

Spatial Microsimulation Urban Metabolism (SMUM)

[image: UN Environment] [http://www.unep.org] [image: _] [image: GI-REC] [http://www.resourceefficientcities.org]

	Author

	Dr. M. Esteban Munoz H. <emunozh@gmail.com> or <esteban.munoz@un.org>

	Version

	0.2.0

	Date

	2018-06-11

Note

This documentation is generated automatically from the main github
repository. The build of the documentation is not
always successful and you might end up reading a documentation of an outdated
version of the model. Please always verify the version of the model you are
running. This simulation library is under development and we are constantly
changing the simulation libraries.

This is the main documentation for the Spatial Microsimulation Urban Metabolism
model. This model combines two powerful approaches for the simulation of
resource flows within cities. The first approach is Urban Metabolism (UM).
This approach describes the metabolic performance of cities by quantifying and
balancing all resource inputs and outputs from a predefined city-system. The
second component of the simulation model is the Spatial Microsimulation (SM)
model. This component of the simulation library constructs a synthetic
population for the specific city-system and allocates consumption values to the
individual city agents. The simulation library benchmarks this synthetic sample
to the aggregated consumption values from the UM model.

The aim of this documentation is twofold:

	Describe the methodological approach of the simulation model; and

	Explain how to use the components of the library and present some simulation examples.

This simulation library is build on top of some well know python libraries as
well as some specific python an R libraries.

	Python libraries

	Use

	pandas

	Data library for python

	numpy

	Numerical model in python

	scipy

	Scientific python

	statsmodels

	Statistical models

	Theano

	Compiled numerical computation library.

	jupyterhub

	Used as main UI

	matplotlib

	De facto python plotting library

	seaborn

	Statistical plots

	pymc3

	Bayesian Statistics, MCMC

	ipfn

	Iterative Proportional Fitting

	XlsxWriter

	Create excel files

	R libraries

	Use

	GREGWT

	Sample reweighting library

	Introduction

	Top-Down: City-Systems (Urban Metabolism)

	Bottom-Up: Synthetic Populations (Spatial Microsimulation)

	Examples

	API: Top-Down (Urban Metabolism)

	API: Bottom-Up (Spatial Microsimulation)

	Authors

	Contributing

	History

Introduction

In order to understand the flow of resources occurring within a city-system we
represent all the inputs and outputs from these city-system. For the
computation of these inputs and outputs the library makes use of the urban
metabolism approach.

The quantification of resources flow at an aggregate level is not enough for
cities to take knowledge-based decisions on future infrastructure investment and policies
targeting a sustainable urban development. In order to understand the impact of
city level policies and investment strategies cities need to understand:

	The drivers of consumption and

	The plausible impact of these policies on their citizens.

In order to get this level of understanding we propose the simulation
of consumption intensities at a micro-level. By describing the consumption
intensities at this level of detail (and implicitly their consumption drivers)
cities have a tool to assess the impact at this micro-level (e. g. at municipal or district level). The
microsimulation module of this library constructs a micro-level synthetic
sample with demographic-variables (drivers) and consumption values (benchmarked
to aggregated values from the Urban Metabolism (UM) model).

[image: _images/GI-REC_model.png]
This documentations aims to describe the main rationale behind the development
of this python library and to present an overview of the main modules and
functions implemented on the library.

The python library is composed of two main components:

	An Urban Metabolism section, see Top-Down: City-Systems (Urban Metabolism) that aims to balance all resource flows of
city systems at an aggregated level (i.e. city-level) and;

	A Spatial Microsimulation section, see Bottom-Up: Synthetic Populations (Spatial Microsimulation). which constructs a synthetic city and
allocates consumption values to micro-level agents

For a complete implementation example of the Spatial Microsimulation Urban Metabolism Model (SMUM), please
refer to the following link:
ipython notebook [http://nbviewer.jupyter.org/github/emunozh/um/blob/master/docs/example_ph/Welcome.ipynb]

This set documentations provides the documentation of the individual library
modules and all the functions within these modules as well as some extended
examples on how to use the provided functions.

The main library function documentation can be found at:

	API: Top-Down (Urban Metabolism) for the Urban Metabolism functions and at
Top-Down: City-Systems (Urban Metabolism) for a general description of the UM module; and

	API: Bottom-Up (Spatial Microsimulation) for the Spatial Microsimulation functions and at
Bottom-Up: Synthetic Populations (Spatial Microsimulation) for a general description of the SM module.

A complete list of examples can be found at:

	Examples

A complete list of the library authors and contributors can be found at:

	Authors; and

	Contributing

Top-Down: City-Systems (Urban Metabolism)

The Urban Metabolism (UM) module aims to describe the resource flows of
a city-system at an aggregated level with the use of input-output tables.

This module aims to provide:

	A framework for the description of resource flows;

	A description of macro-level drivers for the changes of these flows; and

	A description of linkages between different resource flows.

The advantgage of this library module–and of this python library– is that each
module can be used independently. The UM module can be run independently from
the rest of the library.

The library is structured as two types of functions:

	A function dedicated to the description of a city and city-data, see city.

	Resource flow specific classes:

	Materials & api: Materials

	Water & api: Water

	Consumption model: Energy & api: Energy

	Food & api: Food

	Waste & api: Waste

For each of these classes a Unified Modeling Language (UML [https://en.wikipedia.org/wiki/Unified_Modeling_Language]) class diagram has
been generated.

The description of the individual functions of this module can be found below
under: API: Top-Down (Urban Metabolism).

Consumption model: Energy

Energy Class: Energy Flow

“Energy flow is the ultimate of the urban metabolism. The magnitude of energy flows
from heating and cooling are typically related to climate, but other components
of urban energy use can be linked back to the shape and form of a city, reflected
by its infrastructure systems and hence material stocks. (Kennedy.2012)”

\[I_{E} = I_{E,buildings} + I_{E,transport} + I_{E,industry} +
 I_{E,construction} + I_{E,water pumping} + I_{E,waste}\]

The total energy demand of a city is expressed as the total sum of all
energy demands for the different energy sectors.
Each energy sector energy demand is calculated, based on different components
that are the cause of energy consumed.

Buildings:
For the building sector the total energy consumption is computed based on
climatic conditions of the city (\(HDD\) and \(CDD\)) and energy
consumption intensities based on building type.

\[I_{E,buildings} = I_{E,heating} + I_{E,cooling} + I_{E,light-and-appl.} + I_{E,water-heating}\]

\[I_{E,heating} = \sum_{building-type} HDD * i_{E,heating} * P * f\]

\[I_{E,cooling} = \sum_{building-type} CDD * i_{E,cooling} * P * f * cp\]

Where:

	\(HDD\) Heating degree days.

	\(CDD\) Cooling degree days.

	\(i_{E,cooling}\) heating intensity.

	\(i_{E,heating}\) cooling intensity.

	\(P\) Population of the urban agglomeration.

