

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	SoCo (Sonos Controller) 0.10 documentation

Welcome to SoCo’s documentation!

SoCo (Sonos Controller) is a Python library to control your Sonos speakers.

Contents

	Tutorial
	Discovery

	Music

	The soco module

	Plugins
	Creating a Plugin

	Using a Plugin

	The SoCoPlugin class

	Unit and integration tests
	Setting up your environment

	Running the unit tests

	Running the integration tests

	Unit test code structure and naming conventions

	Add an unit test to an existing unit test module

	Add a new unit test module (for a new class under test)

	The data_structures sub module
	Introduction

	Functions

	DidlObject

	DidlContainer

	DidlItem

	DidlMusicTrack

	DidlMusicAlbum

	DidlMusicArtist

	DidlMusicGenre

	DidlAlbumList

	DidlComposer

	DidlPlaylistContainer

	DidlAudioBroadcast

	DidlContainer

	SoCo releases
	SoCo 0.10 release notes

	SoCo 0.9 release notes

	SoCo 0.8 release notes

	SoCo 0.7 release notes

	SoCo 0.6 release notes

	Release Procedures
	Preparations

	Create and Publish

	Wrap-Up

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SoCo (Sonos Controller) 0.10 documentation

Tutorial

SoCo allows you to control your Sonos sound system from a Python program. For
a quick start have a look at the example applications [https://github.com/rahims/SoCo/tree/master/examples] that come with the
library.

Discovery

For discovering the Sonos devices in your network, use the soco.discover()
method.

zones = list(soco.discover())

Music

Once one of the available devices is selected, the SoCo class can be used
to control it. Have a look at the The soco module for all available commands.

sonos = SoCo(ip)
sonos.partymode()

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SoCo (Sonos Controller) 0.10 documentation

The soco module

SoCo (Sonos Controller) is a simple library to control Sonos speakers

	
soco.discover(timeout=1, include_invisible=False)

	Discover Sonos zones on the local network.

Return an set of visible SoCo instances for each zone found.
Include invisible zones (bridges and slave zones in stereo pairs if
include_invisible is True. Will block for up to timeout seconds, after
which return None if no zones found.

	
class soco.SonosDiscovery

	Retained for backward compatibility only. Will be removed in future
releases

Deprecated since version 0.7: Use discover() instead.

	
static get_speaker_ips()

	Deprecated in favour of discover()

	
class soco.SoCo(ip_address)

	A simple class for controlling a Sonos speaker.

For any given set of arguments to __init__, only one instance of this class
may be created. Subsequent attempts to create an instance with the same
arguments will return the previously created instance. This means that all
SoCo instances created with the same ip address are in fact the same SoCo
instance, reflecting the real world position.

Public functions:

play -- Plays the current item.
play_uri -- Plays a track or a music stream by URI.
play_from_queue -- Plays an item in the queue.
pause -- Pause the currently playing track.
stop -- Stop the currently playing track.
seek -- Move the currently playing track a given elapsed time.
next -- Go to the next track.
previous -- Go back to the previous track.
switch_to_line_in -- Switch the speaker's input to line-in.
switch_to_tv -- Switch the speaker's input to TV.
get_current_track_info -- Get information about the currently playing
 track.
get_speaker_info -- Get information about the Sonos speaker.
partymode -- Put all the speakers in the network in the same group.
join -- Join this speaker to another "master" speaker.
unjoin -- Remove this speaker from a group.
get_queue -- Get information about the queue.
get_artists -- Get artists from the music library
get_album_artists -- Get album artists from the music library
get_albums -- Get albums from the music library
get_genres -- Get genres from the music library
get_composers -- Get composers from the music library
get_tracks -- Get tracks from the music library
get_playlists -- Get playlists from the music library
get_music_library_information -- Get information from the music library
get_current_transport_info -- get speakers playing state
browse_by_idstring -- Browse (get sub-elements) a given type
add_uri_to_queue -- Adds an URI to the queue
add_to_queue -- Add a track to the end of the queue
remove_from_queue -- Remove a track from the queue
clear_queue -- Remove all tracks from queue
get_favorite_radio_shows -- Get favorite radio shows from Sonos'
 Radio app.
get_favorite_radio_stations -- Get favorite radio stations.
create_sonos_playlist -- Create a new empty Sonos playlist
create_sonos_playlist_from_queue -- Create a new Sonos playlist
 from the current queue.
add_item_to_sonos_playlist -- Adds a queueable item to a Sonos'
 playlist

Properties:

uid -- The speaker's unique identifier
mute -- The speaker's mute status.
volume -- The speaker's volume.
bass -- The speaker's bass EQ.
treble -- The speaker's treble EQ.
loudness -- The status of the speaker's loudness compensation.
cross_fade -- The status of the speaker's crossfade.
status_light -- The state of the Sonos status light.
player_name -- The speaker's name.
play_mode -- The queue's repeat/shuffle settings.
queue_size -- Get size of queue.

Warning

These properties are not cached and will obtain information over the
network, so may take longer than expected to set or return a value. It
may be a good idea for you to cache the value in your own code.

	
add_item_to_sonos_playlist(queueable_item, sonos_playlist)

	Adds a queueable item to a Sonos’ playlist

	Parameters:	
	queueable_item – the item to add to the Sonos’ playlist

	sonos_playlist – the Sonos’ playlist to which the item should
be added

	
add_to_queue(queueable_item)

	Adds a queueable item to the queue

	
add_uri_to_queue(uri)

	Adds the URI to the queue

	Parameters:	uri (str [http://docs.python.org/2/library/functions.html#str]) – The URI to be added to the queue

	
all_groups

	Return a set of all the available groups

	
all_zones

	Return a set of all the available zones

	
bass

	The speaker’s bass EQ. An integer between -10 and 10.

	
browse(ml_item=None, start=0, max_items=100, full_album_art_uri=False)

	Browse (get sub-elements) a music library item

	Keyword arguments:

	ml_item (DidlObject): The DidlObject to browse, if left
start (int): The starting index of the results
max_items (int): The maximum number of items to return
full_album_art_uri(bool): If the album art URI should include the

IP address

	Returns:

	dict: A SearchResult object

	Raises:

	AttributeError: If ml_item has no item_id attribute
SoCoUPnPException: With error_code='701' if the item cannot be

browsed

	
browse_by_idstring(search_type, idstring, start=0, max_items=100, full_album_art_uri=False)

	Browse (get sub-elements) a given type

	Parameters:	
	search_type – The kind of information to retrieve. Can be one of:
‘artists’, ‘album_artists’, ‘albums’, ‘genres’, ‘composers’,
‘tracks’, ‘share’, ‘sonos_playlists’, and ‘playlists’, where
playlists are the imported file based playlists from the
music library

	idstring – String ID to search for

	start – Starting number of returned matches

	max_items – Maximum number of returned matches. NOTE: The maximum
may be restricted by the unit, presumably due to transfer
size consideration, so check the returned number against the
requested.

	full_album_art_uri – If the album art URI should include the
IP address

	Returns:	A dictionary with metadata for the search, with the
keys ‘number_returned’, ‘update_id’, ‘total_matches’ and an
‘item_list’ list with the search results.

	
clear_queue()

	Removes all tracks from the queue.

Returns:
True if the Sonos speaker cleared the queue.

Raises SoCoException (or a subclass) upon errors.

	
create_sonos_playlist(title)

	Create a new empty Sonos playlist.

	Params title:	Name of the playlist

	Returns:	An instance of
DidlPlaylistContainer

	
create_sonos_playlist_from_queue(title)

	Create a new Sonos playlist from the current queue.

