
so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
Release 0.2.dev149

A. Zonca

Mar 22, 2019

Contents:

I Getting started 3

1 Installation 5

2 Development installation 7

3 Example Usage 9

II Summary of Models 11

4 GaussianSynchrotron 15

5 GaussianDust 17

6 COLines 19

7 PrecomputedAlms 21

8 InterpolatingComponent 23

III High resolution templates 25

9 Details about individual models 29

IV Reference/API 31

10 so_pysm_models Package 33

Python Module Index 43

i

ii

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

This is the documentation for so_pysm_models.

Contents: 1

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

2 Contents:

Part I

Getting started

3

CHAPTER 1

Installation

Requirements:

• PySM PySM

• healpy

Clone the repository:

pip install https://github.com/simonsobs/so_pysm_models/archive/master.zip

5

https://github.com/bthorne93/PySM_public

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

6 Chapter 1. Installation

CHAPTER 2

Development installation

Clone from Github and install:

git clone https://github.com/simonsobs/so_pysm_models
cd so_pysm_models
pip install -e .

Run unit tests:

python setup.py test -V

Build docs:

python setup.py build_docs -w

7

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

8 Chapter 2. Development installation

CHAPTER 3

Example Usage

This repository implements new models for PySM that can be added as additional components.

For example, create and configure a component:

from so_pysm_models import GaussianSynchrotron
synchrotron = GaussianSynchrotron(target_nside = 16)

Create a PySM sky and add this component:

sky = pysm.Sky({})
sky.add_component("gaussian_synch", gaussian_synch)

Then get a map at a specific frequency in GHz with standard PySM functionalities:

m_synch = sky.gaussian_synch(2.3)

see example notebooks:

• Example Gaussian Synchrotron

• Example Gaussian Dust

• Example InterpolatingComponent

9

https://gist.github.com/zonca/51a6fa9763106c78813f964a4b88f0fc
https://gist.github.com/zonca/4ddb5e384cb34f8a2945c041d13e9428
https://gist.github.com/zonca/08751497b040ec9d62ff5175573c786e

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

10 Chapter 3. Example Usage

Part II

Summary of Models

11

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

This page contains high-level documentation about the available models, check the classes docstrings, or the online
documentation, for the specific arguments.

The input template maps for many models are available at NERSC on the cmb project space at:

/global/project/projectdirs/cmb/www/so_pysm_models_data

they are also published via web at http://portal.nersc.gov/project/cmb/so_pysm_models_data/.

13

http://portal.nersc.gov/project/cmb/so_pysm_models_data/

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

14

CHAPTER 4

GaussianSynchrotron

This class implements Gaussian simulations for Galactic synchrotron emission. The inputs are a bunch of parameters
defining the properties of the synchrotron power spectra, and of synchrotron Spectral Energy Distribution (SED), the
output are the stokes IQU maps simulated as Gaussian random fields of the defined spectra. In particular, synchrotron
power spectra 𝐶ℓ are assumed to follow a power law as a function of ℓ: 𝐶𝑇𝑇/𝑇𝐸/𝐸𝐸/𝐵𝐵

ℓ ∝ ℓ𝛼. Spectra are defined
by:

1. The slope 𝛼 (same for all the spectra)

2. The amplitude of TT and EE spectra at ℓ = 80,

3. The ratio between B and E-modes

Stokes Q and U maps are generated as random realization of the polarization spectra. For the temperature map the
situation is slightly different as we want the total intensity map to be positive everywhere. The Stokes I map is
generated in the following way:

if target Nside<=64:

1. The TT power spectrum is 𝐶ℓ ∝ ℓ𝛼 and 𝐶ℓ[0] = 0

2. A first temparature map T is generated as a gaussian realization of this power spectrum

3. A new map is obtained by adding to T an offset whose value is taken from a reference map

4. If T+offset is positive everywhere than this is the output temperature map

5. Otherwise a cut in the TT power spectrum is applied in the following way: 𝐶ℓ[1 : ℓ𝑐𝑢𝑡] = 𝐶ℓ[ℓ𝑐𝑢𝑡]

6. A new T+offset map is generated. The value of ℓ𝑐𝑢𝑡 is the minimum one for which T+offset is positive
everywhere

if target Nside>64:

1. a map at Nside=64 is generated following the procedure above and then filtered to retain only large angular
scales (ell<30)

15

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

2. a map at the target Nside is generated including only small scales (ell>30) with the same seed as the map
at point 1.

