

SOBA Documentation

	SOBA Overview
	Arquitecture Description

	How install
	Pip instalation

	Github repository

	Introductory Tutorial
	Instalation

	Tutorial
	Implementing a sample model with continuous space

	Implementing a sample model with simplified space

	Running the simulation using the terminal

	APIs Documentation
	Model Module Documentation
	Model

	Time Control

	Agents Module Documentation
	Agent

	Occupant

	Agent Modules
	AStar

	Markov

	FOV

	Space Module Documentation
	Grid

	Items in continuous modeling

	Items in simplified modeling

	Launchers Module Documentation
	Visual

	Batch

SOBA Overview

SOBA [https://github.com/gsi-upm/soba]. is a new system of Simulation of Occupancy Based on Agents implemented in Python [http://www.python.org/]., which has become an increasingly popular language for scientific computing.

This software is useful for conducting studies based on occupancy simulations, mainly in buildings, such as drill simulation or energy studies.

The simulations are configured by declaring one or more types of occupants, with specific and definable behavior, a physical space (rooms of the building) and agents that are interconnected with each other and with the occupants. The simulation and results can be evaluated both in real time and post-simulation.

It is provided as open source software:

Github repository:
https://github.com/gsi-upm/soba

Arquitecture Description

[image: _images/architecture.png]
SOBA is implemented through 5 modules which group independent components with a related function.

	
	Module Model.

	
	Model. This component is the core of the simulations. The model creates and manages space and agents, provides a scheduler that controls the agents activation regime, stores model-level parameters and serves as a container for the rest of components.

	Time. Component of time management during the simulation in sexagesimal units and controller of the scheduler during the simulation.

	
	Module Agents.

	
	Agent. Base class to define any type of agent, which performs actions and interactions within a model.

	Occupant. An object of the Occupant class is a type of agent developed and characterized to simulate the behavior of crowds in buildings.

	
	Occupancy module.

	
	Markov.

	AStar. Auxiliar class used by the occupants to move in the building.

	FOV [http://www.roguebasin.com/index.php?title=Permissive_Field_of_View].This component is a permissive field of view, which is useful to define the occupant visibility.

	Transitions [https://github.com/pytransitions/transitions#threading]. This external package is a lightweight, object-oriented state machine implementation in Python.

	
	Module Space.

	
	Grid. The space where the agents are situated and where they perform their actions is defined by means of a grid with coordinates (x, y).

	ContinuousItems / RoomsItems. Various classes that define the representation of physical space objects in the model.

	Module Visualization. Two components provide a simple mechanism to represent the model in a web interface, based on HTML rendering though a server interface, implemented with web sockets.

	Module Launchers. The simulation will be executed defining a type of perfomance: in bacth or with visual representation.

How install

Pip instalation

$ pip install soba

Github repository

https://github.com/gsi-upm/soba

Introductory Tutorial

Instalation

First of all, you need to install the package using pip.

$ pip install soba

In case of error, this other command should be used, ensuring to have
installed python 3 and pip 3.

$ pip3 install soba

Tutorial

The SOBA tool can be provided to be used directly on two scenarios:

	Generic case with a space defined as a grid of a given square size
(by default, half a meter on each side).

	Simplified case with a room defined by rooms, to perform simulations
in simplified buildings that require less consumption of resources
and specifications.

An introductory tutorial will be presented for each case, although most
parameters are common or similar.

SOBA enables the performance of the simulations in two modes:

	With visual representation.

	In batch mode.

In the tutorials, the small modifications required to use each
posibility are reflected.

IMPORTANT NOTE: The .py files described in this tutorial are available
in the github repository
https://github.com/gsi-upm/soba/tree/master/projects/basicExamples

Implementing a sample model with continuous space

Once soba is installed, the implementation can be started. First we
define the generic parameters to both types of scenario.

