
snfpy
Release 0.2.1+17.gfd65e38.dirty

Oct 04, 2019

Contents

1 Installation and setup 1

2 User guide 3

3 Reference API 7

Python Module Index 15

Index 17

i

ii

CHAPTER 1

Installation and setup

1.1 Basic installation

This package requires Python >= 3.5. Assuming you have the correct version of Python installed, you can install
snfpy by opening a terminal and running the following:

git clone https://github.com/rmarkello/snfpy.git
cd snfpy
python setup.py install

You can also install the latest release from PyPi, with:

pip install snfpy

1

snfpy, Release 0.2.1+17.gfd65e38.dirty

2 Chapter 1. Installation and setup

CHAPTER 2

User guide

2.1 Brief example

A brief example for those who just want to get started:

load raw data / labels for supplied dataset
>>> from snf import datasets
>>> simdata = datasets.load_simdata()
>>> sorted(simdata.keys())
['data', 'labels']

this dataset has two data arrays representing features from 200 samples
>>> len(simdata.data)
2
>>> len(simdata.labels)
200

convert raw data arrays into sample x sample affinity matrices
>>> from snf import compute
>>> affinities = compute.make_affinity(simdata.data, metric='euclidean')

fuse the similarity matrices with SNF
>>> fused = compute.snf(affinities)

estimate the number of clusters present in the fused matrix, derived via
an "eigengap" method (i.e., largest difference in eigenvalues of the
laplacian of the graph). note this function returns the top two options;
we'll only use the first
>>> first, second = compute.get_n_clusters(fused)
>>> first, second
(2, 5)

apply clustering procedure
you can use any clustering method here, but since SNF returns an affinity

(continues on next page)

3

snfpy, Release 0.2.1+17.gfd65e38.dirty

(continued from previous page)

matrix (i.e., all entries are positively-valued and indicate similarity)
spectral clustering makes a lot of sense
>>> from sklearn import cluster
>>> fused_labels = cluster.spectral_clustering(fused, n_clusters=first)

compute normalized mutual information for clustering solutions
>>> from snf import metrics
>>> labels = [simdata.labels, fused_labels]
>>> for arr in affinities:
... labels += [cluster.spectral_clustering(arr, n_clusters=first)]
>>> nmi = metrics.nmi(labels)

compute silhouette score to assess goodness-of-fit for clustering
>>> silhouette = metrics.silhouette_score(fused, fused_labels)

2.2 In-depth example

Using SNF is pretty straightforward. There are only a handful of commands that you’ll need, and the output (a subject
x subject array) can easily be carried forward to any number of analysis pipelines.

Nonetheless, for a standard scenario, this package comes bundled with two datasets provided by the original authors
of SNF which can be quite illustrative.

First, we’ll load in the data; data arrays should be (N x M), where N is samples and M are features.

>>> from snf import datasets
>>> simdata = datasets.load_simdata()
>>> sorted(simdata.keys())
['data', 'labels']

The loaded object simdata is a dictionary with two keys containing our data arrays and the corresponding labels:

>>> n_dtypes = len(simdata.data)
>>> n_samp = len(simdata.labels)
>>> print('Simdata has {} datatypes with {} samples each.'.format(n_dtypes, n_samp))
Simdata has 2 datatypes with 200 samples each.

Once we have our data arrays loaded we need to create affinity matrices. Unlike distance matrices, a higher number in
an affinity matrix indicates increased similarity. Thus, the highest numbers should always be along the diagonal, since
subjects are always most similar to themselves!

To construct our affinity matrix, we’ll use snf.make_affinity, which first constructs a distance matrix (using a
provided distance metric) and then converts this into an affinity matrix based on a given subject’s similarity to their K
nearest neighbors. As such, we need to provide a few hyperparameters: K and mu. K determines the number of nearest
neighbors to consider when constructing the affinity matrix; mu is a scaling factor that weights the affinity matrix.
While the appropriate numbers for these varies based on scenario, a good rule is that K should be around N // 10,
and mu should be in the range (0.2 - 0.8).

>>> from snf import compute
>>> affinities = compute.make_affinity(simdata.data, metric='euclidean', K=20, mu=0.5)

Note that we specified metric='euclidean', specifying that we wanted to use euclidean distance in the genera-
tion of the initial distance array before constructing the affinity matrix.

