
SoCo (Sonos Controller)
Documentation

Release 0.11

Rahim Sonawalla, et al.

June 08, 2015

Contents

1 Contents 3
1.1 Tutorial . 3
1.2 The soco module . 3
1.3 Plugins . 14
1.4 Unit and integration tests . 15
1.5 The data_structures sub module . 17
1.6 SoCo releases . 23
1.7 Release Procedures . 30

2 Indices and tables 31

Python Module Index 33

i

ii

SoCo (Sonos Controller) Documentation, Release 0.11

SoCo (Sonos Controller) is a Python library to control your Sonos speakers.

Contents 1

SoCo (Sonos Controller) Documentation, Release 0.11

2 Contents

CHAPTER 1

Contents

1.1 Tutorial

SoCo allows you to control your Sonos sound system from a Python program. For a quick start have a look at the
example applications that come with the library.

1.1.1 Discovery

For discovering the Sonos devices in your network, use the soco.discover() method.

zones = list(soco.discover())

1.1.2 Music

Once one of the available devices is selected, the SoCo class can be used to control it. Have a look at the The soco
module for all available commands.

sonos = SoCo(ip)
sonos.partymode()

1.2 The soco module

SoCo (Sonos Controller) is a simple library to control Sonos speakers

soco.discover(timeout=1, include_invisible=False, interface_addr=None)
Discover Sonos zones on the local network.

Return an set of SoCo instances for each zone found. Include invisible zones (bridges and slave zones in stereo
pairs if include_invisible is True. Will block for up to timeout seconds, after which return None if no zones
found.

Parameters

• timeout (int) – block for this many seconds, at most. Default 1

• include_invisible (bool) – include invisible zones in the return set. Default False

3

https://github.com/rahims/SoCo/tree/master/examples
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#bool

SoCo (Sonos Controller) Documentation, Release 0.11

• interface_addr (str) – Discovery operates by sending UDP multicast datagrams. in-
terface_addr is a string (dotted quad) representation of the network interface address to use
as the source of the datagrams (i.e. it is a value for IP_MULTICAST_IF). If None or not
specified, the system default interface for UDP multicast messages will be used. This is
probably what you want to happen.

Returns a set of SoCo instances, one for each zone found, or else None.

Return type (set)

Note: There is no easy cross-platform way to find out the addresses of the local machine’s network interfaces.
You might try the netifaces module and some code like this:

>>> from netifaces import interfaces, AF_INET, ifaddresses
>>> data = [ifaddresses(i) for i in interfaces()]
>>> [d[AF_INET][0]['addr'] for d in data if d.get(AF_INET)]
['127.0.0.1', '192.168.1.20']

This should provide you with a list of values to try for
interface_addr if you are having trouble finding your Sonos devices

class soco.SoCo(ip_address)
A simple class for controlling a Sonos speaker.

For any given set of arguments to __init__, only one instance of this class may be created. Subsequent attempts
to create an instance with the same arguments will return the previously created instance. This means that all
SoCo instances created with the same ip address are in fact the same SoCo instance, reflecting the real world
position.

Public functions:

play -- Plays the current item.
play_uri -- Plays a track or a music stream by URI.
play_from_queue -- Plays an item in the queue.
pause -- Pause the currently playing track.
stop -- Stop the currently playing track.
seek -- Move the currently playing track a given elapsed time.
next -- Go to the next track.
previous -- Go back to the previous track.
switch_to_line_in -- Switch the speaker's input to line-in.
switch_to_tv -- Switch the playbar speaker's input to TV.
get_current_track_info -- Get information about the currently playing

track.
get_speaker_info -- Get information about the Sonos speaker.
partymode -- Put all the speakers in the network in the same group.
join -- Join this speaker to another "master" speaker.
unjoin -- Remove this speaker from a group.
get_queue -- Get information about the queue.
get_artists -- Get artists from the music library
get_album_artists -- Get album artists from the music library
get_albums -- Get albums from the music library
get_genres -- Get genres from the music library
get_composers -- Get composers from the music library
get_tracks -- Get tracks from the music library
get_playlists -- Get playlists from the music library
get_music_library_information -- Get information from the music library
get_current_transport_info -- get speakers playing state
browse_by_idstring -- Browse (get sub-elements) a given type
add_uri_to_queue -- Adds an URI to the queue

4 Chapter 1. Contents

http://docs.python.org/2/library/functions.html#str
https://pypi.python.org/pypi/netifaces

SoCo (Sonos Controller) Documentation, Release 0.11

add_to_queue -- Add a track to the end of the queue
remove_from_queue -- Remove a track from the queue
clear_queue -- Remove all tracks from queue
get_favorite_radio_shows -- Get favorite radio shows from Sonos'

Radio app.
get_favorite_radio_stations -- Get favorite radio stations.
create_sonos_playlist -- Create a new empty Sonos playlist
create_sonos_playlist_from_queue -- Create a new Sonos playlist

from the current queue.
add_item_to_sonos_playlist -- Adds a queueable item to a Sonos'

playlist
get_item_album_art_uri -- Get an item's Album Art absolute URI.
search_track -- Search for an artist, artist's albums, or track.
get_albums_for_artist -- Get albums for an artist.
get_tracks_for_album -- Get tracks for an artist's album.
start_library_update -- Trigger an update of the music library.

Properties:

uid -- The speaker's unique identifier
mute -- The speaker's mute status.
volume -- The speaker's volume.
bass -- The speaker's bass EQ.
treble -- The speaker's treble EQ.
loudness -- The status of the speaker's loudness compensation.
cross_fade -- The status of the speaker's crossfade.
status_light -- The state of the Sonos status light.
player_name -- The speaker's name.
play_mode -- The queue's repeat/shuffle settings.
queue_size -- Get size of queue.
library_updating -- Whether music library update is in progress.
album_artist_display_option -- album artist display option
is_playing_tv -- Is the playbar speaker input from TV?
is_playing_radio -- Is the speaker input from radio?
is_playing_line_in -- Is the speaker input from line-in?

Warning: These properties are not cached and will obtain information over the network, so may take longer
than expected to set or return a value. It may be a good idea for you to cache the value in your own code.

add_item_to_sonos_playlist(queueable_item, sonos_playlist)
Adds a queueable item to a Sonos’ playlist

Parameters

• queueable_item – the item to add to the Sonos’ playlist

• sonos_playlist – the Sonos’ playlist to which the item should be added

add_to_queue(*args, **kwargs)
Adds a queueable item to the queue

add_uri_to_queue(*args, **kwargs)
Adds the URI to the queue

Parameters uri (str) – The URI to be added to the queue

album_artist_display_option
Return the current value of the album artist compilation setting (see
http://www.sonos.com/support/help/3.4/en/sonos_user_guide/ Chap07_new/Compilation_albums.htm)

1.2. The soco module 5

http://docs.python.org/2/library/functions.html#str
http://www.sonos.com/support/help/3.4/en/sonos_user_guide/

SoCo (Sonos Controller) Documentation, Release 0.11

This is a string. Possible values:

•“WMP” - Use Album Artists

•“ITUNES” - Use iTunes® Compilations

•“NONE” - Do not group compilations

To change the current setting, call start_library_update and pass the new setting.

all_groups
Return a set of all the available groups

all_zones
Return a set of all the available zones

bass
The speaker’s bass EQ. An integer between -10 and 10.

browse(ml_item=None, start=0, max_items=100, full_album_art_uri=False, search_term=None, sub-
categories=None)

Browse (get sub-elements) a music library item

Parameters

• ml_item (MusicLibraryItem) – The MusicLibraryItem to browse, if left out or passed
None, the items at the base level will be returned

• start (int) – The starting index of the results

• max_items (int) – The maximum number of items to return

• full_album_art_uri (bool) – If the album art URI should include the IP address

• search_term (str) – A string that will be used to perform a fuzzy search among the
search results. If used in combination with subcategories, the fuzzy search will be per-
formed on the subcategory. NOTE: Searching will not work if ml_item is None.

• subcategories (list) – A list of strings that indicate one or more subcategories to dive
into. NOTE: Providing sub categories will not work if ml_item is None.