3. the two maps are added together

4. In case the coadded map still has negative pixels a small offset is added to make it positive everywhere

The default parameters are optimized for SO-SAT observations. Meaning that the amplitudes of power spectra are
normalized in the 10% sky region observed by the instrument. In particular:

1. The amplitude of TT spectrum is taken from PySM-s0 model at 23GHz. TT_amplitude = 20 𝜇𝐾2 (for 𝐷ℓ at
ℓ = 80) 1. The offset for T map is also taken from PySM-s0 model at 23GHz. Toffset = 72 𝜇𝐾 1. The amplitude of
EE spectrum is taken from S-PASS at 2.3GHz extrapolated at 23GHz with a powerlaw with 𝛽𝑠 = −3.1 EE_amplitude
= 4.3 math:mu K^2 (for 𝐷ℓ at ℓ = 80) 1. ratio between B and E modes from Krachmalnicoff et al. 2018, B_to_E =
0.5 1. spectral tilt from Krachmalnicoff et al 2018, alpha = -1 1. spectral index from Planck IX 2018, beta = -3.1 1.
Default value for curvature is zero

16 Chapter 4. GaussianSynchrotron

CHAPTER 5

GaussianDust

This class implements Gaussian simulations for Galactic thermal dust emission. The inputs are a bunch of parameters
defining the properties of dust power spectra, and of dust Spectral Energy Distribution (SED), the output are the stokes
IQU maps simulated as Gaussian random fields of the defined spectra. In particular, dust power spectra𝐶ℓ are assumed
to follow a power law as a function of ℓ: 𝐶𝑇𝑇/𝑇𝐸/𝐸𝐸/𝐵𝐵

ℓ ∝ ℓ𝛼. Spectra are defined by:

1. The slope 𝛼 (same for all the spectra)

2. The amplitude of TT and EE spectra at ℓ = 80,

3. The ratio between B and E-modes

4. The degree of correlation between T and E.

Stokes Q and U maps are generated as random realization of the polarization spectra. For the temperature map the
situation is slightly different as we want the total intensity map to be positive everywhere. The Stokes I map is
generated in the following way:

if target Nside<=64:

1. The TT power spectrum is 𝐶ℓ ∝ ℓ𝛼 and 𝐶ℓ[0] = 0

2. A first temparature map T is generated as a gaussian realization of this power spectrum

3. A new map is obtained by adding to T an offset whose value is taken from a reference map

4. If T+offset is positive everywhere than this is the output temperature map

5. Otherwise a cut in the TT power spectrum is applied in the following way: 𝐶ℓ[1 : ℓ𝑐𝑢𝑡] = 𝐶ℓ[ℓ𝑐𝑢𝑡]

6. A new T+offset map is generated. The value of ℓ𝑐𝑢𝑡 is the minimum one for which T+offset is positive
everywhere

if target Nside>64:

1. a map at Nside=64 is generated following the procedure above and then filtered to retain only large angular
scales (ell<30)

17

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

2. a map at the target Nside is generated including only small scales (ell>30) with the same seed as the map
at point 1.

3. the two maps are added together

4. In case the coadded map still has negative pixels a small offset is added to make it positive everywhere

Typical values for ℓ𝑐𝑢𝑡 are between ℓ = 4 and ℓ = 9, depending on realization (and also on the Nside of the output
map). This implementation removes some power at the very large scales.

The default parameters are optimized for SO-SAT observations. Meaning that the amplitudes of power spectra are
normalized in the 10% sky region observed by the instrument. In particular:

1. The amplitude of TT spectrum is taken from PySM-d0 model at 353GHz. TT_amplitude = 350 𝜇𝐾2 (for 𝐷ℓ at
ℓ = 80)

2. The offset for T map is also taken from PySM-d0 model at 353GHz. Toffset = 18 𝜇𝐾

3. The amplitude of EE spectrum is taken from Planck map at 353GHz, EE_amplitude = 100 math:mu K^2 (for 𝐷ℓ

at ℓ = 80)

