
Social Feed Manager Documentation
Release m5004

George Washington University Libraries

December 15, 2016

Contents

1 Introduction 3
1.1 Overview . 3
1.2 Features . 3
1.3 Current uses at George Washington University . 3
1.4 Technical and staffing considerations . 4
1.5 Development and community . 4

2 Installation and Configuration 5
2.1 Background . 5
2.2 Dependencies . 5
2.3 Configuration . 7
2.4 First time running SFM . 8
2.5 Apache integration . 10
2.6 What next? . 11

3 Daily Operations 13
3.1 Administrative tasks . 13
3.2 Data gathering . 13
3.3 Account maintenance . 14
3.4 Data movage . 14
3.5 System considerations . 15

4 Management Commands 17
4.1 Introduction . 17
4.2 user_timeline . 17
4.3 update_usernames . 18
4.4 populate_uids . 18
4.5 streamsample . 19
4.6 filterstream . 19
4.7 organizedata . 20
4.8 fetch_tweets_by_id . 21
4.9 fetch_urls . 21
4.10 export . 21
4.11 createconf . 22

5 Using Supervisord to Manage Streaming Filters 23
5.1 Supervisor setup . 23
5.2 Streamsample setup . 24

i

5.3 Filterstream setup . 25
5.4 OAuth constraints . 25

6 Use Cases 27
6.1 Definitions . 27
6.2 Lifecycle of a TwitterUser . 27
6.3 State Transitions . 27

7 CSV Export Data Dictionary 29

8 Frequently Asked Questions 31
8.1 Does Social Feed Manager capture photos and other media embedded in tweets? 31
8.2 How far back in time does SFM go when collecting a TwitterUser’s tweets? 31
8.3 Does Social Feed Manager capture the followers list? . 31
8.4 Do I have to set up supervisord in order to use filterstreams or streamsample? 31
8.5 The number of retweets in a TwitterItem is inconsistent with the number of retweets shown on the

tweet in Twitter. Why? . 31
8.6 Does the SFM web interface provide a way to view the files generated by filterstream and streamsample? 32
8.7 When I click on the link to view a raw tweet, it’s difficult to read in my browser. 32
8.8 Can I set this up on a Mac? . 32

9 Troubleshooting 33
9.1 TwitterUserItemUrls is empty. Why isn’t SFM fetching URLS? . 33
9.2 I tried to add a filterstream using the user that I’ve configured as TWITTER_DEFAULT_USER, but

SFM is telling me that Streamsample is also configured to authenticate as that user. But I’m not using
Streamsample! . 33

10 Release Notes 35
10.1 m5_004 release notes . 35
10.2 m5_003 release notes . 36
10.3 m5_002 release notes . 37
10.4 m5_001 release notes . 37
10.5 m4_002 release notes . 38
10.6 m4_001 release notes . 38

ii

Social Feed Manager Documentation, Release m5004

Social Feed Manager is a Django application developed by George Washington University Libraries to collect social
media data from Twitter. It connects to Twitter’s approved API to collect data in bulk and makes it possible for
scholars, students, and librarians to identify, select, collect, and preserve Twitter data for research purposes.

The application code is open source and available on github.

We are in the process of re-architecting Social Feed Manager. For updates, see the sfm-ui repo on github and the
project scope and background in its wiki. When documentation for the new app is available, we will point to that from
here.

Contents:

Contents 1

http://github.com/gwu-libraries/social-feed-manager/
https://github.com/gwu-libraries/sfm-ui
https://github.com/gwu-libraries/sfm-ui/wiki

Social Feed Manager Documentation, Release m5004

2 Contents

CHAPTER 1

Introduction

1.1 Overview

Social Feed Manager is open source software for locally capturing public data from Twitter. It makes it possible for
librarians, archivists, scholars, and students to:

• identify, select, collect, and preserve “at risk” social media data

• gather datasets of tweets in bulk for analysis in other software packages

• fill gaps in special collections

• archive the social media activity of their library or institution.

The software connects to Twitter’s approved public APIs to collect tweets by specific users, search current tweets by
keyword, and filter by geolocation. We hope to add other social media platforms in the future.

1.2 Features

• Collects tweets account by account

• Queries streaming APIs by keyword, user, and geolocation

• Captures Twitter’s sample stream (currently ~0.5-1% of tweets)

• Manages multiple streams reliably

• Respectful of Twitter rate limits

• Groups tweets into sets for easier management

• CSV export, which can be uploaded into analysis software of the researcher’s choice

• Web-based interfaces for researchers / data users and administrators

• Command-line updates for application administrator

• Streaming data output to compressed rolling files in date/time hierarchy

1.3 Current uses at George Washington University

• The University Archives is gathering tweets by university offices and student organizations, capturing an aspect
of student life whose main online presence is on social media

3

Social Feed Manager Documentation, Release m5004

• Faculty in the School of Media and Public Affairs are studying how journalists, activist organizations, and
members of Congress tweet

• Students in digital journalism are learning how to analyze tweets to inform reporting

• Computer science faculty are using tweet datasets to train machine learning algorithms

1.4 Technical and staffing considerations

Social Feed Manager is locally hosted and requires a system administrator to set up and manage the application in a
Linux (Ubuntu 12.04) environment. Storage requirements vary depending on usage of the application: collecting data
account-by-account requires less storage than connecting to the streaming APIs, which accumulates large files.

Archivists, librarians and other service administrators, as determined by the library, use a web-based interface to
add new Twitter users, specify keyword queries, and create sets of accounts. Researchers may directly download
user timeline data from the web interface after signing into the site from an institutional IP address and using their
own Twitter credentials. Currently, all captured user timeline data is available in the researcher interface and is not
separated by researcher account. Accessing files generated from the streaming APIs requires mediation by a system
administrator.

1.5 Development and community

Social Feed Manager was developed at The George Washington University Libraries in 2012 as a proto-
type application and is now being supported by multiple developers and an IMLS Sparks! Innovation Grant
<http://www.imls.gov/applicants/detail.aspx?GrantId=19> 1. Several libraries and archives have installed it and are
providing feedback to help prioritize development of new features.

The software is available for use, study, copying, and modification under a free and open source software license (MIT
license). We welcome others to become involved in the project and contribute to the code.

1.5.1 Contact us

• sfm-dev Google Group

• Developers responsible for the app include Dan Chudnov (@dchud), Dan Kerchner (@dankerchner), Ankushi
Sharma (@ankushis), and Laura Wrubel (@liblaura).

1.5.2 Resources

Social Feed Manager on Github

Google Group (updates about new releases and discussion of features)

1 Institute of Museum and Library Services Grant LG-46-13-0257

4 Chapter 1. Introduction

https://groups.google.com/forum/#!forum/sfm-dev
https://twitter.com/dchud/
https://twitter.com/dankerchner/
https://twitter.com/ankushis/
https://twitter.com/liblaura/
https://github.com/gwu-libraries/social-feed-manager
https://groups.google.com/forum/#!forum/sfm-dev

CHAPTER 2

Installation and Configuration

2.1 Background

Social Feed Manager is not a simple “click to run” application. It is best if you or somebody you can work with has
some experience as a unix/linux systems administrator when attempting to install this application. It’s not the world’s
most complicated app, but you will need to install system software and configure it, set up a database, get application
credentials from Twitter, and then use all of that to configure and run SFM, which is a python/django application that
plugs into a web server. If these are new tasks for you, you might want to work with another person with a little more
experience.

Another key consideration is platform. At GW Libraries we develop, test, and run SFM strictly on Ubuntu LTS servers
(virtual machines, actually), so these docs reflect that. If you want to install SFM into another environment you will
be on your own to some degree. But if you stick with Ubuntu LTS (currently 12.04) these instructions should work for
you if you follow them precisely.

We develop and run SFM inside a virtualenv, which is a commonly used sandbox / isolation technique for Python
applications. This allows a Python application and its third-party library dependencies to be installed into one inde-
pendent virtual environment for the app side-by-side with other applications (and perhaps their own virtualenvs) on
the same system, or even alongside multiple versions of SFM itself. There are many benefits to using virtualenv for
this purpose. We strongly recommend that you do the same, and these instructions will guide you.

2.2 Dependencies

These instructions assume you have a brand new Ubuntu 12.04 LTS server.

SFM is developed and managed using Ubuntu 12.04, Python 2.7, PostgreSQL 9.1+, Apache 2+, and other dependen-
cies we’ll run into in a moment. If you want to use something else, you’re on your own, but let us know and please
feel welcome to submit a pull request with your own suggestions.

First, install these system-level packages:

% sudo apt-get install git apache2 python-dev python-virtualenv postgresql libxml2-dev libxslt1-dev libpq-dev libapache2-mod-wsgi supervisor

(Optionally, change to the directory where you wish to install SFM. Your user will need write permissions here.)