	\(f\) Floor space area per capita.

	\(cp\)

Transport:
The total energy demand for the transport sector is computed based on the
different types of transportation observed within the analyzed system:

\[I_{E,transport} = I_{E,passenger} + I_{E,freight} + I_{E,aviation} + I_{E,marine}\]

When anaylzing a city the first xx (Summand) surface passenger transport will be
the most relevant. For this transportation category the energy demand is
calculated based on the different types of passenger transport found in the city:

\[I_{E,passenger} = \sum_{mode} \frac{1}{P_p} * P * \rho_i * h * \varepsilon\]

Where:

	\(mode\)

	\(P_p\) Average population density \([km^{-2}]\).

	\(\rho_i\) Density of transportation infrastructure \([km * km^{-2}]\).

	\(h\) utilization intensity of infrastructure \([\text{veh-}km * km^{-2}]\).

	\(\varepsilon\) Fuel efficiency \([J*\text{veh-}km^{-1}]\).

The product of the first four terms within the summation is equivalent to the vehicle-kilometers traveled (VKT):

\[VKT = \frac{1}{P_p} * P * \rho_i * h\]

A widely used city indicator when analyzing sustainability in urban environments.

Energy surface balance (NOT IMPLEMENTED):

\[I_{E,S} + I_{E,F} + I_{E,I} = O_{E,L} + O_{E,G} + O_{E,E}\]

Where:

	\(I_{E,S}\) Rate of arrival of radiant energy from the sun.

	\(I_{E,F}\) Rate of generation of heat due to combustion and dissipation in machinery.

	\(I_{E,I}\) Rate of heat arrival from the earth’s interior.

	\(O_{E,L}\) Rate of loss of heat by evapotranspiration.

	\(O_{E,G}\) Rate of loss of heat by conduction to soil, buildings, roads, etc.

	\(O_{E,E}\) Rate of loss of heat by radiation.

Energy class: Stock

This class defines the existing energy stock by sector.

All energy streams are aggregated by sector.

A data-set with the detail energy stream is generated as a csv file and
stored under the /results folder.

The Energy Stock is computed as follows:

Water

Water class: Water Demand

Similar to Energy Flow, Water Demand is computed as the sum of different water
consumers. In a city most water is consumed at the building level. Therefore
total Water Demand (\(Q_W\)) is determined based on residential and
non-residential water demand.

\[Q_W = Q^{hh}_{W,D} + Q^{nr}_{W,D}\]

	Where:

	
	\(Q^{hh}_{W,D}\) Household water consumption.

	\(Q^{nr}_{W,D}\) Non-Residential water consumption.

** Residential Water Demand:**
The residential water demand or household demand model is computed as function of the following indicators:

	Demographic characteristics of the household.

	Disposable income of the household.

	Average water price in the city.

	Water saving penetration rate (SP) Yuan, X.-C. et al. (2014).

	Water saving rate (SR) Yuan, X.-C. et al. (2014).

\[Q^{hh}_{W,D} = \beta_0 + \sum^{n}_{i} \beta_i HH_{i} + \beta_y Y_{hh,$} + \beta_p P_{$} + \epsilon\]

Where:

	\(Q^{hh}_{W,D}\) Household water consumption.

	\(HH\) Household characteristic.

	\(Y_{hh,$}\) Household income.

	\(P_{W,$}\) Water price.

	\(\beta_i\)

	\(\epsilon_{err}\) Random error term.

Depending on the water tariff in place the variable \(P_{W,$}\) cannot be
modeled as a dependent variable. If the water tariff is computed as a
function of consumed volume, the error term cannot be assumed.

The Household characteristics (\(HH\)) are
based on data availability and the definitions made within the water consumption.

Efficiency rate:

The water saving penetration (\(SP\)) and water saving rate (\(SR\)) are computed at each
simulation step. The water saving rate is an indicator for governmental
actions to reduce water consumption. And the penetration rate is the
likelihood that a household has adopted the respective the water saving behaviour or
technology.

\[\begin{split}Q_{W,D}^{base}(SP_{W,D}, SR_{W,D}) =
\begin{cases}
 Q_{W,D}^{hh} \times (1-SR_{W,D}) & \quad \text{if } rand < SP_{W,D}\\
 Q_{W,D}^{hh} & \quad \text{ else}\\
\end{cases}\end{split}\]

Where:

	\(Q^{base}_{W,D}\) Base water consumption.

	\(SP_{W,D}\) Water saving penetration rate.

	\(SR_{W,D}\) Water saving rate.

Non-residential Water Demand:
The non-residential water demand model is defined as the sum of (source: DGNB):

	Water consumption by buildings occupants. \(Q^{nr}_{DU}\)

	Water consumption for cleaning. \(Q^{nr}_{DC}\)

	Water consumption by spa facilities. \(Q^{nr}_{DS}\)

	Water consumption by laundering facilities. \(Q^{nr}_{DL}\) (not implemented)

\[Q^{nr}_{W,D} = Q^{nr}_{W,DU} + Q^{nr}_{W,DC} + Q^{nr}_{W,DS} + Q^{nr}_{W,DL}\]

Where:

\[Q^{nr}_{W,DU} = \sum_{i=1}^{n} wb_I\]

\[wb_I = \left(n_{NU} \times f_{I} \times as_{I} \times d/a \right) / 1000\]

Where:

	\(n_{NU}\) Number of users/occupants/employees/visitors/customers

	\(f_I\) Installation factor of equipment (see Tab. W1) \([s/d]\)

	\(as_I\) Equipment water demand factor (see Tab. W2) \([l/u]\)

	\(d\) Occupancy rate in days

Table 1 Tab. W1. Installed equipment factors \(f_I\)

	Equipment

	Office

	Hospital (number of beds

(number of beds \(n_{e}\))

	Commerce

	Hotel

(single \(n_{ez}\), double \(n_{dz}\))

	Residential

	
	Employee

	Employee

	Patient

	Visitor

	Employee

	Customer

	Customer

	Occupant

	\(n_{NU}\)

	
	
	\(0.8 * n_{e}\)

	\(0.5 * 0.8 * n_{e}\)

	
	
	\((n_{ez} + (n_{DZ} * 1.2)) * 0.65\)

	

	Toilet sink

	75

	45

	135

	15

	45

	15

	75

	195

	WC-Saving

	4

	1

	2

	0.5

	1

	0.3

	1

	4

	WC

	1

	1

	1

	0.5

	1

	0.5

	1

	1

	Urinal

	4

	1

	
	0.5

	1

	0.2

	1

	

	Shower

	30

	60

	90

	
	30

	
	
	120

	Kitchen sink

	20

	20

	
	
	20

	
	
	

	Sink-Spa

	
	
	
	
	
	
	15

	

	WC-Saving-Spa

	
	
	
	
	
	
	1

	

	Shower-Spa

	
	
	
	
	
	