Returns A SearchResult object

Return type SearchResult

Raises AttributeError: If ml_item has no item_id attribute SoCoUPnPException: With
error_code=’701’ if the item cannot be browsed

browse_by_idstring(search_type, idstring, start=0, max_items=100, full_album_art_uri=False)
Browse (get sub-elements) a given type

Parameters

• search_type – The kind of information to retrieve. Can be one of: ‘artists’, ‘al-
bum_artists’, ‘albums’, ‘genres’, ‘composers’, ‘tracks’, ‘share’, ‘sonos_playlists’, and
‘playlists’, where playlists are the imported file based playlists from the music library

• idstring – String ID to search for

• start – Starting number of returned matches

• max_items – Maximum number of returned matches. NOTE: The maximum may be
restricted by the unit, presumably due to transfer size consideration, so check the returned
number against the requested.

• full_album_art_uri – If the album art URI should include the IP address

6 Chapter 1. Contents

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#bool
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#list

SoCo (Sonos Controller) Documentation, Release 0.11

Returns A dictionary with metadata for the search, with the keys ‘number_returned’, ‘up-
date_id’, ‘total_matches’ and an ‘item_list’ list with the search results.

clear_queue(*args, **kwargs)
Removes all tracks from the queue.

Returns: True if the Sonos speaker cleared the queue.

Raises SoCoException (or a subclass) upon errors.

create_sonos_playlist(title)
Create a new empty Sonos playlist.

Params title Name of the playlist

Returns An instance of DidlPlaylistContainer

create_sonos_playlist_from_queue(*args, **kwargs)
Create a new Sonos playlist from the current queue.

Params title Name of the playlist

Returns An instance of DidlPlaylistContainer

cross_fade
The speaker’s cross fade state. True if enabled, False otherwise

get_album_artists(*args, **kwargs)
Convenience method for get_music_library_information() with
search_type=’album_artists’. For details on remaining arguments refer to the docstring for that
method.

get_albums(*args, **kwargs)
Convenience method for get_music_library_information() with search_type=’albums’. For
details on remaining arguments refer to the docstring for that method.

get_albums_for_artist(artist, full_album_art_uri=False)
Get albums for an artist.

Parameters

• artist (str) – Artist name

• full_album_art_uri (bool) – If the album art URI should include the IP address

Returns A SearchResult object.

Return type SearchResult

get_artists(*args, **kwargs)
Convenience method for get_music_library_information() with search_type=’artists’. For
details on remaining arguments refer to the docstring for that method.

get_composers(*args, **kwargs)
Convenience method for get_music_library_information() with search_type=’composers’.
For details on remaining arguments refer to the docstring for that method.

get_current_track_info()
Get information about the currently playing track.

Returns: A dictionary containing the following information about the currently playing track:
playlist_position, duration, title, artist, album, position and a link to the album art.

1.2. The soco module 7

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#bool

SoCo (Sonos Controller) Documentation, Release 0.11

If we’re unable to return data for a field, we’ll return an empty string. This can happen for all kinds of
reasons so be sure to check values. For example, a track may not have complete metadata and be missing
an album name. In this case track[’album’] will be an empty string.

get_current_transport_info()
Get the current playback state

Returns: A dictionary containing the following information about the speakers playing state cur-
rent_transport_state (PLAYING, PAUSED_PLAYBACK, STOPPED), current_trasnport_status (OK, ?),
current_speed(1,?)

This allows us to know if speaker is playing or not. Don’t know other states of CurrentTransportStatus and
CurrentSpeed.

get_favorite_radio_shows(start=0, max_items=100)
Get favorite radio shows from Sonos’ Radio app.

Returns: A list containing the total number of favorites, the number of favorites returned, and the actual
list of favorite radio shows, represented as a dictionary with title and uri keys.

Depending on what you’re building, you’ll want to check to see if the total number of favorites is greater
than the amount you requested (max_items), if it is, use start to page through and get the entire list of
favorites.

get_favorite_radio_stations(start=0, max_items=100)
Get favorite radio stations from Sonos’ Radio app.

Returns: A list containing the total number of favorites, the number of favorites returned, and the actual
list of favorite radio stations, represented as a dictionary with title and uri keys.

Depending on what you’re building, you’ll want to check to see if the total number of favorites is greater
than the amount you requested (max_items), if it is, use start to page through and get the entire list of
favorites.

get_genres(*args, **kwargs)
Convenience method for get_music_library_information() with search_type=’genres’. For
details on remaining arguments refer to the docstring for that method.

get_item_album_art_uri(item)
Get an item’s Album Art absolute URI.

get_music_library_information(search_type, start=0, max_items=100,
full_album_art_uri=False, search_term=None, subcat-
egories=None, complete_result=False)

Retrieve music information objects from the music library

This method is the main method to get music information items, like e.g. tracks, albums etc., from the
music library with. It can be used in a few different ways:

The search_term argument performs a fuzzy search on that string in the results, so e.g calling:

get_music_library_items('artist', search_term='Metallica')

will perform a fuzzy search for the term ‘Metallica’ among all the artists.

Using the subcategories argument, will jump directly into that subcategory of the search and return results
from there. So. e.g knowing that among the artist is one called ‘Metallica’, calling:

get_music_library_items('artist', subcategories=['Metallica'])

will jump directly into the ‘Metallica’ sub category and return the albums associated with Metallica and:

8 Chapter 1. Contents

SoCo (Sonos Controller) Documentation, Release 0.11

get_music_library_items('artist', subcategories=['Metallica',
'Black'])

will return the tracks of the album ‘Black’ by the artist ‘Metallica’. The order of sub category types is:
Genres->Artists->Albums->Tracks. It is also possible to combine the two, to perform a fuzzy search in a
sub category.

The start, max_items and complete_result arguments all has to do with paging of the results. Per default,
the searches are always paged, because there is a limit to how many items we can get at a time. This paging
is exposed to the user with the start and max_items arguments. So calling:

get_music_library_items('artists', start=0, max_items=100)
get_music_library_items('artists', start=100, max_items=100)

will get the first and next 100 items, respectively. It is also possible to ask for all the elements at once:

get_music_library_items('artists', complete_result=True)

This will perform the paging internally and simply return all the items.

Parameters

• search_type – The kind of information to retrieve. Can be one of: ‘artists’, ‘al-
bum_artists’, ‘albums’, ‘genres’, ‘composers’, ‘tracks’, ‘share’, ‘sonos_playlists’, and
‘playlists’, where playlists are the imported file based playlists from the music library

• start – Starting number of returned matches (zero based).

• max_items – Maximum number of returned matches. NOTE: The maximum may be
restricted by the unit, presumably due to transfer size consideration, so check the returned
number against the requested.

• full_album_art_uri – If the album art URI should include the IP address

• search_term – A string that will be used to perform a fuzzy search among the search
results. If used in combination with subcategories, the fuzzy search will be performed in
the subcategory

• subcategories – A list of strings that indicate one or more subcategories to dive into

• complete_result – Will disable paging (ignore start and max_items) and return all
results for the search. WARNING! Getting e.g. all the tracks in a large collection might
take some time.

Returns A SearchResult object

Raises SoCoException upon errors

NOTE: The playlists that are returned with the ‘playlists’ search, are the playlists imported from (files in)
the music library, they are not the Sonos playlists.

The information about the which searches can be performed and the form of the query has been gathered
from the Janos project: http://sourceforge.net/projects/janos/ Props to the authors of that project.

get_playlists(*args, **kwargs)
Convenience method for get_music_library_information() with search_type=’playlists’. For
details on remaining arguments refer to the docstring for that method.

NOTE: The playlists that are referred to here are the playlist (files) imported from the music library, they
are not the Sonos playlists.

get_queue(start=0, max_items=100, full_album_art_uri=False)
Get information about the queue

1.2. The soco module 9

http://sourceforge.net/projects/janos/

SoCo (Sonos Controller) Documentation, Release 0.11

Parameters

• start – Starting number of returned matches

• max_items – Maximum number of returned matches

• full_album_art_uri – If the album art URI should include the IP address

Returns A Queue object

This method is heavly based on Sam Soffes (aka soffes) ruby implementation

get_sonos_playlists(*args, **kwargs)
Convenience method for: get_music_library_information(‘sonos_playlists’) Refer to the docstring for that
method

get_speaker_info(refresh=False)
Get information about the Sonos speaker.

Arguments: refresh – Refresh the speaker info cache.

Returns: Information about the Sonos speaker, such as the UID, MAC Address, and Zone Name.

get_tracks(*args, **kwargs)
Convenience method for get_music_library_information() with search_type=’tracks’. For
details on remaining arguments refer to the docstring for that method.

get_tracks_for_album(artist, album, full_album_art_uri=False)
Get tracks for an artist’s album.