1.- We define the characteristics of the occupants

from collections import OrderedDict
#JSON to store all the informacion.
jsonsOccupants = []

#Number of occupants
N = 12

#Definition of the states
states = OrderedDict([('Leaving','out'), ('Resting', 'sofa'), ('Working in my laboratory', 'wp')])

#Definition of the schedule
schedule = {'t1': "09:00:00", 't2': "13:00:00", 't3': "14:10:00"}

#Possible Variation on the schedule
variation = {'t1': "00:10:00", 't2': "01:20:00", 't3': "00:20:00"}

#Probability of state change associated with the Markovian chain as a function of the temporal period.
markovActivity = {
 '-t1': [[100, 0, 0], [0, 0, 0], [0, 0, 0]],
 't1-t2': [[30, 40, 30], [0, 50, 50], [0, 50, 50]],
 't2-t3': [[0, 0, 0], [50, 50, 0], [0, 0, 0]],
 't3-': [[0, 50, 50], [10, 90, 0], [0, 0, 0]]
}

#Time associated to each state (minutes)
timeActivity = {
 '-t1': [60, 0, 0], 't1-t2': [2, 60, 15], 't2-t3': [60, 10, 15], 't3-': [60, 20, 15]
}

#Store the information
jsonOccupant = {'type': 'example' , 'N': N, 'states': states , 'schedule': schedule, 'variation': variation, 'markovActivity': markovActivity, 'timeActivity': timeActivity}
jsonsOccupants.append(jsonOccupant)

2.- We define the building plan or the distribution of the space.

import soba.visualization.ramen.mapGenerator as ramen

with open('labgsi.blueprint3d') as data_file:
 jsonMap = ramen.returnMap(data_file)

3.- We implement a Model inheriting a base class of SOBA.

from soba.model.model import ContinuousModel
import datetime as dt

class ModelExample(ContinuousModel):

 def __init__(self, width, height, jsonMap, jsonsOccupants, seed = dt.datetime.now()):
 super().__init__(width, height, jsonMap, jsonsOccupants, seed = seed)

 def step(self):
 if self.clock.clock.day > 3:
 self.finishSimulation = True
 super().step()

4.- We call the execution methods.

4.1-With visual representation.

import soba.run

soba.run.run(ModelExample, [], cellW, cellH, jsonMap, jsonsOccupants)

4.1- Bacth mode.

#Fixed parameters during iterations
fixed_params = {"width": cellW, "height": cellH, "jsonMap": jsonMap, "jsonsOccupants": jsonsOccupants}
#Variable parameters to each iteration
variable_params = {"seed": range(10, 500, 10)}

soba.run.run(ModelExample, fixed_params, variable_params)

Implementing a sample model with simplified space

Once soba is installed, the implementation can be started. First we
define the generic parameters to both types of scenario.

1.- We define the characteristics of the occupants

from collections import OrderedDict
#JSON to store all the informacion.
jsonsOccupants = []

#Number of occupants
N = 3

#Definition of the states
states = OrderedDict([('out','Pos1'), ('Working in my laboratory', {'Pos2': 1, 'Pos3': 2})])

#Definition of the schedule
schedule = {'t1': "09:00:00", 't2': "13:00:00", 't3': "14:10:00"}

#Possible Variation on the schedule
variation = {'t1': "00:10:00", 't2': "01:20:00", 't3': "00:20:00"}

#Probability of state change associated with the Markovian chain as a function of the temporal period.
markovActivity = {
 '-t1': [[100, 0], [0, 0]],
 't1-t2': [[50, 50], [0, 0]],
 't2-t3': [[0, 0], [50, 0]],
 't3-': [[0, 50], [10, 90]]
}

#Time associated to each state (minutes)
timeActivity = {
 '-t1': [60, 0],
 't1-t2': [2, 60],
 't2-t3': [60, 10],
 't3-': [60, 20]
}

#Store the information
jsonOccupant = {'type': 'example' , 'N': N, 'states': states , 'schedule': schedule, 'variation': variation,
 'markovActivity': markovActivity, 'timeActivity': timeActivity}
jsonsOccupants.append(jsonOccupant)

2.- We define the building plan or the distribution of the space.

jsonMap = {
 'Pos1': {'entrance':'', 'conectedTo': {'U':'Pos2'}, 'measures': {'dx':2, 'dy':2}},
 'Pos2': {'measures': {'dx':3, 'dy':3.5}, 'conectedTo': {'R':'Pos3'}},
 'Pos3': {'measures': {'dx':3, 'dy':3.5}}
}

3.- We implement a Model inheriting a base class of SOBA.

from soba.model.model import ContinuousModel
import datetime as dt

class ModelExample(RoomsModel):

 def __init__(self, width, height, jsonMap, jsonsOccupants, seed = dt.datetime.now()):
 super().__init__(width, height, jsonMap, jsonsOccupants, seed = seed)

 def step(self):
 if self.clock.clock.day > 3:
 self.finishSimulation = True
 super().step()

4.- We call the execution methods. 4.1- With visual representation.

cellW = 4
cellH = 4

soba.run.run(ModelExample, [], cellW, cellH, jsonMap, jsonsOccupants)

4.1- Bacth mode.

