

sn0int

sn0int is a semi-automatic OSINT framework and package manager. It was built
for IT security professionals and bug hunters to gather intelligence about a
given target or about yourself. sn0int is enumerating attack surface by
semi-automatically processing public information and mapping the results in a
unified format for followup investigations.

Among other things, sn0int is currently able to:

	Harvest subdomains from certificate transparency logs

	Harvest subdomains from various passive dns logs

	Sift through subdomain results for publicly accessible websites

	Harvest emails from pgp keyservers

	Enrich ip addresses with ASN and geoip info

	Harvest subdomains from the wayback machine

	Gather information about phonenumbers

	Bruteforce interesting urls

sn0int is heavily inspired by recon-ng and maltego, but remains more flexible
and is fully opensource. None of the investigations listed above are hardcoded
in the source, instead those are provided by modules that are executed in a
sandbox. You can easily extend sn0int by writing your own modules and share
them with other users by publishing them to the sn0int registry. This allows
you to ship updates for your modules on your own since you don’t need to send a
pull request.

Join us on IRC: irc.hackint.org:6697/#sn0int [https://webirc.hackint.org/#irc://irc.hackint.org/#sn0int]

Getting Started

	Installation
	Archlinux

	Mac OSX

	Debian >= bookwork, Ubuntu >= 22.10, Kali

	Debian <= bullseye, Ubuntu <= 22.04

	Fedora/CentOS/Redhat

	Docker

	Alpine

	OpenBSD

	Gentoo

	NixOS

	Windows

	Build from source
	Install dependencies
	Archlinux

	Mac OSX

	Debian/Ubuntu/Kali

	Alpine

	Docker

	OpenBSD

	Gentoo

	Windows

	Building

	Running your first investigation
	Installing the default modules

	Adding something to scope

	Running a module

	Running followup modules on the results

	Unscoping entities

	Autonoscope
	Domains

	IPs

	URLs

	Writing your first module
	Creating a repository

	Publish your module

	Publish your repo

	Reading data from stdin

	Database
	db_add

	db_add_ttl

	db_activity

	db_update

	db_select

	Structs
	Domains

	Subdomains

	IpAddrs

	URLs

	Emails

	Phonenumbers

	Devices

	Networks

	Accounts

	Breaches

	Images

	Ports

	Netblocks

	CryptoAddrs

	Activity

	Relations
	subdomain_ipaddr

	network_device

	breach_email

	Activity
	Anatomy of an event

	Logging events

	Querying events

	Visualization

	Notifications
	Receiving notifications
	Telegram

	Pushover

	Discord

	Signal

	Writing your own module

	Setting up notification rules

	Testing notifications

	Running sn0int automatically
	Monitors

	Timers

	Keyring
	Managing the keyring

	Using access keys in scripts

	Using access keys as source argument

	Configuration
	[core]

	[namespaces]

	[network]

	Sandbox
	Linux

	OpenBSD

	IPC Protocol

	Limitations

	Diagnosing a sandbox failure

	Function reference
	asn_lookup

	base64_decode

	base64_encode

	base64_custom_decode

	base64_custom_encode

	base32_custom_decode

	base32_custom_encode

	clear_err

	create_blob

	datetime

	db_add

	db_add_ttl

	db_activity

	db_select

	db_update

	dns

	error

	geoip_lookup

	hex

	hmac_md5

	hmac_sha1

	hmac_sha2_256

	hmac_sha2_512

	hmac_sha3_256

	hmac_sha3_512

	html_select

	html_select_list

	http_mksession

	http_request

	http_send

	http_fetch

	http_fetch_json

	img_load

	img_exif

	img_ahash

	img_dhash

	img_phash

	img_nudity

	info

	intval

	json_decode

	json_decode_stream

	json_encode

	key_trunc_pad

	keyring

	last_err

	md5

	mqtt_connect

	mqtt_subscribe

	mqtt_recv

	mqtt_ping

	pgp_pubkey

	pgp_pubkey_armored

	print

	psl_domain_from_dns_name

	ratelimit_throttle

	regex_find

	regex_find_all

	semver_match

	set_err

	sha1

	sha2_256

	sha2_512

	sha3_256

	sha3_512

	sleep

	sn0int_time

	sn0int_time_from

	sn0int_version

	sock_connect

	sock_upgrade_tls

	sock_options

	sock_send

	sock_recv

	sock_sendline

	sock_recvline

	sock_recvall

	sock_recvline_contains

	sock_recvline_regex

	sock_recvn

	sock_recvuntil

	sock_sendafter

	sock_newline

	sodium_secretbox_open

	status

	stdin_readline

	stdin_read_to_end

	str_find

	str_replace

	strftime

	strptime

	strval

	time_unix

	url_decode

	url_encode

	url_escape

	url_join

	url_parse

	url_unescape

	utf8_decode

	warn

	warn_once

	ws_connect

	ws_options

	ws_recv_text

	ws_recv_binary

	ws_recv_json

	ws_send_text

	ws_send_binary

	ws_send_json

	x509_parse_pem

	xml_decode

	xml_named

Installation

If available, please prefer the package shipped by operating system. If your
operating system has a package but you’re running on older version, please use
the build from source instructions instead.

Archlinux

$ pacman -S sn0int

Mac OSX

$ brew install sn0int

Debian >= bookwork, Ubuntu >= 22.10, Kali

There are prebuilt packages signed by a debian maintainer:

$ sudo apt install curl sq
$ curl -sSf https://apt.vulns.sexy/kpcyrd.pgp | sq keyring filter -B --handle 64B13F7117D6E07D661BBCE0FE763A64F5E54FD6 | sudo tee /etc/apt/trusted.gpg.d/apt-vulns-sexy.gpg > /dev/null
$ echo deb http://apt.vulns.sexy stable main | sudo tee /etc/apt/sources.list.d/apt-vulns-sexy.list
$ apt update
$ apt install sn0int

Debian <= bullseye, Ubuntu <= 22.04

There are prebuilt packages signed by a debian maintainer:

$ sudo apt install curl sq
$ curl -sSf https://apt.vulns.sexy/kpcyrd.pgp | sq dearmor | sudo tee /etc/apt/trusted.gpg.d/apt-vulns-sexy.gpg > /dev/null
$ echo deb http://apt.vulns.sexy stable main | sudo tee /etc/apt/sources.list.d/apt-vulns-sexy.list
$ apt update
$ apt install sn0int

Fedora/CentOS/Redhat

Using rust+cargo from the repos might work for you, but we only officially
support rust+cargo installed with rustup [https://rustup.rs/]. Have a look
at the docker image as an alternative.

$ dnf install @development-tools libsq3-devel libseccomp-devel libsodium-devel publicsuffix-list
$ git clone https://github.com/kpcyrd/sn0int.git
$ cd sn0int
$ cargo install -f --path .

Docker

$ docker run --rm --init -it -v "$PWD/.cache:/cache" -v "$PWD/.data:/data" kpcyrd/sn0int

Alpine

$ apk add sn0int

OpenBSD

$ pkg_add sn0int

Gentoo

$ layman -a pentoo
$ emerge --ask net-analyzer/sn0int

NixOS

$ nix-env -i sn0int

Windows

This is not recommended and only passively maintained. Please prefer linux in a
virtual machine if needed.

Make sure rust is installed and setup.

$ git clone https://github.com/kpcyrd/sn0int.git
$ cd sn0int
$ cargo install -f --path .

Build from source

It’s generally recommended to install a package if available.
This section is about building the binary from git.

Install dependencies

You need a recent rust compiler. It’s usually recommended to install a rust
compiler with rustup [https://rustup.rs/], but if you’re system ships the
most recent compiler in a package that works too. Note that some systems aren’t
fully supported by rustup (like OpenBSD and alpine) and you need to install
rust from a package in that case.

Archlinux

$ pacman -S geoip2-database libseccomp libsodium publicsuffix-list sqlite

Mac OSX

$ brew install libsodium

Debian/Ubuntu/Kali

$ apt install build-essential libsqlite3-dev libseccomp-dev libsodium-dev publicsuffix pkg-config

Warning

On a debian based system make sure you’ve installed rust with rustup.

Alpine

$ apk add sqlite-dev libseccomp-dev libsodium-dev

Docker

$ DOCKER_BUILDKIT=1 docker build -t kpcyrd/sn0int .

OpenBSD

$ pkg_add sqlite3 geolite2-city geolite2-asn libsodium

Gentoo

emerge --ask sys-libs/libseccomp dev-db/sqlite dev-libs/libsodium

Windows

You don’t need to install any dependencies on windows, but you need to use a
different build command in the next section.

Building

After all dependencies have been installed, simply build the binary:

$ cargo build --release

After the build finished the binary is located at target/release/sn0int.

Running your first investigation

This page is going to guide you through the process of setting up your
environment and running your first investigation.

Installing the default modules

By default, sn0int doesn’t have any modules installed. If you start up sn0int
it’s going to download some files that it needs and then suggests to install a
number of recommended modules:

$ sn0int

 ___/ .
 ____ , __ .' /\ ` , __ _/_
 (|' `. | / | | |' `. |
 `--. | | |,' | | | | |
 ___.' / | /`---' / / | __/

 osint | recon | security
 irc.hackint.org:6697/#sn0int

[+] Connecting to database
[+] Downloading public suffix list
[+] Downloading "GeoLite2-City.mmdb"
[+] Downloading "GeoLite2-ASN.mmdb"
[+] Loaded 0 modules
[*] No modules found, run pkg quickstart to install default modules
[sn0int][default] >

Typing pkg quickstart is going to get you a fair number of featured modules:

[sn0int][default] > pkg quickstart
[+] Installing kpcyrd/asn
[+] Installing kpcyrd/ctlogs
[+] Installing kpcyrd/dns-resolve
[+] Installing kpcyrd/geoip
[+] Installing kpcyrd/hackertarget-subdomains
[+] Installing kpcyrd/otx-subdomains
[+] Installing kpcyrd/passive-spider
[+] Installing kpcyrd/pgp-keyserver
[+] Installing kpcyrd/threatminer-ipaddr
[+] Installing kpcyrd/threatminer-subdomains
[+] Installing kpcyrd/url-scan
[+] Installing kpcyrd/waybackurls
[+] Loaded 12 modules
[sn0int][default] >

Adding something to scope

You probably want to separate your investigations so you should select a
workspace where your results should go:

[sn0int][default] > workspace demo
[+] Connecting to database
[sn0int][demo] >

Next, we have to start somewhere and add the first entity to our scope:

[sn0int][demo] > add domain
Domain: example.com
[sn0int][demo] >

Note

There is a concept of a domain vs a subdomain. We are referring to a domain
as everything that is a subdomain of a public suffix [https://publicsuffix.org/]. For example, .com
is a public suffix, which makes example.com a domain in sn0int terms. Every
subdomain of that, like www.example.com, is referred to as a subdomain.

Note that example.com can be added as a subdomain as well since it can hold
records. In that case, example.com is both the name of the dns zone, while
also being an entity in that zone.

You can confirm this by running a select on the domains we now have:

[sn0int][demo] > select domains
#1, "example.com"
[sn0int][demo] >

Something we don’t need right now, but is going to be useful later on is the
ability to filter your entities:

[sn0int][demo] > select domains where id=1
#1, "example.com"
[sn0int][demo] >
[sn0int][demo] > select domains where value like %.com
#1, "example.com"
[sn0int][demo] >
[sn0int][demo] > select domains where (value like e% and value like %m) or false
#1, "example.com"
[sn0int][demo] >

Note

Almost all entities have a value column that holds the primary value of
the entity.