Parameters

• artist (str) – Artist name

• album (str) – Album name

• full_album_art_uri (bool) – If the album art URI should include the IP address

Returns A SearchResult object.

Return type SearchResult

group
The Zone Group of which this device is a member.

group will be None if this zone is a slave in a stereo pair.

is_bridge
Is this zone a bridge?

is_coordinator
Return True if this zone is a group coordinator, otherwise False.

return True or False

is_playing_line_in
Is the speaker playing line-in?

return True or False

is_playing_radio
Is the speaker playing radio?

return True or False

10 Chapter 1. Contents

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#bool

SoCo (Sonos Controller) Documentation, Release 0.11

is_playing_tv
Is the playbar speaker input from TV?

return True or False

is_visible
Is this zone visible? A zone might be invisible if, for example it is a bridge, or the slave part of stereo pair.

return True or False

join(master)
Join this speaker to another “master” speaker.

Note: The signature of this method has changed in 0.8. It now requires a SoCo instance to be passed as
master, not an IP address

library_updating
True if the music library is in the process of being updated

Returns True if the music library is in the process of being updated

Return type bool

loudness
The Sonos speaker’s loudness compensation. True if on, otherwise False.

Loudness is a complicated topic. You can find a nice summary about this feature here:
http://forums.sonos.com/showthread.php?p=4698#post4698

mute
The speaker’s mute state. True if muted, False otherwise

next(*args, **kwargs)
Go to the next track.

Returns: True if the Sonos speaker successfully skipped to the next track.

Raises SoCoException (or a subclass) upon errors.

Keep in mind that next() can return errors for a variety of reasons. For example, if the Sonos is streaming
Pandora and you call next() several times in quick succession an error code will likely be returned (since
Pandora has limits on how many songs can be skipped).

partymode()
Put all the speakers in the network in the same group, a.k.a Party Mode.

This blog shows the initial research responsible for this: http://blog.travelmarx.com/2010/06/exploring-
sonos-via-upnp.html

The trick seems to be (only tested on a two-speaker setup) to tell each speaker which to join. There’s
probably a bit more to it if multiple groups have been defined.

pause(*args, **kwargs)
Pause the currently playing track.

Returns: True if the Sonos speaker successfully paused the track.

Raises SoCoException (or a subclass) upon errors.

play(*args, **kwargs)
Play the currently selected track.

Returns: True if the Sonos speaker successfully started playing the track.

Raises SoCoException (or a subclass) upon errors.

1.2. The soco module 11

http://docs.python.org/2/library/functions.html#bool
http://forums.sonos.com/showthread.php?p=4698#post4698
http://blog.travelmarx.com/2010/06/exploring-sonos-via-upnp.html
http://blog.travelmarx.com/2010/06/exploring-sonos-via-upnp.html

SoCo (Sonos Controller) Documentation, Release 0.11

play_from_queue(*args, **kwargs)
Play a track from the queue by index. The index number is required as an argument, where the first index
is 0.

index: the index of the track to play; first item in the queue is 0 start: If the item that has been set should
start playing

Returns: True if the Sonos speaker successfully started playing the track. False if the track did not start
(this may be because it was not requested to start because “start=False”)

Raises SoCoException (or a subclass) upon errors.

play_mode
The queue’s play mode. Case-insensitive options are:

NORMAL – Turns off shuffle and repeat. REPEAT_ALL – Turns on repeat and turns off shuffle. SHUF-
FLE – Turns on shuffle and repeat. (It’s strange, I know.) SHUFFLE_NOREPEAT – Turns on shuffle and
turns off repeat.

play_uri(*args, **kwargs)
Play a given stream. Pauses the queue. If there is no metadata passed in and there is a title set then a
metadata object will be created. This is often the case if you have a custom stream, it will need at least the
title in the metadata in order to play.

Arguments: uri – URI of a stream to be played. meta – The track metadata to show in the player, DIDL
format. title – The track title to show in the player start – If the URI that has been set should start playing

Returns: True if the Sonos speaker successfully started playing the track. False if the track did not start
(this may be because it was not requested to start because “start=False”)

Raises SoCoException (or a subclass) upon errors.

player_name
The speaker’s name. A string.

previous(*args, **kwargs)
Go back to the previously played track.

Returns: True if the Sonos speaker successfully went to the previous track.

Raises SoCoException (or a subclass) upon errors.

Keep in mind that previous() can return errors for a variety of reasons. For example, previous() will return
an error code (error code 701) if the Sonos is streaming Pandora since you can’t go back on tracks.

queue_size
Get size of queue

remove_from_queue(*args, **kwargs)
Remove a track from the queue by index. The index number is required as an argument, where the first
index is 0.

index: the index of the track to remove; first item in the queue is 0

Returns True if the Sonos speaker successfully removed the track

Raises SoCoException (or a subclass) upon errors.

search_track(artist, album=None, track=None, full_album_art_uri=False)
Search for an artist, artist’s albums, or specific track.

Parameters

• artist (str) – Artist name

12 Chapter 1. Contents

http://docs.python.org/2/library/functions.html#str

SoCo (Sonos Controller) Documentation, Release 0.11

• album (str) – Album name

• track (str) – Track name

• full_album_art_uri (bool) – If the album art URI should include the IP address

Returns A SearchResult object.

Return type SearchResult

seek(*args, **kwargs)
Seeks to a given timestamp in the current track, specified in the format of HH:MM:SS or H:MM:SS.

Returns: True if the Sonos speaker successfully seeked to the timecode.

Raises SoCoException (or a subclass) upon errors.

start_library_update(album_artist_display_option=u’‘)
Start an update of the music library.

If specified, album_artist_display_option changes the album artist compilation setting (see also al-
bum_artist_display_option).

status_light
The white Sonos status light between the mute button and the volume up button on the speaker. True if on,
otherwise False.

stop(*args, **kwargs)
Stop the currently playing track.

Returns: True if the Sonos speaker successfully stopped the playing track.

Raises SoCoException (or a subclass) upon errors.

switch_to_line_in()
Switch the speaker’s input to line-in.

Returns: True if the Sonos speaker successfully switched to line-in.

If an error occurs, we’ll attempt to parse the error and return a UPnP error code. If that fails, the raw
response sent back from the Sonos speaker will be returned.

Raises SoCoException (or a subclass) upon errors.

switch_to_tv()
Switch the playbar speaker’s input to TV.

Returns: True if the Sonos speaker successfully switched to TV.

If an error occurs, we’ll attempt to parse the error and return a UPnP error code. If that fails, the raw
response sent back from the Sonos speaker will be returned.

Raises SoCoException (or a subclass) upon errors.

treble
The speaker’s treble EQ. An integer between -10 and 10.

uid
A unique identifier. Looks like: RINCON_000XXXXXXXXXX1400

unjoin()
Remove this speaker from a group.

Seems to work ok even if you remove what was previously the group master from it’s own group. If the
speaker was not in a group also returns ok.

Returns: True if this speaker has left the group.

1.2. The soco module 13

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#bool

SoCo (Sonos Controller) Documentation, Release 0.11

Raises SoCoException (or a subclass) upon errors.

visible_zones
Return an set of all visible zones

volume
The speaker’s volume. An integer between 0 and 100.

exception soco.SoCoException
base exception raised by SoCo, containing the UPnP error code

exception soco.UnknownSoCoException
raised if reason of the error can not be extracted

The exception object will contain the raw response sent back from the speaker

1.3 Plugins

Plugins can extend the functionality of SoCo.

1.3.1 Creating a Plugin

To write a plugin, simply extend the class soco.plugins.SoCoPlugin. The __init__ method of the plugin
should accept an SoCo instance as the first positional argument, which it should pass to its super constructor.

The class soco.plugins.example.ExamplePlugin contains an example plugin implementation.