Next, get this code using git:

% git clone https://github.com/gwu-libraries/social-feed-manager.git

Change directory into the social-feed-manager folder:

5

Social Feed Manager Documentation, Release m5004

% cd social-feed-manager

To run a tagged release (tagged releases are listed at https://github.com/gwu-libraries/social-feed-manager/releases),
rather than the latest development code (i.e. the “master” branch), then check out the appropriate tag:

% git checkout m5_004

Create and activate a virtualenv:

% virtualenv --no-site-packages ENV
% source ENV/bin/activate

Note that the first command creates a virtualenv, and the second command activates it. For nearly all of the following
instructions, we assume you are active in the virtualenv you just created.

Prep PostgreSQL, the database SFM uses. First, update /etc/postgresql/9.1/main/pg_hba.conf to en-
able local database connections or otherwise as you prefer. Note that there’s more than one way to do this, so if this is
new to you, read this background information, or ask a friendly sysadmin for help.

http://www.postgresql.org/docs/9.1/static/auth-pg-hba-conf.html

For example, you could add a line like this (you will probably need to use sudo to edit the file):

local all all md5

When you’ve edited pg_hba.conf, save it, then restart postgresql.

% sudo service postgresql restart

When that succeeds, su to the postgres account to create a postgresql user and database. Substitute your own
preferred values for the all caps values below, but do use the single quotes around your password when you create it
in the third line.

% sudo su - postgres
(postgres)% psql
postgres=# create user YOURSFMDBUSERNAME with createdb password 'YOURSFMDBPASSWORD';
CREATE ROLE
postgres=# \q
(postgres)% createdb -O YOURSFMDBUSERNAME sfm -W
Password: YOURSFMDBPASSWORD
(postgres)% (ctrl-d to log out of postgres acct)

Now install the python library requirements in your virtualenv using pip. This might take a few minutes. This step
requires that you successfully installed all of the system-level packages above. Note that these python packages are
being installed into your virtualenv, not system-wide, which is what we want. They will only be available while you
are in this activated virtualenv.

You’ll need to be using at least version 6.0 of pip, which you can check with pip --version. You can upgrade
to the latest version of pip with pip install pip --upgrade.

Now to proceed with using pip to install SFM’s python library requirements in your virtualenv:

% pip install -r requirements.txt

That should be everything you have to install. Now it’s on to configuring the SFM app itself. Progress!

6 Chapter 2. Installation and Configuration

https://github.com/gwu-libraries/social-feed-manager/releases

Social Feed Manager Documentation, Release m5004

2.3 Configuration

Now we’ll configure the SFM app itself. Before we do, though, did you go through all of the steps above? If not, or if
you’re using a different platform, you might have different results. So now’s a good time to check that each of these
tasks is done:

• installed system-level dependencies using apt-get install

• cloned the social-feed-manager repo using git

• activated the virtualenv sandbox for your sfm setup

• configured postgresql, restarted it, created a db and a user

• installed app-level dependencies in the sfm virtualenv using pip

If you haven’t done all of these, please go back and be sure you do.

Next we configure the SFM app, which takes a few steps:

• set configuration parameters for SFM itself

• obtain Twitter API credentials and specify them in the SFM config

• set up the database

If you aren’t already there, cd into the social-feed-manager/sfm directory first:

% cd sfm

Django uses a settings.py file for most configurations; SFM also uses a second local_settings.py file for
installation details like database name and user and Twitter API authentication information. We include a template
version of that file in the social-feed-manager/sfm/sfm directory to make it easy to get started. You’ll copy
that to your own local_settings.py file and edit that to specify your configuration.

Copy the template to your own local settings file:

% cp sfm/local_settings.py.template sfm/local_settings.py

Edit this file and set appropriate values for just these parameters at first, we’ll go back later and get the rest:

• ADMINS (specify your name and email address in the format provided)

• DATABASES (NAME, USER, PASSWORD as you defined for postgres above; HOST should be ‘localhost’
assuming your database and application are on the same server, as per these instructions.)

• DATA_DIR (create a directory to hold data files, then specify it here; use a new directory that is not inside the
social-feed-manager directory)

• TWITTER_DEFAULT_USER (the name of the twitter account you’ll use to connect to the API; we’ll specify
the other TWITTER_* settings in a bit)

Next, do the same for the wsgi.py file, copy its template to a new file specific to your installation:

% cp sfm/wsgi.py.template sfm/wsgi.py

In this new file wsgi.py, uncomment just the three lines below the one that starts with “if using a virtualenv...”, then
specify the location of your virtualenv in the second of these lines. When you’re done, it should look something like
this:

import site
ENV = '/home/dchud/social-feed-manager/ENV'
site.addsitedir(ENV + '/lib/python2.7/site-packages')

2.3. Configuration 7

Social Feed Manager Documentation, Release m5004

WSGI is a specification for connecting applications like SFM to web servers; this file tells a web server where to look
for the SFM app and its dependencies on your system. We’ll configure the web server later.

Our next step is critical - register your SFM instance with Twitter’s “Application Management” page. Log in to Twitter
using the account you specified as TWITTER_DEFAULT_USER, then visit this page:

https://dev.twitter.com/apps/new

Here, create an app for your instance of SFM. In addition to the required values, set the application type to “read only”,
and give it a callback URL. The callback URL can be the same as your website URL, but you have to provide a value
or the authorization loop between twitter/oauth and django-social-auth/ sfm will not work correctly.

Did you give it a callback URL? Good. It’s required. Really.

When you finish this process, you’ll see a OAuth consumer key and secret for your SFM instance. At the time of this
writing, they’re located on the “API Keys” tab listed as the API key and the API secret. Use these as the values for
these two settings in local_settings.py:

• TWITTER_CONSUMER_KEY

• TWITTER_CONSUMER_SECRET

These two settings along with TWITTER_DEFAULT_USERNAME should all be defined now with real values from
your account and your SFM app’s OAuth key/secret.

2.4 First time running SFM

There are several layers of “users” with SFM; the next steps are critical because if the users aren’t lined up just right,
SFM won’t be able to use Twitter’s API. It can be a little confusing, but it’s important to understand what’s going on
here.

The first few layers of users are at the system-level. You are logged in to your machine using a system user; using that
account, you installed system-level dependencies (with sudo or as root, perhaps). You also configured PostgreSQL
and cloned SFM and installed SFM’s dependencies with the system user. When you configured PostgreSQL you also
created a user for PostgreSQL. The PostgreSQL user is what SFM uses to connect to the PostgreSQL database.

Next, there are two kinds of Twitter users we are interested in. First, you used your own Twitter account to register
your SFM install with Twitter; the OAuth keys you received for that user allow SFM to connect to the Twitter API.
This is separate from the accounts of Twitter users for which you want to collect tweets, which we’ll also record in the
system later, in the database, using SFM.

Finally, to log in and use SFM through the web, there are two kinds of SFM app-level users. You can have admin-
istrative accounts (we’ll create one in a second), strictly for housekeeping purposes, and you can also have Twitter-
authenticated users for day-to-day use (we’ll create one of these too). The administrative accounts may be Twitter-
authenticated, but they don’t have to be.

This is all very confusing, yes, but it will make more sense in a few minutes.

First, we set up the database using the regular django method syncdb, but read the next three paragraphs first, they’re
important.

syncdb will use the settings you configured in local_settings.py to connect to the database and set up the
tables SFM requires.

This will also ask you to create a superuser. Do this, and name it sfmadmin. Don’t name it the same thing as your
TWITTER_DEFAULT_USER. You will be prompted for an email address and password, fill these in and remember
your password.

Did you call the superuser sfmadmin? Really? Good.

8 Chapter 2. Installation and Configuration

Social Feed Manager Documentation, Release m5004

% ./manage.py syncdb

When that completes, we need to “migrate” the database to the most recent data model:

% ./manage.py migrate

When that completes, we’re ready to run the app, finally:

% ./manage.py runserver

By default, this will run SFM using Python’s built-in web server, on a high port number like 8000. If you are on a
server that doesn’t allow web traffic through port 8000 through the firewall, but does allow port 8080, you can specify
a host and port:

% ./manage.py runserver sfm.example.com:8080

This will start the web application on sfm.example.com at port 8080.

The built-in web server is really only good for development and testing, not production, but it does provide access to
everything the app does.

Next, visit the webapp in your browser: http://sfm.example.com:8080/

You should see a blue bar at the top and a request to “Please log in” and a button to “Log in with Twitter”. Click that
button, and now log in through Twitter using the account you specified in your TWITTER_DEFAULT_USERNAME.
Maybe your browser is still logged in with this account because you configured your SFM instance at Twitter and got
your OAuth credentials with it, in which case, great.

