

SNAPPY Tutorial on Software Development for Clinical Translation

The SNAPPY Tutorial on Software Development for Clinical Translation is now the SciKit-Surgery Tutorial on Software Development for Clinical Translation, please visit it here [https://scikit-surgerytutorial02.readthedocs.io].

Index

Introduction

This is the SNAPPY Tutorial on Software Development for Clinical Translation.
SNAPPY aims to support users in
developing software applications for surgery and medical image computing.
The aim of this tutorial is to
introduce the user to key concepts in software engineering, enabling the user
to write and publish robust, documented and tested implementations of their
algorithms. The skills learnt will help the user disseminate their research and
translate their research to clinical applications.

After completing the tutorial the user will have;

	Used the SNAPPY Python Template to create, test, and publish an implementation of a simple
image processing algorithm.

After the completing the tutorial the user should be able to;

	Use gitlab to create and manage a software repository.

	Use tox and gitlab to test the software and create continuous integration tests.

	Create documentation for the software using docstrings and sphinx.

	Publish the documentation to readthedocs

	Publish the software to PyPi.

Getting Started

Step 1: The SNAPPY Python Templates uses cookiecutter [https://cookiecutter.readthedocs.io/en/latest/] to generate a project from a
templates. Start by checking you have cookiecutter installed

pip install cookiecutter

Step 2: Use the Python Template to create your new project.
This tutorial uses a sphere fitting algorithm [https://scikit-surgery-sphere-fitting.readthedocs.io/en/latest/] as an example case, as it
strikes a nice balance between simplicity and usefulness. Fitting models to data
is a key part of medical image computing, so hopefully the user can see how their own
algorithms could be inserted into the software template.

cookiecutter https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareRepositories/PythonTemplate.git

If that doesn’t work try,

python -m cookiecutter https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareRepositories/PythonTemplate.git

Follow the prompts, we should call our project something descriptive, so if you’re doing sphere fitting:

project_name [My New Project]: scikit-surgery-sphere-fitting
project_slug [scikit-surgery-sphere-fitting]: sksurgeryspherefitting
project_description [scikit-surgery-sphere-fitting is a Python package]: scikit-surgery-sphere-fitting implements a least squares sphere fitting algorithm, to read a vtk poly data file, a config file, and outputs the fitted sphere
pkg_name [sksurgeryspherefitting]:
Select repository_server:
1 - https://weisslab.cs.ucl.ac.uk
2 - https://cmiclab.cs.ucl.ac.uk
3 - https://github.com
4 - https://gitlab.com
Choose from 1, 2, 3, 4 (1, 2, 3, 4) [1]:
full_name [Your Name]: Stephen Thompson
repository_profile_name [StephenThompson]:
Select repository_path:
1 - StephenThompson/sksurgeryspherefitting
2 - WEISS/SoftwareRepositories/sksurgeryspherefitting
3 - WEISS/SoftwareRepositories/SNAPPY/sksurgeryspherefitting
Choose from 1, 2, 3 (1, 2, 3) [1]:
project_url [https://weisslab.cs.ucl.ac.uk/StephenThompson/sksurgeryspherefitting]:
Select open_source_license:
1 - BSD-3 license
2 - Apache Software License 2.0
3 - MIT License
Choose from 1, 2, 3 (1, 2, 3) [1]:

Enter the source directory and initialise git repository.

cd sksurgeryspherefitting/
git init
git add .
git commit -m "Initial commit of my sphere fitter"

Create a new project on WeissLab (or GitLab, GitHub or your preferred git host), making sure the URL matches what you set in step 3.

[image: Create new project on weisslab]
Add the remote to git and push your first commit

git remote add origin https://weisslab.cs.ucl.ac.uk/StephenThompson/scikit-surgery-sphere-fitting.git
git push origin master

Visit the web interface to WEISSLab and checkout out your first commit

[image: Check out your project on WEISS Lab]
You may notice that it says that your commit failed. This refers to the continuous integration test having failed, not that your project was lost. By the end this tutorial you will have a green tick where now there is a red cross, for know though, don’t worry.

Getting Started with Issue Tracking on WEISSlab

A critical part of quality software engineering is keeping track of changes, and maintaining a record of why changes were made.
WEISSlab (and gitlab, github, etc) contains functions to create and track issues.
Issues can be feature requests, bug fixes etc. At the moment our software doesn’t
do anything, so let’s go to WEISSlab and create an issue.

[image: Check out your project on WEISS Lab]
Give the issue a name, and assign it to yourself. This should be issue number 1.

[image: Check out your project on WEISS Lab]

Getting Started with git

WEISSLab uses git [https://git-scm.com/] to control and maintain the source code versioning of
projects made using the Python Template. This tutorial is no
substitute for a good understanding of version control in general and
git [https://git-scm.com/] in particular. We will cover just enough git commands here to get you
up and running.

Step 1: Make a new branch to start working on. Prefix it with the number 1 so we know
it’s linked to issue 1.

git checkout -b "1-get-working"

You can now start modifying files.

Planning

Thinking about what the library is supposed to do is a good way to
start. The Python Template comes with a doc/requirements.rst file
which is a good place to jot down initial thoughts on what the library
will or won’t do. It already has some non specific requirements,
let’s add some more about what a sphere fitting algorithm should do.
Later on you could add links to unit tests to verify that the requirements
are met.

