sn0int Documentation

kpcyrd

Sep 09, 2023

Contents

1 Getting Started

1.1

1.2

1.3

1.4

1.5

1.6

3
Installation e e e e e 3
1.1.1 Archlinux e 3
1.1.2 0 MacOSX e 3
1.1.3 Debian >= bookwork, Ubuntu >=22.10, Kali 3
1.1.4 Debian <=bullseye, Ubuntu <=22.04 i 4
1.1.5 Fedora/CentOS/Redhat e 4
1.1.6 - Docker e 4
LLI7 0 Alpine o e e e e e e e e 4
1.1.8 OpenBSD 4
119 Gentoo e e 4
LILIO NixOS . . . e e 4
LLIIT WINdows o o o e e e e e e e e e 5
Build from source e e e e e e e e 5
1.2.1 Installdependencies L. 5
1.22 Building e 6
Running your first investigation L e e e e e e e e e e e e 6
1.3.1 Installing the default modules e 6
1.3.2 Adding something to SCOpe e e 7
1.33 Runningamodule. L e 8
1.3.4 Running followup modules on theresults 9
1.3.5 Unscoping entitieS v v v v v e i e e e e e e e e e e e e e e e e e e 10
AULONOSCOPE . v v v v o e 10
141 DomainS. e e e e 11
LA2 IPs . . o e 11
143 URLS . . . oo e 12
Writing your first moduleo oL 12
1.5.1 Creating arepoSitory . . . v v v v v v v e 12
1.5.2 Publishyourmodule e e 15
1.5.3 Publishyourrepo e 15
1.54 Readingdatafromstdin. L o 15
Database L e 16
1.6.1 db_add 16
1.6.2 db_add_ttl e e 17
1.6.3 db_activity o e e e e e e e e e e e 17
1.6.4 db_update L e e e e e e e e 17

1.7

1.8

1.9

1.10

1.6.5 db_select o e e e e e e 18

SIUCES . o v o o e e e e e e e e e e e e e e e 18
L7.1 DOomains o i e e e e e e e e e e e e e e e e 18
1.7.2 Subdomains e e e e e e e 18
1.7.3 IpAddrs e 18
174 URLS e e e e e 19
1.7 Emails e e e e e e 19
1.7.6 Phonenumbers e e e e e e e 19
177 DevVICES . . . o o e 20
1.7.8 Networks e e e e e e e 20
1.7.9 Accounts e e e e e e e 20
1.7.10 Breaches e e e e e 20
L7011 TMages . . o v v v o e 20
1712 POILS . . . o o o e e e e e e e e e e e e e e e e e e 21
1.7.13 Netblocks e e e e e e 21
1.7.14 CryptoAddrs e e 22
L7015 ACHVILY . . o v o e 22
1.7.16 Relations e e e e e e e e e e 22
ACLIVILY . o . v v o e e e e e e e e e e e 23
1.8.1 Anatomyofanevent 23
1.8.2 Loggingevents 23
1.8.3 QUerying eVents v v v vt i e e e e e e e e e e e 25
1.8.4 Visualization e e e e e e e e e e e 25
Notifications e e e e e e e e e e e e e e e e e 25
1.9.1 Receiving notifications L. L e 26
1.9.2 Settingup notificationrules oL L 28
1.9.3 Testingnotifications 29
1.9.4 Running snOint automatically e e e 29
Keyring . . . o o e e e e e e e e 29
1.10.1 Managingthekeyring e 29
1.10.2 Usingaccess keysinSCripts oo v i i it i e 30
1.10.3 Using access keys as SOUrce argumento vttt it e 30
Configuration i e e e e e e e e e e 30
LI1.1 [COre] . o o v e o e e e e e e e e e e e e 31
L1122 [namespaces] v o v v i e 31
1.11.3 [metwork] e e e e e e e 31
SandboX . . . L L e e e e e e 31
L1221 LinUX . . .o e e e e e e e e e e e 32
1.12.2 OpenBSD e e e e e e e e 32
1.12.3 TPCProtocol e e e e e e e e 32
1124 Limitations ot e 33
1.12.5 Diagnosing asandbox failure oL 0oL 33
Function reference e e e e e 34
LA3.1 asn_looKup o o o e e e e e e e e e e e e e e e e e 34
1.13.2 base6d_decode e e e e e 34
1.13.3 baseb6d_encode e e e e e e e e e e e e e e 34
1.13.4 Dbase64_custom_decode e e e e e e 34
1.13.5 Dbase64_custom_encode e e e e e e e e e e 35
1.13.6 base32_custom_decode e e e e e e e e e e e 35
1.13.7 base32_custom_encode e e e e e e e 35
I13.8 clear_err. e e e e e e e e e e 35
1.13.9 create_blob e e e e e e e e e e e e 35
1.13.10 datetime e e e e e e e e e e e e e e 36
113,11 db_add e e e e e e 36

1.13.12 db_add_ttl e e e e e e e e 36
L1313 db_activity . . . o o v o e 36
1.13.14 db_select e e e e e e e e e 37
1.13.15 db_update L e e e e e e e e e 37
L1316 dns. e e e e e e 37
L3017 CITOr . . . o o e e e e e e e e e 37
113,18 geoip_looKup o o e e e e e e e e e e e e e 38
L13.19 hex . . . e e e e 38
1.13.20 hmac_md5 e e e e e e e e e e e e e e e 38
1.13.21 hmac_shal e e e e 38
1.13.22 hmac_sha2 256 e e e e e 38
1.13.23 hmac_sha2_ 512 e e e e e 39
1.13.24 hmac_sha3_256 e e e e e e 39
1.13.25 hmac_sha3_512 e e e e e e e e e e e e e e e 39
1.13.26 html_select e e e e e e e e 39
1.13.27 html_select_1ist e e e e e e e e e 39
1.13.28 http_mKSEeSSION v o o e 39
11329 Rttp_request o v o o e 39
1.13.30 http_send L e e e e e e e e e e e 40
1.13.31 http_fetch o e e 41
1.13.32 http_fetch_json L. 41
1.13.33 img_load 41
11334 img_exif o e e e e e e e e e 41
1.13.35 img_ahash o L e e e e e e e e 41
1.13.36 img_dhash e e e 42
1.13.37 img_phash e e e e 42
11338 img_nudity oL e e e 42
1.13.39 info e e e e e e 42
1.13.40 intval L e e e e e e e e e e e 42
1.13.41 json_decode e e e e 42
1.13.42 json_decode_stream i i e e e e e e e e e e e e e e e 43
1.13.43 json_encode e e e e e 43
1.13.44 key_trunc_pad e e e e 43
11345 Keyring . . . o o o o e e e e e e e e e e e e e e e e 43
113,46 1ast_eIr o e e e e e e e e e e e e e e 43
11347 mdS . . . e e e e e e e 43
1.13.48 mqtt_connect oL e e e e e e e e e e e e e e 44
1.13.49 mqtt_subscribe L. e e e 44
L1350 MQE_TECV . . v v o o e 44
LA3S51T mQtt_ping o o o e e e e e e e e e e e e e e e e e 44
1.13.52 pgp_pubkey o e e e e e e e 44
1.13.53 pgp_pubkey_armored o 45
LA3.54 print . . . o oL e e 45
1.13.55 psl_domain_from_dns_name e e e e e 46
1.13.56 ratelimit_throttle e e e e e 46
113,57 regex_find L e e e e e 46
1.13.58 regex_find_all L L e e e 46
1.13.59 semver_match e e e 46
1.13.60 SEL_EIT . . v v v o o e e e e e e e e e e e e 47
1.13.61 shal e e e e e 47
1.13.62 sha2_256 e e e e e e e e 47
1.13.63 sha2_ 512 e e e e e e e e e e e e e e e e e 47
1.13.64 sha3_256 e e e 47
1.13.65 sha3_512 e e e e e e 48

113,66 SIEED . . v o v v e e e e e e e e e e e e e e e e e e 48
1.13.67 snOInt_time 0 i e e e e e e e e e e e e 48
1.13.68 snOint_time_from e e e e e e e 48
1.13.69 SnOINt_VErSION v v e e e e e e e e e e e e e e e e e e e 48
1.13.70 sock_connect e e e e e e e e e e 48
1.13.71 sock_upgrade_tls e e 49
1.13.72 SOCK_OPHONS . . . o v o ot o e 49
1.13.73 sock_send e e e e e e 49
1.13.74 SOCK_TECV o o e 49
1.13.75 sock_sendline e e e e 50
1.13.76 sock_recvline e e e e e e e 50
1.13.77 sock_recvall e e e e 50
1.13.78 sock_recvline_contains e e e e e e e e 50
1.13.79 sock_recvline_Tregex o o i i it e e e e e e e 50
1.13.80 sock_recvin e e e e e 50
1.13.81 sock recvuntil e e e e e 50
1.13.82 sock_sendafter e e e e e e e e 51
1.13.83 sock_newline e e e e e e 51
1.13.84 sodium_secretboX_Open e e e e 51
113.85 Status o o e e e e e e e e e e e e e 51
1.13.86 stdin_readline e e e 51
1.13.87 stdin_read_to_end e e e e e e e 51
1.13.88 strofind e e e e e e e e 52
1.13.89 strreplace o o e e e e e e e e e e e 52
1.13.90 strftime e 52
L1391 strptime o oL e e e e 52
1.13.92 strval e e e e e e e e e 52
1.13.93 tIME_UNIX . . . v v v e e e e e e e e e e e e e e e e e 52
1.13.94 url_decode e e e e e 53
1.13.95 url_encode e e e e e e e e e e e e e e 53
1.13.96 url_escape o oL e e e e e e e e e 53
L1397 url_join e 53
11398 url_parse o e e e e e e e e e e e e e 53
1.13.99 url_unescape ot it e e e e e e e e e e e e e e e e e e 54
1.13.100utf8_decode e e e e 54
LI3.10IwWarn o e e e e e e e e e e e e e e 54
113 02WaIn_ONCE . . . v v v v o e e e e e e e e e e e e e e e e e 54
T3 T03WS_CONNECT . v v v v o o e e e e e e e e e e e e e e e e e 54
LABI04AWS_OPHONS . . v v v v o e 55
L3 T05SWS_TECV_tEXE . o v v v e 55
1.13.106ws_recv_binary e e e 55
LA3I07WS_TECV_JSON « « v v v v v e 55
113 108Ws_Send_teXt v v i e e e e e e e e e e e e e e 55
113.109ws_send_binary o vt i e e e e e e e e e e e e e e e e e 55
LA3T10WS_Send_JSON . . . v v v v v o e 56
L3 111x509_parse_pem oo oo e e e e e e e e e 56
1.13.112xml_decode e e e e e e 56
1.13.113xml_named e e e e 57

sn0int Documentation

snOint is a semi-automatic OSINT framework and package manager. It was built for IT security professionals and bug
hunters to gather intelligence about a given target or about yourself. snOint is enumerating attack surface by semi-
automatically processing public information and mapping the results in a unified format for followup investigations.

Among other things, sn0int is currently able to:
* Harvest subdomains from certificate transparency logs
* Harvest subdomains from various passive dns logs
« Sift through subdomain results for publicly accessible websites
* Harvest emails from pgp keyservers
* Enrich ip addresses with ASN and geoip info
» Harvest subdomains from the wayback machine
 Gather information about phonenumbers
* Bruteforce interesting urls

snOint is heavily inspired by recon-ng and maltego, but remains more flexible and is fully opensource. None of the
investigations listed above are hardcoded in the source, instead those are provided by modules that are executed in a
sandbox. You can easily extend snOint by writing your own modules and share them with other users by publishing
them to the snOint registry. This allows you to ship updates for your modules on your own since you don’t need to
send a pull request.

Join us on IRC: irc.hackint.org:6697/#sn0int

Contents 1

https://webirc.hackint.org/#irc://irc.hackint.org/

sn0int Documentation

2 Contents

CHAPTER 1

Getting Started

1.1 Installation

If available, please prefer the package shipped by operating system. If your operating system has a package but you’re
running on older version, please use the build from source instructions instead.

