
snppipeline Documentation
Release 0.7.0

Errol Strain, Yan Luo, James Pettengill, Hugh A. Rand, Steve Davis

Jun 06, 2017





Contents

1 CFSAN SNP Pipeline 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Citing SNP Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 SNP Pipeline Processes 5

3 Installation 7
3.1 Step 1 - Operating System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Step 2 - Executable Software Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Step 3 - Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Step 4 - Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Step 5 - Pip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.6 Step 6 - Python Package Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.7 Step 7 - Install the SNP Pipeline Python Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.8 Upgrading SNP Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.9 Uninstalling SNP Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.10 Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Usage 11
4.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 All-In-One SNP Pipeline Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Mirrored Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 High Performance Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.7 Tool Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.8 All-In-One SNP Pipeline Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.9 Step-by-Step Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.10 SNP Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.11 Excessive SNPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.12 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.13 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Correct and Reproducible Results 35
5.1 Reproducible Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Correct Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

i



5.3 Test Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 FAQ / Troubleshooting Guide 39
6.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Running the Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.4 Developer Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Configuration 43
7.1 SnpPipeline_StopOnSampleError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 MaxConcurrentPrepSamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.3 MaxConcurrentCallConsensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4 MaxConcurrentCollectSampleMetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.5 SnpPipeline_MaxSnps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.6 SnpPipeline_Aligner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.7 Bowtie2Build_ExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.8 SmaltIndex_ExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.9 SamtoolsFaidx_ExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.10 Bowtie2Align_ExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.11 SmaltAlign_ExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.12 SamtoolsSamFilter_ExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.13 SamtoolsSort_ExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.14 SamtoolsMpileup_ExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.15 VarscanMpileup2snp_ExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.16 VarscanJvm_ExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.17 RemoveAbnormalSnp_ExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.18 CreateSnpList_ExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.19 CallConsensus_ExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.20 CreateSnpMatrix_ExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.21 CreateSnpReferenceSeq_ExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.22 MergeVcf_ExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.23 CollectSampleMetrics_ExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.24 CombineSampleMetrics_ExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.25 Torque_StripJobArraySuffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.26 GridEngine_StripJobArraySuffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.27 GridEngine_PEname . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.28 GridEngine_QsubExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.29 Torque_QsubExtraParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8 Command Reference 53
8.1 copy_snppipeline_data.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2 run_snp_pipeline.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.3 prepReference.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.4 alignSampleToReference.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.5 prepSamples.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.6 snp_filter.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.7 create_snp_list.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.8 create_snp_pileup.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.9 call_consensus.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.10 mergeVcf.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.11 create_snp_matrix.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.12 calculate_snp_distances.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.13 create_snp_reference_seq.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.14 collectSampleMetrics.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

ii



8.15 combineSampleMetrics.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9 Contributing 65
9.1 Types of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.2 Get Started! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.3 Pull Request Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.4 Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

10 Credits 69
10.1 CFSAN BioInformatics Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.2 External Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

11 History 71
11.1 0.7.0 (2016-11-30) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
11.2 0.6.1 (2016-05-23) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
11.3 0.6.0 (2016-04-11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
11.4 0.5.2 (2016-03-07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
11.5 0.5.1 (2016-02-19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
11.6 0.5.0 (2016-01-19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
11.7 0.4.1 (2015-10-30) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
11.8 0.4.0 (2015-10-22) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
11.9 0.3.4 (2015-06-25) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
11.10 0.3.3 (2015-04-14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
11.11 0.3.2 (2015-01-14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
11.12 0.3.1 (2014-10-27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
11.13 0.3.0 (2014-10-22) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
11.14 0.2.1 (2014-09-24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
11.15 0.2.0 (2014-09-17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
11.16 0.1.1 (2014-07-28) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
11.17 0.1.0 (2014-07-03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

12 Indices and tables 81

iii



iv



snppipeline Documentation, Release 0.7.0

Contents:

Contents 1



snppipeline Documentation, Release 0.7.0

2 Contents



CHAPTER 1

CFSAN SNP Pipeline

The CFSAN SNP Pipeline is a Python-based system for the production of SNP matrices from sequence data used in
the phylogenetic analysis of pathogenic organisms sequenced from samples of interest to food safety.

The SNP Pipeline was developed by the United States Food and Drug Administration, Center for Food Safety and
Applied Nutrition.

• Free software: See license below.

• Documentation: http://snp-pipeline.readthedocs.io/en/latest/readme.html

• Source Code: https://github.com/CFSAN-Biostatistics/snp-pipeline

• PyPI Distribution: https://pypi.python.org/pypi/snp-pipeline

Introduction

The CFSAN SNP Pipeline uses reference-based alignments to create a matrix of SNPs for a given set of samples.
The process generally starts off by finding a reference that is appropriate for the samples of interest, and collecting
the sample sequence data into an appropriate directory structure. The SNP pipeline can then be used to perform the
alignment of the samples to the reference. Once the sample sequences are aligned, a list of SNP positions is generated.
The list of SNP positions is then used in combination with alignments of the samples to the reference sequence to call
SNPs. The SNP calls are organized into a matrix containing (only) the SNP calls for all of the sequences.

This software was developed with the objective of creating high quality SNP matrices for sequences from closely-
related pathogens, e.g., different samples of Salmonella enteriditis from an outbreak investigation. The focus on
closely related sequences means that this code is not suited for the analysis of relatively distantly related organisms,
where there is not a single reference sequence appropriate for all the organisms for which an analysis is desired.

The CFSAN SNP Pipeline is written in a combination of bash and python. The code (including the bash scripts)
is designed to be straighforward to install. Scripts are provided to run the Python code from the command line. A
configuration file supports customizing the behavior of the pipeline. In situations where additional customization is
desired, the code is not highly complex and should be easy to modify as necessary.

Examples of using the code are provided. These examples serve as both unit tests, and as examples that can be
modified to work on other data sets of interest.

3

http://snp-pipeline.readthedocs.io/en/latest/readme.html
https://github.com/CFSAN-Biostatistics/snp-pipeline
https://pypi.python.org/pypi/snp-pipeline


snppipeline Documentation, Release 0.7.0

Citing SNP Pipeline

Please cite the publication below:

Davis S, Pettengill JB, Luo Y, Payne J, Shpuntoff A, Rand H, Strain E. (2015) CFSAN SNP Pipeline: an
automated method for constructing SNP matrices from next-generation sequence data. PeerJ Computer
Science 1:e20 https://doi.org/10.7717/peerj-cs.20

License

See the LICENSE.txt file included in the SNP Pipeline distribution.

4 Chapter 1. CFSAN SNP Pipeline

https://doi.org/10.7717/peerj-cs.20
https://doi.org/10.7717/peerj-cs.20
https://doi.org/10.7717/peerj-cs.20


CHAPTER 2

SNP Pipeline Processes

The drawing below depicts the processes, files, and data flows within the SNP Pipeline.

5



snppipeline Documentation, Release 0.7.0

6 Chapter 2. SNP Pipeline Processes



CHAPTER 3

Installation

The SNP Pipeline software package consists of python scripts and shell scripts with dependencies on executable
programs launched by the scripts.

Step 1 - Operating System Requirements

The SNP Pipeline runs in a Linux environment. It has been tested on the following platforms:

• Red Hat

• CentOS

• Ubuntu

Step 2 - Executable Software Dependencies

You should have the following software installed before using the SNP Pipeline.

• Bowtie2, a tool for aligning reads to long reference sequences

• SMALT, a tool for aligning reads to long reference sequences

• SAMtools, utilities for manipulating alignments in the SAM format

• VarScan, a tool to detect variants in NGS data

• tabix, a generic indexer for tab-delimited genome position files

• bgzip, part of the tabix package, bgzip is a block compression utility

• BcfTools, utilities for variant calling and manipulating VCFs and BCFs

• fastq-dump, an SRA Toolkit utility for fetching samples from NCBI SRA

Note: you will need either Bowtie2 or SMALT. You do not have to install both. However, the included result files were
generated with Bowtie2. Your results may differ when using SMALT.

7

http://sourceforge.net/projects/bowtie-bio/files/bowtie2/
http://sourceforge.net/projects/smalt/files
http://sourceforge.net/projects/samtools/files/
http://sourceforge.net/projects/varscan/files/
http://www.htslib.org/doc/tabix.html
http://sourceforge.net/projects/samtools/files/samtools/1.1/
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software


snppipeline Documentation, Release 0.7.0

Step 3 - Environment Variables

Define the CLASSPATH environment variable to specify the location of the VarScan jar file. Add the following (or
something similiar) to your .bashrc file:

export CLASSPATH=~/software/varscan.v2.3.9/VarScan.v2.3.9.jar:$CLASSPATH

Step 4 - Python

The SNP pipeline requires python version 2.6, 2.7, 3.3, 3.4, or 3.5. The pipeline has not been tested on other python
versions. If you do not already have python installed, you should install version 2.7. You can either build from source
or install a precompiled version with your Linux package manager.

Step 5 - Pip

This can be a troublesome installation step – proceed with caution. The pip tool is used to install python packages
including the snp-pipeline and other packages used by the snp-pipeline. Some newer versions of Python include pip.
Check to see if pip is already installed:

$ pip -V

If pip is not already installed, proceed as follows:

Download get-pip.py from https://pip.pypa.io/en/latest/installing.html#install-pip
$ python get-pip.py --user

Note: avoid using sudo when installing pip. Some users have experienced problems installing and loading packages
when pip is installed using sudo.

Step 6 - Python Package Dependencies

For the most part, the installer automatically installs the necessary python packages used by snp-pipeline. However,
not all python packages can be reliably installed automatically. The packages listed below may need to be manually
installed if automatic installation fails. You can either install these packages now, or hope for the best and manually
install later if the automatic installation fails.

• Biopython, a set of tools for biological computation written in Python.

Step 7 - Install the SNP Pipeline Python Package

There is more than one way to install the SNP Pipeline depending on whether you intend to work with the source code
or just run it.

Installation Method 1 for Most Users

This is the recommended installation method for new users.

8 Chapter 3. Installation

http://biopython.org/wiki/Download


snppipeline Documentation, Release 0.7.0

If you want to run the software without viewing or changing the source code, follow the instructions below.

At the command line:

$ pip install --user snp-pipeline

Update your .bashrc file with the path to user-installed python packages:

export PATH=~/.local/bin:$PATH

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv snp-pipeline
$ pip install snp-pipeline

Installation Method 2 for Software Developers

If you intend to work with the source code in the role of a software developer, you should clone the GitHub repository
as described in the Contributing section of this documentation.

Upgrading SNP Pipeline

If you previously installed with pip, you can upgrade to the newest version from the command line:

$ pip install --user --upgrade snp-pipeline

Uninstalling SNP Pipeline

If you installed with pip, you can uninstall from the command line:

$ pip uninstall snp-pipeline

Tips

There is a dependency on the python psutil package. Pip will attempt to install the psutil package automatically when
installing snp-pipeline. If it fails with an error message about missing Python.h, you will need to manually install the
python-dev package. In Ubuntu, use this command:

$ sudo apt-get install python-dev

3.8. Upgrading SNP Pipeline 9



snppipeline Documentation, Release 0.7.0

10 Chapter 3. Installation



CHAPTER 4

Usage

The SNP Pipeline is run from the Unix command line. The pipeline consists of a collection of shell scripts and python
scripts.

11



snppipeline Documentation, Release 0.7.0

Script
Description

copy_snppipeline_data.py

Copies supplied example data to a work directory

run_snp_pipeline.sh

This do-it-all script runs all the other scripts listed
below,
comprising all the pipeline steps

prepReference.sh

Indexes the reference genome

alignSampleToReference.sh

Aligns samples to the reference genome

prepSamples.sh

Finds variants in each sample

snp_filter.py

Remove SNPs in abnormal regions.

create_snp_list.py

Combines the SNP positions across all samples into a
single
unified SNP list file

create_snp_pileup.py

Deprecated – this command is not used by the pipeline
since
v0.4.0. Replaced by call_consensus.py

Creates the SNP pileup file for a sample – a subset of
the
pileup file at only the positions where SNPs were
called in any
of the samples

call_consensus.py

Calls the consensus SNPs for each sample

create_snp_matrix.py

Creates a matrix of SNPs across all samples

calculate_snp_distances.py

Computes the SNP distances between all pairs of
samples

create_snp_reference_seq.py

Writes the reference sequence bases at SNP locations to
a fasta file

collectSampleMetrics.sh

Collects useful coverage and variant statistics about
each sample

combineSampleMetrics.sh

Creates a table of coverage and variant statistics for
all samples

mergeVcf.sh

Creates a multi-sample VCF file with the snps found in
all
samples

12 Chapter 4. Usage



snppipeline Documentation, Release 0.7.0

Inputs

Before using the SNP Pipeline, make sure your input data is organized and named the way the pipeline expects. Follow
these guidelines:

• No spaces in file names and directory names.

• A fasta genome reference file must exist in a separate directory.

• The samples must be organized with a separate directory for each sample. Each sample directory should contain
the fastq files for that sample. The name of the directory should match the name of the sample. When using
paired-end fastq files, the forward and reverse files must be in the same directory.

• The script needs to know how to find all the samples. You have two choices:

1. You can organize all the sample directories under a common parent directory.

2. You can have sample directories anywhere you like, but you will need to create a file listing the path to all
the sample directories.

• The sample fastq files must be named with one of the following file patterns: (*.fastq, *.fq, *.fastq.gz, *.fq.gz).
It’s okay if different samples are named differently, but the two mate files of paired-end samples must be named
with the same extension.

• If there is an outgroup among samples, a file containing the sample ids of the outgroup samples must be cre-
ated in advance, and the relative or absolute path of this file should be specified in the parameter “Remove-
AbnormalSnp_ExtraParams” in the configuration file “snppipeline.conf” (see the description of the parameter
“RemoveAbnormalSnp_ExtraParams”).

Outputs

By default, the SNP Pipeline generates the following output files. If you need more control over the output, you can
run the pipeline one step at a time. See Step-by-Step Workflows.

• snplist.txt : contains a list of the high-confidence SNP positions identified by the phase 1 SNP caller
(VarScan) in at least one of the samples. These are the only positions where the consensus caller subsequently
looks for SNPs in all samples. The consensus caller often finds SNPs at the same positions in other samples,
and those additional SNPs are not listed in the snplist.txt file. While the snplist.txt file has an accurate list of
SNP positions, it does not contain the final list of samples having SNPs at those positions. If you need the
final set of SNPs per sample, you should not use the snplist.txt file. Instead, refer to the snpma.fasta file or the
snpma.vcf file. The corresponding snplist_preserved.txt file is produced when snp filtering removes
the abnormal snps.

• consensus.fasta : for each sample, the consensus base calls at the high-confidence positions where SNPs
were detected in any of the samples. The corresponding consensus_preserved.fasta file is produced
when snp filtering removes the abnormal snps.

• consensus.vcf : for each sample, the VCF file of SNPs called, as well as failed SNPs at the high-confidence
positions where SNPs were detected in any of the samples. The corresponding consensus_preserved.
vcf file is produced when snp filtering removes the abnormal snps.

• snpma.fasta : the SNP matrix containing the consensus base for each of the samples at the high-confidence
positions where SNPs were identified in any of the samples. The matrix contains one row per sample and one
column per SNP position. Non-SNP positions are not included in the matrix. The matrix is formatted as a
fasta file, with each sequence (all of identical length) corresponding to the SNPs in the correspondingly named
sequence. The corresponding snpma_preserved.fasta file is produced when snp filtering removes the
abnormal snps.

4.1. Inputs 13



snppipeline Documentation, Release 0.7.0

• snp_distance_pairwise.tsv : contains the pairwise SNP distance between all pairs of samples. The
file is tab-separated, with a header row and three columns identifing the two sequences and their distance. The
corresponding snp_distance_pairwise_preserved.tsv file is produced when snp filtering removes
the abnormal snps.

• snp_distance_matrix.tsv : contains a matrix of the SNP distances between all pairs of samples.
The file is tab-separated, with a header row and rows and columns for all samples. The corresponding
snp_distance_matrix_preserved.tsv file is produced when snp filtering removes the abnormal snps.

• snpma.vcf : contains the merged multi-sample VCF file identifying the positions and snps for all samples.
The corresponding snpma_preserved.vcf file is produced when snp filtering removes the abnormal snps.

• referenceSNP.fasta : a fasta file containing the reference sequence bases at all the SNP locations. The
corresponding referenceSNP_preserved.fasta file is produced when snp filtering removes the abnor-
mal snps.

• metrics : for each sample, contains the size of the sample, number of reads, alignment rate, pileup depth, and
number of SNPs found.

• metrics.tsv : a tab-separated table of metrics for all samples containing the size of the samples, number of
reads, alignment rate, pileup depth, and number of SNPs found.

• error.log : a summary of errors detected during SNP Pipeline execution

All-In-One SNP Pipeline Script

Most users should be able to run the SNP Pipeline by launching a single script, run_snp_pipeline.sh. This
script is easy to use and works equally well on your desktop workstation or on a High Performance Computing cluster.
You can find examples of using the script in the sections below.

If you need more flexibility, you can run the individual pipeline scripts one step at a time. See Step-by-Step Workflows.