	600

	

	Dishwasher

	
	
	
	
	
	
	
	0.5

	Washing machine

	
	
	
	
	
	
	
	0.25

Table 2 Tab. W2. Water demand factors

	Equipment

	Office

	Hospital

	Commerce

	Hotel

	Residential

	Toilet sink
\([l/s]\)

	0.15

	0.15

	0.15

	0.15

	0.15

	WC-Saving
\([l/u]\)

	4.5

	4.5

	4.5

	4.5

	4.5

	WC
\([l/u]\)

	9

	9

	9

	9

	9

	Urinal
\([l/u]\)

	3

	3

	
	
	

	Shower
\([l/s]\)

	0.25

	0.25

	0.25

	0.25

	0.25

	Bathtub
\([l/u]\)

	
	
	
	
	Capacity

	Kitchen sink
\([l/s]\)

	
	0.25

	0.25

	
	

	Dishwasher
\([l/u]\)

	
	
	
	
	20

	Washing machine
\([l/u]\)

	
	
	
	
	60

\[Q^{nr}_{W,DC} = \sum_{i = 1}^n \left(A_{R,i} \times wb_{R/A} \right) / 1000\]

\[Q^{nr}_{W,DS} = \sum_{i = 1}^n wb_I\]

\[wb_I = \left(n_{SPA} \times f_I \times as_I \times 360 d/a \right) / 1000\]

\[n_{SPA} = n_{NU} \times 0.25\]

\[Q^{nr}_{W,DL} = \sum_{i = 1}^n wb_I\]

Where:

	\(A_R\) Cleaning floor space \([m^3/a]\)

	\(wb_R\) Water demand per cleaning area (see Tab. W3) \([l/(m^2 \times a)]\)

	\(wb_I\) Specific water demand of spa/laundry installations (see Tab. W1 and Tab. W2) \([m^3/a]\)

Table 3 Tab. W3. Water demand per cleaning area. \(wb_R\) in \([l/m^2a]\)

	Type of area

	Frequency

	Office

	Hospital

	Commerce

	Hotel

	Residential

	Floor

	1 x Month

	1.50

	1.50

	1.50

	1.50

	1.50

	1 x Week

	6.25

	6.25

	6.25

	6.25

	6.25

	3 x Week

	18.75

	18.75

	18.75

	
	18.75

	4.5 x Week

	
	
	
	28.125

	

	5 x Week

	
	31.25

	
	
	

	6 x Week

	
	37.50

	37.50

	
	

	7 x Week

	
	43.75

	
	43.75

	

	Glass

surface

	2 x Year

	0.60

	
	
	
	0.60

	4 x Year

	1.20

	1.20

	1.20

	1.20

	1,20

	6 x Year

	1.80

	
	
	
	1.80

	12 x Year

	
	3.60

	3.60

	3.60

	

	24 x Year

	
	
	7.20

	7.20

	

Flow

This water flow is balanced as follows:

\[I_{W,percip} + I_{W,pipe} + I_{W,sw} + I_{W,gw} = O_{W,evap} + O_{W,out} + \Delta S_w\]

Where:

	\(I_{W,percip}\) Is natural inflow from precipitation.

	\(I_{W,pipe}\) Is water piped into the city.

	\(I_{W,sw}\) Is the net surface water flow into the city.

	\(I_{W,gw}\) Is the net ground water flow into city aquifers.

	\(O_{W,evap}\) Evapotranspiration.

	\(O_{W,out}\) Water piped out of cities

	\(\Delta S_w\) Change in water storage of urban agglomeration.

Anthropogenic Water Use:

The anthropogenic water consumption is computed as follows:

\[Q_W = Q_{W,D} + Q_{W,L}\]

Where:

	\(Q_{W,D}\) Water demand.

	\(Q_{W,L}\) Water losses.

\[Q_{W,D} = \sum_{hh} Q^{base}_{W,D,hh} + CDD * i^{cooling}_W\]

Where:

	\(Q^{base}_{W,D}\) Base water consumption.

	\(CDD\) Cooling Degree Days.

	\(i^{cooling}_W\) Intensity of water use for cooling.

\[Q_{W,L} + A * p_{ti} * l\]

Where:

	\(Q_{W,L}\) Water losses.

	\(A\) Surface area of urban agglomeration.

	\(p^{ti}\) Density of urban infrastructure.

	\(l\) Annual leakage rate per length of linear infrastructure.

\[Q_{WWT} = Q_{WWE} + Q_{WWF} + Q_{INF}\]

Where:

	\(Q_{WWT}\) Treated waste water.

	\(Q_{WWE}\) Generated waste water.

	\(Q_{WWF}\) Wet weather water flow.

	\(Q_{INF}\) Base infiltration.

Urban Aquifers:

\[\Delta S_{W,gw} = \Delta Q_{W,RO} + Q_{W,ar} + \Delta I_{W,gw} - \Delta Q_{W,DO} - Q_{W,gwpump}\]

Where:

	\(\Delta S_{W,gw}\) Change in ground water storage of urban agglomeration.

	\(\Delta Q_{W,RO}\) Change in natural recharge from virgin conditions.

	\(Q_{W,ar}\) Net anthropogenic urban water recharge rate.

	\(\Delta I_{W,gw}\) Net change on ground-water inflow.

	\(\Delta Q_{W,DO}\) Change in natural discharge from virgin conditions.

	\(Q_{W,gwpump}\) Net pump rate of urban agglomeration.

Internal Renewable Water Resources (IRWR)

\[IRWR = S_{W,sw} + S_{W,gw} - S_{W,overlap}\]

External Renewable Water Resources (ERWR)

\[ERWR = I_{W,sw} - O_{W,sw} + I_{W,gw} - O_{W,gw}\]

Total Renewable Water Resources (TRWR)

\[TRWR = (S_{W,sw} + I_{W,sw} - O_{W,sw}) + (S_{W,gw} + I_{W,gw} - O_{W,gw}) - S_{W,overlap}\]

Where:

	\(S_{W,sw}\) Surface water, produced internally.

	\(S_{W,gw}\) Groudwater, produced internally.

	\(S_{W,overlap}\) Overlap between surface water and groundwater.

Stock

Materials

Flow

Stock

All material streams are aggregated by sector.

A data-set will the detail material stream is generated as a csv file and
stored under the /results folder.

The Material Stock is computed as follows:

\[S_M = \sum_s \sum_m S^s_{M,m}\]

The total materials stock of a city is expressed as the total sum of all
type of materials \(m\) of all urban structures \(s\).

\[S^{rb}_{M,m} = P * f^{rb} * i^{rb}_{M,m}\]

Where:

	\(S^{rb}_{M,m}\) Material stock of residential buildings.

	\(P\) Population of the urban agglomeration.

	\(f^{rb}\) Per-capita floor space for residential buildings.