4 Chapter 2. User guide

snfpy, Release 0.2.1+17.gfd65e38.dirty

Once we have our affinity arrays, we can run them through the SNF algorithm. We need to carry forward our K
hyperparameter to this algorithm, as well.

>>> fused = compute.snf(affinities, K=20)

The array output by SNF is a fused affinity matrix; that is, it represents data from all the inputs. It’s designed to be full
rank, and can thus be subjected to clustering and classification. We’ll do the former, now, by estimating the number of
clusters in the data via the “eigengap” method:

>>> first, second = compute.get_n_clusters(fused)
>>> first, second
(2, 5)

By default, compute.get_n_clusters returns two values. We’ll use the first for our clustering:

>>> from sklearn import cluster
>>> fused_labels = cluster.spectral_clustering(fused, n_clusters=first)

Now we can compare the clustering of our fused matrix to what would happen if we had used the data from either of
the original matrices, individually. To do this we need to generate cluster labels from the individual affinity matrices:

>>> labels = [simdata.labels, fused_labels]
>>> for arr in affinities:
... labels += [cluster.spectral_clustering(arr, n_clusters=first)]

Then, we can calculate the normalized mutual information score (NMI) between the labels generated by SNF and the
ones we just obtained:

>>> from snf import metrics
>>> nmi = metrics.nmi(labels)
>>> print(nmi)
[[1. 1. 0.25266274 0.07818002]
[1. 1. 0.25266274 0.07818002]
[0.25266274 0.25266274 1. 0.0355961]
[0.07818002 0.07818002 0.0355961 1.]]

The output array is symmetric and the values range from 0 to 1, where 0 indicates no overlap and 1 indicates a perfect
correspondence between the two sets of labels.

The entry in (0, 1) indicates that the fused array generated by SNF has perfect overlap with the “true” labels from
the datasets. The entries in (0, 2) and (0, 3) indicate the shared information from the individual (unfused) data arrays
(simdata.data) with the true labels.

While this example has the true labels to compare against, in unsupervised clustering we would not have such infor-
mation. In these instances, the NMI cannot tell us that the fused array is superior to the individual data arrays. Rather,
it can only help distinguish how much data from each of the individual arrays is contributing to the fused network.

We can also assess how well the clusters are defined using the silhouette score. These values range from -1 to 1, where
-1 indicates a poor clustering solution and 1 indicates a fantastic solution. We set the diagonal of the fused network to
zero before construction because it was artifically inflated during the fusion process; thus, this returns a conservative
estimate of the cluster goodness-of-fit.

>>> import numpy as np
>>> np.fill_diagonal(fused, 0)
>>> sil = metrics.silhouette_score(fused, fused_labels)
>>> print('Silhouette score for the fused matrix is: {:.2f}'.format(sil))
Silhouette score for the fused matrix is: 0.28

2.2. In-depth example 5

snfpy, Release 0.2.1+17.gfd65e38.dirty

This indicates that the clustering solution for the data is not too bad! We could try playing around with the hyperpa-
rameters to see if we can improve our fit (being careful to do so in a way that won’t overfit to the data). It’s worth
noting that the silhouette score here is slightly modified to deal with the fact that we’re working with affinity matrices
instead of distance matrices. See the API reference for more information.

6 Chapter 2. User guide

CHAPTER 3

Reference API

This is the primary reference of snfpy. Please refer to the user guide for more information on how to best implement
these functions in your own workflows.

List of modules

• snf.compute - Primary SNF functionality

• snf.metrics - Evaluation metrics

• snf.cv - Cross-validation functions

• snf.datasets - Load tests datasets

3.1 snf.compute - Primary SNF functionality

Contains the primary functions for conducting similarity network fusion workflows.

make_affinity(*data[, metric, K, mu, normalize]) Constructs affinity (i.e., similarity) matrix from data
get_n_clusters(arr[, n_clusters]) Finds optimal number of clusters in arr via eigengap

method
snf(*aff[, K, t, alpha]) Performs Similarity Network Fusion on aff matrices
group_predict(train, test, labels, *[, K, mu, t]) Propagates labels from train data to test data via SNF

3.1.1 snf.compute.make_affinity

snf.compute.make_affinity(*data, metric=’sqeuclidean’, K=20, mu=0.5, normalize=True)
Constructs affinity (i.e., similarity) matrix from data

Performs columnwise normalization on data, computes distance matrix based on provided metric, and then

7

snfpy, Release 0.2.1+17.gfd65e38.dirty

constructs affinity matrix. Uses a scaled exponential similarity kernel to determine the weight of each edge
based on the distance matrix. Optional hyperparameters K and mu determine the extent of the scaling (see
Notes).