#Fixed parameters during iterations
fixed_params = {"width": cellW, "height": cellH, "jsonMap": jsonMap, "jsonsOccupants": jsonsOccupants}
#Variable parameters to each iteration
variable_params = {"seed": range(10, 500, 10)}

soba.run.run(ModelExample, fixed_params, variable_params)

Running the simulation using the terminal

$ python exampleContinuous.py -v

Options:

-v, Visual option on browser

-b, Background option

-r, Ramen option

APIs

	Model Module Documentation
	Model

	Time Control

	Agents Module Documentation
	Agent

	Occupant

	Agent Modules
	AStar

	Markov

	FOV

	Space Module Documentation
	Grid

	Items in continuous modeling

	Items in simplified modeling

	Launchers Module Documentation
	Visual

	Batch

Model Module Documentation

Model

Time Control

Agents Module Documentation

Agent

	
class agent.Agent(unique_id, model)

	Base class to create Agent objects.
The agents are controlled by the scheduler of the Model associated.

	Attributes:

	model: Model associated to the agent.
unique_id: Unique id of the agent.
color: Color with which the agent will be represented in the visualization.

	Methods:

	step: Method invoked by the Model scheduler in each step. Step common to all Agents.

	
step()

	Method invoked by the Model scheduler in each step. Step common to all Agents.

Occupant

Agent Modules

AStar

	
aStar.canMovePos(model, cellPos, posAux, others=[])

	
	Evaluate if a position is reachable in a continuous space.

	
	Args:

	model: Model which invokes the algorithm.
cellPos: a first one position given as (x, y).
posAux: a second one position given as (x, y).
others: List of auxiliary positions given to be considered impenetrable,
that is, they will not be used by the AStar.

Return: List of positions (x, y).

	
aStar.getConectedCellsContinuous(model, cell, others)

	
	Gets a list of connected cells in a continuous space.

	
	Args:

	model: Model which invokes the algorithm.
cell: cell object corresponding to the position.
other: List of auxiliary positions given to be considered impenetrable, that is, they will not be used by the AStar.

Return: List of positions (x, y).

	
aStar.getConectedCellsRooms(model, cell)

	
	Gets a list of connected cells in a space defined by rooms.

	
	Args:

	model: Model which invokes the algorithm.
cell: cell object corresponding to the room.

Return: List of positions (x, y).

	
aStar.getPathContinuous(model, start, finish, other=[])

	
	Calculate the optimal path in the models with the space continuous.

	
	Args:

	model: Model which invokes the algorithm.
start: Initial position.
finish: Final position.
other: List of auxiliary positions given to be considered impenetrable, that is, they will not be used by the AStar.

Return: List of positions (x, y).

	
aStar.getPathRooms(model, start, finish)

	
	Calculate the optimal path in the models with the space defined by rooms.

	
	Args:

	model: Model which invokes the algorithm.
start: Initial position.
finish: Final position.

Return: List of positions (x, y).

Markov

	
class behaviourMarkov.Markov(agent_aux)

	Base class to models the activity of the agents by means of Markovian behavior.

	Attributes:

	agent: Agent that is controlled by this models.

	Methods:

	runStep: Execute a Markovian state change by evaluating the initial state and the probabilities associated with each possible state.
getNextState: Evaluate a random change based on the probabilities corresponding to each state.

	
getNextState(markov_matrix, NumberCurrentState)

	
	Evaluate a random change based on the probabilities corresponding to each state.

	
	Args:

	markov_matrix: Markov matrix corresponding to a certain moment.
NumberCurrentState: Unique id as number of the current state.

	
runStep(markov_matrix)

	
	Execute a Markovian state change by evaluating the initial state and the probabilities associated with each possible state.

	
	Args:

	markov_matrix: Markov matrix corresponding to a certain moment.

FOV

	
fov.FOV_RADIUS = 30000

	In the file aStar.py the filed of vision algorithm is implemented.

	
class fov.Map(map)

	Class to calculate the field of vision (fov).