If this works, it should bounce you back to your sfm.example.com site and you should see an empty SFM, with no
users listed, but you should be reassured to see “log out YOURNAME” in the top blue bar. If that works, you’re in
great shape.

Now, click “log out YOURNAME” and log out. Yes, log back out.

Next, in your browser, then, visit: http://sfm.example.com:8080/admin

You’ll see a different user/pass challenge. Here, enter the SFM app-level superuser name “sfmadmin” and password
you created above when you ran syncdb. This should drop you into the admin screen. Under “Site administration”
-> “Auth”, click “Users”. You should see two different app users, one called “sfmadmin” and another with your
TWITTER_DEFAULT_USERNAME. “sfmadmin” should have “Staff status” with a green checkmark; the other account
does not, and has a red circle with a white minus sign. If you see all this, you are in good shape.

Next, click on “Home”, then under “Social_Auth”, click “User social auths”. On the next screen you should see
one user, with your TWITTER_DEFAULT_USERNAME. Click the number next to its name, and you’ll see the OAuth
access token for this user which allows SFM to connect to the Twitter API.

Why doesn’t “sfmadmin” have a social auth? Because it only ever logged in to SFM. The sfmadmin account is only
for your housekeeping needs; the other account can be used to connect and read data from the API.

What’s the social auth? These are credentials that allow your SFM instance to connect to Twitter’s API on behalf of
your Twitter account. sfmadmin never logged in through Twitter, so it doesn’t have one, and it doesn’t need one.

If this is still confusing, try this: log out again, then grab a colleague and have them log in to your SFM using their
own Twitter account (with the “Log in with Twitter” button on the home page). After they’re done, log them out of
SFM, then log back in using sfmadmin and the /admin URL. Under the Auth -> Users list, and in User social auths,
you’ll see their new sfm account. Get the difference now?

The OAuth credentials you got when you registered your SFM instance allow SFM to connect to the Twitter API
to do things like let users log in to SFM themselves through Twitter. Then, when you finally do connect to the
Twitter API to get data, you’ll use a combination of your app-level OAuth credentials and the access token for your
TWITTER_DEFAULT_USER or another credentialed user to get that data.

2.4. First time running SFM 9

http://sfm.example.com:8080/
http://sfm.example.com:8080/admin

Social Feed Manager Documentation, Release m5004

So let’s do that now.

Logged in to the /admin page using your sfmadmin administrative account, go Home, then under “Ui” click “Twitter
users”. There shouldn’t be any yet - these are the names of accounts you want to collect. At the top right, click “Add
twitter user”, and on the next screen, enter the name “bbcnews” (no quotes, though!), which is a good example because
it’s active all the time. At the bottom right, click “Save”.

If this succeeds, you should see that user “BBCNews” is now added to your system as a twitter user. Note that it’s
“BBCNews”, not “bbcnews” - when you clicked “Save”, SFM did the following:

• connected to Twitter’s API using your TWITTER_DEFAULT_USER account credentials

• queried Twitter’s API for a user named “bbcnews”

• found the account “BBCNews” and its info

• stored this as a new TwitterUser in SFM, using the case-corrected name form

If it didn’t work, double-check your spelling.

This is the easiest way to add users to SFM.

Now that you’ve added a TwitterUser, let’s fetch its recent tweets.

Back in your terminal window, enter:

% ./manage.py user_timeline

Sit back and watch for a bit. SFM will connect to Twitter’s API and make a series of calls to fetch 200 recent tweets
at a time, up to 3200 total, pausing between each call. The numbers 200 and 3200 aren’t arbitrary, they are set by
Twitter (see https://dev.twitter.com/docs/api/1.1/get/statuses/user_timeline for details). SFM abides by Twitter’s API
and pauses regularly so that it can stay within the API’s rate limits.

You are now up and running with SFM.

2.5 Apache integration

To run SFM in production, we recommend integrating with apache using WSGI. It’s straightforward and well-tested.
You will need to copy a configuration file into apache’s sites-available directory, edit that file to match your
installation details, enable that site (and optionally disable other versions), then restart apache. Let’s get started.

First, copy our apache configuration template to sites-available. We like to append the appname “sfm” with
the version number, e.g. sfm_m5_004.conf, so when we go to deploy a new version, we can just add a new config
file and make the switchover easy. You could just call it sfm.conf if you want, but it can help to have the version
number in there, so these instructions use that convention.

% sudo cp sfm/apache.conf /etc/apache2/sites-available/sfm_m5_004.conf
% sudo vim /etc/apache2/sites-available/sfm_m5_004.conf

You will need to change several things in this file:

• change references to /PATH/TO/sfm to the full absolute path to your social-feed-manager/sfm di-
rectory

• change references to YOUR-HOSTNAME.HERE to your public hostname

• change the reference to /PATH/TO/YOUR/VENV to the full absolute path to your virtualenv (ending in ENV)
which you created above

• change the reference to python/2.X to 2.7

10 Chapter 2. Installation and Configuration

https://dev.twitter.com/docs/api/1.1/get/statuses/user_timeline

Social Feed Manager Documentation, Release m5004

When you’ve made all those changes, save the file.

Next, enable the site configuration you just created:

% sudo a2ensite sfm_m5_004

Assuming you are installing in a clean VM, disable the pre-existing default site:

% sudo a2dissite 000-default

Reload the apache configuration, as it suggts when you made the changes above:

% sudo service apache2 reload

That’s it! It should be working now.

If you run into any problems, check the logs in /var/log/apache2/.

2.6 What next?

Some options for what to do next:

• add more TwitterUsers and run user_timeline again

• set up cronjobs for user_timeline and other daily operations

• set up supervisord and use it to capture one or more streams

• sign up to https://groups.google.com/forum/#!forum/sfm-dev to ask questions or suggest improvements

• track SFM progress, file bug/enhancement tickets, fork the code and submit pull requests at:
https://github.com/gwu-libraries/social-feed-manager

2.6. What next? 11

https://groups.google.com/forum/#!forum/sfm-dev
https://github.com/gwu-libraries/social-feed-manager

Social Feed Manager Documentation, Release m5004

12 Chapter 2. Installation and Configuration

CHAPTER 3

Daily Operations

SFM is not a set-it-and-forget-it kind of application. Things change constantly on social media platforms like Twitter,
so we have to check constantly for these changes and act appropriately. For example, if you haven’t yet read our
summary of the lifecycle of a TwitterUser, read it now and come back, you’ll see what we mean.

We have added several commands and tweaks to the data model to account for these changes as we’ve been running
SFM for the past few years. Please read through the descriptions below and consider how they should apply in your
scenario, as well as what might be missing that you will want to supply yourself for your own environment, or perhaps
to add to SFM itself and submit back to the project. There are likely to be more of these to come as more people use
the app, and we welcome your ideas.

3.1 Administrative tasks

Once you have successfully installed SFM the first task is to add app users; if at least one other person will be using
the app, go to the /admin/ url and sign in with the administrative system account you created during installation.
Under “Auth -> Users” you can add one or more additional SFM users (ask them to set their password). Once you’ve
saved a new user, you can edit them from the list of Users and give them “superuser” status if you want them to be
able to add users like you can with your own admin account. If one of these people ever leaves your organization or
stops using the app, you can set their account to inactive by unchecking the “Active” box on their user edit page, too,
instead of deleting their account entirely. Note that this functionality is all provided out-of-the-box by Django itself,
with no custom SFM code.

An alternate way to add a user is to let them sign in at the / url by authenticating through Twitter. The advantage
of this approach is that SFM will save a copy of authorized OAuth tokens for their account, which you can use later
to manage a stream-based filter for that user. Once someone logs in successfully this way, you can edit their account
under /admin/ just like any other SFM user, but note that you can end up with two different SFM accounts for the
same person by accident if you use both methods.

3.2 Data gathering

Now that you and your colleagues have accounts for your SFM, you can add TwitterUsers. This is the simplest way to
capture data using SFM. From /admin/ under “UI -> Twitter Users” add Twitter accounts to capture by their names,
one by one, by entering their account name in the “Name” box. Be careful to spell it correctly! SFM will look up that
account by name and verify that it’s a public account, and will then store the Twitter UID. Try adding a few accounts.

Now that there are a few TwitterUsers in your database, to capture their recent tweets, use the user_timeline manage-
ment command. Run the command once, and you’ll see updates of the data-fetching process on the commandline. As
it proceeds, you can go to / in your app and you’ll see the data start to appear in the UI. You can also go to /admin/

13

Social Feed Manager Documentation, Release m5004

and see these same tweets in the admin UI under “UI -> Twitter user items”. Finally, there will be a separate record of
the user_timeline “job” you ran under “UI -> Twitter user timeline jobs”.