Parameters

• *data ((N, M) array_like) – Raw data array, where N is samples and M is features.
If multiple arrays are provided then affinity matrices will be generated for each.

• metric (str or list-of-str, optional) – Distance metric to compute. Must
be one of available metrics in :py:func‘scipy.spatial.distance.pdist‘. If multiple arrays a
provided an equal number of metrics may be supplied. Default: ‘sqeuclidean’

• K ((0, N) int, optional) – Number of neighbors to consider when creating affinity
matrix. See Notes of :py:func‘snf.compute.affinity_matrix‘ for more details. Default: 20

• mu ((0, 1) float, optional) – Normalization factor to scale similarity kernel
when constructing affinity matrix. See Notes of :py:func‘snf.compute.affinity_matrix‘ for
more details. Default: 0.5

• normalize (bool, optional) – Whether to normalize (i.e., zscore) arr before con-
structing the affinity matrix. Each feature (i.e., column) is normalized separately. Default:
True

Returns affinity – Affinity matrix (or matrices, if multiple inputs provided)

Return type (N, N) numpy.ndarray or list of numpy.ndarray

Notes

The scaled exponential similarity kernel, based on the probability density function of the normal distribution,
takes the form:

W(𝑖, 𝑗) =
1√
2𝜋𝜎2

𝑒𝑥𝑝−
𝜌2(𝑥𝑖,𝑥𝑗)

2𝜎2

where 𝜌(𝑥𝑖, 𝑥𝑗) is the Euclidean distance (or other distance metric, as appropriate) between patients 𝑥𝑖 and 𝑥𝑗 .
The value for
𝑠𝑖𝑔𝑚𝑎 is calculated as:

𝜎 = 𝜇
𝜌(𝑥𝑖, 𝑁𝑖) + 𝜌(𝑥𝑗 , 𝑁𝑗) + 𝜌(𝑥𝑖, 𝑥𝑗)

3

where 𝜌(𝑥𝑖, 𝑁𝑖) represents the average value of distances between 𝑥𝑖 and its neighbors 𝑁1..𝐾 , and 𝜇 ∈ (0, 1) ⊂
R.

Examples

>>> from snf import datasets
>>> simdata = datasets.load_simdata()

>>> from snf import compute
>>> aff = compute.make_affinity(simdata.data[0], K=20, mu=0.5)
>>> aff.shape
(200, 200)

8 Chapter 3. Reference API

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

snfpy, Release 0.2.1+17.gfd65e38.dirty

3.1.2 snf.compute.get_n_clusters

snf.compute.get_n_clusters(arr, n_clusters=range(2, 6))
Finds optimal number of clusters in arr via eigengap method

Parameters

• arr ((N, N) array_like) – Input array (e.g., the output of
:py:func‘snf.compute.snf‘)

• n_clusters (array_like) – Numbers of clusters to choose between

Returns

• opt_cluster (int) – Optimal number of clusters

• second_opt_cluster (int) – Second best number of clusters

3.1.3 snf.compute.snf

snf.compute.snf(*aff, K=20, t=20, alpha=1.0)
Performs Similarity Network Fusion on aff matrices

Parameters

• *aff ((N, N) array_like) – Input similarity arrays; all arrays should be square and
of equal size.