4. ratio between B and E modes from Planck IX 2018, B_to_E = 0.5

5. spectral tilt from Planck IX 2018, alpha = -0.42

6. spectral index and temperature from Planck IX 2018, beta = 1.53, T=19.6 K

18 Chapter 5. GaussianDust

CHAPTER 6

COLines

COLines is not a standard PySM component because PySM does not allow to distinguish between a case where a
component is evaluated for the purpose of integrating over the bandpass or evaluated for separate channels. Therefore
this class should be instantiated choosing the desired line and summed to the output of PySM. For example:

from so_pysm_models import COLines
co = COLines(target_nside=16, output_units="uK_CMB", line="10")
pysm_map += bandpass_weight * hp.smoothing(co.signal(), fwhm=fwhm)

Where bandpass_weight is the scalar transmission at the line frequency (which is available at co.line_frequency),
i.e. if the bandpass is a top-hat between 110 and 120 GHz, the “10” line emission should be multiplied by 0.1.

This class implements simulations for Galactic CO emission involving the first 3 CO rotational lines, i.e. 𝐽 = 1−0, 2−
1, 3− 2 whose center frequency is respectively at 𝜈0 = 115.3, 230.5, 345.8 GHz. The CO emission map templates are
the CO Planck maps obtained with MILCA component separation algorithm (See Planck paper). The CO maps have
been released at the nominal resolution (10 and 5 arcminutes). However, to reduce noise contamination from template
maps (especially at intermediate and high Galactic latitudes), we convolved them with a 1 deg gaussian beam.

The Stokes I map is computed from the template one as it follows:

if target Nside <= 512:

1. The template map at a nside=512 is downgraded at the target nside

if target Nside > 512 :

1. The template map at a nside=2048 is downgraded(eventually upgraded) at the target nside

Q and U maps can be computed from the template CO emission map, 𝐼𝐶𝑂, assuming a constant fractional polarization,
as:

𝑄 = 𝑓𝑝𝑜𝑙𝐼𝐶𝑂𝑔𝑑 cos(2𝜓)

𝑈 = 𝑓𝑝𝑜𝑙𝐼𝐶𝑂𝑔𝑑 sin(2𝜓)

19

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

with 𝑔𝑑 and 𝜓 being respectively the depolarization and polarization angle maps estimated from a dust map as :

𝑔𝑑 =

√︁
𝑄2

𝑑,353 + 𝑈2
𝑑,353

𝑓𝑝𝑜𝑙𝐼𝑑,353

𝜓 =
1

2
arctan

𝑈𝑑,353

𝑄𝑑,353

Most of the CO emission is expected to be confined in the Galactic midplane. However, there are still regions at
high Galactic latitudes where the CO emission has been purely assessed (by current surveys) and where the Planck
signal-to-noise was not enough to detect any emission.

The PySM user can include the eventuality of molecular emission (both unpolarized and polarized) at High Gal.
Latitudes by coadding to the emission maps one realization of CO emission simulated with MCMole3D together with
the Planck CO map. The polarization is simulated similarly as above.

The MCMole3D input parameters are are obtained from best fit with the Planck CO 1-0 map (see Puglisi et al. 2017 and
the documentation). If include_high_galactic_latitude_clouds=True, a mock CO cloud map is simulated with
MCMole3D, encoding high Galactic latitudes clouds at latitudes above and below than 20 degres. The mock emission
map is then coadded to the Planck CO emission map. The polarization is simulated similarly as above.

The installation of mcmole3d is not required, HGL clouds can be input to the CO emission by setting
run_mcmole3d=False (which is the default). However, if one wants to run several mock CO realizations observing
high Galactic latitude patches we encourage to run mcmole3d by changing random_seed in the CO class constructor.
The parameter theta_high_galactic_latitude_deg set the latitude above which CO emission from high Galactic
latitudes can be included and it has an impact only when run_mcmole3d=True.

The default parameters are set to include CO 1-0 emission and polarization (with 0.1% constant polarization fraction),
in particular:

1. polarization_fraction= 0.001, on average is the expected level on 10% regions of the sky. However,
polarization from CO emission have been detected at larger fluxes in Orion and Taurus complexes (Greaves et
al.1999)

2. theta_high_galactic_latitude_deg = 20, includes CO emission at |𝑏| > 𝜃ℎ𝑔𝑙 from one realization of
mcmole3d maps. Be aware that the larger 𝑡ℎ𝑒𝑡𝑎ℎ𝑔𝑙, the farther is the Galactic plane and the more unlikely is to
find high Galactic latitude clouds.

