
so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
Release 0.1.dev88

A. Zonca

Feb 21, 2019

Contents:

I Getting started 3

1 Installation 5

2 Development installation 7

3 Example Usage 9

II Summary of Models 11

4 GaussianSynchrotron 15

5 GaussianDust 17

6 PrecomputedAlms 19

III Reference/API 21

7 so_pysm_models Package 23

Python Module Index 31

i

ii

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.𝑑𝑒𝑣88

This is the documentation for so_pysm_models.

Contents: 1

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.𝑑𝑒𝑣88

2 Contents:

Part I

Getting started

3

CHAPTER 1

Installation

Requirements:

• PySM PySM

• healpy

Clone the repository:

pip install https://github.com/simonsobs/so_pysm_models/archive/master.zip

5

https://github.com/bthorne93/PySM_public

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.𝑑𝑒𝑣88

6 Chapter 1. Installation

CHAPTER 2

Development installation

Clone from Github and install:

git clone https://github.com/simonsobs/so_pysm_models
cd so_pysm_models
pip install -e .

Run unit tests:

python setup.py test -V

Build docs:

python setup.py build_docs -w

7

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.𝑑𝑒𝑣88

8 Chapter 2. Development installation

CHAPTER 3

Example Usage

This repository implements new models for PySM that can be added as additional components.

For example, create and configure a component:

from so_pysm_models import GaussianSynchrotron
synchrotron = GaussianSynchrotron(target_nside = 16)

Create a PySM sky and add this component:

sky = pysm.Sky({})
sky.add_component("gaussian_synch", gaussian_synch)

Then get a map at a specific frequency in GHz with standard PySM functionalities:

m_synch = sky.gaussian_synch(2.3)

see example notebooks:

• Example Gaussian Synchrotron

• Example Gaussian Dust

9

https://gist.github.com/zonca/51a6fa9763106c78813f964a4b88f0fc
https://gist.github.com/zonca/4ddb5e384cb34f8a2945c041d13e9428

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.𝑑𝑒𝑣88

10 Chapter 3. Example Usage

Part II

Summary of Models

11

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.𝑑𝑒𝑣88

This page contains high-level documentation about the available models, check the classes docstrings, or the online
documentation, for the specific arguments.

13

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.𝑑𝑒𝑣88

14

CHAPTER 4

GaussianSynchrotron

This class implements Gaussian simulations for Galactic synchrotron emission. The inputs are a bunch of parameters
defining the properties of the synchrotron power spectra, and of synchrotron Spectral Energy Distribution (SED), the
output are the stokes IQU maps simulated as Gaussian random fields of the defined spectra. In particular, synchrotron
power spectra 𝐶ℓ are assumed to follow a power law as a function of ℓ: 𝐶𝑇𝑇/𝑇𝐸/𝐸𝐸/𝐵𝐵

ℓ ∝ ℓ𝛼. Spectra are defined
by:

1. The slope 𝛼 (same for all the spectra)

2. The amplitude of TT and EE spectra at ℓ = 80,

3. The ratio between B and E-modes

Stokes Q and U maps are generated as random realization of the polarization spectra. For the temperature map the
situation is slightly different as we want the total intensity map to be positive everywhere. The Stokes I map is
generated in the following way:

if target Nside<=64:

1. The TT power spectrum is 𝐶ℓ ∝ ℓ𝛼 and 𝐶ℓ[0] = 0

2. A first temparature map T is generated as a gaussian realization of this power spectrum

3. A new map is obtained by adding to T an offset whose value is taken from a reference map

4. If T+offset is positive everywhere than this is the output temperature map

5. Otherwise a cut in the TT power spectrum is applied in the following way: 𝐶ℓ[1 : ℓ𝑐𝑢𝑡] = 𝐶ℓ[ℓ𝑐𝑢𝑡]

6. A new T+offset map is generated. The value of ℓ𝑐𝑢𝑡 is the minimum one for which T+offset is positive
everywhere

if target Nside>64:

1. a map at Nside=64 is generated following the procedure above and then filtered to retain only large angular
scales (ell<30)

15

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.𝑑𝑒𝑣88

2. a map at the target Nside is generated including only small scales (ell>30) with the same seed as the map
at point 1.