1.3.2 Using a Plugin

To use a plugin, it can be loaded and instantiated directly.

create a plugin by normal instantiation
from soco.plugins.example import ExamplePlugin

create a new plugin, pass the soco instance to it
myplugin = ExamplePlugin(soco, 'a user')

do something with your plugin
print 'Testing', myplugin.name
myplugin.music_plugin_stop()

Alternatively a plugin can also be loaded by its name using SoCoPlugin.from_name().

get a plugin by name (eg from a config file)
myplugin = SoCoPlugin.from_name('soco.plugins.example.ExamplePlugin',

soco, 'some user')

do something with your plugin
print 'Testing', myplugin.name
myplugin.music_plugin_play()

1.3.3 The SoCoPlugin class

class soco.plugins.SoCoPlugin(soco)
The base class for SoCo plugins

14 Chapter 1. Contents

SoCo (Sonos Controller) Documentation, Release 0.11

classmethod from_name(fullname, soco, *args, **kwargs)
Instantiate a plugin by its full name

name
human-readable name of the plugin

1.4 Unit and integration tests

There are two sorts of tests written for the SoCo package. Unit tests implement elementary checks of whether the
individual methods produce the expected results. Integration tests check that the package as a whole is able to interface
propertly with the Sonos hardware. Such tests are especially useful during re-factoring and to check that already
implemented functionality continues to work past updates to the Sonos units’ internal software.

1.4.1 Setting up your environment

To run the unit tests, you will need to have the py.test testing tool installed. You will also need a copy of Mock

Mock comes with Python >=3.3, but has been backported for Python 2.7

You can install them and other development dependencies using the requirements-dev.txt file like this:

pip install -r requirements-dev.txt

1.4.2 Running the unit tests

There are different ways of running the unit tests. The easiest is to use py.test’s automatic test discovery. Just
change to the root directory of the SoCo package and type:

py.test

For others, see the py.test documentation

1.4.3 Running the integration tests

At the moment, the integration tests cannot be run under the control of py.test. To run them, enter the unittest
folder in the source code checkout and run the test execution script execute_unittests.py (it is required that
the SoCo checkout is added to the Python path of your system). To run all the unit tests for the SoCo class execute the
following command:

python execute_unittests.py --modules soco --ip 192.168.0.110

where the IP address should be replaced with the IP address of the Sonos® unit you want to use for the unit tests
(NOTE! At present the unit tests for the SoCo module requires your Sonos® unit to be playing local network music
library tracks from the queue and have at least two such tracks in the queue). You can get a list of all the units in your
network and their IP addresses by running:

python execute_unittests.py --list

To get the help for the unit test execution script which contains a description of all the options run:

python execute_unittests.py --help

1.4. Unit and integration tests 15

http://pytest.org/latest
http://www.voidspace.org.uk/python/mock/
http://pytest.org/latest/usage.html

SoCo (Sonos Controller) Documentation, Release 0.11

1.4.4 Unit test code structure and naming conventions

The unit tests for the SoCo code should be organized according to the following guidelines.

One unit test module per class under test

Unit tests should be organized into modules, one module, i.e. one file, for each class that should be tested. The
module should be named similarly to the class except replacing CamelCase with underscores and followed by
_unittest.py.

Example: Unit tests for the class FooBar should be stored in foo_bar_unittests.py.

One unit test class per method under test

Inside the unit test modules the unit test should be organized into one unit test case class per method under test. In
order for the test execution script to be able to calculate the test coverage, the test classes should be named the same
as the methods under test except that the lower case underscores should be converted to CamelCase. If the method is
private, i.e. prefixed with 1 or 2 underscores, the test case class name should be prefixed with the word Private.

Examples:

Name of method under test Name of test case class
get_current_track_info GetCurrentTrackInfo
__parse_error PrivateParseError
_my_hidden_method PrivateMyHiddenMethod

1.4.5 Add an unit test to an existing unit test module

To add a unit test case to an existing unit test module Foo first check with the following command which methods that
does not yet have unit tests:

python execute_unittests.py --modules foo --coverage

After having identified a method to write a unit test for, consider what criteria should be tested, e.g. if the method
executes and returns the expected output on valid input and if it fails as expected on invalid input. Then implement the
unit test by writing a class for it, following the naming convention mentioned in section One unit test class per method
under test. You can read more about unit test classes in the reference documentation and there is a good introduction
to unit testing in Mark Pilgrim’s “Dive into Python” (though the aspects of test driven development, that it describes,
is not a requirement for SoCo development).

Special unit test design consideration for SoCo

SoCo is developed purely by volunteers in their spare time. This leads to some special consideration during unit test
design.

First of, volunteers will usually not have extra Sonos® units dedicated for testing. For this reason the unit tests should
be developed in such a way that they can be run on units in use and with people around, so e.g it should be avoided
settings the volume to max.

Second, being developed in peoples spare time, the development is likely a recreational activity, that might just be
accompanied by music from the same unit that should be tested. For this reason, that unit should be left in the same
state after test as it was before. That means that the play list, play state, sound settings etc. should be restored after the
testing is complete.

16 Chapter 1. Contents

http://docs.python.org/2/library/unittest.html
http://www.diveintopython.net/unit_testing/index.html

SoCo (Sonos Controller) Documentation, Release 0.11

1.4.6 Add a new unit test module (for a new class under test)

To add unit tests for the methods in a new class follow the steps below:

1. Make a new file in the unit test folder named as mentioned in section One unit test module per class under test.

2. (Optional) Define an init function in the unit test module. Do this only if it is necessary to pass information to
the tests at run time. Read more about the init function in the section The init function.

3. Add test case classes to this module. See Add an unit test to an existing unit test module.

Then it is necessary to make the unit test execution framework aware of your unit test module. Do this by making the
following additions to the file execute_unittests.py.:

1. Import the class under test and the unit test module in the beginning of the file

2. Add an item to the UNITTEST_MODULES dict located right after the ### MAIN SCRIPT comment. The
added item should itself be a dictionary with items like this:

UNITTEST_MODULES = {
'soco': {'name': 'SoCo', 'unittest_module': soco_unittest,

'class': soco.SoCo, 'arguments': {'ip': ARGS.ip}},
'foo_bar': {'name': 'FooBar', 'unittest_module': foo_bar_unittest,

'class': soco.FooBar,'arguments': {'ip': ARGS.ip}}
}

where both the new imaginary foo_bar entry and the existing soco entry are shown for clarity. The arguments
dict is what will be passed on to the init method, see section The init function.

3. Lastly, add the new module to the help text for the modules command line argument, defined in the
__build_option_parser function:

parser.add_argument('--modules', type=str, default=None, help=''
'the modules to run unit test for can be '
'\'soco\', \'foo_bar\' or \'all\'')

The name that should be added to the text is the key for the unit test module entry in the UNITTEST_MODULES
dict.

The init function

Normally unit tests should be self-contained and therefore they should have all the data they will need built in. How-
ever, that does not apply to SoCo, because the IP’s of the Sonos® units will be required and there is no way to know
them in advance. Therefore, the execution script will call the function init in the unit test modules, if it exists,
with a set of predefined arguments that can then be used for unit test initialization. Note that the function is to be
named init , not __init__ like the class initializers. The init function is called with one argument, which is the
dictionary defined under the key arguments in the unit test modules definition. Please regard this as an exception to
the general unit test best practices guidelines and use it only if there are no other option.

1.5 The data_structures sub module

1.5.1 Introduction

The majority of the data structures in this module are used to represent the metadata for music items, such as music
tracks, genres and playlists. The data structure classes are documented in the sections below and the rest of this section
contains a more thorough introduction.

1.5. The data_structures sub module 17

SoCo (Sonos Controller) Documentation, Release 0.11

Many music related items have a lot of metadata in common. For example, a music track and an album may both
have artist and title metadata. It is possible therefore to derive a hierarchy of items, and to implement them as a class
structure. The hierarchy which Sonos has adopted is represented by the DIDL Lite xml schema (DIDL stands for
‘Digital Item Description Language’. For more details, see the UPnP specifications (PDF).

In the data_structures module, each class represents a particular DIDL-Lite object and is illus-
trated in the figure below. The black lines are the lines of inheritance, going from the top down.

soco.data_structures.DidlAlbum

soco.data_structures.DidlMusicAlbum

soco.data_structures.DidlMusicAlbumCompilation

soco.data_structures.DidlMusicAlbumFavorite

soco.data_structures.DidlContainer

soco.data_structures.DidlAlbumList

soco.data_structures.DidlPerson

soco.data_structures.DidlGenre

soco.data_structures.DidlPlaylistContainer

soco.data_structures.DidlAudioBroadcast soco.data_structures.DidlAudioBroadcastFavoritesoco.data_structures.DidlAudioItem

soco.data_structures.DidlMusicTrack

soco.data_structures.DidlItem

soco.data_structures.DidlComposer

soco.data_structures.DidlMusicArtist

soco.data_structures.DidlObject

soco.data_structures.DidlMusicGenre

soco.data_structures.DidlMetaClass

soco.data_structures.DidlSameArtist

soco.data_structures.DidlResource

soco.data_structures.ListOfMusicInfoItems

soco.data_structures.Queue

soco.data_structures.SearchResult

All data structures are subclasses of the abstract Didl Object item class. You should never need to instantiate
this directly. The subclasses are divided into Containers and Items. In general, Containers are things, like
playlists, which are intended to contain other items.