Running a module

Now that we have something to get started with, we can run our first module.
First lets list all modules we have:

[sn0int][demo] > pkg list
kpcyrd/asn (0.1.0)
 Run a asn lookup for an ip address
kpcyrd/ctlogs (0.1.0)
 Query certificate transparency logs to discover subdomains
kpcyrd/dns-resolve (0.1.0)
 Query subdomains to discovery ip addresses and verify the record is visible
kpcyrd/geoip (0.1.0)
 Run a geoip lookup for an ip address
kpcyrd/hackertarget-subdomains (0.1.0)
 Query hackertarget for subdomains of a domain
kpcyrd/otx-subdomains (0.1.0)
 Query alienvault otx passive dns for subdomains of a domain
kpcyrd/passive-spider (0.1.0)
 Scrape known http responses for urls
kpcyrd/pgp-keyserver (0.1.0)
 Query pgp keyserver for email addresses
kpcyrd/threatminer-ipaddr (0.1.0)
 Query ThreatMiner passive dns for subdomains of an ip address
kpcyrd/threatminer-subdomains (0.1.0)
 Query ThreatMiner passive dns for subdomains of a domain
kpcyrd/url-scan (0.1.0)
 Scan subdomains for websites
kpcyrd/waybackurls (0.1.0)
 Discover subdomains from wayback machine
[sn0int][demo] >

Let’s start by querying certificate transparency logs:

[sn0int][demo] > use ctlogs
[sn0int][demo][kpcyrd/ctlogs] > run
[*] "example.com" : Subdomain: "www.example.com"
[*] "example.com" : Subdomain: "m.example.com"
[*] "example.com" : Subdomain: "dev.example.com"
[*] "example.com" : Subdomain: "products.example.com"
[*] "example.com" : Subdomain: "support.example.com"
[+] Finished kpcyrd/ctlogs
[sn0int][demo][kpcyrd/ctlogs] >

Looks like we’ve discovered some subdomains here. It might be tempting to throw
some of them in a browser but hold on, there’s a more efficient way to approach
this.

Hint

You can run the modules concurrently with run -j3.

Running followup modules on the results

A lot of time has been spent on the database part. While it sort of feels like
a no-sql database we are actually enforcing a schema for a reason instead of
just using generic dictionaries and calling it a day.

It’s crucial that entities created by one module can be picked up by another
module, like LEGOs. Let’s continue with a module to query the dns records:

[sn0int][demo][kpcyrd/ctlogs] > use dns-resolve
[sn0int][demo][kpcyrd/dns-resolve] > run
[*] "www.example.com" : Updating "www.example.com" (resolvable => true)
[*] "www.example.com" : IpAddr: 93.184.216.34
[*] "www.example.com" : "www.example.com" -> 93.184.216.34
[*] "m.example.com" : Updating "m.example.com" (resolvable => false)
[*] "dev.example.com" : Updating "dev.example.com" (resolvable => false)
[*] "products.example.com" : Updating "products.example.com" (resolvable => false)
[*] "support.example.com" : Updating "support.example.com" (resolvable => false)
[+] Finished kpcyrd/dns-resolve
[sn0int][demo][kpcyrd/dns-resolve] >

Two things happened here: We’ve discovered some IP addresses and added them to
scope, and we also updated our subdomain entities with new information, since
we now know which of them are resolvable and which aren’t.

Let’s run the next module, which is actually going to check for websites on
them, but let’s only target subdomains that we know are resolvable:

[sn0int][demo][kpcyrd/dns-resolve] > use url-scan
[sn0int][demo][kpcyrd/url-scan] > target
#1, "www.example.com"
 93.184.216.34
#2, "m.example.com"
#3, "dev.example.com"
#4, "products.example.com"
#5, "support.example.com"
[sn0int][demo][kpcyrd/url-scan] > target where resolvable
[+] 1 entities selected
[sn0int][demo][kpcyrd/url-scan] > target
#1, "www.example.com"
 93.184.216.34
[sn0int][demo][kpcyrd/url-scan] >

We can both preview and limit the targets that are going to be passed to the
module with the target command. Once we are satisfied with our selection we can
run this module:

[sn0int][demo][kpcyrd/url-scan] > run
[*] "www.example.com" : Url: "http://www.example.com/" (200)
[*] "www.example.com" : Url: "https://www.example.com/" (200)
[+] Finished kpcyrd/url-scan
[sn0int][demo][kpcyrd/url-scan] >

We’ve now probed both port 80 and port 443 for each subdomain and found two
http responses this way. If you want a list of urls you may want to visit in
your browser can now query them:

[sn0int][demo][kpcyrd/url-scan] > select urls
#1, "http://www.example.com/" (200)
#2, "https://www.example.com/" (200)
[sn0int][demo][kpcyrd/url-scan] >

Unscoping entities

Something you are going to run into is that modules are too greedy and add
things to the scope we are not interested in. You can delete them using the
delete command, but those are likely picked up by a module again.

What you can do instead is setting a flag on an entity that removes it from
our scope. This is done using the noscope command:

[sn0int][demo] > use ctlogs
[sn0int][demo][kpcyrd/ctlogs] > target
#1, "example.com"
[sn0int][demo][kpcyrd/ctlogs] > add domain
Domain: google.com
[sn0int][demo][kpcyrd/ctlogs] > target
#1, "example.com"
#2, "google.com"
[sn0int][demo][kpcyrd/ctlogs] > noscope domains where value=google.com
[+] Updated 1 rows
[sn0int][demo][kpcyrd/ctlogs] > target
#1, "example.com"
[sn0int][demo][kpcyrd/ctlogs] >

Entities that are unscoped are automatically ignored by all modules.

You can reverse this using the scope command:

[sn0int][demo][kpcyrd/ctlogs] > target
#1, "example.com"
[sn0int][demo][kpcyrd/ctlogs] > scope domains where true
[+] Updated 2 rows
[sn0int][demo][kpcyrd/ctlogs] > target
#1, "example.com"
#2, "google.com"
[sn0int][demo][kpcyrd/ctlogs] >

Hint

All entities have this field, you can refer to it in queries using
unscoped=1.

Autonoscope

Instead of manually unscoping everything you can also define so called
autonoscope rules. Those are executed from most specific to least specific and
the first match wins. If no rule matches, the default is in-scope:

[sn0int][demo] > # add the domain first
[sn0int][demo] > # this is necessary because we only want to partially unscope example.com
[sn0int][demo] > add domain example.com
[sn0int][demo] >
[sn0int][demo] > # automatically noscope all subdomains
[sn0int][demo] > autonoscope add domain example.com
[sn0int][demo] > # except subdomains of prod.example.com
[sn0int][demo] > autoscope add domain prod.example.com
[sn0int][demo] >
[sn0int][demo] > autonoscope list
 scope domain "prod.example.com"
noscope domain "example.com"
[sn0int][demo] >
[sn0int][demo] > # this is going to be out-of-scope
[sn0int][demo] > add subdomain www.example.com
[sn0int][demo] > # this is going to be in-scope
[sn0int][demo] > add subdomain db.prod.example.com
[sn0int][demo] >
[sn0int][demo] > select subdomains
#1, "www.example.com"
#2, "db.prod.example.com"
[sn0int][demo] > select subdomains where unscoped=0
#2, "db.prod.example.com"
[sn0int][demo] > select subdomains where unscoped=1
#1, "www.example.com"
[sn0int][demo] >

Domains

Autonoscope rules for domains are applied to the following structs:

	domains

	subdomains

	urls

Example rules:

autonoscope add domain example.com
autonoscope add domain staging.example.com
autonoscope add domain com
autonoscope add domain .

IPs

Autonoscope rules for IPs are applied to the following structs:

	ipaddrs

	netblocks

	ports

Example rules:

autonoscope add ip 0.0.0.0/0
autonoscope add ip ::/0
autonoscope add ip 192.168.0.0/16
autonoscope add ip 10.13.33.37/32

URLs

Autonoscope rules for urls are applied to the following structs:

	urls

Note that these rules are specific to a certain origin (like
https://example.com) and are used to filter paths.

Example rules:

autonoscope add url https://example.com/
autonoscope add url https://example.com/admin/
autonoscope add url https://example.com/a/b/c/d

Writing your first module

Scripting is the core feature in sn0int. It’s not strictly required, but if you
want to write your own modules, this section is for you.

Creating a repository

It’s highly recommended to use a VCS for development, so let’s start by setting
that up. We’re going to assume you store your repos in ~/repos but you’re
free to change that to something else:

$ git init ~/repos/sn0int-modules
$ cd ~/repos/sn0int-modules

Note

If you’re using github you can also create a repo from the module repo
template [https://github.com/sn0int/sn0int-modules].

We need to add this folder to the sn0int config file so it’s correctly detected
when starting sn0int. Open the config file in your prefered
editor. Note that the file does not exist by default and the path is different
depending on your operating system. On linux you would open the config file
with:

$ vim ~/.config/sn0int.toml

Add the following:

[namespaces]
your_github_name = "~/repos/sn0int-modules"

Every module we’re adding to ~/repos/sn0int-modules is now going to be
picked up by sn0int.

Make sure you’re still in the right folder and add your first module:

sn0int new first.lua

This is going to generate some boilerplate for you that every module needs to
load successfully. Afterwards we can edit it like this:

-- Description: ohai wurld
-- Version: 0.1.0
-- Source: domains
-- License: GPL-3.0

function run(arg)
 -- TODO: do something here
end

	Description (mandatory)

	This should be a short text that describes what your module is doing.

	Version (mandatory)

	Every module requires a semver [https://semver.org/] version. You can just set it to 0.1.0
during development, but you need to increase it every time you publish your
module. If you don’t care about that one, just keep increasing 0.X.0.

	Source (mandatory)

	This is going to specify what kind of entities we’re interested in. If we
specify domains our module is going to be called with all domains that
are targeted.

	domains

	subdomains

	ipaddrs

	urls

	emails

	License (mandatory)

	This is somewhat special. We require that every module is licensed under an
open source license. Pick one of the following licenses.

	MIT - https://opensource.org/licenses/MIT

	GPL-3.0 - https://opensource.org/licenses/gpl-license

	LGPL-3.0 - https://opensource.org/licenses/lgpl-license

	BSD-2-Clause - https://opensource.org/licenses/BSD-2-Clause

	BSD-3-Clause - https://opensource.org/licenses/BSD-3-Clause

	WTFPL - https://spdx.org/licenses/WTFPL.html

	function run(arg) (mandatory)

	This is where the actual magic of our module happens. Our function is going
to be called in a loop for each entity that is targeted by the user.

Let’s continue. For the sake of an hello world we’re going to take some
domains, check if a www subdomain exists and if it does, add it to the
database.

-- Description: Scan for www. subdomains
-- Version: 0.1.0
-- Source: domains
-- License: GPL-3.0

function run(arg)
 subdomain = 'www.' .. arg['value']
 info(subdomain)
end

This is already enough to execute it. Make sure you’ve added a domain to scope
with add domain example.com, save your file and run it like this:

sn0int run -f ./first.lua

We should see some output by our info function.

Note

info is useful for development but you usually want your module to run
quietly, so before publishing either remove it or replace it with debug.

Next, we want to actually resolve that name, we’re going to use the dns
function for that. This function takes a name and a query type and returns a
result. Note that this function might fail, in which case we want to abort our
function. We do that by checking if the return value of last_err() is
truth-y.

-- Description: Scan for www. subdomains
-- Version: 0.1.0
-- Source: domains
-- License: GPL-3.0

function run(arg)
 subdomain = 'www.' .. arg['value']

 records = dns(subdomain, {
 record='A'
 })
 if last_err() then return end

 info(records)
end

If you run your module again you’re going to see some output, either
{"answers":[somedata],"error":null} or
{"answers":[],"error":"NXDomain"}. If the dns reply doesn’t indicate an
error this means the subdomain exists and we can add it to our database with
resolvable being set to true.