	Attributes:

	data: Map to which to apply the algorithm.

	Methods:

	do_fov: Calculate the field of view from a position (x, y).

	More information:

	http://www.roguebasin.com/index.php?title=Python_shadowcasting_implementation

	
do_fov(x, y)

	
	Calculate the field of view from a position (x, y).

	
	Args:

	x, y: Observer’s position

Return: Array of sight positions.

	
fov.makeFOV(dungeon, pos)

	
	Create the invocation object of the fov algorithm and invoke it.

	
	Args:

	dungeon: Array
pos: Observer’s position

Return: Array of sight positions.

Space Module Documentation

Grid

In the file grid.py it is defined the class Grid, which implements the space where take place the simulation as a grid (x, y).

	
class grid.Grid(width, height)

	Class to implement the space where take place the simulation as a grid (x, y).

	Attributes:

	height: Height in number of grid cells.
width: Width in number of grid cells.
grid: List of rows x, rows are lists of positions y. That is, a matrix of positions [x][y].

	Methods:

	get_all_item: Get all the elements that have been placed in the grid.
get_items_in_pos: Gets the elements located in a grid position.
move_item: Change the position of a grid element.
place_item: Place an element in a grid position.
remove_item: Remove an item from the grid.
is_cell_empty: Evaluate if a cell does not contain any item.

	
get_all_item()

	
	Get all the elements that have been placed in the grid.

	Return: List of items.

	
get_items_in_pos(pos)

	
	Gets the elements located in a grid position.

	
	Args:

	pos: Position of the grid as (x, y).

Return: List of items.

	
is_cell_empty(pos)

	
	Evaluate if a cell does not contain any item.

	
	Args:

	pos: Position of the grid as (x, y).

Return: True (yes) or False (no).

	
move_item(item, pos)

	
	Change the position of a grid element.

	
	Args:

	item: Element in the grid.
pos: New position of the item.

	
place_item(item, pos)

	
	Place an element in a grid position.

	
	Args:

	pos: Position of the grid as (x, y).
item: Element outside the grid.

	
remove_item(pos, item)

	
	Remove an item from the grid.

	
	Args:

	pos: Position of the grid as (x, y).
item: Element inside the grid.

Items in continuous modeling

In the file continuousItems.py four classes are defined to implement the elements of
the physical space in a continuous model:

-GeneralItem: Class that implements generic elements positioned on the map with the effect of being impenetrable.
-Door: Class that implements bulding plane doors.
-Wall: Class that implements building walls.
-Poi: Class that implements points of interest where Occupancy objects perform certain actions.

	
class continuousItems.Door(model, pos1, pos2, rot, state=True)

	
	Class that implements bulding plane doors.

	
	Attributes:

	state: Door status, open (True) or closed (False).
pos1: First position to access to the door.
pos2: Second position to access to the door.
rot: Door orientation in the grid (‘x’ or ‘y’).

	Methods:

	open: Change the status of the door to open.
close: Change the status of the door to close.

	
close()

	Change the status of the door to close (False)

	
open()

	Change the status of the door to open (True)

	
class continuousItems.GeneralItem(model, pos, color=None)

	
	Class that implements generic elements positioned on the map with the effect of being impenetrable.

	
	Attributes:

	pos: Position where the object is located.
color: Color with which the object will be represented in the visualization.

	
class continuousItems.Poi(model, pos, ide, share=True, color=None)

	
	Class that implements relevant elements in the simulations: points of interest where Occupancy objects perform certain actions by associating these points with certain states.

	
	Attributes:

	pos: Position where the object is located.
ide: Unique identifier associated with the point of interest.
share: Define if the poi can be shared by more than one occupant.
color: Color with which the object will be represented in the visualization.

	
class continuousItems.Wall(block1, block2, block3, color=None)

	
	Class that implements building walls.

	
	Attributes:

	
	block1, block2, block3: lists of positions that contain positions between which an

	occupant can move obeying with the impenetrability of the wall.

color: Color with which the object will be represented in the visualization.

Items in simplified modeling

	In the file continuousItems.py three classes are defined to implement the elements

	of the physical space in a simplified model based on a room distribution:

-Room: Class that implements the rooms through which the Agent/Ocupant objects are located,
move and where activities are carried out.
-Door: Class that implements bulding plane doors.
-Wall: Class that implements building walls.

	
class roomsItems.Door(room1=False, room2=False, state=False)

	
	Class that implements bulding plane doors.