20 Chapter 6. COLines

CHAPTER 7

PrecomputedAlms

This class generates a PySM component based on a set of precomputed 𝑎ℓ,𝑚 coefficients stored in a folder in FITS
format. This is mostly targeted at simulations of the Cosmic Microwave Background, the input 𝑎ℓ,𝑚 can be in K_{RJ}
or K_{CMB} as defined in the constructor, the unit conversion is performed assuming the CMB black body spectrum.
The output unit is specified in the signal method, default is mu K_{RJ}, as expected by PySM. In case the input is in
K_{RJ}, it is necessary also to specify input_reference_frequency_GHz.

The transformation between Spherical Harmonics and pixel domain can be performed either during initialization or in
the signal method based on precompute_output_map.

See the documentation about mapsims about specific simulated datasets.

21

https://mapsims.readthedocs.io

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

22 Chapter 7. PrecomputedAlms

CHAPTER 8

InterpolatingComponent

Adds a custom emission to the sky simulated by PySM defined as a set of template maps at pre-defined frequencies to
be interpolated at the frequencies requested through PySM.

Inputs

A folder of maps named with their frequency in GHz with the flux in any unit supported by PySM (e.g. Jysr, MJsr,
uK_RJ, K_CMB). They don’t need to be equally spaced

For example:

ls `cib_precomputed_maps/`
0010.0.fits 0015.0.fits 0018.0.fits

Usage

Instantiate InterpolatingComponent and point it to the folder, define the unit and the target nside (same used
by PySM). It supports all interpolation_kind of scipy.interpolate.interp1d(), e.g. “nearest”, “linear”,
“quadratic”, “cubic”:

cib = InterpolatingComponent(path="cib_precomputed_maps", input_units="MJysr", target_nside=nside,␣
→˓interpolation_kind="linear",

has_polarization=False, verbose=True)

Full example notebook

23

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

24 Chapter 8. InterpolatingComponent

Part III

High resolution templates

25

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

so_pysm_models also provides access to templates with higher resolution and with updated data compared to the
models included in PySM.

They can be accessed with the function get_so_models() which works similarly to the models function available in
PySM, and you can mix them, for example:

from so_pysm_models import get_so_models
from pysm.nominal import models
from pysm import Sky
sky = Sky({

"dust" : get_so_models("SO_d0", nside=128),
"synchrotron" : models("s1", nside=128)

})

so_pysm_models retrieves the templates when needed from NERSC via web accessing: http://portal.nersc.gov/project/
cmb/so_pysm_models_data/ Downloaded files are stored in the astropy cache, generally astropy/cache and are
accessible using astropy.utils.data, e.g. astropy.utils.data.get_cached_urls() gives the list of downloaded
files. If running at NERSC, the module automatically uses the files accessible locally from the /project filesystem.

Low-resolution templates are standard PySM ones at 𝑁𝑠𝑖𝑑𝑒 512, often with updated parameters based on Planck re-
sults. High-resolution templates are computed from the low-resolution ones, by extrapolating power spectra consider-
ing a simple power law model, and by generating small scales as Gaussian realization of these spectra. High-resolution
templates therefore have Gaussian small scales (for ℓ > 1000) modulated with large scale signal for both temperature
and polarization.

You can access the high resolution parameters at 𝑁𝑠𝑖𝑑𝑒 4096 appending s (for small scale) at the end of each model
name, for example:

from so_pysm_models import get_so_models
from pysm import Sky
sky_highres = Sky({

"dust" : get_so_models("SO_d0s", nside=4096),
"synchrotron" : get_so_models("SO_s0s", nside=4096)

})

Whatever the 𝑁𝑠𝑖𝑑𝑒 of the input model and the requested 𝑁𝑠𝑖𝑑𝑒 in get_so_models(), PySM will automatically use
healpy.ud_grade() to adjust the map resolution.

27

http://portal.nersc.gov/project/cmb/so_pysm_models_data/
http://portal.nersc.gov/project/cmb/so_pysm_models_data/
https://astropy.readthedocs.io/en/latest/utils/index.html#module-astropy.utils.data
https://astropy.readthedocs.io/en/latest/api/astropy.utils.data.get_cached_urls.html#astropy.utils.data.get_cached_urls

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

28

CHAPTER 9

Details about individual models

Append “s” after a model name to access the 𝑁𝑠𝑖𝑑𝑒 4096 template, i.e. SO_f0s.