Logging

When the SNP Pipeline is launched with the run_snp_pipeline.sh script, it generates log files for each pro-
cessing step of the pipeline. The logs for each pipeline run are stored in a time-stamped directory under the output
directory. If the pipeline is re-run on the same samples, the old log files are kept and a new log directory is created for
the new run. For example, the output directory might look like this after two runs:

drwx------ 2 me group 4096 Oct 17 16:37 logs-20141017.154428/
drwx------ 2 me group 4096 Oct 17 16:38 logs-20141017.163848/
drwx------ 2 me group 4096 Oct 17 16:37 reference/
-rw------- 1 me group 194 Oct 17 16:38 referenceSNP.fasta
-rw------- 1 me group 182 Oct 17 16:38 referenceSNP_preserved.fasta
-rw------- 1 me group 104 Oct 17 16:38 sampleDirectories.txt
drwx------ 6 me group 4096 Oct 17 16:37 samples/
-rw------- 1 me group 7216 Oct 17 16:38 snplist.txt
-rw------- 1 me group 6824 Oct 17 16:38 snplist_preserved.txt
-rw------- 1 me group 708 Oct 17 16:38 snpma.fasta
-rw------- 1 me group 682 Oct 17 16:38 snpma_preserved.fasta

A log file is created for each step of the pipeline for each sample. For performamnce reasons, the samples are sorted
by size and processed largest first. This sorting is reflected in the naming of the log files. The log files are named with
a suffix indicating the sample number:

14 Chapter 4. Usage



snppipeline Documentation, Release 0.7.0

-rw------- 1 me group 1330 Oct 17 16:37 alignSamples.log-1
-rw------- 1 me group 1330 Oct 17 16:37 alignSamples.log-2
-rw------- 1 me group 1330 Oct 17 16:37 alignSamples.log-3
-rw------- 1 me group 12045 Oct 17 16:37 prepReference.log
-rw------- 1 me group 1686 Oct 17 16:37 prepSamples.log-1
-rw------- 1 me group 1686 Oct 17 16:37 prepSamples.log-2
-rw------- 1 me group 1686 Oct 17 16:37 prepSamples.log-3
-rw------- 1 me group 983 Oct 17 16:37 snpList.log
-rw------- 1 me group 983 Oct 17 16:37 snpList_preserved.log
-rw------- 1 me group 1039 Oct 17 16:37 snpMatrix.log
-rw------- 1 me group 1039 Oct 17 16:37 snpMatrix_preserved.log
-rw------- 1 me group 841 Oct 17 16:37 snpPileup.log-1
-rw------- 1 me group 841 Oct 17 16:37 snpPileup.log-2
-rw------- 1 me group 841 Oct 17 16:37 snpPileup.log-3
-rw------- 1 me group 806 Oct 17 16:37 snpReference.log
-rw------- 1 me group 806 Oct 17 16:37 snpReference_preserved.log

To determine which samples correspond to which log files, you can either grep the log files for the sample name or
inspect the sorted sampleDirectories.txt file to determine the sequential position of the sample. The file names are
consistent regardless of whether the pipeline is run on a workstation or HPC cluster.

In addition to the processing log files, the log directory also contains a copy of the configuration file used for each run
– capturing the parameters used during the run.

Mirrored Inputs

When the SNP Pipeline is launched with the run_snp_pipeline.sh script, it has the optional capability to create
a mirrored copy of the input fasta and fastq files. You might use this feature to avoid polluting the reference directory
and sample directories with the intermediate files generated by the snp pipeline. The mirroring function can either
create normal copies of the files, or it can create links to the original files – saving both time and disk space. With
linked files, you can easily run multiple experiments on the same data or different overlapping sets of samples without
having duplicate copies of the original sample files. See the run_snp_pipeline.sh command reference for the mirroring
syntax.

The mirroring function creates a “reference” subdirectory and a “samples” subdirectory under the main output direc-
tory. One directory per sample is created under the “samples” directory. The generated intermediate files are placed
into the mirrored directories, not in the original locations of the inputs. The SNP Pipeline attempts to preserve the time
stamps of the original files in the mirrored directories.

Keep in mind the following limitations when mirroring the inputs.

• Some file systems do not support soft (symbolic) links. If you attempt to create a soft link on a file system
without the capability, the operation will fail with an error message.

• Hard links cannot be used to link files across two different file systems. The original file and the link must both
reside on the same file system.

• Normal file copies should always work, but the copy operation can be lengthy and the duplicate files will
consume extra storage space.

High Performance Computing

The SNP Pipeline can be executed on a High Performance Computing cluster. The Torque and Grid Engine job queue
managers are supported.

4.5. Mirrored Inputs 15



snppipeline Documentation, Release 0.7.0

Torque

To run the SNP Pipeline on torque:

run_snp_pipeline.sh -Q torque -s mySamplesDir myReference.fasta

You may need to change the Torque_StripJobArraySuffix configuration parameter if you see qsub illegal
dependency errors.

You can pass extra options to the Torque qsub command by configuring the Torque_QsubExtraParams parame-
ter in the configuration file.

Grid Engine

To run the SNP Pipeline on grid engine you must use a configuration file to specify the name of your parallel environ-
ment.

Grab the default configuration file:

copy_snppipeline_data.py configurationFile

Edit the snppipeline.conf file and make the following change:

GridEngine_PEname="myPE" # substitute the name of your PE

You may also need to change the GridEngine_StripJobArraySuffix configuration parameter if you see qsub
illegal dependency errors.

Then run the pipeline with the -c and -Q command line options:

run_snp_pipeline.sh -c snppipeline.conf -Q grid -s mySamplesDir myReference.fasta

You can pass extra options to the Grid Engine qsub command by configuring the
GridEngine_QsubExtraParams parameter in the configuration file. Among other things, you can con-
trol which queue the snp-pipeline will use when executing on an HPC with multiple queues.

See also: Performance.

Tool Selection

The SNP Pipeline lets you choose either the Bowtie2 aligner or the Smalt aligner. Your choice of aligner, as well as
the command line options for the aligner are specified in the SNP Pipeline configuration file.

Grab the default configuration file:

copy_snppipeline_data.py configurationFile

To run the SNP Pipeline with Bowtie2, edit snppipeline.conf with these settings:

SnpPipeline_Aligner="bowtie2"
Bowtie2Build_ExtraParams="" # substitute the command line options you want here
Bowtie2Align_ExtraParams="" # substitute the command line options you want here

To run the SNP Pipeline with Smalt, edit snppipeline.conf with these settings:

16 Chapter 4. Usage



snppipeline Documentation, Release 0.7.0

SnpPipeline_Aligner="smalt"
SmaltIndex_ExtraParams="" # substitute the command line options you want here
SmaltAlign_ExtraParams="" # substitute the command line options you want here

Then run the pipeline with the -c command line option:

run_snp_pipeline.sh -c snppipeline.conf -s mySamplesDir myReference.fasta

See also Configuration.

All-In-One SNP Pipeline Workflows

The sections below give detailed examples of workflows you can run with the all-in-one run_snp_pipeline.sh script.

All-In-One Workflow - Lambda Virus
All-In-One Workflow - Salmonella Agona
All-In-One Workflow - Listeria monocytogenes

All-In-One Workflow - Lambda Virus

The SNP Pipeline software distribution includes a small Lambda Virus data set that can be quickly processed to verify
the basic functionality of the software.

Step 1 - Gather data:

# The SNP Pipeline distribution includes sample data organized as shown below:
snppipeline/data/lambdaVirusInputs/reference/lambda_virus.fasta
snppipeline/data/lambdaVirusInputs/samples/sample1/sample1_1.fastq
snppipeline/data/lambdaVirusInputs/samples/sample1/sample1_2.fastq
snppipeline/data/lambdaVirusInputs/samples/sample2/sample2_1.fastq
snppipeline/data/lambdaVirusInputs/samples/sample2/sample2_2.fastq
snppipeline/data/lambdaVirusInputs/samples/sample3/sample3_1.fastq
snppipeline/data/lambdaVirusInputs/samples/sample3/sample3_2.fastq
snppipeline/data/lambdaVirusInputs/samples/sample4/sample4_1.fastq
snppipeline/data/lambdaVirusInputs/samples/sample4/sample4_2.fastq

# Copy the supplied test data to a work area:
cd test
copy_snppipeline_data.py lambdaVirusInputs testLambdaVirus
cd testLambdaVirus

Step 2 - Run the SNP Pipeline:

# Run the pipeline, specifing the locations of samples and the reference
#
# Specify the following options:
# -s : samples parent directory
run_snp_pipeline.sh -s samples reference/lambda_virus.fasta

Step 3 - View and verify the results:

4.8. All-In-One SNP Pipeline Workflows 17



snppipeline Documentation, Release 0.7.0

Upon successful completion of the pipeline, the snplist.txt file should have 165 entries, and the snplist_preserved.txt
should have 136 entries. The SNP Matrix can be found in snpma.fasta and snpma_preserved.fasta. The corresponding
reference bases are in the referenceSNP.fasta and referenceSNP_preserved.fasta:

# Verify the result files were created
ls -l snplist.txt
ls -l snpma.fasta
ls -l snpma.vcf
ls -l referenceSNP.fasta
ls -l snp_distance_matrix.tsv
ls -l snplist_preserved.txt
ls -l snpma_preserved.fasta
ls -l snpma_preserved.vcf
ls -l referenceSNP_preserved.fasta
ls -l snp_distance_matrix_preserved.tsv

# Verify correct results
copy_snppipeline_data.py lambdaVirusExpectedResults expectedResults
diff -q -s snplist.txt expectedResults/snplist.txt
diff -q -s snpma.fasta expectedResults/snpma.fasta
diff -q -s referenceSNP.fasta expectedResults/referenceSNP.fasta
diff -q -s snp_distance_matrix.tsv expectedResults/snp_distance_matrix.tsv
diff -q -s snplist_preserved.txt expectedResults/snplist_preserved.txt
diff -q -s snpma_preserved.fasta expectedResults/snpma_preserved.fasta
diff -q -s referenceSNP_preserved.fasta expectedResults/referenceSNP_preserved.
→˓fasta
diff -q -s snp_distance_matrix_preserved.tsv expectedResults/snp_distance_matrix_
→˓preserved.tsv

# View the per-sample metrics
xdg-open metrics.tsv

All-In-One Workflow - Salmonella Agona

The Salmonella Agona data set contains a small number of realistic sequences that can be processed in a reasonable
amount of time. Due to the large size of real data, the sequences must be downloaded from the NCBI SRA. Follow
the instructions below to download and process the data set.

Step 1 - Gather data:

# The SNP Pipeline distribution includes sample data organized as shown below:
snppipeline/data/agonaInputs/sha256sumCheck
snppipeline/data/agonaInputs/reference/NC_011149.fasta

# Copy the supplied test data to a work area:
mkdir testAgona
cd testAgona
copy_snppipeline_data.py agonaInputs cleanInputs
cd cleanInputs

# Create sample directories
mkdir -p samples/ERR178926 samples/ERR178927 samples/ERR178928 samples/ERR178929
→˓samples/ERR178930

# Download sample data from SRA at NCBI. Note that we use the fastq-dump command from
# the NCBI SRA-toolkit to fetch sample sequences. There are other ways to get the
→˓data,

18 Chapter 4. Usage



snppipeline Documentation, Release 0.7.0

# but the SRA-toolkit is easy to install, and does a good job of downloading large
# files.
fastq-dump --split-files --outdir samples/ERR178926 ERR178926
fastq-dump --split-files --outdir samples/ERR178927 ERR178927
fastq-dump --split-files --outdir samples/ERR178928 ERR178928
fastq-dump --split-files --outdir samples/ERR178929 ERR178929
fastq-dump --split-files --outdir samples/ERR178930 ERR178930

# Check the data
# The original data was used to generate a hash as follows:
# sha256sum reference/*.fasta samples/*/*.fastq > sha256sumCheck
# The command below checks the downloaded data (and the reference sequence) against
→˓the
# hashes that are saved in the sha256sumCheck file using sha256sum command, which
→˓is
# generally available on unix systems.
sha256sum -c sha256sumCheck
cd ..

Step 2 - Run the SNP Pipeline:

# Run the pipeline
# Specify the following options:
# -m : mirror the input samples and reference files
# -o : output directory
# -s : samples parent directory
run_snp_pipeline.sh -m soft -o outputDirectory -s cleanInputs/samples cleanInputs/
→˓reference/NC_011149.fasta

Step 3 - View and verify the results:

Upon successful completion of the pipeline, the snplist.txt file should have 3571 entries, and the snplist_preserved.txt
should have 206 entries. The SNP Matrix can be found in snpma.fasta. The corresponding reference bases are in the
files referenceSNP.fasta and referenceSNP_preserved.fasta:

# Verify the result files were created
ls -l outputDirectory/snplist.txt
ls -l outputDirectory/snpma.fasta
ls -l outputDirectory/snpma.vcf
ls -l outputDirectory/referenceSNP.fasta
ls -l outputDirectory/snp_distance_matrix.tsv
ls -l outputDirectory/snplist_preserved.txt
ls -l outputDirectory/snpma_preserved.fasta
ls -l outputDirectory/snpma_preserved.vcf
ls -l outputDirectory/referenceSNP_preserved.fasta
ls -l outputDirectory/snp_distance_matrix_preserved.tsv

# Verify correct results
copy_snppipeline_data.py agonaExpectedResults expectedResults
diff -q -s outputDirectory/snplist.txt expectedResults/snplist.txt
diff -q -s outputDirectory/snpma.fasta expectedResults/snpma.fasta
diff -q -s outputDirectory/referenceSNP.fasta expectedResults/referenceSNP.fasta
diff -q -s outputDirectory/snp_distance_matrix.tsv expectedResults/snp_distance_
→˓matrix.tsv
diff -q -s outputDirectory/snplist_preserved.txt expectedResults/snplist_
→˓preserved.txt
diff -q -s outputDirectory/snpma_preserved.fasta expectedResults/snpma_
→˓preserved.fasta

4.8. All-In-One SNP Pipeline Workflows 19



snppipeline Documentation, Release 0.7.0

diff -q -s outputDirectory/referenceSNP_preserved.fasta expectedResults/
→˓referenceSNP_preserved.fasta
diff -q -s outputDirectory/snp_distance_matrix_preserved.tsv expectedResults/snp_
→˓distance_matrix_preserved.tsv

# View the per-sample metrics
xdg-open outputDirectory/metrics.tsv

All-In-One Workflow - Listeria monocytogenes

This Listeria monocytogene data set is based on an oubreak investigation related to contamination in stone fruit. It only
contains environmental/produce isolates, though the full investigation contained data obtained from clinical samples
as well. Due to the large size of the data, the sequences must be downloaded from the NCBI SRA. The instructions
below show how to create the data set and process it. We do the processing with the run_snp_pipeline.sh script, which
does much of the work in one step, but provides less insight into (and control of) the analysis process.

This workflow illustrates how to run the SNP Pipeline on a High Performance Computing cluster (HPC) running the
Torque job queue manager. If you do not have a cluster available, you can still work through this example – just
remove the -Q torque command line option in step 2.

Step 1 - Create dataset:

# The SNP Pipeline distribution does not include the sample data, but does
# include information about the sample data, as well as the reference
# sequence. The files are organized as shown below:
snppipeline/data/listeriaInputs/sha256sumCheck
snppipeline/data/listeriaInputs/reference/CFSAN023463.HGAP.draft.fasta
snppipeline/data/listeriaInputs/sampleList

# Copy the supplied test data to a work area:
mkdir testDir
cd testDir
copy_snppipeline_data.py listeriaInputs cleanInputs
cd cleanInputs

# Create sample directories and download sample data from SRA at NCBI. Note that
# we use the fastq-dump command from the NCBI SRA-toolkit to fetch sample
# sequences. There are other ways to get the data, but the SRA-toolkit is
# easy to install, and does a good job of downloading large files.
mkdir samples
< sampleList xargs -I % sh -c ' mkdir samples/%; fastq-dump --split-files --outdir
→˓samples/% %;'

# Check the data
# The original data was used to generate a hash as follows:
# sha256sum sampleList reference/*.fasta samples/*/*.fastq > sha256sumCheck
# The command below checks the downloaded data (and the reference sequence) against
→˓the
# hashes that are saved in the sha256sumCheck file using sha256sum command, which
→˓is
# generally available on unix systems.
sha256sum -c sha256sumCheck
cd ..

Step 2 - Run the SNP Pipeline:

There are a couple of parameters you may need to adjust for this analysis or other analysis work that your do. These

20 Chapter 4. Usage



snppipeline Documentation, Release 0.7.0

parameters are the number of CPU cores that are used, and the amount of memory that is used by the java virtual
machine. Both can be set in a configuration file you can pass to run_snp_pipeline.sh with the -c option. See Perfor-
mance.