3. the two maps are added together

4. In case the coadded map still has negative pixels a small offset is added to make it positive everywhere

The default parameters are optimized for SO-SAT observations. Meaning that the amplitudes of power spectra are
normalized in the 10% sky region observed by the instrument. In particular:

1. The amplitude of TT spectrum is taken from PySM-s0 model at 23GHz. TT_amplitude = 20 𝜇𝐾2 (for 𝐷ℓ at
ℓ = 80) 1. The offset for T map is also taken from PySM-s0 model at 23GHz. Toffset = 72 𝜇𝐾 1. The amplitude of
EE spectrum is taken from S-PASS at 2.3GHz extrapolated at 23GHz with a powerlaw with 𝛽𝑠 = −3.1 EE_amplitude
= 4.3 math:mu K^2 (for 𝐷ℓ at ℓ = 80) 1. ratio between B and E modes from Krachmalnicoff et al. 2018, B_to_E =
0.5 1. spectral tilt from Krachmalnicoff et al 2018, alpha = -1 1. spectral index from Planck IX 2018, beta = -3.1 1.
Default value for curvature is zero

16 Chapter 4. GaussianSynchrotron

CHAPTER 5

GaussianDust

This class implements Gaussian simulations for Galactic thermal dust emission. The inputs are a bunch of parameters
defining the properties of dust power spectra, and of dust Spectral Energy Distribution (SED), the output are the stokes
IQU maps simulated as Gaussian random fields of the defined spectra. In particular, dust power spectra 𝐶ℓ are assumed
to follow a power law as a function of ℓ: 𝐶𝑇𝑇/𝑇𝐸/𝐸𝐸/𝐵𝐵

ℓ ∝ ℓ𝛼. Spectra are defined by:

1. The slope 𝛼 (same for all the spectra)

2. The amplitude of TT and EE spectra at ℓ = 80,

3. The ratio between B and E-modes

4. The degree of correlation between T and E.

Stokes Q and U maps are generated as random realization of the polarization spectra. For the temperature map the
situation is slightly different as we want the total intensity map to be positive everywhere. The Stokes I map is
generated in the following way:

if target Nside<=64:

1. The TT power spectrum is 𝐶ℓ ∝ ℓ𝛼 and 𝐶ℓ[0] = 0

2. A first temparature map T is generated as a gaussian realization of this power spectrum

3. A new map is obtained by adding to T an offset whose value is taken from a reference map

4. If T+offset is positive everywhere than this is the output temperature map

5. Otherwise a cut in the TT power spectrum is applied in the following way: 𝐶ℓ[1 : ℓ𝑐𝑢𝑡] = 𝐶ℓ[ℓ𝑐𝑢𝑡]

6. A new T+offset map is generated. The value of ℓ𝑐𝑢𝑡 is the minimum one for which T+offset is positive
everywhere

if target Nside>64:

1. a map at Nside=64 is generated following the procedure above and then filtered to retain only large angular
scales (ell<30)

17

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.𝑑𝑒𝑣88

2. a map at the target Nside is generated including only small scales (ell>30) with the same seed as the map
at point 1.

3. the two maps are added together

4. In case the coadded map still has negative pixels a small offset is added to make it positive everywhere

Typical values for ℓ𝑐𝑢𝑡 are between ℓ = 4 and ℓ = 9, depending on realization (and also on the Nside of the output
map). This implementation removes some power at the very large scales.

The default parameters are optimized for SO-SAT observations. Meaning that the amplitudes of power spectra are
normalized in the 10% sky region observed by the instrument. In particular:

1. The amplitude of TT spectrum is taken from PySM-d0 model at 353GHz. TT_amplitude = 350 𝜇𝐾2 (for 𝐷ℓ at
ℓ = 80)

2. The offset for T map is also taken from PySM-d0 model at 353GHz. Toffset = 18 𝜇𝐾

3. The amplitude of EE spectrum is taken from Planck map at 353GHz, EE_amplitude = 100 math:mu K^2 (for 𝐷ℓ

at ℓ = 80)

4. ratio between B and E modes from Planck IX 2018, B_to_E = 0.5

5. spectral tilt from Planck IX 2018, alpha = -0.42

6. spectral index and temperature from Planck IX 2018, beta = 1.53, T=19.6 K

18 Chapter 5. GaussianDust

CHAPTER 6

PrecomputedAlms

This class generates a PySM component based on a set of precomputed 𝑎ℓ,𝑚 coefficients stored in a folder in FITS
format. This is mostly targeted at simulations of the Cosmic Microwave Background, the input 𝑎ℓ,𝑚 can be in K_{RJ}
or K_{CMB} as defined in the constructor, the unit conversion is performed assuming the CMB black body spectrum.
The output unit is specified in the signal method, default is mu K_{RJ}, as expected by PySM. In case the input is in
K_{RJ}, it is necessary also to specify input_reference_frequency_GHz.

