

Welcome to Soapy’s documentation!

Contents:

	Introduction
	Quick-Start

	Installation
	Installation

	Required Libraries

	Linux

	Mac OSX

	Any OS

	Testing

	Basic Usage
	Configuration

	Creating Phase Screens

	Running the Simulation

	Retrieving Simulation Data

	Simple Tutorial
	Running an Example SCAO Configuration

	Creating a new SCAO configuration file

	Examining data and changing parameters

	GLAO Example

	Configuration
	Simulation Parameters

	Telescope Parameters

	Atmosphere Parameters

	Wave-front Sensor Parameters

	Laser Guide Star Parameters

	Deformable Mirror Parameters

	Reconstructor Parameters

	Science Camera Parameters

	Data Sources
	Simulation Run Data

	Simulation Design
	Data flow and modularity

	Class Hierarchy

	Simulation

	Atmosphere
	Atmosphere Class

	Phase Screen Creation and Saving

	Line Of Sight
	soapy.lineofsight module

	Wave-front Sensors
	WFS Module

	Deformable Mirrors
	DMs in Soapy

	Adding New DMs

	Base DM Class

	Real DM Classes

	Laser Guide Stars
	soapy.LGS module

	Reconstructors
	soapy.RECON module

	Science Camera
	soapy.SCI module

	Utilities
	soapy.logger module

	soapy.AOFFT module

	soapy.aoSimLib module

	soapy.opticalPropagationLib module

	soapy.confParse module

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Soapy is a Montecarlo Adaptive Optics (AO) simulation written exclusively in the Python programming language. It is aimed at rapidly developing new AO concepts and being a learning tool for those new to the field of AO.

The code can be used as an end to end simulation, where the entire system parameters are controlled by a configuration file. This can be used from the Python command line, python scripts or a GUI which is included, operation is described in the Basic Usage section.

The codes real strength lies in its modular nature. Each AO component is modelled as a Python object, with intuitive methods and attributes. Components can be imported and used separately to create novel AO configurations. Starting with the main Simulation module, these are described in detail in this documentation.

Quick-Start

Try out some of the code examples in the conf directory, either run the soapy script in bin, or load a python or IPython terminal:

import soapy
sim = soapy.Sim("configFilename")
sim.aoinit()
sim.makeIMat()
sim.aoloop()

Data will now be saved in the directory specified as filePrefix in the configuration file.

Alternatively, the GUI can be started with:

soapy -g <configFilename>

The use the buttons to initialise the simulation, make interaction matrices and run the AO loop. The interactive python console can be used to view data or change parameters

[image: _images/gui_shot.png]

Installation

Firstly, you’ll need Python. This comes with pretty much every linux distribution and is also installed by default on Mac OS X. For Windows, I’d recommend using a Python distribution, such as anaconda or enthought canopy. The code should be compatible with Windows as Python and all the libraries used are platform independent. Nonetheless, I only use it on Mac OSX and Linux so I can’t guarantee that there won’t be bugs not present on other OSs.

Installation

Once all the requirements outlined below are met, you are ready to install Soapy. Download the source from github [https://github.com/andrewpaulreeves/soapy], either as a zip file, or clone the git repository with:

git clone https://github.com/soapy/soapy.git

If downloading the code as a zip, you can choose which version to use with the drop down box on the left of the page, entitled branch:master. Whilst I try not to, the master branch will occasionally be broken so you might want to get the latest stable version by clicking “tags” in the dropdown list, and selecting the most recent version number.

Once the code is downloaded (and unzipped) or cloned, navigate to the resulting directory using the command line. You can import it into python straight away from this directory. To use the soapy script, run:

python soapy <options> <configfile>

If you wish to have it available elsewhere on your system, either set the relavant PATH and PYTHONPATH variables to <soapy dir>/bin and <soapy dir>/ respectively, or run the install script with:

python setup.py install

This latter method may require superuser permissions for your system and should setup the paths for you. You should now be able to run soapy and import soapy into python from any directory on your system.

Required Libraries

Soapy doesn’t have too many requirements in terms of external libraries, though it does rely on some. Performance of the simulation is made reasonable (for ELT scale operation) by using pyfftw and the numba library. Pyfftw simply wraps the FFTW library for fast fourier transforms. Numba, is a clever library that leverages the LLVM compiler infrastructure to compile python code directly to machine code. A library of functions has been written for the most computationally challenging algorithms, which are in pure python so can be easily read and improved, but operate quickly with the option of using multiple threads. There are also some optional libraries which are recommended for plotting.

Required

numpy
scipy
astropy
pyfftw
numba
yaml

For GUI

PyQt5 (PyQt4 supported)
matplotlib
ipython

Linux

If your starting with python from scratch, there a couple of options. For Ubuntu (14.04+) linux users, all these packages can be installed via apt-get:

sudo apt-get install python-numpy python-scipy python-fftw python-astropy python-qt4 python-matplotlib ipython ipython-qtconsole python-yaml python-numba

for Red-hat based systems these packages should also be available from repositories, though I’m not sure of they’re names.

Mac OSX

for mac os, all of these packages can be install via macports, with:

sudo port install python36 py36-numpy py36-scipy py36-astropy py36-pyqt5 py36-ipython py36-jupyter py36-numba py36-yaml py36-qtconsole

pyfftw [https://github.com/pyFFTW/pyFFTW] is not available for python3.6 on macports, so must be installed with another method, such as pip (see below)

If you’re using Python 2.7:

sudo port install python27 py27-numpy py27-scipy py27-astropy py27-pyfftw py27-pyqt5 py27-ipython py27-jupyter py27-numba py27-qtconsole py27-yaml

Any OS

Anaconda Python

For any OS, including Windows, python distributions exist which include lots of python packages useful for science.
A couple of good examples are Enthought Canopy (https://www.enthought.com), which is free for academics, and Anaconda (https://store.continuum.io/cshop/anaconda/) which is also free.
Anaconda includes most of the required libraries by default apart from pyfftw and pyyaml. These can be installed with:

conda install pyyaml
pip install pyfftw

pip

A lot of python packages are also listed on pypi [https://pypi.python.org/pypi]. Usually when python is installed, a script called easy_install is installed also, which can be used to get any package on pypi with easy_install <package>. Confusingly, pip is now the recommended Python package manager instead of easy_install. If you’ve only got easy_install you can install pip using easy_install pip, or it can be installed using the script linked here [https://pip.readthedocs.org/en/latest/installing.html].

Once you have pip, the required libraries can be installed by using the requirements.txt file. From the soapy directory, just run (may need to be as sudo):

pip install numpy scipy astropy pyfftw pyyaml numba

and all the requirements should be installed for the simulation, though not the GUI. For the GUI PyQt4 or PyQt5 is required, I dont think these are available from pip.

Sometimes pyfftw has a hard time finding your installation of fftw to link against. On a Mac, these lines usually help before running the pip command:

export DYLIB_LIBRARY_PATH=$DYLIB_LIBRARY_PATH:<path/to/fftw>/lib
export LDFLAGS=-L<path/to/fftw>/lib
export CFLAGS=-I<path/to/fftw>/include/

 export CFLAGS=-I<path/to/fftw>/include/

Testing

Once you think everything is installed, tests can be run by navigating to the test directory and running:

python testSimulation.py

Currently, this only runs system wide tests, but further, more atomic tests will be added in future. To run the tests, soapy must be either “installed”, or manually put into the PYTHONPATH.

Basic Usage

This section describes how to the simulation for basic cases, that is, using the full end to end code to create and save data which can then be analysed afterwards. Such a scenario is a common one when exploring parameters on conventional AO systems.

Configuration

In Soapy, all AO parameters are controlled from the configuration file. This is a python script which contains all the information required to run many AO configurations. A few examples are provided in the conf directory when you download the code. All parameters are held in one large dictionary, titled simConfiguration, and are then grouped into relavent sections.

Sim parameters control simulation wide parameters, such as the filename to save data, the number of simulated phase points, the number of WFSs, DMs and Science cameras as well as the name of the reconstructor used to tie them together. The simName parameter specifies a directory, which will be created if it does not already exist, where all AO run data will be recorderd. Each run will create a new time-stamped directory within the parent simName one to save run specific data. Data applying to all runs, such as the interaction and control matrices are stored in the simName directory.

Atmosphere parameters are responsible for the structure of the simulated atmosphere. This includes the number of simulated turbulence layers and the integrated seeing strength, r0. Some values in the Atmosphere group must be formatted as a list or array, as they describe parameters which apply to different turbulence layers.

Parameters describing the physical telescope are given in the Telescope group. These include the telescope and central obscuration diameters, and a pupil mask.

WFSs, LGSs, DMs and Science camera are configured by the WFS, LGS, DM and Science parameter groups. As multiple instances of each of these components may be present, every parameters in these groups is represented by either a list or numpy array, where each element specifies that component number. For WFSs and DMs, a type parameter is also given. This is a the name of the python object which will be used to represent that component, and a class of the same name must be present in the WFS.py or DM.py module, respectively. Other WFS or DM parameters may then have different behaviours depending on the type which is to be used.

Each parameter that can be set is described in the Configuration section.

Creating Phase Screens

For most applications of Soapy, some randomly generated phase screens are required. These can either be created just before the simulation begins, during the initialisation phase, or some existing screens can be specified for the simulation to use. To generate new phase screens with the parameters specified in Atmosphere each time the simulation is run, set the Atmosphere parameter, newScreens to True.

[image: _images/phaseScreen.png]
If instead you wish to used existing phase screens, provide the path to, and filename of each screen in the screenNames parameter as a list. Screens specified to be loaded must be saved as FITS files, where each file contains a single, 2 dimensional phase screen. The simulation will largely trust that the screen parameters are valid, so other parameters in the Atmosphere group, such as the wholeScreenSize, r0 and L0 may be discounted. If you would like the simulation to be able to scale your phase screens such that they adhere to the r0 and screenStrength values set in the configuration file, then the FITS file header must contain a parameter R0 which is expressed in units of phase pixels.

Running the Simulation

Once all the configuration parameters have been set, and you have decided how whether to load or generate phase screens, the simulation is ready to be run. This can be either from the GUI, the command line or from a script.

Graphical User Interface

When running Soapy configurations for the first time it can be a good idea to run them in the GUI to sure that components look to be operating as expected. The GUI is shown below running a simple SCAO case, with a tip-tilt mirror and a stack array DM.

[image: _images/annotatedGUI.png]
If soapy has been installed, or the bin directory is in the bash PATH, the GUI is started from the command line with the command:

soapy -g path/to/configFile.yaml

The soapy script can do a few other things as well, use soapy --help to see all other available options.

Once the GUI has loaded it will begin the initialisation of the simulation. This stage initialises all the simulated components, loads or generates phase screens, allocates data buffers and calculates various required parameters from the parameters given in the configuration file. If any parameters or the configuration file is changed at any point, this initialisation step can be rerun by clicking the “AO Init” button.

The next step in most systems will be to record an interaction matrix, where the effect of each DM influence on the WFS(s) is recorded, and used to calculate a command matrix. From the GUI, this is achieved by clicking the “makeIMat” button. Interaction matrices, command matrices and DM influence functions can be saved in the simName directory and the simulation checks to see if there are valid ones in that directory it can load instead of making them again. If you would like to force a new interaction matrix to be made, perhaps because you’ve changed parameters which may effect the new interaction matrix, tick the “Force new?” box.

Once this is complete, you can now click “Run!” to run the simulation. You will now see the atmospheric phase moving across the WFS(s), and the resulting measurements on the WFS. This will be recorded, and transformed to DM commands measurements via the reconstructor, and finally, the science phase will be corrected and a better PSF achieved. The loop gain for each DM can be altered using the spin boxes in the top right of the GUI.

Using the GUI significantly slows down the simulation operation, but this can be aleviated by limiting the simulation update rate using the top spin box.

The console in the bottom left of the GUI can be used to either change parameters of the simulation or visualise other data sources. It is a complete python console, provided by the IPython library. To load a new config file into the GUI, go the file>Load Configuration File. You will then have to click “AO Init” to begin initialisation.

Command Line and Scripting

To run the simulation from the command line, either use

soapy -i /path/to/configFile.yaml

which will initialise the simulation before dropping you into an interaction ipython prompt, or simply start or python interpretter of choice and run

import soapy #Imports python library
sim = soapy.Sim("/path/to/configFile.yaml") #Loads the configuration file
sim.aoinit() #Initialises all AO simulated objects

The above code would also be used in scripts to run the simulation.

To measure the interaction matrix run:

sim.makeIMat()

or:

sim.makeIMat(forceNew=True)

if you’d like to force the creation of interaction matrices, command matrices and DM influence functions.

Once complete, you’re now ready to run the simulation with:

sim.aoloop()

You should now see a rolling counter of the frame number and current Strehl ratio of each science target.

Retrieving Simulation Data

After a simulation run has completed, the resulting data must be retrieved for analysis. The data stored by Soapy depends on the parameters set in the sim group in the configuration file. Once a aoloop has completed, the data will be saved into the simName directory, in a further, time-stamped directory for that particular run. Whithin the simulation, the data is stored in numpy array structures which can be accessed either after the run has completed or during the run (if it is run in the, or in a python thread on the command line).

The strehl ratio of each science target is always stored. Internally, it is kept in the arrays:

sim.instStrehl

and:

sim.longStrehl

Which are the instantaneous and long exposure strehl ratio for each science target. Each of these is of shape sim.config.sim.nSci by sim.config.sim.nIters. Note that this is even the case for only a single science target, when the science target Strehl ratios are always accessed with sim.longStrehl[0]. Strehl ratios may also saved in the simName directory as instStrehl.fits and longStrehl.fits.

There are many other data sources available to save or access from the simulation, these are listed in Data Sources.

Simple Tutorial

This tutorial will go through some example AO systems using Soapy. We’ll see how to make configuration files to run the AO system that you’d like to, then extract data which can be subsequently analysed. CANARY is an AO system on the 4.2m William Herschel Telescope on La Palma. It is designed to be very flexible to run various “modes” of AO, so makes a nice test bed for us to simulate. We’ll simulate it in SCAO mode, in GLAO with multiple guide-stars and in SCAO with a LGS.