Launch the pipeline:

# Run the pipeline.
# Specify the following options:
# -m : mirror the input samples and reference files
# -Q : HPC job queue manager
# -o : output directory
# -s : samples parent directory
run_snp_pipeline.sh -m soft -Q torque -o outputDirectory -s cleanInputs/samples
→˓cleanInputs/reference/CFSAN023463.HGAP.draft.fasta

Step 3 - View and verify the results:

Upon successful completion of the pipeline, the snplist.txt file should have 11,502 entries, and the snplist_preserved.txt
file should have 1,109 entries. The SNP Matrix can be found in snpma.fasta and snpma_preserved.fasta. The corre-
sponding reference bases are in the referenceSNP.fasta and referenceSNP_preserved.fasta:

# Verify the result files were created
ls -l outputDirectory/snplist.txt
ls -l outputDirectory/snpma.fasta
ls -l outputDirectory/snpma.vcf
ls -l outputDirectory/referenceSNP.fasta
ls -l outputDirectory/snp_distance_matrix.tsv
ls -l outputDirectory/snplist_preserved.txt
ls -l outputDirectory/snpma_preserved.fasta
ls -l outputDirectory/snpma_preserved.vcf
ls -l outputDirectory/referenceSNP_preserved.fasta
ls -l outputDirectory/snp_distance_matrix_preserved.tsv

# Verify correct results
copy_snppipeline_data.py listeriaExpectedResults expectedResults
diff -q -s outputDirectory/snplist.txt expectedResults/snplist.txt
diff -q -s outputDirectory/snpma.fasta expectedResults/snpma.fasta
diff -q -s outputDirectory/referenceSNP.fasta expectedResults/referenceSNP.fasta
diff -q -s outputDirectory/snp_distance_matrix.tsv expectedResults/snp_distance_
→˓matrix.tsv
diff -q -s outputDirectory/snplist_preserved.txt expectedResults/snplist_
→˓preserved.txt
diff -q -s outputDirectory/snpma_preserved.fasta expectedResults/snpma_
→˓preserved.fasta
diff -q -s outputDirectory/referenceSNP_preserved.fasta expectedResults/
→˓referenceSNP_preserved.fasta
diff -q -s outputDirectory/snp_distance_matrix_preserved.tsv expectedResults/snp_
→˓distance_matrix_preserved.tsv

# View the per-sample metrics
xdg-open outputDirectory/metrics.tsv

Step-by-Step Workflows

The run_snp_pipeline.sh script described above provides a simplified interface for running all the pipeline steps from
a single command. If you need more control over the inputs, outputs, or processing steps, you can run the pipeline one

4.9. Step-by-Step Workflows 21



snppipeline Documentation, Release 0.7.0

step at a time.

The sections below give detailed examples of workflows you can run with the component tools of the pipeline.

Step-by-Step Workflow - Lambda Virus
Step-by-Step Workflow - Salmonella Agona
Step-by-Step Workflow - General Case

Step-by-Step Workflow - Lambda Virus

The SNP Pipeline software distribution includes a small Lambda Virus data set that can be quickly processed to verify
the basic functionality of the software.

Step 1 - Gather data:

# The SNP Pipeline distribution includes sample data organized as shown below:
snppipeline/data/lambdaVirusInputs/reference/lambda_virus.fasta
snppipeline/data/lambdaVirusInputs/samples/sample1/sample1_1.fastq
snppipeline/data/lambdaVirusInputs/samples/sample1/sample1_2.fastq
snppipeline/data/lambdaVirusInputs/samples/sample2/sample2_1.fastq
snppipeline/data/lambdaVirusInputs/samples/sample2/sample2_2.fastq
snppipeline/data/lambdaVirusInputs/samples/sample3/sample3_1.fastq
snppipeline/data/lambdaVirusInputs/samples/sample3/sample3_2.fastq
snppipeline/data/lambdaVirusInputs/samples/sample4/sample4_1.fastq
snppipeline/data/lambdaVirusInputs/samples/sample4/sample4_2.fastq

# Copy the supplied test data to a work area:
cd test
copy_snppipeline_data.py lambdaVirusInputs testLambdaVirus
cd testLambdaVirus

Step 2 - Prep work:

# Create files of sample directories and fastQ files:
ls -d samples/* > sampleDirectories.txt
rm sampleFullPathNames.txt 2>/dev/null
cat sampleDirectories.txt | while read dir; do echo $dir/*.fastq >>
→˓sampleFullPathNames.txt; done
# Determine the number of CPU cores in your computer
numCores=$(grep -c ^processor /proc/cpuinfo 2>/dev/null || sysctl -n hw.ncpu)

Step 3 - Prep the reference:

prepReference.sh reference/lambda_virus.fasta

Step 4 - Align the samples to the reference:

# Align each sample, one at a time, using all CPU cores
export Bowtie2Align_ExtraParams="--reorder -X 1000"
cat sampleFullPathNames.txt | xargs -n 2 -L 1 alignSampleToReference.sh reference/
→˓lambda_virus.fasta

Step 5 - Prep the samples:

22 Chapter 4. Usage



snppipeline Documentation, Release 0.7.0

# Process the samples in parallel using all CPU cores
export VarscanMpileup2snp_ExtraParams="--min-var-freq 0.90"
cat sampleDirectories.txt | xargs -n 1 -P $numCores prepSamples.sh reference/lambda_
→˓virus.fasta

Step 6 - Identify regions with abnormal SNP density and remove SNPs in these regions:

snp_filter.py -n var.flt.vcf sampleDirectories.txt reference/lambda_virus.fasta

Step 7 - Combine the SNP positions across all samples into the SNP list file:

create_snp_list.py -n var.flt.vcf -o snplist.txt sampleDirectories.txt
create_snp_list.py -n var.flt_preserved.vcf -o snplist_preserved.txt
→˓sampleDirectories2.txt

Step 8 - Call the consensus base at SNP positions for each sample:

# Process the samples in parallel using all CPU cores
cat sampleDirectories.txt | xargs -n 1 -P $numCores -I XX call_consensus.py -l
→˓snplist.txt --vcfFileName consensus.vcf -o XX/consensus.fasta XX/reads.all.pileup
cat sampleDirectories.txt | xargs -n 1 -P $numCores -I XX call_consensus.py -l
→˓snplist_preserved.txt --vcfFileName consensus_preserved.vcf -o XX/consensus_
→˓Preserved.fasta XX/reads.all.pileup

Step 9 - Create the SNP matrix:

create_snp_matrix.py -c consensus.fasta -o snpma.fasta sampleDirectories.txt
create_snp_matrix.py -c consensus_preserved.fasta -o snpma_preserved.fasta
→˓sampleDirectories2.txt

Step 10 - Create the reference base sequence:

create_snp_reference_seq.py -l snplist.txt -o referenceSNP.fasta reference/lambda_
→˓virus.fasta
create_snp_reference_seq.py -l snplist_preserved.txt -o referenceSNP_preserved.fasta
→˓reference/lambda_virus.fasta

Step 11 - Collect metrics for each sample:

cat sampleDirectories.txt | xargs -n 1 -P $numCores -I XX collectSampleMetrics.sh -o
→˓XX/metrics XX reference/lambda_virus.fasta

Step 12 - Tabulate the metrics for all samples:

combineSampleMetrics.sh -n metrics -o metrics.tsv sampleDirectories.txt

Step 13 - Merge the VCF files for all samples into a multi-sample VCF file:

mergeVcf.sh -n consensus.vcf -o snpma.vcf sampleDirectories.txt
mergeVcf.sh -n consensus_preserved.vcf -o snpma_preserved.vcf sampleDirectories2.txt

Step 14 - Compute the SNP distances between samples:

calculate_snp_distances.py -p snp_distance_pairwise.tsv -m snp_distance_matrix.tsv
→˓snpma.fasta
calculate_snp_distances.py -p snp_distance_pairwise_preserved.tsv -m snp_distance_
→˓matrix_preserved.tsv snpma_preserved.fasta

4.9. Step-by-Step Workflows 23



snppipeline Documentation, Release 0.7.0

Step 15 - View and verify the results:

Upon successful completion of the pipeline, the snplist.txt file should have 165 entries. The SNP Matrix can be found
in snpma.fasta. The corresponding reference bases are in the referenceSNP.fasta file:

# Verify the result files were created
ls -l snplist.txt
ls -l snpma.fasta
ls -l snpma.vcf
ls -l referenceSNP.fasta
ls -l snp_distance_matrix.tsv
ls -l snplist_preserved.txt
ls -l snpma_preserved.fasta
ls -l snpma_preserved.vcf
ls -l referenceSNP_preserved.fasta
ls -l snp_distance_matrix_preserved.tsv

# Verify correct results
copy_snppipeline_data.py lambdaVirusExpectedResults expectedResults
diff -q -s snplist.txt expectedResults/snplist.txt
diff -q -s snpma.fasta expectedResults/snpma.fasta
diff -q -s referenceSNP.fasta expectedResults/referenceSNP.fasta
diff -q -s snp_distance_matrix.tsv expectedResults/snp_distance_matrix.tsv
diff -q -s snplist_preserved.txt expectedResults/snplist_preserved.txt
diff -q -s snpma_preserved.fasta expectedResults/snpma_preserved.fasta
diff -q -s referenceSNP_preserved.fasta expectedResults/referenceSNP_preserved.
→˓fasta
diff -q -s snp_distance_matrix_preserved.tsv expectedResults/snp_distance_matrix_
→˓preserved.tsv

# View the per-sample metrics
xdg-open metrics.tsv

Step-by-Step Workflow - Salmonella Agona

The Salmonella Agona data set contains realistic sequences that can be processed in a reasonable amount of time. Due
to the large size of real data, the sequences must be downloaded from the NCBI SRA. Follow the instructions below
to download and process the data set.

Step 1 - Gather data:

# The SNP Pipeline distribution includes sample data organized as shown below:
snppipeline/data/agonaInputs/sha256sumCheck
snppipeline/data/agonaInputs/reference/NC_011149.fasta

# Copy the supplied test data to a work area:
cd test
copy_snppipeline_data.py agonaInputs testAgona
cd testAgona

# Create sample directories
mkdir -p samples/ERR178926 samples/ERR178927 samples/ERR178928 samples/ERR178929
→˓samples/ERR178930

# Download sample data from SRA at NCBI. Note that we use the fastq-dump command from
# the NCBI SRA-toolkit to fetch sample sequences. There are other ways to get the
→˓data,

24 Chapter 4. Usage



snppipeline Documentation, Release 0.7.0

# but the SRA-toolkit is easy to install, and does a good job of downloading large
# files.
fastq-dump --split-files --outdir samples/ERR178926 ERR178926
fastq-dump --split-files --outdir samples/ERR178927 ERR178927
fastq-dump --split-files --outdir samples/ERR178928 ERR178928
fastq-dump --split-files --outdir samples/ERR178929 ERR178929
fastq-dump --split-files --outdir samples/ERR178930 ERR178930

# Check the data
# The original data was used to generate a hash as follows:
# sha256sum reference/*.fasta samples/*/*.fastq > sha256sumCheck
# The command below checks the downloaded data (and the reference sequence) against
→˓the
# hashes that are saved in the sha256sumCheck file using sha256sum command, which
→˓is
# generally available on unix systems.
sha256sum -c sha256sumCheck

Step 2 - Prep work:

# Create files of sample directories and fastQ files:
ls -d samples/* > sampleDirectories.txt
rm sampleFullPathNames.txt 2>/dev/null
cat sampleDirectories.txt | while read dir; do echo $dir/*.fastq >>
→˓sampleFullPathNames.txt; done
# Determine the number of CPU cores in your computer
numCores=$(grep -c ^processor /proc/cpuinfo 2>/dev/null || sysctl -n hw.ncpu)

Step 3 - Prep the reference:

prepReference.sh reference/NC_011149.fasta

Step 4 - Align the samples to the reference:

# Align each sample, one at a time, using all CPU cores
export Bowtie2Align_ExtraParams="--reorder -X 1000"
cat sampleFullPathNames.txt | xargs -n 2 -L 1 alignSampleToReference.sh reference/NC_
→˓011149.fasta

Step 5 - Prep the samples:

# Process the samples in parallel using all CPU cores
export VarscanMpileup2snp_ExtraParams="--min-var-freq 0.90"
cat sampleDirectories.txt | xargs -n 1 -P $numCores prepSamples.sh reference/NC_
→˓011149.fasta

Step 6 - Identify regions with abnormal SNP density and remove SNPs in these regions:

snp_filter.py -n var.flt.vcf sampleDirectories.txt reference/NC_011149.fasta

Step 7 - Combine the SNP positions across all samples into the SNP list file:

create_snp_list.py -n var.flt.vcf -o snplist.txt sampleDirectories.txt
create_snp_list.py -n var.flt_preserved.vcf -o snplist_preserved.txt
→˓sampleDirectories2.txt

Step 8 - Call the consensus base at SNP positions for each sample:

4.9. Step-by-Step Workflows 25



snppipeline Documentation, Release 0.7.0

# Process the samples in parallel using all CPU cores
cat sampleDirectories.txt | xargs -n 1 -P $numCores -I XX call_consensus.py -l
→˓snplist.txt --vcfFileName consensus.vcf -o XX/consensus.fasta XX/reads.all.pileup
cat sampleDirectories.txt | xargs -n 1 -P $numCores -I XX call_consensus.py -l
→˓snplist_preserved.txt --vcfFileName consensus_preserved.vcf -o XX/consensus_
→˓preserved.fasta XX/reads.all.pileup

Step 9 - Create the SNP matrix:

create_snp_matrix.py -c consensus.fasta -o snpma.fasta sampleDirectories.txt
create_snp_matrix.py -c consensus_preserved.fasta -o snpma_preserved.fasta
→˓sampleDirectories2.txt

Step 10 - Create the reference base sequence:

create_snp_reference_seq.py -l snplist.txt -o referenceSNP.fasta reference/NC_011149.
→˓fasta
create_snp_reference_seq.py -l snplist_preserved.txt -o referenceSNP_preserved.fasta
→˓reference/NC_011149.fasta

Step 11 - Collect metrics for each sample:

cat sampleDirectories.txt | xargs -n 1 -P $numCores -I XX collectSampleMetrics.sh -o
→˓XX/metrics XX reference/NC_011149.fasta

Step 12 - Tabulate the metrics for all samples:

combineSampleMetrics.sh -n metrics -o metrics.tsv sampleDirectories.txt

Step 13 - Merge the VCF files for all samples into a multi-sample VCF file:

mergeVcf.sh -n consensus.vcf -o snpma.vcf sampleDirectories.txt
mergeVcf.sh -n consensus_preserved.vcf -o snpma_preserved.vcf sampleDirectories2.txt

Step 14 - Compute the SNP distances between samples:

calculate_snp_distances.py -p snp_distance_pairwise.tsv -m snp_distance_matrix.tsv
→˓snpma.fasta
calculate_snp_distances.py -p snp_distance_pairwise_preserved.tsv -m snp_distance_
→˓matrix_preserved.tsv snpma_preserved.fasta

Step 15 - View and verify the results:

Upon successful completion of the pipeline, the snplist.txt file should have 3623 entries. The SNP Matrix can be found
in snpma.fasta. The corresponding reference bases are in the referenceSNP.fasta file:

# Verify the result files were created
ls -l snplist.txt
ls -l snpma.fasta
ls -l snpma.vcf
ls -l referenceSNP.fasta
ls -l snp_distance_matrix.tsv
ls -l snplist_preserved.txt
ls -l snpma_preserved.fasta
ls -l snpma_preserved.vcf
ls -l referenceSNP_preserved.fasta
ls -l snp_distance_matrix_preserved.tsv

26 Chapter 4. Usage



snppipeline Documentation, Release 0.7.0

# Verify correct results
copy_snppipeline_data.py agonaExpectedResults expectedResults
diff -q -s snplist.txt expectedResults/snplist.txt
diff -q -s snpma.fasta expectedResults/snpma.fasta
diff -q -s referenceSNP.fasta expectedResults/referenceSNP.fasta
diff -q -s snp_distance_matrix.tsv expectedResults/snp_distance_matrix.tsv
diff -q -s snplist_preserved.txt expectedResults/snplist_preserved.txt
diff -q -s snpma_preserved.fasta expectedResults/snpma_preserved.fasta
diff -q -s referenceSNP_preserved.fasta expectedResults/referenceSNP_preserved.
→˓fasta
diff -q -s snp_distance_matrix_preserved.tsv expectedResults/snp_distance_matrix_
→˓preserved.tsv

# View the per-sample metrics
xdg-open metrics.tsv

Step-by-Step Workflow - General Case

Step 1 - Gather data:

You will need the following data:

• Reference genome

• Fastq input files for multiple samples

Organize the data into separate directories for each sample as well as the reference. One possible directory layout is
shown below. Note the mix of paired and unpaired samples:

./myProject/reference/my_reference.fasta

./myProject/samples/sample1/sampleA.fastq

./myProject/samples/sample2/sampleB.fastq

./myProject/samples/sample3/sampleC_1.fastq

./myProject/samples/sample3/sampleC_2.fastq

./myProject/samples/sample4/sampleD_1.fastq

./myProject/samples/sample4/sampleD_2.fastq

Step 2 - Prep work:

# Optional step: Copy your input data to a safe place:
cp -r myProject myProjectClean
# The SNP pipeline will generate additional files into the reference and sample
→˓directories
cd myProject

# Create file of sample directories:
ls -d samples/* > sampleDirectories.txt

# get the *.fastq or *.fq files in each sample directory, possibly compresessed, on
→˓one line per sample, ready to feed to bowtie
TMPFILE1=$(mktemp tmp.fastqs.XXXXXXXX)
cat sampleDirectories.txt | while read dir; do echo $dir/*.fastq* >> $TMPFILE1; echo
→˓$dir/*.fq* >> $TMPFILE1; done
grep -v '*.fq*' $TMPFILE1 | grep -v '*.fastq*' > sampleFullPathNames.txt
rm $TMPFILE1

# Determine the number of CPU cores in your computer
numCores=$(grep -c ^processor /proc/cpuinfo 2>/dev/null || sysctl -n hw.ncpu)