1.1.1 Archlinux

’$ pacman -S snOint

1.1.2 Mac OSX

’$ brew install snOint

1.1.3 Debian >= bookwork, Ubuntu >= 22.10, Kali

There are prebuilt packages signed by a debian maintainer:

$ sudo apt install curl sqg

$ curl -sSf https://apt.vulns.sexy/kpcyrd.pgp | sq keyring filter -B —--handle_
—64B13F7117D6E07D661BBCEOFE763A64F5E54FD6 | sudo tee /etc/apt/trusted.gpg.d/apt-
—vulns-sexy.gpg > /dev/null

$ echo deb http://apt.vulns.sexy stable main | sudo tee /etc/apt/sources.list.d/apt-
—vulns-sexy.list

$ apt update

$ apt install snOint

build.html

sn0int Documentation

1.1.4 Debian <= bullseye, Ubuntu <= 22.04

There are prebuilt packages signed by a debian maintainer:

$ sudo apt install curl sqg

$ curl -sSf https://apt.vulns.sexy/kpcyrd.pgp | sq dearmor | sudo tee /etc/apt/
—trusted.gpg.d/apt-vulns-sexy.gpg > /dev/null

$ echo deb http://apt.vulns.sexy stable main | sudo tee /etc/apt/sources.list.d/apt-
—vulns-sexy.list

$ apt update

$ apt install snOint

1.1.5 Fedora/CentOS/Redhat

Using rust+cargo from the repos might work for you, but we only officially support rust+cargo installed with rustup.
Have a look at the docker image as an alternative.

$ dnf install @development-tools libsg3-devel libseccomp-devel libsodium-devel,
—publicsuffix-list

$ git clone https://github.com/kpcyrd/sn0int.git

$ cd snOint

$ cargo install -f —--path

1.1.6 Docker

$ docker run —--rm -—-init -it -v "SPWD/.cache:/cache" -v "$SPWD/.data:/data" kpcyrd/
—sn0int

1.1.7 Alpine

’$ apk add snOint

1.1.8 OpenBSD

’$ pkg_add snOint

1.1.9 Gentoo

$ layman -a pentoo
$ emerge —--ask net-analyzer/snOint

1.1.10 NixOS

$ nix—-env -i snOint

4 Chapter 1. Getting Started

https://rustup.rs/

sn0int Documentation

1.1.11 Windows

This is not recommended and only passively maintained. Please prefer linux in a virtual machine if needed.

Make sure rust is installed and setup.

$ git clone https://github.com/kpcyrd/snOint.git
$ cd sn0int
$ cargo install -f —--path

1.2 Build from source

It’s generally recommended to install a package if available. This section is about building the binary from git.

1.2.1 Install dependencies

You need a recent rust compiler. It’s usually recommended to install a rust compiler with rustup, but if you’re system
ships the most recent compiler in a package that works too. Note that some systems aren’t fully supported by rustup
(like OpenBSD and alpine) and you need to install rust from a package in that case.

Archlinux

’$ pacman —-S geoip2-database libseccomp libsodium publicsuffix-list sqglite

Mac OSX

’$ brew install libsodium

Debian/Ubuntu/Kali

$ apt install build-essential libsglite3-dev libseccomp-dev libsodium-dev,
—publicsuffix pkg-config

Warning: On a debian based system make sure you’ve installed rust with rustup.

Alpine

’$ apk add sglite-dev libseccomp-dev libsodium-dev

Docker

’s DOCKER_BUILDKIT=1 docker build -t kpcyrd/snOint

1.2. Build from source 5

install.html
https://rustup.rs/

sn0int Documentation

OpenBSD

’$ pkg_add sglite3 geolite2-city geolite2-asn libsodium ‘

Gentoo

’emerge ——ask sys—-libs/libseccomp dev-db/sglite dev-libs/libsodium

Windows

You don’t need to install any dependencies on windows, but you need to use a different build command in the next
section.

1.2.2 Building

After all dependencies have been installed, simply build the binary:

’$ cargo build --release

After the build finished the binary is located at target /release/sn0int.

1.3 Running your first investigation

This page is going to guide you through the process of setting up your environment and running your first investigation.

1.3.1 Installing the default modules

By default, snOint doesn’t have any modules installed. If you start up snOint it’s going to download some files that it
needs and then suggests to install a number of recommended modules:

$ snOint

osint | recon | security
irc.hackint.org:6697/#sn0int

] Connecting to database
] Downloading public suffix list
[+] Downloading "GeoLite2-City.mmdb"
] Downloading "GeoLite2-ASN.mmdb"
] Loaded 0 modules
[*] No modules found, run pkg quickstart to install default modules
[sn0int] [default] >

Typing pkg quickstart is going to get you a fair number of featured modules:

6 Chapter 1. Getting Started

sn0int Documentation

[sn0int] [default] > pkg quickstart

[+] Installing kpcyrd/asn

[+] Installing kpcyrd/ctlogs

[+] Installing kpcyrd/dns-resolve

[+] Installing kpcyrd/geoip

[+] Installing kpcyrd/hackertarget-subdomains
[+] Installing kpcyrd/otx-subdomains

[+] Installing kpcyrd/passive-spider

[+] Installing kpcyrd/pgp-keyserver

[+] Installing kpcyrd/threatminer-ipaddr

[+] Installing kpcyrd/threatminer-subdomains
[+] Installing kpcyrd/url-scan

[+] Installing kpcyrd/waybackurls

[+] Loaded 12 modules

[sn0int] [default] >

1.3.2 Adding something to scope

You probably want to separate your investigations so you should select a workspace where your results should go:

[sn0int] [default] > workspace demo

[+]

Connecting

[sn0int] [demo]

to database
>

Next, we have to start somewhere and add the first entity to our scope:

[sn0int] [demo]

Domain:

[sn0int] [demo]

> add domain

example.com

>

Note: There is a concept of a domain vs a subdomain. We are referring to a domain as everything that is a subdomain
of a public suffix. For example, .com is a public suffix, which makes example.com a domain in snOint terms. Every
subdomain of that, like www.example.com, is referred to as a subdomain.

Note that example.com can be added as a subdomain as well since it can hold records. In that case, example.com is
both the name of the dns zone, while also being an entity in that zone.

You can confirm this by running a select on the domains we now have:

[sn0int] [demo] > select domains
#1, "example.com"
[sn0int] [demo] >

Something we don’t need right now, but is going to be useful later on is the ability to filter your entities:

[sn0int] [demo]

#1,

> select domains where id=1

"example.com"

[sn0int] [demo]
[sn0int] [demo]

#1,

>

> select domains where value like

"example.com"

[sn0int] [demo]
[sn0int] [demo]

#1,

>

> select domains where (value like e%

"example.com"

[sn0int] [demo]

>

and value like %m) or false

1.3. Running your first investigation

https://publicsuffix.org/

sn0int Documentation

Note: Almost all entities have a value column that holds the primary value of the entity.

1.3.3 Running a module

Now that we have something to get started with, we can run our first module. First lets list all modules we have:

[sn0int] [demo] > pkg list
kpcyrd/asn (0.1.0)

Run a asn lookup for an ip address
kpcyrd/ctlogs (0.1.0)

Query certificate transparency logs to discover subdomains
kpcyrd/dns-resolve (0.1.0)

Query subdomains to discovery ip addresses and verify the record is visible
kpcyrd/geoip (0.1.0)

Run a geoip lookup for an ip address
kpcyrd/hackertarget-subdomains (0.1.0)

Query hackertarget for subdomains of a domain
kpcyrd/otx—-subdomains (0.1.0)

Query alienvault otx passive dns for subdomains of a domain
kpcyrd/passive-spider (0.1.0)

Scrape known http responses for urls
kpcyrd/pgp-keyserver (0.1.0)

Query pgp keyserver for email addresses
kpcyrd/threatminer—ipaddr (0.1.0)

Query ThreatMiner passive dns for subdomains of an ip address
kpcyrd/threatminer-subdomains (0.1.0)

Query ThreatMiner passive dns for subdomains of a domain
kpcyrd/url-scan (0.1.0)

Scan subdomains for websites
kpcyrd/waybackurls (0.1.0)

Discover subdomains from wayback machine
[sn0int] [demo] >

Let’s start by querying certificate transparency logs:

[sn0int] [demo] > use ctlogs
[sn0int] [demo] [kpcyrd/ctlogs] > run

[*] "example.com" : Subdomain: "www.example.com"
[*] "example.com" : Subdomain: "m.example.com"
[*] "example.com" : Subdomain: "dev.example.com"
[*] "example.com" : Subdomain: "products.example.
—com"

[*] "example.com" : Subdomain: "support.example.
—com"

[+] Finished kpcyrd/ctlogs
[sn0int] [demo] [kpcyrd/ctlogs] >

Looks like we’ve discovered some subdomains here. It might be tempting to throw some of them in a browser but hold
on, there’s a more efficient way to approach this.

Hint: You can run the modules concurrently with run -3j3.

8 Chapter 1. Getting Started

sn0int Documentation

1.3.4 Running followup modules on the results
A lot of time has been spent on the database part. While it sort of feels like a no-sql database we are actually enforcing
a schema for a reason instead of just using generic dictionaries and calling it a day.

It’s crucial that entities created by one module can be picked up by another module, like LEGOs. Let’s continue with
a module to query the dns records:

[snO0int] [demo] [kpcyrd/ctlogs] > use dns-resolve

[sn0int] [demo] [kpcyrd/dns-resolve] > run

[*] "www.example.com" Updating "www.example.com"
— (resolvable => true)

[*] "www.example.com" : IpAddr: 93.184.216.34

[*] "www.example.com" "www.example.com" —-> 93.184.

—216.34
[*]
— (resolvable => false)

[*] "dev.example.com"

— (resolvable => false)

[*] "products.example.comn"
—" (resolvable => false)
[*]
" (resolvable => false)

[+] Finished kpcyrd/dns-resolve
[sn0int] [demo] [kpcyrd/dns-resolve] >

"m.example.com" Updating "m.example.com" |
Updating "dev.example.comn"
Updating "products.example.com

"support.example.com" Updating "support.example.com

Two things happened here: We’ve discovered some IP addresses and added them to scope, and we also updated our
subdomain entities with new information, since we now know which of them are resolvable and which aren’t.

Let’s run the next module, which is actually going to check for websites on them, but let’s only target subdomains that
we know are resolvable:

[snO0int] [demo] [kpcyrd/dns-resolve] > use url-scan

[sn0int] [demo] [kpcyrd/url-scan]
#1,

"www.example.com"
93.184.216.34

#2, "m.example.com"

#3, "dev.example.com"

#4, "products.example.com"
#5, "support.example.com"

[sn0int] [demo] [kpcyrd/url-scan]
[+] 1 entities selected
[sn0int] [demo] [kpcyrd/url-scan]
#1, "www.example.com"
93.184.216.34

[sn0int] [demo] [kpcyrd/url-scan]

> target

> target where resolvable

> target

>

We can both preview and limit the targets that are going to be passed to the module with the target command. Once
we are satisfied with our selection we can run this module:

[sn0int] [demo] [kpcyrd/url-scan]
[*] "www.example.com"

" (200)

[*] "www.example.com"

=" (200)

[+] Finished kpcyrd/url-scan

[sn0int] [demo] [kpcyrd/url-scan]

> run

Url: "http://www.example.com/

Url: "https://www.example.com/

>

1.3. Running your first investigation

sn0int Documentation

We’ve now probed both port 80 and port 443 for each subdomain and found two http responses this way. If you want
a list of urls you may want to visit in your browser can now query them:

[sn0int] [demo] [kpcyrd/url-scan] > select urls
#1, "http://www.example.com/" (200)

#2, "https://www.example.com/" (200)

[sn0int] [demo] [kpcyrd/url-scan] >

1.3.5 Unscoping entities
Something you are going to run into is that modules are too greedy and add things to the scope we are not interested
in. You can delete them using the delete command, but those are likely picked up by a module again.

What you can do instead is setting a flag on an entity that removes it from our scope. This is done using the noscope
command:

[sn0int] [demo] > use ctlogs
[sn0int] [demo] [kpcyrd/ctlogs] > target

#1, "example.com"
[sn0int] [demo] [kpcyrd/ctlogs] > add domain
Domain: google.com
[snO0int] [demo] [kpcyrd/ctlogs] > target

#1, "example.com"

#2, "google.com"
[snO0int] [demo] [kpcyrd/ctlogs] > noscope domains where value=google.com
[+] Updated 1 rows
[sn0int] [demo] [kpcyrd/ctlogs] > target

#1, "example.com"
[sn0int] [demo] [kpcyrd/ctlogs] >

Entities that are unscoped are automatically ignored by all modules.

You can reverse this using the scope command:

[snO0int] [demo] [kpcyrd/ctlogs] > target

#1, "example.com"

[sn0int] [demo] [kpcyrd/ctlogs] > scope domains where true
[+] Updated 2 rows

[sn0int] [demo] [kpcyrd/ctlogs] > target

#1, "example.com"

#2, "google.com"

[sn0int] [demo] [kpcyrd/ctlogs] >

Hint: All entities have this field, you can refer to it in queries using unscoped=1.