Running an Example SCAO Configuration

Before making new configuration files though, its a pretty good idea to make sure everything is working as expected by running one of the examples. First, lets create a directory where we do this tutorial, call it something like soapy_tutorial, make a further directory called conf inside and copy the example configuration file sh_8x8.yaml form the downloaded or cloned Soapy directory into it.

To open the Graphical User Interface (GUI), type in the command line:

soapy --gui conf/sh_8x8.yaml

This relies on soapy being in you’re PATH. If thats not the case, run:

python <path/to/soapy>/bin/soapy --gui conf/sh8x8.yaml

You should see a window which looks a bit like this pop up:

[image: _images/annotatedGUI.png]
If you don’t want to run the GUI, then open a python terminal and run:

import soapy
sim = soapy.Sim("conf/sh8x8.yaml")

Before the simulation can be started, some initialisation routines must be run. If running the GUI, then this will automatically when you start it up. In the command line, to initialise run:

sim.aoinit()

Next, the interaction matrixes between the DMs and the WFSs. In the GUI this is achieved by clicking “makIMat”, and in the command line with:

sim.makeIMat()

This simulation will save command matrices, interaction matrices and DM influence functions for a simulation, so that it doesn’t alway have to remake them. If you’d like to override the loading them from file and make them from scratch, tick the “force new” button in the GUI, or pass the argument forceNew=True to the makeIMat command.

To actually run the simulation, click “aoloop” in the GUI, or type:

sim.aoloop()

at the command line. This will run the simulation for the configured number of iterations, and estimate the performance of the specified AO system.

Creating a new SCAO configuration file

Now the simulation is working, lets start to simulate CANARY. We’ll use the sh_8x8.yaml configuration file as a template. Copy it to another file called CANARY_SCAO.yaml, and open this file in your favourite text editor. The configuration file contains all the parameters which determine the configuration of the simulated AO system. All the parameters are held in a YAML configuration file and parameters are grouped into sub-dictionaries depending on which components they control. Descriptions of all possible parameters are given in the Configuration section.

Sim Parameters

The first of these groups are parameters are those which have a system wide effect, so-called Sim parameters. They should have no indendation in the YAML file.

The first parameter to change is the simName, this is the directory where data will be saved during and after an AO run. Set it to CANARY_SCAO. The logFile is the filename of a log which records all text output from the simulation, set it to CANARY_SCAO.log. The value of loopTime specifies the frame rate of the simulation, which is usually, though not always, also the frame rate of the WFSs and DMs. More accurately though, it is the time between movements of the atmosphere. For CANARY, make the system run at 200Hz, so set this to 0.005. For the purposes of this tutorial, lets also set the number of iterations which will be run, nIters to around 500 so that it will run quickly.

The Sim group also contains parameters which determine the data which will be stored and saved from the simulation. Set values to True if you’d like them to be continually saved in a memory buffer before being written to disk in a AO run specific, time-stamped directory within the simName directory.

Atmosphere Parameters

As would be expected, this group of parameters describe the nature of the atmospheric turbulence. Currently, this configuration file features an atmosphere with 4 discrete turbulence layers, increase that to 5 by setting scrnNo to 5. The r0 parameter is the Fried parameter in metres and controls the integrated seeing strength, set this to 0.14. screenHeights, scrnStrengths, windDirs and windSpeed control the layer heights, relative CN2 strengths, wind directions and wind velocities. These must be formatted as a list at least as long as scrnNo, so add another value to each.

Phase screens can be either created on each simulation run, or can be loaded from file. To load screens from file a parameter, scrnNames, must be set with the filename of each phase screen in a list.

Telescope Parameters

The diameter of the simulated telescope and its central obscuration are determined by the telDiam and obsDiam parameters in the Telescope parameters. The mask value determines the shape if the pupil mask. If set to circle, this will simple be a circular telescope pupil, with a circular obscuration cut out the centre. If something more complex is desired, this value should be set to filename of 2-d fits file with shape (sim.pupilSize, sim.pupilSize), set to 0 at opaque parts of the pupil and 1 at transparent parts.

CANARY is hosted by the WHT, which is a 4.2 metre diameter telescope with a central obscuration of approximately 1.2 metres. Set these values, and keep mask set to circle.

WFS Parameters

Each WFS must be specified seperately, with an index or 0, 1, 2...etc. Set nxSubaps, the number of Shack-Hartmann sub-apertures in a single dimension to 7 and pxlsPerSubap to 14. The pixel scale is defined by the parameter subapFOV, which is actually the FOV of the entire sub-aperture, set this to 2.5.

DM Parameters

As with WFS parameters, each DM is specified seperately, with an integer index. There must be at least sim.nDM``s specified. The first DM will be a Tip-tilt mirror, hence the ``type is set to TT. The second is a higher spatial order stack array type denoted in the simulation as Piezo. These names correspond to classes which are defined in the DM.py module. Set the number of actuators in one dimension to 8, by setting the second value in nxActuators to 8.

Science Parameters

The final group of parameters which define the simulation are the Science parameters which define the science targets and detectors to be used to measure AO performance. Again, multiple science cameras can be specified, so each requires an index. There must be at least sim.nSci science cameras specified. Change the Field of View of the science detector by setting FOV to 3.0.

Run it!

Run the simulation as before, either in the GUI or in the command line with either:

soapy --gui conf/CANARY_SCAO.yaml

click makeIMat
click aoloop

or:

import soapy
sim = soapy.Sim("conf/CANARY_SCAO.yaml")
sim.makeIMat()
sim.aoloop()

The resulting Strehl ratio should be around 0.65, though there will be some variation due to the random generation of the phase screens.

Examining data and changing parameters

Once a simulation has been completed, the task then turns to extracting an analysing the resulting data. Many data sources can be saved from Soapy, they are listed in Data Sources. Whether they are saved or not is a result of the parameters set in the Sim section. If so, they will be saved to a directory of <simName>/<timestamp>/ in the FITS standard format. They can also be accessed from the simulation object using sim.<dataSource>. For example, to plot the long exposure Strehl ratio recorded on the first science detector over the course of the simulation, type either in a command line or in the GUI terminal:

from matplotlib import pyplot
pyplot.plot(sim.longStrehl[0])
pyplot.show()

The first science detector image can be retrieved with:

imshow(sim.sciImgs[0])

and the measurements recored on all WFSs with:

imshow(sim.allSlopes)

The parameters which were originally defined in the configuration file can also be accessed and altered. The variables holding the parameters have the same name as the configuration file parameters, though the names of the groups may be shortened. Assuming that the simulation object is called sim (as in this tutorial), any configuration parameter can be access with:

sim.config.<configGroup>.<param>

So to check or change the pupilSize parameter, one could do the following:

print(sim.config.sim.pupilSize)
sim.config.sim.pupilSize = 256

For the parameter groups WFS, DM and Science, which are set as lists, access of the parameter for item n is through sim.config.wfss[n].<param>, sim.config.dms[n].<param> and sim.config.scis[n].<param>. For example, to check, then change the 1st WFS centroiding method:

print(sim.config.wfss[0].centMethod)
sim.config.wfss[0].centMethod = "simple"

or to set the number of DM actuators on the high order DM:

print(sim.config.dms[1].nxActuators)
sim.config.dms[1].nxActuators[1] = 16

After changing these values, click aoinit or type sim.aoinit, then makeImat or sim.makeIMat() and finally aoloop or sim.aoloop to run the simulation and observe the effect of the change parameters. Some parameters can be changed while the simulation is running. This is useful when using the GUI and optimising parameters for an AO system. Parameters which are safe to change during AO operation are denoted in the Configuration section with ** at the end of the parameter description.

GLAO Example

CANARY is an experimental AO system which has been designed to explore tomographic AO. As such it would be thoroughly rude not to simulate it in a tomographic configuration. As tomographic AO often involves complex reconstructors out of the scope of this tutorial, it shall be run in the simplest tomographic case, Ground Layer AO (GLAO). This is where the measurements of several WFSs observing off-axis are effectively averaged, which corrects well when the WFS field of views overlap, such as at low-layers, but not so well when they have diverged, such as at high layers. This mode of AO can be performed using the MVM reconstructor used previously without modification.

Copy the CANARY_SCAO configuration file to another file name CANARY_GLAO. The only parameters which require changing are the number and position of WFSs. In the Simulation group set nGS to 3. Copy the first WFS set of parameters and paste them below it twice. Change the index, currently set at 0 to 1 and 2 respectively. The GSPosition values may be set to an asterism such as [0, 30], [-24.5, -25], [24.5, -15] which forms a triangle around the science target.

Run this new configuration file. The AO performance should have decreased significantly as only the lowest turbulence layer will be corrected effectively, but extra off-axis science targets would show that the performance is more consistent across a wide-field.

Configuration

Configuration of the system is handled by the confParse module, that reads the simulation parameters from a given configuration file. This file should be a YAML file, which contains groups for each simulation sub-module. Where a sub-module may consist of multiple components i.e. Wave-front sensors, each WFS must be specified seperately, with an integer index, for example:

WFS:
 0:
 GSMag: 0
 GSPosition: (0, 0)
 1:
 GSMag: 1
 GSPosition: (1, 0)

Example configuration files can be found in the conf directory of the soapy package.
(Note: Previously, a Python file was used for configuration. This format is still supported but can lead to messy configuration files! There are still examples of these in the source repository if you prefer.)

Below is a list of all possible simulation parameters. Parameters which have a description ending in ** can be altered while the simulation is running. When others are changed and aoinit must be run before they will take effect and they may break a running simulation.

Simulation Parameters

	
class soapy.confParse.SimConfig(N=None)

	Configuration parameters relavent for the entire simulation. These should be held at the beginning of the parameter file with no indendation.

	Required:

	

	Parameter
	Description

	pupilSize
	int: Number of phase points across the simulation pupil

	nIters
	int: Number of iteration to run simulation

	loopTime
	float: Time between simulation frames (1/framerate)

	Optional:

	

	Parameter
	Description
	Default

	nGS
	int: Number of Guide Stars and
WFS
	0

	nDM
	int: Number of deformable Mirrors
	0

	nSci
	int: Number of Science Cameras
	0

	reconstructor
	str: name of reconstructor
class to use. See
reconstructor module
for available reconstructors.
	"MVM"

	simName
	str: directory name to store
simulation data
	None

	wfsMP
	bool: Each WFS uses its own
process
	False

	verbosity
	int: debug output for the
simulation ranging from 0
(no-ouput) to 3 (all debug
output)
	2

	logfile
	str: name of file to store
logging data,
	None

	learnIters
	int: Number of learn iterations
for Learn & Apply reconstructor
	0

	learnAtmos
	str: if random, then
random phase screens used for
learn
	random

	simOversize
	float: The fraction to pad the
pupil size with to reduce edge
effects
	1.2

	loopDelay
	int: loop delay in integer count
of loopTime
	0

	threads
	int: Number of threads to use
for multithreaded operations
	1

	photometric_zp
	float: Photometric zeropoint -
number of photons/meter/second
from a magnitude 0 star
	2e9

	Data Saving (all default to False):

	

	Parameter
	Description

	saveSlopes
	Save all WFS slopes. Accessed from sim with
sim.allSlopes

	saveDmCommands
	Saves all DM Commands. Accessed from sim
with sim.allDmCommands

	saveWfsFrames
	Saves all WFS pixel data. Saves to disk a
after every frame to avoid using too much
memory

	saveStrehl
	Saves the science camera Strehl Ratio.
Accessed from sim with sim.longStrehl
and sim.instStrehl

	saveWfe
	Saves the science camera wave front error.
Accessed from sim with sim.WFE.

	saveSciPsf
	Saves the science PSF.

	saveInstPsf
	Saves the instantenous science PSF.

	saveInstScieField
	Saves the instantaneous electric field at focal plane.

	saveSciRes
	Save Science residual phase

Telescope Parameters

	
class soapy.confParse.TelConfig(N=None)

	
Configuration parameters characterising the Telescope. These should be held in the Telescope group in the parameter file.

	Required:

	

	Parameter
	Description

	telDiam
	float: Diameter of telescope pupil in metres

	Optional:

	

	Parameter
	Description
	Default

	obsDiam
	float: Diameter of central
obscuration
	0

	mask
	str: Shape of pupil (only
accepts circle currently)
	circle

Atmosphere Parameters

	
class soapy.confParse.AtmosConfig(N=None)

	Configuration parameters characterising the atmosphere. These should be held in the Atmosphere group in the parameter file.

	Required:

	

	Parameter
	Description

	scrnNo
	int: Number of turbulence layers

	scrnHeights
	list, int: Phase screen heights in metres

	scrnStrength
	list, float: Relative layer scrnStrength

	windDirs
	list, float: Wind directions in degrees.

	windSpeeds
	list, float: Wind velocities in m/s

	r0
	float: integrated seeing strength
(metres at 500nm)

	Optional:

	

	Parameter
	Description
	Default

	scrnNames
	list, string: filenames of phase
if loading from fits files. If
None will make new screens.
	None

	subHarmonics
	bool: Use sub-harmonic screen
generation algorithm for better
tip-tilt statistics - useful
for small phase screens.
	False

	L0
	list, float: Outer scale of each
layer. Kolmogorov turbulence if
None.
	None

	randomScrns
	bool: Use a random set of phase
phase screens for each loop
iteration?
	False

	infinite
	bool: Use infinite phase screens?
	False

	tau0
	float: Turbulence coherence time,
if set wind speeds are scaled.
	None

	wholeScrnSize
	int: Size of the phase screens
to store in the atmosphere
object. Required if large screens
used.
	None

Wave-front Sensor Parameters

	
class soapy.confParse.WfsConfig(N=None)

	Configuration parameters characterising Wave-front Sensors. These should be held in the WFS group in the parameter file. Each WFS is specified by first specifying an index, then the WFS parameters. Any entries above sim.nGS will be ignored.