At the bottom of the class hierarchy are 10 types of DIDL items. On each of these classes, relevant metadata items
are available as attributes (though they may be implemented as properties). Each has a title, a URI, an item id
and a UPnP class. Some have other attributes. For example, DidlMusicTrack and DidlMusicAlbum have
some extra fields such as album, album_art_uri and creator.

One of the more important attributes which each class has is didl_metadata. It is used to produce the metadata
that is sent to the Sonos® units in the form of XML. This metadata is created in an almost identical way for each
class, which is why it is implemented in DidlObject. It uses the URI, the UPnP class and the title that the items
are instantiated with, along with the two class variables parent_id and _translation.

1.5.2 Functions

soco.data_structures.ns_tag(ns_id, tag)
Return a namespace/tag item. The ns_id is translated to a full name space via the NAMESPACES variable.

1.5.3 DidlObject

class soco.data_structures.DidlObject(title, parent_id, item_id, restricted=True, re-
sources=None, desc=u’RINCON_AssociatedZPUDN’,
**kwargs)

Bases: soco.data_structures.DidlMetaClass

Abstract base class for all DIDL-Lite items.

You should not need to instantiate this.

item_class
str

The DIDL Lite class for this object

18 Chapter 1. Contents

http://www.upnp.org/schemas/av/didl-lite-v2.xsd
http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v1-Service.pdf

SoCo (Sonos Controller) Documentation, Release 0.11

tag
str

The XML element tag name used for this instance

_translation
dict

A dict used to translate between instance attribute names and XML tags/namespaces. It also serves to
define the allowed tags/attributes for this instance. Overridden and extended by subclasses.

__init__(title, parent_id, item_id, restricted=True, resources=None,
desc=u’RINCON_AssociatedZPUDN’, **kwargs)

Construct and initialize a DidlObject.

Parameters

• title (str) – The title for the item

• parent_id (str) – The parent ID for the item

• item_id (str) – The ID for the item

• restricted (bool) – Whether the item can be modified

• resources (list) – A list of resources for this object

• desc (str) – A didl descriptor, default RINCON_AssociatedZPUDN. This is not the same
as “description”! It is used for identifying the relevant music service

• **kwargs – Extra metadata. What is allowed depends on the _translation class attribute,
which in turn depends on the DIDL class

__eq__(playable_item)
Compare with another playable_item.

Returns True if items are equal, else False

Return type (bool)

__repr__()
Return the repr value for the item.

The repr is of the form:

<class_name 'middle_part[0:40]' at id_in_hex>

where middle_part is either the title item in content, if it is set, or str(content). The output is also
cleared of non-ascii characters.

__str__()
Return the str value for the item:

<class_name 'middle_part[0:40]' at id_in_hex>

where middle_part is either the title item in content, if it is set, or str(content). The output is also
cleared of non-ascii characters.

__eq__(playable_item)
Compare with another playable_item.

Returns True if items are equal, else False

Return type (bool)

1.5. The data_structures sub module 19

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#bool
http://docs.python.org/2/library/functions.html#list
http://docs.python.org/2/library/functions.html#str

SoCo (Sonos Controller) Documentation, Release 0.11

__init__(title, parent_id, item_id, restricted=True, resources=None,
desc=u’RINCON_AssociatedZPUDN’, **kwargs)

Construct and initialize a DidlObject.

Parameters

• title (str) – The title for the item

• parent_id (str) – The parent ID for the item

• item_id (str) – The ID for the item

• restricted (bool) – Whether the item can be modified

• resources (list) – A list of resources for this object

• desc (str) – A didl descriptor, default RINCON_AssociatedZPUDN. This is not the same
as “description”! It is used for identifying the relevant music service

• **kwargs – Extra metadata. What is allowed depends on the _translation class attribute,
which in turn depends on the DIDL class

__ne__(playable_item)
Compare with another playable_item.

Returns True if items are unequal, else False

Return type (bool)

__repr__()
Return the repr value for the item.

The repr is of the form:

<class_name 'middle_part[0:40]' at id_in_hex>

where middle_part is either the title item in content, if it is set, or str(content). The output is also
cleared of non-ascii characters.

__str__()
Return the str value for the item:

<class_name 'middle_part[0:40]' at id_in_hex>

where middle_part is either the title item in content, if it is set, or str(content). The output is also
cleared of non-ascii characters.

classmethod from_dict(content)
Create an instance from a dict.

An alternative constructor. Equivalent to DidlObject(**content).

Arg: content (dict): Dict containing metadata information.Required and valid arguments are the same as
for the __init__ method.

classmethod from_element(element)
Create an instance of this class from an ElementTree xml Element.

An alternative constructor. The element must be a DIDL-Lite <item> or <container> element, and must
be properly namespaced.

Arg: xml (Element): An xml.etree.ElementTree.Element object.

to_dict()
Return the dict representation of the instance.

20 Chapter 1. Contents

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#bool
http://docs.python.org/2/library/functions.html#list
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element

SoCo (Sonos Controller) Documentation, Release 0.11

to_element(include_namespaces=False)
Return an ElementTree Element representing this instance.

Arg:

include_namespaces (bool, optional): If True, include xml namespace attributes on the root ele-
ment

Returns An ElementTree Element

<DIDL-Lite ..NS_INFO..>
<item id="...self.item_id..."
parentID="...cls.parent_id..." restricted="true">
<dc:title>...self.title...</dc:title>
<upnp:class>...self.item_class...</upnp:class>
<desc id="cdudn"
nameSpace="urn:schemas-rinconnetworks-com:metadata-1-0/">
RINCON_AssociatedZPUDN

</desc>
</item>

</DIDL-Lite>

1.5.4 DidlContainer

class soco.data_structures.DidlContainer(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=u’RINCON_AssociatedZPUDN’, **kwargs)

Bases: soco.data_structures.DidlObject

Class that represents a music library container.

1.5.5 DidlItem

class soco.data_structures.DidlItem(title, parent_id, item_id, restricted=True, resources=None,
desc=u’RINCON_AssociatedZPUDN’, **kwargs)

Bases: soco.data_structures.DidlObject

A basic content directory item.

1.5.6 DidlMusicTrack

class soco.data_structures.DidlMusicTrack(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=u’RINCON_AssociatedZPUDN’, **kwargs)

Bases: soco.data_structures.DidlAudioItem

Class that represents a music library track.

1.5.7 DidlMusicAlbum

class soco.data_structures.DidlMusicAlbum(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=u’RINCON_AssociatedZPUDN’, **kwargs)

Bases: soco.data_structures.DidlAlbum

1.5. The data_structures sub module 21

SoCo (Sonos Controller) Documentation, Release 0.11

Class that represents a music library album.

1.5.8 DidlMusicArtist

class soco.data_structures.DidlMusicArtist(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=u’RINCON_AssociatedZPUDN’,
**kwargs)

Bases: soco.data_structures.DidlPerson

Class that represents a music library artist.

1.5.9 DidlMusicGenre

class soco.data_structures.DidlMusicGenre(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=u’RINCON_AssociatedZPUDN’, **kwargs)

Bases: soco.data_structures.DidlGenre

Class that represents a music genre.

1.5.10 DidlAlbumList

class soco.data_structures.DidlAlbumList(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=u’RINCON_AssociatedZPUDN’, **kwargs)

Bases: soco.data_structures.DidlContainer

Class that represents a music library album list.

1.5.11 DidlComposer

class soco.data_structures.DidlComposer(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=u’RINCON_AssociatedZPUDN’, **kwargs)

Bases: soco.data_structures.DidlPerson

Class that represents a music library composer.