• K ((0, N) int, optional) – Hyperparameter normalization factor for scaling. De-
fault: 20

• t (int, optional) – Number of iterations to perform information swapping. Default:
20

• alpha ((0, 1) float, optional) – Hyperparameter normalization factor for scal-
ing. Default: 1.0

Returns W – Fused similarity network of input arrays

Return type (N, N) np.ndarray

Notes

In order to fuse the supplied 𝑚 arrays, each must be normalized. A traditional normalization on an affinity
matrix would suffer from numerical instabilities due to the self-similarity along the diagonal; thus, a modified
normalization is used:

P(𝑖, 𝑗) =

{︃
W(𝑖,𝑗)

2
∑︀

𝑘 ̸=𝑖 W(𝑖,𝑘)
, 𝑗 ̸= 𝑖

1/2, 𝑗 = 𝑖

Under the assumption that local similarities are more important than distant ones, a more sparse weight matrix
is calculated based on a KNN framework:

S(𝑖, 𝑗) =

{︃
W(𝑖,𝑗)∑︀

𝑘∈𝑁𝑖
W(𝑖,𝑘)

, 𝑗 ∈ 𝑁𝑖

0, otherwise

The two weight matrices P and S thus provide information about a given patient’s similarity to all other patients
and the K most similar patients, respectively.

3.1. snf.compute - Primary SNF functionality 9

snfpy, Release 0.2.1+17.gfd65e38.dirty

These 𝑚 matrices are then iteratively fused. At each iteration, the matrices are made more similar to each other
via:

P(𝑣) = S(𝑣) ×
∑︀

𝑘 ̸=𝑣 P
(𝑘)

𝑚− 1
× (S(𝑣))𝑇 , 𝑣 = 1, 2, ...,𝑚

After each iteration, the resultant matrices are normalized via the equation above. Fusion stops after t iterations,
or when the matrices P(𝑣), 𝑣 = 1, 2, ...,𝑚 converge.

The output fused matrix is full rank and can be subjected to clustering and classification.

3.1.4 snf.compute.group_predict

snf.compute.group_predict(train, test, labels, *, K=20, mu=0.4, t=20)
Propagates labels from train data to test data via SNF

Parameters

• train (m-list of (S1, F) array_like) – Input subject x feature training data. Subjects in
these data sets should have been previously labelled (see: labels).

• test (m-list of (S2, F) array_like) – Input subject x feature testing data. These should be
similar to the data in train (though the first dimension can differ). Labels will be propagated
to these subjects.

• labels ((S1,) array_like) – Cluster labels for S1 subjects in train data sets.
These could have been obtained from some ground-truth labelling or via a previous
iteration of SNF with only the train data (e.g., the output of sklearn.cluster.
spectral_clustering() would be appropriate).

• K ((0, N) int, optional) – Hyperparameter normalization factor for scaling. See
Notes of snf.affinity_matrix for more details. Default: 20

• mu ((0, 1) float, optional) – Hyperparameter normalization factor for scaling.
See Notes of snf.affinity_matrix for more details. Default: 0.5

• t (int, optional) – Number of iterations to perform information swapping during
SNF. Default: 20

Returns predicted_labels – Cluster labels for subjects in test assigning to groups in labels

Return type (S2,) np.ndarray

3.2 snf.metrics - Evaluation metrics

Functions for computing various metrics to aid interpretation of similarity network fusion outputs.

nmi(labels) Calculates normalized mutual information for all com-
binations of labels

rank_feature_by_nmi(inputs, W, *[, K, mu, . . .]) Calculates NMI of each feature in inputs with W
silhouette_score(arr, labels) Calculates modified silhouette score from affinity ma-

trix
affinity_zscore(arr, labels[, n_perms, seed]) Calculates z-score of silhouette (affinity) score by per-

mutation

10 Chapter 3. Reference API

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.spectral_clustering.html#sklearn.cluster.spectral_clustering
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.spectral_clustering.html#sklearn.cluster.spectral_clustering

snfpy, Release 0.2.1+17.gfd65e38.dirty

3.2.1 snf.metrics.nmi

snf.metrics.nmi(labels)
Calculates normalized mutual information for all combinations of labels

Uses sklearn.metrics.v_measure_score() for calculation; refer to that codebase for information on
algorithm.

Parameters labels (m-length list of (N,) array_like) – List of label arrays

Returns nmi – NMI score for all combinations of labels

Return type (m x m) np.ndarray

Examples

>>> import numpy as np
>>> label1 = np.array([1, 1, 1, 2, 2, 2])
>>> label2 = np.array([1, 1, 2, 2, 2, 2])

>>> from snf import metrics
>>> metrics.nmi([label1, label2])
array([[1. , 0.47870397],

[0.47870397, 1.]])