-- Description: Scan for www. subdomains
-- Version: 0.1.0
-- Source: domains
-- License: GPL-3.0

function run(arg)
 subdomain = 'www.' .. arg['value']

 records = dns(subdomain, {
 record='A'
 })
 if last_err() then return end

 if records['error'] == nil then
 db_add('subdomain', {
 domain_id=arg['id'],
 value=subdomain,
 resolvable=true,
 })
 end
end

Hint

See the database section to understand how the database works in detail.

If we execute our finished module one more time it’s going to log that it
discovered a subdomain, if it doesn’t, try adding more domains to scope. Note
that this only happens the first time. Modules that don’t discover anything or
don’t discover anything new exit silently.

There’s still some room for improvement, for example, since we already resolved
that record, we could also add the ip address to the scope and link it to the
subdomain we added.

Hint

For debugging purposes you can increase the verbosity with sn0int run -v
so database operations are logged even if nothing was changed, or with
sn0int run -vv to enable debug() output.

Publish your module

The public registry uses github usernames to namespace the registry. This means
you need to authenticate to the registry using your github username. This can
be done using:

sn0int login

sn0int is going to open a new tab in your browser, if you are already signed
into your github account you only need to confirm an authorization request. The
application doesn’t need any of your data, so it’s only asking you to confirm
your identity.

Afterwards publish your module with:

sn0int publish ./first.lua

Please also make sure you publish your repository to github so other people can
submit pull requests. The recommended repository location is:

https://github.com/<your-username>/sn0int-modules

Publish your repo

It is highly recommended to publish your repository on github so people can
file issues and pull requests for your module. If you’ve been following along
with the github template you can simply commit your changes and push them.

Your repository would look like one of these:

	https://github.com/kpcyrd/sn0int-modules

	https://github.com/ysf/sn0int-modules

	https://github.com/cybiere/sn0int-modules

Reading data from stdin

Sometimes you need to read data that can’t be easily accessed from within the
sandbox, like output of other programms or file content. In that case you can
write a module that reads from stdin:

-- Description: Read from stdin
-- Version: 0.1.0
-- License: GPL-3.0

function run()
 while true do
 x = stdin_readline()
 if x == nil then
 break
 end
 info(x)
 end
end

Write it to a file and run it like this:

% echo hello | sn0int run --stdin -vvf stdin.lua
[*] anonymous/stdin : "hello\n"
[+] Finished anonymous/stdin
%

This is going to read one line at a time and allows you to process it with
regular expressions and add data to the database.

Note

If you get an error like Failed to read stdin: "stdin is unavailable"
make sure the --stdin flag is set.

Database

There are a few things you need to understand how the database works to use it
efficiently.

The database that is backing sn0int is sqlite, but the api that is exposed to
the user and scripts is an nosql-ish object store. The query language that is
exposed to the user is still very similar to sql, except that it lacks a column
statement:

select subdomains where value like %.example.com
^ ^ ^ ^ ^
| | | | this value is going to be quoted automatically
| | | |
| | | this triggers automatic quoting
| | |
| | apply a filter, this translates to sql quite literally
| |
| the entity we want to select is a subdomain.
| this affects the table and the deserializer
|
select entities

This is how almost all user facing functions work that operate on the database.
The functions that are available for scripting are a bit more object based and
described below.

db_add

This operation is somewhat straight forward. It adds an entity to the
database:

domain_id = db_add('domain', {
 value='example.com',
})

If this entity conflicts with an entity that already exists, an upsert is
triggered and an db_update is performed instead.

Note

This function may return nil if the entity already exists, but has been
removed from scope with noscope. Everytime you use db_add you need
to make sure that the ID that has been returned is not nil.

db_add_ttl

Add a temporary entity to the database. This is commonly used to insert
temporary links that automatically expire over time. If the entity already
exists and is also marked as temporary the new ttl is going to replace the old
ttl. If the entity already exists but never expires we are not going to add a
ttl.

-- this link is valid for 2min
domain_id = db_add_ttl('network-device', {
 network_id=1,
 device_id=13,
}, 120)

db_activity

Log an activity event. A basic event looks like this:

db_activity({
 topic='harness/activity-ping:dummy',
 time=sn0int_time(),
 content={
 a='b',
 foo={
 bar=1337,
 },
 msg='ohai',
 },
})

This function is explained in detail in the activity
section.

db_update

Update some mutable fields of an entity:

db_update('ipaddr', arg, {
 asn=lookup['asn'],
 as_org=lookup['as_org'],
})

The first parameter is usually the same arg that your script was called with.
Usually you can use db_add instead of db_update due to the upsert feature, but
db_update is still slightly faster.

Note

Some fields are immutable and can not be updated.

db_select

This function is used to check if something is in scope. If the entity has been
added to the database and has not been removed from scope, this function
returns that entities id. This is somewhat similar to db_add, except that
db_select never adds anything to the database.

domain_id = db_select('domain', 'example.com')
if domain_id ~= nil then
 -- do something
end

This function only accepts a string instead of a lua table. This string is used
to filter on the value column.

Structs

This section describes all supported structs in depth. Please refer to this
section if in doubt about the correct usage of fields to ensure
interoperability between modules.

Domains

Represents a registerable domain as defined by the public suffix list [https://publicsuffix.org/]. If in doubt check psl_domain_from_dns_name.

	value

	The domain name, like example.co.uk.

Subdomains

A subdomain of a domain. The depth is arbitrary, so
foo.example.co.uk and foo.bar.example.co.uk are both valid subdomains
of example.co.uk.

	value

	The subdomain, like foo.bar.example.co.uk.

	domain_id

	The numeric id of a domain struct.

	resolvable

	Whether the subdomain can be resolved to a A/AAAA record. nil if unknown.

IpAddrs

An ip address. Note that most of these fields are geoip related and an
approximation instead of an actual location.

	value

	The ip address.

	family

	The address family of the ip address, either 4 or 6.

	continent

	The continent associated with this ip address.

	continent_code

	The continent code of the continent field, eg NA.

	country

	The country associated with this ip address.

	country_code

	The country code of the country field, eg US.

	city

	The city associated with this ip address.

	latitude

	Latitude associated with this ip address.

	longitude

	Longitude associated with this ip address.

	asn

	The number of the autonomous system this ip belongs to.

	as_org

	The organization of the autonomous system this ip belongs to.

	description

	This field is sn0int internal if we have additional information about this
ip address, for example technical identifiers from aws.

	reverse_dns

	The reverse dns name setup for this ip address.

URLs

	subdomain_id

	The numeric id of a subdomain struct.

	value

	The url, including a schema, hostname and path.

	status

	The http status code, like 200.

	body

	The raw response body. This can be any mime type.

	online

	Whether or not the url gives a http response (even if it’s an error).

	title

	The parsed <title> of the page, if available.

	redirect

	If the server replied with a redirect, this is the url it redirected to.

Emails

	value

	The email address.

	displayname

	The display name of a given email address: this is the name <foo@example.com>.

	valid

	Whether that email address is valid or has been disabled.

Phonenumbers

	value

	The phone number in E.164 format (+491234567)

	name

	An alias we can assign to this phone number. This alias is sn0int internal.

	valid

	Whether the number is assigned to a customer.

	last_online

	The last time this number has been online.

	country

	The country this number is associated with.

	carrier

	The name of the carrier this numer is registered with.

	line

	The type of the phone number, can be landline, mobile or voip.

	is_ported

	Whether this number has been ported to a different carrier.

	last_ported

	The last time this number has been ported.

	caller_name

	The name of the owner of the phone number.

	caller_type

	The type of caller, eg business or consumer.

Devices

	value

	The devices mac address or another identifier if needed.

	name

	An alias we can assign to this device. This alias is sn0int internal.

	hostname

	The hostname configured on the device.

	vendor

	The hardware vendor of the device. This is usually derived from the mac
address.

	last_seen

	The last time we’ve observed the device somewhere.

Networks

A wired or wireless network at a specific location that a device could be
connected to.

	value

	The network name. This can be an ssid or any other identifier but should be
unique.

	latitude

	Latitude of the networks location.

	longitude

	Longitude of the networks location.

	description

	A human readable description in case the value is a technical identifier.

Accounts

A users account or profile on a webservice, like github or instagram.

	service

	The identifier of the service/website. It’s recommended to use the websites
domain for this as defined in Domains.

	username

	The users unique identifier, like the login name. If the login name is not
known or the system doesn’t use login names, use the email address instead.

	displayname

	The users display name. This name is often not unique and may contain the
users real name.

	email

	The email address associated with the account.

	url

	The url of the public profile if available.

	last_seen

	The last time this account has been active/online.

	birthday

	The users birthday set on the account.

	phonenumber

	The phonenumber associated with the account.

	profile_pic

	The blob identifier of the users current profile picture.

Breaches

Either a breach of a specific website, a breach compilation or a breach
notification service.

	value

	The name of the breach, breach compilation or notification service.

Images

	value

	The id that identifies the blob. This id is deterministic based on file
content.

	filename

	This field is used if we have a well known filename for the content.

	mime

	The image mimetype, like image/png or image/jpeg.

	width

	The width of the image.

	height

	The height of the image.

	created

	The date and time this image has been taken.

	latitude

	Latitude this picture has been taken.

	longitude

	Longitude this picture has been taken.

	nudity

	A score that classifies nudity in this picture. The score goes from 0 to 2
and is commonly calculated with img_nudity. A score above 1 means
nudity has been detected.

	ahash

	The Mean (aHash) perceptual hash.

	dhash

	The Gradient (dHash) perceptual hash.

	phash

	The DCT (pHash) perceptual hash.

Ports

The status of a port on an ip address.

	ip_addr_id

	The numeric id of an ipaddr struct.

	ip_addr

	The actual ipaddr.

	port

	The port number.

	status

	The status of the port, either open or closed.

	banner

	The service banner we discovered on this port.

	service

	The service that is running on this port.

	version

	The version of the service running on this port.

Netblocks

A netblock is a network address range that has been allocated to an individual,
organization or company. Those are commonly found when running whois lookups on
an ip address.

Consider the following example: Running a whois lookup on 140.82.118.4 (one
of the addresses currently in use by github) returns that this address belongs
to the netrange 140.82.112.0 - 140.82.127.255, so the netblock in this case
is 140.82.112.0/20.

	family

	This is either 4 or 6 and populated automatically.

	value

	This is the network range in CIDR notation.

	asn

	The number of the autonomous system this network belongs to.

	as_org

	The organization of the autonomous system this network belongs to.

	description

	This field isn’t strictly defined and meant to be used as a human
meaningful name if available.

CryptoAddrs

A cryptoaddr is any cryptocurrency address and not tied to a specific currency.

	value

	The address string. This looks like 1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2.

	currency

	The identifier for a specific currency. This is usually the ticker symbols,
like xbt, zec or xmr.

	denominator

	Balance is tracked internally using 64 bit integers (signed, for technical reasons). Balance is supposed to be the lowest unit, so in case of bitcoin you’d write 100,000,000 satoshi instead of 1 bitcoin. Since this value is inconvinient to work with we’re using the denominator to display values. In case of bitcoin you’d set it to 8.

	balance

	The current balance of the address, in the lowest possible unit. In case of bitcoin this would be satoshis.

	received

	The total amount of currency received by this address.

	first_seen

	The first time currency was sent to this address.

	last_withdrawal

	The last time a transaction signed by this address was observed.

	description

	A human readable note for this address.

Activity

Activity is different from all other structs, have a look at the Activity
Section.