4.9. Step-by-Step Workflows 27



snppipeline Documentation, Release 0.7.0

Step 3 - Prep the reference:

prepReference.sh reference/my_reference.fasta

Step 4 - Align the samples to the reference:

# Align each sample, one at a time, using all CPU cores
export Bowtie2Align_ExtraParams="--reorder -X 1000"
cat sampleFullPathNames.txt | xargs -n 2 -L 1 alignSampleToReference.sh reference/my_
→˓reference.fasta

Step 5 - Prep the samples:

# Process the samples in parallel using all CPU cores
export VarscanMpileup2snp_ExtraParams="--min-var-freq 0.90"
cat sampleDirectories.txt | xargs -n 1 -P $numCores prepSamples.sh reference/my_
→˓reference.fasta

Step 6 - Identify regions with abnormal SNP density and remove SNPs in these regions:

snp_filter.py -n var.flt.vcf sampleDirectories.txt reference/my_reference.fasta

Step 7 - Combine the SNP positions across all samples into the SNP list file:

create_snp_list.py -n var.flt.vcf -o snplist.txt sampleDirectories.txt
create_snp_list.py -n var.flt_preserved.vcf -o snplist_preserved.txt
→˓sampleDirectories2.txt

Step 8 - Call the consensus base at SNP positions for each sample:

# Process the samples in parallel using all CPU cores
cat sampleDirectories.txt | xargs -n 1 -P $numCores -I XX call_consensus.py -l
→˓snplist.txt --vcfFileName consensus.vcf -o XX/consensus.fasta XX/reads.all.pileup
cat sampleDirectories.txt | xargs -n 1 -P $numCores -I XX call_consensus.py -l
→˓snplist_preserved.txt --vcfFileName consensus_preserved.vcf -o XX/consensus_
→˓preserved.fasta XX/reads.all.pileup

Step 9 - Create the SNP matrix:

create_snp_matrix.py -c consensus.fasta -o snpma.fasta sampleDirectories.txt
create_snp_matrix.py -c consensus_preserved.fasta -o snpma_preserved.fasta
→˓sampleDirectories2.txt

Step 10 - Create the reference base sequence:

# Note the .fasta file extension
create_snp_reference_seq.py -l snplist.txt -o referenceSNP.fasta reference/my_
→˓reference.fasta
create_snp_reference_seq.py -l snplist_preserved.txt -o referenceSNP_preserved.fasta
→˓reference/my_reference.fasta

Step 11 - Collect metrics for each sample:

cat sampleDirectories.txt | xargs -n 1 -P $numCores -I XX collectSampleMetrics.sh -o
→˓XX/metrics XX reference/my_reference.fasta

28 Chapter 4. Usage



snppipeline Documentation, Release 0.7.0

Step 12 - Tabulate the metrics for all samples:

combineSampleMetrics.sh -n metrics -o metrics.tsv sampleDirectories.txt

Step 13 - Merge the VCF files for all samples into a multi-sample VCF file:

mergeVcf.sh -n consensus.vcf -o snpma.vcf sampleDirectories.txt
mergeVcf.sh -n consensus_preserved.vcf -o snpma_preserved.vcf sampleDirectories2.txt

Step 14 - Compute the SNP distances between samples:

calculate_snp_distances.py -p snp_distance_pairwise.tsv -m snp_distance_matrix.tsv
→˓snpma.fasta
calculate_snp_distances.py -p snp_distance_pairwise_preserved.tsv -m snp_distance_
→˓matrix_preserved.tsv snpma.fasta

Step 15 - View the results:

Upon successful completion of the pipeline, the snplist.txt identifies the SNP positions in all samples. The SNP Matrix
can be found in snpma.fasta. The corresponding reference bases are in the referenceSNP.fasta file:

ls -l snplist.txt
ls -l snpma.fasta
ls -l snpma.vcf
ls -l referenceSNP.fasta
ls -l snp_distance_matrix.tsv
ls -l snplist_preserved.txt
ls -l snpma_preserved.fasta
ls -l snpma_preserved.vcf
ls -l referenceSNP_preserved.fasta
ls -l snp_distance_matrix_preserved.tsv

# View the per-sample metrics
xdg-open metrics.tsv

SNP Filtering

The SNP Pipeline removes abnormal SNPs from the ends of contigs and from regions where many SNPs are found in
close proximity. The pipeline runs both ways, with SNP filtering, and without SNP filtering, generating pairs of output
files. You can compare the output files to determine which positions were filtered. The filtered output files are named
with the _preserved suffix, for example:

• snplist.txt : contains the unfiltered SNP positions with abnormal SNPs included

• snplist_preserved.txt : contains the filtered SNP positions without abnormal SNPs

• snpma.fasta : contains the unfiltered SNP matrix with abnormal SNPs included

• snpma_preserved.fasta : contains the filtered SNP matrix without abnormal SNPs

Other output files are named similarly.

The SNP filtering is performed by a script named snp_filter.py. It runs after the phase 1 SNP detection and
impacts all subsequent processing steps. Abnormal regions are identified in each sample individually, and then SNPs
in those regions are removed from all samples. Therefore, if you add or remove a sample from your analysis it may
affect the final SNPs detected in all other samples. See snp_filter.py.

4.10. SNP Filtering 29



snppipeline Documentation, Release 0.7.0

The sensitivity of the SNP filtering can be controlled with parameters in the configuration file by setting values in
RemoveAbnormalSnp_ExtraParams. You can control the length of end-of-contig trimming, dense region win-
dow size, and maximum snps allowed within the window. See Configuration.

SNP Filtering With Outgroups

If there is an outgroup among the samples, you should configure the pipeline to exclude the outgroup samples from
snp filtering. To exclude the outgroup samples:

First, make a file containing the sample ids of the outgroup samples, one sample id per line. The sample id is the name
of the last subdirectory in the path to the sample:

SRR1556289
SRR1556294

Grab the default configuration file:

copy_snppipeline_data.py configurationFile

Edit snppipeline.conf, and change the RemoveAbnormalSnp_ExtraParams parameter:

Add the --out_group option with the path to the file containing the outgroup sample
→˓ids.

Then run the snp pipeline with the -c command line options:

run_snp_pipeline.sh -c snppipeline.conf -s mySamplesDir myReference.fasta

See also Configuration.

Excessive SNPs

Samples having many SNPs relative to the reference can slow the performance of the SNP Pipeline and greatly increase
the size of the SNP matrix. The SNP Pipeline has the capability to exclude samples from processing when those
samples have too many SNPs. This function excludes entire samples, not just regions within a sample. The samples
with excessive SNPs exceeding a user-specified limit are excluded from the snp list, snp matrix, and snpma.vcf files.

There is also an indicator in the metrics file to identify the samples that have too many SNPs. A column in the
metrics.tsv file, Excluded_Sample, indicates when a sample has been excluded from the snp matrix. This column
is normally blank. See Metrics.

To exclude samples with excessive SNPs:

Grab the default configuration file:

copy_snppipeline_data.py configurationFile

Edit snppipeline.conf, and change this setting:

SnpPipeline_MaxSnps=1000 # substitute your threshold value here, or -1 to disable
→˓this function

Then run the pipeline with the -c command line option:

30 Chapter 4. Usage



snppipeline Documentation, Release 0.7.0

run_snp_pipeline.sh -c snppipeline.conf -s mySamplesDir myReference.fasta

See also Configuration.

Metrics

After creating the SNP matrix, the pipeline collects and tabulates metrics for all of the samples. The metrics are first
collected in one file per sample in the sample directories. A subsequent step combines the metrics for all the samples
together into a single tab-separated file with one row per sample and one column per metric. The tabulated metrics file
is named metrics.tsv by default.

The metrics are:

4.12. Metrics 31



snppipeline Documentation, Release 0.7.0

Column
Description

Sample

The name of the directory containing the sample fastq
files.

Fastq Files

Comma separated list of fastq file names in the sample
directory.

Fastq File Size

The sum of the sizes of the fastq files. This will be the
compressed size if the files are compressed.

Machine

The sequencing instrument ID extracted from the
compressed
fastq.gz file header. If the fastq files are not
compressed,
the machine ID is not captured.

Flowcell

The flowcell used during the sequencing run, extracted
from
the compressed fastq.gz file header. If the fastq files are
not compressed, the flowcell is not captured.

Number of Reads

The number of reads in the SAM file. When using
paired fastq
files, this number will be twice the number of reads
reported
by bowtie.

Percent of Reads Mapped

The percentage of reference-aligned reads in the SAM
file.

Average Insert Size

The average observed template length of mapped
paired reads as
captured by SAMtools view TLEN value. This metric
is not
calculated for unpaired reads.

Average Pileup Depth

The average depth of coverage in the sample pileup
file. This
is calculated as the sum of the depth of the pileup
across all
pileup positions divided by the number of positions in
the
reference.

Phase1 SNPs

The number of phase 1 SNPs found for this sample.
The count
is computed as the number of SNP records in the VCF
file
generated by the phase 1 snp caller (VarScan).

Phase1 Preserved SNPs

The number of phase 1 SNPs found by VarScan and
preserved by
SNP Filtering. The count is computed as the number of
SNP
records in the preserved VCF file generated by
snp_filter.py.

Phase2 SNPs

The number of phase 2 SNPs found for this sample.
The count
is computed as the number of SNP records in the VCF
file
generated by the consensus caller.

Phase2 Preserved SNPs

The number of phase 2 SNPs found for this sample and
preserved
by SNP Filtering. The count is computed as the
number of SNP
records in the preserved VCF file generated by the
consensus
caller.

Missing SNP Matrix Positions

The number of positions in the SNP matrix for which a
consensus base could not be called for this sample. The
inability to call a consensus base is caused by either a
pileup file with no coverage at a SNP position, or by
insufficient agreement among the pileup bases at the
SNP
position. The minimum fraction of reads that must
agree at a
position to make a consensus call is controlled by the
minConsFreq parameter.

Missing Preserved SNP Matrix Positions

The number of positions in the preserved SNP matrix
for which
a consensus base could not be called for this sample.
The
inability to call a consensus base is caused by either a
pileup file with no coverage at a SNP position, or by
insufficient agreement among the pileup bases at the
SNP
position. The minimum fraction of reads that must
agree at a
position to make a consensus call is controlled by the
minConsFreq parameter.

Excluded Sample

When a sample has an excessive number of snps
exceeding the
SnpPipeline_MaxSnps parameter value, this
metric will have
the value Excluded. Otherwise, this metric is blank.

Excluded Preserved Sample

When a sample has an excessive number of preserved
snps
exceeding the SnpPipeline_MaxSnps parameter
value, this
metric will have the value Excluded. Otherwise, this
metric is blank.

Warnings and Errors

A list of warnings or errors encountered while
collecting the
metrics.

32 Chapter 4. Usage



snppipeline Documentation, Release 0.7.0

Error Handling

The SNP Pipeline detects errors during execution and prevents execution of subsequent steps when earlier steps fail.
A summary of errors is written to the error.log file. Detailed error messages are found in the log files for each
process. See Logging.

By default, the SNP Pipeline is configured to stop when execution errors occur. However, it is possible some
errors may affect only individual samples and other samples can still be processed. If you want the pipeline
to continue processing after an error affecting only a single sample has occurred, you can try disabling the
SnpPipeline_StopOnSampleError configuration parameter (not recommended). See Configuration. When
SnpPipeline_StopOnSampleError is false the pipeline will attempt to continue subsequent processing
steps when an error does not affect all samples. Errors are logged in the error.log file regardless of how the
SnpPipeline_StopOnSampleError parameter is configured. You should review the error.log after run-
ning the pipeline to see a summary of any errors detected during execution.

Note: currently, when using the Torque job queue manager, the pipeline will always stop on errors regardless of the
SnpPipeline_StopOnSampleError parameter setting.

When errors stop the execution of the pipeline on Grid Engine or Torque, other non-failing jobs in progress will
continue until complete. However, subsequent job steps will not execute and instead will remain in the queue. On
Grid Engine qstat will show output like the following:

3038927 0.55167 alignSampl app_sdavis Eqw 01/15/2016 16:50:03
3038928 0.00000 prepSample app_sdavis hqw 01/15/2016 16:50:04
3038929 0.00000 snpList app_sdavis hqw 01/15/2016 16:50:04
3038930 0.00000 callConsen app_sdavis hqw 01/15/2016 16:50:04
3038931 0.00000 snpMatrix app_sdavis hqw 01/15/2016 16:50:04
3038932 0.00000 snpReferen app_sdavis hqw 01/15/2016 16:50:04
3038933 0.00000 mergeVcf app_sdavis hqw 01/15/2016 16:50:05
3038934 0.00000 collectMet app_sdavis hqw 01/15/2016 16:50:05
3038935 0.00000 combineMet app_sdavis hqw 01/15/2016 16:50:05

To clear the jobs from the queue on Grid Engine:

seq 3038927 3038935 | xargs -I @ qdel @

4.13. Error Handling 33



snppipeline Documentation, Release 0.7.0

34 Chapter 4. Usage



CHAPTER 5

Correct and Reproducible Results

It is our goal to make the SNP Pipeline results both fully reproducible and as correct as current scientific understanding
allows. As part of this effort, we document here problems we have found that have affected correctness. We also detail
how we have built this software so the results are as reproducible as possible. In addition, we are building, collecting,
and collating data sets that we use to assess both correctness and reproducibility of our software. As a project that
is made possible only by very recent developments in science and technology, our efforts to ensure correctness and
reproducibility are an ongoing effort. The publications we have produced in an effort to ensure scientific correctness
are listed as references at the bottom of this document. This document will continue to evolve as we improve our
process and as scientific advances occur.

Reproducible Results

We have made the SNP Pipeline results fully reproducible – not just the final SNP matrix, but each intermediate file
as well. Reproducible results help us test and debug the pipeline and also facilitate collaborative efforts between
researchers.

Public Availability

The SNP Pipeline source code is available on GitHub so anyone can download our source code. The GitHub repository
contains some data sets that can be used to reproduce selected results. We also provide information on how to obtain
and verify other data sets that we have used. (These data sets are large, so we do not provide them directly.)

Version Control

We use git internally for code development to ensure that we have control over our source code and can identify
which version of code was used to produce any particular result. We tag/version commits of the code that we consider
production releases and use them for the majority of our internal analyses. We also release each of these tagged
versions to GitHub and to the Python Package Index for easy installation.

35



snppipeline Documentation, Release 0.7.0

Parameters

The SNP pipeline behavior depends on the setting of a number of parameters that determine the behavior of various
software packages that the pipeline uses. These parameters affect both the correctness and reproducibility of results.
We have set all the parameters so that the results are reproducible. This entails setting seeds for all random number
dependent processes, as well as specific choices for other parameters that can affect such behavior as the order of the
results. We discuss these aspects of ensuring reproducibility in more detail in other portions of this document.

The pipeline depends on some fairly complex software packages, and these packages have large numbers of parame-
ters. As released, the pipeline does not specify values for every possible parameter, but only those we have found it
useful to modify in our work. A configuration file used by the pipeline provides a record of the parameters used and
also makes it possible to customize the behavior of the pipeline by adding or modifying parameters as needed. Those
wishing to further modify the software behavior will have to adjust the code to meet their needs.

We recommend retaining the parameter values used for any important results, ideally in a script or configuration file
that is under version control. The pipeline generates log files documenting each run by capturing software versions
and parameters used for each run.

Concurrency

The SNP Pipeline takes advantage of multiple CPU cores to run portions of the processing in parallel. However,
concurrency can lead to non-deterministic behavior and different results when the pipeline is run repeatedly. The
pipeline addresses known concurrency issues with bowtie and samtools.

Bowtie

The SNP Pipeline uses multiple CPU cores during the bowtie alignment. Unless told otherwise, when bowtie runs
multiple concurrent threads, it generates output records in the SAM file in non-deterministic order. The consequence
of this is the SAM files and Pileup files can differ between runs. This may appear as two adjacent read-bases swapped
in the pileup files.

To work around this problem, the pipeline uses the --reorder bowtie command line option. The reorder option
causes bowtie to generate output records in the same order as the reads in the input file. This is discussed in the bowtie
documentation here: http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml#performance-options

SAMtools

The SNP Pipeline runs multiple samtools processes concurrently to generate pileups for each sample. When the
samtools pileup process runs, it checks for the existence of the reference faidx file, *.fai. If the faidx file does not
exist, samtools creates it automatically. However, multiple samtools mpileup processes can interfere with each other
by attempting to create the file at the same time. This interference causes incorrect pipeline results.

To work around this problem, the pipeline explicitly creates the faidx file by running samtools faidx on the
reference before running the mpileup processes. This prevents errors later when multiple samtools mpileup processes
run concurrently.

Software Versions

Different versions of the software packages this pipeline uses can generate different results. This is important to be
aware of if you end up comparing the results between runs. We share our observations from the versions of SAMtools
and Bowtie that we have used below.

Bowtie

Different versions of Bowtie can generate different SAM files, which subsequently causes different pileups and differ-
ent variant detection. For example, with our included data sets, Bowtie 2.1.0 and 2.2.2 produce functionally identical

36 Chapter 5. Correct and Reproducible Results

http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml#performance-options


snppipeline Documentation, Release 0.7.0

SAM files when run on the Lambda Virus data set. However, the generated SAM files (and downstream results) are
different when run on the Salmonella Agona data set.