	Params title:	Name of the playlist

	Returns:	An instance of
DidlPlaylistContainer

	
cross_fade

	The speaker’s cross fade state.
True if enabled, False otherwise

	
get_album_artists(start=0, max_items=100, full_album_art_uri=False)

	Convinience method for get_music_library_information()
with search_type=’album_artists’. For details on remaining arguments
refer to the docstring for that method.

	
get_albums(start=0, max_items=100, full_album_art_uri=False)

	Convinience method for get_music_library_information()
with search_type=’albums’. For details on remaining arguments refer
to the docstring for that method.

	
get_artists(start=0, max_items=100, full_album_art_uri=False)

	Convinience method for get_music_library_information()
with search_type=’artists’. For details on remaining arguments refer
to the docstring for that method.

	
get_composers(start=0, max_items=100, full_album_art_uri=False)

	Convinience method for get_music_library_information()
with search_type=’composers’. For details on remaining arguments
refer to the docstring for that method.

	
get_current_track_info()

	Get information about the currently playing track.

Returns:
A dictionary containing the following information about the currently
playing track: playlist_position, duration, title, artist, album,
position and a link to the album art.

If we’re unable to return data for a field, we’ll return an empty
string. This can happen for all kinds of reasons so be sure to check
values. For example, a track may not have complete metadata and be
missing an album name. In this case track[‘album’] will be an empty
string.

	
get_current_transport_info()

	Get the current playback state

Returns:
A dictionary containing the following information about the speakers
playing state
current_transport_state (PLAYING, PAUSED_PLAYBACK, STOPPED),
current_trasnport_status (OK, ?), current_speed(1,?)

This allows us to know if speaker is playing or not. Don’t know other
states of CurrentTransportStatus and CurrentSpeed.

	
get_favorite_radio_shows(start=0, max_items=100)

	Get favorite radio shows from Sonos’ Radio app.

Returns:
A list containing the total number of favorites, the number of
favorites returned, and the actual list of favorite radio shows,
represented as a dictionary with title and uri keys.

Depending on what you’re building, you’ll want to check to see if the
total number of favorites is greater than the amount you
requested (max_items), if it is, use start to page through and
get the entire list of favorites.

	
get_favorite_radio_stations(start=0, max_items=100)

	Get favorite radio stations from Sonos’ Radio app.

Returns:
A list containing the total number of favorites, the number of
favorites returned, and the actual list of favorite radio stations,
represented as a dictionary with title and uri keys.

Depending on what you’re building, you’ll want to check to see if the
total number of favorites is greater than the amount you
requested (max_items), if it is, use start to page through and
get the entire list of favorites.

	
get_genres(start=0, max_items=100, full_album_art_uri=False)

	Convinience method for get_music_library_information()
with search_type=’genres’. For details on remaining arguments refer
to the docstring for that method.

	
get_group_coordinator(zone_name)

	
Deprecated since version 0.8: Use group() or all_groups() instead.

	
get_music_library_information(search_type, start=0, max_items=100, full_album_art_uri=False)

	Retrieve information about the music library

	Parameters:	
	search_type – The kind of information to retrieve. Can be one of:
‘artists’, ‘album_artists’, ‘albums’, ‘genres’, ‘composers’,
‘tracks’, ‘share’, ‘sonos_playlists’, and ‘playlists’, where
playlists are the imported file based playlists from the
music library

	start – Starting number of returned matches

	max_items – Maximum number of returned matches. NOTE: The maximum
may be restricted by the unit, presumably due to transfer
size consideration, so check the returned number against the
requested.

	full_album_art_uri – If the album art URI should include the
IP address

	Returns:	A SearchResult object

	Raises:	SoCoException upon errors

NOTE: The playlists that are returned with the ‘playlists’ search, are
the playlists imported from (files in) the music library, they are not
the Sonos playlists.

The information about the which searches can be performed and the form
of the query has been gathered from the Janos project:
http://sourceforge.net/projects/janos/ Props to the authors of that
project.

	
get_playlists(start=0, max_items=100, full_album_art_uri=False)

	Convinience method for get_music_library_information()
with search_type=’playlists’. For details on remaining arguments
refer to the docstring for that method.

NOTE: The playlists that are referred to here are the playlist (files)
imported from the music library, they are not the Sonos playlists.

	
get_queue(start=0, max_items=100, full_album_art_uri=False)

	Get information about the queue

	Parameters:	
	start – Starting number of returned matches

	max_items – Maximum number of returned matches

	full_album_art_uri – If the album art URI should include the
IP address

	Returns:	A Queue object

This method is heavly based on Sam Soffes (aka soffes) ruby
implementation

	
get_sonos_playlists(start=0, max_items=100, full_album_art_uri=False)

	Convenience method for:
get_music_library_information(‘sonos_playlists’)
Refer to the docstring for that method

	
get_speaker_info(refresh=False)

	Get information about the Sonos speaker.

Arguments:
refresh – Refresh the speaker info cache.

Returns:
Information about the Sonos speaker, such as the UID, MAC Address, and
Zone Name.

	
get_speakers_ip(refresh=False)

	Get the IP addresses of all the Sonos speakers in the network.

	Arguments:

	refresh – Refresh the speakers IP cache. Ignored. For backward
compatibility only

	Returns:

	a set of IP addresses of the Sonos speakers.

Deprecated since version 0.8.

	
get_tracks(start=0, max_items=100, full_album_art_uri=False)

	Convinience method for get_music_library_information()
with search_type=’tracks’. For details on remaining arguments refer
to the docstring for that method.

	
group

	The Zone Group of which this device is a member.

group will be None if this zone is a slave in a stereo pair.

	
is_bridge

	Is this zone a bridge?

	
is_coordinator

	Return True if this zone is a group coordinator, otherwise False.

return True or False

	
is_visible

	Is this zone visible? A zone might be invisible if, for example it
is a bridge, or the slave part of stereo pair.

return True or False

	
join(master)

	Join this speaker to another “master” speaker.

Note

The signature of this method has changed in 0.8. It now
requires a SoCo instance to be passed as master, not an IP
address

	
loudness

	The Sonos speaker’s loudness compensation. True if on, otherwise
False.

Loudness is a complicated topic. You can find a nice summary about this
feature here: http://forums.sonos.com/showthread.php?p=4698#post4698

	
mute

	The speaker’s mute state. True if muted, False otherwise

	
next()

	Go to the next track.

Returns:
True if the Sonos speaker successfully skipped to the next track.

Raises SoCoException (or a subclass) upon errors.

Keep in mind that next() can return errors
for a variety of reasons. For example, if the Sonos is streaming
Pandora and you call next() several times in quick succession an error
code will likely be returned (since Pandora has limits on how many
songs can be skipped).

	
partymode()

	Put all the speakers in the network in the same group, a.k.a Party
Mode.

This blog shows the initial research responsible for this:
http://blog.travelmarx.com/2010/06/exploring-sonos-via-upnp.html

The trick seems to be (only tested on a two-speaker setup) to tell each
speaker which to join. There’s probably a bit more to it if multiple
groups have been defined.

	
pause()

	Pause the currently playing track.

Returns:
True if the Sonos speaker successfully paused the track.

Raises SoCoException (or a subclass) upon errors.

	
play()

	Play the currently selected track.

Returns:
True if the Sonos speaker successfully started playing the track.