	Required:

	

	Parameter
	Description

	GSPosition
	tuple: position of GS on-sky in arc-secs

	wavelength
	float: wavelength of GS light in metres

	nxSubaps
	int: number of SH sub-apertures

	Optional:

	

	Parameter
	Description
	Default

	type
	string: Which WFS object to load
from WFS.py?
	ShackHartmann

	GSMag
	float: Apparent magnitude of the
guide star
	0

	photonNoise
	bool: Include photon (shot) noise.
	False

	eReadNoise
	float: Electrons of read noise
	0

	throughput
	float: Throughput of the entire
optical and electronic system
from guide star photons to
recorded WFS detector counts.
Includes atmospheric effects, the
optical train and detector gain.
	1.

	propagationMode
	string: Mode of light propogation
from GS. Can be “Physical” or
“Geometric”**.
	"Geometric"

	subapFieldStop
	bool: if True, add a field stop to
the wfs to prevent spots wandering
into adjacent sub-apertures. if
False, oversample subap FOV by a
factor of 2 to allow into adjacent
subaps.
	False

	removeTT
	bool: if True, remove TT signal
from WFS slopes before
reconstruction.**
	False

	fftOversamp
	int: Multiplied by the number of
of phase points required for FOV
to increase fidelity from FFT.
	3

	GSHeight
	float: Height of GS beacon. 0
if at infinity.
	0

	subapThreshold
	float: How full should subap be
to be used for wavefront sensing?
	0.5

	lgs
	bool: is WFS an LGS?
	False

	centMethod
	string: Method used for
Centroiding. Can be
centreOfGravity,
brightestPxl, or
correlation.**
	centreOfGravity

	referenceImage
	array: Reference images used in
the correlation centroider. Full
image plane image, each subap has
a separate reference image
	None

	angleEquivNoise
	float: width of gaussian noise
added to slopes measurements
in arc-secs
	0

	centThreshold
	float: Centroiding threshold as
a fraction of the max subap
value.**
	0.1

	exposureTime
	float: Exposure time of the WFS
camera - must be higher than
loopTime. If None, will be
set to loopTime.
	None

	wvlBandWidth
	float: Width of wavelength
band sent to WFS in nm
	100

	extendedObject
	ndarray or str: The object used
as extended source for WFS, of
size 2*fftOversamp*pxlsPerSubap.
The FOV of the object should be
twice the FOV of the sub-aperture.
	None

	fftwThreads
	int: number of threads for fftw
to use. If 0, will use
system processor number.
	1

	fftwFlag
	str: Flag to pass to FFTW
when preparing plan.
	FFTW_PATIENT

	pxlsPerSubap
	int: number of pixels per
sub-apertures
	10

	subapFOV
	float: Field of View of
sub-aperture in arc-secs
	5

	correlationFFTPad
	int: Padding for correlation WFS
	None

	nx_guard_pixels
	int: Guard Pixels between
Shack-Hartmann sub-apertures
(Not currently operational)
	0

Laser Guide Star Parameters

	
class soapy.confParse.LgsConfig(N=None)

	
Configuration parameters characterising the Laser Guide Stars. These should be held in the LGS sub-group of the WFS parameter group.

	Optional:

	

	Parameter
	Description
	Default

	uplink
	bool: Include LGS uplink effects
	False

	pupilDiam
	float: Diameter of LGS launch
aperture in metres.
	0.3

	wavelength
	float: Wavelength of laser beam
in metres
	600e-9

	propagationMode
	str: Mode of light propogation
from GS. Can be “Physical” or
“Geometric”.
	"Phsyical"

	height
	float: Height to use physical
propogation of LGS (does not
effect cone-effect) in metres
	90000

	elongationDepth
	float:
Depth of LGS elongation in metres
	0

	elongationLayers
	int:
Number of layers to simulate for
elongation.
	10

	launchPosition
	tuple: The launch position of
the LGS in units of the pupil
radii, where (0,0) is the
centre launched case, and
(1,0) is side-launched.
	(0,0)

	fftwThreads
	int: number of threads for fftw
to use. If 0, will use
system processor number.
	1

	fftwFlag
	str: Flag to pass to FFTW
when preparing plan.
	FFTW_PATIENT

	naProfile
	list: The relative sodium layer
strength for each elongation
layer. If None, all equal.
	None

Deformable Mirror Parameters

	
class soapy.confParse.DmConfig(N=None)

	Configuration parameters characterising Deformable Mirrors. These should be held in the DM sub-group of the parameter file. Each DM is specified seperately, by first specifying an index, then the DM parameters. Any entries above sim.nGS will be ignored.

	Required:

	

	Parameter
	Description

	type
	string: Type of DM. This must the name of a
class in the DM module.

	nxActuators
	int: Number independent DM shapes. e.g., for
stack-array DMs this is number of actuators in
one dimension,
for Zernike DMs this is number of Zernike
modes.

	gain
	float: The loop gain for the DM.**

	svdConditioning
	float: The conditioning parameter used in the
pseudo inverse of the interaction matrix. This
is performed by numpy.linalg.pinv [http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.pinv.html].

	Optional:

	

Reconstructor Parameters

	
class soapy.confParse.ReconstructorConfig(N=None)

	Configuration parameters describing the reconstructor that will be used to calculate
DM commands from WFS measurements. The type must be an object in the soapy.reconstruction
module. Other parameters may be specific to this reconstructor

	Optional:

	

	Parameter
	Description
	Default

	type
	string: Type of reconstructor to
use. Must be a class in
reconstruction module.
	MVM

	svdConditioning
	float: Conditioning parameter to
be using in Least Squares
reconstructor inversion SVD to
cut off unwanted DM modes. See
numpy.linalg.pinv for details
about the inversion.
	0

	gain
	float: Gain of the integrator
loop.
	0.6

	imat_noise
	bool: include WFS noise when
making in interaction matrix
	True

Science Camera Parameters

	
class soapy.confParse.SciConfig(N=None)

	Configuration parameters characterising Science Cameras.

These should be held in the Science of the parameter file.
Each Science target is created seperately with an integer index.
Any entries above sim.nSci will be ignored.

	Required:

	

	Parameter
	Description

	position
	tuple: The position of the science camera
in the field in arc-seconds

	FOV
	float: The field of fiew of the science
detector in arc-seconds

	wavelength
	float: The wavelength of the science
detector light

	pxls
	int: Number of pixels in the science detector

	Optional:

	

	Parameter
	Description
	Default

	pxlScale
	float: Pixel scale of science
camera, in arcseconds. If set,
overwrites FOV.
	None

	type
	string: Type of science camera
This must the name of a class
in the SCI module.
	PSF

	fftOversamp
	int: Multiplied by the number of
of phase points required for FOV
to increase fidelity from FFT.
	2

	fftwThreads
	int: number of threads for fftw
to use. If 0, will use
system processor number.
	1

	fftwFlag
	str: Flag to pass to FFTW
when preparing plan.
	FFTW_MEASURE

	height
	float: Altitude of the object.
0 denotes infinity.
	0

	propagationMode
	str: Mode of light propogation
from object. Can be “Physical” or
“Geometric”.
	"Geometric"

	instStrehlWithTT
	bool: Whether or not to include
tip/tilt in instantaneous Strehl
calculations.
	False

Data Sources

In this section, the data sources which are stored in soapy are listed and a description of how they are obtained is given.

Simulation Run Data

The following sources of data are recorded for each simulation run and are saved as a fits file in a time stamped run specific directory inside the simName directory. They can be accessed by sim.<data>, where <data> is listed in the “Internal data structure” column. As the storing of some of these data sources can increase memory usage significantly, they are not all saved by default, and the flag must be set in the configuration file.

	Data
	Saved filename
	Internal data
structure
	Description

	Instantaneous
Strehl ratio
	instStrehl.fits
	instStrehl
	The instantaneous
strehl ratio for
each science target
frame

	Long exposure
Strehl ratio
	longStrehl.fits
	longStrehl
	The long exposure
strehl ratio for
each science target
frame

	Wavefront
Error
	WFE.fits
	WFE
	The corrected wave-
front error for each
science target in nm

	Science PSF
	sciPsf_n.fits
	sciImgs[n]
	The science camera PSFs
where n indicates the
camera number

	Residual
Science phase
	sciResidual_n
.fits
	sciPhase[n]
	The residual uncorrected
phase across science
target n

	WFS
measurements
	slopes.fits
	allSlopes
	All WFS measurements
stored in a numpy
array of size
(nIters, totalSlopes)

	WFS Frames
	wfsFPFrames/
wfs-n_frame-i
.fits
	sim.wfss[n].
wfsDetectorPlane
	WFS detector image, only
last frame stored
in memory. Can save each
frame, i, from wfs
n

	DM Commands
	dmCommands.fits
	allDmCommands
	DM commands for all
DMs present in numpy
of size
(nIters, totaldmCommands)

Simulation Design

Data flow and modularity

Soapy has been designed from the beginning to be extremely modular, where each AO component can be used individually. In fact, the file simulation.py, really only acts as a shepherd, moving data around between the components, with some fancy bits for saving data and printing nice outputs. A simple control loop to replace that file could be written from scratch in only 5-10 lines of Python!

This modularity is well illustrated by a data flow diagram describing the simulations, show in Figure 1, below.

[image: _images/DataFlow.svg]

Figure 1. Soapy Data Flow

Class Hierarchy

Pythons Object Orientated nature has also been exploited. Categories of AO component have a base class, which deals with most of the interfaces to the main simulation module and other boiler-plate style code. The classes which represent actual AO modules inherit this base class, and hopefully need only add interesting functionality specific to that new component. This is illustrated in the class diagram in Figure 2, with some example methods and attributes of each class.

[image: _images/FullClassDiagram.svg]

Figure 2. Class diagram with example attributes and methods

It is aimed that in future developments of Soapy, this philosophy will be extended. Currently the WFS, science camera and LGS modules all deal with optical propagation through turbulence separately, clearly this should be combined into one place to ease code readability and maintenance. This work is currently under development. Figure 3 shows all the Soapy classes in a simplified class diagram, including the new LineOfSight class currently under construction.

[image: _images/SimpleClassDiagram.svg]

Figure 3. Full, simplified class diagram with the lineOfSight class under construction.

Simulation

High level interface to run and examine a simulation

The main Soapy Simulation module

This module contains the Sim class, which can be used to run an end-to-end simulation. Initally, a configuration file is read, the system is initialised, interaction and command matrices calculated and finally a loop run. The simulation outputs some information to the console during the simulation.

The Sim class holds all configuration information and data from the simulation.

Examples

To initialise the class:

import soapy
sim = soapy.Sim("sh_8x8_4.2m.py")

Configuration information has now been loaded, and can be accessed through the config attribute of the sim class. In fact, each sub-module of the system has a configuration object accessed through this config attribute:

print(sim.config.sim.pupilSize)
sim.config.wfss[0].pxlsPerSubap = 10

Next, the system is initialised, this entails calculating various parameters in the system sub-modules, so must be done after changing some simulation parameters:

sim.aoinit()

DM Interation and command matrices are calculated now. If sim.config.sim.simName is not None, then these matrices will be saved in data/simName (data will be saved here also in a time-stamped directory):

sim.makeIMat()

Finally, the loop is run with the command:

sim.aoloop()

Some output will be printed to the console. After the loop has finished, data specified to be saved in the config file will be saved to data/simName (if it is not set to None). Data can also be accessed from the simulation class, e.g. sim.allSlopes, sim.longStrehl

	Author:	Andrew Reeves

	
class soapy.simulation.DelayBuffer

	Bases: list

A delay buffer.

Each time delay() is called on the buffer, the input value is stored.
If the buffer is larger than count, the oldest value is removed and returned.
If the buffer is not yet full, a zero of similar shape as the last input
is returned.

	
delay(value, count)

	

	
class soapy.simulation.Sim(configFile=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

The soapy Simulation class.

This class holds all configuration information, data and control
methods of the simulation. It contains high level methods dealing with
initialising all component objects, making reconstructor control
matrices, running the loop and saving data after the loop has run.

Can be sub-classed and the ‘aoloop’ method overwritten for different loops
to be used

	Parameters:	configFile (string [https://docs.python.org/2/library/string.html#module-string]) – The filename of the AO configuration file

	
addToGuiQueue()

	Adds data to a Queue object provided by the soapy GUI.

The soapy GUI doesn’t need to plot every frame from the simulation. When it wants a frame, it will request if by setting waitingPlot = True. As this function is called on every iteration, data is passed to the GUI only if waitingPlot = True. This allows efficient and abstracted interaction between the GUI and the simulation

	
aoinit()

	Initialises all simulation objects.

Initialises and passes relevant data to sim objects.
This does important pre-run tasks, such as creating or
loading phase screens, determining WFS geometry,
setting propagation modes and pre-allocating data arrays
used later in the simulation.

	
aoloop()

	Main AO Loop

Runs a WFS iteration, reconstructs the phase, runs DMs and finally the science cameras. Also makes some nice output to the console and can add data to the Queue for the GUI if it has been requested. Repeats for nIters.

	
finishUp()

	Prints a message to the console giving timing data. Used on sim end.

	
getTimeStamp()

	Returns a formatted timestamp

	Returns:	nicely formatted timestamp of current time.

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	
initSaveData()

	Initialise data structures used for data saving.

Initialise the data structures which will be used to store data which will be saved or analysed once the simulation has ended. If the simName = None, no data is saved, other wise a directory called simName is created, and data from simulation runs are saved in a time-stamped directory inside this.

	
loopFrame()

	Runs a single from of the entire AO system.

Moves the atmosphere, runs the WFSs, finds the corrective DM shape and finally runs the science cameras. This can be called over and over to form the “loop”

	
makeIMat(forceNew=False, progressCallback=None)

	Creates interaction and control matrices for simulation reconstruction

Makes and inverts Interaction matrices for each DM in turn to
create a DM control Matrix for each DM.
Each DM’s control Matrix is independent of the others,
so care must be taken so DM correction modes do not “overlap”.
Some reconstruction modes may require WFS frames to be taken for the
creation of a control matrix. Depending on set parameters,
can load previous control and interaction matrices.