1.4 Autonoscope

Instead of manually unscoping everything you can also define so called autonoscope rules. Those are executed from
most specific to least specific and the first match wins. If no rule matches, the default is in-scope:

[snO0int] [demo] > # add the domain first
[sn0int] [demo] > # this is necessary because we only want to partially unscope,_,
—example.com

(continues on next page)

10 Chapter 1. Getting Started

sn0int Documentation

(continued from previous page)

[sn0int] [demo] > add domain example.com

[sn0int] [demo] >

[sn0int] [demo] > # automatically noscope all subdomains
[sn0int] [demo] > autonoscope add domain example.com
[sn0int] [demo] > # except subdomains of prod.example.com
[sn0int] [demo] > autoscope add domain prod.example.com
[sn0int] [demo] >

[sn0int] [demo] > autonoscope list

scope domain "prod.example.com"
noscope domain "example.com"

[sn0int] [demo] >

[sn0int] [demo] > # this is going to be out-of-scope
[sn0int] [demo] > add subdomain www.example.com
[sn0int] [demo] > # this is going to be in-scope
[sn0int] [demo] > add subdomain db.prod.example.com
[sn0int] [demo] >

[sn0int] [demo] > select subdomains

#1, "www.example.com"

#2, "db.prod.example.com"

[sn0int] [demo] > select subdomains where unscoped=0
#2, "db.prod.example.com"

[sn0int] [demo] > select subdomains where unscoped=1
#1, "www.example.com"

[sn0int] [demo] >

1.4.1 Domains

Autonoscope rules for domains are applied to the following structs:
¢ domains
* subdomains
e urls

Example rules:

autonoscope add domain example.com
autonoscope add domain staging.example.com
autonoscope add domain com

autonoscope add domain

1.4.2 IPs

Autonoscope rules for IPs are applied to the following structs:
* ipaddrs
* netblocks
* ports

Example rules:

1.4. Autonoscope

11

sn0int Documentation

autonoscope add ip 0.0.0.0/0
autonoscope add ip ::/0
autonoscope add ip 192.168.0.0/16
autonoscope add ip 10.13.33.37/32

1.4.3 URLs

Autonoscope rules for urls are applied to the following structs:
e urls
Note that these rules are specific to a certain origin (like https://example.com) and are used to filter paths.

Example rules:

autonoscope add url https://example.com/
autonoscope add url https://example.com/admin/
autonoscope add url https://example.com/a/b/c/d

1.5 Writing your first module

Scripting is the core feature in snOint. It’s not strictly required, but if you want to write your own modules, this section
is for you.

1.5.1 Creating a repository

It’s highly recommended to use a VCS for development, so let’s start by setting that up. We’re going to assume you
store your repos in ~/repos but you’re free to change that to something else:

$ git init ~/repos/snOint-modules
$ cd ~/repos/snOint-modules

Note: If you're using github you can also create a repo from the module repo template.

We need to add this folder to the snQint config file so it’s correctly detected when starting snOint. Open the config
file in your prefered editor. Note that the file does not exist by default and the path is different depending on your
operating system. On linux you would open the config file with:

$ vim ~/.config/sn0int.toml

Add the following:

[namespaces]
your_github_name = "~/repos/snOint-modules"

Every module we’re adding to ~/repos/sn0int-modules is now going to be picked up by sn0int.

Make sure you’re still in the right folder and add your first module:

sn0int new first.lua

12 Chapter 1. Getting Started

https://github.com/sn0int/sn0int-modules
config.html
config.html

sn0int Documentation

This is going to generate some boilerplate for you that every module needs to load successfully. Afterwards we can
edit it like this:

—-— Description: ohai wurld
-— Version: 0.1.0

-— Source: domains

—-— License: GPL-3.0

function run(arqg)
—— TODO: do something here
end

Description (mandatory) This should be a short text that describes what your module is doing.

Version (mandatory) Every module requires a semver version. You can just setitto 0.1 .0 during development,
but you need to increase it every time you publish your module. If you don’t care about that one, just keep
increasing 0.X. 0.

Source (mandatory) This is going to specify what kind of entities we’re interested in. If we specify domains our
module is going to be called with all domains that are targeted.

e domains

* subdomains
* ipaddrs

e urls

* emails

License (mandatory) This is somewhat special. We require that every module is licensed under an open source
license. Pick one of the following licenses.

e MIT - https://opensource.org/licenses/MIT

* GPL-3.0 - https://opensource.org/licenses/gpl-license

e LGPL-3. 0 - https://opensource.org/licenses/lgpl-license

* BSD-2-Clause - https://opensource.org/licenses/BSD-2-Clause
* BSD-3-Clause - https://opensource.org/licenses/BSD-3-Clause
* WTFPL - https://spdx.org/licenses/WTFPL.html

function run (arg) (mandatory) This is where the actual magic of our module happens. Our function is going
to be called in a loop for each entity that is targeted by the user.

Let’s continue. For the sake of an hello world we’re going to take some domains, check if a www subdomain exists
and if it does, add it to the database.

—-— Description: Scan for www. subdomains
-— Version: 0.1.0

—-— Source: domains

—-— License: GPL-3.0

function run(arqg)
subdomain = 'www.' .. arg['value']
info (subdomain)

end

This is already enough to execute it. Make sure you’ve added a domain to scope with add domain example.com,
save your file and run it like this:

1.5. Writing your first module 13

https://semver.org/
https://opensource.org/licenses/MIT
https://opensource.org/licenses/gpl-license
https://opensource.org/licenses/lgpl-license
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-3-Clause
https://spdx.org/licenses/WTFPL.html

sn0int Documentation

sn0int run -f ./first.lua

We should see some output by our info function.

Note: info is useful for development but you usually want your module to run quietly, so before publishing either
remove it or replace it with debug.

Next, we want to actually resolve that name, we’re going to use the dns function for that. This function takes a name
and a query type and returns a result. Note that this function might fail, in which case we want to abort our function.
We do that by checking if the return value of last_err () is truth-y.

—-— Description: Scan for www. subdomains
-— Version: 0.1.0

—-— Source: domains

—-— License: GPL-3.0

function run(arqg)
subdomain = 'www.' .. arg['value']
records = dns (subdomain, {
record="A"

})

if last_err () then return end

info (records)
end

If you run your module again you’re going to see some output, either {"answers":[somedatal,
"error":null} or {"answers":[],"error":"NXDomain"}. If the dns reply doesn’t indicate an error
this means the subdomain exists and we can add it to our database with resolvable being set to true.

—-— Description: Scan for www. subdomains
-— Version: 0.1.0

-— Source: domains

—-— License: GPL-3.0

function run(arqg)
subdomain = 'www.' .. arg['value']
records = dns (subdomain, {
record="A"
1)

if last_err () then return end

if records['error'] == nil then
db_add ('subdomain', {
domain_id=arg['id'],
value=subdomain,
resolvable=true,
)
end
end

Hint: See the database section to understand how the database works in detail.

14 Chapter 1. Getting Started

sn0int Documentation

If we execute our finished module one more time it’s going to log that it discovered a subdomain, if it doesn’t, try
adding more domains to scope. Note that this only happens the first time. Modules that don’t discover anything or
don’t discover anything new exit silently.

There’s still some room for improvement, for example, since we already resolved that record, we could also add the ip
address to the scope and link it to the subdomain we added.

Hint: For debugging purposes you can increase the verbosity with sn0int run -v so database operations are
logged even if nothing was changed, or with sn0int run -vv toenable debug () output.

1.5.2 Publish your module

The public registry uses github usernames to namespace the registry. This means you need to authenticate to the
registry using your github username. This can be done using:

snl0int login

sn0int is going to open a new tab in your browser, if you are already signed into your github account you only need
to confirm an authorization request. The application doesn’t need any of your data, so it’s only asking you to confirm
your identity.

Afterwards publish your module with:

’snOint publish ./first.lua

Please also make sure you publish your repository to github so other people can submit pull requests. The recom-
mended repository location is:

’https://github.com/<yourfusername>/snOintfmodules

1.5.3 Publish your repo
It is highly recommended to publish your repository on github so people can file issues and pull requests for your
module. If you’ve been following along with the github template you can simply commit your changes and push them.
Your repository would look like one of these:

* https://github.com/kpcyrd/snOint-modules

* https://github.com/ysf/snOint-modules

* https://github.com/cybiere/snOint-modules

1.5.4 Reading data from stdin

Sometimes you need to read data that can’t be easily accessed from within the sandbox, like output of other programms
or file content. In that case you can write a module that reads from stdin:

—— Description: Read from stdin
Version: 0.1.0
—-— License: GPL-3.0

function run ()

(continues on next page)

1.5. Writing your first module 15

https://github.com/kpcyrd/sn0int-modules
https://github.com/ysf/sn0int-modules
https://github.com/cybiere/sn0int-modules

sn0int Documentation

(continued from previous page)

while true do
x = stdin_readline ()
if x == nil then

break

end
info (x)

end

end

Werite it to a file and run it like this:

echo hello | snOint run —--stdin —-vvf stdin.lua
] anonymous/stdin : "hello\n"
]

[*
[+] Finished anonymous/stdin

This is going to read one line at a time and allows you to process it with regular expressions and add data to the
database.

Note: If you get an error like Failed to read stdin: "stdin is unavailable" make sure the
—-—stdin flag is set.

1.6 Database

There are a few things you need to understand how the database works to use it efficiently.

The database that is backing sn0Oint is sqlite, but the api that is exposed to the user and scripts is an nosql-ish object
store. The query language that is exposed to the user is still very similar to sql, except that it lacks a column statement:

select subdomains where value like %.example.com
~

A A S A

| this value is going to be quoted automatically

\
\ \

\ this triggers automatic quoting

\

apply a filter, this translates to sgl gquite literally

the entity we want to select is a subdomain.
this affects the table and the deserializer

select entities

This is how almost all user facing functions work that operate on the database. The functions that are available for
scripting are a bit more object based and described below.

1.6.1 db_add

This operation is somewhat straight forward. It adds an entity to the database:

domain_id = db_add('domain', {
value='example.com',

})

16 Chapter 1. Getting Started

sn0int Documentation

If this entity conflicts with an entity that already exists, an upsert is triggered and an db_update is performed instead.

Note: This function may return nil if the entity already exists, but has been removed from scope with noscope.
Everytime you use db_add you need to make sure that the ID that has been returned is not nil.

1.6.2 db_add_ttl

Add a temporary entity to the database. This is commonly used to insert temporary links that automatically expire
over time. If the entity already exists and is also marked as temporary the new ttl is going to replace the old ttl. If the
entity already exists but never expires we are not going to add a ttl.

—-— this 1ink is valid for 2min

domain_id = db_add_ttl ('network-device', {
network_id=1,
device_id=13,

b, 120)

1.6.3 db_activity

Log an activity event. A basic event looks like this:

db_activity ({
topic='harness/activity-ping:dummy’',
time=sn0int_time (),
content={
a='b',
foo={
bar=1337,
}I
msg="'ohai',
}I
)

This function is explained in detail in the activity section.

1.6.4 db_update

Update some mutable fields of an entity:

db_update ('ipaddr', arg, {
asn=lookup['asn'],
as_org=lookup|['as_org'],

b

The first parameter is usually the same arg that your script was called with. Usually you can use db_add instead of
db_update due to the upsert feature, but db_update is still slightly faster.

Note: Some fields are immutable and can not be updated.

1.6. Database 17

activity.html

sn0int Documentation

1.6.5 db_select

This function is used to check if something is in scope. If the entity has been added to the database and has not
been removed from scope, this function returns that entities id. This is somewhat similar to db_add, except that
db_select never adds anything to the database.

domain_id = db_select ('domain', 'example.com')
if domain_id ~= nil then

do something
end

This function only accepts a string instead of a lua table. This string is used to filter on the value column.

1.7 Structs

This section describes all supported structs in depth. Please refer to this section if in doubt about the correct usage of
fields to ensure interoperability between modules.

1.7.1 Domains

Represents a registerable domain as defined by the public suffix list. If in doubt check psl_domain_from_dns_name.

value The domain name, like example.co.uk.

1.7.2 Subdomains

A subdomain of a domain. The depth is arbitrary, so foo.example.co.uk and foo.bar.example.co.uk
are both valid subdomains of example.co.uk.

value The subdomain, like foo.bar.example.co.uk.
domain_id The numeric id of a domain struct.

resolvable Whether the subdomain can be resolved to a A/AAAA record. nil if unknown.

1.7.3 IpAddrs

An ip address. Note that most of these fields are geoip related and an approximation instead of an actual location.
value The ip address.

family The address family of the ip address, either 4 or 6.

continent The continent associated with this ip address.

continent_code The continent code of the cont inent field, eg NA.

country The country associated with this ip address.

country_code The country code of the country field, eg US.

city The city associated with this ip address.

latitude Latitude associated with this ip address.

longitude Longitude associated with this ip address.