Raises SoCoException (or a subclass) upon errors.

	
play_from_queue(index, start=True)

	Play a track from the queue by index. The index number is
required as an argument, where the first index is 0.

index: the index of the track to play; first item in the queue is 0
start: If the item that has been set should start playing

Returns:
True if the Sonos speaker successfully started playing the track.
False if the track did not start (this may be because it was not
requested to start because “start=False”)

Raises SoCoException (or a subclass) upon errors.

	
play_mode

	The queue’s play mode. Case-insensitive options are:

NORMAL – Turns off shuffle and repeat.
REPEAT_ALL – Turns on repeat and turns off shuffle.
SHUFFLE – Turns on shuffle and repeat. (It’s strange, I know.)
SHUFFLE_NOREPEAT – Turns on shuffle and turns off repeat.

	
play_uri(uri=u'', meta=u'', title=u'', start=True)

	Play a given stream. Pauses the queue.
If there is no metadata passed in and there is a title set then a
metadata object will be created. This is often the case if you have
a custom stream, it will need at least the title in the metadata in
order to play.

Arguments:
uri – URI of a stream to be played.
meta – The track metadata to show in the player, DIDL format.
title – The track title to show in the player
start – If the URI that has been set should start playing

Returns:
True if the Sonos speaker successfully started playing the track.
False if the track did not start (this may be because it was not
requested to start because “start=False”)

Raises SoCoException (or a subclass) upon errors.

	
player_name

	The speaker’s name. A string.

	
previous()

	Go back to the previously played track.

Returns:
True if the Sonos speaker successfully went to the previous track.

Raises SoCoException (or a subclass) upon errors.

Keep in mind that previous() can return errors
for a variety of reasons. For example, previous() will return an error
code (error code 701) if the Sonos is streaming Pandora since you can’t
go back on tracks.

	
queue_size

	Get size of queue

	
remove_from_queue(index)

	Remove a track from the queue by index. The index number is
required as an argument, where the first index is 0.

index: the index of the track to remove; first item in the queue is 0

	Returns:

	True if the Sonos speaker successfully removed the track

Raises SoCoException (or a subclass) upon errors.

	
seek(timestamp)

	Seeks to a given timestamp in the current track, specified in the
format of HH:MM:SS or H:MM:SS.

Returns:
True if the Sonos speaker successfully seeked to the timecode.

Raises SoCoException (or a subclass) upon errors.

	
speaker_ip

	Retained for backward compatibility only. Will be removed in future
releases

Deprecated since version 0.7: Use ip_address instead.

	
status_light

	The white Sonos status light between the mute button and the volume
up button on the speaker. True if on, otherwise False.

	
stop()

	Stop the currently playing track.

Returns:
True if the Sonos speaker successfully stopped the playing track.

Raises SoCoException (or a subclass) upon errors.

	
switch_to_line_in()

	Switch the speaker’s input to line-in.

Returns:
True if the Sonos speaker successfully switched to line-in.

If an error occurs, we’ll attempt to parse the error and return a UPnP
error code. If that fails, the raw response sent back from the Sonos
speaker will be returned.

Raises SoCoException (or a subclass) upon errors.

	
switch_to_tv()

	Switch the speaker’s input to TV.

Returns:
True if the Sonos speaker successfully switched to TV.

If an error occurs, we’ll attempt to parse the error and return a UPnP
error code. If that fails, the raw response sent back from the Sonos
speaker will be returned.

Raises SoCoException (or a subclass) upon errors.

	
treble

	The speaker’s treble EQ. An integer between -10 and 10.

	
uid

	A unique identifier. Looks like: RINCON_000XXXXXXXXXX1400

	
unjoin()

	Remove this speaker from a group.

Seems to work ok even if you remove what was previously the group
master from it’s own group. If the speaker was not in a group also
returns ok.

Returns:
True if this speaker has left the group.

Raises SoCoException (or a subclass) upon errors.

	
visible_zones

	Return an set of all visible zones

	
volume

	The speaker’s volume. An integer between 0 and 100.

	
exception soco.SoCoException

	base exception raised by SoCo, containing the UPnP error code

	
exception soco.UnknownSoCoException

	raised if reason of the error can not be extracted

The exception object will contain the raw response sent back from the
speaker

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SoCo (Sonos Controller) 0.10 documentation

Plugins

Plugins can extend the functionality of SoCo.

Creating a Plugin

To write a plugin, simply extend the class soco.plugins.SoCoPlugin. The
__init__ method of the plugin should accept an SoCo instance as the
first positional argument, which it should pass to its super constructor.

The class soco.plugins.example.ExamplePlugin contains an example plugin
implementation.

Using a Plugin

To use a plugin, it can be loaded and instantiated directly.

create a plugin by normal instantiation
from soco.plugins.example import ExamplePlugin

create a new plugin, pass the soco instance to it
myplugin = ExamplePlugin(soco, 'a user')

do something with your plugin
print 'Testing', myplugin.name
myplugin.music_plugin_stop()

Alternatively a plugin can also be loaded by its name using
SoCoPlugin.from_name().

get a plugin by name (eg from a config file)
myplugin = SoCoPlugin.from_name('soco.plugins.example.ExamplePlugin',
 soco, 'some user')

do something with your plugin
print 'Testing', myplugin.name
myplugin.music_plugin_play()

The SoCoPlugin class

	
class soco.plugins.SoCoPlugin(soco)

	The base class for SoCo plugins

	
classmethod from_name(fullname, soco, *args, **kwargs)

	Instantiate a plugin by its full name

	
name

	human-readable name of the plugin

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SoCo (Sonos Controller) 0.10 documentation

Unit and integration tests

There are two sorts of tests written for the SoCo package. Unit tests
implement elementary checks of whether the individual methods produce the
expected results. Integration tests check that the package as a whole is able to
interface propertly with the Sonos hardware. Such tests are especially useful
during re-factoring and to check that already implemented functionality
continues to work past updates to the Sonos units’ internal software.

Setting up your environment

To run the unit tests, you will need to have the py.test [http://pytest.org/latest]
testing tool installed. You will also need a copy of Mock [http://www.voidspace.org.uk/python/mock/]

Mock comes with Python >=3.3, but has been backported for Python 2.7

You can install them and other development dependencies using the
requirements-dev.txt file like this:

pip install -r requirements-dev.txt

Running the unit tests

There are different ways of running the unit tests. The easiest is to use py.test's automatic test discovery. Just change to the root directory of the SoCo package and type:

py.test

For others, see the py.test documentation [http://pytest.org/latest/usage.html]

Running the integration tests

At the moment, the integration tests cannot be run under the control of py.test. To run them, enter the unittest folder in the source code
checkout and run the test execution script
execute_unittests.py (it is required that the SoCo checkout is
added to the Python path of your system). To run all the unit tests
for the SoCo class execute the following command:

python execute_unittests.py --modules soco --ip 192.168.0.110

where the IP address should be replaced with the IP address of the
Sonos® unit you want to use for the unit tests (NOTE! At present the
unit tests for the SoCo module requires your Sonos® unit to be playing
local network music library tracks from the queue and have at least
two such tracks in the queue). You can get a list of all the units in
your network and their IP addresses by running:

python execute_unittests.py --list

To get the help for the unit test execution script which contains a
description of all the options run:

python execute_unittests.py --help

Unit test code structure and naming conventions

The unit tests for the SoCo code should be organized according to
the following guidelines.

One unit test module per class under test

Unit tests should be organized into modules, one module, i.e. one
file, for each class that should be tested. The module should be named
similarly to the class except replacing CamelCase with underscores and
followed by _unittest.py.

Example: Unit tests for the class FooBar should be stored in
foo_bar_unittests.py.