Relations

Relations are linking two structs together. The link may contain additional information.

subdomain_ipaddr

Links an ip address to a subdomain.

	subdomain_id

	The numeric id of a subdomain struct.

	ip_addr_id

	The numeric id of an ip addr struct.

network_device

Links a device to a network. This is commonly used with db_add_ttl so the
link automatically expires. This is frequently used to monitor networks for
known and unknown devices.

	network_id

	The numeric id of a network struct.

	device_id

	The numeric id of a device struct.

	ipaddr

	The ip address assigned to the device.

	last_seen

	The last time we’ve seen the device on that network.

breach_email

Links an email to a breach. If we know the password as well we can add it to
the link. If we don’t know the password we can leave it blank and fill it
later. An email can be linked to a breach multiple times with different
passwords. There is a special upserting logic in place to support this.

	breach_id

	The numeric id of a breach struct.

	email_id

	The numeric id of an email struct.

	password

	The password for that email in the breach.

Activity

So far we’ve learned about regular structs, but activity is
special.

Activity is an event tied to a specific time and topic and has a small amount
of data piggybacked to it.

Anatomy of an event

	topic

	This is some freestyle text used to group events to a specific topic. This
must not conflict with other modules unless there’s a very good reason.

The topic should look like kpcyrd/example:something, with something
being a meaningful unique identifier for whatever is generating these
events, like a mac address or an account name/id.

The rules around this might become stricter in the future.

	time

	The most important part of the event: The time and date it happened.

	initial

	This value can not be set but might be present in sn0int output. See Querying events.

	uniq (optional)

	This is an optional feature to deduplicate events. Assuming you’re
importing posts by an account, you wouldn’t want to store a new event for
each post you already imported. If you set this field to the technical post
id then sn0int would skip the event if it already has an event with the
same topic and uniq combination to avoid inserting duplicates.

	latitude (optional)

	Latitude - if you can tie the event to a specific location.

	longitude (optional)

	Longitude - if you can tie the event to a specific location.

	radius (optional)

	The location radius in meters. If the position you got has a precision of
100 meters set this value to 100.

	content

	Arbitrary data that you want to attach to the event. This doesn’t need to
be a string and can be an arbitrary object that is then stored as json
string.

Logging events

An activity event can be logged with db_activity:

db_activity({
 topic='harness/activity-ping:dummy',
 time=sn0int_time(),
 content={
 a='b',
 foo={
 bar=1337,
 },
 msg='ohai',
 },
})

Logging an event that has a location attached could look like this:

db_activity({
 topic='harness/activity-ping:dummy',
 time=sn0int_time(),
 latitude=40.726662,
 longitude=-74.036677,
 radius=50,
 content={
 a='b',
 foo={
 bar=1337,
 },
 msg='ohai',
 },
})

Making sure an event is not logged twice can be done with uniq:

-- create the first event
db_activity({
 topic='harness/activity-ping:dummy',
 time=sn0int_time(),
 uniq='12345',
 content='ohai',
})

-- this does nothing because we already have an event with this topic+uniq combination
db_activity({
 topic='harness/activity-ping:dummy',
 time=sn0int_time(),
 uniq='12345',
 content='ohai',
})

-- this creates a new event because uniq is different
db_activity({
 topic='harness/activity-ping:dummy',
 time=sn0int_time(),
 uniq='6789',
 content='ohai',
})

-- this also creates a new event because topic is different
db_activity({
 topic='harness/activity-ping:something-else',
 time=sn0int_time(),
 uniq='6789',
 content='ohai',
})

Querying events

There is a commandline interface that can be used to query all events we’ve
logged. To get everything (sorted by time):

sn0int activity

To limit the output to a specific topic:

sn0int activity -t harness/activity-ping:dummy

To limit it to a specific time frame:

everything since
sn0int activity --since 2020-01-13T04:20:00
everything until
sn0int activity --until 2020-01-13T04:20:00
both
sn0int activity --since yesterday --until today

When using --since you might also want to know the previous state and use
it as an initial value. Consider this example:

2020-01-13 14:30:00 # user goes offline
2020-01-13 23:59:00 # user goes online
2020-01-14 09:30:00 # user goes idle
2020-01-14 14:20:00 # user goes offline

If we’re running a query like sn0int activity --since 2020-01-14T00:00:00
the program consuming the output wouldn’t know that the user is initially
online because we’re only getting this data:

{"id":8,"topic":"foo/bar:asdf","time":"2020-01-14T09:30:00","content":{"state":"idle"}}
{"id":9,"topic":"foo/bar:asdf","time":"2020-01-14T14:20:00","content":{"state":"offline"}}

We can tweak this with sn0int activity --initial --since
2020-01-14T00:00:00 to include one more event that we only use to populate
the intial state:

{"id":7,"initial":true,"topic":"foo/bar:asdf","time":"2020-01-13T23:59:00","content":{"state":"online"}}
{"id":8,"topic":"foo/bar:asdf","time":"2020-01-14T09:30:00","content":{"state":"idle"}}
{"id":9,"topic":"foo/bar:asdf","time":"2020-01-14T14:20:00","content":{"state":"offline"}}

Visualization

There is no visualization built in, there may be external frontends for this in
the future. You’re very welcome to write one!

Notifications

If you run sn0int unattended nobody might see the sn0int output. For cases like
this you can configure notifications to send you a push notification in case
something interesting happens. This is also especially useful if you have
sn0int setup to run automatically.

Receiving notifications

Notifications are just regular sn0int modules. You can install them just like
any other module or write your own. This section contains walkthroughs on how
to setup common integrations.

Telegram

Install the telegram notification module from the registry:

sn0int pkg install kpcyrd/notify-telegram

Open your telegram app and open a chat with @botfather. Send /newbot
and answer the questions. Copy bot_token and open this url in your browser:

Back on your app, open the t.me link to start a new chat with your bot, then
send /start. Reload the page in your browser, you should see the new
message you sent. Copy the chat_id.

Test your tokens are working correctly by sending yourself a notification:

sn0int notify exec kpcyrd/notify-telegram -o bot_token=1337:foobar -o chat_id=1337 'hello world'

You should receive hello world from your bot on Telegram.

Pushover

Install the pushover notification module from the registry:

sn0int pkg install kpcyrd/notify-pushover

Signup for pushover and configure the app on your device. Copy th user key
visible on the pushover dashboard. Click “Create an Application/API Token”. Set
“sn0int” as name and set an icon if you want to. Copy the api token.

Test your tokens are working correctly by sending yourself a notification:

sn0int notify exec kpcyrd/notify-pushover -o user_key=asdf1337 -o api_token=asdf1337 'hello world'

You should receive hello world as a push notification.

Discord

Install the discord notification module from the registry:

sn0int pkg install kpcyrd/notify-discord

Decide which channel should receive notifications (or create a new one). Open
the “Server Settings” of your discord server. Click on “Webhooks”. Click
“Create Webhook”. Configure the Name and Channel. Copy the Webhook URL.

Test your tokens are working correctly by sending yourself a notification:

sn0int notify exec kpcyrd/notify-discord -o url=https://discord.com/api/webhooks/1337/asdf 'hello world'

You should receive hello world in your discord channel.

Signal

Install the sn0int notification module from the registry:

sn0int pkg install kpcyrd/notify-signal

This module allows end-to-end encrypted notifications, but it’s also difficult
to setup. You need a second phone number and install both signal-cli [https://github.com/AsamK/signal-cli] and sn0int-signal [https://github.com/kpcyrd/sn0int-signal].

After you’ve registered your second phone number with signal-cli, you can use
sn0int-signal to expose a minimal api for notify-signal. For more detailed
instructions and how to start the api at boot, see the sn0int-signal README [https://github.com/kpcyrd/sn0int-signal].

Read the secret key generated at /etc/sn0int-signal.key and send a
notification to the signal phone number:

sn0int notify exec kpcyrd/notify-signal -o to=+31337 -o secret=asdf 'hello world'

You should receive hello world from the number signed up with signal-cli.

Writing your own module

Make sure you’ve read the detailed instructions on how to get setup with
module development.

Create a new sn0int module like this:

sn0int new ~/repos/sn0int-modules/notify-custom.lua

Edit the -- Source: so it takes notifications as input:

-- Description: TODO your description here
-- Version: 0.1.0
-- License: GPL-3.0
-- Source: notifications

function run(arg)
 -- TODO your code here
 -- https://sn0int.readthedocs.io/en/stable/reference.html

 debug(arg)
 info(arg['subject'])
 info(arg['body'])
end

Execute your script:

sn0int notify exec notify-custom 'hello world'

You most likely need to pass options to avoid hard-coding keys into your
script. Options can be fetched like this:

-- Description: TODO your description here
-- Version: 0.1.0
-- License: GPL-3.0
-- Source: notifications

function run(arg)
 -- TODO your code here
 -- https://sn0int.readthedocs.io/en/stable/reference.html

 local foo = getopt('foo')
 if not foo then return 'Missing -o foo= option' end

 info('foo: ' .. foo)
 info('subject: ' .. arg['subject'])
end

And passed like this:

sn0int notify exec notify-custom -o "foo=hello world" 'ohai'

Setting up notification rules

We now know how to trigger notifications manually, but we would rather trigger
notifications if a module runs into something interesting.

You can setup subscriptions on specific topics and then have a notification
script execute automatically.

Lookup the location of your sn0int config file:

sn0int paths

And open it in an editor of your choice:

vim /home/user/.config/sn0int.toml

A basic configuration could look like this:

You can have multiple notification sections, this one is named
`demo-telegram-integration`
The label can be set to whatever you want, but you may need to add
double-quotes to use some characters.
[notifications.demo-telegram-integration]
If this option is present, the notification must originate from one of
the following workspaces.
workspaces = ["default", "some-workspace"]
If this option is present, the notification must match one of the
filters. You can use `*` as a wildcard to match everything except `:`.
topics = ["activity:harness/activity-ping:*"]
Mandatory: the module to execute.
script = "kpcyrd/notify-telegram"
The options to pass to the module, if any.
Can be accessed with `getopt`
options = [
 "bot_token=1337:foobar",
 "chat_id=1337",
]

All options except script are optional, but setting filters is highly
recommended.

Testing notifications

To test if your configuration works correctly you can create an event manually:

sn0int -w some-workspace notify send activity:harness/activity-ping:dummy "hello world"

If it matches any of your rules you should receive a push notifications.

Note

If you want to test just the routing without actually sending something, add --dry-run.

Running sn0int automatically

Support for this is going to improve in the future, but you can already set
this up if you’re ok with a slightly buggy experience.

Monitors

Some modules are long-running and either wait for an event from a server or
have custom polling built in that’s usually configurable with an -o
interval= option. If your module has a non-trivial setup phase, an author may
take this approach.

Enable the service to run on boot:

systemctl enable --now sn0int-your-new-service.service

Timers

If the module is only one-shot you can set it up to run with a timer:

Setup the timer like this:

systemctl enable --now sn0int-your-other-service.timer

Keyring

A common problem is that you need either an api key or a username/password
combination. Instead of hardcoding it in the script you should request them
from the keyring. In order to do this you need to request permissions to those
credentials.

Managing the keyring

The keyring is a simple namespaced key-value store:

[sn0int][default] > keyring add aws:AKIAIOSFODNN7EXAMPLE
Secretkey: keep-this-secret
[sn0int][default] > keyring list
aws:AKIAIOSFODNN7EXAMPLE
[sn0int][default] >
[sn0int][default] > keyring list aws
aws:AKIAIOSFODNN7EXAMPLE
[sn0int][default] > keyring list instagram
[sn0int][default] >
[sn0int][default] > keyring get aws:AKIAIOSFODNN7EXAMPLE
Namespace: "aws"
Access Key: "AKIAIOSFODNN7EXAMPLE"
Secret: "keep-this-secret"
[sn0int][default] >

If the service uses a username-password combination, set the username as the
access key and the password as the secret.