3.2.2 snf.metrics.rank_feature_by_nmi

snf.metrics.rank_feature_by_nmi(inputs, W, *, K=20, mu=0.5, n_clusters=None)
Calculates NMI of each feature in inputs with W

Parameters

• inputs (list-of-tuple) – Each tuple should contain (1) an (N, M) data array, where
N is samples M is features, and (2) a string indicating the metric to use to compute a dis-
tance matrix for the given data. This MUST be one of the options available in scipy.
spatial.distance.cdist()

• W ((N, N) array_like) – Similarity array generated by snf.compute.snf()

• K ((0, N) int, optional) – Hyperparameter normalization factor for scaling. De-
fault: 20

• mu ((0, 1) float, optional) – Hyperparameter normalization factor for scaling.
Default: 0.5

• n_clusters (int, optional) – Number of desired clusters. Default: determined by
eigengap (see snf.get_n_clusters())

Returns nmi – Normalized mutual information scores for each feature of input arrays

Return type list of (M,) np.ndarray

3.2.3 snf.metrics.silhouette_score

snf.metrics.silhouette_score(arr, labels)
Calculates modified silhouette score from affinity matrix

3.2. snf.metrics - Evaluation metrics 11

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.v_measure_score.html#sklearn.metrics.v_measure_score
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html#scipy.spatial.distance.cdist
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html#scipy.spatial.distance.cdist

snfpy, Release 0.2.1+17.gfd65e38.dirty

The Silhouette Coefficient is calculated using the mean intra-cluster affinity (a) and the mean nearest-cluster
affinity (b) for each sample. The Silhouette Coefficient for a sample is (b - a) / max(a,b). To clarify, b is the
distance between a sample and the nearest cluster that the sample is not a part of. This corresponds to the cluster
with the next highest affinity (opposite how this metric would be computed for a distance matrix).

Parameters

• arr ((N, N) array_like) – Array of pairwise affinities between samples

• labels ((N,) array_like) – Predicted labels for each sample

Returns silhouette_score – Modified (affinity) silhouette score

Return type float

Notes

Code is lightly modified from the sklearn implementation. See: sklearn.metrics.silhouette_score

3.2.4 snf.metrics.affinity_zscore

snf.metrics.affinity_zscore(arr, labels, n_perms=1000, seed=None)
Calculates z-score of silhouette (affinity) score by permutation

Parameters

• arr ((N, N) array_like) – Array of pairwise affinities between samples

• labels ((N,) array_like) – Predicted labels for each sample

• n_perms (int, optional) – Number of permutations. Default: 1000

• seed (int, optional) – Random seed. Default: None

Returns z_aff – Z-score of silhouette (affinity) score

Return type float

3.3 snf.cv - Cross-validation functions

Code for implementing cross-validation of similarity network fusion. Useful for determining the “optimal” number of
clusters in a dataset within a cross-validated, data-driven framework.

snf_gridsearch(*data[, metric, mu, K, . . .]) Performs grid search for SNF hyperparameters mu, K,
and n_clusters

get_optimal_params(zaff, labels[, neighbors]) Finds optimal parameters for SNF based on K-folds grid
search

3.3.1 snf.cv.snf_gridsearch

snf.cv.snf_gridsearch(*data, metric=’sqeuclidean’, mu=None, K=None, n_clusters=None, t=20,
folds=3, n_perms=1000, normalize=True, seed=None)

Performs grid search for SNF hyperparameters mu, K, and n_clusters

Uses folds-fold CV to subsample data and performs grid search on mu, K, and n_clusters hyperparameters for
SNF. There is no testing on the left-out sample for each CV fold—it is simply removed.

12 Chapter 3. Reference API

snfpy, Release 0.2.1+17.gfd65e38.dirty

Parameters

• *data ((N, M) array_like) – Raw data arrays, where N is samples and M is fea-
tures.