Dust

• SO_d0: Thermal dust is modeled as a single-component modified black body, with same templates as in PySM
model d1. There is no spatial variation of temperature and emissivity in the sky: 𝑇 = 19.6 K and 𝛽𝑑 = 1.53
(values taken from Planck Collaboration IX 2018).

Synchrotron

• SO_s0: Templates from PySM model s1. Power law spectral energy distribution, with fixed spectral index
𝛽𝑠 = −3.1 (from Planck Collaboration IX 2018).

Free Free

• SO_f0: same model as PySM f1, no spatial variation of spectral index equal to -2.4.

AME

• SO_a0: sum of two spinning dust populations (as in PySM model a1) with spatially constant peak frequency.
No polarization.

29

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

30 Chapter 9. Details about individual models

Part IV

Reference/API

31

CHAPTER 10

so_pysm_models Package

10.1 Functions

get_so_models(key, nside[, pixel_indices, . . .])
test(**kwargs) Run the tests for the package.

10.1.1 get_so_models

so_pysm_models.get_so_models(key, nside, pixel_indices=None, mpi_comm=None)

10.1.2 test

so_pysm_models.test(**kwargs)
Run the tests for the package.

This method builds arguments for and then calls pytest.main.

Parameters

package
[str, optional] The name of a specific package to test, e.g. ‘io.fits’ or ‘utils’. Accepts comma
separated string to specify multiple packages. If nothing is specified all default tests are run.

args
[str, optional] Additional arguments to be passed to pytest.main in the args keyword
argument.

docs_path
[str, optional] The path to the documentation .rst files.

33

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

open_files
[bool, optional] Fail when any tests leave files open. Off by default, because this adds extra
run time to the test suite. Requires the psutil package.

parallel
[int or ‘auto’, optional] When provided, run the tests in parallel on the specified number
of CPUs. If parallel is 'auto', it will use the all the cores on the machine. Requires the
pytest-xdist plugin.

pastebin
[(‘failed’, ‘all’, None), optional] Convenience option for turning on py.test pastebin output.
Set to ‘failed’ to upload info for failed tests, or ‘all’ to upload info for all tests.

pdb
[bool, optional] Turn on PDB post-mortem analysis for failing tests. Same as specifying
--pdb in args.

pep8
[bool, optional] Turn on PEP8 checking via the pytest-pep8 plugin and disable normal tests.
Same as specifying --pep8 -k pep8 in args.

plugins
[list, optional] Plugins to be passed to pytest.main in the plugins keyword argument.

remote_data
[{‘none’, ‘astropy’, ‘any’}, optional] Controls whether to run tests marked with
@pytest.mark.remote_data. This can be set to run no tests with remote data (none), only
ones that use data from http://data.astropy.org (astropy), or all tests that use remote data
(any). The default is none.

repeat
[int, optional] If set, specifies how many times each test should be run. This is useful for
diagnosing sporadic failures.

skip_docs
[bool, optional] When True, skips running the doctests in the .rst files.

test_path
[str, optional] Specify location to test by path. May be a single file or directory. Must be
specified absolutely or relative to the calling directory.

verbose
[bool, optional] Convenience option to turn on verbose output from py.test. Passing True is
the same as specifying -v in args.

10.2 Classes

COLines(target_nside, output_units[, . . .]) Class defining attributes for CO line emission.
GaussianDust(target_nside[, . . .]) Gaussian dust model
GaussianSynchrotron(target_nside[, . . .]) Gaussian synchrotron model
InterpolatingComponent(path, input_units, . . .) PySM component interpolating between precomputed

maps
PrecomputedAlms(filename[, input_units, . . .]) Generic component based on Precomputed Alms
UnsupportedPythonError

34 Chapter 10. so_pysm_models Package

http://data.astropy.org

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

10.2.1 COLines

class so_pysm_models.COLines(target_nside, output_units, has_polarization=True, line=’10’, in-
clude_high_galactic_latitude_clouds=False, polarization_fraction=0.001,
theta_high_galactic_latitude_deg=20.0, random_seed=1234567,
verbose=False, run_mcmole3d=False, pixel_indices=None,
mpi_comm=None)

Bases: object

Class defining attributes for CO line emission. CO templates are extracted from Type 1 CO Planck maps. See
further details in https://www.aanda.org/articles/aa/abs/2014/11/aa21553-13/aa21553-13.html