If the service uses only a secret key for the api, set the secret key as the
access key and leave the secret blank.

A script doesn’t automatically get access to requested keyring namespaces.
Instead the user is asked to confirm those requests to limit abusive scripts.

Using access keys in scripts

We can request all keys of a certain namespace in our script metadata. This is
going to prompt the user to grant the script access. This can be done for
multiple namespaces in the same script:

-- Keyring-Access: aws
-- Keyring-Access: asdf

If the user granted us access to those keys we can read them with keyring:

creds = keyring('aws')
debug(creds[1]['access_key'])
debug(creds[1]['secret_key'])

This returns a list of all keys in that namespace. Any empty list is returned
if the user doesn’t have any keys in that namespace.

If you want to allow the user to select a specific script you can introduce an
option that is set by the user and then filter creds until the
access_key matches.

Using access keys as source argument

We can also use the access keys as source argument. This is useful if each
account has access to different things and we want to read through all of them.

Since access key permissions are granted per namespace we need to specify which
credentials we want to use.

-- Keyring-Access: aws
-- Source: keyring:aws

Configuration

This section documents the config file. By default this file does not exist and
a default configuration is used instead.

	Linux/BSD

	~/.config/sn0int.toml

	OSX

	~/Library/Preferences/sn0int.toml

	Windows

	%APPDATA%/sn0int.toml

[core]

	registry

	Configure the registry you want to use. Defaults to https://sn0int.com.

	no-autoupdate

	sn0int is going to check if your modules are outdated during startout once
a week. Set this option to true to disable this.

[namespaces]

By default sn0int modules are assumed to be installed from the registry. You
may want to keep a local directory with private modules, especially during
development. You can configure a folder that contains modules that aren’t
managed by sn0int by adding a namespace section to the config file:

[namespaces]
foo = "/opt/sn0int/foo"
bar = "~/repos/a/b/c/sn0int-modules"

This is going to load modules from these two folders and register them in the
foo and bar namespace.

Note that sn0int is also going to assume that symlinks in
~/.local/share/sn0int/modules and folders containing a .git folder are
externally managed.

[network]

To enable a proxy, add the following to your config file:

[network]
proxy = "127.0.0.1:9050"

This forces everything through tor (or any other socks5 proxy) and restricts
all other functions that depend on the network. For example the dns
function is fully disabled if a proxy is configured.

Sandbox

Scripts are generally considered to be untrusted and executed exclusively in a
child process. It’s important to note that there’s a basic sandbox that’s
active on every operating system, and there’s a second line of defense on
supported operating systems.

The first line of defense is the restrictive stdlib. It’s assumed that an
attacker gains full control over the lua code and is able to call any function
with arbitrary arguments. The stdlib only provides functions that are
considered safe, so for example it’s not possible to start a process or open a
file.

The second line of defense is supposed to make sure the system isn’t
compromised even if the first layer is fully broken and an attacker gains full
control over the child process.

Right now this is only supported on linux and openbsd.

Linux

On linux we use seccomp to filter all syscalls that we don’t need. We also use
chroot to disable filesystem access. It’s recommended to install the sn0int
binary with cap_sys_chroot to make sure unprivileged users can use chroot.
The chroot location is hard coded and all capabilities are removed after the
chroot is done or if no chroot is going to happen.

OpenBSD

On openbsd we’re using pledge to restrict syscalls and unveil to
restrict filesystem access.

IPC Protocol

The parent process and the child process communicate using an IPC protocol that
is line-based json.

For a simple hello world the parent process is only going to send a single line
to the child process. This line contains:

	The function argument

	The dns config

	Keys that the module has been given access to

	The module metadata and code

	Options, if any

	A socks5 proxy, if any

	The log level

{"arg":null,"dns_config":{"ns":["1.1.1.1:53","1.0.0.1:53"],"tcp":false,"timeout":{"nanos":0,"secs":3}},"keyring":[],"module":{"author":"anonymous","description":"basic selftest","keyring_access":[],"name":"selftest","script":{"code":"-- Description: basic selftest\n-- Version: 0.1.0\n-- License: GPL-3.0\n\nfunction run()\n -- nothing to do here\nend\n"},"source":null,"version":"0.1.0"},"options":{},"proxy":null,"verbose":2}

Saving this line in a file called start.json and sending it to a sandbox
process should result in the following output:

$ sn0int sandbox foobar < start.json
{"Exit":"Ok"}
$

This line tells us that the script terminated successfully.

There are some functions that cause a notification to the parent process. We
are going to add a call to the info() function to our module:

{"arg":null,"dns_config":{"ns":["1.1.1.1:53","1.0.0.1:53"],"tcp":false,"timeout":{"nanos":0,"secs":3}},"keyring":[],"module":{"author":"anonymous","description":"basic selftest","keyring_access":[],"name":"selftest","script":{"code":"-- Description: basic selftest\n-- Version: 0.1.0\n-- License: GPL-3.0\n\nfunction run()\n info('ohai')\nend\n"},"source":null,"version":"0.1.0"},"options":{},"proxy":null,"verbose":2}

This is going to print an additional event:

$ sn0int sandbox foobar < start2.json
{"Log":{"Info":"\"ohai\""}}
{"Exit":"Ok"}
$

There are some functions that block the child process until the parent process
sent a reply. These functions are mostly database related functions, since the
child doesn’t have direct database access. To demonstrate this, we’re going to
write two lines to our file this time, one is the init line and the second one
is the reply for the database event:

{"arg":null,"dns_config":{"ns":["1.1.1.1:53","1.0.0.1:53"],"tcp":false,"timeout":{"nanos":0,"secs":3}},"keyring":[],"module":{"author":"anonymous","description":"basic selftest","keyring_access":[],"name":"selftest","script":{"code":"-- Description: basic selftest\n-- Version: 0.1.0\n-- License: GPL-3.0\n\nfunction run()\n x = db_add('domain', {value=\"example.com\"})\n info(x)\nend\n"},"source":null,"version":"0.1.0"},"options":{},"proxy":null,"verbose":2}
{"Ok":1337}

Results in the following output:

$ target/release/sn0int sandbox foobar < start3.json
{"Database":{"Insert":{"Domain":{"value":"example.com"}}}}
{"Log":{"Info":"1337.0"}}
{"Exit":"Ok"}
$

The first line is a database event and indicates that the child wants to insert
data. After printing this line the child tries to read a line from stdin, this
is why we needed to write two lines to our json file this time. In the second
line the child learns if the insert was successful and which id was assigned to
that entity.

Limitations

There are some limitations that you should be aware:

	Network access is available and network namespaces aren’t isolated. This
means scripts have access to your local network, the internet and also your
localhost loopback interface.

	If chroot is unavailable an attacker could connect to unix domain sockets.

Diagnosing a sandbox failure

You might experience a sandbox failure, especially on architectures that are
less popular. This usually looks like this:

[sn0int][example][kpcyrd/ctlogs] > run
[-] Failed "example.com": Sandbox child has crashed
[+] Finished kpcyrd/ctlogs (1 errors)

A module that never finishes could also mean an IO thread inside the worker got
killed by the sandbox.

You can try to diagnose this yourself with strace:

strace -f sn0int run -vv ctlogs 2>&1 | tee strace.log

Open strace.log, look out for syscalls that didn’t return by searching for
= ? and ignore calls to exit and similar. You are looking for something
like this:

seccomp(SECCOMP_SET_MODE_FILTER, 0, {len=48, filter=0xdd59094e490}) = 0
write(1, "[+] activated!\n", 15[+] activated!
) = 15
getresuid(<unfinished ...>) = ?
+++ killed by SIGSYS (core dumped) +++

This would indicate a call to getresuid which was not allowed by the
seccomp filter.

If you don’t want to diagnose this yourself open a new bug report with as much
information as possible, specifically which distro, which release and which
architecture you’re using.

Function reference

asn_lookup

Run an ASN lookup for a given ip address. The function returns asn and
as_org. This function may fail.

lookup = asn_lookup('1.1.1.1')
if last_err() then return end

base64_decode

Decode a base64 string with the default alphabet+padding.

base64_decode("ww==")

base64_encode

Encode a binary array with base64 and the default alphabet+padding.

base64_encode("\x00\xff")

base64_custom_decode

Decode a base64 string with custom alphabet+padding.

-- base64
base64_custom_decode('b2hhaQ==', 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/', '=')
-- base64 no padding
base64_custom_decode('b2hhaQ', 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/', '')
-- base64 url safe
base64_custom_decode('b2hhaQ==', 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_', '=')

base64_custom_encode

Encode a binary array with base64 and custom alphabet+padding.

-- base64
base64_custom_encode('ohai', 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/', '=')
-- base64 no padding
base64_custom_encode('ohai', 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/', '')
-- base64 url safe
base64_custom_encode('ohai', 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_', '=')

base32_custom_decode

Decode a base32 string with custom alphabet+padding.

-- rfc-4648 base32
base32_custom_decode('N5UGC2I=', 'ABCDEFGHIJKLMNOPQRSTUVWXYZ234567', '=')
-- z-base-32
base32_custom_decode('p7wgn4e', 'ybndrfg8ejkmcpqxot1uwisza345h769', '')

base32_custom_encode

Encode a binary array with base32 and custom alphabet+padding.

-- rfc-4648 base32
x = base32_custom_encode('ohai', 'ABCDEFGHIJKLMNOPQRSTUVWXYZ234567', '=')
-- z-base-32
x = base32_custom_encode('ohai', 'ybndrfg8ejkmcpqxot1uwisza345h769', '')

clear_err

Clear the last recorded error from the internal state. See also last_err.

if last_err() then
 -- ignore this error
 clear_err()
end

create_blob

Push a byte array into persistent blob storage. This allows passing those bytes
to functions operating on blob storage. Returns a blob identifier that is
deterministic based on the blob content. Blobs are immutable.

blob = create_blob("some bytes")
debug(blob)

datetime

Return current time in UTC. This function is suitable to determine datetimes
for DATETIME database fields.

now = datetime()

Note

This format is sn0int specific, to get the current time for scripting use
time_unix instead.

Warning

This function is going to be deprecated at some point. Prefer sn0int_time
for new scripts.

db_add

Add an entity to the database or update it if it already exists. This function
may fail or return nil. See db_add for details.

domain_id = db_add('domain', {
 value='example.com',
})

db_add_ttl

Add a temporary entity to the database. This is commonly used to insert
temporary links that automatically expire over time. If the entity already
exists and is also marked as temporary the new ttl is going to replace the old
ttl. If the entity already exists but never expires we are not going to add a
ttl.

-- this link is valid for 2min
domain_id = db_add_ttl('network-device', {
 network_id=1,
 device_id=13,
}, 120)

db_activity

Log an activity event. A basic event looks like this:

db_activity({
 topic='harness/activity-ping:dummy',
 time=sn0int_time(),
 content={
 a='b',
 foo={
 bar=1337,
 },
 msg='ohai',
 },
})

This function is explained in detail in the activity
section.

db_select

Checks if a target is in scope. If non-nil is returned, this entity is in
scope. This function may fail. See db_select for
details.

domain_id = db_select('domain', 'example.com')
if domain_id ~= nil then
 -- do something
end

db_update

Update an entity in the database. This function may fail. See db_update for details.

db_update('ipaddr', arg, {
 asn=lookup['asn'],
 as_org=lookup['as_org'],
})

dns

Resolve a dns record. If the dns query was successful and the dns reply is
NoError then x['error'] is nil. The records of the reply are in
x['answers']. This function may fail.