As you capture tweets this way, you might want to create a record of the urls linked to by shortened urls in tweet text.
To do this, use the fetch_urls command.

Note that as you add more and more TwitterUsers and their tweet data, both of these commands can take a long time
– even many hours – to run. It takes a while because SFM abides by the rate limits defined by the Twitter API, leaving
a little multi-second buffer between every call to the API so the app never goes over the limits. The more users you’re
collecting, the longer it will take.

Both the user_timeline and fetch_urls commands are well suited to being automated with something like a
cronjob. There are subtle issues to consider here, though, namely that whenever you fetch a user’s tweets, the metadata
associated with each tweet will be accurate as of the moment you fetch it, rather than from the moment the tweet was
originally published. This means that the first time you grab, say, 500 old tweets from a TwitterUser you just added,
every one of those 500 tweets will contain exactly the same follower/following counts on the TwitterUser. Also, if that
500th tweet you capture is only five minutes old, then the retweet count on your capture of that tweet only accounts
for the five minutes of that tweet’s existence. Older tweets may have correspondingly higher retweet numbers.

It’s important to understand these issues because how regularly you capture tweets using user_timeline will
determine how accurate these numbers are. If it is important to you to see how following/follower counts change tweet
by tweet, you’ll want to run user_timeline often. If it’s important to get an accurate retweet count on each tweet,
you might want to run it less often. Either way, there will be a bit of a sliding time gap over the range of tweets you
capture at any given time because of these implementation details of the Twitter API, and the relative accuracy for a
given purpose of the metadata you capture when you’ve captured it will vary accordingly. It also means that when you
first capture a TwitterUser’s older tweets you will not be able to see how old tweets affected their follower/following
counts. These details might be important to users of the data you collect, so please familiarize yourself with them.

At GW Libraries, as of July 2014, we track about 1,800 TwitterUsers, running the user_timeline command on
a cronjob every six hours. We run the fetch_urls command on a cronjob once a day, limiting (with the optional
start and end date parameters) to the previous day’s tweets. Each of these jobs takes several hours to complete. Our
PostgreSQL database for SFM uses over 6Gb in production, and a complete export of the database to a single file
compresses to about 1.5Gb.

3.3 Account maintenance

Due to the many changes that can occur on a single TwitterUser account (as described in lifecycle of a TwitterUser),
you should run update_usernames regularly as well. Because SFM uses the Twitter uid of a TwitterUser rather than
the name to capture new data, user_timeline will continue to work if SFM doesn’t have an updated username
even after the Twitter account name changes, but it’s best all around if you have a record of the changes over time,
and if you’re never too far out of date. At GW Libraries we’ve found that running it once a week during the weekend
suffices.

If the user_timeline or update_usernames scripts report errors, such as an account no longer being available,
or no longer being public, you can deactivate a TwitterUser the /admin/ UI under “UI -> TwitterUsers”, just search
for that account by its name or uid, click on its SFM id when you find it, then uncheck the “Is active” box on the
TwitterUser edit page. When a TwitterUser is inactive, user_timeline will no longer check for new tweets,
saving time and rate limit capacity. You can always re-activate a TwitterUser later if its account changes again.

3.4 Data movage

If you are using one or more Supervisord-managed streams to capture filtered queries live off the Twitter hose or the
sample stream, you will want to establish an appropriate set of scripts to handle the resulting files. SFM has no opinion
about how you manage digital content, aside from a bias toward gzipping text files at regular intervals. :) You might

14 Chapter 3. Daily Operations

Social Feed Manager Documentation, Release m5004

want to set up a cronjob pipeline to package up files using BagIt, or move them to another server, or whatever works
for you, but keep in mind that these files can grow to fill up gigabytes and terabytes of storage quickly.

SFM does provide the organizedata management command to walk through a set of gzipped stream files and sort them
into a year/month/date/hour-based folder structure. This is optional, but we find it convenient to spread files out on a
filesystem, and for the scripts we’re working with to post-process files we generate at appropriate time intervals.

3.5 System considerations

These are outside of the scope of SFM proper, but worth keeping in mind.

It is best to establish a regular snapshot backup of the PostgreSQL SFM database, and to rotate those files to a
secondary storage environment. This can help both with testing new versions of the software and should you ever
otherwise need to restore your database from scratch.

The same logic holds for taking a snapshot backup of your configuration files, such as your local_settings.py
and apache config file. These should be relatively easily reproduceable - you can get your OAuth keys back from
Twitter, for example - but it can be a pain to have to do so.

At GW Libraries we have a twice-daily cronjob that performs these operations.

3.5. System considerations 15

Social Feed Manager Documentation, Release m5004

16 Chapter 3. Daily Operations

CHAPTER 4

Management Commands

4.1 Introduction

Many of the key back-end functions of Social Feed Manager (SFM) are invoked using management commands. The
SFM management commands are standard Django management commands. As such, they are invoked like any other
Django management commands:

1. First make sure that your virtualenv is activated.

$ source ENV/bin/activate

2. From <PROJECT_ROOT>/sfm, execute ./manage.py followed by the desired management command, ar-
guments and options.

$ cd sfm
$./manage.py <command> [args] [options]

SFM management commands may be run:

• manually (i.e. at the command line),

• using cron jobs, and/or

• using supervisord (in the case of filterstream and streamsample) as described in the section on supervisor and
streams.

Each SFM management command is described below.

4.2 user_timeline

user_timeline calls the Twitter API to retrieve the available tweets for either all active TwitterUsers in SFM, or for a
specific active TwitterUser. Each tweet is created as a TwitterItem in SFM.

user_timeline connects to the Twitter API as TWITTER_DEFAULT_USERNAME, and requests the user_timeline by
the Twitter account uid (not by account name). Through the tweepy library, it calls the Twitter API user_timeline
method.

For each TwitterUser user_timeline requests only tweets since the newest tweet that was previously retrieved. If no
tweets were previously retrieved for that TwitterUser, it requests as many tweets as the Twitter API will provide (up to
the 3200 most recent tweets).

To fetch tweets for all active TwitterUsers in SFM:

17

https://docs.djangoproject.com/en/1.6/ref/django-admin/
https://dev.twitter.com/docs/api/1/get/statuses/user_timeline
https://dev.twitter.com/docs/api/1/get/statuses/user_timeline

Social Feed Manager Documentation, Release m5004

./manage.py user_timeline

To fetch tweets for a specific twitter user:

./manage.py user_timeline --user='twitter username'

The full specification of user_timeline options can be viewed using –help:

./manage user_timeline --help

Sample output for user_timeline:

user: pinkfloyd
since: 1
saved: 200 item(s)
since: 1
max: 326988934884249599
saved: 200 item(s)
since: 1
max: 168992796676591616
saved: 199 item(s)
since: 1
max: 117550550098247679
saved: 86 item(s)
stop: < 150 new statuses

4.3 update_usernames

Twitter account owners can, and often do, change the names of their accounts, although an account’s UID never
changes.

update_usernames looks up the names of the Twitter accounts corresponding to all active TwitterUsers. If a Twitter
account’s name has changed since SFM last verified the account’s name, update_usernames will update the name of
the TwitterUser, and will append the former name (and timestamp) to the TwitterUser’s former_names value. for-
mer_names is a json field; an example would be:

{"2014-02-19T21:50:56Z": "OldName", "2014-01-16T13:49:02Z": "EvenOlderName"}

Note that update_username is case sensitive; a change in capitalization is considered a name change.

To update names of all active TwitterUsers:

./manage.py update_usernames

To update names of a specific active TwitterUser, by its current name in SFM:

./manage.py update_usernames --user='current TwitterUser name in SFM'

4.4 populate_uids

Deprecated since version m5_001.

18 Chapter 4. Management Commands

Social Feed Manager Documentation, Release m5004

4.5 streamsample

The Twitter API provides a streaming interface which returns a random sample (approximately 0.5%) of all public
tweets. The SFM streamsample management command directs the content of this stream to files. The location of these
output files is determined by the DATA_DIR variable in the local_settings.py configuration file. As streamsample is
intended to be run as an ongoing, streaming process, SFM provides a streamsample.conf.template file in <PROJECT
ROOT>/sfm/sfm/supervisor.d that can be copied to streamsample.conf and edited to include the relevant pathnames,
so that it can be run and managed using supervisord.

streamsample currently generates 2 GB worth of tweet data per day (roughly 2.2-2.5 million tweets), so it is important
to plan storage capacity accordingly.