	\(i^{rb}_{M,m}\) Material intensity per squared meter.

\[S^{ti}_{M,m} = A * p^{ti} * i^{ti}_{M,m}\]

Where:

	\(S^{ti}_{M,m}\) Material amount in linear transportation infrastructure.

	\(A\) Surface area of urban agglomeration.

	\(p^{ti}\) Density of urban infrastructure.

	\(i^{ti}_{M,m}\) Material intensity per kilometer of urban infrastructure.

Waste

Flow

Stock

Food

Demand

** Residential Food Demand:**
The residential food demand or household demand model is computed as function of the following indicators:

	Demographic characteristics of the household.

	Disposable income of the household.

\[Q^{hh}_{F,D} = \beta_0 + \sum^{n}_{i} \beta_i HH_{i} + \beta_y Y_{hh,$} + \epsilon\]

Where:

	\(Q^{hh}_{F,D}\) Household food consumption.

	\(HH\) Household characteristic.

	\(Y_{hh,$}\) Household income.

	\(\beta_i\)

	\(\epsilon_{err}\) Random error term.

The Household characteristics (\(HH\)) are
based on data availability and the definitions made within the food consumption.

Flow

\[I_F + P_F + I_{W,Kit} = O_{F,RetFW} + O_{F,ResFW} + O_{F,Met} + O_{F,S}\]

Where:

	\(I_F\) mass of food and packaged drinks imported to the city.

	\(P_F\) mass of food and packaged drinks produced in the city, for internal consumption.

	\(I_{W,Kit}\) mass of kitchen water used during food preparation or drunk during meals.

	\(O_{F,RetFW}\) mass of retail food waste produced by grocery stores and restaurants.

	\(O_{F,ResFW}\) mass of residential food waste going to landfill, compost, or organic waste collection.

	\(O_{F,Met}\) mass of carbon and water lost via respiration and transpiration in residents metabolism.

	\(O_{F,S}\) mass of feces and urine exported to sewerage system.

Stock

Bottom-Up: Synthetic Populations (Spatial Microsimulation)

The presented simulation framework on this report implements a simple model for
the description of urban resource flows and their projection into the future
under predefined scenarios.

The description of the individual functions of this module can be found below
under: API: Bottom-Up (Spatial Microsimulation).

The simulation framework is constructed as a hybrid model. The Model balance
input-output tables at an aggregated level, its contra-part module
computes consumption levels at a micro-level. In order to describe the
consumption of resources at a micro-level, the model requires a micro-data-set for the construction of a consumption model.
For a traditional analysis, the implemented micro-data-set would be a survey that:

	is representative of the underlying population and

	contains parameters required for the estimation of consumption intensities.

A traditional approach would simply reweight this survey to the analysis area
(in this case a specific city) and re-compute the consumption intensities. The
problems with this approach are three-fold:

	this approach requires a detailed survey for the specific resource to be estimated;

	the survey is not representative for the projection of the population and

3) the method does not allow for an integrated analysis, i.e. combining variables from different
surveys.

The second point can be solved through the implementation of a dynamic
population model at the expense of a considerable increase in data input requirements.

The presented approach solves all three problems of the traditional approach by
constructing a synthetic sample via a Markov-Chain-Monte-Carlo (MCMC) sampling
procedure. Instead of using a sample survey as input the model defines
probability distributions for the individual variables (and eventually links between these variables). The probability
distributions can be defined based on variables from a sample survey but can
also be derived from other data sources. Because the sample survey is
synthetically constructed it can be re-constructed on each simulation step, by
doing this the synthetic sample survey is always representative of the
underlying population. The constructing of a sample survey at each simulation
step comes at the cost of computational time. The synthetic sample survey is
benchmarked to know aggregated demographic variables—and consumption values if
available—with help of a sample reweighting algorithm (GREGWT).

The simulation framework

The first step of the simulation framework is the construction of the synthetic
sample survey via the MCMC algorithm.
On the second step, GREGWT reweights this sample to aggregated
statistics. This means that the weight for each record is recomputed. The
sample starts with a uniform distributed weight, e.g. every record represents
w number of households. This means that the difference between the sample size \(n\) (number of records in the sample)
and the actual number of households \(N_{HH}\) is equal to \(n \times w\).
The sample size can
be redefined to any given number, this means that the sample size can be larger
than the total number of households. The GREWT algorithm will re-compute these
weights in order to match them to known aggregates. This procedure assures that
the marginal sums of the sample survey match aggregated statistics. For
example, from national statistics the model knows that in a specific city
there are 100 households that do not have air conditioning. GREGWT will make
sure that when we sum the weight of all households in the synthetic sample
survey, the number of households that do not have air conditioning will be equal to 100.

This procedure is performed at each simulation step. A disadvantage of
performing these steps (MCMC + GREGWT) at each simulation step is that the MCMC
algorithm is very computationally intensive. Depending on the defined simulation
scenarios a simpler method can be applied. Instead of resampling on each
simulation step (MCMC + GREGWT; resampling method) the model can resample only once,
e.g: for a benchmark year, and then reweight this sample for each consequent
simulation year (reweighting method).

Internal and external model error

Fig. 1
shows a graph describing the model
error. The upper-right plot shows the Percentage Specific Absolute Error (PSAE)
error for each variable category, this value measures the distance between
estimated and known (or extrapolated) aggregated values. The upper-right plot
shows the percentage deviation between estimated consumption levels and known
consumption levels (the plots for Figure 24 and Figure 26 are empty because
known consumption levels are only available for the benchmark year 2016). The
lower-right plot shows a regression line between simulated values (x-axis) and
observed values (y-axis). Observed values are the known or extrapolated values
at an aggregate level. The lower-right plot shows the initial uniform
distributed weight (dotted red line, the output of MCMC) and the reweighted weights
distribution (output of GREGWT).

[image: _images/error_total.png]
Fig. 1 Internal simulation error

Examples

Running a simple example

The following steps are required to construct a minimal simulation example.

	Define model parameters.

	We define a formula for the electricity model. This model will compute the
electricity demand based on previously computed income levels.

	We define a python dictionary to tell the function run_calibrated_model
how to calibrate the model. The order of the models (i.e. dictionary keys) matter
as the model will calibrate them in the specified order. In this case, we
need to calibrate the income model first in order to calibrate the
electricity model because the computation of electricity directly depends on
the estimation of income.

	We run the model with the defined parameters. The model with iterate until
all models are calibrated.

load libraries
import pandas as pd
from urbanmetabolism.population.model import run_calibrated_model

load model coefficients
elec = pd.read_csv('data/test_elec.csv', index_col=0)
inc = pd.read_csv('data/test_inc.csv', index_col=0)
water = pd.read_csv('data/test_water.csv', index_col=0)

define model, order matters
model = {"Income": {'table_model': inc },
 "Water": {'table_model': water},
 "Electricity": {'table_model': elec}

run simulation
run_calibrated_model(
 model,
 census_file = 'data/benchmarks_projected.csv',
 year = 2016)

This subsection describes the required steps to perform a simple simulation.
The steps to perform a simulation are two-fold:

	The definition of a consumption model; and

	The construction of scenarios

The definition of consumption models is required for the estimation of
consumption levels at a micro-level. The consumption models estimate resource
consumption intensities at an individual level based on predefined consumption
drivers. The consumption model implemented in the simulation can be any type of
resource demand model.