This function accepts the following options:

	record

	The query_type, can be any of A, AAAA, MX, AXFR, etc.

	nameserver

	The server that should be used for the lookup. Defaults to your system
resolver.

	tcp

	If the lookup should use tcp, true/false.

	timeout

	The time until the query times out in milliseconds.

records = dns('example.com', {
 record='A',
})
if last_err() then return end
if records['error'] ~= nil then return end
records = records['answers']

Note

DNS replies with an error code set are not causing a change to
last_err(). You have to test for this explicitly.

Note

This function is unavailable if a socks5 proxy is configured.

error

Log an error to the terminal.

error('ohai')

geoip_lookup

Run a geoip lookup for a given ip address. The function returns:

	continent

	continent_code

	country

	country_code

	city

	latitude

	longitude

This function may fail.

lookup = geoip_lookup('1.1.1.1')
if last_err() then return end

hex

Hex encode a list of bytes.

hex("\x6F\x68\x61\x69\x0A\x00")

hmac_md5

Calculate an hmac with md5. Returns a binary array.

hmac_md5("secret", "my authenticated message")

hmac_sha1

Calculate an hmac with sha1. Returns a binary array.

hmac_sha1("secret", "my authenticated message")

hmac_sha2_256

Calculate an hmac with sha2_256. Returns a binary array.

hmac_sha2_256("secret", "my authenticated message")

hmac_sha2_512

Calculate an hmac with sha2_512. Returns a binary array.

hmac_sha2_512("secret", "my authenticated message")

hmac_sha3_256

Calculate an hmac with sha3_256. Returns a binary array.

hmac_sha3_256("secret", "my authenticated message")

hmac_sha3_512

Calculate an hmac with sha3_512. Returns a binary array.

hmac_sha3_512("secret", "my authenticated message")

html_select

Parses an html document and returns the first element that matches the css
selector. The return value is a table with text being the inner text and
attrs being a table of the elements attributes.

csrf = html_select(html, 'input[name="csrf"]')
token = csrf["attrs"]["value"]

html_select_list

Same as html_select but returns all matches instead of the first one.

html_select_list(html, 'input[name="csrf"]')

http_mksession

Create a session object. This is similar to requests.Session in
python-requests and keeps track of cookies.

session = http_mksession()

http_request

Prepares an http request. The first argument is the session reference and
cookies from that session are copied into the request. After the request has
been sent, the cookies from the response are copied back into the session.

The next arguments are the method, the url and additional options.
Please note that you still need to specify an empty table {} even if no
options are set. The following options are available:

	query

	A map of query parameters that should be set on the url.

	headers

	A map of headers that should be set.

	basic_auth

	Configure the basic auth header with {"user, "password"}.

	user_agent

	Overwrite the default user agent with a string.

	json

	The request body that should be json encoded.

	form

	The request body that should be form encoded.

	follow_redirects

	Automatically follow redirects, up to the specified number. If set to 1, only
one redirect is going to be followed. Defaults to 0 so redirects aren’t
followed.

	body

	The raw request body as string.

	into_blob

	If true, the response body is stored in blob storage and a blob reference is
returned as blob instead of the full body.

	proxy

	Use a socks5 proxy in the format 127.0.0.1:9050. This option only works
if it doesn’t conflict with the global proxy settings.

	binary

	Set to true to get the http response as raw bytes.

This function may fail.

req = http_request(session, 'POST', 'https://httpbin.org/post', {
 json={
 user=user,
 password=password,
 }
})
resp = http_send(req)
if last_err() then return end
if resp['status'] ~= 200 then return 'http status error: ' .. resp['status'] end

http_send

Send the request that has been built with http_request. Returns a table with
the following keys:

	status

	The http status code

	headers

	A table of headers

	text

	The response body as string

	binary

	The response body as bytes (if binary=true)

	blob

	If into_blob was enabled for the request the body is downloaded into blob
storage with a reference to the body in this field.

req = http_request(session, 'POST', 'https://httpbin.org/post', {
 json={
 user=user,
 password=password,
 }
})
resp = http_send(req)
if last_err() then return end
if resp['status'] ~= 200 then return 'http status error: ' .. resp['status'] end

http_fetch

This does an http_send and also automatically validate the status code.

Note

You almost always want this when setting the into_blob option since this
function validates the status code before inserting the response body into
blob storage.

-- short form
data = http_fetch(req)
if last_err() then return end

-- long form
resp = http_send(req)
if last_err() then return end
if resp['status'] ~= 200 then return 'http status error: ' .. resp['status'] end

http_fetch_json

Identical to http_fetch but also automatically parses the response body as json.

-- short form
data = http_fetch_json(req)
if last_err() then return end

-- long form
resp = http_send(req)
if last_err() then return end
if resp['status'] ~= 200 then return 'http status error: ' .. resp['status'] end
data = json_decode(resp['text'])
if last_err() then return end

img_load

Attempt to decode a blob as an image and return some basic metadata like the
mime type, height and width.

img = img_load(blob)
if last_err() then return end
debug(img)

img_exif

Extract exif metadata from an image.

exif = img_exif(blob)
if last_err() then return end
debug(exif)

img_ahash

Calculate the Mean (aHash) perceptual hash.

hash = img_ahash(blob)
if last_err() then return end
debug(hash)

img_dhash

Calculate the Gradient (dHash) perceptual hash.

hash = img_dhash(blob)
if last_err() then return end
debug(hash)

img_phash

Calculate the DCT (pHash) perceptual hash.

hash = img_phash(blob)
if last_err() then return end
debug(hash)

img_nudity

Classify an image for nudity. The score goes from 0 to 2. A score above 1 means
nudity has been detected.

nudity = img_nudity(blob)
if last_err() then return end
debug(nudity)

info

Log an info to the terminal.

info('ohai')

intval

Parse a number from a string.

x = strval(‘1234’)

json_decode

Decode a lua value from a json string.

json_decode("{\"data\":{\"password\":\"fizz\",\"user\":\"bar\"},\"list\":[1,3,3,7]}")

json_decode_stream

Very similar to json_decode, but works with multiple json objects directly
concatenated to each other or separated by newlines.

json_decode_stream("{\"data\":1}{\"data\":2}")

json_encode

Encode a datastructure into a string.

x = json_encode({
 some=1,
 fancy={
 data='structures',
 }
})
print(x)

key_trunc_pad

Truncate/pad a key to a given length.

-- if longer than 32 bytes: truncate to 32
-- if shorter than 32 bytes: pad with \x00
local key = key_trunc_pad(password, 32, 0)

keyring

Request all keys from a given namespace. See the keyring
section for details.

creds = keyring('aws')
print(creds[1]['accesskey'])
print(creds[1]['secretkey'])

last_err

Returns infos about the last error we’ve observed, if any. Returns nil
otherwise.

if last_err() then
 -- Something went wrong, abort
 return
end

md5

Hash a byte array with md5 and return the results as bytes.

hex(md5("\x00\xff"))

mqtt_connect

Connect to an mqtt broker.

local sock = mqtt_connect('mqtts://mqtt.example.com', {
 username='foo',
 password='secret',
})
if last_err() then return end

mqtt_subscribe

Subscribe to a topic. Right now only QoS 0 is supported.

mqtt_subscribe(sock, '#', 0)
if last_err() then return end

mqtt_recv

Receive an mqtt packet. This is not necessarily a publish packet and more
packets might be added in the future, so you need to check the type
specifically.

If a read timeout has been set with mqtt_connect this function returns nil
in case of a read timeout.

local pkt = mqtt_recv(sock)
if last_err() then return end
if pkt == nil then
 -- read timeout, consider sending a ping or disconnect if the previous ping failed
elseif pkt['type'] == 'pong' then
 -- broker sent a pong
elseif pkt['type'] == 'publish' then
 local payload = utf8_decode(pkt['body'])
 if last_err() then return end
 info(payload)
end

mqtt_ping

Send a pingreq packet, causing the broker to send a pingresp. This is used to
make sure the connection is still working correctly.

mqtt_ping(sock)
if last_err() then return end

pgp_pubkey

Same as pgp_pubkey_armored, but without the unarmor step.

pgp_pubkey_armored

Extract uids, sigs and the fingerprint out of an rfc 4880 pgp
public key. This function may fail.

key = pgp_pubkey_armored([===[
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v2

mQENBFu6q90BCADgD7Q9aH5683yt7hzPktDkAUNAZJHwYhUNeyGK43frPyDRWQmq
N+oXTfiYWLQN+d7KNBTnF9uwyBdaLM7SH44lLNYo8W09mVM2eK+wt19uf5HYNgAE
8la45QLo/ce9CQVe1a4oXNWq6l0FOY7M+wLe+G2wMwz8RXGgwd/qQp4/PB5YpUhx
nAnzClxvwymrL6BQXsRcKSMSD5bIzIv95n105CvW5Hql7JR9zgOR+gHqVOH8HBUc
ZxMumrTM6aKLgAhgM8Sn36gCFOfjlG1b1OFLZhUtgro/nnEOmAurRsCZy8M5h8QM
FpZChIH8kgHs90F/CCvGjMq3qvWcH8ZsPUizABEBAAG0NUhhbnMgQWNrZXIgKGV4
YW1wbGUgY29tbWVudCkgPGhhbnMuYWNrZXJAZXhhbXBsZS5jb20+iQFOBBMBCAA4
FiEEyzeO1eEwbB03hcqBM00IodGdlj8FAlu6q90CGwMFCwkIBwIGFQgJCgsCBBYC
AwECHgECF4AACgkQM00IodGdlj/AJQgAjmk+iP5b7Jt7+f+lU4Oprlf3f3DG/uh5
Ge6MjV7cvtxlhZJRD5hxGt9RwwnEp61TBSbrem288pM89ilQfTNe0wUr9OzwWzh/
8Ngl5iWnD2ah3Mpi5R1V/YMNf2cnwVjqNvfkRHdNc43pZOkC2GoiTUn0QY0UBpOW
ZMN3//ANi6ZtiK/L0IZQND/gKvOzu/4tfaJeBl26T3cVYj53p3G3jhlb92vVa8SR
uL3S3bzd1h5snDgU1uXHmNHGbhkEc4KUneQ0V9/bdZrg6OzFAfM1ghgfoId+YpQH
er9L26ISL3QF58wdEXfIdHYEmMlANjBMO2cUlQXgONuCgkMuY7GBmrkBDQRbuqvd
AQgA41jqCumCxYV0NdSYNnTSSDRyd69dOUYCAPT80iZ739s7KKJS9X9KVfGmDjfi
u2RcfR/KYj53HoyOm4Pm/+ONN8De4ktzXpIpJxGC+O8NBvd9vkboAS6qnCjK7KVE
r91ymxxVKp2dzZvVfpIjWVZR5i2EAvS5vw8UK4gL8ALH+S9leJFZrQWcgyoJOJzH
Rzr9pesX2HvdgcNG1O6QUArlsnsTnqpi/hu7tQa8tifBpWDeArOA23Y2DgeehdDF
lSU/8KD4J+AkFrWWlcTaMsvSChXQkCHEMRIcSOfXtdpX5KJSE7UBQdD1opm+mR79
VeHnuJAAVZZtUZmJA7pjdKykYQARAQABiQE2BBgBCAAgFiEEyzeO1eEwbB03hcqB
M00IodGdlj8FAlu6q90CGwwACgkQM00IodGdlj8bMAf+Lq3Qive4vcrCTT4IgvVj
arOACdcbtt5RhVBTimT19rDWNH+m+PfPjo3FSlBj5cm70KAXUS2LBFFxhakTZ/Mq
cQroWZpVbBxj4kipEVVJZFdUZQaDERJql0xYGOQrNMQ4JGqJ84BRrtOExjSqo41K
hAhNe+bwPGH9/Igiixc4tH07xa7TOy4MyJv/6gpbHy/lW1hqpCAgM5fT/im5/6QF
k0tED6vIuc54IWiOmwCnjZiQnJ8uCwEu+cuJ5Exwy9CNERLp5v0y4eG+0E+at9j/
macOg39qf09t53pTqe9dWv5NIi319TeBsKZ2lb0crrQjsbHqk0DAUwgQuoANqLku
vA==
=kRIv
-----END PGP PUBLIC KEY BLOCK-----
]===])

if last_err() then return end
print(key)

print

Write something directly to the terminal.

print({
 some=1,
 fancy={
 data='structures',
 }
})

Warning

This function writes directly to the terminal and can interfere with other
terminal features. This function should be used during development only.

psl_domain_from_dns_name

Returns the parent domain according to the public suffix list. For
www.a.b.c.d.example.co.uk this is going to be example.co.uk.

domain = psl_domain_from_dns_name('www.a.b.c.d.example.co.uk')
print(domain == 'example.co.uk')

ratelimit_throttle

Create a ratelimit that can only be passed x times every y milliseconds. This
limit is global for a single run and also works with threads.