The transformation between Spherical Harmonics and pixel domain can be performed either during initialization or in
the signal method based on precompute_output_map.

See the documentation about mapsims about specific simulated datasets.

19

https://docs.python.org/3/library/signal.html#module-signal
https://docs.python.org/3/library/signal.html#module-signal
https://mapsims.readthedocs.io

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.𝑑𝑒𝑣88

20 Chapter 6. PrecomputedAlms

Part III

Reference/API

21

CHAPTER 7

so_pysm_models Package

7.1 Functions

test(**kwargs) Run the tests for the package.

7.1.1 test

so_pysm_models.test(**kwargs)
Run the tests for the package.

This method builds arguments for and then calls pytest.main.

Parameters

package
[str, optional] The name of a specific package to test, e.g. ‘io.fits’ or ‘utils’. Accepts comma
separated string to specify multiple packages. If nothing is specified all default tests are run.

args
[str, optional] Additional arguments to be passed to pytest.main in the args keyword
argument.

docs_path
[str, optional] The path to the documentation .rst files.

open_files
[bool, optional] Fail when any tests leave files open. Off by default, because this adds extra
run time to the test suite. Requires the psutil package.

parallel
[int or ‘auto’, optional] When provided, run the tests in parallel on the specified number
of CPUs. If parallel is 'auto', it will use the all the cores on the machine. Requires the
pytest-xdist plugin.

23

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.𝑑𝑒𝑣88

pastebin
[(‘failed’, ‘all’, None), optional] Convenience option for turning on py.test pastebin output.
Set to ‘failed’ to upload info for failed tests, or ‘all’ to upload info for all tests.

pdb
[bool, optional] Turn on PDB post-mortem analysis for failing tests. Same as specifying
--pdb in args.

pep8
[bool, optional] Turn on PEP8 checking via the pytest-pep8 plugin and disable normal tests.
Same as specifying --pep8 -k pep8 in args.

plugins
[list, optional] Plugins to be passed to pytest.main in the plugins keyword argument.

remote_data
[{‘none’, ‘astropy’, ‘any’}, optional] Controls whether to run tests marked with
@pytest.mark.remote_data. This can be set to run no tests with remote data (none), only
ones that use data from http://data.astropy.org (astropy), or all tests that use remote data
(any). The default is none.

repeat
[int, optional] If set, specifies how many times each test should be run. This is useful for
diagnosing sporadic failures.

skip_docs
[bool, optional] When True, skips running the doctests in the .rst files.

test_path
[str, optional] Specify location to test by path. May be a single file or directory. Must be
specified absolutely or relative to the calling directory.

verbose
[bool, optional] Convenience option to turn on verbose output from py.test. Passing True is
the same as specifying -v in args.

7.2 Classes

GaussianDust(target_nside[, . . .]) Gaussian dust model
GaussianSynchrotron(target_nside[, . . .]) Gaussian synchrotron model
PrecomputedAlms(filename[, input_units, . . .]) Generic component based on Precomputed Alms
UnsupportedPythonError

7.2.1 GaussianDust

class so_pysm_models.GaussianDust(target_nside, has_polarization=True, pixel_indices=None,
TT_amplitude=350.0, Toffset=18.0, EE_amplitude=100.0,
rTE=0.35, EtoB=0.5, alpha=-0.42, beta=1.53, temp=19.6,
nu_0=353, seed=None)

Bases: object

Gaussian dust model

See more details at https://so-pysm-models.readthedocs.io/en/latest/so_pysm_models/models.html

Parameters

24 Chapter 7. so_pysm_models Package

http://data.astropy.org
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#object
https://so-pysm-models.readthedocs.io/en/latest/so_pysm_models/models.html

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.𝑑𝑒𝑣88

target_nside
[int] HEALPix NSIDE of the output maps

has_polarization
[bool] whether or not to simulate also polarization maps Default: True

pixel_indices
[ndarray of ints] Outputs partial maps given HEALPix pixel indices in RING ordering

TT_amplitude
[float] amplitude of synchrotron TT power spectrum (D_ell) at at the reference frequency
and ell=80, in muK^2 and thermodinamic units. Default: 350. from the amplitude of PySM-
d0 dust model at 353GHz in the region covered by SO-SAT.