One unit test class per method under test

Inside the unit test modules the unit test should be organized into
one unit test case class per method under test. In order for the test
execution script to be able to calculate the test coverage, the test
classes should be named the same as the methods under test except that
the lower case underscores should be converted to CamelCase. If the
method is private, i.e. prefixed with 1 or 2 underscores, the test
case class name should be prefixed with the word Private.

Examples:

	Name of method under test
	Name of test case class

	get_current_track_info
	GetCurrentTrackInfo

	__parse_error
	PrivateParseError

	_my_hidden_method
	PrivateMyHiddenMethod

Add an unit test to an existing unit test module

To add a unit test case to an existing unit test module Foo first check
with the following command which methods that does not yet have unit tests:

python execute_unittests.py --modules foo --coverage

After having identified a method to write a unit test for, consider
what criteria should be tested, e.g. if the method executes and
returns the expected output on valid input and if it fails as expected on
invalid input. Then implement the unit test by writing a
class for it, following the naming convention mentioned in section
One unit test class per method under test. You can read more about unit test
classes in the reference documentation [http://docs.python.org/2/library/unittest.html] and there is a good
introduction to unit testing in Mark Pilgrim’s “Dive into Python” [http://www.diveintopython.net/unit_testing/index.html] (though the
aspects of test driven development, that it describes, is not a
requirement for SoCo development).

Special unit test design consideration for SoCo

SoCo is developed purely by volunteers in their spare time. This
leads to some special consideration during unit test design.

First of, volunteers will usually not have extra Sonos® units
dedicated for testing. For this reason the unit tests should be developed
in such a way that they can be run on units in use and with people
around, so e.g it should be avoided settings the volume to max.

Second, being developed in peoples spare time, the development is
likely a recreational activity, that might just be accompanied by
music from the same unit that should be tested. For this reason, that
unit should be left in the same state after test as it was
before. That means that the play list, play state, sound settings
etc. should be restored after the testing is complete.

Add a new unit test module (for a new class under test)

To add unit tests for the methods in a new class follow the steps below:

	Make a new file in the unit test folder named as mentioned in
section One unit test module per class under test.

	(Optional) Define an init function in the unit test module. Do
this only if it is necessary to pass information to the tests at
run time. Read more about the init function in the section
The init function.

	Add test case classes to this module. See Add an unit test to an existing unit test module.

Then it is necessary to make the unit test execution framework aware of
your unit test module. Do this by making the following additions to
the file execute_unittests.py.:

	Import the class under test and the unit test module in the
beginning of the file

	Add an item to the UNITTEST_MODULES dict located right after the
MAIN SCRIPT comment. The added item should itself be a
dictionary with items like this:

UNITTEST_MODULES = {
 'soco': {'name': 'SoCo', 'unittest_module': soco_unittest,
 'class': soco.SoCo, 'arguments': {'ip': ARGS.ip}},
 'foo_bar': {'name': 'FooBar', 'unittest_module': foo_bar_unittest,
 'class': soco.FooBar,'arguments': {'ip': ARGS.ip}}
 }

where both the new imaginary foo_bar entry and the existing
soco entry are shown for clarity. The arguments dict is what will be
passed on to the init method, see section
The init function.

	Lastly, add the new module to the help text for the modules
command line argument, defined in the __build_option_parser
function:

parser.add_argument('--modules', type=str, default=None, help=''
 'the modules to run unit test for can be '
 '\'soco\', \'foo_bar\' or \'all\'')

The name that should be added to the text is the key for the unit
test module entry in the UNITTEST_MODULES dict.

The init function

Normally unit tests should be self-contained and therefore they should
have all the data they will need built in. However, that does not
apply to SoCo, because the IP’s of the Sonos® units will be required
and there is no way to know them in advance. Therefore, the execution
script will call the function init in the unit test modules, if it
exists, with a set of predefined arguments that can then be used for
unit test initialization. Note that the function is to be named
init , not __init__ like the class initializers. The init
function is called with one argument, which is the dictionary defined
under the key arguments in the unit test modules definition. Please
regard this as an exception to the general unit test best practices
guidelines and use it only if there are no other option.

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SoCo (Sonos Controller) 0.10 documentation

The data_structures sub module

Introduction

The majority of the data structures in this module are used to represent the
metadata for music items, such as music tracks, genres and playlists. The data
structure classes are documented in the sections below and the rest of this
section contains a more thorough introduction.

Many music related items have a lot of metadata in common. For example, a music
track and an album may both have artist and title metadata. It is possible
therefore to derive a hierarchy of items, and to implement them as a class
structure. The hierarchy which Sonos has adopted is represented by the DIDL
Lite xml schema [http://www.upnp.org/schemas/av/didl-lite-v2.xsd] (DIDL stands for ‘Digital Item Description Language’. For more details, see the
UPnP specifications
(PDF) [http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v1-Service.pdf].

In the data_structures module, each class represents a particular DIDL-Lite
object and is illustrated in the figure below. The
black lines are the lines of inheritance, going from the top down.

[image: Inheritance diagram of soco.data_structures]

All data structures are subclasses of the abstract Didl Object item class. You should never need to instantiate this directly. The subclasses are divided into Containers and Items. In general, Containers are things, like playlists, which are intended to contain other items.

At the bottom of the class hierarchy are 10 types of DIDL items. On each of these classes, relevant metadata items
are available as attributes (though they may be implemented as properties).
Each has a title, a URI, an item id and
a UPnP class. Some have other
attributes. For example, DidlMusicTrack and DidlMusicAlbum have
some extra fields such as album,
album_art_uri and creator.

One of the more important attributes which each class has is
didl_metadata. It is used to
produce the metadata that is sent to the Sonos® units in the form of XML. This
metadata is created in an almost identical way for each class, which is why it
is implemented in DidlObject. It uses the URI, the UPnP
class and the title that the items are instantiated with, along with the two
class variables parent_id and _translation.

Functions

	
soco.data_structures.ns_tag(ns_id, tag)

	Return a namespace/tag item. The ns_id is translated to a full name
space via the NS module variable.

	
soco.data_structures.get_didl_object(xml)

	Return the DIDL object that corresponds to xml. The class is
identified by getting the UPNP class making a lookup in the
DIDL_CLASS_TO_CLASS module variable dictionary.

DidlObject

	
class soco.data_structures.DidlObject(uri, title, parent_id, item_id, **kwargs)

	Bases: soco.data_structures.DidlMetaClass

Abstract base class for all content directory objects

You should not need to instantiate this

	Variables:	
	item_class – According to the spec, the DIDL Lite class for DIDL
items is object, since it is a abstract class and it should be
overwritten in the sub classes

	_translation – The dictionary-key-to-xml-tag-and-namespace-
translation used when instantiating a MusicLibraryItems from XML. The
default value is shown below. This default value applies to most sub
classes and the rest should overwrite it.

key: (ns, tag)
_translation = {
 'title': ('dc', 'title'),
 'uri': ('', 'res'),
 'creator': ('dc', 'creator'),
}

	
__init__(uri, title, parent_id, item_id, **kwargs)

	Initialize the DidlObject from parameter arguments.

	Parameters:	
	uri – The URI for the item

	title – The title for the item

	parent_id – The parent ID for the item

	item_id – The ID for the item

	**kwargs – Extra information items to form the music library
item from. Valid keys are album, album_art_uri,
creator and original_track_number.
original_track_number is an int, all other values are
unicode objects.

	
__eq__(playable_item)

	Return the equals comparison result to another playable_item.

	
__repr__()

	Return the repr value for the item.