The list doesn’t have to be exhaustive and will probably become obsolete, but
it provides an opportunity to stop and think before coding. There is a
substantial body of evidence that thinking before coding leads to better
code.

| 0003 | Provides a function to fit a sphere to a list of | |
| | 3 dimensional points | |
+------------+--+-------------------------------------+
| 0004 | Provides a command line application | |
+------------+--+-------------------------------------+
| 0005 | What else ?? | |
+------------+--+-------------------------------------+

When you’ve finished editing doc/requirements.rst, don’t forget to update it on gitlab.

git add doc/requirements.rst
git commit -m "Issue #1 added some functional requirements"

Start Coding

The python template is structured with a parent directory that contains various readme, licence files, together with
three Python scripts. For the moment we don’t want to modify any of these. The code we will begin with is to be found
in the subdirectory sksurgeryspherefitting

cd sksurgeryspherefitting/

Within this directory are three more python scripts, __init__.py, __main__.py, and _version.py. None of these
need to be modified. The actual working code is within two subdirectories, algorithms and ui(user interface). More
complex libraries may contain more subdirectories, or less if they have no user interface. Despite the temptation
to get the user interface working quickly, it is always good practice to start with the algorithms (See page 44 of this [https://magazines-static.raspberrypi.org/issues/full_pdfs/000/000/030/original/HelloWorld07.pdf#page=44]).

cd algorithms/

The SNAPPY Python template has already populated this with a couple of example algorithms, addition and multiplication.
These are nice examples, but a bit too simple for our tutorial. So lets delete them and create our own file,
sphere_fitting.py. I chose sphere fitting as it was useful for me at the time, feel free to insert your own
algorithm at this point.
The following code uses vim to edit the files, you can use whatever editor you like.

rm addition.py multiplication.py
vi sphere_fitting.py

Copy and paste the following into your editor.

coding=utf-8
""" Module for fitting a sphere to a list of 3D points """

#scipy has a nice least squares optimisor
from scipy.optimize import leastsq
import numpy

def fit_sphere_least_squares(x_values, y_values, z_values, initial_parameters):
 """
 Uses scipy's least squares optimisor to fit a sphere to a set
 of 3D Points

 :return: x: an array containing the four fitted parameters
 :return: ier: int An integer flag. If it is equal to 1, 2, 3 or 4, the
 solution was found.
 :param: (x,y,z) three arrays of equal length containing the x, y, and z
 coordinates.
 :param: an array containing four initial values (centre, and radius)
 """
 return leastsq(_calculate_residual_sphere, initial_parameters,
 args=(x_values, y_values, z_values))

def _calculate_residual_sphere(parameters, x_values, y_values , z_values):
 """
 Calculates the residual error for an x,y,z coordinates, fitted
 to a sphere with centre and radius defined by the parameters tuple

 :return: The residual error
 :param: A tuple of the parameters to be optimised, should contain
 [x_centre, y_centre, z_centre, radius]
 :param: arrays containing the x,y, and z coordinates.

 """
 #extract the parameters
 x_centre, y_centre, z_centre, radius = parameters

 #use numpy's sqrt function here, which works by element on arrays
 distance_from_centre = numpy.sqrt((x_values - x_centre)**2 +
 (y_values - y_centre)**2 +
 (z_values - z_centre)**2)
 return distance_from_centre - radius

Note that there are two functions, the first fit_sphere_least_squares is what we expect the user to call.
Once we publish this module, anyone should be able to download your library and and fit a sphere to their points
by calling this
function with the appropriate parameters. We have added a “docstring” under the function definition to tell the user
what parameters are required and what the function’s return value will be. If you want people to use your code this
is important.

The second function, _calculate_residual_sphere is used by SciPy’s least square optimiser to fit the model, in this
case a sphere, though you could rewrite it to fit any geometry you like. This function is prefixed with an underscore (_)
which tells the user that it’s not meant to be called directly. It’s not strictly necessary to document this function,
but is good practice.

That’s it, you’ve written a sphere fitting algorithm using the Python template. Commit your changes;

git rm addition.py multiplication.py
git add sphere_fitting.py
git commit -m "Issue #1 implemted the sphere fitting algorithm"
git push origin 1-get-working

Make sure you include the hashtag #1 in your commit message, so that WEISSlab can link the change to
the issue you created earlier.

Now anyone with access to your git repository can download and use your algorithm. However they’re a lot more
likely to do that if they can see that your algorithm does what it’s supposed to do. This is where the Python
template starts being really helpful.

What is Lint and PEP 8

The SNAPPY python template uses pylint [https://www.pylint.org/] to check that the code is well written, according to Python’s PEP 8 [https://www.python.org/dev/peps/pep-0008/]
coding standard. At times this may seem unnecessary, as long as the code runs who cares whether it’s
tidily written? However, the aim of the SNAPPY Python template is to help create code that not only works for
you, but will be downloaded by others, modified and spread about. That’s a lot more likely to happen if your code
can be easily understood by others, and that’s what lint helps you do.