-- allow this to pass every 250ms
ratelimit_throttle('foo', 1, 250)
-- allow this to pass not more than 4 times per second
ratelimit_throttle('foo', 4, 1000)

This is useful if you need to coordinate your executions to stay below a
certain request threshold.

regex_find

Apply a regex to some text. Returns nil if the regex didn’t match and the
capture groups if it did.

m = regex_find(".(.)", "abcdef")

if m == nil then
 print('No captures')
end

print(m[1] == 'ab')
print(m[2] == 'b')

regex_find_all

Same as regex_find, but returns all matches.

m = regex_find_all(".(.)", "abcdef")

print(m[1][1] == 'ab')
print(m[1][2] == 'b')
print(m[2][1] == 'cd')
print(m[2][2] == 'd')
print(m[3][1] == 'ef')
print(m[3][2] == 'f')

semver_match

Compare a version to a version requirement. This can be used with
sn0int_version to test for certain features or behavior.

semver_match('=0.11.2', sn0int_version())
semver_match('>0.11.2', sn0int_version())
semver_match('<0.11.2', sn0int_version())
semver_match('~0.11.2', sn0int_version())
semver_match('^0.11.2', sn0int_version())
semver_match('0.11.2', sn0int_version()) -- synonym for ^0.11.2
semver_match('<=0.11.2', sn0int_version())
semver_match('>=0.11.2', sn0int_version())
semver_match('>=0.4.0, <=0.10.0', sn0int_version())

set_err

Manipulate the global error object. If you want to exit the main run
function with an error you can simply return a string, but those are difficult
to propagate through functions. set_err specifically assigns an error to
the global error object that are also used by all other rust functions.

function foo()
 set_err("something failed")
end

foo()
if last_err() then return end

sha1

Hash a byte array with sha1 and return the results as bytes.

hex(sha1("\x00\xff"))

sha2_256

Hash a byte array with sha2_256 and return the results as bytes.

hex(sha2_256("\x00\xff"))

sha2_512

Hash a byte array with sha2_512 and return the results as bytes.

hex(sha2_512("\x00\xff"))

sha3_256

Hash a byte array with sha3_256 and return the results as bytes.

hex(sha3_256("\x00\xff"))

sha3_512

Hash a byte array with sha3_512 and return the results as bytes.

hex(sha3_512("\x00\xff"))

sleep

Pause the current program for the specified number of seconds. This is usually
only used for debugging.

sleep(1)

sn0int_time

Return current time in UTC. This function is suitable to determine datetimes
for DATETIME database fields.

now = sn0int_time()

Note

This format is sn0int specific, to get the current time for scripting use
time_unix instead.

sn0int_time_from

Identical to sn0int_time but uses a unix timestamp in seconds instead of the
current time. This function is compatible with time_unix and strptime.

time = sn0int_time_from(1567931337)

sn0int_version

Get the current sn0int version string. This can be used with semver_match to
test for certain features or behavior.

info(sn0int_version())

sock_connect

Create a tcp connection.

The following options are available:

	tls

	Set to true to enable tls (certificates are validated)

	sni_value

	Instead of the host argument, use a custom string for the sni extension.

	disable_tls_verify

	Danger: disable tls verification. This disables all security on the
connection. Note that sn0int is still rather strict, you’re going to run into
issues if you need support for insecure ciphers.

	proxy

	Use a socks5 proxy in the format 127.0.0.1:9050. This option only works
if it doesn’t conflict with the global proxy settings.

	connect_timeout

	Abort tcp connection attempts after n seconds.

	read_timeout

	Abort read attempts after n seconds. This can be used to wake up
connections periodically.

	write_timeout

	Abort write attempts after n seconds.

sock = sock_connect("127.0.0.1", 1337, {
 tls=true,
})

sock_upgrade_tls

Take an existing tcp connection and start a tls handshake. The options are the
same as sock_connect but the tls value is always assumed to be true.

The sni value needs to be set specifically, otherwise the sni extension is
disabled.

Using this function specifically returns some extra information that is
discarded when using sock_connect directly with tls=true.

sock = sock_connect("127.0.0.1", 1337, {})
if last_err() then return end

tls = sock_upgrade_tls(sock, {
 sni_value='example.com',
})
if last_err() then return end

info(tls)

sock_options

Update options of an existing connection:

	read_timeout

	Abort read attempts after n seconds. This can be used to wake up
connections periodically.

	write_timeout

	Abort write attempts after n seconds.

sock_options(sock, {
 read_timeout=3,
})

sock_send

Send data to the socket.

sock_send(sock, "hello world")

sock_recv

Receive up to 4096 bytes from the socket.

x = sock_recv(sock)

sock_sendline

Send a string to the socket. A newline is automatically appended to the string.

sock_sendline(sock, line)

sock_recvline

Receive a line from the socket. The line includes the newline.

x = sock_recvline(sock)

sock_recvall

Receive all data from the socket until EOF.

x = sock_recvall(sock)

sock_recvline_contains

Receive lines from the server until a line contains the needle, then return
this line.

x = sock_recvline_contains(sock, needle)

sock_recvline_regex

Receive lines from the server until a line matches the regex, then return this
line.

x = sock_recvline_regex(sock, "^250 ")

sock_recvn

Receive exactly n bytes from the socket.

x = sock_recvn(sock, 4)

sock_recvuntil

Receive until the needle is found, then return all data including the needle.

x = sock_recvuntil(sock, needle)

sock_sendafter

Receive until the needle is found, then write data to the socket.

sock_sendafter(sock, needle, data)

sock_newline

Overwrite the default \n newline.

sock_newline(sock, "\r\n")

sodium_secretbox_open

Use authenticated symetric crypto to decrypt a given message.

Internally this is crypto_secretbox_xsalsa20poly1305.

The key must be 32 bytes, see key_trunc_pad if necessary.

The first 24 bytes of the encrypted message are expected to be the nonce.

plain = sodium_secretbox_open(encrypted, key)
if last_err() then return end

txt = utf8_decode(plain)
if last_err() then return end

info(txt)

status

Update the label of the progress indicator.

status('ohai')

stdin_readline

Read a line from stdin. The final newline is not removed.

stdin_readline()

Note

This only works with sn0int run –stdin.

stdin_read_to_end

Read stdin until EOF as a utf-8 string.

stdin_read_to_end()

Note

This only works with sn0int run –stdin.

str_find

Returns the byte index of the first character that matches the pattern. This is
explicitly a literal match instead of a lua pattern.

If no match is found, returns nil.

x = str_find('asdf', 'sd')
print(x == 2)

str_replace

Replaces all matches of a pattern in a string. This is explicitly a literal
match instead of a lua pattern.

If no match is found, an unmodified copy is returned.

x = str_replace('this is old', 'old', 'new')
print(x == 'this is new')

strftime

Format a timestamp generated with time_unix into a date, see strftime rules [https://docs.rs/chrono/0.4.6/chrono/format/strftime/index.html].

t = strftime('%d/%m/%Y %H:%M', 1558584994)

strptime

Parse a date into a unix timestamp, see strftime rules [https://docs.rs/chrono/0.4.6/chrono/format/strftime/index.html].

t = strptime('%d/%m/%Y %H:%M', '23/05/2019 04:16')

strval

Convert a number into a string.

x = strval(1234)

time_unix

Get the current time as seconds since January 1, 1970 0:00:00 UTC, also
known as UNIX timestamp. This timestamp can be formated using strftime.

now = time_unix()

url_decode

Parse a query string into a map. For raw percent decoding see url_unescape.

v = url_decode('a=b&c=d')
print(v['a'] == 'b')
print(v['c'] == 'd')

url_encode

Encode a map into a query string. For raw percent encoding see url_escape.

v = url_encode({
 a='b',
 c='d',
})
print(v == 'a=b&c=d')

url_escape

Apply url escaping to a string.

v = url_escape('foo bar?')
print(v == 'foo%20bar%3F')

url_join

Join a relative link to an absolute link. If both links are absolute we just
return the first one:

x = url_join('https://example.com/x', '/foo')
print(x == 'https://example.com/foo')

x = url_join('https://example.com/x', 'https://github.com/')
print(x == 'https://github.com/')

url_parse

Parse a url into its components. The following components are returned:

	scheme

	host

	port

	path

	query

	fragment

	params

url = url_parse('https://example.com')
print(url['scheme'] == 'https')
print(url['host'] == 'example.com')
print(url['path'] == '/')

url_unescape

Remove url escaping of a string.

v = url_unescape('foo%20bar%3F')
print(v == 'foo bar?')

utf8_decode

Decodes a list of bytes/numbers into a string. This function might fail.

x = utf8_decode({65, 65, 65, 65})
if last_err() then return end
print(x == 'AAAA')

warn

Log a warning to the terminal.

warn('ohai')

warn_once

Log a warning to the terminal once. This can be used to print a warning to the
user without printing the same warning for each struct we’re processing during
a run execution.

warn_once('ohai')
warn_once('ohai')

ws_connect

Create a websocket connection. The url format is ws://example.com/asdf,
wss:// is also supported.