	
	Attributes:

	state: Door status, open (True) or closed (False).
room1: First room to croos the door.
room2: Second room to croos the door.

	Methods:

	open: Change the status of the door to open.
close: Change the status of the door to close.

	
close()

	Change the status of the door to closed (False)

	
open()

	Change the status of the door to open (True)

	
class roomsItems.Room(name, conectedTo, dx, dy, pos=(0, 0))

	
	Class that implements the rooms through which the Agent/Ocupant objects are located, move and where activities are carried out.

	
	Attributes:

	name: Unique name of the room.
roomsConected: List of accessible rooms from this room.
dx: Size in the ordinate x (meters).
dy: Size in the ordinate y (meters).
pos: Position of the room (x, y).
agentsInRoom: List of agent objects in the room
walls: List of Wall objects of the room.
doors: List of Doors objects of the room.

	
class roomsItems.Wall(room1=False, room2=False)

	
	Class that implements building walls.

	
	Attributes:

	room1: First room to croos the door.
room2: Second room to croos the door.

Launchers Module Documentation

Visual

Batch

 Python Module Index

 a |
 b |
 c |
 f |
 g |
 r

 		 	

 		
 a	

 	
 	
 agent	

 	
 	
 aStar	

 		 	

 		
 b	

 	
 	
 behaviourMarkov	

 		 	

 		
 c	

 	
 	
 continuousItems	

 		 	

 		
 f	

 	
 	
 fov	

 		 	

 		
 g	

 	
 	
 grid	

 		 	

 		
 r	

 	
 	
 roomsItems	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | M
 | O
 | P
 | R
 | S
 | W

A

 	
 	Agent (class in agent)

 	
 	agent (module)

 	aStar (module)

B

 	
 	behaviourMarkov (module)

C

 	
 	canMovePos() (in module aStar)

 	close() (continuousItems.Door method)

 	(roomsItems.Door method)

 	
 	continuousItems (module)

D

 	
 	do_fov() (fov.Map method)

 	
 	Door (class in continuousItems)

 	(class in roomsItems)

F

 	
 	fov (module)

 	
 	FOV_RADIUS (in module fov)

G

 	
 	GeneralItem (class in continuousItems)

 	get_all_item() (grid.Grid method)

 	get_items_in_pos() (grid.Grid method)

 	getConectedCellsContinuous() (in module aStar)

 	getConectedCellsRooms() (in module aStar)

 	
 	getNextState() (behaviourMarkov.Markov method)

 	getPathContinuous() (in module aStar)

 	getPathRooms() (in module aStar)

 	Grid (class in grid)

 	grid (module)

I

 	
 	is_cell_empty() (grid.Grid method)

M

 	
 	makeFOV() (in module fov)

 	Map (class in fov)

 	
 	Markov (class in behaviourMarkov)

 	move_item() (grid.Grid method)

O

 	
 	open() (continuousItems.Door method)

 	(roomsItems.Door method)

P

 	
 	place_item() (grid.Grid method)

 	
 	Poi (class in continuousItems)

R

 	
 	remove_item() (grid.Grid method)

 	Room (class in roomsItems)

 	
 	roomsItems (module)

 	runStep() (behaviourMarkov.Markov method)

S

 	
 	step() (agent.Agent method)

W

 	
 	Wall (class in continuousItems)

 	(class in roomsItems)

 _static/ajax-loader.gif

_images/architecture.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 SOBA Documentation

 		
 SOBA Overview

 		
 Arquitecture Description

 		
 How install

 		
 Pip instalation

 		
 Github repository

 		
 Introductory Tutorial

 		
 Instalation

 		
 Tutorial

 		
 Implementing a sample model with continuous space

 		
 Implementing a sample model with simplified space

 		
 Running the simulation using the terminal

 		
 APIs Documentation

 		
 Model Module Documentation

 		
 Model

 		
 Time Control

 		
 Agents Module Documentation

 		
 Agent

 		
 Occupant

 		
 Agent Modules

 		
 Space Module Documentation

 		
 Grid

 		
 Items in continuous modeling

 		
 Items in simplified modeling

 		
 Launchers Module Documentation

 		
 Visual

 		
 Batch

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