	Parameters:	
	forceNew (bool [https://docs.python.org/2/library/functions.html#bool]) – if true, will force making of new iMats and cMats, otherwise will attempt to load previously made matrices from same simName

	progressCallback (func) – function called to report progress of interaction matrix construction

	
makeSaveHeader()

	Forms a header which can be used to give a header to FITS files saved by the simulation.

	
printOutput(iter, strehl=False)

	Prints simulation information to the console

Called on each iteration to print information about the current simulation, such as current strehl ratio, to the console. Still under development
:param label: Simulation Name
:type label: str
:param iter: simulation frame number
:type iter: int
:param strehl: current strehl ration if science cameras are present to record it.
:type strehl: float, optional

	
readParams(configFile=None)

	Reads configuration file parameters

Calls the radParams function in confParse to read, parse and if required
set reasonable defaults to AO parameters

	
reset_loop()

	Resets parameters in the system to zero, to restart an AO run wihtout reinitialising

	
runDM(dmCommands, closed=True)

	Runs a single frame of the deformable mirrors

Calculates the total combined shape of all deformable mirrors (DMs), given an array of DM commands. DM commands correspond to shapes generated during the making of interaction matrices, the final DM shape for each DM is a combination of these. The DM commands will have already been calculated by the systems reconstructor.

	Parameters:	
	dmCommands (ndarray) – an array of dm commands corresponding to dm shapes

	closed (bool [https://docs.python.org/2/library/functions.html#bool]) – if True, indicates to DM that slopes are residual errors from previous frame, if False, slopes correspond to total phase error over pupil.

	Returns:	the combined DM shape

	Return type:	ndArray

	
runSciCams(dmShape=None)

	Runs a single frame of the science Cameras

Calculates the image recorded by all science cameras in the system for the current phase over the telescope one frame. If a dmShape is present (which it usually will be in AO!) this correction is applied to the science phase before the image is calculated.

	Parameters:	correction (list or ndarray, optional) – An array of the combined system DM shape to correct the science path. If not given science cameras are in open loop.

	
runWfs_MP(scrns=None, dmShape=None, wfsList=None, loopIter=None)

	Runs all WFSs using multiprocessing

Runs a single frame for each WFS in wfsList, passing the given phase
screens and optional dmShape (if WFS in closed loop). If LGSs are
present it will also deals with LGS propagation. Finally, the slopes
from all WFSs are returned. Each WFS is allocated a separate process
to complete the frame, giving a significant increase in speed,
especially for computationally heavy WFSs.

	Parameters:	
	scrns (list) – List of phase screens passing over telescope

	dmShape (ndarray, optional) – 2-dimensional array of the total corrector shape

	wfsList (list, optional) – A list of the WFSs to be run, if not set, runs all WFSs

	loopIter (int [https://docs.python.org/2/library/functions.html#int], optional) – The loop iteration number

	Returns:	The slope data return from the WFS frame (may not be actual slopes if WFS other than SH used)

	Return type:	ndarray

	
runWfs_noMP(scrns=None, dmShape=None, wfsList=None, loopIter=None)

	Runs all WFSs

Runs a single frame for each WFS in wfsList, passing the given phase screens and optional dmShape (if WFS in closed loop). The WFSs are only read out if the wfs frame time co-incides with the WFS frame rate, else old slopes are provided. If iter is not given, then all WFSs are run and read out. If LGSs are present it will also deals with LGS propagation. Finally, the slopes from all WFSs are returned.

	Parameters:	
	scrns (list) – List of phase screens passing over telescope

	dmShape (ndarray, optional) – 2-dim array of the total corrector shape

	wfsList (list, optional) – A list of the WFSs to be run

	loopIter (int [https://docs.python.org/2/library/functions.html#int], optional) – The loop iteration number

	Returns:	The slope data return from the WFS frame (may not be actual slopes if WFS other than SH used)

	Return type:	ndarray

	
saveData()

	Saves all recorded data to disk

Called once simulation has ended to save the data recorded during the simulation to disk in the directories created during initialisation.

	
setLoggingLevel(level)

	sets which messages are printed from logger.

if logging level is set to 0, nothing is printed. if set to 1, only
warnings are printed. if set to 2, warnings and info is printed. if set
to 3 detailed debugging info is printed.

	Parameters:	level (int [https://docs.python.org/2/library/functions.html#int]) – the desired logging level

	
storeData(i)

	Stores data from each frame in an appropriate data structure.

Called on each frame to store the simulation data into various data structures corresponding to different data sources in the system.

	Parameters:	i (int [https://docs.python.org/2/library/functions.html#int]) – The system iteration number

	
soapy.simulation.make_mask(config)

	Generates a Soapy pupil mask

	Parameters:	config (SoapyConfig) – Config object describing Soapy simulation

	Returns:	2-d pupil mask

	Return type:	ndarray

	
soapy.simulation.multiWfs(scrns, wfsObj, dmShape, read, queue)

	Function to run the WFS in multiprocessing mode.

Function is called by each of the new WFS processes spawned to run each WFS. Does the same job as the sim runWfs_noMP method of running LGS, then getting slopes from each WFS.

	Parameters:	
	scrns (list) – list of the phase screens over the WFS

	wfsObj (WFS object) – the WFS object being run

	dmShape (ndArray) – shape of system DMs for WFS phase correction

	queue (Queue object) – a multiprocessing Queue object used to pass data back to host process.

Atmosphere

The Soapy module used to simulate the atmosphere.

This module contains an atmos object, which can be used to create or load a specified number of phase screens corresponding to atmospheric turbulence layers. The layers can then be moved with the moveScrns method, at a specified wind velocity and direction, where the screen is interpolated if it does not fall on an integer number of pixels. Alternatively, random screens with the same statistics as the global phase screens can be generated using the randomScrns method.

The module also contains a number of functions used to create the phase screens, many of these are ported from the book Numerical Simulation of Optical Propagation, Schmidt, 2010. It is possible to create a number of phase screens using the makePhaseScreens() function which are saved to file in a format which can be read by the simulation.

Examples

To get the configuration objects:

from soapy import confParse, atmosphere

config = confParse.loadSoapyConfig("configfile.yaml")

Initialise the amosphere (creating or loading phase screens):

atmosphere = atmosphere.atmos(config)

Run the atmosphere for 10 time steps:

for i in range(10):
 phaseScrns = atmosphere.moveScrns()

or create 10 sets of random screens:

for i in range(10):
 randomPhaseScrns = atmosphere.randomScrns()

Atmosphere Class

	
class soapy.atmosphere.atmos(soapyConfig)

	Class to simulate atmosphere above an AO system.

On initialisation of the object, new phase screens can be created, or others loaded from .fits file. The atmosphere is created with parameters given in ConfigObj.sim and ConfigObj.atmos. These are soapy configuration objects, which can be created by the :ref:confParse module, or could be created manually. If created manually, check the :ref: confParse section to see which attributes the configuration objects must contain.

If loaded from file, the screens should have a header with the parameter R0 specifying the r0 fried parameter of the screen in pixels.

The method moveScrns can be called on each iteration of the AO system to move the scrns forward by one time step. The size of this is defined by parameters given in

The method randomScrns returns a set of random phase screens with the smame statistics as the atmos object.

	Parameters:	soapyConfig (ConfigObj) – The Soapy config object

	
moveScrns()

	Moves the phase screens one time-step, defined by the atmosphere object parameters.

Returned phase is in units of nana-meters

	Returns:	a dictionary containing the new set of phase screens

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
randomScrns(subHarmonics=True, l0=0.01)

	Generated random phase screens defined by the atmosphere object parameters.

Returned phase is in units of nana-meters

	Returns:	a dictionary containing the new set of phase screens

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
saveScrns(DIR)

	Saves the currently loaded phase screens to file,
saving the r0 value in the fits header (in units of pixels).
Saved phase data is in radians @500nm

	Parameters:	DIR (string [https://docs.python.org/2/library/string.html#module-string]) – The directory to save the screens

Phase Screen Creation and Saving

	
soapy.atmosphere.makePhaseScreens(nScrns, r0, N, pxlScale, L0, l0, returnScrns=True, DIR=None, SH=False)

	Creates and saves a set of phase screens to be used by the simulation.

Creates nScrns phase screens, with the required parameters, then saves
them to the directory specified by DIR. Each screen is given a FITS
header with its value of r0, which will be scaled by on simulation when
its loaded.

	Parameters:	
	nScrns (int [https://docs.python.org/2/library/functions.html#int]) – The number of screens to make.

	r0 (float [https://docs.python.org/2/library/functions.html#float]) – r0 value of the phase screens in metres.

	N (int [https://docs.python.org/2/library/functions.html#int]) – Number of elements across each screen.

	pxlScale (float [https://docs.python.org/2/library/functions.html#float]) – Size of each element in metres.

	L0 (float [https://docs.python.org/2/library/functions.html#float]) – Outer scale of each screen.

	l0 (float [https://docs.python.org/2/library/functions.html#float]) – Inner scale of each screen.

	returnScrns (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Whether to return a list of screens. True by default, but if screens are very large, False might be preferred so they aren’t kept in memory if saving to disk.

	DIR (str [https://docs.python.org/2/library/functions.html#str], optional) – The directory to save the screens.

	SH (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True, add sub-harmonics to screens for more
accurate power spectra, though screens no-longer periodic.

	Returns:	A list containing all the screens.

	Return type:	list

Line Of Sight

soapy.lineofsight module

A generalised module to provide phase or the EField through a “Line Of Sight”

Line of Sight Object

The module contains a ‘lineOfSight’ object, which calculates the resulting phase or complex amplitude from propogating through the atmosphere in a given
direction. This can be done using either geometric propagation, where phase is simply summed for each layer, or physical propagation, where the phase is propagated between layers using an angular spectrum propagation method. Light can propogate either up or down.

The Object takes a ‘config’ as an argument, which is likely to be the same config object as the module using it (WFSs, ScienceCams, or LGSs). It should contain paramters required, such as the observation direction and light wavelength. The config also determines whether to use physical or geometric propagation through the ‘propagationMode’ parameter.

Examples:

from soapy import confParse, lineofsight

Initialise a soapy conifuration file
config = confParse.loadSoapyConfig('conf/sh_8x8.py')

Can make a 'LineOfSight' for WFSs
los = lineofsight.LineOfSight(config.wfss[0], config)

Get resulting complex amplitude through line of sight
EField = los.frame(some_phase_screens)

	
class soapy.lineofsight.LineOfSight(config, soapyConfig, propagation_direction='down', out_pixel_scale=None, nx_out_pixels=None, mask=None, metaPupilPos=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A “Line of sight” through a number of turbulence layers in the atmosphere, observing ing a given direction.

	Parameters:	
	config – The soapy config for the line of sight

	simConfig – The soapy simulation config object

	propagationDirection (str [https://docs.python.org/2/library/functions.html#str], optional) – Direction of light propagation, either “up” or “down”

	outPxlScale (float [https://docs.python.org/2/library/functions.html#float], optional) – The EField pixel scale required at the output (m/pxl)

	nOutPxls (int [https://docs.python.org/2/library/functions.html#int], optional) – Number of pixels to return in EFIeld

	mask (ndarray, optional) – Mask to apply at the beginning of propagation

	metaPupilPos (list, dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – A list or dictionary of the meta pupil position at each turbulence layer height ub metres. If None, works it out from GS position.

	
allocDataArrays()

	Allocate the data arrays the LOS will require

Determines and allocates the various arrays the LOS will require to
avoid having to re-alloc memory during the running of the LOS and
keep it fast. This includes arrays for phase
and the E-Field across the LOS

	
calcInitParams(out_pixel_scale=None, nx_out_pixels=None)

	Calculates some parameters required later

	Parameters:	
	outPxlScale (float [https://docs.python.org/2/library/functions.html#float]) – Pixel scale of required phase/EField (metres/pxl)

	nOutPxls (int [https://docs.python.org/2/library/functions.html#int]) – Size of output array in pixels

	
calculate_altitude_coords(layer_altitude)

	Calculate the co-ordinates of vertices of fo the meta-pupil at altitude given a guide star
direction and source altitude

	Paramters:

	layer_altitude (float): Altitude of phase layer

	
frame(scrns=None, correction=None)

	Runs one frame through a line of sight

Finds the phase or complex amplitude through line of sight for a
single simulation frame, with a given set of phase screens and
some optional correction.

	Parameters:	
	scrns (list) – A list or dict containing the phase screens

	correction (ndarray, optional) – The correction term to take from the phase screens before the WFS is run.

	read (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Should the WFS be read out? if False, then WFS image is calculated but slopes not calculated. defaults to True.

	Returns:	WFS Measurements

	Return type:	ndarray

	
height

	

	
makePhase(radii=None, apos=None)

	Generates the required phase or EField. Uses difference approach depending on whether propagation is geometric or physical
(makePhaseGeometric or makePhasePhys respectively)

	Parameters:	
	radii (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – Radii of each meta pupil of each screen height in pixels. If not given uses pupil radius.

	apos (ndarray, optional) – The angular position of the GS in radians. If not set, will use the config position

	
makePhaseGeometric(radii=None, apos=None)

	Creates the total phase along line of sight offset by a given angle using a geometric ray tracing approach

	Parameters:	
	radii (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – Radii of each meta pupil of each screen height in pixels. If not given uses pupil radius.

	apos (ndarray, optional) – The angular position of the GS in radians. If not set, will use the config position

	
makePhasePhys(radii=None, apos=None)

	Finds total line of sight complex amplitude by propagating light through phase screens

	Parameters:	
	radii (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – Radii of each meta pupil of each screen height in pixels. If not given uses pupil radius.

	apos (ndarray, optional) – The angular position of the GS in radians. If not set, will use the config position

	
performCorrection(correction)

	Corrects the aberrated line of sight with some given correction phase

	Parameters:	correction (list or ndarray) – either 2-d array describing correction, or list of correction arrays

	
position

	

	
zeroData(**kwargs)

	Sets the phase and complex amp data to zero

	
soapy.lineofsight.physical_atmosphere_propagation(phase_screens, output_mask, layer_altitudes, source_altitude, wavelength, output_pixel_scale, propagation_direction='up')

	Finds total line of sight complex amplitude by propagating light through phase screens

	Parameters:	
	radii (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – Radii of each meta pupil of each screen height in pixels. If not given uses pupil radius.

	apos (ndarray, optional) – The angular position of the GS in radians. If not set, will use the config position

Wave-front Sensors

WFS Module

The Soapy WFS module.