Toffset
[float] offset to be applied to the temperature map in muK in RJ units. Default: 18 from the
mean value of the T PySM-s0 synch map at 23GHz in the region covered by SO-SAT

EE_amplitude
[float] Amplitude of EE modes D_ell at reference frequency at ell=80 Default: 100. from
the amplitude of HFI-353 E-modes spectrum in the region covered by SO-SAT

EtoB: float
ratio between E and B-mode amplitude for dust. Default: 0.5 from Planck 2018 IX

alpha
[same as alpha_sync for dust.] Default: -0.42 from Planck 2018 IX

beta
[float] dust spectral index. Default: 1.53 from Planck 2018 IX

temp
[float] dust temperature. Default: 19.6 from Planck 2018 IX

nu0
[float] dust reference frequency in GHz. Default: 353

seed
[int] seed for random realization of map Default: None

Methods Summary

signal(nu, **kwargs) Return map in uK_RJ at given frequency or array of
frequencies

Methods Documentation

signal(nu, **kwargs)
Return map in uK_RJ at given frequency or array of frequencies

7.2.2 GaussianSynchrotron

class so_pysm_models.GaussianSynchrotron(target_nside, has_polarization=True, pixel_indices=None,
TT_amplitude=20.0, Toffset=72.0, EE_amplitude=4.3,
rTE=0.35, EtoB=0.5, alpha=-1.0, beta=-3.1, curv=0.0,
nu_0=23.0, seed=None)

Bases: object

7.2. Classes 25

https://docs.python.org/3/library/functions.html#object

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.𝑑𝑒𝑣88

Gaussian synchrotron model

See more details at https://so-pysm-models.readthedocs.io/en/latest/so_pysm_models/models.html

Parameters

target_nside
[int] HEALPix NSIDE of the output maps

has_polarization
[bool] whether or not to simulate also polarization maps Default: True

pixel_indices
[ndarray of ints] Outputa partial maps given HEALPix pixel indices in RING ordering

TT_amplitude
[float] amplitude of synchrotron TT power spectrum (D_ell) at at the reference frequency
and ell=80, in muK^2 and thermodinamic units. Default: 20 from the amplitude of PySM-s0
synchrotron model at 23GHz in the region covered by SO-SAT.

Toffset
[float] offset to be applied to the temperature map in muK. Default: 72 from the mean value
of the T PySM-s0 synch map at 23GHz in the region covered by SO-SAT

EE_amplitude
[float] same as TT_amplitude but for EE power spectrum. Default: 4.3 from the amplitude
of S-PASS E-modes power spectrum at 2.3GHz in the region covered by SO-SAT, rescaled
at 23GHz with a powerlaw with beta_s = -3.1

rTE
[float] TE correlation factor defined as: rTE = clTE/sqrt(clTT*clEE) Default: 0.35 from
Planck IX 2018

EtoB
[float] ratio between E and B-mode amplitude. Default: 0.5 from Krachmalnicoff et al. 2018

alpha
[spectral tilt of the synchrotron power spectrum (D_ell).] Default: -1.0 from Krachmalnicoff
et al. 2018

beta
[synchrotron spectral index.] Default: -3.1 from Planck 2018 IX

curv
[synchrotron curvature index.] Default: 0.

nu_0
[synchrotron reference frequency in GHz.] Default: 23

seed
[int] seed for random realization of map Default: None

Methods Summary

signal(nu, **kwargs) Return map in uK_RJ at given frequency or array of
frequencies

26 Chapter 7. so_pysm_models Package

https://so-pysm-models.readthedocs.io/en/latest/so_pysm_models/models.html

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.𝑑𝑒𝑣88

Methods Documentation

signal(nu, **kwargs)
Return map in uK_RJ at given frequency or array of frequencies