18 Chapter 1. Getting Started

https://publicsuffix.org/
reference.html#psl-domain-from-dns-name

sn0int Documentation

asn The number of the autonomous system this ip belongs to.
as_org The organization of the autonomous system this ip belongs to.

description This field is snOint internal if we have additional information about this ip address, for example
technical identifiers from aws.

reverse_dns The reverse dns name setup for this ip address.

1.7.4 URLs

subdomain_id The numeric id of a subdomain struct.

value The url, including a schema, hostname and path.

status The http status code, like 200.

body The raw response body. This can be any mime type.

online Whether or not the url gives a http response (even if it’s an error).
title The parsed <title> of the page, if available.

redirect If the server replied with a redirect, this is the url it redirected to.

1.7.5 Emails

value The email address.
displayname The display name of a given email address: this is the name <foolexample.com>.

valid Whether that email address is valid or has been disabled.

1.7.6 Phonenumbers

value The phone number in E.164 format (+491234567)

name An alias we can assign to this phone number. This alias is sn0Oint internal.
valid Whether the number is assigned to a customer.

last_online The last time this number has been online.

country The country this number is associated with.

carrier The name of the carrier this numer is registered with.

line The type of the phone number, can be landline, mobile or voip.
is_ported Whether this number has been ported to a different carrier.
last_ported The last time this number has been ported.

caller_name The name of the owner of the phone number.

caller_type The type of caller, eg business or consumer.

1.7. Structs 19

sn0int Documentation

1.7.7 Devices

value The devices mac address or another identifier if needed.

name An alias we can assign to this device. This alias is snOint internal.

hostname The hostname configured on the device.

vendor The hardware vendor of the device. This is usually derived from the mac address.

last_seen The last time we’ve observed the device somewhere.

1.7.8 Networks

A wired or wireless network at a specific location that a device could be connected to.
value The network name. This can be an ssid or any other identifier but should be unique.
latitude Latitude of the networks location.

longitude Longitude of the networks location.

description A human readable description in case the value is a technical identifier.

1.7.9 Accounts

A users account or profile on a webservice, like github or instagram.

service The identifier of the service/website. It’s recommended to use the websites domain for this as defined in
Domains.

username The users unique identifier, like the login name. If the login name is not known or the system doesn’t use
login names, use the email address instead.

displayname The users display name. This name is often not unique and may contain the users real name.
email The email address associated with the account.

url The url of the public profile if available.

last_seen The last time this account has been active/online.

birthday The users birthday set on the account.

phonenumber The phonenumber associated with the account.

profile_pic The blob identifier of the users current profile picture.

1.7.10 Breaches

Either a breach of a specific website, a breach compilation or a breach notification service.
value The name of the breach, breach compilation or notification service.

1.7.11 Images

value The id that identifies the blob. This id is deterministic based on file content.

filename This field is used if we have a well known filename for the content.

20 Chapter 1. Getting Started

sn0int Documentation

mime The image mimetype, like image/png or image/ jpeg.
width The width of the image.

height The height of the image.

created The date and time this image has been taken.
latitude Latitude this picture has been taken.

longitude Longitude this picture has been taken.

nudity A score that classifies nudity in this picture. The score goes from 0 to 2 and is commonly calculated with
img_nudity. A score above 1 means nudity has been detected.

ahash The Mean (aHash) perceptual hash.
dhash The Gradient (dHash) perceptual hash.
phash The DCT (pHash) perceptual hash.

1.7.12 Ports

The status of a port on an ip address.

ip_addr_id The numeric id of an ipaddr struct.
ip_addr The actual ipaddr.

port The port number.

status The status of the port, either open or closed.
banner The service banner we discovered on this port.
service The service that is running on this port.

version The version of the service running on this port.

1.7.13 Netblocks

A netblock is a network address range that has been allocated to an individual, organization or company. Those are
commonly found when running whois lookups on an ip address.

Consider the following example: Running a whois lookup on 140.82.118.4 (one of the addresses currently in
use by github) returns that this address belongs to the netrange 140.82.112.0 - 140.82.127.255, so the
netblock in this case is 140.82.112.0/20.

family This is either 4 or 6 and populated automatically.

value This is the network range in CIDR notation.

asn The number of the autonomous system this network belongs to.
as_org The organization of the autonomous system this network belongs to.

description This field isn’t strictly defined and meant to be used as a human meaningful name if available.

1.7. Structs 21

sn0int Documentation

1.7.14 CryptoAddrs

A cryptoaddr is any cryptocurrency address and not tied to a specific currency.
value The address string. This looks like 1BvBMSEYstWetgTFn5Au4m4GFg7xJaNVN2.
currency The identifier for a specific currency. This is usually the ticker symbols, like xbt, zec or xmr.

denominator Balance is tracked internally using 64 bit integers (signed, for technical reasons). Balance is sup-
posed to be the lowest unit, so in case of bitcoin you’d write 100, 000, 000 satoshi instead of 1 bitcoin. Since
this value is inconvinient to work with we’re using the denominator to display values. In case of bitcoin you’d
set it to 8.

balance The current balance of the address, in the lowest possible unit. In case of bitcoin this would be satoshis.
received The total amount of currency received by this address.

first_seen The first time currency was sent to this address.

last_withdrawal The last time a transaction signed by this address was observed.

description A human readable note for this address.

1.7.15 Activity

Activity is different from all other structs, have a look at the Activity Section.

1.7.16 Relations

Relations are linking two structs together. The link may contain additional information.

subdomain_ipaddr

Links an ip address to a subdomain.
subdomain_id The numeric id of a subdomain struct.

ip_addr_id The numeric id of an ip addr struct.

network_device

Links a device to a network. This is commonly used with db_add_tt1 so the link automatically expires. This is
frequently used to monitor networks for known and unknown devices.

network_id The numeric id of a network struct.

device_ id The numeric id of a device struct.

ipaddr The ip address assigned to the device.

last_seen The last time we’ve seen the device on that network.

22 Chapter 1. Getting Started

activity.html

sn0int Documentation

breach_email

Links an email to a breach. If we know the password as well we can add it to the link. If we don’t know the password
we can leave it blank and fill it later. An email can be linked to a breach multiple times with different passwords.
There is a special upserting logic in place to support this.

breach_id The numeric id of a breach struct.
email_id The numeric id of an email struct.

password The password for that email in the breach.

1.8 Activity

So far we’ve learned about regular structs, but activity is special.

Activity is an event tied to a specific time and topic and has a small amount of data piggybacked to it.

1.8.1 Anatomy of an event
topic This is some freestyle text used to group events to a specific topic. This must not conflict with other modules
unless there’s a very good reason.

The topic should look like kpcyrd/example: something, with something being a meaningful unique
identifier for whatever is generating these events, like a mac address or an account name/id.

The rules around this might become stricter in the future.
time The most important part of the event: The time and date it happened.
initial This value can not be set but might be present in snOint output. See Querying events.

unigq (optional) This is an optional feature to deduplicate events. Assuming you’re importing posts by an account,
you wouldn’t want to store a new event for each post you already imported. If you set this field to the technical
post id then snOint would skip the event if it already has an event with the same t opic and uniqg combination
to avoid inserting duplicates.

latitude (optional) Latitude - if you can tie the event to a specific location.
longitude (optional) Longitude - if you can tie the event to a specific location.

radius (optional) The location radius in meters. If the position you got has a precision of 100 meters set this value
to 100.

content Arbitrary data that you want to attach to the event. This doesn’t need to be a string and can be an arbitrary
object that is then stored as json string.

1.8.2 Logging events

An activity event can be logged with db_activity:

db_activity ({
topic='harness/activity-ping:dummy',
time=sn0int_time (),
content={
a='b" ,

foo={

(continues on next page)

1.8. Activity 23

structs.html

sn0int Documentation

(continued from previous page)

bar=1337,
s
msg="'ohai',
Hy
})

Logging an event that has a location attached could look like this:

db_activity ({
topic='harness/activity-ping:dummy"',
time=sn0int_time (),
latitude=40.726662,
longitude=-74.036677,
radius=50,
content={
a='b',
foo={
bar=1337,
}I
msg="'ohai',
},
})

Making sure an event is not logged twice can be done with uniq:

—-— create the first event

db_activity ({
topic='harness/activity-ping:dummy',
time=sn0int_time (),
unig='12345",
content="'ohai',

1)

—— this does nothing because we already have an event with this topic+uniqg combination
db_activity ({

topic='harness/activity-ping:dummy',

time=sn0int_time (),

unig='12345",

content="'ohai',

b

—— this creates a new event because uniq is different
db_activity ({
topic='harness/activity-ping:dummy’',
time=sn0int_time (),
unig='6789",
content="'ohai',

})

—-— this also creates a new event because topic is different
db_activity ({
topic='harness/activity-ping:something-else',
time=sn0int_time (),
unig='6789",
content="'ohai',

24 Chapter 1. Getting Started

sn0int Documentation

1.8.3 Querying events

There is a commandline interface that can be used to query all events we’ve logged. To get everything (sorted by time):

’snOint activity

To limit the output to a specific topic:

’snOint activity -t harness/activity-ping:dummy

To limit it to a specific time frame:

everything since

sn0int activity —--since 2020-01-13T04:20:00

everything until

snl0int activity —-until 2020-01-13T04:20:00

both

sn0int activity —--since yesterday —-until today

When using ~—since you might also want to know the previous state and use it as an initial value. Consider this
example:

2020-01-13 14:30:00
2020-01-13 23:59:00
2020-01-14 09:30:00
2020-01-14 14:20:00

user goes offline
user goes online
user goes idle
user goes offline

HH HH W W

If we’re running a query like sn0int activity —--since 2020-01-14T00:00:00 the program consuming
the output wouldn’t know that the user is initially online because we’re only getting this data:

{"id":8, "topic":"foo/bar:asdf","time":"2020-01-14T09:30:00", "content":{"state":"idle"}
<}

{"id":9, "topic":"foo/bar:asdf","time":"2020-01-14T14:20:00", "content":{"state":
—"offline"}}

We can tweak this with sn0int activity —--initial —--since 2020-01-14T00:00:00 toinclude one
more event that we only use to populate the intial state:

"id":7,"initial":true, "topic":"foo/bar:asdf","time":"2020-01-13T23:59:00", "content" : {
—"state":"online"}}

"id":8, "topic":"foo/bar:asdf","time":"2020-01-14T09:30:00", "content":{"state":"idle"}
<}

"id":9, "topic":"foo/bar:asdf","time":"2020-01-14T14:20:00", "content":{"state":
—"offline"}}

1.8.4 Visualization

There is no visualization built in, there may be external frontends for this in the future. You’re very welcome to write
one!

1.9 Notifications

If you run snOint unattended nobody might see the snOint output. For cases like this you can configure notifications to
send you a push notification in case something interesting happens. This is also especially useful if you have snQOint

1.9. Notifications 25

sn0int Documentation

setup to run automatically.

1.9.1 Receiving notifications

Notifications are just regular sn0int modules. You can install them just like any other module or write your own. This
section contains walkthroughs on how to setup common integrations.

Telegram

Install the telegram notification module from the registry:

sn0int pkg install kpcyrd/notify-telegram

Open your telegram app and open a chat with @botfather. Send /newbot and answer the questions. Copy
bot_token and open this url in your browser:

Back on your app, open the t.me link to start a new chat with your bot, then send /start. Reload the page in your
browser, you should see the new message you sent. Copy the chat_id.

Test your tokens are working correctly by sending yourself a notification:

sn0int notify exec kpcyrd/notify-telegram -o bot token=1337:foobar —-o chat 1d=1337
—'hello world'

You should receive hello world from your bot on Telegram.

Pushover

Install the pushover notification module from the registry:

sn0int pkg install kpcyrd/notify-pushover

Signup for pushover and configure the app on your device. Copy th user key visible on the pushover dashboard. Click
“Create an Application/API Token”. Set “snOint” as name and set an icon if you want to. Copy the api token.

Test your tokens are working correctly by sending yourself a notification:

sn0int notify exec kpcyrd/notify-pushover -o user key=asdfl337 -o api_ token=asdf1337
—'hello world'

You should receive hello world as a push notification.

Discord

Install the discord notification module from the registry:

sn0int pkg install kpcyrd/notify-discord

Decide which channel should receive notifications (or create a new one). Open the “Server Settings” of your discord
server. Click on “Webhooks”. Click “Create Webhook”. Configure the Name and Channel. Copy the Webhook URL.

Test your tokens are working correctly by sending yourself a notification:

sn0int notify exec kpcyrd/notify-discord -o url=https://discord.com/api/webhooks/1337/
—asdf 'hello world'

26 Chapter 1. Getting Started

sn0int Documentation

You should receive hello world in your discord channel.