To run manually and view streaming output to the console:

./manage.py streamsample

To run manually and direct output to files in DATA_DIR:

./manage.py streamsample --save

Information on the Twitter API streamsample resource: https://dev.twitter.com/docs/api/1.1/get/statuses/sample

4.6 filterstream

The Twitter API provides a streaming interface which returns tweets that match one or more filter predicates. SFM
administrative users can create multiple TwitterFilters, each with its own predicate parameters. The SFM filterstream
management command directs the content of one or more active TwitterFilters to files. The location of these output
files is determined by the DATA_DIR variable in the local_settings.py configuration file.

filterstream is intended to be run as a set of ongoing, streaming processes; SFM automatically generates the
necessary supervisord configuration files. However, generation of these files requires the DATA_DIR, SUPER-
VISOR_PROCESS_USER, and SUPERVISOR_UNIX_SOCKET_FILE settings variables to be configured in lo-
cal_settings.py .

Each TwitterFilter may contain the following predicates:

Words - It tracks comma-separated and space-separated list of words performing a fetch for tweets equivalent to logical
‘OR’ & ‘AND’ respectively.Please see the TwitterAPI for more info on track.

People - It tracks the twitter usernames to stream, can contain a comma-separated list of screen names.

Location - Geographic bounding boxes to track. A bounding box is of the format: long1,lat1,long2,lat2 where each
value is a floating-point number between -180 and 180. This parameter may include mutiple bounding boxes; for
example, two bounding boxes would be a comma-separated list of 8 values.

Sample twitterfilter rule:

4.5. streamsample 19

https://dev.twitter.com/docs/api/1.1/get/statuses/sample

Social Feed Manager Documentation, Release m5004

filterstream takes the parameter twitterfilterid. To run manually and view streaming output to the console:

./manage.py filterstream [twitterfilterid]

To run manually and direct output to files in DATA_DIR, say for twitterfilterid 4:

./manage.py filterstream 4 --save

Information on the Twitter streaming API filter method: https://dev.twitter.com/docs/api/1.1/post/statuses/filter

4.7 organizedata

filterstream and streamsample produce sets of data files in the directory determined by DATA_DIR as con-
figured in local_settings.py . The data files are written as rotating files; periodically (as determined by
SAVE_INTERVAL_SECONDS in local_settings.py) each file is closed and subsequent data is written to a new file.
The naming scheme for each data files includes a timestamp. Over time, this can create many files in the DATA_DIR
directory.

The organizedata command organizes these files by creating subdirectories named “sample” to data files from stream-
sample, and “twitterfilter-n” for data files from filterstream, for each TwitterFilter.

20 Chapter 4. Management Commands

https://dev.twitter.com/docs/api/1.1/post/statuses/filter

Social Feed Manager Documentation, Release m5004

Within <DATA_DIR>/sample and each <DATA_DIR>/twitterfilter-n directory, organizedata creates a tree with a sub-
directory for each year; within each year directory, it creates a subdirectory for each month; within each of these, a
subdirectory for each day.

To run organizedata:

./manage.py organizedata

4.8 fetch_tweets_by_id

Each tweet in Twitter has a unique numerical ID. The fetch_tweets_by_id management command takes a file consisting
of a list of tweet IDs (one per line), and fetches the associated tweets as JSON.

Errors are logged to a file given the same name as the input file (specified by –inputfile) with an appended extension
of .log (e.g. myinputfile.log)

To fetch tweets and output to the console:

./manage.py fetch_tweets_by_id --inputfile='<PATH TO YOUR INPUT FILE>'

To fetch tweets and write to an output file:

./manage.py fetch_tweets_by_id --inputfile='<PATH TO YOUR INPUT FILE>' --outputfile='<PATH TO YOUR OUTPUT FILE>'

4.9 fetch_urls

Links in tweets are often link-shortened. fetch_urls iterates through all tweets (TwitterItems), extracts each URL found
in a tweet and creates a TwitterUserItemUrl for it, and expands the URL if possible. The final URL is stored as part of
the TwitterUserItemUrl object.

Note that fetch_urls extracts and expands URLs that are links to web pages as well as embedded media (photos etc.)
which are generally t.co URLs.

fetch_urls can be run with the following options:

• –start-date – The earliest date of tweets to fetch URLs for

• –end-date – The latest date of tweets to fetch URLs for

• –twitter-user – The specific twitter username to fetch URLs for

• –limit – maximum number of URLs to fetch

• –refetch – include tweets for which URLs were already fetched; refetch URLs for these tweets.

To run:

./manage.py fetch_urls

4.10 export

Tweets stored in SFM associated with a TwitterUser or a TwitterUserSet can be exported in CSV (comma-separated
value), Excel or line oriented JSON using the export management command. The user interface also offers CSV
exports via a link on each TwitterUser’s page (currently there is no page in the UI for a set).

The format and meaning of each column in the CSV and Excel export is explained in the Data Dictionary.

4.8. fetch_tweets_by_id 21

Social Feed Manager Documentation, Release m5004

export can be run with the following options. Either twitter-user or set-name must be specified.

–format – the output format, either CSV, XLS or JSON (default is CSV)

–start-date – exports only tweets starting from the specified date (YYYY-MM-DD)

–end-date – exports only tweets through the specified date (YYYY-MM-DD)

–twitter-user – exports tweets for the specified TwitterUser (by name)

–set-name – exports tweets for the specified TwitterUserSet

–filename – file name for export file (required when –xls is used)

To export tweets for Twitter user “sfmtwitteruser”:

./manage.py export --twitter-user sfmtwitteruser

To export tweets for TwitterUserSet “myset”:

./manage.py export --set-name myset

4.11 createconf

The createconf command is used to create supervisord configuration files for each active TwitterFilter. This command
should only need to be run if TwitterFilters were created in SFM prior to version m4_002, as part of upgrading to SFM
version m4_002 or later.

createconf can be run with the –twitter-filter option, to create a supervisord configuration file only for the specified
TwitterFilter (specified by numeric id).

To create configuration files for all active TwitterFilters:

./manage.py createconf

To create configuration files for TwitterFilter 5:

./manage.py createconf --twitter-filter 5

22 Chapter 4. Management Commands

CHAPTER 5

Using Supervisord to Manage Streaming Filters

Social Feed Manager uses supervisord to manage the filterstream and streamsample processes. As streaming processes,
these are intended to be run on a continuous, ongoing basis, to collect tweets over time. Supervisord is a process
control system that, among other features, manages the SFM streaming processes independently from the SFM web
application, and can restart these processes if they fail or after a system reboot.

Twitterfilters and/or streamsample can still be run independently of supervisord if desired (e.g. for testing), by invoking
them at the command line as management commands.

5.1 Supervisor setup

Supervisord is installed as part of the standard SFM installation; it is one of SFM’s ubuntu package dependencies.
However, it must be configured in order to use filterstreams.

5.1.1 Configuring the supervisor process

To configure supervisord for SFM:

Edit /etc/supervisor/supervisord.conf:

In the [unix_http_server] section, add chown=www-data:www-data so that the socket file
will be created with www-data as the owner (apache runs as the www-data user)

In the [include] section (in a new instance of supervisor, this is usually at the bottom) add
supervisor.d/*.conf to the space-separated list of files:

files = /etc/supervisor/conf.d/*.conf <PATH_TO_YOUR_SFM>/sfm/sfm/supervisor.d/*.conf

NOTE: If you wish to modify (add/enable/remove/disable) filterstreams when running the app with django “run-
server” rather than apache, you will need to ensure that the supervisor socket file has 777 permissions. After the
chown=www-data:www-data line in supervisord.conf, modify the default chmod=700 line to chmod=777.

5.1.2 Configuring the www-data system group

Next we will create a www-data group and add your user to it:

$ sudo vi /etc/group

You should see a line that looks something like this:

www-data:x:<a group number>:

23

http://supervisord.org/

Social Feed Manager Documentation, Release m5004

add your own user to this group:

www-data:x:<a group number>:<your user name>

5.1.3 Setting up the log directory

Next, create a /var/log/sfm directory. The supervisor-supervised processes will write log files to this directory.

$ sudo mkdir /var/log/sfm

Change the directory group ownership to www-data:

$ sudo chown www-data:www-data /var/log/sfm

Edit local_settings.py to set SUPERVISOR_PROCESS_OWNER to a user who has rights to write to /var/log/sfm
(such as your user).

5.1.4 Setting up the data directory for stream output

Edit local_settings.py to set DATA_DIR to the directory where you want stream output stored. Change its ownership
to www-data:www-data:

$ sudo chown www-data:www-data <YOUR DATA DIRECTORY>

5.1.5 Setting ownership of sfm/sfm/supervisor.d

Set ownership of the sfm/sfm/supervisor.d directory to www-data:www-data allow the apache user (www-
data) to write to it.