If we scroll back up through the test output we’ll start finding some linting errors. Depending on
how well you’ve cut and pasted you may have other errors, but let’s look at the first one I get, which
looks like this;

lint runtests: commands[0] | pylint --rcfile=tests/pylintrc sksurgeryspherefitting
************* Module sksurgeryspherefitting.ui.sksurgeryspherefitting_command_line
sksurgeryspherefitting/ui/sksurgeryspherefitting_command_line.py:14:0: C0301: Line too long (81/80) (line-too-long)

It’s telling us that one of the lines is too long in a file in the ui directory. We haven’t started on the user
interface yet, and the file in question was auto generated by the Python Template.
Let’s just tell pylint to ignore the ui directory for the moment.
Edit the file pylintrc, which is in the tests directory. Near the top of the file is an entry called
ignore, add “ui” to the list of things to ignore;

Add files or directories to the blacklist. They should be base names, not
paths.
ignore=CVS, ui

Now try running tox again. If you’ve cut and pasted the code from earlier, you should get
one linting error;

sksurgeryspherefitting/algorithms/sphere_fitting.py:23:62: C0326: No space allowed before comma
def _calculate_residual_sphere(parameters, x_values, y_values , z_values):
 ^ (bad-whitespace)

As you can see, it’s a minor error that effects readability. edit sphere_fitting.py to
fix it and rerun tox. You should now get:

__ summary __
py27: commands succeeded
py36: commands succeeded
lint: commands succeeded
congratulations :)

If not, read the output and fix any remaining errors. Once you have all tests passing, commit your changes and push to origin;

git add tests/test_sksurgeryspherefitting.py
git add requirments.txt sksurgeryspherefitting/algorithms/sphere_fitting.py tests/pylintrc
git commit -m "Issue #1 implemented unit test and fixed style errors"
git push origin 1-get-working

If you wait a few minutes and visit weisslab, you should be able to see your library commit passing
with a nice green tick. Congratulations, you have mastered testing and continuous integration testing.

[image: Your commit passing on weisslab]
Your code is working now. So lets draw a line under it. Use git to merge your branch back to master,
and push it to the origin. Then close the issue on Weisslab.

git checkout master
git merge --no-ff 1-get-working
git push origin master
git branch --delete 1-get-working

Go to the WEISSlab website, and close issue 1.

Start Testing with Tox

The SNAPPY Python template comes preconfigured to perform functional tests on your code, to test that
your code conforms to Python’s coding style (PEP 8 [https://www.python.org/dev/peps/pep-0008/]), and produce documentation for your code. This is all
done with the helpful tox package, which is configured with the tox.ini file.

Navigate back to the project’s parent directory.

cd ../../

And try running tox

tox

At this stage you may realise you don’t have tox installed, if not, try

pip install tox

If tox runs, you should get some test failures, accompanied by informative output to the console,
explaining what these errors are. Let’s start at the top.

ImportError while importing test module '/home/thompson/src/scikit-surgery-sphere-fitting/tests/test_sksurgeryspherefitting.py'.
Hint: make sure your test modules/packages have valid Python names.
Traceback:
.tox/py27/lib/python2.7/site-packages/six.py:709: in exec_
 exec("""exec _code_ in _globs_, _locs_""")
tests/test_sksurgeryspherefitting.py:5: in <module>
 from sksurgeryspherefitting.ui.sksurgeryspherefitting_demo import run_demo
sksurgeryspherefitting/ui/sksurgeryspherefitting_demo.py:4: in <module>
 from sksurgeryspherefitting.algorithms import addition, multiplication
E ImportError: cannot import name addition

The first and last two lines are the most helpful, it all started in a file in the tests directory, and ended when
it couldn’t import the name “addition”. That’s because we deleted it and replaced it with sphere fitting. Let’s
go into the test directory,

cd tests

And edit the test file

vi test_sksurgeryspherefitting.py

The first line imports from the user interface (ui). We’ll cover this later in the tutorial, for now let’s
comment it out

#from sksurgeryspherefitting.ui.sksurgeryspherefitting_demo import run_demo

And comment out the first test, which is for the ui.

#def test_using_pytest_sksurgeryspherefitting():
x = 1
y = 2
verbose = False
multiply = False
#
expected_answer = 3
assert run_demo(x, y, multiply, verbose) == expected_answer

Then look at the second import statement, it asks to import addition and multiply from algorithms, but
we removed them and replaced them with sphere_fitting.py, so let’s update the import statement

from sksurgeryspherefitting.algorithms import sphere_fitting

Also add an import numpy, so we can use it’s approximately equal function.

import numpy

Now scroll down and delete the two unit tests for addition and subtraction, replacing them
with a test for fit_sphere_least_squares

def test_fit_sphere_least_squares():
 x_centre = 1.0
 y_centre = 167.0
 z_centre = 200.0

 radius = 7.5

 #some arrays to fit data to
 x_values=numpy.ndarray(shape=(1000,),dtype=float)
 y_values=numpy.ndarray(shape=(1000,),dtype=float)
 z_values=numpy.ndarray(shape=(1000,),dtype=float)

 #fill the arrays with points uniformly spread on
 #a sphere centred at x,y,z with radius radius
 for i in range(1000):
 #make a random vector
 x=numpy.random.uniform(-1.0, 1.0)
 y=numpy.random.uniform(-1.0, 1.0)
 z=numpy.random.uniform(-1.0, 1.0)

 #scale it to length radius
 length=numpy.sqrt((x)**2 + (y)**2 + (z)**2)
 factor = radius / length

 x_values[i] = x*factor + x_centre
 y_values[i] = y*factor + y_centre
 z_values[i] = z*factor + z_centre

 parameters = [0.0, 0.0, 0.0, 0.0]
 result = sphere_fitting.fit_sphere_least_squares (x_values,
 y_values,
 z_values,
 parameters)

 numpy.testing.assert_approx_equal(result[0][0], x_centre, significant=10)

We’ve used some functions from numpy, so don’t forget to add import numpy at the top of the test file;

import numpy

now try running tox again

cd ../
tox

you’ll see that it fails, with

E ImportError: No module named scipy.optimize

We need to tell tox that we need scipy to for this module. The file requirements.txt tells tox what
module python needs for testing, so edit requirements and add scipy. numpy should already be there.

numpy
scipy

After changing requirements.txt you will need to rebuild tox’s virtual environments, using

tox -r

now try running tox again, you should see a bunch of output ending something like …

__ summary __
py27: commands succeeded
py36: commands succeeded
ERROR: lint: commands failed

Which tells us that the functional unit tests worked, but that “lint” failed.