Signal

Install the snOint notification module from the registry:

sn0int pkg install kpcyrd/notify-signal

This module allows end-to-end encrypted notifications, but it’s also difficult to setup. You need a second phone number
and install both signal-cli and snOint-signal.

After you’ve registered your second phone number with signal-cli, you can use snQint-signal to expose a minimal api
for notify-signal. For more detailed instructions and how to start the api at boot, see the snOint-signal README.

Read the secret key generated at /etc/snOint—-signal.key and send a notification to the signal phone number:

sn0int notify exec kpcyrd/notify-signal -o to=+31337 -o secret=asdf 'hello world'

You should receive hello world from the number signed up with signal-cli.

Writing your own module

Make sure you’ve read the detailed instructions on how to get setup with module development.

Create a new sn0Oint module like this:

sn0int new ~/repos/snOint-modules/notify-custom.lua

Edit the —— Source: so it takes notifications as input:

—-— Description: TODO your description here
-— Version: 0.1.0

—-— License: GPL-3.0

—-— Source: notifications

function run (argqg)
—— TODO your code here
-— https://sn0int.readthedocs.io/en/stable/reference.html

debug (arg)

info (arg['subject'])

info(arg['body'l])
end

Execute your script:

sn0int notify exec notify-custom 'hello world'

You most likely need to pass options to avoid hard-coding keys into your script. Options can be fetched like this:

—-— Description: TODO your description here
-— Version: 0.1.0

—-— License: GPL-3.0

—-— Source: notifications

function run(arqg)

(continues on next page)

1.9. Notifications 27

https://github.com/AsamK/signal-cli
https://github.com/kpcyrd/sn0int-signal
https://github.com/kpcyrd/sn0int-signal
scripting.html

sn0int Documentation

(continued from previous page)

—— TODO your code here
-— https://sn0int.readthedocs.io/en/stable/reference.html

local foo = getopt('foo')
if not foo then return 'Missing -o foo= option' end

info('foo: ' .. foo)
info('subject: ' .. arg['subject'])
end
And passed like this:
sn0int notify exec notify-custom -o "foo=hello world" 'ohai'

1.9.2 Setting up notification rules

We now know how to trigger notifications manually, but we would rather trigger notifications if a module runs into
something interesting.

You can setup subscriptions on specific topics and then have a notification script execute automatically.

Lookup the location of your snQOint config file:

sn0int paths

And open it in an editor of your choice:

vim /home/user/.config/sn0int.toml

A basic configuration could look like this:

You can have multiple notification sections, this one is named

‘demo-telegram—integration’

The label can be set to whatever you want, but you may need to add

double-quotes to use some characters.
[notifications.demo-telegram—-integration]

If this option is present, the notification must originate from one of
the following workspaces.

workspaces = ["default", "some-workspace"]

If this option is present, the notification must match one of the

filters. You can use 'x as a wildcard to match everything except

topics = ["activity:harness/activity-ping:*"]
Mandatory: the module to execute.
script = "kpcyrd/notify-telegram"

The options to pass to the module, if any.
Can be accessed with ‘getopt’
options = [

"bot_token=1337:foobar",

"chat_1id=1337",

All options except script are optional, but setting filters is highly recommended.

28 Chapter 1. Getting Started

sn0int Documentation

1.9.3 Testing notifications

To test if your configuration works correctly you can create an event manually:

sn0int -w some-workspace notify send activity:harness/activity-ping:dummy "hello world

"
—

If it matches any of your rules you should receive a push notifications.

Note: If you want to test just the routing without actually sending something, add ——dry-run.

1.9.4 Running sn0int automatically

Support for this is going to improve in the future, but you can already set this up if you’re ok with a slightly buggy
experience.

Monitors

Some modules are long-running and either wait for an event from a server or have custom polling built in that’s usually
configurable with an —o interval= option. If your module has a non-trivial setup phase, an author may take this
approach.

Enable the service to run on boot:

systemctl enable --now snOint-your-new-service.service

Timers

If the module is only one-shot you can set it up to run with a timer:

Setup the timer like this:

systemctl enable —--now snOint-your-other-service.timer

1.10 Keyring

A common problem is that you need either an api key or a username/password combination. Instead of hardcoding it
in the script you should request them from the keyring. In order to do this you need to request permissions to those
credentials.

1.10.1 Managing the keyring

The keyring is a simple namespaced key-value store:

[sn0int] [default] > keyring add aws:AKIAIOSFODNN7EXAMPLE
Secretkey: keep-this-secret

[sn0int] [default] > keyring list

aws :AKIATOSFODNN7EXAMPLE

(continues on next page)

1.10. Keyring 29

sn0int Documentation

(continued from previous page)

[sn0int] [default] >

[sn0int] [default] > keyring list aws

aws :AKIATOSFODNN7EXAMPLE

[snO0int] [default] > keyring list instagram

[sn0int] [default] >

[sn0int] [default] > keyring get aws:AKIAIOSFODNN7EXAMPLE

Namespace: "aws"
Access Key: "AKIAIOSFODNN7EXAMPLE"
Secret: "keep-this—-secret"

[sn0int] [default] >

If the service uses a username-password combination, set the username as the access key and the password as the
secret.

If the service uses only a secret key for the api, set the secret key as the access key and leave the secret blank.

A script doesn’t automatically get access to requested keyring namespaces. Instead the user is asked to confirm those
requests to limit abusive scripts.

1.10.2 Using access keys in scripts

We can request all keys of a certain namespace in our script metadata. This is going to prompt the user to grant the
script access. This can be done for multiple namespaces in the same script:

—-— Keyring-Access: aws
—— Keyring-Access: asdf

If the user granted us access to those keys we can read them with keyring:

creds = keyring('aws')
debug (creds[1] ['access_key'])
debug (creds[1l] ['secret_key'])

This returns a list of all keys in that namespace. Any empty list is returned if the user doesn’t have any keys in that
namespace.

If you want to allow the user to select a specific script you can introduce an option that is set by the user and then filter
creds until the access_key matches.

1.10.3 Using access keys as source argument

We can also use the access keys as source argument. This is useful if each account has access to different things and
we want to read through all of them.

Since access key permissions are granted per namespace we need to specify which credentials we want to use.

Keyring-Access: aws
—-— Source: keyring:aws

1.11 Configuration

This section documents the config file. By default this file does not exist and a default configuration is used instead.

30 Chapter 1. Getting Started

sn0int Documentation

Linux/BSD ~/.config/snOint.toml
OSX ~/Library/Preferences/sn0Oint.toml

Windows $APPDATA%/sn0Oint.toml

1.11.1 [core]

registry Configure the registry you want to use. Defaults to https://sn0int .com.

no—autoupdate snlint is going to check if your modules are outdated during startout once a week. Set this option
to true to disable this.

1.11.2 [namespaces]

By default snOint modules are assumed to be installed from the registry. You may want to keep a local directory with
private modules, especially during development. You can configure a folder that contains modules that aren’t managed
by sn0int by adding a namespace section to the config file:

[namespaces]
foo = "/opt/snOint/foo"
bar = "~/repos/a/b/c/sn0int-modules"

This is going to load modules from these two folders and register them in the foo and bar namespace.

Note that sn0Oint is also going to assume that symlinks in ~/ . local/share/snOint/modules and folders con-
taining a . git folder are externally managed.

1.11.3 [network]

To enable a proxy, add the following to your config file:

[network]
proxy = "127.0.0.1:9050"

This forces everything through tor (or any other socks5 proxy) and restricts all other functions that depend on the
network. For example the dns function is fully disabled if a proxy is configured.

1.12 Sandbox

Scripts are generally considered to be untrusted and executed exclusively in a child process. It’s important to note
that there’s a basic sandbox that’s active on every operating system, and there’s a second line of defense on supported
operating systems.

The first line of defense is the restrictive stdlib. It’s assumed that an attacker gains full control over the lua code and is
able to call any function with arbitrary arguments. The stdlib only provides functions that are considered safe, so for
example it’s not possible to start a process or open a file.

The second line of defense is supposed to make sure the system isn’t compromised even if the first layer is fully broken
and an attacker gains full control over the child process.

Right now this is only supported on linux and openbsd.

1.12. Sandbox 31

sn0int Documentation

1.12.1 Linux

On linux we use seccomp to filter all syscalls that we don’t need. We also use chroot to disable filesystem access. It’s
recommended to install the snOint binary with cap_sys_chroot to make sure unprivileged users can use chroot.
The chroot location is hard coded and all capabilities are removed after the chroot is done or if no chroot is going to
happen.

1.12.2 OpenBSD

On openbsd we’re using pledge to restrict syscalls and unveil to restrict filesystem access.

1.12.3 IPC Protocol

The parent process and the child process communicate using an IPC protocol that is line-based json.

For a simple hello world the parent process is only going to send a single line to the child process. This line contains:
* The function argument
¢ The dns config

* Keys that the module has been given access to

The module metadata and code

Options, if any

A socks5 proxy, if any

* The log level
{"arg":null, "dns_config":{"ns":["1.1.1.1:53","1.0.0.1:53"],"tecp":false, "timeout": {
—"nanos":0,"secs":3}}, "keyring":[], "module": {"author":"anonymous", "description":
—"basic selftest","keyring access":[],"name":"selftest","script":{"code":"——
—Description: basic selftest\n-— Version: 0.1.0\n-- License: GPL-3.0\n\nfunction,
—run () \n -— nothing to do here\nend\n"}, "source":null, "version":"0.1.0"}, "options

—":{},"proxy":null, "verbose":2}

Saving this line in a file called start . json and sending it to a sandbox process should result in the following output:

$ sn0int sandbox foobar < start.json
{"EXit" . llokll}
$

This line tells us that the script terminated successfully.

There are some functions that cause a notification to the parent process. We are going to add a call to the info ()
function to our module:

{"arg":null, "dns_config":{"ns":["1.1.1.1:53","1.0.0.1:53"],"tcp":false, "timeout": {
—"nanos":0,"secs":3}}, "keyring":[], "module": {"author":"anonymous", "description":
—"basic selftest","keyring access":[],"name":"selftest","script":{"code":"——
—Description: basic selftest\n-— Version: 0.1.0\n-- License: GPL-3.0\n\nfunction,
—run () \n info ('ohai')\nend\n"}, "source" :null, "version":"0.1.0"}, "options":{},
—"proxy":null, "verbose":2}

This is going to print an additional event:

32 Chapter 1. Getting Started

sn0int Documentation

$ sn0int sandbox foobar < start2.json
{"Log" . {llInfoll . lv\lvohai\"] } }

{IlEXitll : llokll}

$

There are some functions that block the child process until the parent process sent a reply. These functions are mostly
database related functions, since the child doesn’t have direct database access. To demonstrate this, we’re going to
write two lines to our file this time, one is the init line and the second one is the reply for the database event:

{"arg":null, "dns_config":{"ns":["1.1.1.1:53","1.0.0.1:53"],"tcp":£false, "timeout": {

—"nanos":0,"secs":3}}, "keyring": [], "module": {"author":"anonymous", "description":
—"basic selftest","keyring access":[],"name":"selftest","script":{"code":"——
—Description: basic selftest\n-- Version: 0.1.0\n-- License: GPL-3.0\n\nfunction,
—run () \n x = db_add('domain', {value=\"example.com\"})\n info (x) \nend\n"},
—"source":null, "version":"0.1.0"}, "options":{}, "proxy" :null, "verbose":2}
{"Ok":1337}

Results in the following output:

$ target/release/sn0int sandbox foobar < start3.json
{"Database":{"Insert":{"Domain":{"value":"example.com"}}}}
{"Log":{"Info":"1337.0"}}

{"Exit":"0Ok"}

$

The first line is a database event and indicates that the child wants to insert data. After printing this line the child tries
to read a line from stdin, this is why we needed to write two lines to our json file this time. In the second line the child
learns if the insert was successful and which id was assigned to that entity.

1.12.4 Limitations

There are some limitations that you should be aware:

* Network access is available and network namespaces aren’t isolated. This means scripts have access to your
local network, the internet and also your localhost loopback interface.

 If chroot is unavailable an attacker could connect to unix domain sockets.

1.12.5 Diagnosing a sandbox failure

You might experience a sandbox failure, especially on architectures that are less popular. This usually looks like this:

[snO0int] [example] [kpcyrd/ctlogs] > run
[-] Failed "example.com": Sandbox child has crashed
[+] Finished kpcyrd/ctlogs (1 errors)

A module that never finishes could also mean an IO thread inside the worker got killed by the sandbox.

You can try to diagnose this yourself with strace:

strace —-f sn0int run -vv ctlogs 2>&l | tee strace.log

Open strace. log, look out for syscalls that didn’t return by searching for = ? and ignore calls to exit and similar.
You are looking for something like this:

1.12. Sandbox 33

sn0int Documentation

seccomp (SECCOMP_SET_MODE_FILTER, 0, {len=48, filter=0xdd59094e490}) = 0
write(l, "[+] activated!\n", 15[+] activated!