The following options are available:

	headers

	A map of additional headers that should be set for the request.

	proxy

	Use a socks5 proxy in the format 127.0.0.1:9050. This option only works
if it doesn’t conflict with the global proxy settings.

	connect_timeout

	Abort tcp connection attempts after n seconds.

	read_timeout

	Abort read attempts after n seconds. This can be used to wake up
connections periodically.

	write_timeout

	Abort write attempts after n seconds.

sock = ws_connect("wss://example.com/asdf", {})

ws_options

Update options of an existing connection:

	read_timeout

	Abort read attempts after n seconds. This can be used to wake up
connections periodically.

	write_timeout

	Abort write attempts after n seconds.

ws_options(sock, {
 read_timeout=3,
})

ws_recv_text

Wait until the server sends a text frame. A binary frame is considered an
error. Ping requests are answered automatically.

msg = ws_recv_text(sock)

ws_recv_binary

Wait until the server sends a binary frame. A text frame is considered an
error. Ping requests are answered automatically.

msg = ws_recv_binary(sock)

ws_recv_json

Identical to ws_send_text but automatically runs json_decode on the
response.

msg = ws_recv_json(sock)

ws_send_text

Send a text frame on the websocket connection.

ws_send_text(sock, "ohai!")

ws_send_binary

Send a binary frame on the websocket connection.

ws_send_binary(sock, "\x00\x01\x02")

ws_send_json

Encode the object as json string and send it as a text frame on the websocket
connection.

ws_send_text(sock, {
 foo="ohai!",
 x={
 y={1,3,3,7},
 },
})

x509_parse_pem

Parse a pem encoded certificate. This function might fail.

x = x509_parse_pem([[-----BEGIN CERTIFICATE-----
MIID9DCCA3qgAwIBAgIQBWzetBRl/ycHFsBukRYuGTAKBggqhkjOPQQDAjBMMQsw
CQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMSYwJAYDVQQDEx1EaWdp
Q2VydCBFQ0MgU2VjdXJlIFNlcnZlciBDQTAeFw0xODAzMzAwMDAwMDBaFw0yMDAz
MjUxMjAwMDBaMGwxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDQTEWMBQGA1UEBxMN
U2FuIEZyYW5jaXNjbzEZMBcGA1UEChMQQ2xvdWRmbGFyZSwgSW5jLjEdMBsGA1UE
AwwUKi5jbG91ZGZsYXJlLWRucy5jb20wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNC
AASyRQsxrFBjziHmfDQjGsXBU0WWl3oxh7vg6h2V9f8lBMp18PY/td9R6VvJPa20
AwVzIJI+dL6OSxviaIZEbmK7o4ICHDCCAhgwHwYDVR0jBBgwFoAUo53mH/naOU/A
buiRy5Wl2jHiCp8wHQYDVR0OBBYEFN+XTeVDs7BBp0LykM+Jf64SV4ThMGMGA1Ud
EQRcMFqCFCouY2xvdWRmbGFyZS1kbnMuY29thwQBAQEBhwQBAAABghJjbG91ZGZs
YXJlLWRucy5jb22HECYGRwBHAAAAAAAAAAAAERGHECYGRwBHAAAAAAAAAAAAEAEw
DgYDVR0PAQH/BAQDAgeAMB0GA1UdJQQWMBQGCCsGAQUFBwMBBggrBgEFBQcDAjBp
BgNVHR8EYjBgMC6gLKAqhihodHRwOi8vY3JsMy5kaWdpY2VydC5jb20vc3NjYS1l
Y2MtZzEuY3JsMC6gLKAqhihodHRwOi8vY3JsNC5kaWdpY2VydC5jb20vc3NjYS1l
Y2MtZzEuY3JsMEwGA1UdIARFMEMwNwYJYIZIAYb9bAEBMCowKAYIKwYBBQUHAgEW
HGh0dHBzOi8vd3d3LmRpZ2ljZXJ0LmNvbS9DUFMwCAYGZ4EMAQICMHsGCCsGAQUF
BwEBBG8wbTAkBggrBgEFBQcwAYYYaHR0cDovL29jc3AuZGlnaWNlcnQuY29tMEUG
CCsGAQUFBzAChjlodHRwOi8vY2FjZXJ0cy5kaWdpY2VydC5jb20vRGlnaUNlcnRF
Q0NTZWN1cmVTZXJ2ZXJDQS5jcnQwDAYDVR0TAQH/BAIwADAKBggqhkjOPQQDAgNo
ADBlAjEAjoyy2Ogh1i1/Kh9+psMc1OChlQIvQF6AkojZS8yliar6m8q5nqC3qe0h
HR0fExwLAjAueWRnHX4QJ9loqMhsPk3NB0Cs0mStsNDNG6/DpCYw7XmjoG3y1LS7
ZkZZmqNn2Q8=
-----END CERTIFICATE-----
]])
if last_err() then return end
print(x)

xml_decode

Decode a lua value from an xml document.

x = xml_decode('<body><foo fizz="buzz">bar</foo></body>')
if last_err() then return end

body = x['children'][1]
foo = body['children'][1]

print(foo['attrs']['fizz'])
print(foo['text'])

xml_named

Get a named child element from a parent element.

x = xml_decode('<body><foo fizz="buzz">bar</foo></body>')
if last_err() then return end

body = x['children'][1]
foo = xml_named(body, 'foo')
if foo ~= nil then
 print(foo)
end

Index

sn0int

todo

	Running your first investigation
	Installing the default modules

	Adding something to scope

	Running a module

	Running followup modules on the results

	Unscoping entities

	Configuration
	[core]

	[namespaces]

	[network]

	Function reference
	asn_lookup

	base64_decode

	base64_encode

	base64_custom_decode

	base64_custom_encode

	base32_custom_decode

	base32_custom_encode

	clear_err

	create_blob

	datetime

	db_add

	db_add_ttl

	db_activity

	db_select

	db_update

	dns

	error

	geoip_lookup

	hex

	hmac_md5

	hmac_sha1

	hmac_sha2_256

	hmac_sha2_512

	hmac_sha3_256

	hmac_sha3_512

	html_select

	html_select_list

	http_mksession

	http_request

	http_send

	http_fetch

	http_fetch_json

	img_load

	img_exif

	img_ahash

	img_dhash

	img_phash

	img_nudity

	info

	intval

	json_decode

	json_decode_stream

	json_encode

	key_trunc_pad

	keyring

	last_err

	md5

	mqtt_connect

	mqtt_subscribe

	mqtt_recv

	mqtt_ping

	pgp_pubkey

	pgp_pubkey_armored

	print

	psl_domain_from_dns_name

	ratelimit_throttle

	regex_find

	regex_find_all

	semver_match

	set_err

	sha1

	sha2_256

	sha2_512

	sha3_256

	sha3_512

	sleep

	sn0int_time

	sn0int_time_from

	sn0int_version

	sock_connect

	sock_upgrade_tls

	sock_options

	sock_send

	sock_recv

	sock_sendline

	sock_recvline

	sock_recvall

	sock_recvline_contains

	sock_recvline_regex

	sock_recvn

	sock_recvuntil

	sock_sendafter

	sock_newline

	sodium_secretbox_open

	status

	stdin_readline

	stdin_read_to_end

	str_find

	str_replace

	strftime

	strptime

	strval

	time_unix

	url_decode

	url_encode

	url_escape

	url_join

	url_parse

	url_unescape

	utf8_decode

	warn

	warn_once

	ws_connect

	ws_options

	ws_recv_text

	ws_recv_binary

	ws_recv_json

	ws_send_text

	ws_send_binary

	ws_send_json

	x509_parse_pem

	xml_decode

	xml_named

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 sn0int

 		
 Installation

 		
 Archlinux

 		
 Mac OSX

 		
 Debian >= bookwork, Ubuntu >= 22.10, Kali

 		
 Debian <= bullseye, Ubuntu <= 22.04

 		
 Fedora/CentOS/Redhat

 		
 Docker

 		
 Alpine

 		
 OpenBSD

 		
 Gentoo

 		
 NixOS

 		
 Windows

 		
 Build from source

 		
 Install dependencies

 		
 Archlinux

 		
 Mac OSX

 		
 Debian/Ubuntu/Kali

 		
 Alpine

 		
 Docker

 		
 OpenBSD

 		
 Gentoo

 		
 Windows

 		
 Building

 		
 Running your first investigation

 		
 Installing the default modules

 		
 Adding something to scope

 		
 Running a module

 		
 Running followup modules on the results

 		
 Unscoping entities

 		
 Autonoscope

 		
 Domains

 		
 IPs

 		
 URLs

 		
 Writing your first module

 		
 Creating a repository

 		
 Publish your module

 		
 Publish your repo

 		
 Reading data from stdin

 		
 Database

 		
 db_add

 		
 db_add_ttl

 		
 db_activity

 		
 db_update

 		
 db_select

 		
 Structs

 		
 Domains

 		
 Subdomains

 		
 IpAddrs

 		
 URLs

 		
 Emails

 		
 Phonenumbers

 		
 Devices

 		
 Networks

 		
 Accounts

 		
 Breaches

 		
 Images

 		
 Ports

 		
 Netblocks

 		
 CryptoAddrs

 		
 Activity

 		
 Relations

 		
 subdomain_ipaddr

 		
 network_device

 		
 breach_email

 		
 Activity

 		
 Anatomy of an event

 		
 Logging events

 		
 Querying events

 		
 Visualization

 		
 Notifications

 		
 Receiving notifications

 		
 Telegram

 		
 Pushover

 		
 Discord

 		
 Signal

 		
 Writing your own module

 		
 Setting up notification rules

 		
 Testing notifications

 		
 Running sn0int automatically

 		
 Monitors

 		
 Timers

 		
 Keyring

 		
 Managing the keyring

 		
 Using access keys in scripts

 		
 Using access keys as source argument

 		
 Configuration

 		
 [core]

 		
 [namespaces]

 		
 [network]

 		
 Sandbox

 		
 Linux

 		
 OpenBSD

 		
 IPC Protocol

 		
 Limitations

 		
 Diagnosing a sandbox failure

 		
 Function reference

 		
 asn_lookup

 		
 base64_decode

 		
 base64_encode

 		
 base64_custom_decode

 		
 base64_custom_encode

 		
 base32_custom_decode

 		
 base32_custom_encode

 		
 clear_err

 		
 create_blob

 		
 datetime

 		
 db_add

 		
 db_add_ttl

 		
 db_activity

 		
 db_select

 		
 db_update

 		
 dns

 		
 error

 		
 geoip_lookup

 		
 hex

 		
 hmac_md5

 		
 hmac_sha1

 		
 hmac_sha2_256

 		
 hmac_sha2_512

 		
 hmac_sha3_256

 		
 hmac_sha3_512

 		
 html_select

 		
 html_select_list

 		
 http_mksession

 		
 http_request

 		
 http_send

 		
 http_fetch

 		
 http_fetch_json

 		
 img_load

 		
 img_exif

 		
 img_ahash

 		
 img_dhash

 		
 img_phash

 		
 img_nudity

 		
 info

 		
 intval

 		
 json_decode

 		
 json_decode_stream

 		
 json_encode

 		
 key_trunc_pad

 		
 keyring

 		
 last_err

 		
 md5

 		
 mqtt_connect

 		
 mqtt_subscribe

 		
 mqtt_recv

 		
 mqtt_ping

 		
 pgp_pubkey

 		
 pgp_pubkey_armored

 		
 print

 		
 psl_domain_from_dns_name

 		
 ratelimit_throttle

 		
 regex_find

 		
 regex_find_all

 		
 semver_match

 		
 set_err

 		
 sha1

 		
 sha2_256

 		
 sha2_512

 		
 sha3_256

 		
 sha3_512

 		
 sleep

 		
 sn0int_time

 		
 sn0int_time_from

 		
 sn0int_version

 		
 sock_connect

 		
 sock_upgrade_tls

 		
 sock_options

 		
 sock_send

 		
 sock_recv

 		
 sock_sendline

 		
 sock_recvline

 		
 sock_recvall

 		
 sock_recvline_contains

 		
 sock_recvline_regex

 		
 sock_recvn

 		
 sock_recvuntil

 		
 sock_sendafter

 		
 sock_newline

 		
 sodium_secretbox_open

 		
 status

 		
 stdin_readline

 		
 stdin_read_to_end

 		
 str_find

 		
 str_replace

 		
 strftime

 		
 strptime

 		
 strval

 		
 time_unix

 		
 url_decode

 		
 url_encode

 		
 url_escape

 		
 url_join

 		
 url_parse

 		
 url_unescape

 		
 utf8_decode

 		
 warn

 		
 warn_once

 		
 ws_connect

 		
 ws_options

 		
 ws_recv_text

 		
 ws_recv_binary

 		
 ws_recv_json

 		
 ws_send_text

 		
 ws_send_binary

 		
 ws_send_json

 		
 x509_parse_pem

 		
 xml_decode

 		
 xml_named

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