The repr is on the form:

<class_name 'middle_part[0:40]' at id_in_hex>

where middle_part is either the title item in content, if it is set,
or str(content). The output is also cleared of non-ascii
characters.

	
__str__()

	Return the str value for the item:

<class_name 'middle_part[0:40]' at id_in_hex>

where middle_part is either the title item in content, if it is set, or
str(content). The output is also cleared of non-ascii characters.

	
__eq__(playable_item)

	Return the equals comparison result to another playable_item.

	
__init__(uri, title, parent_id, item_id, **kwargs)

	Initialize the DidlObject from parameter arguments.

	Parameters:	
	uri – The URI for the item

	title – The title for the item

	parent_id – The parent ID for the item

	item_id – The ID for the item

	**kwargs – Extra information items to form the music library
item from. Valid keys are album, album_art_uri,
creator and original_track_number.
original_track_number is an int, all other values are
unicode objects.

	
__ne__(playable_item)

	Return the not equals comparison result to another playable_item

	
__repr__()

	Return the repr value for the item.

The repr is on the form:

<class_name 'middle_part[0:40]' at id_in_hex>

where middle_part is either the title item in content, if it is set,
or str(content). The output is also cleared of non-ascii
characters.

	
__str__()

	Return the str value for the item:

<class_name 'middle_part[0:40]' at id_in_hex>

where middle_part is either the title item in content, if it is set, or
str(content). The output is also cleared of non-ascii characters.

	
creator

	Get and set the creator as an unicode object.

	
didl_metadata

	Produce the DIDL metadata XML.

This method uses the item_id
attribute (and via that the uri
attribute), the item_class attribute
and the title attribute. The
metadata will be on the form:

<DIDL-Lite ..NS_INFO..>
 <item id="...self.item_id..."
 parentID="...cls.parent_id..." restricted="true">
 <dc:title>...self.title...</dc:title>
 <upnp:class>...self.item_class...</upnp:class>
 <desc id="cdudn"
 nameSpace="urn:schemas-rinconnetworks-com:metadata-1-0/">
 RINCON_AssociatedZPUDN
 </desc>
 </item>
</DIDL-Lite>

	
classmethod from_dict(content)

	An alternative constructor to create instance from a dict with
parameters.

	Parameters:	content – Dict with information for the music library item.
Required and valid arguments are the same as for the
__init__ method.

	
classmethod from_xml(xml)

	An alternative constructor to create an instance of this class
from xml.

	Parameters:	xml – An xml.etree.ElementTree.Element [http://docs.python.org/2/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element] object. The
top element usually is a DIDL-LITE item (NS[‘’]) element. Inside
the item element should be the (namespace, tag_name) elements
in the dictionary-key-to-xml-tag-and-namespace-translation
described in the class docstring.

	
item_id

	Return the id.

	
parent_id

	Get and set the parent ID.

	
title

	Get and set the title as an unicode object.

	
to_dict

	Get the dict representation of the instance.

	
uri

	Get and set the URI as an unicode object.

DidlContainer

	
class soco.data_structures.DidlContainer(uri, title, parent_id, item_id, **kwargs)

	Bases: soco.data_structures.DidlObject

Class that represents a music library container.

	Variables:	
	item_class – The item_class for the DidlContainer is
‘object.container’

	_translation – The dictionary-key-to-xml-tag-and-namespace-
translation used when instantiating a DidlContainer from XML is
inherited from DidlObject.

DidlItem

	
class soco.data_structures.DidlItem(uri, title, parent_id, item_id, **kwargs)

	Bases: soco.data_structures.DidlObject

A basic content directory item

	
album_art_uri

	Get and set the album art URI as an unicode object.

	
radio_show

	Get and set the radio show metadata as an unicode object.

	
stream_content

	Get and set the stream content URI as an unicode object.

DidlMusicTrack

	
class soco.data_structures.DidlMusicTrack(uri, title, parent_id, item_id, **kwargs)

	Bases: soco.data_structures.DidlAudioItem

Class that represents a music track.

	Variables:	_translation – The dictionary-key-to-xml-tag-and-namespace-
translation used when instantiating a DidlMusicTrack from XML.
The value is shown below

key: (ns, tag)
_translation = {
 'title': ('dc', 'title'),
 'creator': ('dc', 'creator'),
 'album': ('upnp', 'album'),
 'album_art_uri': ('upnp', 'albumArtURI'),
 'uri': ('', 'res'),
 'original_track_number': ('upnp', 'originalTrackNumber')
}

	
album

	Get and set the album as an unicode object.

	
original_track_number

	Get and set the original track number as an int.

DidlMusicAlbum

	
class soco.data_structures.DidlMusicAlbum(uri, title, parent_id, item_id, **kwargs)

	Bases: soco.data_structures.DidlAlbum

Class that represents a music library album.

	Variables:	
	item_class – The item_class for DidlMusicTrack is
‘object.container.album.musicAlbum’

	_translation – The dictionary-key-to-xml-tag-and-namespace-
translation used when instantiating a DidlAlbum from XML. The value is
shown below

key: (ns, tag)
_translation = {
 'title': ('dc', 'title'),
 'creator': ('dc', 'creator'),
 'album_art_uri': ('upnp', 'albumArtURI'),
 'uri': ('', 'res')
}

	
album_art_uri

	Get and set the album art URI as an unicode object.

DidlMusicArtist

	
class soco.data_structures.DidlMusicArtist(uri, title, parent_id, item_id, **kwargs)

	Bases: soco.data_structures.DidlPerson

Class that represents an artist.

	Variables:	
	item_class – The item_class for DidlMusicArtist is
‘object.container.person.musicArtist’

	_translation – The dictionary-key-to-xml-tag-and-namespace-
translation used when instantiating a DidlMusicArtist from XML is
inherited from DidlObject.

DidlMusicGenre

	
class soco.data_structures.DidlMusicGenre(uri, title, parent_id, item_id, **kwargs)

	Bases: soco.data_structures.DidlGenre

Class that represents a music genre.

	Variables:	
	item_class – The item class for the DidlGenre is
‘object.container.genre.musicGenre’

	_translation – The dictionary-key-to-xml-tag-and-namespace-
translation used when instantiating a DidlGenre from XML is inherited
from DidlObject.

DidlAlbumList

	
class soco.data_structures.DidlAlbumList(uri, title, parent_id, item_id, **kwargs)

	Bases: soco.data_structures.DidlContainer

Class that represents an album list.

	Variables:	
	item_class – The item_class for DidlAlbumList is
‘object.container.albumlist’

	_translation – The dictionary-key-to-xml-tag-and-namespace-
translation used when instantiating a DidlAlbumList from XML is
inherited from DidlObject.

DidlComposer

	
class soco.data_structures.DidlComposer(uri, title, parent_id, item_id, **kwargs)

	Bases: soco.data_structures.DidlPerson

Class that represents a composer.

	Variables:	
	item_class – The item_class for DidlComposer is
‘object.container.person.composer’

	_translation – The dictionary-key-to-xml-tag-and-namespace-
translation used when instantiating a DidlComposer from XML is
inherited from DidlObject.

DidlPlaylistContainer

	
class soco.data_structures.DidlPlaylistContainer(uri, title, parent_id, item_id, **kwargs)

	Bases: soco.data_structures.DidlContainer

Class that represents a play list.

	Variables:	
	item_class – The item_class for the DidlPlaylistContainer is
‘object.container.playlistContainer’

	_translation – The dictionary-key-to-xml-tag-and-namespace-
translation used when instantiating a DidlPlaylistContainer from XML is
inherited from DidlObject.