The definition of scenarios is performed at an aggregate level (simple
scenario) or at a micro-level (advanced scenario). The construction of simple
scenarios is performed by extrapolating the driver variables at an aggregated
level. An advanced scenario will update the consumption model itself for each
simulation year.

Consumption models

In order to explain the consumption of resources at a micro-level, the model
requires a defined consumption model. Table 4 lists the input data passed to
the urban metabolism model, defining the model used for the estimation of
income. Income levels are subsequently used for the estimation of electricity
and water demand.

For the construction of a sample survey, the model requires a set of parameters
for each variable:

	Mean value of variable coefficient [co_mu]

This is the mu value (\(\mu\) value) used to define a sampling probability distribution
(normal distributed) for the variable coefficient.

This coefficient indicates the effect that the variable has on income.

If the variable is defined as categorical (see parameter dis) the model
requires a co_mu value for each category.

If the variable is defined as deterministic (see parameter dis) the model
requires no co_mu value.

	Standard deviation of variable coefficient [co_sd]

The second parameter the model needs in order to define a normal distribution is the
standard deviation of the sampling probability distribution.

With the values of co_mu and co_sd, the model constructs a normal distribution.
The model will take samples based on this distribution.

If the variable is defined as categorical (see parameter dis) the model
requires a co_sd value for each category.

If the variable is defined as deterministic (see parameter dis) the model
requires no co_sd value.

	Probability value for dichotomous variables (single value) or categorical distributions (probability vector) [p]

For dichotomous variables (yes/no, female/male, 1/0, etc.…) a single value
is assigned to parameter p. Parameter p is the probability for the variable
to take one of these values.

The p value of the first row of Table 4 is set to 0.19. This means that at
simulation year 2010 the model will sample a household with a female head
(male is the reference category) with a 19% probability.

If the expected variable is categorical (highmiddle/low, 1/2/3, etc.) the
value assigned to parameter p is a vector with size equal to the number of
categories.

	Mean value of distribution [mu]

This is the mu value (\(\mu\) value) used to define a sampling probability distribution for
the variable value.

This parameter has to be defined for either continuous variables (normal
distribution) of for discrete variables (poisson distribution).

	Standard deviation for distribution [sd]

For continuous distributed variables (normal distribution) the model needs to
define a value for its standard deviation.

	A distribution type [dis]

This parameter defines the sampling probability distribution for the
variable values. The Markov-Chain-Monte-Carlo routine will use this
distribution (define through parameters mu and sd) to sample the variable
values.

The variable coefficients are by default sampled along a normal
distribution, defined by co_mu and co_sd.

	An upper boundary [ub]

An optional Upper Boundary defined by parameter ub can be imputed into the
simulation model. This parameter will cap the sampled variable value at this
value.

	A lower boundary [lb]

Identical to parameter ub but for the lower boundary of the sampled variable.

Table 4 Income table-model for Sorsogon City (benchmark year 2016; in Philippine-Pesos)

	
	co_mu

	co_sd

	p

	mu

	sd

	dis

	ub

	lb

	i_Intercept

	
	
	1,147.66

	
	
	Deterministic

	
	

	i_Sex

	919.01

	161.50

	0.20

	
	
	Bernoulli

	
	

	i_Urbanity

	7,105.22

	127.94

	0.47

	
	
	Bernoulli

	
	

	i_FamilySize

	1,666.85

	29.03

	5.25

	2.24

	
	Poisson

	10

	1

	i_Age

	116.58

	4.68

	
	54.18

	14.07

	Normal

	100

	18

	i_Education

	1.0, …, 16788.04

	0.0, …, 742

	
	
	
	
	
	

The defined income model estimates income levels at a household level. The
variables used for the estimation are:

	Gender of the household head

This variable defines the gender of the household head. The model assumes
a 919.01 Philippine-Pesos increase in household income if the household head is female. The
model will construct a synthetic sample where 20% of all household heads are
female.

	Urbanity

Defines if the household is classified as urban or rural. The category
“rural” is used as reference category. The coefficient describes a positive
influence on income, urban households are attributed on average 7 105.22
Philippine-Pesos with a standard deviation of 127.94 Pesos.

	Family size

The impact of family income by household size is an additional 1666.85 Pesos per
additional family member.

	Age of head of household

The age of the household head is modelled as a continues variable. This is
defined by setting the parameter dis to “Normal” (the normal distribution is
a continuous distribution). The shape of the distribution is defined by
variables mu and sd.

The impact of household head age on income is defined by parameter co_mu, set
to 116.58 with a standard deviation of 4.68 (via parameter sd).

	The education level of head of household

The education level of the household head also impacts the income level of
the household. In this case, the model defines this variable as categorical.
For each category the impact on income, relative to the reference level
(Elementary School), has to be defined on parameter co_mu.

The model will create a synthetic sample following these parameters. On
a second step, the model calibrates the estimated income levels to a known
income value i.e. the aggregated total income of the city.

[image: _images/Income.png]
Fig. 2 Prior income distribution and calibrate posterior distribution

Fig. 2 shows the histogram of the original data used in the regression
model, required for the estimation of regression coefficients used on variable
co_mu, the known income level for 2016 (dotted green line) and the histogram of
the constructed sample survey income levels. The figure also shows the absolute
and specific error of the calibration. The estimated total income, i.e. the sum
of all households’ income in the synthetic sample survey differs by 0.01% from
the official total income of the city reported in 2016. This means that the
income estimation of the model has been calibrated properly. The computed
calibration k-factor is used for the estimation of income for all other
simulation years.

Following this schema, the model is able to compute all type of variables. In
this section, the model is implemented for the estimation of electricity
consumption levels as well as water consumption levels. The estimation of water
and electricity consumption makes use of previously estimated income levels for
their computation as well as demographic variables sampled for the estimation
of income levels.

Table 5 Electricity table-model

	
	co_mu

	co_sd

	p

	dis

	ub

	lb

	e_Intercept

	
	
	3.30

	Deterministic

	
	

	e_Lighting

	0.83

	18.67

	0.92

	Bernoulli

	
	

	e_TV

	18.79

	1.76

	0.72

	Bernoulli

	
	

	e_Cooking

	28.89

	1.97

	0.01

	Bernoulli

	
	

	e_Refrigeration

	59.24

	1.56

	0.34

	Bernoulli

	
	

	e_AC

	203.32

	3.13

	0.10

	Bernoulli

	
	

	e_Urban

	24.59

	1.39

	1.00

	Bernoulli

	
	

	e_Income

	0.00

	0.00

	
	None

	inf

	0.00

[image: _images/Electricity.png]
Fig. 3 Estimated electricity distribution

Table 5 describes the implemented model for the estimation of electricity
demand. Analogues to the model defined for the estimation of income, the table
list a set of variables used for the estimation of electricity consumption.
These variables are described by their distribution (required for sampling
them) and their coefficients.