This module contains a number of classes which simulate different adaptive optics wavefront sensor (WFS) types. All wavefront sensor classes can inherit from the base WFS class. The class provides the methods required to calculate phase over a WFS pointing in a given WFS direction and accounts for Laser Guide Star (LGS) geometry such as cone effect and elongation. This is If only pupil images (or complex amplitudes) are required, then this class can be used stand-alone.

Example

Make configuration objects:

from soapy import WFS, confParse

config = confParse.Configurator("config_file.py")
config.loadSimParams()

Initialise the wave-front sensor:

wfs = WFS.WFS(config, 0 mask)

Set the WFS scrns (these should be made in advance, perhaps by the soapy.atmosphere module). Then run the WFS:

wfs.scrns = phaseScrnList
wfs.makePhase()

Now you can view data from the WFS frame:

frameEField = wfs.EField

A Shack-Hartmann WFS is also included in the module, this contains further methods to make the focal plane, then calculate the slopes to send to the reconstructor.

Example

Using the config objects from above...:

shWfs = WFS.ShackHartmann(config, 0, mask)

As we are using a full WFS with focal plane making methods, the WFS base classes frame method can be used to take a frame from the WFS:

slopes = shWfs.frame(phaseScrnList)

All the data from that WFS frame is available for inspection. For instance, to obtain the electric field across the WFS and the image seen by the WFS detector:

EField = shWfs.EField
wfsDetector = shWfs.wfsDetectorPlane

Adding new WFSs

New WFS classes should inherit the WFS class, then create methods which deal with creating the focal plane and making a measurement from it. To make use of the base-classes frame method, which will run the WFS entirely, the new class must contain the following methods:

calcFocalPlane(self)
makeDetectorPlane(self)
calculateSlopes(self)

The Final calculateSlopes method must set self.slopes to be the measurements made by the WFS. If LGS elongation is to be used for the new WFS, create a detectorPlane, which is added to for each LGS elongation propagation. Have a look at the code for the Shack-Hartmann and experimental Pyramid WFSs to get some ideas on how to do this.

	Author:	Andrew Reeves

Base WFS Class

	
class soapy.wfs.base.WFS(soapy_config, n_wfs=0, mask=None)

	A WFS class.

This is a base class which contains methods to initialise the WFS,
and calculate the phase across the WFSs input aperture, given the WFS
guide star geometry.

	Parameters:	
	soapy_config (ConfigObj) – The soapy configuration object

	nWfs (int [https://docs.python.org/2/library/functions.html#int]) – The ID number of this WFS

	mask (ndarray, optional) – An array or size (simConfig.simSize, simConfig.simSize) which is 1 at the telescope aperture and 0 else-where.

	
addPhotonNoise()

	Add photon noise to wfsDetectorPlane using numpy.random.poisson

	
addReadNoise()

	Adds read noise to wfsDetectorPlane using ``numpy.random.normal.
This generates a normal (guassian) distribution of random numbers to
add to the detector. Any CCD bias is assumed to have been removed, so
the distribution is centred around 0. The width of the distribution
is determined by the value eReadNoise set in the WFS configuration.

	
calcElongPhaseAddition(elongLayer)

	Calculates the phase required to emulate layers on an elongated source

For each ‘elongation layer’ a phase addition is calculated which
accounts for the difference in height from the nominal GS height where
the WFS is focussed, and accounts for the tilt seen if the LGS is
launched off-axis.

	Parameters:	elongLayer (int [https://docs.python.org/2/library/functions.html#int]) – The number of the elongation layer

	Returns:	The phase addition required for that layer.

	Return type:	ndarray

	
calcElongPos(elongLayer)

	Calculates the difference in GS position for each elongation layer
only makes a difference if LGS launched off-axis

	Parameters:	elongLayer (int [https://docs.python.org/2/library/functions.html#int]) – which elongation layer

	Returns:	The effective position of that layer GS on the simulation phase grid

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

	
frame(scrns, phase_correction=None, read=True, iMatFrame=False)

	Runs one WFS frame

Runs a single frame of the WFS with a given set of phase screens and
some optional correction. If elongation is set, will run the phase
calculating and focal plane making methods multiple times for a few
different heights of LGS, then sum these onto a wfsDetectorPlane.

	Parameters:	
	scrns (list) – A list or dict containing the phase screens

	correction (ndarray, optional) – The correction term to take from the phase screens before the WFS is run.

	read (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Should the WFS be read out? if False, then WFS image is calculated but slopes not calculated. defaults to True.

	iMatFrame (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True, will assume an interaction matrix is being measured. Turns off some AO loop features before running

	Returns:	WFS Measurements

	Return type:	ndarray

	
initLGS()

	Initialises the LGS objects for the WFS

Creates and initialises the LGS objects if the WFS GS is a LGS. This
included calculating the phases additions which are required if the
LGS is elongated based on the depth of the elongation and the launch
position. Note that if the GS is at infinity, elongation is not possible
and a warning is logged.

	
initLos()

	Initialises the LineOfSight object, which gets the phase or EField in a given direction through turbulence.

	
makeElongationFrame(correction=None)

	Find the focal plane resulting from an elongated guide star, such as LGS.

Runs the phase stacking and propagation routines multiple times with different GS heights, positions and/or aberrations to simulation the effect of a number of points in an elongation guide star.

	
setMask(mask)

	Sets the pupil mask as seen by the WFS.

This method can be called during a simulation

	
class soapy.wfs.shackhartmann.ShackHartmann(soapy_config, n_wfs=0, mask=None)

	Class to simulate a Shack-Hartmann WFS

	
addPhotonNoise()

	Add photon noise to wfsDetectorPlane using numpy.random.poisson

	
addReadNoise()

	Adds read noise to wfsDetectorPlane using ``numpy.random.normal.
This generates a normal (guassian) distribution of random numbers to
add to the detector. Any CCD bias is assumed to have been removed, so
the distribution is centred around 0. The width of the distribution
is determined by the value eReadNoise set in the WFS configuration.

	
allocDataArrays()

	Allocate the data arrays the WFS will require

Determines and allocates the various arrays the WFS will require to
avoid having to re-alloc memory during the running of the WFS and
keep it fast.

	
applyLgsUplink()

	A method to deal with convolving the LGS PSF
with the subap focal plane.

	
calcFocalPlane(intensity=1)

	Calculates the wfs focal plane, given the phase across the WFS

	Parameters:	intensity (float [https://docs.python.org/2/library/functions.html#float]) – The relative intensity of this frame, is used when multiple WFS frames taken for extended sources.

	
calcInitParams()

	Calculate some parameters to be used during initialisation

	
calcTiltCorrect()

	Calculates the required tilt to add to avoid the PSF being centred on
only 1 pixel

	
calculateSlopes()

	Calculates WFS slopes from wfsFocalPlane

	Returns:	array of all WFS measurements

	Return type:	ndarray

	
findActiveSubaps()

	Finds the subapertures which are not empty space
determined if mean of subap coords of the mask is above threshold.

	
getStatic()

	Computes the static measurements, i.e., slopes with flat wavefront

	
initFFTs()

	Initialise the FFT Objects required for running the WFS

Initialised various FFT objects which are used through the WFS,
these include FFTs to calculate focal planes, and to convolve LGS
PSFs with the focal planes

	
initLos()

	Initialises the LineOfSight object, which gets the phase or EField in a given direction through turbulence.

	
makeDetectorPlane()

	Scales and bins intensity data onto the detector with a given number of
pixels.

If required, will first convolve final PSF with LGS PSF, then bin
PSF down to detector size. Finally puts back into wfsFocalPlane
array in correct order.

	
zeroData(detector=True, FP=True)

	Sets data structures in WFS to zero.

	Parameters:	
	detector (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Zero the detector? default:True

	FP (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Zero intermediate focal plane arrays? default: True

Deformable Mirrors

The module simulating Deformable Mirrors in Soapy

DMs in Soapy

DMs are represented in Soapy by python objects which are initialised at startup
with some configuration parameters given, as well as a list of one or more
WFS objects which can be used to measure an interaction matrix.

Upon creation of an interaction matrix, the object first generations all the
possible independant shapes which the DM may form, known as “influence functions”.
Then each influence function is passed to the specified WFS(s) and the response
noted to form an interaction matrix. The interaction matrix may then be used
to forma reconstructor.

During the AO loop, commands corresponding to the required amplitude of each
DM influence function are sent to the DM.dmFrame() method, which
returns an array representing the DMs shape.

Adding New DMs

New DMs are easy to add into the simulation. At its simplest, the DM
class is inherited by the new DM class. Only a ``makeIMatShapes` method need be provided,
which creates the independent influence function the DM can make. The
base class deals with the rest, including making interaction matrices and loop
operation.

Base DM Class

	
class soapy.DM.DM(soapy_config, n_dm=0, wfss=None, mask=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

The base DM class

This class is intended to be inherited by other DM classes which describe
real DMs. It provides methods to create DM shapes and then interaction matrices,
given a specific WFS or WFSs.

	Parameters:	
	soapy_config (ConfigObj) – The soapy configuration object

	n_dm (int [https://docs.python.org/2/library/functions.html#int]) – The ID number of this DM

	wfss (list, optional) – A list of Soapy WFS object with which to record the interaction matrix

	mask (ndarray, optional) – An array or size (simConfig.simSize, simConfig.simSize) which is 1 at the telescope aperture and 0 else-where. If None then a circle is generated.

	
dmFrame(dmCommands)

	Uses DM commands to calculate the final DM shape.

Multiplies each of the DM influence functions by the
corresponding DM command, then sums to create the final DM shape.
Lastly, the mean value is subtracted to avoid piston terms building up.

	Parameters:	
	dmCommands (ndarray) – A 1-dimensional vector of the multiplying factor of each DM influence function

	closed (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Specifies how to great gain. If ``True’’ (closed) then ``dmCommands’’ are multiplied by gain and summed with previous commands. If ``False’’ (open), then ``dmCommands’’ are multiplied by gain, and summed withe previous commands multiplied by (1-gain).

	Returns:	A 2-d array with the DM shape

	Return type:	ndarray

	
getActiveActs()

	Method returning the total number of actuators used by the DM - May be overwritten in DM classes

	Returns:	number of active DM actuators

	Return type:	int [https://docs.python.org/2/library/functions.html#int]

	
makeIMatShapes()

	Virtual method to generate the DM influence functions

Real DM Classes

	
class soapy.DM.TT(soapy_config, n_dm=0, wfss=None, mask=None)

	Bases: soapy.DM.DM

A class representing a tip-tilt mirror.

This can be used as a tip-tilt mirror, it features two actuators, where each
influence function is simply a tip and a tilt.

	
getActiveActs()

	Returns the number of active actuators on the DM. Always 2 for a TT.

	
makeIMatShapes()

	Forms the DM influence functions, in this case just a tip and a tilt.

	
class soapy.DM.Zernike(soapy_config, n_dm=0, wfss=None, mask=None)

	Bases: soapy.DM.DM

A DM which corrects using a provided number of Zernike Polynomials

	
makeIMatShapes()

	Creates all the DM shapes which are required for creating the
interaction Matrix. In this case, this is a number of Zernike Polynomials

	
class soapy.DM.Piezo(soapy_config, n_dm=0, wfss=None, mask=None)

	Bases: soapy.DM.DM

A DM emulating a Piezo actuator style stack-array DM.

This class represents a standard stack-array style DM with push-pull actuators
behind a continuous phase sheet. The number of actuators is given in the
configuration file.

Each influence function is created by started with an N x N grid of zeros,
where N is the number of actuators in one direction, and setting a single
value to 1, which corresponds with a “pushed” actuator. This grid is then
interpolated up to the pupilSize, to form the shape of the DM when that
actuator is activated. This is repeated for all actuators.

	
getActiveActs()

	Finds the actuators which will affect phase whithin the pupil to avoid
reconstructing for redundant actuators.

	
makeIMatShapes()

	Generate Piezo DM influence functions

Generates the shape of each actuator on a Piezo stack DM
(influence functions). These are created by interpolating a grid
on the size of the number of actuators, with only the ‘poked’
actuator set to 1 and all others set to zero, up to the required
simulation size. This grid is actually padded with 1 extra actuator
spacing to avoid strange edge effects.

	
class soapy.DM.GaussStack(soapy_config, n_dm=0, wfss=None, mask=None)

	Bases: soapy.DM.Piezo

A Stack Array DM where each influence function is a 2-D Gaussian shape.

This class represents a Stack-Array DM, similar to the Piezo DM,
where each influence function is a 2-dimensional Gaussian function. Though
not realistic, it provides a known influence function which can be useful
for some analysis.

	
makeIMatShapes()

	Generates the influence functions for the GaussStack DM.

Creates a number of Guassian distributions which are centred at points
across the pupil to act as DM influence functions. The width of the
guassian is determined from the configuration file.

Laser Guide Stars

Classes simulating Laser guide stars - usually contained by a WFS object.

soapy.LGS module

	
class soapy.LGS.LGS(wfsConfig, soapyConfig, nOutPxls=None, outPxlScale=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

A class to simulate the propogation of a laser up through turbulence.
Given a set of phase screens, this will return the PSF which would be present on-sky.

	Parameters:	
	simConfig – The Soapy simulation config

	wfsConfig – The relavent Soapy WFS configuration

	atmosConfig – The relavent Soapy atmosphere configuration

	nOutPxls (int [https://docs.python.org/2/library/functions.html#int]) – Number of pixels required in output LGS

	outPxlScale (float [https://docs.python.org/2/library/functions.html#float]) – The pixel scale of the output LGS PSF in arcsecs per pixel

	
calcInitParams()

	

	
getLgsPsf(scrns)

	

	
initFFTs()

	Virtual Method as many LGS implentations will require extra FFTs

	
initLos()

	Initialises the LineOfSight object, which gets the phase or EField in a given direction through turbulence.

	
class soapy.LGS.LGS_Geometric(wfsConfig, soapyConfig, nOutPxls=None, outPxlScale=None)

	Bases: soapy.LGS.LGS

A class to simulate the propogation of a laser up through turbulence using a geometric algorithm.
Given a set of phase screens, this will return the PSF which would be present on-sky.