DidlAudioBroadcast

	
class soco.data_structures.DidlAudioBroadcast(uri, title, parent_id, item_id, **kwargs)

	Bases: soco.data_structures.DidlAudioItem

Class that represents an audio broadcast.

DidlContainer

	
class soco.data_structures.DidlContainer(uri, title, parent_id, item_id, **kwargs)

	Bases: soco.data_structures.DidlObject

Class that represents a music library container.

	Variables:	
	item_class – The item_class for the DidlContainer is
‘object.container’

	_translation – The dictionary-key-to-xml-tag-and-namespace-
translation used when instantiating a DidlContainer from XML is
inherited from DidlObject.

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SoCo (Sonos Controller) 0.10 documentation

SoCo releases

	SoCo 0.10 release notes

	SoCo 0.9 release notes

	SoCo 0.8 release notes

	SoCo 0.7 release notes

	SoCo 0.6 release notes

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SoCo (Sonos Controller) 0.10 documentation

 	SoCo releases

SoCo 0.10 release notes

SoCo 0.10 is a new version of the SoCo library. This release adds new features
and fixes several bugs.

SoCo (Sonos Controller) [http://python-soco.com/] is a simple Python class
that allows you to programmatically control Sonos speakers.

New Features

	Add support for taking a snapshot of the Sonos state, and then to restore it
later (#224 [https://github.com/SoCo/SoCo/pull/224], #251 [https://github.com/SoCo/SoCo/pull/251])

	Added create_sonos_playlist_from_queue. Creates a new Sonos playlist from the
current queue (#229 [https://github.com/SoCo/SoCo/pull/229])

Improvements

	Added a queue_size property to quickly return the size of the queue without
reading any items (#217 [https://github.com/SoCo/SoCo/pull/217])

	Add metadata to return structure of get_current_track_info (#220 [https://github.com/SoCo/SoCo/pull/220])

	Add option to play_uri that allows for the item to be set and then optionally
played (#219 [https://github.com/SoCo/SoCo/pull/219])

	Add option to play_uri that allows playing with a URI and title instead of
metadata (#221 [https://github.com/SoCo/SoCo/pull/221])

	Get the item ID from the XML responses which enables adding tracks for music
services such as Rhapsody which do not have all the detail in the item URI
(#233 [https://github.com/SoCo/SoCo/pull/233])

	Added label and short_label properties, to provide a consistent readable
label for group members (#228 [https://github.com/SoCo/SoCo/pull/228])

	Improved documentation (#248 [https://github.com/SoCo/SoCo/pull/248],
#253 [https://github.com/SoCo/SoCo/pull/253],
#259 [https://github.com/SoCo/SoCo/pull/259])

	Improved code examples (#250 [https://github.com/SoCo/SoCo/pull/250],
#252 [https://github.com/SoCo/SoCo/pull/252])

Bugfixes

	Fixed a bug where get_ml_item() would fail if a radio station was played
(#226 [https://github.com/SoCo/SoCo/pull/226])

	Fixed a timeout-related regression in soco.discover() (
#244 [https://github.com/SoCo/SoCo/pull/244])

	Discovery code fixed to account for closing of multicast sockets by certain
devices (#202 [https://github.com/SoCo/SoCo/pull/202],
#201 [https://github.com/SoCo/SoCo/pull/201])

	Fixed a bug where sometimes zone groups would be created without a
coordinator (#230 [https://github.com/SoCo/SoCo/pull/230])

Backwards Compatability

The metadata classes (ML*) have all been renamed (generally to Didl*),
and aligned more closely with the underlying XML. The Music Services data
structures (MS*) have been moved to their own module, and metadata for
radio broadcasts is now returned properly (#243 [https://github.com/SoCo/SoCo/pull/243]).

The URI class has been removed. As an alternative the method
soco.SoCo.play_uri() can be used to enqueue and play an URI. The class
soco.data_structures.DIDLObject can be used if an object is required.

Work is still ongoing on the metadata classes, so further changes should be
expected.

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SoCo (Sonos Controller) 0.10 documentation

 	SoCo releases

SoCo 0.9 release notes

New Features

	Alarm configuration (#171 [https://github.com/SoCo/SoCo/pull/171])

>>> from soco.alarms import Alarm, get_alarms
>>> # create an alarm with default properties
>>> # my_device is the SoCo instance on which the alarm will be played
>>> alarm = Alarm(my_device)
>>> print alarm.volume
20
>>> print get_alarms()
set([])
>>> # save the alarm to the Sonos system
>>> alarm.save()
>>> print get_alarms()
set([<Alarm id:88@15:26:15 at 0x107abb090>])
>>> # update the alarm
>>> alarm.recurrence = "ONCE"
>>> # Save it again for the change to take effect
>>> alarm.save()
>>> # Remove it
>>> alarm.remove()
>>> print get_alarms()
set([])

	Methods for browsing the Music library (#192 [https://github.com/SoCo/SoCo/pull/192],
#203 [https://github.com/SoCo/SoCo/pull/203],
#208 [https://github.com/SoCo/SoCo/pull/208])

import soco
soc = soco.SoCo('...ipaddress..')
some_album = soc.get_albums()['item_list'][0]
tracks_in_that_album = soc.browse(some_album)

	Support for full Album Art URIs (#207 [https://github.com/SoCo/SoCo/pull/207])

	Support for music queues (#214 [https://github.com/SoCo/SoCo/pull/214])

queue = soco.get_queue()
for item in queue:
 print item.title

print queue.number_returned
print queue.total_matches
print queue.update_id

	Support for processing of LastChange events (#194 [https://github.com/SoCo/SoCo/pull/194])

	Support for write operations on Playlists (#198 [https://github.com/SoCo/SoCo/pull/198])

Improvements

	Improved test coverage (#159 [https://github.com/SoCo/SoCo/pull/159],
#184 [https://github.com/SoCo/SoCo/pull/184])

	Fixes for Python 2.6 support (#175 [https://github.com/SoCo/SoCo/pull/175])

	Event-subscriptions can be auto-renewed (#179 [https://github.com/SoCo/SoCo/pull/179])

	The SoCo class can replaced by a custom implementation (#180 [https://github.com/SoCo/SoCo/pull/180])

	The cache can be globally disabled (#180 [https://github.com/SoCo/SoCo/pull/180])

	Music Library data structures are constructed for DIDL XML content (#191 [https://github.com/SoCo/SoCo/pull/191]).

	Added previously removed support for PyPy (#205 [https://github.com/SoCo/SoCo/pull/205])

	All music library methods (browse, get_tracks etc. #203 [https://github.com/SoCo/SoCo/pull/203] and get_queue #214 [https://github.com/SoCo/SoCo/pull/214]) now returns container objects
instead of dicts or lists. The metadata is now available from these container
objects as named attributes, so e.g. on a queue object you can access the
size with queue.total_matches.

Backwards Compatability

	Music library methods return container objects instead of dicts and lists (see
above). The old way of accessing that metadata (by dictionary type
indexing), has been deprecated and is planned to be removed 3
releases after 0.9.

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SoCo (Sonos Controller) 0.10 documentation

 	SoCo releases

SoCo 0.8 release notes

New Features

	Re-added support for Python 2.6 (#154 [https://github.com/SoCo/SoCo/pull/154])

	Added SoCo.get_sonos_playlists() (#114 [https://github.com/SoCo/SoCo/pull/114])

	Added methods for working with speaker topology

	soco.SoCo.group retrieves the soco.groups.ZoneGroup to
which the speaker belongs (#132 [https://github.com/SoCo/SoCo/pull/132]).
The group itself has a soco.groups.ZoneGroup.member attribute
returning all of its members. Iterating directly over the group is possible
as well.