SAMtools

SAMtools mpileup version 0.1.18 and version 0.1.19 differ in their default behavior. Version 0.1.19 can filter out bases
with low quality, and by default, it excludes bases with quality score below 13 (95% accuracy). Version 0.1.18 does
not have this capability, and thus different versions of SAMtools mpileup when run with the default parameters can
produce different pileup files which can impact the snp list and snp matrix.

On one of our data sets with 116 samples, we observed these results:

• 36030 snps found when pileups generated with SAMtools 0.1.18

• 38154 snps found when pileups generated with SAMtools 0.1.19

Correct Results

As we have constructed our pipeline, we have found problems in our own software and in the various packages we
use. To this point we have found one problem worth mentioning here.

SAMtools snp pileup difference from genome-wide pileup

An important processing step in the SNP Pipeline is creation of a pileup file per sample containing read pileups at the
positions where snps were called in any of the samples. This pileup file should be a subset of the genome-wide pileup
for each sample. However, the SAMtools software does not generate pileup records exactly matching the genome-
wide pileup when given a list of positions for which the pileup should be generated. The differences are particularly
evident at the first few snp positions and cause missing values in the SNP matrix. We first noticed this problem when
the first or last position of the reference sequence was identified as a variant site. To work around this problem, the
SNP Pipeline internally extracts the desired pileup records from the genome-wide pileup.

This SAMtools issue has been reported here: https://github.com/samtools/samtools/issues/282

Test Data Sets

We have created/curated a number of data sets for use in testing both the reproducibility and correctness of the pipeline.
In the following sections we briefly describe these data sets.

Lambda Virus

This data set was built using the bowtie2 example, and intended to be a small test case and example that will run
quickly and verify the basic functionality of the code.

Salmonella Agona

This data set was designed to contain realistic sequences, but not very many of them, so that it could be run in a
reasonable amount of time. The data must be downloaded from the NCBI due to its large size. We provide a file
of hashes that can easily be used to verify that the data downloaded matches the data originally used to produce our
results. (Use sha256sum at the unix command line.)

5.2. Correct Results 37

https://github.com/samtools/samtools/issues/282


snppipeline Documentation, Release 0.7.0

Listeria monocytogenes

This is designed to be a realistic-sized data set based on an outbreak of L. m. in soft cheese. The data must be
downloaded from the NCBI due to its large size. We provide a file of hashes that can easily be used to verify that the
data downloaded matches the data originally used to produce our results. (Use sha256sum at the unix command line.)

Synthetic data sets

Coming soon in a future release

We are currently creating synthetic data sets based on simulating various evolutionary scenarios. The simulations are
designed to be similar to what we would expect in the types of organisms we study (food-borne pathogens), with error
structure appropriate for the platforms we use to do sequencing.

38 Chapter 5. Correct and Reproducible Results



CHAPTER 6

FAQ / Troubleshooting Guide

Installation

Q: How can I avoid polluting my global python installation when installing the SNP pipeline?

A: You can either use a python virtual environment or install into your user area. To use a python virtual environment,
see the Get Started! section for developers who want to contribute. To install into your user area instead of installing
into your global site packages, do this:

$ pip install --user snp-pipeline

Q: The SNP Pipeline cannot find VarScan. How should I install it?

A: Download the VarScan jar file from SourceForge. Put the jar file anywhere. You need read-access to the jar file,
but not execute-access. The supplied shell scripts expect the CLASSPATH environment variable to specify the path to
the VarScan jar file. The CLASSPATH should include the filename, not just the directory. Define it like this in your
.bashrc file:

export CLASSPATH=~/software/varscan.v2.3.9/VarScan.v2.3.9.jar:$CLASSPATH

Q: How can I uninstall the SNP pipeline?

A: If you installed with pip, you can uninstall from the command line:

$ pip uninstall snp-pipeline

Q: How can I rollback to an older version of the SNP pipeline?

A: You can revert to an older version with these commands:

$ pip uninstall snp-pipeline
$ pip install --user snp-pipeline==0.3.2 # substitute the version you want here

Q: Is there a way to install a specific release of the SNP pipeline from the github repository?

A: Yes, you can install a release from github with this command:

39



snppipeline Documentation, Release 0.7.0

$ pip install --user https://github.com/CFSAN-Biostatistics/snp-pipeline/archive/v0.3.
→˓2 # substitute the version you want here

Running the Pipeline

Q: Nothing works.

A: Make sure you have the proper dependencies on your path. Modify your path if necessary to include bowtie,
samtools, and bcftools. See the question above about installing VarScan. In some cases, you may need to manually
install Biopython. See the Installation section of this documentation.

Q: How can I verify the pipeline is installed and working properly?

A: The SNP Pipeline includes sets of test data with result files. You can run the pipeline against the test data to verify
correct results. Follow the lambda virus workflow steps here: All-In-One Workflow - Lambda Virus.

Upon successful completion of the pipeline, the snplist.txt file should have 165 entries. The SNP Matrix can be found
in snpma.fasta. It should have the following contents:

>sample1
AGCACCGGGACCCACGGCGCACGCAAAGATCCGAATTGCAGGGCGTACCTGGACCCCGGT
GACGGGGGATCGGGGACTCTTGGTGAGGAACTAAAACGAACATCCACGTTTTCATGGCGA
CTGCTTGCCAGGTGTCAGCACATTCCCTATATCGGTGGACACGTA
>sample2
GGCGCTAGGAGGCAAGCCTTGGTCGTGGTTAATAGTTACAAGGCGTGCGCGTACTGCCGT
CTCCTACTATCTCTGCCGCCTCTCGCGATCCGGACCGCAACACCAACTCTCTGGTGGCAT
CCTCTGAATCGTCGTGAGCATCTCAATTATATATTCGTCCGCGCG
>sample3
GGCGCTAGGAGGTACGCTTCGCGTGTGGATCAGCGCTACGGTGCCTATGCGTGACCCGCG
GAACTGGGTTCGCGTAAGGCAGTTCAGGTACGGCAACGTAGATCAAAGTTTAGAAACCAT
ACTCGTAATCCGCCTGACGCTACTCATTATGTATGTGGACGCCTG
>sample4
GAGGTTAACTGGCTCACCTCGCGCGTGTAACAGAGTAATAGGTTGAACGCCTACCCTGGT
GACCTGGGACGGCGGACGCCTGTTGAAGTAAGGAAACGATCCTAAGCGTCTTGATGGGAT
CCTATTAATCGGCGCGTGCATATTCATCGGACATGTCGAGGGGTG

Note: the expected pipeline results are also included in the distribution. To fetch the expected result files:

copy_snppipeline_data.py lambdaVirusExpectedResults myDirectoryForExpectedResults

After verifying correct results on the lambda data set, you can follow the workflow steps for the agona data set, All-In-
One Workflow - Salmonella Agona or the listeria data set, All-In-One Workflow - Listeria monocytogenes. To fetch the
expected result files:

copy_snppipeline_data.py agonaExpectedResults myDirectoryForExpectedResults
copy_snppipeline_data.py listeriaExpectedResults myDirectoryForExpectedResults

Q: My results for the included test data do not match the expected results. What is the cause?

A: Different versions of the executable tools can generate different results. The test data was generated with these
versions:

• bowtie2 2.2.2

• samtools 1.3.1

• varscan 2.3.9

40 Chapter 6. FAQ / Troubleshooting Guide



snppipeline Documentation, Release 0.7.0

Q: How can I run the SNP Pipeline with a mix of paired and unpaired samples?

A: This is handled automatically if you use the run_snp_pipeline.sh script. If you are running alignSampleToRefer-
ence.sh, run the script once per sample with either 1 fastq file or 2 fastq files. For example:

alignSampleToReference.sh reference/NC_011149 samples/CFSAN000448/G0H235M04.RL10.
→˓fastq
alignSampleToReference.sh reference/NC_011149 samples/CFSAN000449/G00JH2D03.RL11.
→˓fastq
alignSampleToReference.sh reference/NC_011149 samples/CFSAN000450/HB4DJL101.RL1.
→˓fastq
alignSampleToReference.sh reference/NC_011149 samples/ERR178930/ERR178930_1.fastq
→˓samples/ERR178930/ERR178930_2.fastq
alignSampleToReference.sh reference/NC_011149 samples/ERR178931/ERR178931_1.fastq
→˓samples/ERR178931/ERR178931_2.fastq

Q: How can I re-run some of the SNP Pipeline processing steps when I see a message that the results are already
freshly built?

A: The SNP Pipeline detects freshly built result files and does not rebuild them. Result files are not rebuilt when the
file timestamp is newer than all of the input files. To force a rebuild, specfify the -f option on the command line of
any of the tools. To re-run only some of the steps, you can either delete the output files for that step or touch the input
files for that step. All subsequent processing steps will also be re-run since their results will be out-of-date.

Q: How does the SNP Pipeline know which processing steps should be re-run after changing the configuration
file?

A: It doesn’t. If you change the configuration file, you may want to re-run some parts of the pipeline. The SNP
Pipeline does not detect which parameters have changed since the last run. You must manually intervene to cause the
pipeline to re-run the impacted processing steps. See the question above for guidance.

Q: What do the dashes (“-“) in the snp matrix indicate?

A: Gaps, “-“, are either missing bases (indels) or cases where there is insufficient information to make a consensus
call (coverage depth too low, or consensus base frequency too low).

Q: Why are some snps missing from the snp matrix even when the snps were called by VarScan?

A: Older versions of VarScan failed to generate the header section of some VCF files. This in turn, caused the SNP
Pipeline to ignore the first snp in the VCF file. Upgrade to a newer version VarScan.

Performance

Q: How can I control the number of concurrent processes lauched on my workstation?

A: If you are using a HPC with a job queue manager, the pipeline will automatically run multiple concurrent processes
across multiple servers – there are no options to control the number of concurrent processes. On a workstation, the
pipeline uses all available CPU cores by default and spawns multiple concurrent processes to use all the cores. How-
ever, you may want to control the number of concurrent processes. There are three steps in the pipeline where multiple
processes are launched on a workstation. You can control the number of processes with the following parameters in
the configuration file. These parameters are used only by the run_snp_pipeline.sh script:

# Maximum concurrent prepSamples.sh processes (SAMtools and Varscan)
MaxConcurrentPrepSamples=

# Maximum concurrent call_consensus.py processes
MaxConcurrentCallConsensus=

6.3. Performance 41



snppipeline Documentation, Release 0.7.0

# Maximum concurrent collectSampleMetrics.sh processes
MaxConcurrentCollectSampleMetrics=

Q: How can I control the number of CPU cores used by the bowtie2 aligner?

A: By default, the SNP Pipeline will give bowtie2 all available CPU cores on a workstation and 8 CPU cores per
sample on a high performance computing cluster. You can override the defaults with the -p bowtie2 option. Set the
option either in the configuration file if you are running run_snp_pipeline.sh, or in the Bowtie2Align_ExtraParams
environment variable if you are running alignSampleToReference.sh directly. For example, to run alignments with 16
concurrent threads:

Bowtie2Align_ExtraParams="--reorder -p 16"

On a workstation, alignments are run one at a time using multiple threads per alignment. On a cluster with a job queue,
multiple alignments are run concurrently, each with multiple threads.

Q: How can I control the amount of memory that is used by the VarScan java virtual machine?

A: The amount of memory used by the java VM can be set by using the -Xmx java VM option. Set the option either in
the configuration file if you are running run_snp_pipeline.sh, or in the VarscanJvm_ExtraParams environment variable
if you are running prepSamples.sh directly. For example, to set maximum java heap size to 3000 MB:

VarscanJvm_ExtraParams="-Xmx3000m"

Developer Questions

Q: What causes “ImportError: No module named sphinx_rtd_theme” when building the documentation?

A: The documentation uses the Read The Docs theme. Install it like this:

$ pip install --user sphinx_rtd_theme

Q: I installed sphinx_rtd_theme, but I still get error “ImportError: No module named sphinx_rtd_theme”.

A: Try running sphinx like this:

$ python /usr/bin/sphinx-build -b html . ./_build

Q: I changed one of the shell scripts, but the changes are ignored.

A: Reinstall the distribution. Do this:

$ python setup.py develop

42 Chapter 6. FAQ / Troubleshooting Guide



CHAPTER 7

Configuration

You can customize the behavior of the SNP Pipeline by configuring parameters. Each step in the pipeline has a
corresponding parameter allowing you to set one or more options for each tool in the pipeline.

Parameters can be configured either in a configuration file if you are using the run_snp_pipeline.sh script, or
in environment variables.

The pipeline comes with a default configuration file. When you run the run_snp_pipeline.sh script without specifying
a configuration file, it automatically uses the default supplied configuration file.

To get a copy of the default configuration file, run the following command. This will create a file called
snppipeline.conf:

copy_snppipeline_data.py configurationFile

To customize the pipeline behavior, edit the configuration file and pass the file to the run_snp_pipeline.sh script:

run_snp_pipeline.sh -c snppipeline.conf ...

When the run_snp_pipeline.sh script runs, it copies the configuration file to the log directory for the run, capturing the
configuration used for each run.

If you decide not to use the run_snp_pipeline.sh script, you can still customize the behavior of the pipeline tools, but
you will need to set (and export) environment variables with the same names as the parameters in the configuration
file.

The available configuration parameters are described below.

SnpPipeline_StopOnSampleError

Controls whether the pipeline exits upon detecting errors affecting only a single sample. The pipeline will always stop
upon detecting global errors affecting all samples.

Default:

43



snppipeline Documentation, Release 0.7.0

When this parameter is not set to a value, the pipeline will stop upon detecting single sample errors. If
you want the pipeline to continue, you must explicitly set this parameter false.

Example:

SnpPipeline_StopOnSampleError=false

MaxConcurrentPrepSamples

Controls the number of prepSamples.sh (SAMtools and Varscan) processes running concurrently on a worksta-
tion. This parameter is ignored when running the pipeline on an HPC job queue. This parameter is used by
run_snp_pipeline.sh only.

Default:

When this parameter is not set to a value, the pipeline will launch multiple concurrent processes using all
available CPU cores on a workstation.

Example:

MaxConcurrentPrepSamples=2

MaxConcurrentCallConsensus

Controls the number of call_consensus.py processes running concurrently on a workstation. This parameter is ignored
when running the pipeline on an HPC job queue. This parameter is used by run_snp_pipeline.sh only.

Default:

When this parameter is not set to a value, the pipeline will launch multiple concurrent processes using all
available CPU cores on a workstation.

Example:

MaxConcurrentCallConsensus=4

MaxConcurrentCollectSampleMetrics

Controls the number of collectSampleMetrics.sh processes running concurrently on a workstation. This parameter is
ignored when running the pipeline on an HPC job queue. This parameter is used by run_snp_pipeline.sh only.

Default:

When this parameter is not set to a value, the pipeline will launch multiple concurrent processes using all
available CPU cores on a workstation.

Example:

MaxConcurrentCollectSampleMetrics=4

44 Chapter 7. Configuration



snppipeline Documentation, Release 0.7.0

SnpPipeline_MaxSnps

Controls the maximum number of snps allowed for each sample. Any sample with excessive snps exceeding this limit
will be excluded from the snp list, snp matrix, and snpma.vcf file. When set to -1, this parameter is disabled.

Default:

Do not leave this parameter unset. To disable the excessive snp filtering and include all samples regardless
of the number of snps, set the parameter to -1

Example:

SnpPipeline_MaxSnps=1000

SnpPipeline_Aligner

Controls which reference-based aligner is used to map reads to the reference genome. The choices are bowtie2 or
smalt.

Default:

When this parameter is not set to a value, the pipeline will use the bowtie2 aligner.

Example:

SnpPipeline_Aligner="smalt"

Bowtie2Build_ExtraParams

Specifies options passed to the bowtie2 indexer. Any of the bowtie2-build options can be specified.

Default: none

Example:

Bowtie2Build_ExtraParams="--offrate 3"

SmaltIndex_ExtraParams

Specifies options passed to the smalt indexer. Any of the smalt index options can be specified.

Default: none

Example:

SmaltIndex_ExtraParams="-k 20 -s 1"

SamtoolsFaidx_ExtraParams

Specifies options passed to the SAMtools faidx indexer. Any of the SAMtools faidx options can be specified.

7.5. SnpPipeline_MaxSnps 45



snppipeline Documentation, Release 0.7.0

Default: none

Example:

SamtoolsFaidx_ExtraParams=""

Bowtie2Align_ExtraParams

Specifies options passed to the bowtie2 aligner. Any of the bowtie2 aligner options can be specified.

Default:

If you do not specify the -p option, it defaults to 8 threads on an HPC or all cpu cores otherwise.
There is no way to completely suppress the -p option.

If Bowtie2Align_ExtraParams is not set to any value, the --reorder option is enabled by default.
Any value, even a single space, will suppress this default option.

Parameter Notes:

-p : bowtie2 uses the specified number of parallel search threads
--reorder : generate output records in the same order as the reads in the input file
-X : maximum inter-mate fragment length for valid concordant paired-end alignments

Example:

Bowtie2Align_ExtraParams="--reorder -p 16 -X 1000"

SmaltAlign_ExtraParams

Specifies options passed to the smalt mapper. Any of the smalt map options can be specified.

Default:

If you do not specify the -n option, it defaults to 8 threads on an HPC or all cpu cores otherwise.
There is no way to completely suppress the -n option.

If SmaltAlign_ExtraParams is not set to any value, the -O option is enabled by default.
Any value, even a single space, will suppress this default option.