	Parameters:	
	simConfig – The Soapy simulation config

	wfsConfig – The relavent Soapy WFS configuration

	atmosConfig – The relavent Soapy atmosphere configuration

	nOutPxls (int [https://docs.python.org/2/library/functions.html#int]) – Number of pixels required in output LGS

	outPxlScale (float [https://docs.python.org/2/library/functions.html#float]) – The pixel scale of the output LGS PSF in arcsecs per pixel

	
calcInitParams()

	Calculate some useful paramters to be used later

	
getLgsPsf(scrns)

	

	
initFFTs()

	

	
class soapy.LGS.LGS_Physical(wfsConfig, soapyConfig, nOutPxls=None, outPxlScale=None)

	Bases: soapy.LGS.LGS

A class to simulate the propogation of a laser up through turbulence using a geometric algorithm.
Given a set of phase screens, this will return the PSF which would be present on-sky.

	Parameters:	
	simConfig – The Soapy simulation config

	wfsConfig – The relavent Soapy WFS configuration

	atmosConfig – The relavent Soapy atmosphere configuration

	nOutPxls (int [https://docs.python.org/2/library/functions.html#int]) – Number of pixels required in output LGS

	outPxlScale (float [https://docs.python.org/2/library/functions.html#float]) – The pixel scale of the output LGS PSF in arcsecs per pixel

	
calcInitParams()

	Calculate some useful paramters to be used later

	
getLgsPsf(scrns=None)

	Return the LGS PSF to be used in WFS calculation

	
soapy.LGS.lgsOALaunchMetaPupilPos(gsPos, launchPos, lgsHt, layerHt)

	Finds the centre of a meta-pupil in the atmosphere sampled by an LGS launched from a position off-axis from the centre of the telescope.

	Parameters:	
	gsPos (ndarray) – The X,Y position of the guide star in arcsecs

	launchPos (ndarray) – The X, Y launch position of the telescope in metres from the telescope centre

	lgsHt (float [https://docs.python.org/2/library/functions.html#float]) – The altitude of the LGS beacon

	layerHt (float [https://docs.python.org/2/library/functions.html#float]) – The height of the meta-pupil of interest

	Returns:	Position in X,Y from the on-axis line-of-sight of the meta-pupil centre.

	Return type:	ndarray

Reconstructors

Classes simulating AO reconstructors.

soapy.RECON module

Science Camera

A science camera class to measure system performance

soapy.SCI module

	
class soapy.SCI.PSF(soapyConfig, nSci=0, mask=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
calcFocalPlane()

	Takes the calculated pupil phase, scales for the correct FOV,
and uses an FFT to transform to the focal plane.

	
calcInstStrehl()

	Calculates the instantaneous Strehl, including TT if configured.

	
calc_wavefronterror()

	Calculates the wavefront error across the telescope pupil

	Returns:	RMS WFE across pupil in nm

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

	
frame(scrns, correction=None)

	Runs a single science camera frame with one or more phase screens

	Parameters:	
	scrns (ndarray, list, dict [https://docs.python.org/2/library/stdtypes.html#dict]) – One or more 2-d phase screens. Phase in units of nm.

	phaseCorrection (ndarray) – Correction phase in nm

	Returns:	Resulting science PSF

	Return type:	ndarray

	
setMask(mask)

	Sets the pupil mask as seen by the WFS.

This method can be called during a simulation

	
soapy.SCI.ScienceCam

	alias of PSF

	
soapy.SCI.scienceCam

	alias of PSF

	
class soapy.SCI.singleModeFibre(soapyConfig, nSci=0, mask=None)

	Bases: soapy.SCI.PSF

	
calcInstStrehl()

	

	
fibreEfield(size)

	

	
refCouplingLoss(size)

	

Utilities

Modules containing some functions and classes commonly used throughout the simulation.

soapy.logger module

A module to provide a common logging interface for all simulation code.

Contains a Logger object, which can either, print information, save to file
or both. The verbosity can also be adjusted between 0 and 3, where all is logged when verbosity is 3, debugging and warning information is logged when verbosity is 2, warnings logged when verbosity is 1 and nothing is logged when verbosity is 0.

	
soapy.logger.debug(message)

	Logs messages if debug level is 3. Intended for very detailed debugging information.

	Parameters:	message (string [https://docs.python.org/2/library/string.html#module-string]) – The message to log

	
soapy.logger.info(message)

	Logs message if verbosity is 2 or higher. Useful for information which is not vital, but good to know.

	Parameters:	message (string [https://docs.python.org/2/library/string.html#module-string]) – The message to log

	
soapy.logger.print_(message)

	Always logs message, regardless of verbosity level

	Parameters:	message (str [https://docs.python.org/2/library/functions.html#str]) – The message to log

	
soapy.logger.setLoggingFile(logFile)

	

	
soapy.logger.setLoggingLevel(level)

	sets which messages are printed from logger.

if logging level is set to 0, nothing is printed. if set to 1, only
warnings are printed. if set to 2, warnings and info is printed. if set
to 3 detailed debugging info is printed.

	Parameters:	level (int [https://docs.python.org/2/library/functions.html#int]) – the desired logging level

	
soapy.logger.setStatusFunc(func)

	

	
soapy.logger.statusMessage(i, maxIter, message)

	

	
soapy.logger.warning(message)

	Logs messages if debug level is 1 or over. Intended for warnings

	Parameters:	message (string [https://docs.python.org/2/library/string.html#module-string]) – The message to log

soapy.AOFFT module

A Module to perform FFTs, wrapping a variety of FFT Backends in a common
interface.
Currently supports either pyfftw (requires FFTW3),
the scipy fftpack or some GPU algorithms

	
class soapy.AOFFT.Convolve(shape1, shape2=None, mode='pyfftw', fftw_FLAGS=('FFTW_MEASURE',), threads=0, axes=(-2, -1))

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
class soapy.AOFFT.FFT(inputSize, axes=(-1,), mode='pyfftw', dtype='complex64', direction='FORWARD', fftw_FLAGS=('FFTW_MEASURE', 'FFTW_DESTROY_INPUT'), THREADS=None, loggingLevel=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Class for performing FFTs in a variety of ways, with the same API.

Once the class has been initialised, FFTs going in the same direction and
using the same padding size can be performed with re-initialising. The
inputSize set is actually the padding size, any array smaller than this can
then be transformed.

Usually, its best to best to pass the data when performing the fft, either
calling the class directly (fftobj(fftData)) or calling the fft method of the
class. If though, you’re certain the array to transform is C-contiguous,
and its size is the same as inputSize, then you can set:

fftObj.inputData = fftData

then:

outputData = fftObj()

where fftData is the data to be transformed. This is faster, as it avoids
an array copying operation, but is dangerous as the FFT may fail if the
input data is not correct.

	Parameters:	
	inputSize (tuple [https://docs.python.org/2/library/functions.html#tuple]) – The size of the input array, including any padding

	axes (tuple [https://docs.python.org/2/library/functions.html#tuple], optional) – The axes to transform. defaults to the last.

	mode (string [https://docs.python.org/2/library/string.html#module-string], optional) – Which FFT library to use, can by 'pyfftw', 'scipy' or 'gpu'. Defaults to 'pyfftw'.

	dtype (str [https://docs.python.org/2/library/functions.html#str], optional) – The data type to transform, defaults to 'complex64'

	direction (str [https://docs.python.org/2/library/functions.html#str], optional) – Forward or inverse FFT. Either FORWARD or BACKWARD. Default is FORWARD.

	THREADS (int [https://docs.python.org/2/library/functions.html#int], optional) – Number of threads to use for FFT. Defualt is 1

	
fft(data=None)

	Perform the fft of data.

	Parameters:	data (ndarray, optional) – The data to transform. Optional as sometimes it can be faster to access inputData directly, though if and only if the data will be c-contiguous.

	Returns:	The transformed data

	Return type:	ndarray

	
soapy.AOFFT.convolve(img1, img2, mode='pyfftw', fftw_FLAGS=('FFTW_MEASURE',), threads=0)

	Convolves two, 2-dimensional arrays
Uses the AOFFT library to do fast convolution of 2, 2-dimensional numpy ndarrays. The FFT mode, and some parameters can be set in the arguments.
:param img1: 1st array to be convolved
:type img1: ndarray
:param img2: 2nd array to be convolved
:type img2: ndarray
:param mode: The fft mode used, defaults to fftw
:type mode: string, optional
:param fftw_FLAGS: flags for fftw, defaults to (“FFTW_MEASURE”,)
:type fftw_FLAGS: tuple, optional
:param threads: Number of threads used if mode is fftw
:type threads: int, optional

	Returns:	The convolved 2-dimensional array

	Return type:	ndarray

	
soapy.AOFFT.ftShift2d(inputData, outputData=None)

	Helper function to shift an array of 2-D FFT data

	Parameters:	
	inputData (ndarray) – array of data to be shifted. Will shift final 2 axes

	outputData (ndarray, optional) – array to place data. If not given, will overwrite inputData

	
class soapy.AOFFT.mpFFT(inputSize, axes=(-1,), mode='pyfftw', dtype='complex64', direction='FORWARD', fftw_FLAGS=('FFTW_MEASURE',), processes=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Class to perform FFTs on a large number of problems, using the FFT class, and seperate processes for different problems.
The input array will be split in the 0 axis onto different processes

	
doMpFFT(fftObj, data, Q)

	

	
fft()

	

soapy.aoSimLib module

soapy.opticalPropagationLib module

soapy.confParse module

A module to generate configuration objects for Soapy, given a parameter file.

This module defines a number of classes, which when instantiated, create objects used to configure the entire simulation, or just submodules. All configuration objects are stored in the Configurator object which deals with loading parameters from file, checking some potential conflicts and using parameters to calculate some other parameters used in parts of the simulation.

The ConfigObj provides a base class used by other module configuration objects, and provides methods to read the parameters from the dictionary read from file, and set defaults if appropriate. Each other module in the system has its own configuration object, and for components such as wave-front sensors (WFSs), Deformable Mirrors (DMs), Laser Guide Stars (LGSs) and Science Cameras, lists of the config objects for each component are created.

	
class soapy.confParse.AtmosConfig(N=None)

	Bases: soapy.confParse.ConfigObj

Configuration parameters characterising the atmosphere. These should be held in the Atmosphere group in the parameter file.

	Required:

	

	Parameter
	Description

	scrnNo
	int: Number of turbulence layers

	scrnHeights
	list, int: Phase screen heights in metres

	scrnStrength
	list, float: Relative layer scrnStrength

	windDirs
	list, float: Wind directions in degrees.

	windSpeeds
	list, float: Wind velocities in m/s

	r0
	float: integrated seeing strength
(metres at 500nm)

	Optional:

	

	Parameter
	Description
	Default

	scrnNames
	list, string: filenames of phase
if loading from fits files. If
None will make new screens.
	None

	subHarmonics
	bool: Use sub-harmonic screen
generation algorithm for better
tip-tilt statistics - useful
for small phase screens.
	False

	L0
	list, float: Outer scale of each
layer. Kolmogorov turbulence if
None.
	None

	randomScrns
	bool: Use a random set of phase
phase screens for each loop
iteration?
	False

	infinite
	bool: Use infinite phase screens?
	False

	tau0
	float: Turbulence coherence time,
if set wind speeds are scaled.
	None

	wholeScrnSize
	int: Size of the phase screens
to store in the atmosphere
object. Required if large screens
used.
	None

	
allowedAttrs = ['scrnNo', 'scrnHeights', 'scrnStrengths', 'r0', 'windDirs', 'windSpeeds', 'normScrnStrengths', 'N', 'scrnNames', 'subHarmonics', 'L0', 'randomScrns', 'tau0', 'infinite', 'wholeScrnSize']

	

	
calcParams()

	

	
calculatedParams = ['normScrnStrengths']

	

	
optionalParams = [('scrnNames', None), ('subHarmonics', False), ('L0', None), ('randomScrns', False), ('tau0', None), ('infinite', False), ('wholeScrnSize', None)]

	

	
p = ('wholeScrnSize', None)

	

	
requiredParams = ['scrnNo', 'scrnHeights', 'scrnStrengths', 'r0', 'windDirs', 'windSpeeds']

	

	
class soapy.confParse.ConfigObj(N=None)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
calcParams()

	Dummy method to be overidden if required

	
initParams()

	

	
loadParams(configDict)

	

	
warnAndDefault(param, newValue)

	

	
warnAndExit(param)

	

	
exception soapy.confParse.ConfigurationError

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

	
soapy.confParse.Configurator

	alias of PY_Configurator

	
class soapy.confParse.DmConfig(N=None)

	Bases: soapy.confParse.ConfigObj

Configuration parameters characterising Deformable Mirrors. These should be held in the DM sub-group of the parameter file. Each DM is specified seperately, by first specifying an index, then the DM parameters. Any entries above sim.nGS will be ignored.

	Required:

	

	Parameter
	Description

	type
	string: Type of DM. This must the name of a
class in the DM module.

	nxActuators
	int: Number independent DM shapes. e.g., for
stack-array DMs this is number of actuators in
one dimension,
for Zernike DMs this is number of Zernike
modes.

	gain
	float: The loop gain for the DM.**

	svdConditioning
	float: The conditioning parameter used in the
pseudo inverse of the interaction matrix. This
is performed by numpy.linalg.pinv [http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.pinv.html].

	Optional:

	

	
allowedAttrs = ['type', 'N', 'nxActuators', 'svdConditioning', 'gain', 'closed', 'iMatValue', 'wfs', 'rotation', 'interpOrder', 'gaussWidth', 'altitude', 'diameter', 'gauss_width']

	

	
calcParams()

	

	
calculatedParams = []

	

	
optionalParams = [('nxActuators', None), ('svdConditioning', 0), ('gain', 0.6), ('closed', True), ('iMatValue', 10), ('wfs', None), ('rotation', 0), ('interpOrder', 2), ('gaussWidth', 0.5), ('altitude', 0.0), ('diameter', None), ('gauss_width', 0.7)]

	

	
p = ('gauss_width', 0.7)

	

	
requiredParams = ['type']

	

	
class soapy.confParse.LgsConfig(N=None)

	Bases: soapy.confParse.ConfigObj

Configuration parameters characterising the Laser Guide Stars. These should be held in the LGS sub-group of the WFS parameter group.