	Speakers can be grouped using soco.SoCo.join()
(#136 [https://github.com/SoCo/SoCo/pull/136]):

z1 = SoCo('192.168.1.101')
z2 = SoCo('192.168.1.102')
z1.join(z2)

	soco.SoCo.all_zones and soco.SoCo.visible_zones return all
and all visible zones, respectively.

	soco.SoCo.is_bridge indicates if the SoCo instance represents a
bridge.

	soco.SoCo.is_coordinator indicates if the SoCo instance is a
group coordinator (#166 [https://github.com/SoCo/SoCo/pull/166])

	A new soco.plugins.spotify.Spotify plugin allows querying and
playing the Spotify music catalogue (#119 [https://github.com/SoCo/SoCo/pull/119]):

from soco.plugins.spotify import Spotify
from soco.plugins.spotify import SpotifyTrack
create a new plugin, pass the soco instance to it
myplugin = Spotify(device)
print 'index: ' + str(myplugin.add_track_to_queue(SpotifyTrack('
 spotify:track:20DfkHC5grnKNJCzZQB6KC')))
print 'index: ' + str(myplugin.add_album_to_queue(SpotifyAlbum('
 spotify:album:6a50SaJpvdWDp13t0wUcPU')))

	A soco.data_structures.URI item can be passed to add_to_queue
which allows playing music from arbitrary URIs (#147 [https://github.com/SoCo/SoCo/pull/147])

import soco
from soco.data_structures import URI

soc = soco.SoCo('...ip_address...')
uri = URI('http://www.noiseaddicts.com/samples/17.mp3')
soc.add_to_queue(uri)

	A new include_invisible parameter to soco.discover() can be used
to retrieve invisible speakers or bridges (#146 [https://github.com/SoCo/SoCo/pull/146])

	A new timeout parameter to soco.discover(). If no zones are found
within timeout seconds None is returned. (#146 [https://github.com/SoCo/SoCo/pull/146])

	Network requests can be cached for better performance (#131 [https://github.com/SoCo/SoCo/pull/131]).

	It is now possible to subscribe to events of a service using its subscribe
method, which returns a Subscription object. To unsubscribe, call the
unsubscribe method on the returned object. (#121 [https://github.com/SoCo/SoCo/pull/121], #130 [https://github.com/SoCo/SoCo/pull/130])

	Support for reading and setting crossfade (#165 [https://github.com/SoCo/SoCo/pull/165])

Improvements

	Performance improvements for speaker discovery (#146 [https://github.com/SoCo/SoCo/pull/146])

	Various improvements to the Wimp plugin (#140 [https://github.com/SoCo/SoCo/pull/140]).

	Test coverage tracking using coveralls.io [http://coveralls.io/] (#163 [https://github.com/SoCo/SoCo/pull/163])

Backwards Compatability

	Queue related use 0-based indexing consistently (#103 [https://github.com/SoCo/SoCo/pull/103])

	soco.SoCo.get_speakers_ip() is deprecated in favour of
soco.discover() (#124 [https://github.com/SoCo/SoCo/pull/124])

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SoCo (Sonos Controller) 0.10 documentation

 	SoCo releases

SoCo 0.7 release notes

New Features

	All information about queue and music library items, like e.g. the
title and album of a track, are now included in data structure classes
instead of dictionaries (the classes are available in the
The data_structures sub module sub-module). This advantages of this
approach are:

	The type of the item is identifiable by its class name

	They have useful __str__ representations and an __equals__
method

	Information is available as named attributes

	They have the ability to produce their own UPnP meta-data (which is
used by the add_to_queue method).

See the Backwards Compatibility notice below.

	A webservice analyzer has been added in dev_tools/analyse_ws.py
(#46 [https://github.com/SoCo/SoCo/pull/46]).

	The commandline interface has been split into a separate project socos [https://github.com/SoCo/socos]. It provides an command line interface on
top of the SoCo library, and allows users to control their Sonos speakers
from scripts and from an interactive shell.

	Python 3.2 and later is now supported in addition to 2.7.

	A simple version of the first plugin for the Wimp service has been added
(#93 [https://github.com/SoCo/SoCo/pull/93]).

	The new soco.discover() method provides an easier interface for
discovering speakers in your network. SonosDiscovery has been deprecated
in favour of it (see Backwards Compatability below).

	SoCo instances are now singletons per IP address. For any given IP address, there is only one SoCo instance.

	The code for generating the XML to be sent to Sonos devices has been
completely rewritten, and it is now much easier to add new functionality. All
services exposed by Sonos zones are now available if you need them (#48 [https://github.com/SoCo/SoCo/pull/48]).

Backwards Compatability

Warning

Please read the section below carefully when upgrading to SoCo
0.7.

Data Structures

The move to using data structure classes for music item information instead
of dictionaries introduces some backwards incompatible changes in the
library (see #83 [https://github.com/SoCo/SoCo/pull/83]). The get_queue
and get_library_information functions (and all methods derived from the
latter) are affected. In the data structure classes, information like
e.g. the title is now available as named attributes. This means that by the
update to 0.7 it will also be necessary to update your code like e.g:

Version < 0.7
for item in soco.get_queue():
 print item['title']
Version >=0.7
for item in soco.get_queue():
 print item.title

SonosDiscovery

The SonosDiscovery class has been deprecated (see #80 [https://github.com/SoCo/SoCo/pull/80] and #75 [https://github.com/SoCo/SoCo/issues/75]).

Instead of the following

>>> import soco
>>> d = soco.SonosDiscovery()
>>> ips = d.get_speaker_ips()
>>> for i in ips:
... s = soco.SoCo(i)
... print s.player_name

you should now write

>>> import soco
>>> for s in soco.discover():
... print s.player_name

Properties

A number of methods have been replaced with properties, to simplify use (see #62 [https://github.com/SoCo/SoCo/pull/62])

For example, use

soco.volume = 30
soco.volume -=3
soco.status_light = True

instead of

soco.volume(30)
soco.volume(soco.volume()-3)
soco.status_light("On")

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SoCo (Sonos Controller) 0.10 documentation

 	SoCo releases

SoCo 0.6 release notes

New features

	Music library information: Several methods has been added to get
information about the music library. It is now possible to get
e.g. lists of tracks, albums and artists.

	Raise exceptions on errors: Several SoCo specific exceptions
has been added. These exceptions are now raised e.g. when SoCo
encounters communications errors instead of returning an error
codes. This introduces a backwards incompatible change in SoCo
that all users should be aware of.

For SoCo developers

	Added plugin framework: A plugin framework has been added to
SoCo. The primary purpose of this framework is to provide a
natural partition of the code, in which code that is specific to
the individual music services is separated out into its own class
as a plugin. Read more about the plugin framework in the docs.

	Added unit testing framework: A unit testing framework has been
added to SoCo and unit tests has been written for 30% of the
methods in the SoCo class. Please consider supplementing any new
functionality with the appropriate unit tests and fell free to write
unit tests for any of the methods that are still missing.

Coming next

	Data structure change: For the next version of SoCo it is
planned to change the way SoCo handles data. It is planned to use
classes for all the data structures, both internally and for in- and
output. This will introduce a backwards incompatible change and
therefore users of SoCo should be aware that extra work will be
needed upon upgrading from version 0.6 to 0.7. The data structure
changes will be described in more detail in the release notes for
version 0.7.

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	SoCo (Sonos Controller) 0.10 documentation

Release Procedures

This document describes the necessary steps for creating a new release of SoCo.