Parameters

target_nside
[int] HEALPix NSIDE of the output maps

output_units
[str] unit string as defined by pysm.convert_units, e.g. uK_RJ, K_CMB

has_polarization
[bool] whether or not to simulate also polarization maps

line
[string] CO rotational transitions. Accepted values : 10, 21, 32

polarization_fraction: float
polarisation fraction for polarised CO emission.

include_high_galactic_latitude_clouds: bool
If True it includes a simulation from MCMole3D to include high Galactic Latitude clouds.
(See more details at http://giuspugl.github.io/mcmole/index.html)

run_mcmole3d: bool
If True it simulates HGL cluds by running MCMole3D, otherwise it coadds a map of HGL
emission.

random_seed: int
set random seed for mcmole3d simulations.

theta_high_galactic_latitude_deg
[float] Angle in degree to identify High Galactic Latitude clouds (i.e. clouds whose latitude
b is |b|> theta_high_galactic_latitude_deg).

pixel_indices
[ndarray of ints] Outputs partial maps given HEALPix pixel indices in RING ordering

mpi_comm
[mpi4py communicator] Read inputs across a MPI communicator, see pysm.read_map

Methods Summary

read_map(fname[, field])
signal() Simulate CO signal
simulate_high_galactic_latitude_CO() Coadd High Galactic Latitude CO emission, simu-

lated with MCMole3D.
Continued on next page

10.2. Classes 35

https://www.aanda.org/articles/aa/abs/2014/11/aa21553-13/aa21553-13.html
http://giuspugl.github.io/mcmole/index.html

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

Table 3 – continued from previous page
simulate_polarized_emission(I_map) Add polarized emission by means of: * an over-

all constant polarization fraction, * a depolarization
map to mimick the line of sigth depolarization ef-
fect at low Galactic latitudes * a polarization an-
gle map coming from a dust template (we exploit
the observed correlation between polarized dust and
molecular emission in star forming regions).

Methods Documentation

read_map(fname, field=None)

signal()
Simulate CO signal

simulate_high_galactic_latitude_CO()
Coadd High Galactic Latitude CO emission, simulated with MCMole3D.

simulate_polarized_emission(I_map)
Add polarized emission by means of: * an overall constant polarization fraction, * a depolarization map to
mimick the line of sigth depolarization effect at low Galactic latitudes * a polarization angle map coming
from a dust template (we exploit the observed correlation between polarized dust and molecular emission
in star forming regions).

10.2.2 GaussianDust

class so_pysm_models.GaussianDust(target_nside, has_polarization=True, pixel_indices=None,
TT_amplitude=350.0, Toffset=18.0, EE_amplitude=100.0,
rTE=0.35, EtoB=0.5, alpha=-0.42, beta=1.53, temp=19.6,
nu_0=353, seed=None)

Bases: object

Gaussian dust model

See more details at https://so-pysm-models.readthedocs.io/en/latest/so_pysm_models/models.html

Parameters

target_nside
[int] HEALPix NSIDE of the output maps

has_polarization
[bool] whether or not to simulate also polarization maps Default: True

pixel_indices
[ndarray of ints] Outputs partial maps given HEALPix pixel indices in RING ordering

TT_amplitude
[float] amplitude of synchrotron TT power spectrum (D_ell) at at the reference frequency
and ell=80, in muK^2 and thermodinamic units. Default: 350. from the amplitude of PySM-
d0 dust model at 353GHz in the region covered by SO-SAT.

Toffset
[float] offset to be applied to the temperature map in muK in RJ units. Default: 18 from the
mean value of the T PySM-s0 synch map at 23GHz in the region covered by SO-SAT

36 Chapter 10. so_pysm_models Package

https://so-pysm-models.readthedocs.io/en/latest/so_pysm_models/models.html

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

EE_amplitude
[float] Amplitude of EE modes D_ell at reference frequency at ell=80 Default: 100. from
the amplitude of HFI-353 E-modes spectrum in the region covered by SO-SAT

EtoB: float
ratio between E and B-mode amplitude for dust. Default: 0.5 from Planck 2018 IX

alpha
[same as alpha_sync for dust.] Default: -0.42 from Planck 2018 IX

beta
[float] dust spectral index. Default: 1.53 from Planck 2018 IX

temp
[float] dust temperature. Default: 19.6 from Planck 2018 IX

nu0
[float] dust reference frequency in GHz. Default: 353

seed
[int] seed for random realization of map Default: None

Methods Summary

signal(nu, **kwargs) Return map in uK_RJ at given frequency or array of
frequencies