	Optional:

	

	Parameter
	Description
	Default

	uplink
	bool: Include LGS uplink effects
	False

	pupilDiam
	float: Diameter of LGS launch
aperture in metres.
	0.3

	wavelength
	float: Wavelength of laser beam
in metres
	600e-9

	propagationMode
	str: Mode of light propogation
from GS. Can be “Physical” or
“Geometric”.
	"Phsyical"

	height
	float: Height to use physical
propogation of LGS (does not
effect cone-effect) in metres
	90000

	elongationDepth
	float:
Depth of LGS elongation in metres
	0

	elongationLayers
	int:
Number of layers to simulate for
elongation.
	10

	launchPosition
	tuple: The launch position of
the LGS in units of the pupil
radii, where (0,0) is the
centre launched case, and
(1,0) is side-launched.
	(0,0)

	fftwThreads
	int: number of threads for fftw
to use. If 0, will use
system processor number.
	1

	fftwFlag
	str: Flag to pass to FFTW
when preparing plan.
	FFTW_PATIENT

	naProfile
	list: The relative sodium layer
strength for each elongation
layer. If None, all equal.
	None

	
allowedAttrs = ['position', 'N', 'uplink', 'pupilDiam', 'wavelength', 'propagationMode', 'height', 'fftwFlag', 'fftwThreads', 'elongationDepth', 'elongationLayers', 'launchPosition', 'naProfile']

	

	
calcParams()

	

	
calculatedParams = ['position']

	

	
optionalParams = [('uplink', False), ('pupilDiam', 0.3), ('wavelength', 6e-07), ('propagationMode', 'Physical'), ('height', 90000), ('fftwFlag', 'FFTW_PATIENT'), ('fftwThreads', 0), ('elongationDepth', 0), ('elongationLayers', 10), ('launchPosition', array([0, 0])), ('naProfile', None)]

	

	
p = ('naProfile', None)

	

	
requiredParams = []

	

	
class soapy.confParse.PY_Configurator(filename)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

The configuration class holding all simulation configuration information

This class is used to load the parameter dictionary from file, instantiate each configuration object and calculate some other parameters from the parameters given.

The configuration file given to this class must contain a python dictionary, named simConfiguration. This must contain other dictionaries for each sub-module of the system, Sim, Atmosphere, Telescope, WFS, LGS, DM, Science. For the final 4 sub-dictionaries, each entry must be formatted as a list (or numpy array) where each value corresponds to that component.

The number of components on the module will only depend on the number set in the Sim dict. For example, if nGS is set to 2 in Sim, then in the WFS dict, each parameters must have at least 2 entries, e.g. subaps : [10,10]. If the parameter has more than 2 entries, then only the first 2 will be noted and any others discarded.

Descriptions of the available parameters for each sub-module are given in that that config classes documentation

	Parameters:	filename (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the configuration file

	
calcParams()

	Calculates some parameters from the configuration parameters.

	
loadSimParams()

	

	
readfile()

	

	
class soapy.confParse.ReconstructorConfig(N=None)

	Bases: soapy.confParse.ConfigObj

Configuration parameters describing the reconstructor that will be used to calculate
DM commands from WFS measurements. The type must be an object in the soapy.reconstruction
module. Other parameters may be specific to this reconstructor

	Optional:

	

	Parameter
	Description
	Default

	type
	string: Type of reconstructor to
use. Must be a class in
reconstruction module.
	MVM

	svdConditioning
	float: Conditioning parameter to
be using in Least Squares
reconstructor inversion SVD to
cut off unwanted DM modes. See
numpy.linalg.pinv for details
about the inversion.
	0

	gain
	float: Gain of the integrator
loop.
	0.6

	imat_noise
	bool: include WFS noise when
making in interaction matrix
	True

	
allowedAttrs = ['N', 'type', 'svdConditioning', 'gain', 'imat_noise']

	

	
calculatedParams = []

	

	
optionalParams = [('type', 'MVM'), ('svdConditioning', 0.0), ('gain', 0.6), ('imat_noise', True)]

	

	
p = ('imat_noise', True)

	

	
requiredParams = []

	

	
class soapy.confParse.SciConfig(N=None)

	Bases: soapy.confParse.ConfigObj

Configuration parameters characterising Science Cameras.

These should be held in the Science of the parameter file.
Each Science target is created seperately with an integer index.
Any entries above sim.nSci will be ignored.

	Required:

	

	Parameter
	Description

	position
	tuple: The position of the science camera
in the field in arc-seconds

	FOV
	float: The field of fiew of the science
detector in arc-seconds

	wavelength
	float: The wavelength of the science
detector light

	pxls
	int: Number of pixels in the science detector

	Optional:

	

	Parameter
	Description
	Default

	pxlScale
	float: Pixel scale of science
camera, in arcseconds. If set,
overwrites FOV.
	None

	type
	string: Type of science camera
This must the name of a class
in the SCI module.
	PSF

	fftOversamp
	int: Multiplied by the number of
of phase points required for FOV
to increase fidelity from FFT.
	2

	fftwThreads
	int: number of threads for fftw
to use. If 0, will use
system processor number.
	1

	fftwFlag
	str: Flag to pass to FFTW
when preparing plan.
	FFTW_MEASURE

	height
	float: Altitude of the object.
0 denotes infinity.
	0

	propagationMode
	str: Mode of light propogation
from object. Can be “Physical” or
“Geometric”.
	"Geometric"

	instStrehlWithTT
	bool: Whether or not to include
tip/tilt in instantaneous Strehl
calculations.
	False

	
allowedAttrs = ['position', 'wavelength', 'pxls', 'N', 'pxlScale', 'FOV', 'type', 'fftOversamp', 'fftwFlag', 'fftwThreads', 'instStrehlWithTT', 'height', 'propagationMode']

	

	
calcParams()

	

	
calculatedParams = []

	

	
optionalParams = [('pxlScale', None), ('FOV', None), ('type', 'PSF'), ('fftOversamp', 2), ('fftwFlag', 'FFTW_MEASURE'), ('fftwThreads', 1), ('instStrehlWithTT', False), ('height', 0), ('propagationMode', 'Geometric')]

	

	
p = ('propagationMode', 'Geometric')

	

	
requiredParams = ['position', 'wavelength', 'pxls']

	

	
class soapy.confParse.SimConfig(N=None)

	Bases: soapy.confParse.ConfigObj

Configuration parameters relavent for the entire simulation. These should be held at the beginning of the parameter file with no indendation.

	Required:

	

	Parameter
	Description

	pupilSize
	int: Number of phase points across the simulation pupil

	nIters
	int: Number of iteration to run simulation

	loopTime
	float: Time between simulation frames (1/framerate)

	Optional:

	

	Parameter
	Description
	Default

	nGS
	int: Number of Guide Stars and
WFS
	0

	nDM
	int: Number of deformable Mirrors
	0

	nSci
	int: Number of Science Cameras
	0

	reconstructor
	str: name of reconstructor
class to use. See
reconstructor module
for available reconstructors.
	"MVM"

	simName
	str: directory name to store
simulation data
	None

	wfsMP
	bool: Each WFS uses its own
process
	False

	verbosity
	int: debug output for the
simulation ranging from 0
(no-ouput) to 3 (all debug
output)
	2

	logfile
	str: name of file to store
logging data,
	None

	learnIters
	int: Number of learn iterations
for Learn & Apply reconstructor
	0

	learnAtmos
	str: if random, then
random phase screens used for
learn
	random

	simOversize
	float: The fraction to pad the
pupil size with to reduce edge
effects
	1.2

	loopDelay
	int: loop delay in integer count
of loopTime
	0

	threads
	int: Number of threads to use
for multithreaded operations
	1

	photometric_zp
	float: Photometric zeropoint -
number of photons/meter/second
from a magnitude 0 star
	2e9

	Data Saving (all default to False):

	

	Parameter
	Description

	saveSlopes
	Save all WFS slopes. Accessed from sim with
sim.allSlopes

	saveDmCommands
	Saves all DM Commands. Accessed from sim
with sim.allDmCommands

	saveWfsFrames
	Saves all WFS pixel data. Saves to disk a
after every frame to avoid using too much
memory

	saveStrehl
	Saves the science camera Strehl Ratio.
Accessed from sim with sim.longStrehl
and sim.instStrehl

	saveWfe
	Saves the science camera wave front error.
Accessed from sim with sim.WFE.

	saveSciPsf
	Saves the science PSF.

	saveInstPsf
	Saves the instantenous science PSF.

	saveInstScieField
	Saves the instantaneous electric field at focal plane.

	saveSciRes
	Save Science residual phase

	
allowedAttrs = ['pupilSize', 'nIters', 'loopTime', 'pxlScale', 'simPad', 'simSize', 'scrnSize', 'totalWfsData', 'totalActs', 'saveHeader', 'N', 'nGS', 'nDM', 'nSci', 'gain', 'reconstructor', 'simName', 'saveSlopes', 'saveDmCommands', 'saveLgsPsf', 'saveLearn', 'saveStrehl', 'saveWfsFrames', 'saveSciPsf', 'saveInstPsf', 'saveInstScieField', 'saveWfe', 'saveSciRes', 'wfsMP', 'verbosity', 'logfile', 'learnIters', 'learnAtmos', 'simOversize', 'loopDelay', 'threads', 'photometric_zp']

	

	
calculatedParams = ['pxlScale', 'simPad', 'simSize', 'scrnSize', 'totalWfsData', 'totalActs', 'saveHeader']

	

	
optionalParams = [('nGS', 0), ('nDM', 0), ('nSci', 0), ('gain', 0.6), ('reconstructor', 'MVM'), ('simName', None), ('saveSlopes', False), ('saveDmCommands', False), ('saveLgsPsf', False), ('saveLearn', False), ('saveStrehl', False), ('saveWfsFrames', False), ('saveSciPsf', False), ('saveInstPsf', False), ('saveInstScieField', False), ('saveWfe', False), ('saveSciRes', False), ('wfsMP', False), ('verbosity', 2), ('logfile', None), ('learnIters', 0), ('learnAtmos', 'random'), ('simOversize', 1.02), ('loopDelay', 0), ('threads', 1), ('photometric_zp', 2000000000.0)]

	

	
p = ('photometric_zp', 2000000000.0)

	

	
requiredParams = ['pupilSize', 'nIters', 'loopTime']

	

	
class soapy.confParse.TelConfig(N=None)

	Bases: soapy.confParse.ConfigObj

Configuration parameters characterising the Telescope. These should be held in the Telescope group in the parameter file.

	Required:

	

	Parameter
	Description

	telDiam
	float: Diameter of telescope pupil in metres

	Optional:

	

	Parameter
	Description
	Default

	obsDiam
	float: Diameter of central
obscuration
	0

	mask
	str: Shape of pupil (only
accepts circle currently)
	circle

	
allowedAttrs = ['telDiam', 'N', 'obsDiam', 'mask']

	

	
calculatedParams = []

	

	
optionalParams = [('obsDiam', 0), ('mask', 'circle')]

	

	
p = ('mask', 'circle')

	

	
requiredParams = ['telDiam']

	

	
class soapy.confParse.WfsConfig(N=None)

	Bases: soapy.confParse.ConfigObj

Configuration parameters characterising Wave-front Sensors. These should be held in the WFS group in the parameter file. Each WFS is specified by first specifying an index, then the WFS parameters. Any entries above sim.nGS will be ignored.

	Required:

	

	Parameter
	Description

	GSPosition
	tuple: position of GS on-sky in arc-secs

	wavelength
	float: wavelength of GS light in metres

	nxSubaps
	int: number of SH sub-apertures

	Optional:

	

	Parameter
	Description
	Default

	type
	string: Which WFS object to load
from WFS.py?
	ShackHartmann

	GSMag
	float: Apparent magnitude of the
guide star
	0

	photonNoise
	bool: Include photon (shot) noise.
	False

	eReadNoise
	float: Electrons of read noise
	0

	throughput
	float: Throughput of the entire
optical and electronic system
from guide star photons to
recorded WFS detector counts.
Includes atmospheric effects, the
optical train and detector gain.
	1.

	propagationMode
	string: Mode of light propogation
from GS. Can be “Physical” or
“Geometric”**.
	"Geometric"

	subapFieldStop
	bool: if True, add a field stop to
the wfs to prevent spots wandering
into adjacent sub-apertures. if
False, oversample subap FOV by a
factor of 2 to allow into adjacent
subaps.
	False

	removeTT
	bool: if True, remove TT signal
from WFS slopes before
reconstruction.**
	False

	fftOversamp
	int: Multiplied by the number of
of phase points required for FOV
to increase fidelity from FFT.
	3

	GSHeight
	float: Height of GS beacon. 0
if at infinity.
	0

	subapThreshold
	float: How full should subap be
to be used for wavefront sensing?
	0.5

	lgs
	bool: is WFS an LGS?
	False

	centMethod
	string: Method used for
Centroiding. Can be
centreOfGravity,
brightestPxl, or
correlation.**
	centreOfGravity

	referenceImage
	array: Reference images used in
the correlation centroider. Full
image plane image, each subap has
a separate reference image
	None

	angleEquivNoise
	float: width of gaussian noise
added to slopes measurements
in arc-secs
	0

	centThreshold
	float: Centroiding threshold as
a fraction of the max subap
value.**
	0.1

	exposureTime
	float: Exposure time of the WFS
camera - must be higher than
loopTime. If None, will be
set to loopTime.
	None

	wvlBandWidth
	float: Width of wavelength
band sent to WFS in nm
	100

	extendedObject
	ndarray or str: The object used
as extended source for WFS, of
size 2*fftOversamp*pxlsPerSubap.
The FOV of the object should be
twice the FOV of the sub-aperture.
	None

	fftwThreads
	int: number of threads for fftw
to use. If 0, will use
system processor number.
	1

	fftwFlag
	str: Flag to pass to FFTW
when preparing plan.
	FFTW_PATIENT

	pxlsPerSubap
	int: number of pixels per
sub-apertures
	10

	subapFOV
	float: Field of View of
sub-aperture in arc-secs
	5

	correlationFFTPad
	int: Padding for correlation WFS
	None

	nx_guard_pixels
	int: Guard Pixels between
Shack-Hartmann sub-apertures
(Not currently operational)
	0

	
allowedAttrs = ['GSPosition', 'wavelength', 'nxSubaps', 'position', 'pxlsPerSubap2', 'dataStart', 'lgs', 'N', 'propagationMode', 'fftwThreads', 'fftwFlag', 'angleEquivNoise', 'subapFieldStop', 'removeTT', 'angleEquivNoise', 'fftOversamp', 'GSHeight', 'subapThreshold', 'lgs', 'centThreshold', 'centMethod', 'type', 'exposureTime', 'referenceImage', 'throughput', 'eReadNoise', 'photonNoise', 'GSMag', 'wvlBandWidth', 'extendedObject', 'pxlsPerSubap', 'subapFOV', 'correlationFFTPad', 'nx_guard_pixels']