$ sudo chown www-data:www-data sfm/sfm/supervisor.d

5.1.6 Optional configurations

You may also wish to adjust SAVE_INTERVAL_SETTINGS, which controls how often sfm will save data to a new
file (default is every 15 minutes, specified in settings.py).

5.1.7 Restarting supervisor

Finally, restart supervisor:

$ sudo service supervisor stop
$ sudo service supervisor start

5.2 Streamsample setup

A template streamsample configuration file “streamsample.conf.template” is included in the SFM distribution. To set
up a streamsample process managed by supervisor:

Browse to the supervisord.d directory and copy streamsample.conf.template to streamsample.conf

24 Chapter 5. Using Supervisord to Manage Streaming Filters

Social Feed Manager Documentation, Release m5004

$ cd sfm/sfm/supervisor.d
$ cp streamsample.conf.template streamsample.conf

Edit streamsample.conf to use the path to your sfm project, the value of the PATH environment variable set within
your virtualenv, and to use your preferred system user account (to avoid having the output files owned by root).

To have supervisor refresh its list of configuration files and start the streamsample process, first run supervisorctl:

$ sudo supervisorctl

If you don’t see a line that reads something like:

streamsample RUNNING pid 889, uptime 21:45:25

then at the supervisor prompt, run ‘update’ to reload the config files:

$ supervisor> update

Running update should result in the following message:

streamsample: added process group

Now verify that streamsample has been started by viewing the status of the processes:

$ supervisor> status

This should result in a list of processes which includes streamsample, for example:

streamsample RUNNING pid 889, uptime 21:45:25

To stop the streamsample process, run supervisorctl and use the command

$ supervisor> stop streamsample

5.3 Filterstream setup

TwitterFilters in SFM are intended to create filterstream Twitter processes.

While streamsample must be started and stopped using supervisorctl, supervisor’s management of TwitterFilter pro-
cesses is mediated by the SFM application.

SFM creates configuration files for filterstream processes when an administrative user adds new TwitterFilters in SFM.
The files are created in the sfm/sfm/supervisor.d directory. SFM takes care of updating supervisor so that it starts the
new filterstream process.

If an administrative user modifies an existing, active TwitterFilter, SFM deletes the old configuration file for that
TwitterFilter’s filterstream process, writes a new configuration file containing the TwitterFilter’s updated parameters,
and restarts the filterstream process.

If an administrative user deactivates or deletes a TwitterFilter, SFM deletes the configuration file for that TwitterFilter’s
filterstream process, and stops the filterstream process.

5.4 OAuth constraints

To avoid triggering the Twitter API’s rate limiting constraints, every SFM streaming connection must use a differ-
ent set of Twitter credentials. SFM does not allow active filterstreams to run using the same Twitter credentials as
streamsample, or as any other active filterstream.

5.3. Filterstream setup 25

Social Feed Manager Documentation, Release m5004

The streamsample process connects to the Twitter API using the TWITTER_DEFAULT_USERNAME set in lo-
cal_settings.py. Each Filterstream process connects to the Twitter API using the User configured in its TwitterFilter.

26 Chapter 5. Using Supervisord to Manage Streaming Filters

CHAPTER 6

Use Cases

6.1 Definitions

A TwitterUser in SFM is the entity used to collect tweets tweeted by the corresponding account in Twitter.

The fundamental, unique, unchanging identifier for a Twitter account is its numeric UID. The owner of a Twitter
account might change the account’s name, but the UID will never change.

Each TwitterUser is intended to map one-to-one to a Twitter account.

Given the rules above, we can derive two rules:

• A TwitterUser account should never be associated with tweets from more than one UID.

• A TwitterUser account’s UID should never change.

6.2 Lifecycle of a TwitterUser

A TwitterUser in SFM exists in one of three states:

• Nonexistence (Pre-creation/Post-deletion)

• Active - SFM will attempt to collect new tweets for this TwitterUser, every time the user_timeline script is run.

• Inactive - The TwitterUser is still in SFM, but no new tweets will be collected while the TwitterUser is inactive.

An account in Twitter exists in one of four states:

• Pre-creation

• Active/Public - Tweets are visibile to anyone

• Active/Protected - Tweets are only visible to this account’s Twitter followers

• Deactivated/Deleted - If an owner deactivates a Twitter account, Twitter places it on a queue to be permanently
deleted after 30 days.

6.3 State Transitions

TwitterUser Creation - The SFM user provides the username of the Twitter account to map to this SFM TwitterUser.
SFM looks up the Twitter account’s UID by the username provided. If:

• the username matches a Twitter account’s username, and

27

Social Feed Manager Documentation, Release m5004

• the Twitter account’s UID is not already associated with any TwitterUser

then SFM will create the TwitterUser. The SFM user may create the new TwitterUser as either Active or Inactive.

If the name does not match any Twitter account OR the UID is already associated with a TwitterUser, then SFM will
not create the TwitterUser, even an in Inactive state.

Inactivation of Active TwitterUser - An SFM user marks an Active TwitterUser as Inactive. This transition is always
allowed. Inactive TwitterUsers are still shown on the SFM page listing users, and CSV extracts

Activation of Inactive TwitterUser - An SFM user marks an Inactive TwitterUser as Active. SFM looks up the
corresponding Twitter account by the UID of the TwitterUser. If the UID is valid, it updates the TwitterUser’s name
if differs from the current name of the Twitter account, and saves the TwitterUser as Active. If the UID is not found,
which may occur if the Twitter account has been deactivated, then SFM does not allow the TwitterUser to be saved as
Active.

Deletion of a TwitterUser - An SFM administrative user deletes a TwitterUser. This is always allowed. However, it
is important to note that all TwitterItems associated with this TwitterUser will also be deleted.

Name Change - What if the owner of a Twitter account changes the name of the account? If the TwitterUser in
SFM was created to collect tweets from this Twitter account, it should continue to do so, since the UID never changes.
However, the name of the TwitterUser may temporarily still show the old name of the Twitter account. If a cron job has
been set up to run update_usernames, then the name of the TwitterUser will automatically be updated to match the new
Twitter account name the next time update_username is run. When update_username observes a name change, the old
name will be appended to the TwitterUser’s former_names, along with the date and time that the change was detected
by update_usernames. As an example, if a Twitter account named NYTimes was then changed to NewYorkTimes,
then the update_usernames script would update the name of the TwitterUser, and would also append to former_names
so it might have a value like {"Thu Jan 16 13:48:56 2014": "NYTimes"}

Twitter Account Goes Protected - What if the owner of a Twitter account marks the account as protected?

If the TWITTER_DEFAULT_USERNAME configured in local_settings.py is a Twitter account which is following the
protected Twitter account in question, then SFM will continue to be able to download tweets from that account.

If this is not the case, then user_timeline jobs will encounter errors when attempting to retrieve new tweets for the
account. These errors will be recorded in the TwitterUserTimelineErrors table.

Twitter Account Deletion - What if the owner of a Twitter account deletes the account?

If the owner of a Twitter account deletes the account and there is an active TwitterUser mapped to the account, then
user_timeline jobs will encounter errors when attempting to retrieve new tweets for the account. These errors will be
recorded in the TwitterUserTimelineErrors table.

28 Chapter 6. Use Cases

CHAPTER 7

CSV Export Data Dictionary

Social Feed Manager captures entire tweets, with all their data. To download selected, processed fields for each tweet
in a user timeline, use the csv export option, available on each user page.

For more info about source tweet data, see the Twitter API documentation, including Tweets and Entities.

29

https://dev.twitter.com/docs
https://dev.twitter.com/docs/platform-objects/tweets
https://dev.twitter.com/docs/platform-objects/entities

Social Feed Manager Documentation, Release m5004

Field Description Example
sfm_id SFM internal identifier for tweet 6114
cre-
ated_at

UTC time when the tweet was created 2013-10-28T17:52:53Z

cre-
ated_at_date

date in Excel-friendly format, MM/DD/YYYY 10/28/2013

twit-
ter_id

Twitter identifier for the tweet 114749583439036416

screen_nameThe screen name, handle, or alias that this user
identifies themselves with. Screen_names are unique
but subject to change.

NASA

follow-
ers_count

Number of followers this account had at the time the
tweet was harvested

235

friends_countNumber of users this account is following at the time
the tweet was harvested

114

retweet_countNumber of times the tweet has been retweeted at the
time the tweet was harvested. If the tweet is a retweet
AND the retweet was done using the Twitter retweet
feature (i.e. is_reweet_strict = TRUE) the
retweet_count reflects the retweet count for the
original tweet. If the retweet was done by typing RT
at the beginning (is_retweet_strict = FALSE) the
retweet_count reflects retweets of the retweet.

