include separatrix data from the input magnetic equilibrium data file in the output.
By default, it is set to yes. If no separatrix data is available, the separatrix variable is omitted from the
output file.

includewall
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Default value: yes
Example line: includewall=no
Allowed values: no and yes

Specifies whether or not to include wall data from the input magnetic equilibrium data file in the output. By
default, it is set to yes. If no wall data is available, the wall variable is omitted from the output file.

name

Default value: None
Example line: name=output-file.mat
Allowed values: Any string allowed by the underlying file system

Specifies the name of the file to which the output will be written. The output is written through the SOFT file
interface which means it will be either in a HDF5 file, a Matlab MAT file or a SOFT SDT (Self-Descriptive
Text) format. The file format is determined based on the filename extension. For HDF5, use either .h5 or .hdf5,
for Matlab MAT use .mat, and for SDT any other extension (though .sdt is recommended).

pixels

Default value: None
Example line: pixels=300
Allowed values: Any positive integer

Sets the number of pixels in the image. Images are always square and have the same number of pixels in the x
(i) direction as in the y (j) direction.

9.4.3 space3d

The space3d can be used to store 3D data about the points of space that contribute to an image. A description about
how to use it can be found in space3d.

output

Default value: None
Example line: output=name-of-outputfile.mat
Allowed values: Any string allowed by the underlying file system

Name of the file to which output should be written. The space3dmodule uses the SOFT file interface, meaning
output can be written in either HDF5, Matlab MAT or SOFT SDT (Self-Descriptive Text) format. The format
of the output file is determined based on the filename extension. For HDF5 use .h5 or .hdf5, for Matlab MAT
use .mat, and for SDT use any other extension (though .sdt is recommended).

pixels

Default value: None
Example line: pixels=300
Allowed values: Any positive integer

When type=pixels, sets the number of pixels in each direction of the bounding box. A value of for example
100 means that there will be a total of 100 × 100 × 100 = 1 000 000 “pixels” in the box.

point0
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Default value: None
Example line: point0=.40,-.75,.20
Allowed values: Any real number; any real number; any real number

Specifies one of the two defining edge points of the bounding box.

point1

Default value: None
Example line: point1=.63,-.15,-.20
Allowed values: Any real number; any real number; any real number

Specifies one of the two defining edge points of the bounding box.

type

Default value: None
Example line: type=pixels
Allowed values: pixels, real

Specifies the type of 3D object to store. pixels divides the bounding box into a number of smaller boxes and
collects the contribution in each of those (the number of boxes is determined by the pixels option). This 3D
type is fixed in size and is represented as a simple 3D array.

The real type stores the real location of each particle that contributes to the image. This 3D grows in size
with the number of particles that hit the detector, and is stored as a sparse matrix. It’s usually very difficult to
determine the final size of this 3D type, but it gives much more detailed data and can sometimes be the more
space-efficient option.

9.4.4 spectrometer

The spectrometer sycout stores spectra.

name

Default value: None
Example line: name=spectrum.mat
Allowed values: Any string allowed by the file system

Name of the output file.

9.4.5 topview

The topview sycout generates a top map of the tokamak, showing where in the xy-plane radiation comes from. Note
that the image is line-integrated along the z direction, and bright areas in the top view therefore do not necessarily
correspond to bright areas in the image.

brightness

Default value: intensity
Example line: brightness=histogram
Allowed values: bw, histogram, intensity
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Specifies how pixels should be colored. With bw (for black-and-white), pixels are simply marked if they receive
a contribution. Thus, if any radiation hits the pixel during the run, the pixel will contain the value 1 at the end
of the run and 0 otherwise.

The histogram option specifies that each hit in a pixel should increase the value of the pixel by 1. The
radiation intensity reaching the pixel is not considered.

The intensity option takes the emitted radiation intensity into account, including spectral effects (if enabled
through other options).

name

Default value: None
Example line: name=output-file.mat
Allowed values: Any string allowed by the underlying file system

Specifies the name of the file to which the output will be written. The output is written through the SOFT file
interface which means it will be either in a HDF5 file, a Matlab MAT file or a SOFT SDT (Self-Descriptive
Text) format. The file format is determined based on the filename extension. For HDF5, use either .h5 or .hdf5,
for Matlab MAT use .mat, and for SDT any other extension (though .sdt is recommended).

pixels

Default value: None
Example line: pixels=300
Allowed values: Any positive integer

Sets the number of pixels in the topview. Topviews are always square and have the same number of pixels in the
x (i) direction as in the y (j) direction.
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The SDT format

The SDT format (for SOFT Descriptive Text or Self-Descriptive Text or Semi-Descriptive Text) was developed in order
to import magnetic field data from systems with no HDF5 or MATLAB support. It is a very simple text-based format
without fancy features and with little safety. It is recommended that users stick to HDF5 or MATLAB files whenever
possible.

10.1 Basic structure

Just as MATLAB files (and in a sense, HD5 files), SDT files contains a set of variables. Each variable consists of a
header and a body. The header is always one line and specifies the name and dimensions of the variable. The body
(which comes on the very next line) is at least one line and contains the data of the variable, in ASCII format. Variables
are separated by empty lines.

The header always consists of two integers and a string, all separated by spaces. The first integer specifies the number
of rows in the data. The second integer specifies the number of columns in the data (or number of characters, in the
case of strings). The name is an ASCII string of arbitrary length (but without any whitespace characters).

Note that strings and numeric variables are, technically, encoded differently. Data should always be readable by a
human in a text-editor, meaning that numeric values are converted to their ASCII equivalent, while strings are stored
directly without converting every single character to an ASCII digit. There is no indication in the header about which
type of data a variable contains and so it is up to the user to read variables using the correct decoder.

Matrices are stored by converting each element to its ASCII equivalent. Elements in the same row are separated by
single spaces, while rows are separated by (Unix) newlines (i.e. just one \n or 0xA character).

10.2 Example SDT file

An example SDT file containing three variables is shown below:
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1 2 maxis
1.688510 0.048496

3 3 someMatrix
1.1 2.2 3.3
4.4 5.5 6.6
7.7 8.8 9.9

1 29 someString
This is an SDT example string
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Troubleshooting

Images contain very sharp, very bright lines. Are particles with large pitch angles being simulated? If so, there’s
a numerical issue that could potentially arise. In the calculation of a synchrotron image, the Jacobian for the orbit
𝐽 = (𝜕𝑅/𝜕𝜌)(𝜕𝑍/𝜕𝜏) − (𝜕𝑅/𝜕𝜏)(𝜕𝑍/𝜕𝜌) must be computed. The derivatives with respect to 𝜏 are straight-
forward, but to find the derivatives with respect to 𝜌 (the radius at which the particle is initiated) we must compute one
additional orbit, at 𝜌+ 𝜖, where 𝜖 is an arbitrarily small number. Internally, this number is fixed to 10−6, which should
be sufficient for most cases. If however the orbits corresponding to 𝜌 and 𝜌 + 𝜖 lie on opposite sides of the trapped-
passing boundary, this will lead to a large error in the computations of the derivatives which will amplify one particular
orbit. Currently, the best approach for fixing this should be to make the value of macro JACOBIAN_ORBIT_STEP
in src/include/global.h smaller.
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CHAPTER 12

Indices and tables

• genindex

• modindex

• search
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progress, 24
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p
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R
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S
safety_factor

command line option, 28
stokesparams

command line option, 30
suboffseti

command line option, 30
suboffsetj

command line option, 31
subpixels

command line option, 31

T
t
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