Parameter Notes:

46 Chapter 7. Configuration



snppipeline Documentation, Release 0.7.0

-n : number of parallel alignment threads
-O : generate output records in the same order as the reads in the input file
-i : maximum insert size for paired-end reads
-r : random number seed, if seed < 0 reads with multiple best mappings are reported as ‘not mapped’
-y : filters output alignments by a threshold in the number of exactly matching nucleotides

Example:

SmaltAlign_ExtraParams="-O -i 1000 -r 1"

SamtoolsSamFilter_ExtraParams

Specifies options passed to the SAMtools view tool when filtering the SAM file. Any of the SAMtools view options
can be specified.

Default:

If SamtoolsSamFilter_ExtraParams is not set, the “-F 4” option is enabled by default.
Any value, even a single space, will suppress the -F option.

Parameter Notes:

-F 4 : discard unmapped reads

Example:

SamtoolsSamFilter_ExtraParams="-F 4"

SamtoolsSort_ExtraParams

Specifies options passed to the SAMtools sort tool when sorting the BAM file. Any of the SAMtools sort options can
be specified.

Default: None

Example:

SamtoolsSort_ExtraParams=""

7.12. SamtoolsSamFilter_ExtraParams 47



snppipeline Documentation, Release 0.7.0

SamtoolsMpileup_ExtraParams

Specifies options passed to the SAMtools mpileup tool. Any of the SAMtools mpileup options can be specified.

Default: None

Parameter Notes:

-q : minimum mapping quality for an alignment to be used
-Q : minimum base quality for a base to be considered
-x : disable read-pair overlap detection

Example:

SamtoolsMpileup_ExtraParams="-q 0 -Q 13"

VarscanMpileup2snp_ExtraParams

Specifies options passed to the Varscan mpileup2snp tool. Any of the Varscan mpileup2snp options can be specified.

Default: None

Parameter Notes:

--min-avg-qual : minimum base quality at a position to count a read
--min-var-freq : minimum variant allele frequency threshold

Example:

VarscanMpileup2snp_ExtraParams="--min-avg-qual 15 --min-var-freq 0.90"

VarscanJvm_ExtraParams

Specifies options passed to the Varscan Java Virtual Machine. Any of the JVM options can be specified.

Default: None

Parameter Notes:

-Xmx300m : use 300 MB memory (modify as needed)

Example:

48 Chapter 7. Configuration



snppipeline Documentation, Release 0.7.0

VarscanJvm_ExtraParams="-Xmx300m"

RemoveAbnormalSnp_ExtraParams

Specifies options passed to the snp_filter.py script.

Default: None

Parameter Notes:

--edge_length The length of the edge regions in a contig, in which all SNPs will be removed.

--window_size The length of the window in which the number of SNPs should be no more than max_num_snp.

--max_snp The maximum number of SNPs allowed in a window.

--out_group Relative or absolute path to the file indicating outgroup samples, one sample ID per line.

Example:

RemoveAbnormalSnp_ExtraParams="--edge_length 500 --window_size 1000 --max_snp 3 --out_
→˓group /path/to/outgroupSamples.txt"

CreateSnpList_ExtraParams

Specifies options passed to create_snp_list.py.

Default: None

Example:

CreateSnpList_ExtraParams="--verbose 1"

CallConsensus_ExtraParams

Specifies options passed to call_consensus.py.

Default: None

Parameter Notes:

--minBaseQual Mimimum base quality score to count a read. All other snp filters take effect after the low-quality
reads are discarded.

--minConsFreq Consensus frequency. Mimimum fraction of high-quality reads supporting the consensus to make
a call.

--minConsStrdDpth Consensus strand depth. Minimum number of high-quality reads supporting the consensus
which must be present on both the forward and reverse strands to make a call

--minConsStrdBias Strand bias. Minimum fraction of the high-quality consensus-supporting reads which must
be present on both the forward and reverse strands to make a call. The numerator of this fraction is the number
of high-quality consensus-supporting reads on one strand. The denominator is the total number of high-quality
consensus-supporting reads on both strands combined.

7.17. RemoveAbnormalSnp_ExtraParams 49



snppipeline Documentation, Release 0.7.0

--vcfFileName VCF Output file name. If specified, a VCF file with this file name will be created in the same
directory as the consensus fasta file for this sample.

--vcfAllPos Flag to cause VCF file generation at all positions, not just the snp positions. This has no effect on
the consensus fasta file, it only affects the VCF file. This capability is intended primarily as a diagnostic tool
and enabling this flag will greatly increase execution time.

--vcfPreserveRefCase Flag to cause the VCF file generator to emit each reference base in uppercase/lowercase
as it appears in the reference sequence file. If not specified, the reference bases are emitted in uppercase.

Example:

CallConsensus_ExtraParams="--verbose 1 --minBaseQual 15 --vcfFileName consensus.vcf"

CreateSnpMatrix_ExtraParams

Specifies options passed to create_snp_matrix.py.

Default: None

Example:

CreateSnpMatrix_ExtraParams="--verbose 1"

CreateSnpReferenceSeq_ExtraParams

Specifies options passed to create_snp_reference_seq.py.

Default: None

Example:

CreateSnpReferenceSeq_ExtraParams="--verbose 1"

MergeVcf_ExtraParams

Specifies options passed to mergeVcf.sh

Default: none

Example:

MergeVcf_ExtraParams="-n sample.vcf"

CollectSampleMetrics_ExtraParams

Specifies options passed to collectSampleMetrics.sh

Default: none

Example:

50 Chapter 7. Configuration



snppipeline Documentation, Release 0.7.0

CollectSampleMetrics_ExtraParams="-v consensus.vcf"

CombineSampleMetrics_ExtraParams

Specifies options passed to combineSampleMetrics.sh

Default: none

Parameter Notes:

-s : Emit column headings with spaces instead of underscores

Example:

CombineSampleMetrics_ExtraParams="-s"

Torque_StripJobArraySuffix

Controls stripping the suffix from the job id when specifying Torque job array dependencies. It may be necessary to
change this parameter if run_snp_pipeline.sh fails with an illegal qsub dependency error.

Example:

Torque_StripJobArraySuffix=false

GridEngine_StripJobArraySuffix

Controls stripping the suffix from the job id when specifying Grid Engine job array dependencies. It may be necessary
to change this parameter if run_snp_pipeline.sh fails with an illegal qsub dependency error.

Example:

GridEngine_StripJobArraySuffix=true

GridEngine_PEname

Specifies the name of the Grid Engine parallel environment. This is only needed when running the SNP Pipeline on a
High Performance Computing cluster with the Grid Engine job manager. Contact your HPC system administrator to
determine the name of your parallel environment. Note: the name of this parameter was PEname in releases prior to
0.4.0.

Example:

GridEngine_PEname="mpi"

7.24. CombineSampleMetrics_ExtraParams 51



snppipeline Documentation, Release 0.7.0

GridEngine_QsubExtraParams

Specifies extra options passed to qsub when running the SNP Pipeline on the Grid Engine job scheduler.

Default: None

Example:

GridEngine_QsubExtraParams="-q bigmem.q"

Torque_QsubExtraParams

Specifies extra options passed to qsub when running the SNP Pipeline on the Torque job scheduler.

Default: None

Example:

Torque_QsubExtraParams="-l pmem=16gb"

52 Chapter 7. Configuration



CHAPTER 8

Command Reference

copy_snppipeline_data.py

usage: copy_snppipeline_data.py [-h] whichData [destDirectory]

Copy SNP Pipeline data to a specified directory.

positional arguments:
whichData Which of the supplied data sets to copy. The choices are:

lambdaVirusInputs : Input reference and fastq files
lambdaVirusExpectedResults : Expected results files
agonaInputs : Input reference file
agonaExpectedResults : Expected results files
listeriaInputs : Input reference file
listeriaExpectedResults : Expected results files
configurationFile : File of parameters to customize

→˓the
SNP pipeline

Note: the lambda virus data set is complete with input data and
→˓expected

results. The agona and listeria data sets have the reference
→˓genome and

the expected results, but not the input fastq files, because the
→˓files are

too large to include with the package. (default: None)

destDirectory Destination directory into which the SNP pipeline data files
→˓will be copied.

The data files are copied into the destination directory if the
→˓directory

already exists. Otherwise the destination directory is created
→˓and the

data files are copied there. (default: current directory)

53



snppipeline Documentation, Release 0.7.0

optional arguments:
-h, --help show this help message and exit

Example:
# create a new directory "testLambdaVirus" and copy the input data there
$ copy_snppipeline_data.py lambdaVirusInputs testLambdaVirus

run_snp_pipeline.sh

usage: run_snp_pipeline.sh [-h] [-f] [-m MODE] [-c FILE] [-Q torque|grid] [-o DIR] (-
→˓s DIR|-S FILE)

referenceFile

Run the SNP Pipeline on a specified data set.

Positional arguments:
referenceFile : Relative or absolute path to the reference fasta file.

Options:
-h : Show this help message and exit.

-f : Force processing even when result files already exist and
are newer than inputs.

-m MODE : Create a mirror copy of the reference directory and all the sample
directories. Use this option to avoid polluting the reference

→˓directory and
sample directories with the intermediate files generated by the

→˓snp pipeline.
A "reference" subdirectory and a "samples" subdirectory are

→˓created under
the output directory (see the -o option). One directory per

→˓sample is created
under the "samples" directory. Three suboptions allow a choice of

→˓how the
reference and samples are mirrored.
-m soft : creates soft links to the fasta and fastq files

→˓instead of copying
-m hard : creates hard links to the fasta and fastq files

→˓instead of copying
-m copy : copies the fasta and fastq files

-c FILE : Relative or absolute path to a configuration file for overriding
→˓defaults

and defining extra parameters for the tools and scripts within the
→˓pipeline.

Note: A default parameter configuration file named "snppipeline.
→˓conf" is

used whenever the pipeline is run without the -c option. The
configuration file used for each run is copied into the log

→˓directory,
capturing the parameters used during the run.

54 Chapter 8. Command Reference



snppipeline Documentation, Release 0.7.0

-Q torque|grid : Job queue manager for remote parallel job execution in an HPC
→˓environment.

Currently "torque" and "grid" are supported. If not specified,
→˓the pipeline

will execute locally.

-o DIR : Output directory for the snp list, snp matrix, and reference snp
→˓files.

Additional subdirectories are automatically created under the
→˓output

directory for logs files and the mirrored samples and reference
→˓files

(see the -m option). The output directory will be created if it
→˓does

not already exist. If not specified, the output files are written
→˓to

the current working directory. If you re-run the pipeline on
→˓previously

processed samples, and specify a different output directory, the
pipeline will not rebuild everything unless you either force a

→˓rebuild
(see the -f option) or you request mirrored inputs (see the -m

→˓option).

-s DIRECTORY : Relative or absolute path to the parent directory of all the sample
directories. The -s option should be used when all the sample

→˓directories
are in subdirectories immediately below a parent directory.
Note: You must specify either the -s or -S option, but not both.
Note: The specified directory should contain only a collection of

→˓sample
directories, nothing else.

Note: Unless you request mirrored inputs, see the -m option,
→˓additional files

will be written to each of the sample directories during the
→˓execution

of the SNP Pipeline

-S FILE : Relative or absolute path to a file listing all of the sample
→˓directories.

The -S option should be used when the samples are not under a
→˓common parent

directory.
Note: If you are not mirroring the samples (see the -m option),

→˓you can
improve parallel processing performance by sorting the the

→˓list of
directories descending by size, largest first. The -m option
automatically generates a sorted directory list.

Note: You must specify either the -s or -S option, but not both.
Note: Unless you request mirrored inputs, see the -m option,

→˓additional files
will be written to each of the sample directories during the

→˓execution
of the SNP Pipeline

8.2. run_snp_pipeline.sh 55



snppipeline Documentation, Release 0.7.0

prepReference.sh

usage: prepReference.sh [-h] [-f] referenceFile

Index the reference genome for subsequent alignment, and create
the faidx index file for subsequent pileups. The output is written
to the reference directory.

Positional arguments:
referenceFile : Relative or absolute path to the reference fasta file

Options:
-h : Show this help message and exit
-f : Force processing even when result files already exist and

are newer than inputs

alignSampleToReference.sh

usage: alignSampleToReference.sh [-h] [-f] referenceFile sampleFastqFile1
→˓[sampleFastqFile2]

Align the sequence reads for a specified sample to a specified reference genome.
The output is written to the file "reads.sam" in the sample directory.

Positional arguments:
referenceFile : Relative or absolute path to the reference fasta file
sampleFastqFile1 : Relative or absolute path to the fastq file
sampleFastqFile2 : Optional relative or absolute path to the mate fastq file, if

→˓paired

Options:
-h : Show this help message and exit
-f : Force processing even when result files already exist and

are newer than inputs

prepSamples.sh

usage: prepSamples.sh [-h] [-f] referenceFile sampleDir

Find variants in a specified sample.
The output files are written to the sample directory.

Positional arguments:
referenceFile : Relative or absolute path to the reference fasta file
sampleDir : Relative or absolute directory of the sample

Options:
-h : Show this help message and exit
-f : Force processing even when result files already exist and

are newer than inputs

56 Chapter 8. Command Reference



snppipeline Documentation, Release 0.7.0

snp_filter.py

usage: snp_filter.py [-h] [-f] [-n NAME] [-l EDGE_LENGTH] [-w WINDOW_SIZE]
[-m MAX_NUM_SNPs] [-g OUT_GROUP] [-v 0..5] [--version]
sampleDirsFile refFastaFile

Remove abnormally dense SNPs from the input VCF file, save the reserved SNPs
into a new VCF file, and save the removed SNPs into another VCF file.

positional arguments:
sampleDirsFile Relative or absolute path to file containing a list of

directories -- one per sample
refFastaFile Relative or absolute path to the reference fasta file

optional arguments:
-h, --help show this help message and exit
-f, --force Force processing even when result files already exist

and are newer than inputs (default: False)
-n NAME, --vcfname NAME

File name of the input VCF files which must exist in
each of the sample directories (default: var.flt.vcf)

-l EDGE_LENGTH, --edge_length EDGE_LENGTH
The length of the edge regions in a contig, in which
all SNPs will be removed. (default: 500)

-w WINDOW_SIZE, --window_size WINDOW_SIZE
The length of the window in which the number of SNPs
should be no more than max_num_snp. (default: 1000)

-m MAX_NUM_SNPs, --max_snp MAX_NUM_SNPs
The maximum number of SNPs allowed in a window.
(default: 3)

-g OUT_GROUP, --out_group OUT_GROUP
Relative or absolute path to the file indicating
outgroup samples, one sample ID per line. (default:
None)

-v 0..5, --verbose 0..5
Verbose message level (0=no info, 5=lots) (default: 1)

--version show program's version number and exit

create_snp_list.py

usage: create_snp_list.py [-h] [-f] [-n NAME] [--maxsnps INT] [-o FILE]
[-v 0..5] [--version]
sampleDirsFile filteredSampleDirsFile

Combine the SNP positions across all samples into a single unified SNP list
file identifing the postions and sample names where SNPs were called.

positional arguments:
sampleDirsFile Relative or absolute path to file containing a list of

directories -- one per sample
filteredSampleDirsFile

Relative or absolute path to the output file that will
be created containing the filtered list of sample
directories -- one per sample. The samples in this
file are those without an excessive number of snps.