	

	
calcParams()

	

	
calculatedParams = ['position', 'pxlsPerSubap2', 'dataStart', 'lgs']

	

	
optionalParams = [('propagationMode', 'Geometric'), ('fftwThreads', 1), ('fftwFlag', 'FFTW_PATIENT'), ('angleEquivNoise', 0), ('subapFieldStop', False), ('removeTT', 'False'), ('angleEquivNoise', 0), ('fftOversamp', 3), ('GSHeight', 0), ('subapThreshold', 0.5), ('lgs', None), ('centThreshold', 0.0), ('centMethod', 'centreOfGravity'), ('type', 'ShackHartmann'), ('exposureTime', None), ('referenceImage', None), ('throughput', 1.0), ('eReadNoise', 0), ('photonNoise', False), ('GSMag', 0.0), ('wvlBandWidth', 100.0), ('extendedObject', None), ('pxlsPerSubap', 10), ('subapFOV', 5), ('correlationFFTPad', None), ('nx_guard_pixels', 0)]

	

	
p = ('nx_guard_pixels', 0)

	

	
requiredParams = ['GSPosition', 'wavelength', 'nxSubaps']

	

	
class soapy.confParse.YAML_Configurator(filename)

	Bases: soapy.confParse.PY_Configurator

	
loadSimParams()

	

	
readfile()

	

	
soapy.confParse.loadSoapyConfig(configfile)

	

	
soapy.confParse.test()

	

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 soapy	

 	
 	
 soapy.AOFFT	

 	
 	
 soapy.atmosphere	

 	
 	
 soapy.DM	

 	
 	
 soapy.LGS	

 	
 	
 soapy.lineofsight	

 	
 	
 soapy.logger	

 	
 	
 soapy.SCI	

 	
 	
 soapy.simulation	

 	
 	
 soapy.wfs.base	

Index

 A
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | W
 | Z

A

 	
 	addPhotonNoise() (soapy.wfs.base.WFS method)

 	(soapy.wfs.shackhartmann.ShackHartmann method)

 	addReadNoise() (soapy.wfs.base.WFS method)

 	(soapy.wfs.shackhartmann.ShackHartmann method)

 	addToGuiQueue() (soapy.simulation.Sim method)

 	allocDataArrays() (soapy.lineofsight.LineOfSight method)

 	(soapy.wfs.shackhartmann.ShackHartmann method)

 	
 	aoinit() (soapy.simulation.Sim method)

 	aoloop() (soapy.simulation.Sim method)

 	applyLgsUplink() (soapy.wfs.shackhartmann.ShackHartmann method)

 	atmos (class in soapy.atmosphere)

 	AtmosConfig (class in soapy.confParse)

C

 	
 	calc_wavefronterror() (soapy.SCI.PSF method)

 	calcElongPhaseAddition() (soapy.wfs.base.WFS method)

 	calcElongPos() (soapy.wfs.base.WFS method)

 	calcFocalPlane() (soapy.SCI.PSF method)

 	(soapy.wfs.shackhartmann.ShackHartmann method)

 	calcInitParams() (soapy.LGS.LGS method)

 	(soapy.LGS.LGS_Geometric method)

 	(soapy.LGS.LGS_Physical method)

 	(soapy.lineofsight.LineOfSight method)

 	(soapy.wfs.shackhartmann.ShackHartmann method)

 	
 	calcInstStrehl() (soapy.SCI.PSF method)

 	(soapy.SCI.singleModeFibre method)

 	calcTiltCorrect() (soapy.wfs.shackhartmann.ShackHartmann method)

 	calculate_altitude_coords() (soapy.lineofsight.LineOfSight method)

 	calculateSlopes() (soapy.wfs.shackhartmann.ShackHartmann method)

 	Convolve (class in soapy.AOFFT)

 	convolve() (in module soapy.AOFFT)

D

 	
 	debug() (in module soapy.logger)

 	delay() (soapy.simulation.DelayBuffer method)

 	DelayBuffer (class in soapy.simulation)

 	
 	DM (class in soapy.DM)

 	DmConfig (class in soapy.confParse)

 	dmFrame() (soapy.DM.DM method)

 	doMpFFT() (soapy.AOFFT.mpFFT method)

F

 	
 	FFT (class in soapy.AOFFT)

 	fft() (soapy.AOFFT.FFT method)

 	(soapy.AOFFT.mpFFT method)

 	fibreEfield() (soapy.SCI.singleModeFibre method)

 	findActiveSubaps() (soapy.wfs.shackhartmann.ShackHartmann method)

 	
 	finishUp() (soapy.simulation.Sim method)

 	frame() (soapy.lineofsight.LineOfSight method)

 	(soapy.SCI.PSF method)

 	(soapy.wfs.base.WFS method)

 	ftShift2d() (in module soapy.AOFFT)

G

 	
 	GaussStack (class in soapy.DM)

 	getActiveActs() (soapy.DM.DM method)

 	(soapy.DM.Piezo method)

 	(soapy.DM.TT method)

 	
 	getLgsPsf() (soapy.LGS.LGS method)

 	(soapy.LGS.LGS_Geometric method)

 	(soapy.LGS.LGS_Physical method)

 	getStatic() (soapy.wfs.shackhartmann.ShackHartmann method)

 	getTimeStamp() (soapy.simulation.Sim method)

H

 	
 	height (soapy.lineofsight.LineOfSight attribute)

I

 	
 	info() (in module soapy.logger)

 	initFFTs() (soapy.LGS.LGS method)

 	(soapy.LGS.LGS_Geometric method)

 	(soapy.wfs.shackhartmann.ShackHartmann method)

 	
 	initLGS() (soapy.wfs.base.WFS method)

 	initLos() (soapy.LGS.LGS method)

 	(soapy.wfs.base.WFS method)

 	(soapy.wfs.shackhartmann.ShackHartmann method)

 	initSaveData() (soapy.simulation.Sim method)

L

 	
 	LGS (class in soapy.LGS)

 	LGS_Geometric (class in soapy.LGS)

 	LGS_Physical (class in soapy.LGS)

 	
 	LgsConfig (class in soapy.confParse)

 	lgsOALaunchMetaPupilPos() (in module soapy.LGS)

 	LineOfSight (class in soapy.lineofsight)

 	loopFrame() (soapy.simulation.Sim method)

M

 	
 	make_mask() (in module soapy.simulation)

 	makeDetectorPlane() (soapy.wfs.shackhartmann.ShackHartmann method)

 	makeElongationFrame() (soapy.wfs.base.WFS method)

 	makeIMat() (soapy.simulation.Sim method)

 	makeIMatShapes() (soapy.DM.DM method)

 	(soapy.DM.GaussStack method)

 	(soapy.DM.Piezo method)

 	(soapy.DM.TT method)

 	(soapy.DM.Zernike method)

 	
 	makePhase() (soapy.lineofsight.LineOfSight method)

 	makePhaseGeometric() (soapy.lineofsight.LineOfSight method)

 	makePhasePhys() (soapy.lineofsight.LineOfSight method)

 	makePhaseScreens() (in module soapy.atmosphere)

 	makeSaveHeader() (soapy.simulation.Sim method)

 	moveScrns() (soapy.atmosphere.atmos method)

 	mpFFT (class in soapy.AOFFT)

 	multiWfs() (in module soapy.simulation)

P

 	
 	performCorrection() (soapy.lineofsight.LineOfSight method)

 	physical_atmosphere_propagation() (in module soapy.lineofsight)

 	Piezo (class in soapy.DM)

 	
 	position (soapy.lineofsight.LineOfSight attribute)

 	print_() (in module soapy.logger)

 	printOutput() (soapy.simulation.Sim method)

 	PSF (class in soapy.SCI)

R

 	
 	randomScrns() (soapy.atmosphere.atmos method)

 	readParams() (soapy.simulation.Sim method)

 	ReconstructorConfig (class in soapy.confParse)

 	refCouplingLoss() (soapy.SCI.singleModeFibre method)

 	
 	reset_loop() (soapy.simulation.Sim method)

 	runDM() (soapy.simulation.Sim method)

 	runSciCams() (soapy.simulation.Sim method)

 	runWfs_MP() (soapy.simulation.Sim method)

 	runWfs_noMP() (soapy.simulation.Sim method)

S

 	
 	saveData() (soapy.simulation.Sim method)

 	saveScrns() (soapy.atmosphere.atmos method)

 	SciConfig (class in soapy.confParse)

 	ScienceCam (in module soapy.SCI)

 	scienceCam (in module soapy.SCI)

 	setLoggingFile() (in module soapy.logger)

 	setLoggingLevel() (in module soapy.logger)

 	(soapy.simulation.Sim method)

 	setMask() (soapy.SCI.PSF method)

 	(soapy.wfs.base.WFS method)

 	setStatusFunc() (in module soapy.logger)

 	ShackHartmann (class in soapy.wfs.shackhartmann)

 	Sim (class in soapy.simulation)

 	
 	SimConfig (class in soapy.confParse)

 	singleModeFibre (class in soapy.SCI)

 	soapy.AOFFT (module)

 	soapy.atmosphere (module)

 	soapy.DM (module)

 	soapy.LGS (module)

 	soapy.lineofsight (module)

 	soapy.logger (module)

 	soapy.SCI (module)

 	soapy.simulation (module)

 	soapy.wfs.base (module)

 	statusMessage() (in module soapy.logger)

 	storeData() (soapy.simulation.Sim method)

T

 	
 	TelConfig (class in soapy.confParse)

 	
 	TT (class in soapy.DM)

W

 	
 	warning() (in module soapy.logger)

 	
 	WFS (class in soapy.wfs.base)

 	WfsConfig (class in soapy.confParse)

Z

 	
 	Zernike (class in soapy.DM)

 	
 	zeroData() (soapy.lineofsight.LineOfSight method)

 	(soapy.wfs.shackhartmann.ShackHartmann method)

Soapy

GUI Modules

Modules used to make the soapy GUI

soapy.AOGUIui module

soapy.matplotlibWidget module

soapy.soapy_gui module

 _static/minus.png

_static/file.png

_static/plus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to Soapy's documentation!

 		Introduction

 		Quick-Start

 		Installation

 		Installation

 		Required Libraries

 		Required

 		For GUI

 		Linux

 		Mac OSX

 		Any OS

 		Anaconda Python

 		pip

 		Testing

 		Basic Usage

 		Configuration

 		Creating Phase Screens

 		Running the Simulation

 		Graphical User Interface

 		Command Line and Scripting

 		Retrieving Simulation Data

 		Simple Tutorial

 		Running an Example SCAO Configuration

 		Creating a new SCAO configuration file

 		Sim Parameters

 		Atmosphere Parameters

 		Telescope Parameters

 		WFS Parameters

 		DM Parameters

 		Science Parameters

 		Run it!

 		Examining data and changing parameters

 		GLAO Example

 		Configuration

 		Simulation Parameters

 		Telescope Parameters

 		Atmosphere Parameters

 		Wave-front Sensor Parameters

 		Laser Guide Star Parameters

 		Deformable Mirror Parameters

 		Reconstructor Parameters

 		Science Camera Parameters

 		Data Sources

 		Simulation Run Data

 		Simulation Design

 		Data flow and modularity

 		Class Hierarchy

 		Simulation

 		Atmosphere

 		Atmosphere Class

 		Phase Screen Creation and Saving

 		Line Of Sight

 		soapy.lineofsight module

 		Line of Sight Object

 		Wave-front Sensors

 		WFS Module

 		Adding new WFSs

 		Base WFS Class

 		Deformable Mirrors

 		DMs in Soapy

 		Adding New DMs

 		Base DM Class

 		Real DM Classes

 		Laser Guide Stars

 		soapy.LGS module

 		Reconstructors

 		soapy.RECON module

 		Science Camera

 		soapy.SCI module

 		Utilities

 		soapy.logger module

 		soapy.AOFFT module

 		soapy.aoSimLib module

 		soapy.opticalPropagationLib module

 		soapy.confParse module

_static/up.png

_images/phaseScreen.png

_images/gui_shot.png
conflsh_8x8.py Strehl — sci_

inst 0.82, long 0.76: Iteration 2030 of 5000

P — Plot Update Rate (Hz) [15.0 |2 Gain- DMO0: 0,60 | DM1: 070 |

Laser Guide Star PSFs WFS Phase Residual Phase

DM Shapes.
#
Science PSFs

Wave-front Sensors

Instantaneous () Long Exposure

v o0 o0 E i 0

Out[1]: <pyAOS.confParse.DmConfig at @x11edfa490> Time Remaining: 86.025 AQ Init
In [2]: sim.config.dn[0].iMatValue terations Per Second: 34.63 Make IMat Force new?
outfz]: 0.2
. . Instantaneous Strehl: 81.6% Run!
In [3]: sim.config.dn[0].iMatValue-2.0
Long Exposure Streh: 76.3% Stop

In [4]:

_static/comment-close.png

_images/annotatedGUI.png
Progress of CurentDM Phaseacioss oy oo e DM loop gains

Textual output o rent operation shape(s) WFS(s) /

Pt om0 \50 2| Gan M 080 2 MY 65 vt phase
s e P across science

D/ :

sown Corrected

s gt scioncs targel
. :

R e ot o etiafon o Control buttons
1n 2 stn conei.) oreie Pseoas | Ments o
ona: a2

9. vectale-2.0

1n 0 stm contis

1 LS x\ -
Simulation resutts

Strehi ratio Control console WES image(s) ation e
and statisics

results piot (ipython)

_static/comment-bright.png