The variables used in this example for the estimation of electricity
consumption are the following:

	AC

This variable is one of the most important variables for the estimation of
electricity consumption levels of individual households.

This variable describes the use of Air Conditioning in the household for cooling purposes.

	Cooking

This variable describes the impact on electricity demand of using an electric device for cooking.

	Lighting

This variable indicates the use of electric energy for the lighting of the
house. This variable is directly related to electrification rate. By 2016 it
is assumed that 97% of all households use electric energy for the lighting
of their houses in Sorsogon City, the Philippines.

	Refrigeration

This variable describes the use of electricity for refrigeration purposes. Similar to
the lighting variable, the model assumes that by 2016 all households in the city use
electric energy for refrigeration.

	TV

This variable describes the use of electricity for TV and other leisure
electric equipment like radios, computers and mobile phones.

	Urban

Analogues to the income estimation, the urbanization of a household has an
impact on its electricity consumption.

For 2016 the model assumes an urbanization rate of 65%.

Similar to the estimation of income, the estimation electricity is calibrated
to the known city level electricity consumption level for the residential
sector. Fig. 3 shows the estimation error of the model by comparing
the calibrated estimated electricity consumption values from the synthetic
sample survey to the consumption values from the Household Energy Consumption
Survey HECS (PSA, 2004). The specific estimation error is close to zero with
a value of 1.83e-4% (0.000183%).

Table 6 Water table-model

	
	co_mu

	co_sd

	p

	dis

	w_Intercept

	
	
	-601.59

	Deterministic

	w_Sex

	98.50

	29.44

	0.20

	None

	w_Urbanity

	1,000.98

	25.42

	0.47

	None

	w_Total_Family_Income

	0.05

	0.00

	
	None

	w_FamilySize

	49.74

	5.90

	
	None

	w_Age

	6.09

	0.91

	
	None

	w_Education

	1.0, …, 40.19

	0.0, …, 119.68

	
	None;i;Categorical

GI-REC Pilot Cities

Simple Example 1: Recife

	Recife: Simple Simulation Example
	1. Define model

	2. Define model variables

	3. Run Simulation

	4. Validate Simulation

	5. Define transition scenarios

	6. Visualize transition scenarios

Advanced Example 1: Sorsogon

	Sorsogon, Philippines
	Abstract:

	(Step 1) Constructing a synthetic population
	Aggregate level benchmarks

	Micro level consumption models

	(Step 2) Sampling and reweighting
	Dynamic samplic models

	Model internal validation

	(Step 3) Constructing scenarions:

	Sorsogon. Step 1.a Projecting demographic variables
	Aggregated census data

	Introduce bias to census data

	Sorsogon. Step 1.b Micro-level Income model
	Prior income model

	Sorsogon. Step 1.c Micro-level Electricity demand model
	Prior electricity demand model

	Sorsogon. Step 1.d Micro-level Water demand model
	Prior water demand model

	Sorsogon Step 1.e Micro-level Non-Residential model
	Compile building level data

	Prior non-residential model

	Sorsogon. Step 2.a Dynamic Sampling Model and GREGWT
	Import libraries

	Global variables

	Define Table model
	Income model

	Electricity model

	Water model

	Make model and save it to excel

	Define model variables

	Sorsogon. Step 2.b Non-Residential Model
	Import libraries

	Global variables

	Define model

	Run model

	Plot results

	Sorsogon. Step 2.c Model Internal Validation
	Residential Sector

	Non-Residential Sector

	Sorsogon. Step 3.a Defining simple transition scenarios
	Import libraries

	Define simple population selection rules
	Initial sample data

	Define growth rates

	Reduce consumption

	Sorsogon. Step 3.b. Visualize transition scenarios
	Import libraries

	Global variables

	Base scenario

	Base scenario grouped by Urban-Rural households

	Base scenario grouped by family size

	Base scenario grouped by AC ownership

	Scenario 1 compared to base scenario

	Scenario 1 grouped by education

	Scenario 2 compared to base scenario

	Scenario 2 grouped by education

	Scenario 2 grouped by education, cross tabulation

Advanced Example 2: Brussels

	Brussels, Belgium
	Abstract:

	(Step 1) Constructing a synthetic population
	Aggregate level benchmarks

	Micro level consumption models

	(Step 2) Sampling and reweighting
	Dynamic samplic models

	Model internal validation

	(Step 3) Constructing scenarions:

	Brussels. Step 1.a Projecting demographic variables
	Aggregated census data

	Introduce bias to census data
	Iteration (1)

	Iteration (2)

	Iteration (3)

	Brussels. Step 1.c Micro-level Electricity demand model
	Prior electricity demand model

	Brussels. Step 1.d Micro-level Water demand model
	Prior water demand model

	Dataset

	Regression model

	Brussels. Step 1.e Micro-level Non-Residential model

	Prior non-residential model

	Brussels. Step 2.a Dynamic Sampling Model and GREGWT
	Import libraries

	Global variables

	Define Table model
	Water model

	Electricity model

	Make model and save it to excel

	Define model variables

	Brussels. Step 2.b Dynamic Sampling Model and GREGWT, Non-Residential Model
	Import libraries

	Global variables

	Define model
	Electricity

	Run model

	Plot results

	Brussels. Step 2.c Model Internal Validation
	Residential Sector

	Brussels. Step 3.a Defining simple transition scenarios
	Import libraries

	Define simple population selection rules
	Initial sample data

	Define growth rates

	Reduce consumption

	Brussels. Step 3.b. Visualize transition scenarios
	Import libraries

	Global variables

	Base scenario

	Base scenario grouped by construction type

	Base scenario grouped by construction year

	Scenario 1 compared to base scenario

	Scenario 1 grouped by construction year

	Scenario 2 compared to base scenario

	Scenario 2 grouped by construction year

	Scenario 2 grouped by construction year, cross tabulation

	Brussels. Step 3.a.2 Defining simple transition scenarios NR
	Import libraries

	Define simple population selection rules
	Initial sample data

	Define growth rates

	Reduce consumption

	Brussels. Step 3.b.2 Visualize transition scenarios NR
	Import libraries

	Global variables

	Base scenario

	Scenario 1 compared to base scenario

	Scenario 2 compared to base scenario

Advanced Example 2: Brussels Materials

	Brussels Mat. Step 1.a Material Densities

	Brussels Mat. Step 2.a Construction Aggregates

	Brussels Mat. Step 3.a Residential Floor Space

Recife: Simple Simulation Example

In [1]:

from smum.microsim.run import run_calibrated_model
from smum.microsim.table import TableModel