) = 15

getresuid(<unfinished ...>) = ?

+++ killed by SIGSYS (core dumped) +++

This would indicate a call to get resuid which was not allowed by the seccomp filter.

If you don’t want to diagnose this yourself open a new bug report with as much information as possible, specifically
which distro, which release and which architecture you’re using.

1.13 Function reference

1.13.1 asn_lookup

Run an ASN lookup for a given ip address. The function returns asn and as_org. This function may fail.

lookup = asn_lookup('1l.1.1.1")
if last_err () then return end

1.13.2 base64_decode

Decode a base64 string with the default alphabet+padding.

base64_decode ("ww==")

1.13.3 base64_encode

Encode a binary array with base64 and the default alphabet+padding.

base64_encode ("\x00\x£f£f")

1.13.4 base64 custom_decode

Decode a base64 string with custom alphabet+padding.

—-— baseb64

base64_custom_decode ('b2hhaQ==",

< '"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789+/"', '='")
—-— base64 no padding

base64_custom_decode ('b2hhaQ’',

< 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789+/"', ')

-— base64 url safe

base64_custom_decode ('b2hhaQ==",

< 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789-_", '=')

34 Chapter 1. Getting Started

sn0int Documentation

1.13.5 base64_custom_encode

Encode a binary array with base64 and custom alphabet+padding.

—-— baseb64

base64_custom_encode ('ohai',

— '"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi jklmnopgrstuvwxyz0123456789+/"', '='")
-— base64 no padding

base64_custom_encode ('ohai',

— '"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi jklmnopgrstuvwxyz0123456789+/"', '')
—-— baseb64 url safe

base64_custom_encode ('ohai',

— 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789-_"', '=")

1.13.6 base32 custom_decode

Decode a base32 string with custom alphabet+padding.

-— rfc-4648 base32

base32_custom_decode ('N5UGC2I=", 'ABCDEFGHIJKLMNOPQRSTUVWXYZ234567"', '=")
-— z-base-32

base32_custom_decode ('p7wgnde', 'ybndrfg8ejkmcpgxotluwisza345h769', ')

1.13.7 base32_custom_encode

Encode a binary array with base32 and custom alphabet+padding.

—— rfc-4648 base32

x = base32_custom_encode ('ohai', 'ABCDEFGHIJKLMNOPQRSTUVWXYZ234567', '=")
-— z-base-32

X = base32_custom_encode ('ohai', 'vbndrfg8eijkmcpgxotluwisza345nh769', '")

1.13.8 clear_err

Clear the last recorded error from the internal state. See also last_err.

if last_err () then
—-— ignore this error
clear_err ()

end

1.13.9 create_blob

Push a byte array into persistent blob storage. This allows passing those bytes to functions operating on blob storage.
Returns a blob identifier that is deterministic based on the blob content. Blobs are immutable.

blob = create_blob("some bytes")
debug (blob)

1.13. Function reference 35

sn0int Documentation

1.13.10 datetime

Return current time in UTC. This function is suitable to determine datetimes for DATETIME database fields.

now = datetime ()

Note: This format is sn0int specific, to get the current time for scripting use time_unix instead.

Warning: This function is going to be deprecated at some point. Prefer snOint_time for new scripts.

1.13.11 db_add

Add an entity to the database or update it if it already exists. This function may fail or return nil. See db_add for
details.

domain_id = db_add('domain', {
value='example.com',

})

1.13.12 db_add_tti

Add a temporary entity to the database. This is commonly used to insert temporary links that automatically expire
over time. If the entity already exists and is also marked as temporary the new ttl is going to replace the old ttl. If the
entity already exists but never expires we are not going to add a ttl.

—— this 1ink is valid for 2min

domain_id = db_add_ttl ('network-device', {
network_id=1,
device_id=13,

}, 120)

1.13.13 db_activity

Log an activity event. A basic event looks like this:

db_activity ({
topic='harness/activity-ping:dummy’',
time=sn0int_time (),
content={
a='b',
foo={
bar=1337,
}I
msg="'ohai',
}I
)

This function is explained in detail in the activity section.

36 Chapter 1. Getting Started

database.html#db-add
activity.html

sn0int Documentation

1.13.14 db_select

Checks if a target is in scope. If non-nil is returned, this entity is in scope. This function may fail. See db_select for
details.

domain_id = db_select ('domain', 'example.com')
if domain_id ~= nil then

-— do something
end

1.13.15 db_update

Update an entity in the database. This function may fail. See db_update for details.

db_update ('ipaddr', arg, {
asn=lookup['asn'],
as_org=lookup|['as_org'],

})

1.13.16 dns

Resolve a dns record. If the dns query was successful and the dns reply is NoError then x ['error'] isnil. The
records of the reply are in x ['answers']. This function may fail.

This function accepts the following options:

record The query_type, can be any of A, AAAA, MX, AXFR, etc.

nameserver The server that should be used for the lookup. Defaults to your system resolver.
tcp If the lookup should use tcp, true/false.

timeout The time until the query times out in milliseconds.

records = dns('example.com', {
record='A",
})
if last_err () then return end
if records['error'] ~= nil then return end
records = records|['answers']

Note: DNS replies with an error code set are not causing a change to last_err (). You have to test for this
explicitly.

Note: This function is unavailable if a socks5 proxy is configured.

1.13.17 error

Log an error to the terminal.

1.13. Function reference 37

database.html#db-select
database.html#db-update

sn0int Documentation

error ('ohai')

1.13.18 geoip_lookup

Run a geoip lookup for a given ip address. The function returns:
* continent
e continent_code
* country
* country_code
* city
* latitude
* longitude

This function may fail.

lookup = geoip_lookup('l1.1.1.1")
if last_err () then return end

1.13.19 hex

Hex encode a list of bytes.

hex ("\x6F\x68\x61\x69\x0A\x00")

1.13.20 hmac_md5

Calculate an hmac with md5. Returns a binary array.

hmac_md5 ("secret", "my authenticated message")

1.13.21 hmac_shat

Calculate an hmac with shal. Returns a binary array.

hmac_shal ("secret", "my authenticated message")

1.13.22 hmac_sha2_256

Calculate an hmac with sha2_256. Returns a binary array.

hmac_sha2_256 ("secret", "my authenticated message")

38

Chapter 1. Getting Started

sn0int Documentation

1.13.23 hmac_sha2_512

Calculate an hmac with sha2_512. Returns a binary array.

hmac_sha2_512 ("secret", "my authenticated message")

1.13.24 hmac_sha3 256

Calculate an hmac with sha3_256. Returns a binary array.

hmac_sha3_256 ("secret", "my authenticated message")

1.13.25 hmac_sha3_512

Calculate an hmac with sha3_512. Returns a binary array.

hmac_sha3_512 ("secret", "my authenticated message")

1.13.26 html_select

Parses an html document and returns the first element that matches the css selector. The return value is a table with
text being the inner text and attrs being a table of the elements attributes.

csrf = html_select (html, 'input [name="csrf"]")
token = csrf["attrs"]["value"]

1.13.27 html_select_list

Same as html_select but returns all matches instead of the first one.

html_select_list (html, 'input [name="csrf"]")

1.13.28 http_mksession

Create a session object. This is similar to requests. Session in python-requests and keeps track of cookies.

session = http_mksession ()

1.13.29 http_request
Prepares an http request. The first argument is the session reference and cookies from that session are copied into the
request. After the request has been sent, the cookies from the response are copied back into the session.

The next arguments are the method, the url and additional options. Please note that you still need to specify an
empty table { } even if no options are set. The following options are available:

query A map of query parameters that should be set on the url.

headers A map of headers that should be set.

1.13. Function reference 39

sn0int Documentation

basic_auth Configure the basic auth header with {"user, "password"}.
user_agent Overwrite the default user agent with a string.

json The request body that should be json encoded.

form The request body that should be form encoded.

follow_redirects Automatically follow redirects, up to the specified number. If set to 1, only one redirect is
going to be followed. Defaults to O so redirects aren’t followed.

body The raw request body as string.

into_blob If true, the response body is stored in blob storage and a blob reference is returned as b1ob instead of
the full body.

proxy Use a socks5 proxy in the format 127.0.0.1:9050. This option only works if it doesn’t conflict with the
global proxy settings.

binary Setto true to get the http response as raw bytes.

This function may fail.

req = http_request (session, 'POST', 'https://httpbin.org/post', {
Jjson={
user=user,
password=password,

})

resp = http_send(req)

if last_err() then return end

if resp['status'] ~= 200 then return 'http status error: ' .. resp['status'] end

1.13.30 http_send

Send the request that has been built with h#tp_request. Returns a table with the following keys:
status The http status code

headers A table of headers

text The response body as string

binary The response body as bytes (if binary=true)

blob If into_blob was enabled for the request the body is downloaded into blob storage with a reference to the
body in this field.

req = http_request (session, 'POST', 'https://httpbin.org/post', {
Jjson={
user=user,
password=password,

})

resp = http_send(req)

if last_err () then return end

if resp['status'] ~= 200 then return 'http status error: ' .. resp['status'] end

40 Chapter 1. Getting Started

sn0int Documentation

1.13.31 http_fetch

This does an http_send and also automatically validate the status code.

Note: You almost always want this when setting the int o_b1lob option since this function validates the status code
before inserting the response body into blob storage.

—— short form
data = http_fetch(req)
if last_err () then return end

—-— long form

resp = http_send (req)

if last_err() then return end

if resp['status'] ~= 200 then return 'http status error: ' .. resp|['status'] end

1.13.32 http_fetch_json

Identical to http_fetch but also automatically parses the response body as json.

—— short form
data = http_fetch_json(req)
if last_err() then return end

—-— long form

resp = http_send(req)

if last_err() then return end

if resp['status'] ~= 200 then return 'http status error: ' .. resp['status'] end
data = json_decode (resp['text'])

if last_err () then return end

1.13.33 img_load

Attempt to decode a blob as an image and return some basic metadata like the mime type, height and width.

img = img_load(blob)
if last_err() then return end
debug (img)

1.13.34 img_exif

Extract exif metadata from an image.

exif = img_exif (blob)
if last_err() then return end
debug (exif)

1.13.35 img_ahash

Calculate the Mean (aHash) perceptual hash.

1.13. Function reference 41

sn0int Documentation

hash = img_ahash (blob)
if last_err () then return end
debug (hash)

1.13.36 img_dhash

Calculate the Gradient (dHash) perceptual hash.

hash = img_dhash (blob)
if last_err () then return end
debug (hash)

1.13.37 img_phash

Calculate the DCT (pHash) perceptual hash.

hash = img_phash (blob)
if last_err() then return end
debug (hash)

1.13.38 img_nudity

Classify an image for nudity. The score goes from 0 to 2. A score above 1 means nudity has been detected.

nudity = img_nudity (blob)
if last_err () then return end
debug (nudity)

1.13.39 info

Log an info to the terminal.

info('ohai')

1.13.40 intval

Parse a number from a string.

X = strval(‘1234")

1.13.41 json_decode

Decode a lua value from a json string.

json_decode ("{\"data\": {\"password\":\"fizz\",\"user\":\"bar\"},\"1list\":[1,3,3,711")

42

Chapter 1. Getting Started

sn0int Documentation

1.13.42 json_decode_stream

Very similar to json_decode, but works with multiple json objects directly concatenated to each other or separated by
newlines.

json_decode_stream (" {\"data\":1}{\"data\":2}")

1.13.43 json_encode

Encode a datastructure into a string.

x = json_encode ({
some=1,
fancy={
data='"'structures',
}

1)
print (x)

1.13.44 key_trunc_pad

Truncate/pad a key to a given length.

-— 1f longer than 32 bytes: truncate to 32
—-— 1if shorter than 32 bytes: pad with \x00
local key = key_trunc_pad(password, 32, 0)

1.13.45 keyring

Request all keys from a given namespace. See the keyring section for details.

creds = keyring('aws")
print (creds[1] ['accesskey'])
print (creds[1] ['secretkey'])

1.13.46 last_err

Returns infos about the last error we’ve observed, if any. Returns nil otherwise.

if last_err () then
—-— Something went wrong, abort
return

end

1.13.47 md5

Hash a byte array with md5 and return the results as bytes.

hex (md5 ("\x00\x££"))

1.13. Function reference 43

keyring.html

sn0int Documentation

1.13.48 mqtt_connect

Connect to an mqtt broker.

local sock = mgtt_connect ('mgtts://mgtt.example.com', {
username="'foo',
password="'secret',

})

if last_err () then return end

1.13.49 mqtt_subscribe

Subscribe to a topic. Right now only QoS 0 is supported.

mgtt_subscribe (sock, '#', 0)
if last_err() then return end

1.13.50 mqtt_recv

Receive an mqtt packet. This is not necessarily a publish packet and more packets might be added in the future, so you
need to check the type specifically.