Preparations

	Assign a version number to the release, according to semantic versioning [http://semver.org/]. Tag names should be prefixed with v.

	Create a GitHub issue for the new version (eg Release 0.7 #108 [https://github.com/SoCo/SoCo/issues/108]). This issue can be used
to discuss included changes, the version number, etc.

	Create a milestone for the planned release (if it does not already exist).
The milestone can be used to track issues relating to the release. All
relevant issues should be assigned to the milestone.

	Create the release notes in release_notes.html.

Create and Publish

	Verify that all tests pass.

	Update the version number in __init__.py (see
[example](https://github.com/SoCo/SoCo/commit/d35171213eabbc4)).

	Tag the current commit, eg

git tag -a v0.7 -m 'release version 0.7'

	Push the tag. This will create a new release on GitHub.

git push --tags

	Update the GitHub release [https://github.com/SoCo/SoCo/releases/new]
using the release notes from the documentation. The release notes can be
abbreviated if a link to the documentation is provided.

	Upload the release to PyPI.

python setup.py sdist bdist_wheel upload

	Enable doc builds for the newly released version on Read the Docs [https://readthedocs.org/dashboard/soco/versions/].

Wrap-Up

	Create the milestone for the next release (with the most likely version
number) and close the milestone for the current release.

	Share the news!

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	SoCo (Sonos Controller) 0.10 documentation

 Python Module Index

 s

 			

 		
 s	

 	
 	
 soco	

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	SoCo (Sonos Controller) 0.10 documentation

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

_

 	

 	__eq__() (soco.data_structures.DidlObject method), [1]

 	__init__() (soco.data_structures.DidlObject method), [1]

 	__ne__() (soco.data_structures.DidlObject method)

 	

 	__repr__() (soco.data_structures.DidlObject method), [1]

 	__str__() (soco.data_structures.DidlObject method), [1]

A

 	

 	add_item_to_sonos_playlist() (soco.SoCo method)

 	add_to_queue() (soco.SoCo method)

 	add_uri_to_queue() (soco.SoCo method)

 	album (soco.data_structures.DidlMusicTrack attribute)

 	

 	album_art_uri (soco.data_structures.DidlItem attribute)

 	

 	(soco.data_structures.DidlMusicAlbum attribute)

 	all_groups (soco.SoCo attribute)

 	all_zones (soco.SoCo attribute)

B

 	

 	bass (soco.SoCo attribute)

 	browse() (soco.SoCo method)

 	

 	browse_by_idstring() (soco.SoCo method)

C

 	

 	clear_queue() (soco.SoCo method)

 	create_sonos_playlist() (soco.SoCo method)

 	create_sonos_playlist_from_queue() (soco.SoCo method)

 	

 	creator (soco.data_structures.DidlObject attribute)

 	cross_fade (soco.SoCo attribute)

D

 	

 	didl_metadata (soco.data_structures.DidlObject attribute)

 	DidlAlbumList (class in soco.data_structures)

 	DidlAudioBroadcast (class in soco.data_structures)

 	DidlComposer (class in soco.data_structures)

 	DidlContainer (class in soco.data_structures), [1]

 	DidlItem (class in soco.data_structures)

 	DidlMusicAlbum (class in soco.data_structures)

 	

 	DidlMusicArtist (class in soco.data_structures)

 	DidlMusicGenre (class in soco.data_structures)

 	DidlMusicTrack (class in soco.data_structures)

 	DidlObject (class in soco.data_structures)

 	DidlPlaylistContainer (class in soco.data_structures)

 	discover() (in module soco)

F

 	

 	from_dict() (soco.data_structures.DidlObject class method)

 	from_name() (soco.plugins.SoCoPlugin class method)

 	

 	from_xml() (soco.data_structures.DidlObject class method)

G

 	

 	get_album_artists() (soco.SoCo method)

 	get_albums() (soco.SoCo method)

 	get_artists() (soco.SoCo method)

 	get_composers() (soco.SoCo method)

 	get_current_track_info() (soco.SoCo method)

 	get_current_transport_info() (soco.SoCo method)

 	get_didl_object() (in module soco.data_structures)

 	get_favorite_radio_shows() (soco.SoCo method)

 	get_favorite_radio_stations() (soco.SoCo method)

 	get_genres() (soco.SoCo method)

 	

 	get_group_coordinator() (soco.SoCo method)

 	get_music_library_information() (soco.SoCo method)

 	get_playlists() (soco.SoCo method)

 	get_queue() (soco.SoCo method)

 	get_sonos_playlists() (soco.SoCo method)

 	get_speaker_info() (soco.SoCo method)

 	get_speaker_ips() (soco.SonosDiscovery static method)

 	get_speakers_ip() (soco.SoCo method)

 	get_tracks() (soco.SoCo method)

 	group (soco.SoCo attribute)

I

 	

 	is_bridge (soco.SoCo attribute)

 	is_coordinator (soco.SoCo attribute)

 	

 	is_visible (soco.SoCo attribute)

 	item_id (soco.data_structures.DidlObject attribute)

J

 	

 	join() (soco.SoCo method)

L

 	

 	loudness (soco.SoCo attribute)

M

 	

 	mute (soco.SoCo attribute)

N

 	

 	name (soco.plugins.SoCoPlugin attribute)

 	next() (soco.SoCo method)

 	

 	ns_tag() (in module soco.data_structures)

O

 	

 	original_track_number (soco.data_structures.DidlMusicTrack attribute)

P

 	

 	parent_id (soco.data_structures.DidlObject attribute)

 	partymode() (soco.SoCo method)

 	pause() (soco.SoCo method)

 	play() (soco.SoCo method)

 	play_from_queue() (soco.SoCo method)

 	

 	play_mode (soco.SoCo attribute)

 	play_uri() (soco.SoCo method)

 	player_name (soco.SoCo attribute)

 	previous() (soco.SoCo method)

Q

 	

 	queue_size (soco.SoCo attribute)

R

 	

 	radio_show (soco.data_structures.DidlItem attribute)

 	

 	remove_from_queue() (soco.SoCo method)

S

 	

 	seek() (soco.SoCo method)

 	SoCo (class in soco)

 	soco (module)

 	SoCoException

 	SoCoPlugin (class in soco.plugins)

 	SonosDiscovery (class in soco)

 	

 	speaker_ip (soco.SoCo attribute)

 	status_light (soco.SoCo attribute)

 	stop() (soco.SoCo method)

 	stream_content (soco.data_structures.DidlItem attribute)

 	switch_to_line_in() (soco.SoCo method)

 	switch_to_tv() (soco.SoCo method)

T

 	

 	title (soco.data_structures.DidlObject attribute)

 	to_dict (soco.data_structures.DidlObject attribute)

 	

 	treble (soco.SoCo attribute)

U

 	

 	uid (soco.SoCo attribute)

 	unjoin() (soco.SoCo method)

 	

 	UnknownSoCoException

 	uri (soco.data_structures.DidlObject attribute)

V

 	

 	visible_zones (soco.SoCo attribute)

 	

 	volume (soco.SoCo attribute)

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 _static/comment-bright.png

_static/file.png

_static/plus.png

_static/minus.png

_static/comment.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		SoCo (Sonos Controller) 0.10 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

release_notes.html

 Navigation

 		
 index

 		
 modules |

 		SoCo (Sonos Controller) 0.10 documentation »

Release Notes

The release notes have been split by version. See SoCo releases for an index.

 © Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

_static/comment-close.png

_images/inheritance-9ae73027cc68eb45a5af472e34ea9e3a44435d49.png
[e o

it e