1.5.12 DidlPlaylistContainer

class soco.data_structures.DidlPlaylistContainer(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=u’RINCON_AssociatedZPUDN’,
**kwargs)

Bases: soco.data_structures.DidlContainer

Class that represents a music library play list.

22 Chapter 1. Contents

SoCo (Sonos Controller) Documentation, Release 0.11

1.5.13 DidlAudioBroadcast

class soco.data_structures.DidlAudioBroadcast(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=u’RINCON_AssociatedZPUDN’,
**kwargs)

Bases: soco.data_structures.DidlAudioItem

Class that represents an audio broadcast.

1.5.14 DidlContainer

class soco.data_structures.DidlContainer(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=u’RINCON_AssociatedZPUDN’, **kwargs)

Bases: soco.data_structures.DidlObject

Class that represents a music library container.

1.6 SoCo releases

1.6.1 SoCo 0.11 release notes

SoCo 0.11 is a new version of the SoCo library. This release adds new features and fixes several bugs.

SoCo (Sonos Controller) is a simple Python class that allows you to programmatically control Sonos speakers.

New Features and Improvements

• The new properties is_playing_tv, is_playing_radio and is_playing_line_in have been
added (#225)

• A method get_item_album_art_uri has been added to return the absolute album art full uri so that it is
easy to put the album art in user interfaces (#240).

• Added support for satellite speaker detection in network topology parsing code (#245)

• Added support to search the music library for tracks, an artists’ albums and an artist’s album’s tracks (#246)

• A fairly extensive re-organisation of the DIDL metadata handling code, which brings SoCo more into line with
the DIDL-Lite spec, as adopted by Sonos. DIDL objects can have now have multiple URIs, and the interface is
much simpler. (#256)

• Event objects now have a timestamp field (#273)

• The IP address (ie network interface) for discovering Sonos speakers can now be specified (#277)

• It is now possible to trigger an update of the music library (#286)

• The event listener port is now configurable (#288)

• Methods that can only be executed on master speakers will now raise a SoCoSlaveException (#296)

• An example has been added that shows how to play local files by setting up a temporary HTTP server in python
(#307)

• Test cleanup (#309)

1.6. SoCo releases 23

http://python-soco.com/
https://github.com/SoCo/SoCo/pull/225
https://github.com/SoCo/SoCo/pull/240
https://github.com/SoCo/SoCo/pull/245
https://github.com/SoCo/SoCo/pull/246
https://github.com/SoCo/SoCo/pull/256
https://github.com/SoCo/SoCo/pull/273
https://github.com/SoCo/SoCo/pull/277
https://github.com/SoCo/SoCo/pull/286
https://github.com/SoCo/SoCo/pull/288
https://github.com/SoCo/SoCo/pull/296
https://github.com/SoCo/SoCo/pull/307
https://github.com/SoCo/SoCo/pull/309

SoCo (Sonos Controller) Documentation, Release 0.11

Bugfixes

• The value of the IP_MULTICAST_TTL option is now ensured to be one byte long (#269)

• Various encoding issues have been fixed (#293, #281, #306)

• Fix bug with browsing of imported playlists (#265)

• The discover method was broken in Python 3.4 (#271)

• An unknown / missing UPnP class in event subscriptions has been added (#266, #301, #303)

• Fix add_to_queue which was broken since the data structure refactoring (#308, #310)

Backwards Compatability

• The exception DidlCannotCreateMetadata has been deprecated. DidlMetadataError should be
used instead. (#256)

• Code which has been deprecated for more than 3 releases has been removed. See previous release notes for
deprecation notices. (#273)

1.6.2 SoCo 0.10 release notes

SoCo 0.10 is a new version of the SoCo library. This release adds new features and fixes several bugs.

SoCo (Sonos Controller) is a simple Python class that allows you to programmatically control Sonos speakers.

New Features

• Add support for taking a snapshot of the Sonos state, and then to restore it later (#224, #251)

• Added create_sonos_playlist_from_queue. Creates a new Sonos playlist from the current queue (#229)

Improvements

• Added a queue_size property to quickly return the size of the queue without reading any items (#217)

• Add metadata to return structure of get_current_track_info (#220)

• Add option to play_uri that allows for the item to be set and then optionally played (#219)

• Add option to play_uri that allows playing with a URI and title instead of metadata (#221)

• Get the item ID from the XML responses which enables adding tracks for music services such as Rhapsody
which do not have all the detail in the item URI (#233)

• Added label and short_label properties, to provide a consistent readable label for group members (#228)

• Improved documentation (#248, #253, #259)

• Improved code examples (#250, #252)

24 Chapter 1. Contents

https://github.com/SoCo/SoCo/pull/269
https://github.com/SoCo/SoCo/issues/293
https://github.com/SoCo/SoCo/issues/281
https://github.com/SoCo/SoCo/pull/306
https://github.com/SoCo/SoCo/pull/265
https://github.com/SoCo/SoCo/issues/271
https://github.com/SoCo/SoCo/issues/266
https://github.com/SoCo/SoCo/issues/301
https://github.com/SoCo/SoCo/pull/303
https://github.com/SoCo/SoCo/issues/308
https://github.com/SoCo/SoCo/pull/310
https://github.com/SoCo/SoCo/pull/256
https://github.com/SoCo/SoCo/pull/273
http://python-soco.com/
https://github.com/SoCo/SoCo/pull/224
https://github.com/SoCo/SoCo/pull/251
https://github.com/SoCo/SoCo/pull/229
https://github.com/SoCo/SoCo/pull/217
https://github.com/SoCo/SoCo/pull/220
https://github.com/SoCo/SoCo/pull/219
https://github.com/SoCo/SoCo/pull/221
https://github.com/SoCo/SoCo/pull/233
https://github.com/SoCo/SoCo/pull/228
https://github.com/SoCo/SoCo/pull/248
https://github.com/SoCo/SoCo/pull/253
https://github.com/SoCo/SoCo/pull/259
https://github.com/SoCo/SoCo/pull/250
https://github.com/SoCo/SoCo/pull/252

SoCo (Sonos Controller) Documentation, Release 0.11

Bugfixes

• Fixed a bug where get_ml_item() would fail if a radio station was played (#226)

• Fixed a timeout-related regression in soco.discover() (#244)

• Discovery code fixed to account for closing of multicast sockets by certain devices (#202, #201)

• Fixed a bug where sometimes zone groups would be created without a coordinator (#230)

Backwards Compatability

The metadata classes (ML*) have all been renamed (generally to Didl*), and aligned more closely with the underlying
XML. The Music Services data structures (MS*) have been moved to their own module, and metadata for radio
broadcasts is now returned properly (#243).

The URI class has been removed. As an alternative the method soco.SoCo.play_uri() can be used to enqueue
and play an URI. The class soco.data_structures.DIDLObject can be used if an object is required.

Work is still ongoing on the metadata classes, so further changes should be expected.

1.6.3 SoCo 0.9 release notes

New Features

• Alarm configuration (#171)

>>> from soco.alarms import Alarm, get_alarms
>>> # create an alarm with default properties
>>> # my_device is the SoCo instance on which the alarm will be played
>>> alarm = Alarm(my_device)
>>> print alarm.volume
20
>>> print get_alarms()
set([])
>>> # save the alarm to the Sonos system
>>> alarm.save()
>>> print get_alarms()
set([<Alarm id:88@15:26:15 at 0x107abb090>])
>>> # update the alarm
>>> alarm.recurrence = "ONCE"
>>> # Save it again for the change to take effect
>>> alarm.save()
>>> # Remove it
>>> alarm.remove()
>>> print get_alarms()
set([])

• Methods for browsing the Music library (#192, #203, #208)

import soco
soc = soco.SoCo('...ipaddress..')
some_album = soc.get_albums()['item_list'][0]
tracks_in_that_album = soc.browse(some_album)

• Support for full Album Art URIs (#207)

• Support for music queues (#214)

1.6. SoCo releases 25

https://github.com/SoCo/SoCo/pull/226
https://github.com/SoCo/SoCo/pull/244
https://github.com/SoCo/SoCo/pull/202
https://github.com/SoCo/SoCo/pull/201
https://github.com/SoCo/SoCo/pull/230
https://github.com/SoCo/SoCo/pull/243
https://github.com/SoCo/SoCo/pull/171
https://github.com/SoCo/SoCo/pull/192
https://github.com/SoCo/SoCo/pull/203
https://github.com/SoCo/SoCo/pull/208
https://github.com/SoCo/SoCo/pull/207
https://github.com/SoCo/SoCo/pull/214

SoCo (Sonos Controller) Documentation, Release 0.11

queue = soco.get_queue()
for item in queue:

print item.title

print queue.number_returned
print queue.total_matches
print queue.update_id

• Support for processing of LastChange events (#194)

• Support for write operations on Playlists (#198)

Improvements

• Improved test coverage (#159, #184)

• Fixes for Python 2.6 support (#175)

• Event-subscriptions can be auto-renewed (#179)

• The SoCo class can replaced by a custom implementation (#180)

• The cache can be globally disabled (#180)

• Music Library data structures are constructed for DIDL XML content (#191).