If a read timeout has been set with mgtt_connect this function returns nil in case of a read timeout.

local pkt = mgtt_recv (sock)
if last_err() then return end
if pkt == nil then
—-— read timeout, consider sending a ping or disconnect if the previous ping failed
elseif pkt['type'] == 'pong' then
—-— broker sent a pong
elseif pkt['type'] == 'publish' then
local payload = utf8_decode (pkt['body'])
if last_err () then return end
info (payload)
end

1.13.51 mqtt_ping

Send a pingreq packet, causing the broker to send a pingresp. This is used to make sure the connection is still working
correctly.

mgtt_ping (sock)
if last_err () then return end

1.13.52 pgp_pubkey

Same as pgp_pubkey_armored, but without the unarmor step.

44 Chapter 1. Getting Started

sn0int Documentation

1.13.53 pgp_pubkey_armored

Extract uids, sigs and the fingerprint out of an rfc 4880 pgp public key. This function may fail.

key = pgp_pubkey_armored([===]
Version: GnuPG v2

MQENBFu6G90BCADGD7Q9aH5683yt 7hzPkt DkAUNAZIHwYhUNeyGK4 3 frPyDRWOmMQ
N+oXTf£iYWLON+d7KNBTnF9uwyBdalM7SH441LNYo8WO0 9mVM2eK+wt 1 Suf SHYNgAE
81a45QLo/ce9CQVeladoXNWg610FOY TM+wLe+G2wMwz 8RXGgwd/qQp4 /PB5YpUhx
nAnzClxvwymrL6BQOXsRcKSMSD5bIzIv95n105CviWSHgl 7JR9z2gOR+gHgVOH8HRBUC
ZxMumrTM6aKLgAhgM8Sn36gCFOfj1G1lbl10FLZhUtgro/nnEOMAUrRsCZy8M5h8QM
FpZChIH8kgHs90F/CCvGIiMg3gqviWcH8ZsPUi1izABEBAAGONUhhbnMgQWNrZXIgKGV4
YW1lwbGUgY29tbWVudCkgPGhhbnMuYWNrZXJAZXhhbXBsZS53b20+iQFOBBMBCAA4
FiEEyzeOleEwbB03hcgBM00IodGdl j8FAIu6g90CGWMFCwkIBWIGFQgJCgsCBBYC
AWECHgECF4AACgkQOM00IodGdl j/AJQgAjmk+iP5b7Jt7+£+1U40pr1£3£3DG/uhb
GebMjV7cvtx1hZJRD5hxGt ORWwnEp61TBSbrem288pM89i1QfTNeO0wUr90zwiWzh/
8Ngl5iWnD2ah3Mpi5R1V/YMNE2cnwV jgNvEkRHANC43pZ0kC2GoiTUn0QYOUBpOW
ZMN3//ANi6ZtiK/LOIZQND/gKvOzu/4tfadeB126T3cVYj53p3G3jhlb92vVa8SR
uL3S3bzdlh5snDgUluXHmNHGbhkEc4KUneQ0V9/bdZrg60zFAfMlghgfoId+YpQH
er9L26ISL3QF58WdEXf IdHYEMM1ANjBMO2cUlQXgONuCgkMuY7GBmrkBDQRbugvd
AQgA41jqCumCxYVONASYNNTSSDRyd69dOUYCAPT8012739s7KKISIXIKVEGmMD Jfi
u2RcfR/KYj53HoyOm4Pm/+ONN8Dedkt zXpIpIxGC+O8NBvdIvkboAS6qnC JK7KVE
r91ymxxVKp2dzZvVEipI jWVZR512EAVSS5vw8UK4gL8ALH+S91eJFZrQWcgyoJOJzH
Rzr9pesX2HvdgcNG106QUArlsnsTngpi/hu7tQa8tifBpWDeArOA23Y2DgeehdDF
1SU/8KD4J+AkFriWWlcTaMsvSChXQkCHEMRIcSOfXtdpX5KJISE7UBQAD1opm+mR79
VeHnuJAAVZZtUZmJIA7p jdKykYOQARAQABIQE2BBgBCAAGgF iEEyzeOleEwbB03hcgB
MO0TIodGdlj8FAlu6gq90CGWWACgkQMO0IodGdl j8bMAf+L.g3QivedvcrCTT4IgvV]
arOACdcbtt 5RhVBTimT1 9rDWNH+m+PfPjo3FS1Bj5cm70KAXUS2LBFFxhakTZ /Mg
cQroWZpVbBxj4kipEVVJIZFdUZQaDERJIgLOxYGOQrNMQ4JGqJd84BRrtOExjSqo4 1K
hAhNe+bwPGH9/Igiixc4tH07xa7TOy4MyJv/6gpbHy/1Wl1hgpCAgM5£fT/im5/ 6QF
kOtED6vIuc54IWiOmwCnjZiQnJ8uCwEu+cud5Exwy 9CNERLpS5v0y4eG+0E+at9j/
macO0g39gf09t53pTge9dWv5NIi319TeBsKZ21b0crrQjsbHgk 0DAUwgQuUOANgLku
VA==

=kRIv

if last_err () then return end
print (key)

1.13.54 print

Write something directly to the terminal.

print ({
some=1,
fancy={

data='"structures',

Warning: This function writes directly to the terminal and can interfere with other terminal features. This function
should be used during development only.

1.13. Function reference 45

sn0int Documentation

1.13.55 psl_domain_from_dns_name

Returns the parent domain according to the public suffix list. For www.a.b.c.d.example.co.uk this is going
to be example.co.uk.

domain = psl_domain_from_dns_name ('www.a.b.c.d.example.co.uk")
print (domain == 'example.co.uk"')

1.13.56 ratelimit_throttle

Create a ratelimit that can only be passed x times every y milliseconds. This limit is global for a single run and also
works with threads.

-— allow this to pass every 250ms
ratelimit_throttle('foo', 1, 250)
—-— allow this to pass not more than 4 times per second
ratelimit_throttle('foo', 4, 1000)

This is useful if you need to coordinate your executions to stay below a certain request threshold.

1.13.57 regex_find

Apply a regex to some text. Returns nil if the regex didn’t match and the capture groups if it did.

m = regex_find(". (.)", "abcdef")
if m == nil then
print ('No captures')
end
print (m[1] == 'ab')
print (m[2] == 'b")

1.13.58 regex_find_all

Same as regex_find, but returns all matches.

m = regex_find_all(".(.)", "abcdef")
print (m[1][1] == 'ab"')

print (m[1][2] == 'b")

print (m[2][1] == 'cd")

print (m[2][2] == 'd")

print (m[3][1] == 'ef")

print (m[3][2] == "f")

1.13.59 semver_match

Compare a version to a version requirement. This can be used with snOint_version to test for certain features or
behavior.

46 Chapter 1. Getting Started

sn0int Documentation

semver_match ('=0.11.2", snOint_version())

semver_match ('>0.11.2"', snOint_version())

semver_match ('<0.11.2"', snOint_version())
semver_match('~0.11.2", sn0Oint_version())

semver_match ('"0.11.2', snOint_version())
semver_match('0.11.2", snOint_version()) -- synonym for
semver_match ('<=0.11.2", snOint_version())

semver_match ('>=0.11.2", snOint_version())

semver_match ('>=0.4.0, <=0.10.0", snOint_version())

~0.11.2

1.13.60 set _err

Manipulate the global error object. If you want to exit the main run function with an error you can simply return a
string, but those are difficult to propagate through functions. set_err specifically assigns an error to the global error

object that are also used by all other rust functions.

function foo ()
set_err ("something failed")
end

foo ()
if last_err () then return end

1.13.61 shat

Hash a byte array with shal and return the results as bytes.

hex (shal ("\x00\x£f£f"))

1.13.62 sha2_ 256

Hash a byte array with sha2_256 and return the results as bytes.

hex (sha2_256 ("\x00\x£f£f"))

1.13.63 sha2_512

Hash a byte array with sha2_512 and return the results as bytes.

hex (sha2_512 ("\x00\x£f£f"))

1.13.64 sha3 256

Hash a byte array with sha3_256 and return the results as bytes.

hex (sha3_256 ("\x00\x£f£f"))

1.13. Function reference

47

sn0int Documentation

1.13.65 sha3 512

Hash a byte array with sha3_512 and return the results as bytes.

hex (sha3_512 ("\x00\x£f£f"))

1.13.66 sleep

Pause the current program for the specified number of seconds. This is usually only used for debugging.

sleep (1)

1.13.67 sn0int_time

Return current time in UTC. This function is suitable to determine datetimes for DATET IME database fields.

now = snOint_time ()

Note: This format is snOint specific, to get the current time for scripting use fime_unix instead.

1.13.68 sn0int_time_from

Identical to sn0Oint_time but uses a unix timestamp in seconds instead of the current time. This function is compatible
with fime_unix and strptime.

time = snOint_time_from(1567931337)

1.13.69 sn0int_version

Get the current sn0Oint version string. This can be used with semver_match to test for certain features or behavior.

info(snO0int_version())

1.13.70 sock connect

Create a tcp connection.

The following options are available:

tls Set to true to enable tls (certificates are validated)

sni_value Instead of the host argument, use a custom string for the sni extension.

disable_tls_verify Danger: disable tls verification. This disables all security on the connection. Note that
sn0int is still rather strict, you’re going to run into issues if you need support for insecure ciphers.

proxy Use a socks5 proxy in the format 127.0.0.1:9050. This option only works if it doesn’t conflict with the
global proxy settings.

connect_timeout Abort tcp connection attempts after n seconds.

48 Chapter 1. Getting Started

sn0int Documentation

read_timeout Abort read attempts after n seconds. This can be used to wake up connections periodically.

write_timeout Abort write attempts after n seconds.

sock = sock_connect ("127.0.0.1", 1337, {
tls=true,

b

1.13.71 sock_upgrade_tls

Take an existing tcp connection and start a tls handshake. The options are the same as sock_connect but the t 1 s value
is always assumed to be true.

The sni value needs to be set specifically, otherwise the sni extension is disabled.

Using this function specifically returns some extra information that is discarded when using sock_connect directly
with t 1s=true.

sock = sock_connect ("127.0.0.1", 1337, {})
if last_err() then return end

tls = sock_upgrade_tls(sock, {
sni_value='example.com',

})

if last_err () then return end

info(tls)

1.13.72 sock_options

Update options of an existing connection:
read_timeout Abort read attempts after n seconds. This can be used to wake up connections periodically.

write_timeout Abort write attempts after n seconds.

sock_options (sock, {
read_timeout=3,

1)

1.13.73 sock_send

Send data to the socket.

sock_send(sock, "hello world™)

1.13.74 sock_recv

Receive up to 4096 bytes from the socket.

x = sock_recv (sock)

1.13. Function reference 49

sn0int Documentation

1.13.75 sock_sendline

Send a string to the socket. A newline is automatically appended to the string.

sock_sendline (sock, line)

1.13.76 sock recvline

Receive a line from the socket. The line includes the newline.

x = sock_recvline (sock)

1.13.77 sock_recvall

Receive all data from the socket until EOF.

x = sock_recvall (sock)

1.13.78 sock recvline_contains

Receive lines from the server until a line contains the needle, then return this line.

x = sock_recvline_contains (sock, needle)

1.13.79 sock_recvline_regex

Receive lines from the server until a line matches the regex, then return this line.

x = sock_recvline_regex(sock, "7250 ")

1.13.80 sock recvn

Receive exactly n bytes from the socket.

x = sock_recvn (sock, 4)

1.13.81 sock_recvuntil

Receive until the needle is found, then return all data including the needle.

x = sock_recvuntil (sock, needle)

50 Chapter 1. Getting Started

sn0int Documentation

1.13.82 sock_sendafter

Receive until the needle is found, then write data to the socket.

sock_sendafter (sock, needle, data)

1.13.83 sock newline

Overwrite the default \ n newline.

sock_newline (sock, "\r\n")

1.13.84 sodium_secretbox_open

Use authenticated symetric crypto to decrypt a given message.
Internally this is crypto_secretbox_xsalsa20polyl1305.

The key must be 32 bytes, see key_trunc_pad if necessary.

The first 24 bytes of the encrypted message are expected to be the nonce.

plain = sodium_secretbox_open (encrypted, key)
if last_err () then return end

txt = utf8_decode (plain)
if last_err () then return end

info (txt)

1.13.85 status

Update the label of the progress indicator.

status ('ohai')

1.13.86 stdin_readline

Read a line from stdin. The final newline is not removed.

stdin_readline ()

Note: This only works with sn0int run —stdin.