/usr/lib/python3.6/site-packages/h5py-2.7.1-py3.6-linux-x86_64.egg/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
 from ._conv import register_converters as _register_converters

1. Define model

In [52]:

census_file = 'data/benchmarks_br_rec_year_bias.csv'

In [3]:

tm = TableModel(census_file = census_file)

In [4]:

tm.from_excel("data/tableModel_Water_rec.xlsx", "Water")
formula_water = "w_Intercept +\
 c_w_ban * w_ban + \
 c_w_connectio * w_connectio + \
 c_w_age * w_age + \
 c_w_dutyp * w_dutyp + \
 c_w_urban * w_urban + \
 c_w_sex * w_sex"
tm.add_formula(formula_water, 'Water')

In [5]:

tm.from_excel("data/tableModel_Electricity_rec.xlsx", "Electricity")
formula_electricity ="e_Intercept + \
 c_e_edu * e_edu + \
 c_e_sqm * e_sqm + \
 c_e_income * e_income + \
 c_e_hhsize * e_hhsize + \
 c_e_dutyp * w_dutyp + \
 c_e_urban * w_urban + \
 c_e_sex * w_sex + \
 e_cdd"
tm.add_formula(formula_electricity, 'Electricity')

In [168]:

table_model = tm.make_model()

2. Define model variables

In [7]:

labels_age = [
 'age_20a24', 'age_25a29', 'age_30a34',
 'age_35a39', 'age_40a44', 'age_45a49',
 'age_50a54', 'age_55a59', 'age_60a64',
 'age_65a69', 'age_70a74', 'age_75a79',
 'age_80anosou'
]
cut_age = [19,
 24, 29, 34,
 39, 44, 49,
 54, 59, 64,
 69, 74, 79,
 120]
labels_hh = ['hhsize_{}'.format(i) for i in range(1, 8)]
cut_hh = [0,1.55,2.55,3.55,4.55,5.55,6.55,20]
to_cat = {'w_age':[cut_age, labels_age], 'e_hhsize':[cut_hh, labels_hh]}

3. Run Simulation

In []:

fw = run_calibrated_model(
 table_model,
 census_file = census_file,
 year = 2016,
 name = "Recife_simple",
 drop_col_survey = ['e_income', 'e_cdd'],
 to_cat = to_cat,
)

4. Validate Simulation

In [9]:

from smum.microsim.util_plot import plot_error

In [10]:

REC = plot_error(
 'data/survey_Recife_simple.csv',
 'data/benchmarks_br_rec_year_bias.csv',
 'Recife_simple (1000 iterations)',
 year = 2016,
 skip = ['e_sqm'],
 fit_cols = ['Electricity', 'Water'],
)

[image: ../_images/example_br_Ba_GREGWT_Dynamic_14_0.png]

In [12]:

import pandas as pd
survey = pd.read_csv('data/survey_Recife_simple.csv', index_col=0)

In [22]:

iss = survey.shape[0]
rss = survey.loc[survey.wf > 0].shape[0]
print("""
The valid synthetic sample size is small!
Initial sample size: {:0.0f}, representative sample size: {:0.0f}""".format(iss, rss))
print("Only {:0.2%} of the synthetic sample is valid for this population".format(rss/iss))

The valid synthetic sample size is small!
Initial sample size: 956, representative sample size: 307
Only 32.11% of the synthetic sample is valid for this population

5. Define transition scenarios

In [1]:

from smum.microsim.run import transition_rate
from smum.microsim.util_plot import plot_transition_rate
from smum.microsim.run import reduce_consumption

/usr/lib/python3.6/site-packages/h5py-2.7.1-py3.6-linux-x86_64.egg/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
 from ._conv import register_converters as _register_converters

In [2]:

Elec = transition_rate(0, 0.4, start=2016)
Water = transition_rate(0, 0.2, start=2016)
pr = transition_rate(0, 0.3, start=2016)

In [3]:

plot_transition_rate(
 {"Technology penetration rate": pr,
 "Electricity efficiency increase rate": Elec,
 "Water efficiency increase rate": Water},
 "simple scenario")

[image: ../_images/example_br_Ba_GREGWT_Dynamic_20_0.png]

In [4]:

sampling_rules = {
 "e_edu == 'edu_master'": 30,
 "e_hhsize == 'hhsize_1'": 20,
 "e_hhsize == 'hhsize_2'": 10,
 "w_dutyp == 'dutyp_Casa'": 5,
}
file_name = "data/survey_Recife_simple.csv"
scenario_name="simple_scenario"
reduction = {'Electricity':Elec, 'Water':Water}

In [5]:

reduce_consumption(
 file_name, pr, sampling_rules, reduction, scenario_name=scenario_name)

00.00% Electricity reduction; efficiency 00.00%; penetration 00.00; year 2010
-0.00% Water reduction; efficiency 00.00%; penetration 00.00; year 2010
00.00% Electricity reduction; efficiency 00.00%; penetration 00.00; year 2011
-0.00% Water reduction; efficiency 00.00%; penetration 00.00; year 2011
00.00% Electricity reduction; efficiency 00.00%; penetration 00.00; year 2012
-0.00% Water reduction; efficiency 00.00%; penetration 00.00; year 2012
-0.00% Electricity reduction; efficiency 00.00%; penetration 00.00; year 2013
00.00% Water reduction; efficiency 00.00%; penetration 00.00; year 2013
00.00% Electricity reduction; efficiency 00.00%; penetration 00.00; year 2014
00.00% Water reduction; efficiency 00.00%; penetration 00.00; year 2014
00.00% Electricity reduction; efficiency 00.00%; penetration 00.00; year 2015
-0.00% Water reduction; efficiency 00.00%; penetration 00.00; year 2015
-0.00% Electricity reduction; efficiency 00.00%; penetration 00.00; year 2016
00.00% Water reduction; efficiency 00.00%; penetration 00.00; year 2016
00.06% Electricity reduction; efficiency 02.86%; penetration 00.02; year 2017
00.03% Water reduction; efficiency 01.43%; penetration 00.02; year 2017
00.24% Electricity reduction; efficiency 05.71%; penetration 00.04; year 2018
00.12% Water reduction; efficiency 02.86%; penetration 00.04; year 2018
00.53% Electricity reduction; efficiency 08.57%; penetration 00.06; year 2019
00.27% Water reduction; efficiency 04.29%; penetration 00.06; year 2019
00.94% Electricity reduction; efficiency 11.43%; penetration 00.09; year 2020
00.48% Water reduction; efficiency 05.71%; penetration 00.09; year 2020
01.47% Electricity reduction; efficiency 14.29%; penetration 00.11; year 2021
00.75% Water reduction; efficiency 07.14%; penetration 00.11; year 2021
02.12% Electricity reduction; efficiency 17.14%; penetration 00.13; year 2022
01.08% Water reduction; efficiency 08.57%; penetration 00.13; year 2022
02.89% Electricity reduction; efficiency 20.00%; penetration 00.15; year 2023
01.48% Water reduction; efficiency 10.00%; penetration 00.15; year 2023
03.78% Electricity reduction; efficiency 22.86%; penetration 00.17; year 2024
01.93% Water reduction; efficiency 11.43%; penetration 00.17; year 2024
04.78% Electricity reduction; efficiency 25.71%; penetration 00.19; year 2025
02.45% Water reduction; efficiency 12.86%; penetration 00.19; year 2025
05.90% Electricity reduction; efficiency 28.57%; penetration 00.21; year 2026
03.02% Water reduction; efficiency 14.29%; penetration 00.21; year 2026
07.15% Electricity reduction; efficiency 31.43%; penetration 00.24; year 2027
03.66% Water reduction; efficiency 15.71%; penetration 00.24; year 2027
08.50% Electricity reduction; efficiency 34.29%; penetration 00.26; year 2028
04.35% Water reduction; efficiency 17.14%; penetration 00.26; year 2028
09.98% Electricity reduction; efficiency 37.14%; penetration 00.28; year 2029
05.10% Water reduction; efficiency 18.57%; penetration 00.28; year 2029
11.58% Electricity reduction; efficiency 40.00%; penetration 00.30; year 2030
05.92% Water reduction; efficiency 20.00%; penetration 00.30; year 2030