Modifying tox.ini to fix test failure

The file tox.ini defines what versions of python and what operating systems your code should be
tested with. At the top of the tox.ini file you’ll see

content of: tox.ini , put in same dir as setup.py
[tox]
envlist = py27, py36,lint
skipsdist = True

So by default tox is going to try and run tests on Python 2.7 and Python 3.6. This worked fine
until we added the dependency on vtk, however when you add a dependency to your library, tox needs to
be able to find the appropriate Python modules on the python on the python package index. If we
have a look at the entry for vtk [https://pypi.org/project/vtk/files] we see that there is no version for Python 2.7 and Windows.
At this point you need to make a decision, do you want your library to support Python 2.7 on Windows
or do you want to be able to load and process vtk polydata? Lets assume the latter in which case you
just need to edit tox.ini to remove py27.

content of: tox.ini , put in same dir as setup.py
[tox]
envlist = py36,lint
skipsdist = True

Commit your changes and push to origin

git add data/CT_level_1.vtp
git add tox.ini tests/pylintrc tests/test_sksurgeryspherefitting_demo.py
git add sksurgeryspherefitting/ui/sk*.py
git commit -m "Issue #2 added user interface"
git push origin 2-implement-ui

Adding a User Interface

Your library is sufficient as is, you have an implementation of an algorithm, which
an interested user could download and use within their own Python application. However,
it’s nice to include a sample application, or some sort of user interface.
A basic UI allows people to download and use your code directly and also see how
your algorithm is meant to be used. The SNAPPY Python template makes this
easy.

Start by creating a new issue on WEISSlab, something like “Implement UI”. And a new
git branch to match

git checkout -b 2-implement-ui

We’ll be modifying the code in the sksurgeryspherefitting/ui directory.
Before we start, edit tests/pylintrc back to how it was, so our code gets properly tested.

Add files or directories to the blacklist. They should be base names, not
paths.
ignore=CVS

Now edit sksurgeryspherefitting/ui/sksurgeryspherefitting_demo.py, so that
it looks like:

coding=utf-8

"""Uses sphere fitting to fit to vtk model"""
import vtk
from sksurgeryvtk.models.vtk_surface_model import VTKSurfaceModel
from sksurgeryspherefitting.algorithms import sphere_fitting

def run_demo(model_file_name, output=""):
 """ Run the application """
 model = VTKSurfaceModel(model_file_name, [1., 0., 0.])
 x_values = model.get_points_as_numpy()[:, 0]
 y_values = model.get_points_as_numpy()[:, 1]
 z_values = model.get_points_as_numpy()[:, 2]

 initial_parameters = [0.0, 0.0, 0.0, 0.0]
 result = sphere_fitting.fit_sphere_least_squares(x_values,
 y_values,
 z_values,
 initial_parameters)

 print("Result is {}".format(result))

 if output != "":

 sphere = vtk.vtkSphereSource()
 sphere.SetCenter(result[0][0], result[0][1], result[0][2])
 sphere.SetRadius(result[0][3])
 sphere.SetThetaResolution(60)
 sphere.SetPhiResolution(60)

 writer = vtk.vtkXMLPolyDataWriter()
 writer.SetFileName(output)
 writer.SetInputData(sphere.GetOutput())
 sphere.Update()
 writer.Write()

And edit sksurgeryspherefitting/ui/sksurgeryspherefitting_command_line.py:

coding=utf-8

"""Command line processing"""

import argparse
from sksurgeryspherefitting import __version__
from sksurgeryspherefitting.ui.sksurgeryspherefitting_demo import run_demo

def main(args=None):
 """Entry point for scikit-surgery-sphere-fitting application"""

 parser = argparse.ArgumentParser(
 description='scikit-surgery-sphere-fitting')

 ## ADD POSITIONAL ARGUMENTS
 parser.add_argument("model",
 type=str,
 help="Filename for vtk surface model")

 # ADD OPTINAL ARGUMENTS
 parser.add_argument("-o", "--output",
 required=False,
 type=str,
 default="",
 help="Write the fitted sphere to file"
)

 version_string = __version__
 friendly_version_string = version_string if version_string else 'unknown'
 parser.add_argument(
 "--version",
 action='version',
 version='scikit-surgery-sphere-fitting version '
 + friendly_version_string
)

 args = parser.parse_args(args)

 run_demo(args.model, args.output)

We should also add a unit test to make sure that the demo program works, so create a file
tests/test_sksurgeryspherefitting_demo.py and cut and paste this:

coding=utf-8

"""scikit-surgery-sphere-fitting tests"""

from sksurgeryspherefitting.ui.sksurgeryspherefitting_demo import run_demo

def test_fit_sphere_least_squares_demo():

 model_name = 'data/CT_Level_1.vtp'
 output_name = 'out_temp.vtp'

 run_demo (model_name, output_name)

Note that we need some testing data here. If you have a vtk surface file that you’d like to
try fitting a sphere to you can subsitute it above. Other wise you can get one from here [https://weisslab.cs.ucl.ac.uk/StephenThompson/scikit-surgery-sphere-fitting/blob/master/data/CT_Level_1.vtp]

mkdir data
cd data
wget https://weisslab.cs.ucl.ac.uk/StephenThompson/scikit-surgery-sphere-fitting/raw/master/data/CT_Level_1.vtp