25

hash-
tags

Hashtags which have been parsed out of the tweet
text, separated by a comma and space

Mars, askNASA

in_reply_to_screen_nameIf the tweet is a reply, the screen name of the original
tweet’s author

wiredscience

men-
tions

Other Twitter users mentioned in the text of the
tweet, separated by comma and space.

@NASA_Airborne, @NASA_Ice

twit-
ter_url

URL of the tweet. If the tweet is a retweet made
using the Twitter retweet feature, the URL will
redirect to the original tweet

http://twitter.com/NASA/status/394883921303056384
retweet redirecting to original tweet:
http://twitter.com/NASA/status/394875351894994944

is_retweet_strictTweet is a retweet of another tweet, using Twitter’s
retweet function

FALSE

is_retweet SFM’s best guess at whether tweet is a retweet of
another tweet; includes retweets accomplished using
old-style method of placing RT in front of tweet

TRUE

coordi-
nates

The geographic coordinates of the tweet. This is only
enabled if geotagging is enabled on the account. The
value, if present, is of the form [longitude, latitude]

[-0.22012208, 51.59248806]

text The UTF-8 text of the tweet Observing Hurricane Raymond Lashing
Western Mexico: Low pressure System 96E
developed quickly over the...
http://t.co/YpffdKVrgm

url1 First URL in text of tweet, as shortened by Twitter http://t.co/WGJ9VmoKME
url1_expandedExpanded version of URL; URL entered by user and

displayed in Twitter. May itself be a user-shortened
URL, e.g. from bit.ly. Further expansion available in
sfm web interface, not in csv export.

http://instagram.com/p/gA_zQ5IaCz/

url2 Second URL in text of tweet, as shortened by Twitter
url2_expandedExpanded version of URL; URL entered by user and

displayed in Twitter. May itself be a user-shortened
URL, e.g. from bit.ly. Further expansion available in
SFM web interface, not in csv export

30 Chapter 7. CSV Export Data Dictionary

http://twitter.com/NASA/status/394883921303056384
http://twitter.com/NASA/status/394875351894994944
http://t.co/YpffdKVrgm
http://t.co/WGJ9VmoKME
http://instagram.com/p/gA_zQ5IaCz/

CHAPTER 8

Frequently Asked Questions

8.1 Does Social Feed Manager capture photos and other media em-
bedded in tweets?

As of version m5, no. But this is something we’re looking forward to implementing in the near term.

8.2 How far back in time does SFM go when collecting a TwitterUser’s
tweets?

The Twitter API only provides up to the most recent 3200 tweets for an account. When a new TwitterUser is added in
SFM, the user_timeline script will request as many tweets as the Twitter API can provide, i.e. up to 3200.

8.3 Does Social Feed Manager capture the followers list?

No. SFM does capture the number of followers at the time the tweet was retrieved. However, the Twitter API does
provide a way to retrieve an account’s follower list.

8.4 Do I have to set up supervisord in order to use filterstreams or
streamsample?

No, filterstreams and streamsample can also be run manually using the filterstream and streamsample management
commands described in the management commands page.

8.5 The number of retweets in a TwitterItem is inconsistent with the
number of retweets shown on the tweet in Twitter. Why?

TwitterItems are created as they appear at the time they are captured from Twitter. However, tweets on Twitter can
change afterwards; they can be further retweeted, they can be deleted, etc. In fact, an advantage of using SFM is that
it takes a snapshot of tweets before they change or disappear!

31

Social Feed Manager Documentation, Release m5004

Currently there is no way to “update” a TwitterItem with any changes that may have occurred to the corresponding
tweet. This is something we might consider if there is a use case for it.

8.6 Does the SFM web interface provide a way to view the files gen-
erated by filterstream and streamsample?

Not yet.

8.7 When I click on the link to view a raw tweet, it’s difficult to read in
my browser.

There are a number of broswer plugins available (JSONovich, JSONView, and others) which improve the way that
JSON is displayed.

8.8 Can I set this up on a Mac?

We haven’t been running this on a Mac, but a colleague we met at Code4Lib 2014 has done it. Check out his blog post
here: http://dicarve.blogspot.com/2014/04/an-relatively-easy-way-for-installing.html

32 Chapter 8. Frequently Asked Questions

http://dicarve.blogspot.com/2014/04/an-relatively-easy-way-for-installing.html

CHAPTER 9

Troubleshooting

9.1 TwitterUserItemUrls is empty. Why isn’t SFM fetching URLS?

Have you set up a cron job to run fetch_urls?

9.2 I tried to add a filterstream using the user that I’ve configured
as TWITTER_DEFAULT_USER, but SFM is telling me that Stream-
sample is also configured to authenticate as that user. But I’m
not using Streamsample!

SFM makes the assumption that streamsample either is being used or may be used in the future, and streamsample
authenticates with the Twitter API using TWITTER_DEFAULT_USER. Due to Twitter API’s rate limiting, SFM
prevents the possibility of having multiple streams (in this case, streamsample and a filterstream) simultaneously
calling the Twitter streaming API with the same Twitter user name.

33

Social Feed Manager Documentation, Release m5004

34 Chapter 9. Troubleshooting

CHAPTER 10

Release Notes

Release notes for the official SFM releases. Each release note will tell you what’s new in each version, and will also
describe any backwards-incompatible changes made in that version.

For those upgrading to a new version of SFM, you will need to check all the backwards-incompatible changes and
deprecated features for each ‘final’ release from the one after your current SFM version, up to and including the new
version.

Final Releases:

10.1 m5_004 release notes

m5_004 is release which provides:

• Docker support (see https://github.com/gwu-libraries/social-feed-manager/blob/m5_004/docker/README.md)

• Extract files now in XLSX format (was XLS). The XLSX format removes the limitation of 65,536 rows. SFM
m5_004 substituted the openpyxl library for xlwt.

• SFM now uses tweepy v3.4.0. This seems to eliminate the problem observed in m5_003, which used tweepy
3.2.0, where filterstream jobs stopped writing and/or slowed down the server.

• Several documentation improvements, mostly around installation and around supervisor/filterstreams setup.

• UI cleanup: Improved consistency of date-time format rendering.

• Enhanced validation logic around checking People values when adding or updating filterstreams: If one or more
People account names wasn’t found when checking against Twitter, the TwitterFilter does save, but presents a
warning listing the invalid accounts.

• Now allows deletion of filterstreams even if Supervisor isn’t running.

• Now allows creation/update of filterstreams even if Supervisor isn’t running (however, these won’t automatically
reflect updates when Supervisor is restarted (See #376).

• Updated Apache2 configuration file to note recommended changes for deployment on Ubuntu 14 / Apache2
v2.4+

• Enhanced fetch_urls to more gracefully handle (skip) truncated URLs that may appear in retweets with an
ellipsis, and to pull URLs from ‘media’ if possible.

• And several other minor enhancements.

See the complete list of changes for milestone m5_004 in github as well as the code changes from m5_003 to m5_004.

Upgrade Notes:

35

https://github.com/gwu-libraries/social-feed-manager/blob/m5_004/docker/README.md
https://github.com/gwu-libraries/social-feed-manager/issues/376
https://github.com/gwu-libraries/social-feed-manager/issues?q=is%3Aissue+is%3Aclosed+milestone%3Am5_004
https://github.com/gwu-libraries/social-feed-manager/compare/m5_003...m5_004

Social Feed Manager Documentation, Release m5004

• The requirements.txt file has changed, so Python library dependencies must be updated within your virtualenv.
To update dependencies:

% source ENV/bin/activate
% pip install -r requirements.txt

Contributors:

• Dan Chudnov, Dan Kerchner, Laura Wrubel, Justin Littman, Ankushi Sharma, and Rajat Vij at The George
Washington University Libraries

• Ed Summers at Maryland Institute for the Humanities (MITH)

• Martin Klein at UCLA Research Library

10.2 m5_003 release notes

m5_003 is release which provides:

• Improvements to the extracts:

– A header row with column titles has been added to the CSV version

– A column has been added for [’coordinates’] when present in a tweet

• Efficiency improvements

– Improvements to fetch_urls, making use of django-queryset-iterator and newer features of the requests
library (thanks @cazzerson)

– UID lookups by name are now done using a single bulk lookup API call

– tweet rehydration (with the fetch_tweets_by_id management command) is now done using a bulk
API call (thanks @edsu)

• Updated python dependencies, with tweepy version now pinned to 3.2.0 (prior to this, it was not pinned, and the
app only worked with =< 2.3.0). Requests is now constrained to > 2.4.1

• Simplified naming scheme for the timestamped filterstream and samplestream files; colons have been removed
from the naming scheme.

• Cleaner error messages in add_userlist. add_userlist now provides more readable and specific messages when
an account name was found to be invalid or suspended.