8.6. snp_filter.py 57



snppipeline Documentation, Release 0.7.0

See the --maxsnps parameter.

optional arguments:
-h, --help show this help message and exit
-f, --force Force processing even when result file already exists

and is newer than inputs (default: False)
-n NAME, --vcfname NAME

File name of the VCF files which must exist in each of
the sample directories (default: var.flt.vcf)

--maxsnps INT Exclude samples having more than this maximum allowed
number of SNPs. Set to -1 to disable this function.
(default: -1)

-o FILE, --output FILE
Output file. Relative or absolute path to the SNP list
file (default: snplist.txt)

-v 0..5, --verbose 0..5
Verbose message level (0=no info, 5=lots) (default: 1)

--version show program's version number and exit

create_snp_pileup.py

usage: create_snp_pileup.py [-h] [-f] [-l FILE] [-a FILE] [-o FILE] [-v 0..5]
[--version]

Create the SNP pileup file for a sample -- the pileup file at the positions
where SNPs were called in any of the samples.

optional arguments:
-h, --help show this help message and exit
-f, --force Force processing even when result file already exists

and is newer than inputs (default: False)
-l FILE, --snpListFile FILE

Relative or absolute path to the SNP list file across
all samples (default: snplist.txt)

-a FILE, --allPileupFile FILE
Relative or absolute path to the genome-wide pileup
file for this sample (default: reads.all.pileup)

-o FILE, --output FILE
Output file. Relative or absolute path to the sample
SNP pileup file (default: reads.snp.pileup)

-v 0..5, --verbose 0..5
Verbose message level (0=no info, 5=lots) (default: 1)

--version show program's version number and exit

call_consensus.py

usage: call_consensus.py [-h] [-f] [-l FILE] [-e FILE] [-o FILE] [-q INT]
[-c FREQ] [-d INT] [-b FREQ] [--vcfFileName NAME]
[--vcfRefName NAME] [--vcfAllPos]
[--vcfPreserveRefCase] [--vcfFailedSnpGt {.,0,1}]
[-v 0..5] [--version]
allPileupFile

58 Chapter 8. Command Reference



snppipeline Documentation, Release 0.7.0

Call the consensus base for a sample at the specified positions where SNPs
were previously called in any of the samples. Generates a single-sequence
fasta file with one base per specified position.

positional arguments:
allPileupFile Relative or absolute path to the genome-wide pileup

file for this sample.

optional arguments:
-h, --help show this help message and exit
-f, --force Force processing even when result file already exists

and is newer than inputs. (default: False)
-l FILE, --snpListFile FILE

Relative or absolute path to the SNP list file across
all samples. (default: snplist.txt)

-e FILE, --excludeFile FILE
VCF file of positions to exclude. (default: None)

-o FILE, --output FILE
Output file. Relative or absolute path to the
consensus fasta file for this sample. (default:
consensus.fasta)

-q INT, --minBaseQual INT
Mimimum base quality score to count a read. All other
snp filters take effect after the low-quality reads
are discarded. (default: 0)

-c FREQ, --minConsFreq FREQ
Consensus frequency. Mimimum fraction of high-quality
reads supporting the consensus to make a call.
(default: 0.6)

-d INT, --minConsStrdDpth INT
Consensus strand depth. Minimum number of high-quality
reads supporting the consensus which must be present
on both the forward and reverse strands to make a
call. (default: 0)

-b FREQ, --minConsStrdBias FREQ
Strand bias. Minimum fraction of the high-quality
consensus-supporting reads which must be present on
both the forward and reverse strands to make a call.
The numerator of this fraction is the number of high-
quality consensus-supporting reads on one strand. The
denominator is the total number of high-quality
consensus-supporting reads on both strands combined.
(default: 0)

--vcfFileName NAME VCF Output file name. If specified, a VCF file with
this file name will be created in the same directory
as the consensus fasta file for this sample. (default:
None)

--vcfRefName NAME Name of the reference file. This is only used in the
generated VCF file header. (default: Unknown
reference)

--vcfAllPos Flag to cause VCF file generation at all positions,
not just the snp positions. This has no effect on the
consensus fasta file, it only affects the VCF file.
This capability is intended primarily as a diagnostic
tool and enabling this flag will greatly increase
execution time. (default: False)

--vcfPreserveRefCase Flag to cause the VCF file generator to emit each

8.9. call_consensus.py 59



snppipeline Documentation, Release 0.7.0

reference base in uppercase/lowercase as it appears in
the reference sequence file. If not specified, the
reference base is emitted in uppercase. (default:
False)

--vcfFailedSnpGt {.,0,1}
Controls the VCF file GT data element when a snp fails
filters. Possible values: .) The GT element will be a
dot, indicating unable to make a call. 0) The GT
element will be 0, indicating the reference base. 1)
The GT element will be the ALT index of the most
commonly occuring base, usually 1. (default: .)

-v 0..5, --verbose 0..5
Verbose message level (0=no info, 5=lots) (default: 1)

--version show program's version number and exit

mergeVcf.sh

usage: mergeVcf.sh [-h] [-f] [-n NAME] [-o FILE] sampleDirsFile

Merge the vcf files from all samples into a single multi-vcf file for all samples.

Before running this command, the vcf file for each sample must be created by the
call_consensus.py script.

Positional arguments:
sampleDirsFile : Relative or absolute path to file containing a list of

directories -- one per sample

Options:
-h : Show this help message and exit
-f : Force processing even when result files already exist and

are newer than inputs
-n NAME : File name of the vcf files which must exist in each of

the sample directories. (default: consensus.vcf)
-o FILE : Output file. Relative or absolute path to the merged

multi-vcf file. (default: snpma.vcf)

create_snp_matrix.py

usage: create_snp_matrix.py [-h] [-f] [-c NAME] [-o FILE] [-v 0..5]
[--version]
sampleDirsFile

Create the SNP matrix containing the consensus base for each of the samples at
the positions where SNPs were called in any of the samples. The matrix
contains one row per sample and one column per SNP position. Non-SNP positions
are not included in the matrix. The matrix is formatted as a fasta file, with
each sequence (all of identical length) corresponding to the SNPs in the
correspondingly named sequence.

positional arguments:
sampleDirsFile Relative or absolute path to file containing a list of

60 Chapter 8. Command Reference



snppipeline Documentation, Release 0.7.0

directories -- one per sample

optional arguments:
-h, --help show this help message and exit
-f, --force Force processing even when result file already exists

and is newer than inputs (default: False)
-c NAME, --consFileName NAME

File name of the previously created consensus SNP call
file which must exist in each of the sample
directories (default: consensus.fasta)

-o FILE, --output FILE
Output file. Relative or absolute path to the SNP
matrix file (default: snpma.fasta)

-v 0..5, --verbose 0..5
Verbose message level (0=no info, 5=lots) (default: 1)

--version show program's version number and exit

calculate_snp_distances.py

usage: calculate_snp_distances.py [-h] [-f] [-p FILE] [-m FILE] [-v 0..5]
[--version]
snpMatrixFile

Calculate pairwise SNP distances from the multi-fasta SNP matrix. Generates a
file of pairwise distances and a file containing a matrix of distances.

positional arguments:
snpMatrixFile Relative or absolute path to the input multi-fasta SNP

matrix file.

optional arguments:
-h, --help show this help message and exit
-f, --force Force processing even when result file already exists

and is newer than inputs (default: False)
-p FILE, --pairs FILE

Relative or absolute path to the pairwise distance
output file. (default: None)

-m FILE, --matrix FILE
Relative or absolute path to the distance matrix
output file. (default: None)

-v 0..5, --verbose 0..5
Verbose message level (0=no info, 5=lots) (default: 1)

--version show program's version number and exit

create_snp_reference_seq.py

usage: create_snp_reference_seq.py [-h] [-f] [-l FILE] [-o FILE] [-v 0..5]
[--version]
referenceFile

Write reference sequence bases at SNP locations to a fasta file.

8.12. calculate_snp_distances.py 61



snppipeline Documentation, Release 0.7.0

positional arguments:
referenceFile Relative or absolute path to the reference bases file

in fasta format

optional arguments:
-h, --help show this help message and exit
-f, --force Force processing even when result file already exists

and is newer than inputs (default: False)
-l FILE, --snpListFile FILE

Relative or absolute path to the SNP list file
(default: snplist.txt)

-o FILE, --output FILE
Output file. Relative or absolute path to the SNP
reference sequence file (default: referenceSNP.fasta)

-v 0..5, --verbose 0..5
Verbose message level (0=no info, 5=lots) (default: 1)

--version show program's version number and exit

collectSampleMetrics.sh

usage: collectSampleMetrics.sh [-h] [-f] [-c FILE] [-m INT ] [-o FILE] [-v FILE]
→˓sampleDir referenceFile

Collect alignment, coverage, and variant metrics for a single specified sample.

Positional arguments:
sampleDir : Relative or absolute directory of the sample
referenceFile : Relative or absolute path to the reference fasta file

Options:
-h : Show this help message and exit
-f : Force processing even when result files already exist and

are newer than inputs
-c FILE : Relative or absolute path to the consensus fasta file

(default: consensus.fasta in the sampleDir)
-C FILE : Relative or absolute path to the consensus preserved fasta file

(default: consensus_preserved.fasta in the sampleDir)
-m INT : Maximum allowed number of SNPs per sample. (default: -1)
-o FILE : Output file. Relative or absolute path to the metrics file

(default: metrics in the sampleDir)
-v FILE : Relative or absolute path to the consensus vcf file

(default: consensus.vcf in the sampleDir)
-V FILE : Relative or absolute path to the consensus preserved vcf file

(default: consensus_preserved.vcf in the sampleDir)

combineSampleMetrics.sh

usage: combineSampleMetrics.sh [-h] [-n NAME] [-o FILE] sampleDirsFile

Combine the metrics from all samples into a single table of metrics for all samples.
The output is a tab-separated-values file with a row for each sample and a column
for each metric.

62 Chapter 8. Command Reference



snppipeline Documentation, Release 0.7.0

Before running this command, the metrics for each sample must be created by the
collectSampleMetrics.sh script.

Positional arguments:
sampleDirsFile : Relative or absolute path to file containing a list of

directories -- one per sample

Options:
-h : Show this help message and exit
-n NAME : File name of the metrics files which must exist in each of

the sample directories. (default: metrics)
-o FILE : Output file. Relative or absolute path to the combined metrics

file. (default: stdout)
-s : Emit column headings with spaces instead of underscores

8.15. combineSampleMetrics.sh 63



snppipeline Documentation, Release 0.7.0

64 Chapter 8. Command Reference



CHAPTER 9

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/CFSAN-Biostatistics/snp-pipeline/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

65

https://github.com/CFSAN-Biostatistics/snp-pipeline/issues


snppipeline Documentation, Release 0.7.0

Write Documentation

SNP Pipeline could always use more documentation, whether as part of the official SNP Pipeline docs, in docstrings,
or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/CFSAN-Biostatistics/snp-pipeline/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

Get Started!

Ready to contribute? Here’s how to set up snp-pipeline for local development.

1. Fork the snp-pipeline repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/snp-pipeline.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv snppipeline
$ cd snppipeline/
$ python setup.py develop
$ pip install sphinx_rtd_theme # the documentation uses the ReadTheDocs theme

4. Run the unit tests on the supplied data set to verify your installation is working:

$ python setup.py test

5. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

6. When you’re done making changes, check that your changes pass the tests, including testing other Python
versions:

$ python setup.py test
$ tox
- or -
$ . run_tests.sh -c # source this script to test other python versions without
→˓using tox

To get tox, just pip install it into your virtualenv.

7. Run the regression tests:

66 Chapter 9. Contributing

https://github.com/CFSAN-Biostatistics/snp-pipeline/issues


snppipeline Documentation, Release 0.7.0

$ test/regression_tests.sh

To get shunit2, install from https://code.google.com/p/shunit2/

8. Update the documentation and review the changes locally with sphinx:

$ cd docs
$ sphinx-build -b html . ./_build
$ xdg-open _build/index.html

9. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

10. Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.6, 2.7, 3.3, 3.4, and 3.5, and for PyPI.

Tips

To run a subset of tests:

$ python -m unittest test.test_snppipeline
$ python -m unittest test.test_utils

9.3. Pull Request Guidelines 67

https://code.google.com/p/shunit2/


snppipeline Documentation, Release 0.7.0

68 Chapter 9. Contributing



CHAPTER 10

Credits

CFSAN BioInformatics Team

• Errol Strain

• Yan Luo

• James Pettengill

• Hugh A. Rand

• Steve Davis

• Justin Payne

• Al Shpuntoff

• Joseph D. Baugher

• Yu Wang

External Contributors

None yet. Why not be the first?

69



snppipeline Documentation, Release 0.7.0

70 Chapter 10. Credits



CHAPTER 11

History

0.7.0 (2016-11-30)

• Added a new script to the pipeline: snp_filter.py removes snps from the ends of contigs and from regions
where the snp density is abnormally high. This is an important change to the pipeline with additional processing
and new output files. See SNP Filtering.

• NOTE: You cannot re-use an old configuration file when running SNP Pipeline version 0.7.0. You must create
a new configuration file. See Configuration.

• Fixed compatibility with bcftools 1.2 and higher.

• Updated the result files in the included data sets with the results obtained using bcftools v1.3.1 and bowtie2
v2.2.9. Note: upgrading from bowtie 2.2.2 to 2.2.9 did not change the snp matrix on any of the included
datasets.

0.6.1 (2016-05-23)

• Fixed compatibility with SAMtools 1.3.

• Changed the expected results data sets to match the results obtained using SAMtools version 1.3.1. Starting with
SAMtools version 1.0, the samtools mpileup command implemented a feature to avoid double counting the read
depth when the two ends of a paired-end read overlap. If you use this feature of SAMtools, the pileup depth will
be noticably reduced. You can still count the overlapping read sections twice by using SAMtools v0.1.19 or by
using a configuration file specifying the -x option in SamtoolsMpileup_ExtraParams.

• Removed the obsolete reads.snp.pileup files from the included results data sets.

0.6.0 (2016-04-11)

Bug fixes:

71



snppipeline Documentation, Release 0.7.0

• Fixed compatibility with the newly released PyVCF 0.6.8 package.

Other Changes:

• A new configuration parameter, SnpPipeline_MaxSnps, controls the maximum number of snps allowed
for each sample. Samples with excessive snps exceeding this limit are excluded from the snp list and snp matrix.
See Excessive SNPs.

• A new column in the metrics.tsv file, Excluded_Sample, indicates when a sample has been excluded from
the snp matrix. This column is normally blank.

• Added a new script to the pipeline: calculate_snp_distances.py computes the SNP distances between
all pairs of samples. The SNP distances are written to the output files snp_distance_pairwise.tsv and
snp_distance_matrix.tsv.

• Changed Sun Grid Engine execution to use array-slot dependency where possible, resulting in less idle time
waiting for job steps to complete.

0.5.2 (2016-03-07)

Bug fixes:

• An empty snplist.txt file should not cause errors when creating the referenceSNP.fasta.

• An empty snplist.txt file should not preclude re-running subsequent steps of the pipeline.

• When configured to ignore single-sample errors, a missing var.flt.vcf file should not preclude rebuilding the
snplist.txt file during a pipeline re-run.

• The metrics file did not properly capture the total number of snps per sample. See below for the details.

Other Changes:

• Capture separate metrics counting phase 1 snps (varscan) and phase 2 snps (consensus). Previously, the metrics
only included phase 1 snps. This changes the contents of both the metrics and metrics.tsv files. The
metrics file now contains a new tag phase1Snps. The old tag snps now correctly counts the total number of
snps. The metrics.tsv file now has separate column headers for phase 1 snps and phase 2 snps. Any code that
parses those files may need modifications to work properly with v0.5.2.

• Added the Average Insert Size metric.

• The metrics.tsv column headings now contain underscores instead of spaces for better interoperability with some
downstream analysis tools. Column headings with spaces can be generated by specifing the combineSample-
Metrics.sh -s option in the configuration file.

• Remove the dependence on the snp matrix when collecting sample metrics.

• Improve the speed of metrics calculation when rerunning the pipeline. Reuse the previously computed metrics
when recalculation would be slow.

0.5.1 (2016-02-19)

Bug fixes:

• Do not shutdown the pipeline when the generated snplist is empty when there are no snps.

• Do not attempt to merge VCF files when there are fewer than two VCF files to merge.

Other Changes:

72 Chapter 11. History



snppipeline Documentation, Release 0.7.0

• Added the vcfFailedSnpGt option to the call_consensus.py script to control how the VCF file GT data
element is emitted when the snp is failed because of depth, allele frequency, or some other filter. If not specified,
the GT element will contain a dot. Prior to this release, the behavior was to emit the ALT allele index. The old
behavior can be retained by setting --vcfFailedSnpGt 1

• Changed the setup to require PyVCF version 0.6.7 or higher. It will automatically upgrade if necessary.

• Added error checking after running SamTools and VarScan to detect missing, empty, or erroneous output files.

0.5.0 (2016-01-19)

Bug fixes:

• Changed VCF file generator to not emit multiple alleles when the reference base is lowercase.

Other Changes:

• Trap errors, shutdown the pipeline, and prevent execution of subsequent steps when earlier processing steps fail.
A summary of errors is written to the error.log file. See Error Handling.

• Check for the necessary software tools (bowtie, samtools, etc.) on the path at the start of each pipeline run.

• Check for missing or empty input files at the start of each processing step.

• Added two new parameters, GridEngine_QsubExtraParams and Torque_QsubExtraParams, to
the configuration file to pass options to qsub when running the SNP Pipeline on an HPC computing cluster.
Among other things, you can control which queue the snp-pipeline will use when executing on an HPC with
multiple queues. See Configuration.

• Removed the “job.” prefix to shorten job names when running on an HPC.

• Changed the vcf file generator to emit reference bases in uppercase. Added the vcfPreserveRefCase flag
to the call_consensus.py script to cause the vcf file generator to emit each reference base in uppercase/lowercase
as it appears in the original reference sequence file. If not specified, the reference bases are emitted in uppercase.
Prior to this release, the behavior was to always preserve the original case.

• Added support for Python 3.3, 3.4, 3.5.

• Implemented a regression test suite for the bash shell scripts, using the shUnit2 package.

0.4.1 (2015-10-30)

Bug fixes:

• Fixed a Python 2.6 incompatibility with the new consensus caller.

Other Changes:

• Added Tox support for automatically testing installation and execution with multiple Python versions.

0.4.0 (2015-10-22)

Bug fixes:

11.6. 0.5.0 (2016-01-19) 73



snppipeline Documentation, Release 0.7.0

• When run on Grid Engine with the default settings, bowtie2 was consuming all available CPU cores per node
while scheduled with Grid to use only 8 cores. On a lightly loaded cluster, this bug made the pipeline run faster,
but when the cluster was full or nearly full, it would cause contention for available CPU resources and cause
jobs to run more slowly. Changed to use only 8 CPU cores by default.

• The consensus snp caller miscounted the number of reference bases when the pileup record contained the ^
symbol marking the start of a read segment followed by a dot or comma. In this situation, the dot or comma
should not be counted as reference bases.

Other Changes:

• Added support for the Smalt aligner. You can choose either bowtie2 or smalt in the configuration file. A new
parameter in the configuration file, SnpPipeline_Aligner, selects the aligner to use. Two additional con-
figuration parameters, SmaltIndex_ExtraParams and SmaltAlign_ExtraParams can be configured
with any Smalt command line options. See Tool Selection. The default aligner is still bowtie2.