Before you run tox again, we need to tell tox about the extra dependencies we’ve just added
(vtk [https://pypi.org/project/vtk/], and scikit-surgeryvtk [https://pypi.org/project/scikit-surgeryvtk/]) so edit
requirements.txt, which should now look like:

numpy
scipy
vtk
scikit-surgeryvtk

Next we need to edit tests/pylintrc to help lint deal with python modules that use compiled libraries.
Pylint can’t see inside compiled libraries, so it needs help with “import vtk”. So we add vtk to the
“extension-pkg-whitelist” in pylintrc (line 32):

extension-pkg-whitelist=numpy, vtk

If you run tox now, you should get all unit tests passing, and 100% test coverage. And if you’re in the
project parent directory you should be able to run:

python sksurgeryspherefitting data/CT_Level_1.vtp -o sphere.vtp

You’ll see some output on the console, and if you have a vtk viewer you can load both models and see what
you’ve done. Here’s an example of a sphere fitted to a 3D ultrasound image of a fiducial sphere.

The original US data:

[image: _images/sphere.gif]

and with a fitted sphere

[image: _images/fitted_sphere.gif]

If however you’re using Python 2.7 on Windows tox will fail. Similarly, when you commit and push your changes,
the continuous integration tests on WEISSLab will fail on windows. This because there is no python vtk package
available for Python 2.7 on Windows. We can edit tox.ini to fix this.

Publishing The Documentation

The Python template automatically generates documentation for your project.
Provided that you document your source code with Python docstrings, the Python
template should be set up to use sphinx [http://www.sphinx-doc.org/en/master/] to generate nicely formatted
html documentation, using the command

tox -e docs

We use readthedocs [https://readthedocs.org/] to host our documentation, as it is then easily accessible to
all and sundry. At this stage you’ll need to create an account on readthedocs. This is
easy and free.

Once you have an account, you can import your project.

[image: Create a new project on readthedocs]
Fill in the project name and the project url (weisslab/etc)

[image: Fill in the boxes]
Now you need to connect your readthedocs project to your WEISSLab project,
we use a webhook [https://en.wikipedia.org/wiki/Webhook] to do this. Go to the admin area of your readthedocs
project, and add a github incoming webhook integration.

[image: Fill in the boxes]
This will guide you through the process and give a url you can add to your WEISSLab
project. Return to WEISSLab and go to project settings.

[image: Fill in the boxes]
And enter the readthedocs url into the URL field.

[image: Fill in the boxes]
Test it out. Your documentation on readthedocs should now be
automatically updated each time you push a commit to WEISSLab

Getting Ready to Release

The easiest way to distribute your python module is by creating a python wheel, and
uploading it to the python package index. The creation of a wheel is controlled by
the file setup.py. The SNAPPY python template will have created a setup.py file when
you created the module, but it will need updating. Open it and edit it.
The most important thing to do is to update the
“install_requires” field, to include scipy, vtk, and scikit-surgeryvtk

coding=utf-8
"""
Setup for scikit-surgery-sphere-fitting
"""

from setuptools import setup, find_packages
import versioneer

Get the long description
with open('README.rst') as f:
 long_description = f.read()

setup(
 name='scikit-surgery-sphere-fitting',
 version=versioneer.get_version(),
 cmdclass=versioneer.get_cmdclass(),
 description='scikit-surgery-sphere-fitting implements a least squares sphere fitting algorithm, to read a vtk poly data file, a config file, and outputs the fitted sphere',
 long_description=long_description,
 long_description_content_type='text/x-rst',
 url='https://weisslab.cs.ucl.ac.uk/StephenThompson/sksurgeryspherefitting',
 author='Stephen Thompson',
 author_email='s.thompson@ucl.ac.uk',
 license='BSD-3 license',
 classifiers=[
 'Development Status :: 3 - Alpha',

 'Intended Audience :: Developers',
 'Intended Audience :: Healthcare Industry',
 'Intended Audience :: Information Technology',
 'Intended Audience :: Science/Research',

 'License :: OSI Approved :: BSD License',

 'Programming Language :: Python',
 'Programming Language :: Python :: 3',

 'Topic :: Scientific/Engineering :: Information Analysis',
 'Topic :: Scientific/Engineering :: Medical Science Apps.',
],

 keywords='medical imaging',

 packages=find_packages(
 exclude=[
 'doc',
 'tests',
 'data'
]
),

 install_requires=[
 'numpy>=1.11',
 scipy,
 vtk,
 scikit-surgeryvtk
],

 entry_points={
 'console_scripts': [
 'sksurgeryspherefitting=sksurgeryspherefitting.__main__:main',
],
 },
)

The readme.rst file will function as the title page of your module. It should provide enough
information to make it clear what the module is intended to do and how to use it. The
SNAPPY python template will have created a readme.rst file, but this will need updating with
information on your module. If you’re looking for inspiration checkout out the
readme for scikit-surgery-sphere-fitting [https://scikit-surgery-sphere-fitting.readthedocs.io/en/latest/?badge=latest].

Commit and push your changes.

git add setup.py README.rst
git commit -m "Issue #2 updated setup.py and readme"
git checkout master
git merge --no-ff 2-implement-ui
git push origin master

Wait until the continuous integration tests have finished on WEISSLab. You should now be
able to visit your code on readthedocs or WEISSLab and see three green boxes, showing that
your code is tested (with 100% coverage) and that the docs are building. To anyone
considering using your code this would be very encouraging.