• Elimination of blank lines between tweets written to zip files by filterstream (thanks @edsu). NOTE:
This may affect any scripts that read or process your filterstream output files.

• Better use of the Twitter streaming API through SFM TwitterFilters. Rewrote TwitterFilter parsing of Words,
People, and Location fields. These parameters now leverage the full capability of Twitter’s streaming API, as
follows:

– Words (passed to Twitter track parameter). Commas between terms function as logical ORs; spaces
between terms function as logical ANDs. More information at Twitter’s documentation of the streaming
request parameters.

– People (passed to the Twitter follow parameter). This parameter is now a comma-separated list of valid
Twitter usernames. Twitterfilters already present in SFM will be migrated as part of the database migration
required for m5_003. Prior to m5_003, People values had been sent (incorrectly) as account names rather
than uids; they are now sent as uids. Since the People parameter had been a space-separated list, People
values are migrated to comma-separated lists. The migration script also looks up and stores the Twitter id
for each account in the People list; accounts whose ids were not found (e.g. suspended accounts, accounts

36 Chapter 10. Release Notes

http://github.com/cazzerson/
http://github.com/edsu/
http://github.com/edsu/
https://dev.twitter.com/streaming/overview/request-parameters#track
https://dev.twitter.com/streaming/overview/request-parameters#track

Social Feed Manager Documentation, Release m5004

not found, etc.) are logged in the migration log file. When updating or saving a Twitterfilter in m5_003,
SFM checks the validity of each of the values in the People list and will not allow saving to proceed if it
contains an account name whose id cannot be found.

– Locations (passed to the Twitter locations parameter). This parameter should be a comma-separated
list of numeric values, which each value between -180 and 180. Each set of 4 values defines a geographic
bounding box (long, lat, long, lat); a list of 8, 12, etc. values would define multiple bounding boxes. While
this parameter has not changed, m5_003 provides improved validation.

NOTE: The requirements.txt file has changed, so upgrading to m5_003 requires updating python library de-
pendencies within your virtualenv. To update dependencies:

% source ENV/bin/activate
% pip install -r requirements.txt

NOTE: Upgrading to m5_003 requires running a database migration. To run the migration:

% ./manage.py migrate ui

The migration number is 0026. If any active TwitterFilters contained People values for which Twitter uids
were not available (for example, if the account was not found or was suspended), then a migration log file,
0026_migration.log, is generated, listing the account names for which uids were not available.

See the complete list of changes for milestone m5_003 in github.

10.3 m5_002 release notes

m5_002 is release which provides:

• a new management command, add_userlist, to add a list of users in bulk. This command can also add the new
users to a TwitterUserSet

• a new /status page available to admin users. This page displays the current status of all supervisord-managed
SFM streams

• a new –list option for the filterstream management command, to display the current status of all supervisord-
managed SFM streams

• improvements to the CSV export

• links available in the UI header are now consistent across different pages

• an Excel (.xls) download link available on user timeline pages

• a new management command to export user timelines in .xls format

• encoding improvements in the CSV export

• improved instructions for supervisord setup and configuration

• minor documentation fixes

See the complete list of changes for milestone m5_002 in github.

10.4 m5_001 release notes

m5_001 is release focused primarily on documentation. SFM now has substantial documentation on what it does, how
it works, and how to use it.

Documentation contains a list of docs explaining:

10.3. m5_002 release notes 37

https://github.com/gwu-libraries/social-feed-manager/issues?q=is%3Aissue+is%3Aclosed+milestone%3Am5_003
https://github.com/gwu-libraries/social-feed-manager/issues?q=milestone%3Am5_002+is%3Aclosed

Social Feed Manager Documentation, Release m5004

• getting started

• the installation and working of Social Feed Manager

• its current use cases, where and how it’s used now, and its scopes of enhancements

• user lifecycle

• features; how you can use them and automate them

• FAQ and troubleshooting

For more details visit the Social Feed Manager docs.

Non-Documentation Issues and Bugfixes

• #146 - Improved validation and error handling for TwitterUser.name

See the complete list of changes for milestone m5_001 in github.

10.5 m4_002 release notes

m4_002 improves process management under Supervisord. Previously it was necessary to start and stop SFM’s
supervisord-managed processes using the supervisorctl tool at the command line.

With m4_002, SFM now automatically starts and stops twitterfilter processes when TwitterFilters are created, acti-
vated, deactivated, or deleted by an SFM admin user.

A new management command, fetch_tweets_by_id, was also added. Given a list of tweet ids, the command fetches
the associated tweets as JSON.

Significant issues and bugfixes

• #89 - Added management command to fetch tweets by a list of tweet ids.

• #154 - Enabled supervisord to pick up new twitterfilter conf files and initiate processes correctly.

See the complete list of changes for milestone m4_002 in github.

10.6 m4_001 release notes

m4_001 introduces collecting expanded urls in tweets, improves use of supervisord to manage multiple processes, and
enhances organizedata to better structure data files. It also fixes bugs related to supervisord and cleans up twitteruser
status and filterstream issues.

If you are upgrading an existing SFM instance from a version prior to m4_001, to m4_001 or newer, and your instance
contains active TwitterFilters, then you will need to run the createconf management command.

Enhancements

Social Feed Manager has streamsample and filterstream management commands which are used to fetch random
or filtered twitter feeds. These management process are automated using supervisord. Supervisord manages the
streamsample and filterstream processes, starting and stopping these processes when required.

Supervisord control:

• #135 - streamsample and filterstream are managed by supervisord, SFM no longer requires manual run of these
commands, if supervisord is set up, everything is handled by supervisord. This is done using the post_save
signal sent from the UI to initiate these processes.

38 Chapter 10. Release Notes

http://social-feed-manager.readthedocs.org/
https://github.com/gwu-libraries/social-feed-manager/issues?milestone=6&page=1&state=closed
https://github.com/gwu-libraries/social-feed-manager/issues?milestone=7&page=1&state=closed

Social Feed Manager Documentation, Release m5004

• #133 - Twitter API doesn’t allow parallel streams like streamsample and filterstream to run concurrently with
the same authorization credentials, so run a validation in the admin UI when adding the filters using twitterfilter,
and validate that active streams do not conflict.

• #170 - To simplify naming, renamed rules in admin UI to twitterfilter and throughout SFM.

Twitter data organization:

• #132 - Re-fit organizedata to use subdirs for different filters.

• #119 - Added command and table to fetch and store expanded form of urls found in tweets.

Other issues and bugfixes

• #177 - Refactored signal call to createconf to be specific to the appropriate filter.

• #150 - Better handling of deactivation of TwitterUser status for no-longer Twitter-valid accounts, validating and
throwing errors if name is not unique.

See the complete list of changes for milestone m4_001 in github.

10.6. m4_001 release notes 39

https://github.com/gwu-libraries/social-feed-manager/issues?milestone=5&state=closed

	Introduction
	Overview
	Features
	Current uses at George Washington University
	Technical and staffing considerations
	Development and community

	Installation and Configuration
	Background
	Dependencies
	Configuration
	First time running SFM
	Apache integration
	What next?

	Daily Operations
	Administrative tasks
	Data gathering
	Account maintenance
	Data movage
	System considerations

	Management Commands
	Introduction
	user_timeline
	update_usernames
	populate_uids
	streamsample
	filterstream
	organizedata
	fetch_tweets_by_id
	fetch_urls
	export
	createconf

	Using Supervisord to Manage Streaming Filters
	Supervisor setup
	Streamsample setup
	Filterstream setup
	OAuth constraints

	Use Cases
	Definitions
	Lifecycle of a TwitterUser
	State Transitions

	CSV Export Data Dictionary
	Frequently Asked Questions
	Does Social Feed Manager capture photos and other media embedded in tweets?
	How far back in time does SFM go when collecting a TwitterUser's tweets?
	Does Social Feed Manager capture the followers list?
	Do I have to set up supervisord in order to use filterstreams or streamsample?
	The number of retweets in a TwitterItem is inconsistent with the number of retweets shown on the tweet in Twitter. Why?
	Does the SFM web interface provide a way to view the files generated by filterstream and streamsample?
	When I click on the link to view a raw tweet, it's difficult to read in my browser.
	Can I set this up on a Mac?

	Troubleshooting
	TwitterUserItemUrls is empty. Why isn't SFM fetching URLS?
	I tried to add a filterstream using the user that I've configured as TWITTER_DEFAULT_USER, but SFM is telling me that Streamsample is also configured to authenticate as that user. But I'm not using Streamsample!

	Release Notes
	m5_004 release notes
	m5_003 release notes
	m5_002 release notes
	m5_001 release notes
	m4_002 release notes
	m4_001 release notes