• metric (str or list-of-str, optional) – Distance metrics to compute on
data. Must be one of available metrics in scipy.spatial.distance.pdist. If a
list is provided for data a list of equal length may be supplied here. Default: ‘sqeuclidean’

• mu (array_like, optional) – Array of mu values to search over. Default:
np.arange(0.35, 1.05, 0.05)

• K (array_like, optional) – Array of K values to search over. Default: np.arange(5,
N // 2, 5)

• n_clusters (array_like, optional) – Array of cluster numbers to search over.
Default: np.arange(2, N // 20)

• t (int, optional) – Number of iterations for SNF. Default: 20

• folds (int, optional) – Number of folds to use for cross-validation. Default: 3

• n_perms (int, optional) – Number of permutations for generating z-score of silhou-
ette (affinity) to assess reliability of SNF clustering output. Default: 1000

• normalize (bool, optional) – Whether to normalize (z-score) data arrrays before
constructing affinity matrices. Each feature is separately normalized. Default: True

• seed (int, optional) – Random seed. Default: None

Returns

• grid_zaff ((F,) list of (S, K, C) np.ndarray) – Where S is mu, K is K, C is n_clusters, and F
is the number of folds for CV. The entries in the individual arrays correspond to the z-scored
silhouette (affinity).

• grid_labels ((F,) list of (S, K, C, N) np.ndarray) – Where S is mu, K is K, C is n_clusters,
and F is the number of folds for CV. The N entries along the last dimension correspond to
the cluster labels for the given parameter combination.

3.3.2 snf.cv.get_optimal_params

snf.cv.get_optimal_params(zaff, labels, neighbors=’edges’)
Finds optimal parameters for SNF based on K-folds grid search

Parameters

• zaff ((F,) list of (S, K, C) np.ndarray) – Where S is mu, K is K, C is
n_clusters, and F is the number of folds for CV. The entries in the individual arrays corre-
spond to the z-scored silhouette (affinity).

• labels ((F,) list of (S, K, C, N) np.ndarray) – Where S is mu, K is K,
C is n_clusters, and F is the number of folds for CV. The N entries along the last dimension
correspond to the cluster labels for the given parameter combination.

• neighbors (str, optional) – How many neighbors to consider when calculating
z-Rand kernel. Must be in [‘edges’, ‘corners’]. Default: ‘edges’

Returns

• mu (int) – Index along S indicating optimal mu parameter

• K (int) – Index along K indicating optimal K parameter

3.3. snf.cv - Cross-validation functions 13

snfpy, Release 0.2.1+17.gfd65e38.dirty

3.4 snf.datasets - Load tests datasets

Functions for loading test data setss

load_simdata() Loads “similarity” data with two datatypes
load_digits() Loads “digits” dataset with four datatypes

3.4.1 snf.datasets.load_simdata

snf.datasets.load_simdata()
Loads “similarity” data with two datatypes

Returns sim – Dictionary-like object with keys [‘data’, ‘labels’]

Return type sklearn.utils.Bunch

3.4.2 snf.datasets.load_digits

snf.datasets.load_digits()
Loads “digits” dataset with four datatypes

Returns digits – Dictionary-like object with keys [‘data’, ‘labels’]

Return type sklearn.utils.Bunch

14 Chapter 3. Reference API

Python Module Index

s
snf.compute, 7
snf.cv, 12
snf.datasets, 14
snf.metrics, 10

15

snfpy, Release 0.2.1+17.gfd65e38.dirty

16 Python Module Index

Index

A
affinity_zscore() (in module snf.metrics), 12

G
get_n_clusters() (in module snf.compute), 9
get_optimal_params() (in module snf.cv), 13
group_predict() (in module snf.compute), 10

L
load_digits() (in module snf.datasets), 14
load_simdata() (in module snf.datasets), 14

M
make_affinity() (in module snf.compute), 7

N
nmi() (in module snf.metrics), 11

R
rank_feature_by_nmi() (in module snf.metrics),

11

S
silhouette_score() (in module snf.metrics), 11
snf() (in module snf.compute), 9
snf.compute (module), 7
snf.cv (module), 12
snf.datasets (module), 14
snf.metrics (module), 10
snf_gridsearch() (in module snf.cv), 12

17

	Installation and setup
	User guide
	Reference API
	Python Module Index
	Index