Publishing

Finally, if you’re mostly happy with your project you can add to the Python package index,
where it will be easy for anyone to find and use your library. The Python
Template provides code at the end of .gitlab-ci.yml to deploy your library when
you create a tag with git.

deploy pip to PyPI:
 stage: deploy
 when: manual
 only:
 - tags

 environment:
 name: PyPI
 url: https://pypi.python.org/pypi/scikit-surgery-sphere-fitting

 tags:
 - pip-production

 artifacts:
 paths:
 - dist/

 script:
 # Install packages required to build/publish
 # remove any previous distribution files
 - pip install wheel twine setuptools
 - rm -rf dist

 # bundle installer
 - python setup.py bdist_wheel

 # Upload to pypi
 - twine upload --repository pypi dist/* --username $PYPI_USER --password $PYPI_PASS

You should probably change this to the test.pypi index before you try this for the first time, so change it to

deploy pip to PyPI:
 stage: deploy
 when: manual
 only:
 - tags

 environment:
 name: PyPI
 url: https://test.pypi.python.org/pypi/scikit-surgery-sphere-fitting

 tags:
 - pip-production

 artifacts:
 paths:
 - dist/

 script:
 # Install packages required to build/publish
 # remove any previous distribution files
 - pip install wheel twine setuptools
 - rm -rf dist

 # bundle installer
 - python setup.py bdist_wheel

 # Upload to pypi
 - twine upload --repository test.pypi dist/* --username $PYPI_USER --password $PYPI_PASS

Now tag a release:

git tag -a v0.0.1 -m "First release"
git push origin v0.0.1

When you visit WEISSLab there should now be a manual build stage called “deploy pip to PyPi”. You can
trigger this manually and deploy your code to PyPi. To do this you will need an account on PyPi and to add
$PYPI_USER and $PYPI_PAS as variables in your WEISSLab project.

Conclusion

That is all. Congratulations.
You have:

	Used gitlab to create and manage a software repository.

	Used tox and gitlab to test the software and create continuous integration tests.

	Created documentation for the software using docstrings and sphinx.

	Published the documentation to readthedocs

	Published the software to PyPi.

Your library is well tested, well documented and easily available to other researchers. Should you
decide to turn your algorithm into a medical device, you also have the beginnings of a quality file, with details
of what the algorithm should do, tests to validate it, and a documented revision history.

 _static/comment-bright.png

_static/comment-close.png

_static/down-pressed.png

_static/down.png

_static/comment.png

_images/first_push_weisslab.png
@ Stephen Thompson { sckdk surgery-sphere: Ming - Gich - Mazka Firafax [B[EE]
File Edit View History Bookmaks Tools Help

M Course: UCL Arena Open. ~ X | reStructuredText Directives X | Introduction — SNAPPYTutori= X | 4 Stephen Thompson / scikit X | =+

RN

& ntips:/iweisslab.cs. ucl.ac.uk/StephenThompson/scikit-surgery-sphere-fitting @ ¥ | Q search Lo @

Grou rch or jump to.

scikit-surgery-
sphere-fitting

© el s scikit-surgery-sphere-fitting @ o~ [asm o[Vroxlo
Details Project ID: 242
Activity i BSD 3-clause "New" or "Revised" License -o-1Commit ¥ 2Branches & 0Tags [3.5MB Files

scikit-surgery-sphere-fitting implements a least squares sphere fitiing algorithm, to read a vtk poly data file, a config file, and outputs the
fitted sphere

Releases

Cycle Analytics

B Repository

master scikit-surgery-sphere-fiting |+ History Q Findfle WebIDE @ v
0 Issues 0
‘ Initial commit of my sphere fitter ® fostuos o
1 Merge Requests o Stephen Thompson authored 1 week ago
Cl/cD

® README Add CHANGELOG | (@ CONTRIBUTING Auto DevOps enabled

Add Kubernetes cluster
G Operations

@ c/cD configuration

0 wiki

% snippets Name Last commit Last update

¥ Settings = doc Initial commit of my sphere fitter 1 week ago
W sksurgeryspherefitting Initial commit of my sphere fitter 1 week ago
- tests Initial commit of my sphere fitter 1 week ago
[.coveragerc Initial commit of my sphere fitter 1 week ago
B gitattributes. Initial commit of my sphere fitter 1 week ago
B gitignore Initial commit of my sphere fitter 1 week ago

« Collapse sidebar

_static/minus.png

_images/fitted_sphere.gif
T weissviewer.py =

_static/plus.png

_static/file.png

_images/new_project_weisslab.png
@ WEISS / Software Repositories | SNAPPY / SNAPPYTutorial02 - GitLab - Mozill Firefox [B[EE]

Fle Edt View Histoy Bookmarks Tools Help

4 WEISS / Software Reposit. X | 4 WEISS / Software Reposit. X | 4% test Linux (#14105) - Jobs - X | G sphere fit python - Google < X | i [SciPy-user] Fitting sphere | X | 4\ Sphere Fit (least squared) - X | +

RN

& NS eissiab.cs.uch a6, WKW S/ SoftwareR epositores/ SNAPP Y Snappytutonaloz B @ | Q searen L IND =

S SNAPPYTutorialo2 You won't be able to pull or push project code 1 add an SSH key to your profile This project Don't show again | Remind later
o project @ WEISS > = > SNAPPY > SNAPPYTuoralo? » Details New fssue
wli New merge request
petails FIOFC SNARRAHOTRRE s Siceessiby eated New snippet _
Activity GitLab
Cycle Analytics S SNAPPYTutorial02 @ o~ & star 0
Project ID: 241
New group
0 Issues 0
@ Add license New snippet
11 Merge Requests o SNAPPY Tutorial02 provides a tutorial on how to implement a simple algorithm using the SNAPPY project's Python Template
ClicD - N - -
The repository for this project is empty
G Operations You can create files directly in Gitiab sing one of the following options.
O wiki ® New file ® Add README @ Add CHANGELOG ® Add CONTRIBUTING
& Snippets N N
Command line instructions
% Setiings You can also upload existing files from your computer using the instructions below.