• Added previously removed support for PyPy (#205)

• All music library methods (browse, get_tracks etc. #203 and get_queue #214) now returns container
objects instead of dicts or lists. The metadata is now available from these container objects as named attributes,
so e.g. on a queue object you can access the size with queue.total_matches.

Backwards Compatability

• Music library methods return container objects instead of dicts and lists (see above). The old way of accessing
that metadata (by dictionary type indexing), has been deprecated and is planned to be removed 3 releases after
0.9.

1.6.4 SoCo 0.8 release notes

New Features

• Re-added support for Python 2.6 (#154)

• Added SoCo.get_sonos_playlists() (#114)

• Added methods for working with speaker topology

• soco.SoCo.group retrieves the soco.groups.ZoneGroup to which the speaker belongs (#132). The
group itself has a soco.groups.ZoneGroup.member attribute returning all of its members. Iterating
directly over the group is possible as well.

• Speakers can be grouped using soco.SoCo.join() (#136):

z1 = SoCo('192.168.1.101')
z2 = SoCo('192.168.1.102')
z1.join(z2)

• soco.SoCo.all_zones and soco.SoCo.visible_zones return all and all visible zones, respectively.

26 Chapter 1. Contents

https://github.com/SoCo/SoCo/pull/194
https://github.com/SoCo/SoCo/pull/198
https://github.com/SoCo/SoCo/pull/159
https://github.com/SoCo/SoCo/pull/184
https://github.com/SoCo/SoCo/pull/175
https://github.com/SoCo/SoCo/pull/179
https://github.com/SoCo/SoCo/pull/180
https://github.com/SoCo/SoCo/pull/180
https://github.com/SoCo/SoCo/pull/191
https://github.com/SoCo/SoCo/pull/205
https://github.com/SoCo/SoCo/pull/203
https://github.com/SoCo/SoCo/pull/214
https://github.com/SoCo/SoCo/pull/154
https://github.com/SoCo/SoCo/pull/114
https://github.com/SoCo/SoCo/pull/132
https://github.com/SoCo/SoCo/pull/136

SoCo (Sonos Controller) Documentation, Release 0.11

• soco.SoCo.is_bridge indicates if the SoCo instance represents a bridge.

• soco.SoCo.is_coordinator indicates if the SoCo instance is a group coordinator (#166)

• A new soco.plugins.spotify.Spotify plugin allows querying and playing the Spotify music cata-
logue (#119):

from soco.plugins.spotify import Spotify
from soco.plugins.spotify import SpotifyTrack
create a new plugin, pass the soco instance to it
myplugin = Spotify(device)
print 'index: ' + str(myplugin.add_track_to_queue(SpotifyTrack('

spotify:track:20DfkHC5grnKNJCzZQB6KC')))
print 'index: ' + str(myplugin.add_album_to_queue(SpotifyAlbum('

spotify:album:6a50SaJpvdWDp13t0wUcPU')))

• A soco.data_structures.URI item can be passed to add_to_queue which allows playing music
from arbitrary URIs (#147)

import soco
from soco.data_structures import URI

soc = soco.SoCo('...ip_address...')
uri = URI('http://www.noiseaddicts.com/samples/17.mp3')
soc.add_to_queue(uri)

• A new include_invisible parameter to soco.discover() can be used to retrieve invisible speakers
or bridges (#146)

• A new timeout parameter to soco.discover(). If no zones are found within timeout seconds None
is returned. (#146)

• Network requests can be cached for better performance (#131).

• It is now possible to subscribe to events of a service using its subscribe method, which returns a Subscription
object. To unsubscribe, call the unsubscribe method on the returned object. (#121, #130)

• Support for reading and setting crossfade (#165)

Improvements

• Performance improvements for speaker discovery (#146)

• Various improvements to the Wimp plugin (#140).

• Test coverage tracking using coveralls.io (#163)

Backwards Compatability

• Queue related use 0-based indexing consistently (#103)

• soco.SoCo.get_speakers_ip() is deprecated in favour of soco.discover() (#124)

1.6. SoCo releases 27

https://github.com/SoCo/SoCo/pull/166
https://github.com/SoCo/SoCo/pull/119
https://github.com/SoCo/SoCo/pull/147
https://github.com/SoCo/SoCo/pull/146
https://github.com/SoCo/SoCo/pull/146
https://github.com/SoCo/SoCo/pull/131
https://github.com/SoCo/SoCo/pull/121
https://github.com/SoCo/SoCo/pull/130
https://github.com/SoCo/SoCo/pull/165
https://github.com/SoCo/SoCo/pull/146
https://github.com/SoCo/SoCo/pull/140
http://coveralls.io/
https://github.com/SoCo/SoCo/pull/163
https://github.com/SoCo/SoCo/pull/103
https://github.com/SoCo/SoCo/pull/124

SoCo (Sonos Controller) Documentation, Release 0.11

1.6.5 SoCo 0.7 release notes

New Features

• All information about queue and music library items, like e.g. the title and album of a track, are now included
in data structure classes instead of dictionaries (the classes are available in the The data_structures sub module
sub-module). This advantages of this approach are:

– The type of the item is identifiable by its class name

– They have useful __str__ representations and an __equals__ method

– Information is available as named attributes

– They have the ability to produce their own UPnP meta-data (which is used by the add_to_queue
method).

See the Backwards Compatibility notice below.

• A webservice analyzer has been added in dev_tools/analyse_ws.py (#46).

• The commandline interface has been split into a separate project socos. It provides an command line interface
on top of the SoCo library, and allows users to control their Sonos speakers from scripts and from an interactive
shell.

• Python 3.2 and later is now supported in addition to 2.7.

• A simple version of the first plugin for the Wimp service has been added (#93).

• The new soco.discover() method provides an easier interface for discovering speakers in your network.
SonosDiscovery has been deprecated in favour of it (see Backwards Compatability below).

• SoCo instances are now singletons per IP address. For any given IP address, there is only one SoCo instance.

• The code for generating the XML to be sent to Sonos devices has been completely rewritten, and it is now much
easier to add new functionality. All services exposed by Sonos zones are now available if you need them (#48).

Backwards Compatability

Warning: Please read the section below carefully when upgrading to SoCo 0.7.

Data Structures

The move to using data structure classes for music item information instead of dictionaries introduces some back-
wards incompatible changes in the library (see #83). The get_queue and get_library_information functions (and
all methods derived from the latter) are affected. In the data structure classes, information like e.g. the title is now
available as named attributes. This means that by the update to 0.7 it will also be necessary to update your code like
e.g:

Version < 0.7
for item in soco.get_queue():

print item['title']
Version >=0.7
for item in soco.get_queue():

print item.title

28 Chapter 1. Contents

https://github.com/SoCo/SoCo/pull/46
https://github.com/SoCo/socos
https://github.com/SoCo/SoCo/pull/93
https://github.com/SoCo/SoCo/pull/48
https://github.com/SoCo/SoCo/pull/83

SoCo (Sonos Controller) Documentation, Release 0.11

SonosDiscovery

The SonosDiscovery class has been deprecated (see #80 and #75).

Instead of the following

>>> import soco
>>> d = soco.SonosDiscovery()
>>> ips = d.get_speaker_ips()
>>> for i in ips:
... s = soco.SoCo(i)
... print s.player_name

you should now write

>>> import soco
>>> for s in soco.discover():
... print s.player_name

Properties

A number of methods have been replaced with properties, to simplify use (see #62)

For example, use

soco.volume = 30
soco.volume -=3
soco.status_light = True

instead of

soco.volume(30)
soco.volume(soco.volume()-3)
soco.status_light("On")

1.6.6 SoCo 0.6 release notes

New features

• Music library information: Several methods has been added to get information about the music library. It is
now possible to get e.g. lists of tracks, albums and artists.