7.2.3 PrecomputedAlms

class so_pysm_models.PrecomputedAlms(filename, input_units=’uK_CMB’, in-
put_reference_frequency_GHz=None, target_nside=None,
target_shape=None, target_wcs=None, precom-
pute_output_map=True, has_polarization=True,
pixel_indices=None)

Bases: object

Generic component based on Precomputed Alms

Load a set of Alms from a FITS file and generate maps at the requested resolution and frequency assuming the
CMB black body spectrum. A single set of Alms is used for all frequencies requested by PySM, consider that
PySM expects the output of components to be in uK_RJ.

See more details at https://so-pysm-models.readthedocs.io/en/latest/so_pysm_models/models.html

Parameters

filename
[string] Path to the input Alms in FITS format

input_units
[string] Input unit strings as defined by pysm.convert_units, e.g. K_CMB, uK_RJ, MJysr

input_reference_frequency_GHz
[float] If input units are K_RJ or Jysr, the reference frequency

target_nside
[int] HEALPix NSIDE of the output maps

precompute_output_map
[bool] If True (default), Alms are transformed into a map in the constructor, if False, the
object only stores the Alms and generate the map at each call of the signal method, this is
useful to generate maps convolved with different beams

has_polarization
[bool] whether or not to simulate also polarization maps Default: True

pixel_indices
[ndarray of ints] Output a partial maps given HEALPix pixel indices in RING ordering

Methods Summary

compute_output_map(alm)
signal([nu, fwhm_arcmin, output_units]) Return map in uK_RJ at given frequency or array of

frequencies

7.2. Classes 27

https://docs.python.org/3/library/functions.html#object
https://so-pysm-models.readthedocs.io/en/latest/so_pysm_models/models.html

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.𝑑𝑒𝑣88

Methods Documentation

compute_output_map(alm)

signal(nu=[148.0], fwhm_arcmin=None, output_units=’uK_RJ’, **kwargs)
Return map in uK_RJ at given frequency or array of frequencies

If nothing is specified for nu, we default to providing an unmodulated map at 148 GHz. The value 148
Ghz does not matter if the output is in uK_RJ.

Parameters

nu
[list or ndarray] Frequency or frequencies in GHz at which compute the signal

fwhm_arcmin
[float (optional)] Smooth the input alms before computing the signal, this can only be used
if the class was initialized with precompute_output_map to False.

output_units
[str] Output units, as defined in pysm.convert_units, by default this is “uK_RJ” as ex-
pected by PySM.

Returns

output_maps
[ndarray] Output maps array with the shape (num_freqs, 1 or 3 (I or IQU), npix)

7.2.4 UnsupportedPythonError

exception so_pysm_models.UnsupportedPythonError

28 Chapter 7. so_pysm_models Package

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.𝑑𝑒𝑣88

7.3 Class Inheritance Diagram

GaussianDust

GaussianSynchrotron

PrecomputedAlms

UnsupportedPythonError

7.3. Class Inheritance Diagram 29

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.𝑑𝑒𝑣88

30 Chapter 7. so_pysm_models Package

Python Module Index

s
so_pysm_models, 23

31

so𝑝𝑦𝑠𝑚𝑚𝑜𝑑𝑒𝑙𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.𝑑𝑒𝑣88

32 Python Module Index

Index

C
compute_output_map()

(so_pysm_models.PrecomputedAlms method),
28

G
GaussianDust (class in so_pysm_models), 24
GaussianSynchrotron (class in so_pysm_models), 25

P
PrecomputedAlms (class in so_pysm_models), 27

S
signal() (so_pysm_models.GaussianDust method), 25
signal() (so_pysm_models.GaussianSynchrotron

method), 27
signal() (so_pysm_models.PrecomputedAlms method),

28
so_pysm_models (module), 23

T
test() (in module so_pysm_models), 23

U
UnsupportedPythonError, 28

33

	I Getting started
	Installation
	Development installation
	Example Usage

	II Summary of Models
	GaussianSynchrotron
	GaussianDust
	PrecomputedAlms

	III Reference/API
	so_pysm_models Package
	Python Module Index