Git global setup

git config --global user.name "Stephen Thompson"
git config --global user.email "s.thompson@ucl.ac.uk”

Create a new repository

git clone https://weisslab.cs.ucl.ac.uk/WELSS/SoftwareRepositories/SNAPPY/snappytutorialo2.git
cd snappytutorialo2

touch README.md

git add README.md

git commit -m "add README"

git push -u origin master

« Collapse sidebar

_images/passing_weisslab.png
RN

© @ hups:/iwelsslab.cs.uclac.uk'StephenThompson/scikitsurgery-sphere-iting/commits/ -get-working
£ Most Visited @ Geting Started @ Using HoloLens at Im

Projects v

scikit-surgery-
sphere-fitting

€ Project

® Repository
Files
Commits
Branches
Tags
Contributors
Graph

Compare

Charts

D Issues

i1 Merge Requests 0

D Cllcn

&« Collapse sidebar

re-fitting - Gitl.ab - Wozilla Firefox:

pyiintignore by ai- X | & numpyandom.seed — Nur X | € scipy.optimize leastsq —

© Using HoloLens at St ... == Timber Framing | Gard. Bemad Adjustable Pr.
Groups v Activity Milestones

Snippets |w #

X | sksurgeryspherefitting.algorithi X |+

200%

o @ 7| Q searen

Stephen Thompson > scikit-surgery-sphere-fitting > Commits

1-get-working scikit-surgery-sphere-fitting

02 May, 2019 1 commit
‘ Issue #1 implemted unit test and fixed style errors
Stephen Thompson authored 29 minutes ago

24 Apr, 2019 1 commit

‘ Issue #1 working least squares sphere fitter
Stephen Thompson authored 1 week ago

23 Apr, 2019 1 commit

‘ Initial commit of my sphere fitter

Stephen Thompson authored 1 week ago

v Search or jump to...

Q

Create merge request Filter by commit message

@ 3e9facho

®
@ 97393203

®

fcod1406

_images/read_the_docs_01.png
3 Tmport & Remote Repository | Read e Docs - MOz Freiox

Fle Edt View Histoy Bookmarks Tools Help

 Files - master - Stephen T X | [E] Import a Remote Repositor. X | [l Webhooks — Read the

readthedocs.org/da:

Read the Docs I thompson3is

Import a Repository You can import your project
manually if it isn't listed here or

connected to one of your accounts.
found, try refreshing your account

Import Manually

Filter repositories

B thompsonais

Stay Updated Get Involved Business Info
Getting Started Guide Advertise with Us
Documentation Private Hosting
Contributing Supporters
Team Privacy Policy
Open Source Philosophy Branding

© Copyrigh

19 Read e Doc,Inc & contrbutors Englisn (englisn]]

Vercinn249

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 SNAPPY Tutorial on Software Development for Clinical Translation

_static/project-icon.png
python

powered

_images/read_the_docs_05.png
@ General - Settings - Stephen Thompson / sck-surgery-sphere-fitting - GitLab - Mozilla Firefox [B[EE]

Fle Edt View Histoy Bookmarks Tools Help

¥ General - Settings - Stephe: X | [[E] Integration | Read the Docs X | [f] Webhooks — Read the Do- X | +

(e)> e @

@ | Q searen n o =

& nitpsiweissiab.cs.uclac.uk/StephenThompson/scikit-surgery-sphere-fitingecit

Groups v Activity Snippet

scikit-surgery- Stephen Thompson > sckisurgery-sphere-fiing > General Settings
sphere-fitting
& Project Naming, tags, avatar Expand

® Reposiory Update your project name, tags, description and avatar.

0 Issues 1

Vi ity, project features, permissions Expand
T1 Merge Requests U Choose visibility level, enable/disable project features (issues, repository, wiki, snippets) and set permissions.
Cl/cD

G Operations Merge requests -

Choose your merge method, set up a default merge request description template.

0 wiki
% snippets Badges Expand
% Settings Customize your project badges. Learn more about badges.
General
Export project Expand
Members
Export this project with all its related data in order to move your project to a new GitLab instance. Once the export s finished, you can
Integrations import the file from the "New Project” page.
Repository
cl/cp Advanced Expand
S Housekeeping, export, path, transfer, remove, archive.
Pages

« Collapse sidebar

_images/read_the_docs_06.png
@ Integrations - Settings - Stephen Thompson / sckit-surgery-sphere-ftting - GitLab - Mozila Firefox [B[EE]

Fle Edt View History Bookmaks Tools Help

 itegrations - Settings - Stc. X | [E] Webhook ~ Django REST 1+ X |] Webhooks — Read the Do X | +

<« c @

n @ =

@ nups:/iweissiab.cs.ucl.ac.uk/StephenThompsorsciki-stigery-sphere-fiting/settings/integrations

Groups v Activity Snippet

scikit-surgery- Stephen Thompson » scikitsurgery-sphere-fiting > Integrations Settings
sphere-fitting