• Raise exceptions on errors: Several SoCo specific exceptions has been added. These exceptions are now
raised e.g. when SoCo encounters communications errors instead of returning an error codes. This introduces a
backwards incompatible change in SoCo that all users should be aware of.

For SoCo developers

• Added plugin framework: A plugin framework has been added to SoCo. The primary purpose of this frame-
work is to provide a natural partition of the code, in which code that is specific to the individual music services
is separated out into its own class as a plugin. Read more about the plugin framework in the docs.

• Added unit testing framework: A unit testing framework has been added to SoCo and unit tests has been
written for 30% of the methods in the SoCo class. Please consider supplementing any new functionality with
the appropriate unit tests and fell free to write unit tests for any of the methods that are still missing.

1.6. SoCo releases 29

https://github.com/SoCo/SoCo/pull/80
https://github.com/SoCo/SoCo/issues/75
https://github.com/SoCo/SoCo/pull/62

SoCo (Sonos Controller) Documentation, Release 0.11

Coming next

• Data structure change: For the next version of SoCo it is planned to change the way SoCo handles data. It is
planned to use classes for all the data structures, both internally and for in- and output. This will introduce a
backwards incompatible change and therefore users of SoCo should be aware that extra work will be needed
upon upgrading from version 0.6 to 0.7. The data structure changes will be described in more detail in the
release notes for version 0.7.

1.7 Release Procedures

This document describes the necessary steps for creating a new release of SoCo.

1.7.1 Preparations

• Assign a version number to the release, according to semantic versioning. Tag names should be prefixed with v.

• Create a GitHub issue for the new version (eg Release 0.7 #108). This issue can be used to discuss included
changes, the version number, etc.

• Create a milestone for the planned release (if it does not already exist). The milestone can be used to track issues
relating to the release. All relevant issues should be assigned to the milestone.

• Create the release notes in release_notes.html.

1.7.2 Create and Publish

• Verify that all tests pass.

• Update the version number in __init__.py (see [example](https://github.com/SoCo/SoCo/commit/d35171213eabbc4)).

• Tag the current commit, eg

git tag -a v0.7 -m 'release version 0.7'

• Push the tag. This will create a new release on GitHub.

git push --tags

• Update the GitHub release using the release notes from the documentation. The release notes can be abbreviated
if a link to the documentation is provided.

• Upload the release to PyPI.

python setup.py sdist bdist_wheel upload

• Enable doc builds for the newly released version on Read the Docs.

1.7.3 Wrap-Up

• Create the milestone for the next release (with the most likely version number) and close the milestone for the
current release.

• Share the news!

30 Chapter 1. Contents

http://semver.org/
https://github.com/SoCo/SoCo/issues/108
https://github.com/SoCo/SoCo/commit/d35171213eabbc4
https://github.com/SoCo/SoCo/releases/new
https://readthedocs.org/dashboard/soco/versions/

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

31

SoCo (Sonos Controller) Documentation, Release 0.11

32 Chapter 2. Indices and tables

Python Module Index

s
soco, 3

33

SoCo (Sonos Controller) Documentation, Release 0.11

34 Python Module Index

Index

Symbols
__eq__() (soco.data_structures.DidlObject method), 19
__init__() (soco.data_structures.DidlObject method), 19
__ne__() (soco.data_structures.DidlObject method), 20
__repr__() (soco.data_structures.DidlObject method), 19,

20
__str__() (soco.data_structures.DidlObject method), 19,

20
_translation (DidlObject attribute), 19

A
add_item_to_sonos_playlist() (soco.SoCo method), 5
add_to_queue() (soco.SoCo method), 5
add_uri_to_queue() (soco.SoCo method), 5
album_artist_display_option (soco.SoCo attribute), 5
all_groups (soco.SoCo attribute), 6
all_zones (soco.SoCo attribute), 6

B
bass (soco.SoCo attribute), 6
browse() (soco.SoCo method), 6
browse_by_idstring() (soco.SoCo method), 6

C
clear_queue() (soco.SoCo method), 7
create_sonos_playlist() (soco.SoCo method), 7
create_sonos_playlist_from_queue() (soco.SoCo

method), 7
cross_fade (soco.SoCo attribute), 7

D
DidlAlbumList (class in soco.data_structures), 22
DidlAudioBroadcast (class in soco.data_structures), 23
DidlComposer (class in soco.data_structures), 22
DidlContainer (class in soco.data_structures), 21, 23
DidlItem (class in soco.data_structures), 21
DidlMusicAlbum (class in soco.data_structures), 21
DidlMusicArtist (class in soco.data_structures), 22
DidlMusicGenre (class in soco.data_structures), 22
DidlMusicTrack (class in soco.data_structures), 21

DidlObject (class in soco.data_structures), 18
DidlPlaylistContainer (class in soco.data_structures), 22
discover() (in module soco), 3

F
from_dict() (soco.data_structures.DidlObject class

method), 20
from_element() (soco.data_structures.DidlObject class

method), 20
from_name() (soco.plugins.SoCoPlugin class method),

14

G
get_album_artists() (soco.SoCo method), 7
get_albums() (soco.SoCo method), 7
get_albums_for_artist() (soco.SoCo method), 7
get_artists() (soco.SoCo method), 7
get_composers() (soco.SoCo method), 7
get_current_track_info() (soco.SoCo method), 7
get_current_transport_info() (soco.SoCo method), 8
get_favorite_radio_shows() (soco.SoCo method), 8
get_favorite_radio_stations() (soco.SoCo method), 8
get_genres() (soco.SoCo method), 8
get_item_album_art_uri() (soco.SoCo method), 8
get_music_library_information() (soco.SoCo method), 8
get_playlists() (soco.SoCo method), 9
get_queue() (soco.SoCo method), 9
get_sonos_playlists() (soco.SoCo method), 10
get_speaker_info() (soco.SoCo method), 10
get_tracks() (soco.SoCo method), 10
get_tracks_for_album() (soco.SoCo method), 10
group (soco.SoCo attribute), 10

I
is_bridge (soco.SoCo attribute), 10
is_coordinator (soco.SoCo attribute), 10
is_playing_line_in (soco.SoCo attribute), 10
is_playing_radio (soco.SoCo attribute), 10
is_playing_tv (soco.SoCo attribute), 10
is_visible (soco.SoCo attribute), 11

35

SoCo (Sonos Controller) Documentation, Release 0.11

item_class (DidlObject attribute), 18

J
join() (soco.SoCo method), 11

L
library_updating (soco.SoCo attribute), 11
loudness (soco.SoCo attribute), 11

M
mute (soco.SoCo attribute), 11

N
name (soco.plugins.SoCoPlugin attribute), 15
next() (soco.SoCo method), 11
ns_tag() (in module soco.data_structures), 18

P
partymode() (soco.SoCo method), 11
pause() (soco.SoCo method), 11
play() (soco.SoCo method), 11
play_from_queue() (soco.SoCo method), 11
play_mode (soco.SoCo attribute), 12
play_uri() (soco.SoCo method), 12
player_name (soco.SoCo attribute), 12
previous() (soco.SoCo method), 12

Q
queue_size (soco.SoCo attribute), 12

R
remove_from_queue() (soco.SoCo method), 12

S
search_track() (soco.SoCo method), 12
seek() (soco.SoCo method), 13
SoCo (class in soco), 4
soco (module), 3
SoCoException, 14
SoCoPlugin (class in soco.plugins), 14
start_library_update() (soco.SoCo method), 13
status_light (soco.SoCo attribute), 13
stop() (soco.SoCo method), 13
switch_to_line_in() (soco.SoCo method), 13
switch_to_tv() (soco.SoCo method), 13

T
tag (DidlObject attribute), 18
to_dict() (soco.data_structures.DidlObject method), 20
to_element() (soco.data_structures.DidlObject method),

20
treble (soco.SoCo attribute), 13

U
uid (soco.SoCo attribute), 13
unjoin() (soco.SoCo method), 13
UnknownSoCoException, 14

V
visible_zones (soco.SoCo attribute), 14
volume (soco.SoCo attribute), 14

36 Index

	Contents
	Tutorial
	The soco module
	Plugins
	Unit and integration tests
	The data_structures sub module
	SoCo releases
	Release Procedures

	Indices and tables
	Python Module Index