Methods Documentation

signal(nu, **kwargs)
Return map in uK_RJ at given frequency or array of frequencies

10.2.3 GaussianSynchrotron

class so_pysm_models.GaussianSynchrotron(target_nside, has_polarization=True, pixel_indices=None,
TT_amplitude=20.0, Toffset=72.0, EE_amplitude=4.3,
rTE=0.35, EtoB=0.5, alpha=-1.0, beta=-3.1, curv=0.0,
nu_0=23.0, seed=None)

Bases: object

Gaussian synchrotron model

See more details at https://so-pysm-models.readthedocs.io/en/latest/so_pysm_models/models.html

Parameters

target_nside
[int] HEALPix NSIDE of the output maps

has_polarization
[bool] whether or not to simulate also polarization maps Default: True

pixel_indices
[ndarray of ints] Outputa partial maps given HEALPix pixel indices in RING ordering

TT_amplitude
[float] amplitude of synchrotron TT power spectrum (D_ell) at at the reference frequency

10.2. Classes 37

https://so-pysm-models.readthedocs.io/en/latest/so_pysm_models/models.html

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

and ell=80, in muK^2 and thermodinamic units. Default: 20 from the amplitude of PySM-s0
synchrotron model at 23GHz in the region covered by SO-SAT.

Toffset
[float] offset to be applied to the temperature map in muK. Default: 72 from the mean value
of the T PySM-s0 synch map at 23GHz in the region covered by SO-SAT

EE_amplitude
[float] same as TT_amplitude but for EE power spectrum. Default: 4.3 from the amplitude
of S-PASS E-modes power spectrum at 2.3GHz in the region covered by SO-SAT, rescaled
at 23GHz with a powerlaw with beta_s = -3.1

rTE
[float] TE correlation factor defined as: rTE = clTE/sqrt(clTT*clEE) Default: 0.35 from
Planck IX 2018

EtoB
[float] ratio between E and B-mode amplitude. Default: 0.5 from Krachmalnicoff et al. 2018

alpha
[spectral tilt of the synchrotron power spectrum (D_ell).] Default: -1.0 from Krachmalnicoff
et al. 2018

beta
[synchrotron spectral index.] Default: -3.1 from Planck 2018 IX

curv
[synchrotron curvature index.] Default: 0.

nu_0
[synchrotron reference frequency in GHz.] Default: 23

seed
[int] seed for random realization of map Default: None

Methods Summary

signal(nu, **kwargs) Return map in uK_RJ at given frequency or array of
frequencies

Methods Documentation

signal(nu, **kwargs)
Return map in uK_RJ at given frequency or array of frequencies

10.2.4 InterpolatingComponent

class so_pysm_models.InterpolatingComponent(path, input_units, target_nside, interpola-
tion_kind=’linear’, has_polarization=True,
pixel_indices=None, mpi_comm=None, ver-
bose=False)

Bases: object

PySM component interpolating between precomputed maps

See more details at https://so-pysm-models.readthedocs.io/en/latest/so_pysm_models/models.html

38 Chapter 10. so_pysm_models Package

https://so-pysm-models.readthedocs.io/en/latest/so_pysm_models/models.html

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

Parameters

path
[str] Path should contain maps named as the frequency in GHz e.g. 20.fits or 20.5.fits or
00100.fits

input_units
[str] Any unit available in PySM (see pysm.convert_units e.g. Jysr, MJsr, uK_RJ,
K_CMB).

target_nside
[int] HEALPix NSIDE of the output maps

has_polarization
[bool] whether or not to simulate also polarization maps

pixel_indices
[ndarray of ints] Outputs partial maps given HEALPix pixel indices in RING ordering

mpi_comm
[mpi4py communicator] See the documentation of pysm.read_map

verbose
[bool] Control amount of output

Methods Summary

get_filenames(path)
read_map(freq)
signal(nu, **kwargs) Return map at given frequency or array of frequen-

cies

Methods Documentation

get_filenames(path)

read_map(freq)

signal(nu, **kwargs)
Return map at given frequency or array of frequencies

10.2.5 PrecomputedAlms

class so_pysm_models.PrecomputedAlms(filename, input_units=’uK_CMB’, in-
put_reference_frequency_GHz=None, target_nside=None,
target_shape=None, target_wcs=None, precom-
pute_output_map=True, has_polarization=True,
pixel_indices=None)

Bases: object

Generic component based on Precomputed Alms

Load a set of Alms from a FITS file and generate maps at the requested resolution and frequency assuming the
CMB black body spectrum. A single set of Alms is used for all frequencies requested by PySM, consider that

10.2. Classes 39

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

PySM expects the output of components to be in uK_RJ.