& Project

B Repository

Integrations URL
O Issues 1 Webhooks can be used for binding events hitps:/ireadthedocs.org/apiiviwebhook/scikit-surgery-sphere-fitting/84944/
when something is happening within the
11 Merge Requests [} project. Secret Token
cl/cD
Use this token to validate received payloads. It wil be sent with the request in the X-Gitlab-Token
G Operations HTTP header
Trigger

O wiki
(& Push events

% snippets “This URL will be triggered by a push to the repository

Branch name or wildcard pattern to trigger on (leave blank for al)
% Settings
(] Tag push events
General This URL will be triggered when a new tag is pushed to the repository
Members () Comments

“This URL will be triggered when someone adds a comment

Integrations.
(] Confidential Comments

Repository “This URL will be triggered when someone adds a comment on a confidentialissue
ci/cp (] Issues events
“This URL will be triggered when an issue is created/updated/merged
Operations
(] Confidential Issues events
Hanes This URL will be triggered when a confidential issue is created/updated/merged

(] Merge request events
“This URL will be triggered when a merge request is created/updated/merged

(] Job events

& Collapse sidebar This URL will be triggered when the job status changes

_images/read_the_docs_03.png
@ Edt Progect | Read the Docs - Mozila Firefox

(=[5

Ele Edt Vew Histoy

¢ Fls - master - Stephen T1

X

Bookmarks Tools Help

“ e

[Edit Project | Read the Doc- X | [[E] Webhooks — Read the Doc X | +
@ @ hitps:/ireadthedocs.org/dashboard/scikit-surgery-sphere-ftting/edit/ B @ % |Q seacn
scikit-surgery-sphere-fitting
e
Settings ¢ Settings
Advanced Settings
Versions You can change how your project is built in your Advanced Settings.
Domains
Maintainers
Redirect:
irects e
Translations - N
scikit-surgery-sphere-fit
Subprojects
Repository URL:
Integrations

https://weisslab.cs.ucl.a
Environment Variables
Hosted documentation repository URL

Notifications
Repositor 3
Advertising it
6it |
Description:
Language:

Enalish |

n @

_static/up.png

_images/read_the_docs_04.png
@ Integrations | Read the Docs - Mozila Firefox

[BILIE]
Fle Edt View Histoy Bookmarks Tools Help
¥ Files - master - Stephen Th X |] Integrations | Read the Doc X | [f] Webhooks — Read the Do X | +
<« ¢ @ ® @ nitps:/ireadthedocs. org/dashboard/scikit-surgery-sphere-fiting/integrations/create/ w @ || Q seacn o =
Read the thompson318
Projects >

scikit-surgery-sphere-fitting

) D 0)

Settings Integrations

Advanced Settings Integration type:

Versions GitHub incoming webhook J
Domains

Maintainers Add integration

Redirects

Translations
Subprojects
Integrations .
Environment Variables

Notifications

Advertising

_images/weisslab_new_issue_detail.png
RN

Gitlab = Mozilla Fireft

lint ignore by dir X numpy.random.seed — Nuri X scipy.optimize leastsq

liveuclac. sharepoint.comisites/ X NAPPYTuor: X | +

‘sksurgeryspherefiti

® @ hitps:/weissiab.cs. ucl.ac.uk/StephenThompson/scikit-surgery-sphere-fitingissues/new

| [Q searen

2 Vost Visited @ Getting Started @ Using HoloLens at Im... @ Using HoloLens at St . I Timber Framing | Gard.. Bermad Adjustable Pr.

-*\Meiss Projects v Groups v Activity Milestones Snippets [n f Search or jump to...

scikit-surgery-
sphere-fitting

€ Project
® Repository
0) Issues
List
Board
Labels
Milestones
i) Merge Requests
4 Cl/CD
&3 Operations
0O wiki
o Snippets

£¥ Settings

&« Collapse sidebar

New Issue

Title

0
Description

0
Assignee
Milestone
Labels

Get it working

Add description templates to help your contributors communicate effectively!

Write Preview B I 9

Write a comment or drag your files here..

Markdown and quick actions are supported

[This issue is confidential and should only be visible to team members with at least Reporter access.

Stephen Thompson Due date Select due date

Milestone

Labels

Please review the contribution guidelines for this project.

® 8 o
(D) Attach a file
Cancel

_static/ajax-loader.gif

_images/sphere.gif
weissviewer.py

_images/weisslab_new_issue.png
£ Most Visited @ Getiing Started @ Using HoloLers at Im

1)}

n

Stephen Thompson

Projects v

scikit-surgery-
sphere-fitting

Project

Repository

Issues

List

Board

Labels

Milestones

Merge Requests

Cl/CD

Operations

Wiki

Snippets

Collapse sidebar

© @ nitps:/weissian,cs.ucl.ac.uk/StephenThompsoN/Scikt Surgery-sphere-Ttingissues o) | e @ fr| | Q seacn

efitting - Gitl-ab - Mozilla Firs

2 python - pylint ignore by dir- X | & numpy.random.seed — Nui X | & scipy.optimize.leastsq — S X | sksurgeryspherefitting.algorithi X | liveuclac.sharepoint.com/sites/ X | Introduction — SNAPPYTutoriz X | +

© Using HoloLens at St .. 5 Timber Framing | Gard... _ Bermad Adjustable Pr

Groups v Activ Milestones nippets |a f v Search or jump to... Q

Stephen Thompson > scikit-surgery-sphere-fitting > Issues

The Issue Tracker is the place to add
things that need to be improved or solved
in a project

Issues can be bugs, tasks or ideas to be discussed. Also, issues
are searchable and filterable.

Import CSV