1.13.87 stdin_read _to_end

Read stdin until EOF as a utf-8 string.

1.13. Function reference

51

sn0int Documentation

stdin_read_to_end()

Note: This only works with snOint run —stdin.

1.13.88 str_find

Returns the byte index of the first character that matches the pattern. This is explicitly a literal match instead of a lua
pattern.

If no match is found, returns ni1.

x = str_find('asdf', 'sd'")
print(x == 2)

1.13.89 str_replace

Replaces all matches of a pattern in a string. This is explicitly a literal match instead of a lua pattern.

If no match is found, an unmodified copy is returned.

x = str_replace('this is old', 'old', 'new'")

print(x == 'this is new')

1.13.90 strftime

Format a timestamp generated with time_unix into a date, see strftime rules.

t = strftime('%d/%$m/%Y $H:%M', 1558584994)

1.13.91 strptime

Parse a date into a unix timestamp, see strftime rules.

t = strptime('%d/%m/%Y $H:$M', '23/05/2019 04:16")

1.13.92 strval

Convert a number into a string.

x = strval(1234)

1.13.93 time_unix

Get the current time as seconds since January 1, 1970 0:00:00 UTC, also known as UNIX timestamp. This
timestamp can be formated using strftime.

52 Chapter 1. Getting Started

https://docs.rs/chrono/0.4.6/chrono/format/strftime/index.html
https://docs.rs/chrono/0.4.6/chrono/format/strftime/index.html

sn0int Documentation

now = time_unix ()

1.13.94 url_decode

Parse a query string into a map. For raw percent decoding see url_unescape.

v = url_decode ('a=b&c=d")
print(v['a'] == 'b")
print(v['c'] == 'd")

1.13.95 url_encode

Encode a map into a query string. For raw percent encoding see url_escape.

v = url_encode ({
a:lbv,
C:'d',

})

print (v == 'a=b&c=d')

1.13.96 url_escape

Apply url escaping to a string.

v = url_escape('foo bar?')
print (v == 'foo%20bar%3F"'")

1.13.97 url_join

Join a relative link to an absolute link. If both links are absolute we just return the first one:

x = url_join('https://example.com/x', '/foo')

print (x == 'https://example.com/foo')

x = url_join('https://example.com/x', 'https://github.com/")
print (x == 'https://github.com/")

1.13.98 url_parse

Parse a url into its components. The following components are returned:
* scheme
* host
* port
* path
* query

 fragment

1.13. Function reference 53

sn0int Documentation

¢ params

url = url_parse('https://example.com')

print (url['scheme'] == 'https')
print (url['host'] == 'example.com')
print (url['path'] == "'/")

1.13.99 url_unescape

Remove url escaping of a string.

v = url_unescape ('foo%20bar%3F")
print (v == 'foo bar?')

1.13.100 utf8_decode

Decodes a list of bytes/numbers into a string. This function might fail.

x = utf8_decode ({65, 65, 65, 65})
if last_err () then return end
print (x == 'AAAA')

1.13.101 warn

Log a warning to the terminal.

warn ('ohai')

1.13.102 warn_once

Log a warning to the terminal once. This can be used to print a warning to the user without printing the same warning
for each struct we’re processing during a run execution.

warn_once ('ohai')
warn_once ('ohai')

1.13.103 ws_connect

Create a websocket connection. The url format is ws: //example.com/asdf, wss:// is also supported.
The following options are available:
headers A map of additional headers that should be set for the request.

proxy Use a socks5 proxy in the format 127.0.0.1:9050. This option only works if it doesn’t conflict with the
global proxy settings.

connect_timeout Abort tcp connection attempts after n seconds.
read_timeout Abort read attempts after n seconds. This can be used to wake up connections periodically.

write_timeout Abort write attempts after n seconds.

54 Chapter 1. Getting Started

sn0int Documentation

sock = ws_connect ("wss://example.com/asdf", {})

1.13.104 ws_options

Update options of an existing connection:
read_timeout Abort read attempts after n seconds. This can be used to wake up connections periodically.

write_timeout Abort write attempts after n seconds.

ws_options (sock, {
read_timeout=3,

})

1.13.105 ws_recv_text

Wait until the server sends a text frame. A binary frame is considered an error. Ping requests are answered automati-

cally.

msg = ws_recv_text (sock)

1.13.106 ws_recv_binary

Wait until the server sends a binary frame. A text frame is considered an error. Ping requests are answered automati-

cally.

msg = ws_recv_binary (sock)

1.13.107 ws_recv_json

Identical to ws_send_text but automatically runs json_decode on the response.

msg = ws_recv_json (sock)

1.13.108 ws_send_text

Send a text frame on the websocket connection.

ws_send_text (sock, "ohail!")

1.13.109 ws_send_binary

Send a binary frame on the websocket connection.

ws_send_binary (sock, "\x00\x01\x02")

1.13. Function reference

55

sn0int Documentation

1.13.110 ws_send_json

Encode the object as json string and send it as a text frame on the websocket connection.

ws_send_text (sock, {
foo="ohail",
x={
v={1,3,3,7},
}I
})

1.13.111 x509_parse_pem

Parse a pem encoded certificate. This function might fail.

x = x509_parse_pem([[-————— BEGIN CERTIFICATE————-—
MIID9DCCA3qgAwWIBAgIQBWzetBR]1/ycHF sBukRYuGTAKBggghk JOPQQODA jBMMQSwW
CQYDVQQOGEwWJVUzZEVMBMGA1UEChMMRG1naUN1cnQgSW5 jMSYwJAYDVQQODEx1EaWdp
Q2VydCBFQOMgU2VjdXJ1IFNlcnZlciBDQTAeFw0xODAzMzAWMDAWMDBaFw0OyMDAzZ
MJUxXMJAWMDBaMGwxCzAJBgNVBAYTA1VTMQswCQYDVQQIEWIDQTEWMBQGA1UEBxMN
U2FuIEZyYWS jaXNjbzEZMBcGALUEChMQQ2xvdWRMbGFyZSwgSW5 jLIEAMBsGA1UE
AwwUKi153bG91Z2GZsYXJILLWRucy5 jb20wWTATBgcghk JOPQIBBggghk JOPQMBBwWNC
AASYRQsxrFBjziHmfDQjGsXBUOWW130xh7vg6h2VIf81BMpl8PY/td9R6VvIPa20
AwVzIJI+dL60SxvialZEbmK704ICHDCCAhgwHwYDVRO jBBgwFoAU0S53mH/naOu/A
buiRy5W12 jHiCp8wHQYDVROOBBYEFN+XTeVDs 7BBpO0LykM+Jf64SV4ThMGMGA1Ud
EQRCMFgCFCouY2xvdWRmbGFyZS1kbnMuY2 9thwQBAQEBhwQBAAABghJ jbG9172GZs
YXJ1LWRucy5jb22HECYGRwWBHAAAAAAAAAAAAERGHECYGRWBHAAAAAAAAAAAAEAEW
DgYDVROPAQH/BAQDAgeAMBOGA1UdJQQOWMBQGCCsGAQUFBWMBBggrBgEFBQCDA JBp
BgNVHRSEY JBgMC6gLKAGhihodHRwO1i8vY3JIsMy5kaWdpY2VydC5jb20ve3NjyYSll
Y2MtZzEuY3JsMC6gLKAghihodHRwO18vY3JsNC5kaWdpY2VydC5jb20vc3NjYSll
Y2MtZzEuY3JsMEwWGA1UdIARFMEMwNWYJYIZIAYb9PAEBMCOWKAYIKwYBBQUHAGEW
HGhOdHBZz01i8vd3d3LmRpZ21jZXJ0LmNvbS9DUFMwCAYGZ4EMAQICMHSGCCsGAQUF
BwEBBG8wWbTAKkBggrBgEFBQCcwAYYYaHROcDovL29jc3AuZGlnaWNlcnQuY29tMEUG
CCsGAQUFBzAChj1lodHRWO18vY2F jZXJ0cy5kaWdpY2VydC5jb20vRG1lnaUNlcnRF
QONTZWN1cmVTZXJ2ZXJIDQS5jcnQwDAYDVROTAQH/BAIWADAKBggghk JOPQQDAgNO
ADBlAJEAJoyy20ghlil/Kh9+psMcl10OChlQIvQF6AkojZS8yliarem8g5ngC3gelh
HROfExXxWLA JAuUeWRNHX4QJ910ogqMhsPk3NBOCsOmSt sNDNG6/DpCYw7XmjoG3y1LS7
ZkZZmgNn2Q8=

11)
if last_err() then return end
print (x)

1.13.112 xml_decode

Decode a lua value from an xml document.

x = xml_decode ('<body><foo fizz="buzz">bar</foo></body>")
if last_err() then return end

body = x['children'][1]
foo = body['children'][1]

print (foo['attrs']['fizz'])
print (foo['text'])

56 Chapter 1. Getting Started

sn0int Documentation

1.13.113 xml_named

Get a

named child element from a parent element.

x =
if 1
body
foo

if f

end

xml_decode ('<body><foo fizz="buzz">bar</foo></body>")
ast_err () then return end

= x['children'][1]
= xml_named(body, 'foo')
oo ~= nil then

print (foo)

1.13. Function reference

57

	Getting Started
	Installation
	Archlinux
	Mac OSX
	Debian >= bookwork, Ubuntu >= 22.10, Kali
	Debian <= bullseye, Ubuntu <= 22.04
	Fedora/CentOS/Redhat
	Docker
	Alpine
	OpenBSD
	Gentoo
	NixOS
	Windows

	Build from source
	Install dependencies
	Building

	Running your first investigation
	Installing the default modules
	Adding something to scope
	Running a module
	Running followup modules on the results
	Unscoping entities

	Autonoscope
	Domains
	IPs
	URLs

	Writing your first module
	Creating a repository
	Publish your module
	Publish your repo
	Reading data from stdin

	Database
	db_add
	db_add_ttl
	db_activity
	db_update
	db_select

	Structs
	Domains
	Subdomains
	IpAddrs
	URLs
	Emails
	Phonenumbers
	Devices
	Networks
	Accounts
	Breaches
	Images
	Ports
	Netblocks
	CryptoAddrs
	Activity
	Relations

	Activity
	Anatomy of an event
	Logging events
	Querying events
	Visualization

	Notifications
	Receiving notifications
	Setting up notification rules
	Testing notifications
	Running sn0int automatically

	Keyring
	Managing the keyring
	Using access keys in scripts
	Using access keys as source argument

	Configuration
	[core]
	[namespaces]
	[network]

	Sandbox
	Linux
	OpenBSD
	IPC Protocol
	Limitations
	Diagnosing a sandbox failure

	Function reference
	asn_lookup
	base64_decode
	base64_encode
	base64_custom_decode
	base64_custom_encode
	base32_custom_decode
	base32_custom_encode
	clear_err
	create_blob
	datetime
	db_add
	db_add_ttl
	db_activity
	db_select
	db_update
	dns
	error
	geoip_lookup
	hex
	hmac_md5
	hmac_sha1
	hmac_sha2_256
	hmac_sha2_512
	hmac_sha3_256
	hmac_sha3_512
	html_select
	html_select_list
	http_mksession
	http_request
	http_send
	http_fetch
	http_fetch_json
	img_load
	img_exif
	img_ahash
	img_dhash
	img_phash
	img_nudity
	info
	intval
	json_decode
	json_decode_stream
	json_encode
	key_trunc_pad
	keyring
	last_err
	md5
	mqtt_connect
	mqtt_subscribe
	mqtt_recv
	mqtt_ping
	pgp_pubkey
	pgp_pubkey_armored
	print
	psl_domain_from_dns_name
	ratelimit_throttle
	regex_find
	regex_find_all
	semver_match
	set_err
	sha1
	sha2_256
	sha2_512
	sha3_256
	sha3_512
	sleep
	sn0int_time
	sn0int_time_from
	sn0int_version
	sock_connect
	sock_upgrade_tls
	sock_options
	sock_send
	sock_recv
	sock_sendline
	sock_recvline
	sock_recvall
	sock_recvline_contains
	sock_recvline_regex
	sock_recvn
	sock_recvuntil
	sock_sendafter
	sock_newline
	sodium_secretbox_open
	status
	stdin_readline
	stdin_read_to_end
	str_find
	str_replace
	strftime
	strptime
	strval
	time_unix
	url_decode
	url_encode
	url_escape
	url_join
	url_parse
	url_unescape
	utf8_decode
	warn
	warn_once
	ws_connect
	ws_options
	ws_recv_text
	ws_recv_binary
	ws_recv_json
	ws_send_text
	ws_send_binary
	ws_send_json
	x509_parse_pem
	xml_decode
	xml_named