See more details at https://so-pysm-models.readthedocs.io/en/latest/so_pysm_models/models.html

Parameters

filename
[string] Path to the input Alms in FITS format

input_units
[string] Input unit strings as defined by pysm.convert_units, e.g. K_CMB, uK_RJ, MJysr

input_reference_frequency_GHz
[float] If input units are K_RJ or Jysr, the reference frequency

target_nside
[int] HEALPix NSIDE of the output maps

precompute_output_map
[bool] If True (default), Alms are transformed into a map in the constructor, if False, the
object only stores the Alms and generate the map at each call of the signal method, this is
useful to generate maps convolved with different beams

has_polarization
[bool] whether or not to simulate also polarization maps Default: True

pixel_indices
[ndarray of ints] Output a partial maps given HEALPix pixel indices in RING ordering

Methods Summary

compute_output_map(alm)
signal([nu, fwhm_arcmin, output_units]) Return map in uK_RJ at given frequency or array of

frequencies

Methods Documentation

compute_output_map(alm)

signal(nu=[148.0], fwhm_arcmin=None, output_units=’uK_RJ’, **kwargs)
Return map in uK_RJ at given frequency or array of frequencies

If nothing is specified for nu, we default to providing an unmodulated map at 148 GHz. The value 148
Ghz does not matter if the output is in uK_RJ.

Parameters

nu
[list or ndarray] Frequency or frequencies in GHz at which compute the signal

fwhm_arcmin
[float (optional)] Smooth the input alms before computing the signal, this can only be used
if the class was initialized with precompute_output_map to False.

output_units
[str] Output units, as defined in pysm.convert_units, by default this is “uK_RJ” as ex-
pected by PySM.

40 Chapter 10. so_pysm_models Package

https://so-pysm-models.readthedocs.io/en/latest/so_pysm_models/models.html

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

Returns

output_maps
[ndarray] Output maps array with the shape (num_freqs, 1 or 3 (I or IQU), npix)

10.2.6 UnsupportedPythonError

exception so_pysm_models.UnsupportedPythonError

10.3 Class Inheritance Diagram

COLines

GaussianDust

GaussianSynchrotron

InterpolatingComponent

PrecomputedAlms

UnsupportedPythonError

10.3. Class Inheritance Diagram 41

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

42 Chapter 10. so_pysm_models Package

Python Module Index

s
so_pysm_models, 33

43

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣149

44 Python Module Index

Index

C
COLines (class in so_pysm_models), 35
compute_output_map()

(so_pysm_models.PrecomputedAlms method),
40

G
GaussianDust (class in so_pysm_models), 36
GaussianSynchrotron (class in so_pysm_models), 37
get_filenames() (so_pysm_models.InterpolatingComponent

method), 39
get_so_models() (in module so_pysm_models), 33

I
InterpolatingComponent (class in so_pysm_models),

38

P
PrecomputedAlms (class in so_pysm_models), 39

R
read_map() (so_pysm_models.COLines method), 36
read_map() (so_pysm_models.InterpolatingComponent

method), 39

S
signal() (so_pysm_models.COLines method), 36
signal() (so_pysm_models.GaussianDust method), 37
signal() (so_pysm_models.GaussianSynchrotron

method), 38
signal() (so_pysm_models.InterpolatingComponent

method), 39
signal() (so_pysm_models.PrecomputedAlms method),

40
simulate_high_galactic_latitude_CO()

(so_pysm_models.COLines method), 36
simulate_polarized_emission()

(so_pysm_models.COLines method), 36
so_pysm_models (module), 33

T
test() (in module so_pysm_models), 33

U
UnsupportedPythonError, 41

45

	I Getting started
	Installation
	Development installation
	Example Usage

	II Summary of Models
	GaussianSynchrotron
	GaussianDust
	COLines
	PrecomputedAlms
	InterpolatingComponent

	III High resolution templates
	Details about individual models

	IV Reference/API
	so_pysm_models Package
	Python Module Index