• Split the create_snp_matrix.py script into two pieces. The new script, call_consensus.py, is a redesigned con-
sensus caller which is run in parallel to call snps for multiple samples concurrently. The create_snp_matrix.py
script simply merges the consensus calls for all samples into a multi-fasta file.

• The new consensus caller has the following adjustable parameters. See the call_consensus.py command refer-
ence.

– minBaseQual : Mimimum base quality score to count a read.

– minConsFreq : Minimum consensus frequency.

– minConsStrdDpth : Minimum consensus-supporting strand depth.

– minConsStrdBias: Strand bias.

• Added the capability to generate VCF files. By default, a file named consensus.vcf is generated by the con-
sensus caller for each sample, and the merged multi-sample VCF file is called snpma.vcf. This capability
introduces a new dependency on bgzip, tabix, and bcftools. You can disable VCF file generation by removing
the --vcfFileName option in the configuration file. Also, be aware the contents of the VCF files may change
in future versions of the SNP Pipeline.

• Added configuration parameters Torque_StripJobArraySuffix and
GridEngine_StripJobArraySuffix to improve compatibility with some HPC environments where
array job id suffix stripping is incompatible with qsub.

• Renamed the configuration parameter PEname to GridEngine_PEname.

0.3.4 (2015-06-25)

Bug fixes:

• The referenceSNP.fasta file was missing newlines between sequences when the reference fasta file contained
multiple sequences. In addition, each sequence was written as a single long string of characters. Changed to
emit a valid fasta file. Updated the expected result files for the datasets included with the distribution accordingly.

• Changed the run_snp_pipeline.sh script to allow blank lines in the file of sample directories when called with
the -S option.

• Changed the run_snp_pipeline.sh script to allow trailing slashes in the file of sample directories when called
with the -S option.

• Do not print system environment information when the user only requests command line help.

• Fixed the broken pypi downloads per month badge on the readme page.

74 Chapter 11. History



snppipeline Documentation, Release 0.7.0

Other Changes:

• Changed the default configuration file to specify the -X 1000 option to the bowtie2 aligner. This parameter
is the maximum inter-mate distance (as measured from the furthest extremes of the mates) for valid concordant
paired-end alignments. Previously this value was not explicitly set and defaulted to 500. As a result of this
change, the generated SAM files may have a different number of mapped reads, the pileup files may have
different depth, and the number of snps called may change.

• We now recommend using VarScan version 2.3.9 or later. We discoved VarScan v2.3.6 was occasionally omit-
ting the header section of the generated VCF files. This in turn, caused the SNP Pipeline to miss the first snp in
the VCF file. This is not a SNP Pipeline code change, only a documentation and procedural change.

• Updated the result files in the included data sets with the results obtained using VarScan v2.3.9 and the Bowtie
-X 1000 option.

• Log the Java classpath to help determine which version of VarScan is executed.

• Changed the python unit tests to execute the non-python processes in a temporary directory instead of assuming
the processes were already run in the test directory.

0.3.3 (2015-04-14)

Bug fixes:

• Improve HPC qsub submission speed throttling to avoid errors with the HPC job scheduler when submitting
large and small jobs. Dynamically adjust the delays between HPC array job submission so small datasets have
small delays and large datasets have large delays between qsub submissions.

• Process the sample directories in order by size, largest first, considering only the size of fastq files and ignoring
all other files. Previously non-fastq files were affecting the processing order.

• Fixed divide-by-zero error in create_snp_matrix when no snps are detected.

• Don’t skip the last sample when run_snp_pipeline is started with the -S option and the file of sample directories
is not terminated with a newline.

• Gracefully exit run_snp_pipeline with error messages when run with -S option and any of the sample directories
in the sample directory file is missing, empty, or does not contain fastq files.

• Gracefully exit run_snp_pipeline with an error message when run with -s option and the samples directory is
empty or contains no subdirectories with fastq files.

• Fixed the sun grid engine “undefined” task id reported in non-array job log files.

Other Changes:

• Sample Metrics. The pipeline generates a table of sample metrics capturing various alignment, coverage, and
snp statistics per sample. See Metrics.

• Explicitly expose the minConsFreq parameter in the supplied default configuration file to make it easier to
adjust.

• Updated the FAQ with instructions to install to an older version.

0.3.2 (2015-01-14)

Bug fixes:

11.10. 0.3.3 (2015-04-14) 75



snppipeline Documentation, Release 0.7.0

• Fixed (again) a Python 2.6 incompatibility with formatting syntax when printing the available RAM. This af-
fected the shell scripts (prepReference.sh, alignSampleToReference.sh, prepSamples.sh).

• Improved installation in a Python 2.6 environment. Added several Python packages to the automatic setup script.

Other Changes:

• Added support for the Grid Engine job queue manager. See High Performance Computing.

• Added a configurable parameter, minConsFreq, to the create_snp_matrix.py script. This parameter specifies
the mimimum fraction of reads that must agree at a position to make a consensus call. Prior to version 0.3.2,
the snp pipeline required that a majority (more than half) of the reads must agree to make a snp call. In version
0.3.2, the default behavior requires at least 60% of reads must agree to make a consensus call.

• Changed the included snp matrix files for the agona and listeria data sets to match the new results obtained by
setting minConsFreq=0.6. The lambda virus results were not impacted by this change.

• Revised the Installation instructions with more detailed step-by-step procedures.

• Added a Dockerfile for automated docker builds. This feature is still experimental.

0.3.1 (2014-10-27)

Bug fixes:

• Fixed a Python 2.6 incompatibility with formatting syntax when printing the available RAM. Also added the
Python version to the log files.

0.3.0 (2014-10-22)

Bug fixes:

• Fixed some Mac OSX incompatibilities.

• Fixed a bug in copy_snppipeline_data.py that caused copy failure when the destination directory did not exist.

• Fixed alignSampleToReference.sh to properly handle unpaired gzipped fastq files.

Installation Changes:

• There is a new dependency on the python psutil package. When you install the SNP Pipeline, pip will attempt
to install the psutil package automatically. If it fails, you may need to manually install the python-dev package.
In Ubuntu, sudo apt-get install python-dev

Other Changes:

Note a possible loss of backward compatibilty for existing workflows using alignSampleToReference.sh and prepSam-
ples.sh

• All-in-one script: Added a new script, run_snp_pipeline.sh, to run the entire pipeline either on a workstation or
on a High Performance Computing cluster with the Torque job queue manager. See All-In-One SNP Pipeline
Script.

• Logging: The run_snp_pipeline.sh script adds consistent logging functionality for workstation and HPC runs.
The logs for each pipeline run are stored in a time-stamped directory under the output directory. See Logging.

• Timestamp checking: Changed the python scripts (create_snp_list.py, create_snp_pileup.py, cre-
ate_snp_matrix.py, create_snp_reference.py) to skip processing steps when result files already exist and are
newer than the input files. If you modify an upstream file, any dependent downstream files will be rebuilt. You

76 Chapter 11. History



snppipeline Documentation, Release 0.7.0

can force processing regardless of file timestamps with the -f option. Similar functionality for the shell scripts
was previously implemented in release 0.2.0.

• Mirrored input files: The run_snp_pipeline.sh script has the capability to make a mirrored copy of the input
reference and samples to avoid polluting a clean repository. You have the choice to create copies, soft links, or
hard links. See Mirrored Inputs.

• Configuration file: Added the capability to customize the behavior of the SNP Pipeline by specifying parameters
either in a configuration file, or in environment variables. You can create a configuration file with default
values pre-set by executing copy_snppipeline_data.py configurationFile from the command
line. Pass the configuration file to the run_snp_pipeline.sh script with the -c option. Alternatively, environment
variables matching the names of the parameters in the configuration file can be manually set (be sure to export
the variables). When the run_snp_pipeline.sh script is run, it copies the configuration file for the run into the log
directory for the run. See Configuration.

• Removed the -p INT command line option, to specify the number of cpu cores, from the alignSampleToRef-
erence.sh script. You can now control the number of cpu cores used by bowtie2 with the -p INT option either
in the configuration file when running run_snp_pipeline.sh, or in the Bowtie2Align_ExtraParams envi-
ronment variable when running alignSampleToReference.sh directly. If not specified, it defaults to 8 cpu cores
on a HPC cluster, or all cpu cores on a workstation.

• Removed the --min-var-freq 0.90 varscan mpileup2snp option from the prepSamples.sh script. This
parameter is now specified in the VarscanMpileup2snp_ExtraParams environment variable or in the
configuration file.

• Listeria monocytogenes data set: Added a Listeria monocytogenes data set. Updated the usage instructions,
illustrating how to download the Listeria samples from NCBI and how to run the SNP Pipeline on the Listeria
data set. The distribution includes the expected result files for the Listeria data set. Note that due to the large
file sizes, the Listeria expected results data set does not contain all the intermediate output files.

• Added a command reference page to the documentation. See Command Reference.

0.2.1 (2014-09-24)

Bug fixes:

• Version 0.2.0 was missing the Agona data files in the Python distribution. The GitHub repo was fine. The
missing files only impacted PyPi. Add the Agona data files to the Python distribution file list.

0.2.0 (2014-09-17)

Changes Impacting Results:

• Previously, the pipeline executed SAMtools mpileup twice – the first pileup across the whole genome, and the
second pileup restricted to those positions where snps were identified by varscan in any of the samples. This
release removes the second SAMtools pileup, and generates the snp pileup file by simply extracting a subset
of the pileup records from the genome-wide pileup at the positions where variants were found in any sample.
The consequence of this change is faster run times, but also an improvement to the results – there will be fewer
missing values in the snp matrix.

• Changed the the supplied lambda virus expected results data set to match the results obtained with the
pipeline enhancements in this release and now using SAMtools version 0.1.19. SAMtools mpileup version
0.1.19 excludes read bases with low quality. As a reminder, the expected results files are fetched with the
copy_snppipeline_data.py script.

• Removed the “<unknown description>” from the snp matrix fasta file.

11.14. 0.2.1 (2014-09-24) 77



snppipeline Documentation, Release 0.7.0

Other Changes:

Note the loss of backward compatibilty for existing workflows using prepReference.sh, alignSampleToReference.sh,
prepSamples.sh, create_snp_matrix.py

• Split the create_snp_matrix script into 4 smaller scripts to simplify the code and improve performance when
processing many samples in parallel. Refer to the Usage section for the revised step-by-step usage instruc-
tions. The rewritten python scripts emit their version number, arguments, run timestamps, and other diagnostic
information to stdout.

• Changed the default name of the reads.pileup file to reads.snp.pileup. You can override this on the command
line of the create_snp_pileup.py script.

• Added the referenceSNP.fasta file to the supplied lambda virus expected results data set.

• Updated the usage instructions, illustrating how to download the Agona samples from NCBI and how to run the
SNP Pipeline on the Agona data set.

• Updated the supplied expected result files for the Agona data set. Note that due to the large file sizes, the Agona
expected results data set does not contain all the intermediate output files.

• Improved the online help (usage) for all scripts.

• The copy_snppipeline_data.py script handles existing destination directories more sensibly now. The example
data is copied into the destination directory if the directory already exists. Otherwise the destination directory is
created and the example data files are copied there.

• Changed the alignSampleToReference.sh script to specify the number of CPU cores with the -p flag, rather than
a positional argument. By default, all CPU cores are utilized during the alignment.

• Changed the shell scripts (prepReference.sh, alignSampleToReference.sh, prepSamples.sh) to expect the full
file name of the reference including the fasta extension, if any.

• Changed the shell scripts (prepReference.sh, alignSampleToReference.sh, prepSamples.sh) to skip processing
steps when result files already exist and are newer than the input files. If you modify an upstream file, any
dependent downstream files will be rebuilt. You can force processing regardless of file timestamps with the -f
option.

• Changed the name of the sorted bam file to reads.sorted.bam.

• Changed the general-case usage instructions to handle a variety of fastq file extensions (*.fastq* and *.fq*).

0.1.1 (2014-07-28)

Bug fixes:

• The snp list, snp matrix, and referenceSNP files were incorrectly sorted by position alphabetically, not numeri-
cally.

• The SNP Pipeline produced slightly different pileups each time we ran the pipeline. Often we noticed two
adjacent read-bases swapped in the pileup files. This was caused by utilizing multiple CPU cores during the
bowtie alignment. The output records in the SAM file were written in non-deterministic order when bowtie ran
with multiple concurrent threads. Fixed by adding the --reorder option to the bowtie alignment command
line.

• The snp list was written to the wrong file path when the main working directory was not specified with a trailing
slash.

Other Changes:

Note the loss of backward compatibilty for existing workflows using prepSamples.sh

78 Chapter 11. History



snppipeline Documentation, Release 0.7.0

• Moved the bowtie alignment to a new script, alignSampleToReference.sh, for better control of CPU core uti-
lization when running in HPC environment.

• Changed the prepSamples.sh calling convention to take the sample directory, not the sample files.

• prepSamples.sh uses the CLASSPATH environment variable to locate VarScan.jar.

• Changed prepReference.sh to run samtools faidx on the reference. This prevents errors later when multi-
ple samtools mpileup processes run concurrently. When the faidx file does not already exist, multiple samtools
mpileup processes could interfere with each other by attempting to create it at the same time.

• Added the intermediate lambda virus result files (*.sam, *.pileup, *.vcf) to the distribution to help test the
installation and functionality.

• Changed the usage instructions to make use of all CPU cores.

• Log the executed commands (bowtie, samtools, varscan) with all options to stdout.

0.1.0 (2014-07-03)

• Basic functionality implemented.

• Lambda virus tests created and pass.

• 19. Agona tests created – UNDER DEVELOPMENT

• Installs properly from PyPI.

• Documentation available at ReadTheDocs.

11.17. 0.1.0 (2014-07-03) 79



snppipeline Documentation, Release 0.7.0

80 Chapter 11. History



CHAPTER 12

Indices and tables

• genindex

• modindex

• search

81


	CFSAN SNP Pipeline
	Introduction
	Citing SNP Pipeline
	License

	SNP Pipeline Processes
	Installation
	Step 1 - Operating System Requirements
	Step 2 - Executable Software Dependencies
	Step 3 - Environment Variables
	Step 4 - Python
	Step 5 - Pip
	Step 6 - Python Package Dependencies
	Step 7 - Install the SNP Pipeline Python Package
	Upgrading SNP Pipeline
	Uninstalling SNP Pipeline
	Tips

	Usage
	Inputs
	Outputs
	All-In-One SNP Pipeline Script
	Logging
	Mirrored Inputs
	High Performance Computing
	Tool Selection
	All-In-One SNP Pipeline Workflows
	Step-by-Step Workflows
	SNP Filtering
	Excessive SNPs
	Metrics
	Error Handling

	Correct and Reproducible Results
	Reproducible Results
	Correct Results
	Test Data Sets

	FAQ / Troubleshooting Guide
	Installation
	Running the Pipeline
	Performance
	Developer Questions

	Configuration
	SnpPipeline_StopOnSampleError
	MaxConcurrentPrepSamples
	MaxConcurrentCallConsensus
	MaxConcurrentCollectSampleMetrics
	SnpPipeline_MaxSnps
	SnpPipeline_Aligner
	Bowtie2Build_ExtraParams
	SmaltIndex_ExtraParams
	SamtoolsFaidx_ExtraParams
	Bowtie2Align_ExtraParams
	SmaltAlign_ExtraParams
	SamtoolsSamFilter_ExtraParams
	SamtoolsSort_ExtraParams
	SamtoolsMpileup_ExtraParams
	VarscanMpileup2snp_ExtraParams
	VarscanJvm_ExtraParams
	RemoveAbnormalSnp_ExtraParams
	CreateSnpList_ExtraParams
	CallConsensus_ExtraParams
	CreateSnpMatrix_ExtraParams
	CreateSnpReferenceSeq_ExtraParams
	MergeVcf_ExtraParams
	CollectSampleMetrics_ExtraParams
	CombineSampleMetrics_ExtraParams
	Torque_StripJobArraySuffix
	GridEngine_StripJobArraySuffix
	GridEngine_PEname
	GridEngine_QsubExtraParams
	Torque_QsubExtraParams

	Command Reference
	copy_snppipeline_data.py
	run_snp_pipeline.sh
	prepReference.sh
	alignSampleToReference.sh
	prepSamples.sh
	snp_filter.py
	create_snp_list.py
	create_snp_pileup.py
	call_consensus.py
	mergeVcf.sh
	create_snp_matrix.py
	calculate_snp_distances.py
	create_snp_reference_seq.py
	collectSampleMetrics.sh
	combineSampleMetrics.sh

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips

	Credits
	CFSAN BioInformatics Team
	External Contributors

	History
	0.7.0 (2016-11-30)
	0.6.1 (2016-05-23)
	0.6.0 (2016-04-11)
	0.5.2 (2016-03-07)
	0.5.1 (2016-02-19)
	0.5.0 (2016-01-19)
	0.4.1 (2015-10-30)
	0.4.0 (2015-10-22)
	0.3.4 (2015-06-25)
	0.3.3 (2015-04-14)
	0.3.2 (2015-01-14)
	0.3.1 (2014-10-27)
	0.3.0 (2014-10-22)
	0.2.1 (2014-09-24)
	0.2.0 (2014-09-17)
	0.1.1 (2014-07-28)
	0.1.0 (2014-07-03)

	Indices and tables