6. Visualize transition scenarios

In [6]:

from smum.microsim.util_plot import plot_data_projection

In [7]:

iterations = 1000
typ = 'reweighted'
reweighted_survey = 'data/survey_Recife_simple'

In [9]:

var = ['Water', 'Electricity']
data, cap = plot_data_projection(
 reweighted_survey, var, "{}; Recife".format(iterations),
 benchmark_year=2016,
)

[image: ../_images/example_br_Ba_GREGWT_Dynamic_26_0.png]

Sorsogon, Philippines

Abstract:

This is a simple implementation example of the developed Spatial
Microsimulation Urban Metabolism Model (SMUM).

The aim of this model is to identify and quantify the impact of
transition pathways to a circular economy.

Two main algorithms implemented in the model, giving it it’s name, are:

	A Spatial Microsimulation, used for the construction of a synthetic
population; and

	An Urban Metabolism approach, used to benchmark consumption level at
a city-level or neighbourhood level (making it spatial).

(Step 1) Constructing a synthetic population

On this section the example shows how to construct representative
samples given the distributions of aggregated variables. The
algorithm constructs the samples either by constructing a new sample for
each simulation year (resample method) or by reweighting an initial
sample for each simulation year (reweighting method).

In order to construct the samples the model needs input on: (a) the
distribution functions of aggregate variables and (b) the changes over
time. This means that the model required the projected aggregated
values. The model provides some function to facilitate and visualize
the projection of aggregated values.

For a spatial microsimulation, the model requires also values for each
simulation area. In this case a combination of the resample and
reweighting methodologies is implemented. The algorithm will construct a
new sample for each simulation year at an aggregated level (e.g.
city-level) and reweight this sample for each area (e.g. statistical
census areas).

For the computation of resource consumption the model requires a
consumption model. This model defines how the resource values are
computed. This can be anything from a simple linear model to the
implementation of external libraries.

Aggregate level benchmarks

(Step 1.a) Projecting demographic
variables

Micro level consumption models

(Step 1.b) Micro-level Income model

(Step 1.c) Micro-level Electricity demand
model

(Step 1.d) Micro-level Water demand model

(Step 1.e) Micro-level Non-Residential model

(Step 2) Sampling and reweighting

This section takes care of the actual sampling procedure and
subsequent reweighting of the proxy data. The sample will be constructed
with help of an MCMC [https://github.com/pymc-devs/pymc3] algorithm
and reweighted with help of the
GREGWT [https://github.com/emunozh/GREGWT] algorithm.

This section also presents the internal validation of the sampling
procedure.

Dynamic samplic models

(Step 2.a) Dynamic Sampling Model and
GREGWT

(Step 2.b) Non-Residential Model

Model internal validation

(Step 2.c) Model Internal
Validation

(Step 3) Constructing scenarions:

The construction of scenarios can be define at different steps of
the model. In a sense, the definition of scenarios start by the
projection of aggregated values (see section 1). This section defines
scenarios by defining technology adoption rates and changes in
technology efficiency.

(Step 3.a) Define Transition Scenarions

(Step 3.b) Visualize transition
scenarios

Sorsogon. Step 1.a Projecting demographic variables

In [1]:

import datetime; print(datetime.datetime.now())

2018-03-15 13:51:56.478760

Notebook Abstract:

This notebook shows an example on how to prepare projected aggregated
benchmarks, as well as how to introduce bias (a proxy for simulating
development scenarios at an aggregated level) to the benchmarks.

This step is not a requirement for running the simulation, the data
containing projections at an aggregated level are a requirement for
running the simulation.

A spatial model requires projected aggregated values for each simulation
area. Depending on the simulation model the estimation of such values
might be difficult.

Aggregated census data

In [2]:

import pandas as pd
from smum._scripts.aggregates import print_all

In [3]:

census = pd.read_csv('data/benchmarks_projected.csv', index_col=0)
skip = ['pop', 'Income', 'Water', 'Electricity']

We read a csv file containing the projected data with help of pandas.
The print_all function is used to print the aggregated data.

A list of strings is constructed to tell the function which columns to
ignore during plotting.

In [4]:

_ = print_all(
 census, 'year',
 skip = skip,
 total_pop = census.loc[:, 'pop'],
 title="Projection of aggregated socio-demographic parameters"
)

[image: ../_images/example_ph_Aa_ProjectionAggregates_7_0.png]

We pass the following variables to the print_all function:

	A pandas DataFrame containing the projected aggregated data.

	A string defining the sufix used to save the file on disk.

	var = defines the type of plot to use.

	skip = defines the list of columns to skip in the plot.

	total_pop = defines a column to use for data normalization.

	title = defines the plot title.

Introduce bias to census data

The manipulations are expressed as growth factors. This factors
increase the share (>1) or decrease the share (<1) of specific
categories. In addition we can define gradual changes on these growth
factors. If no starting point is given the function assumes initial
simulation year.

The define growth rates are passed as a python dictionary to the
function ({‘key’=value}). Where key is the variable category to
be modified and value is either a single number (assumed initial
year to be initial simulation year) or a dictionary attributing a growth
rate to sequential steps.

In [5]:

bias_to = {
 'AC_yes': 1.17,
 'Cooking_yes': {2010: 1.01, 2020: 1.5},
 'Lighting_yes': 1.005,
 'Refrigeration_yes': 1.1,
 'TV_yes': 1.05,
 'Size_1': 1.05,
 'Size_2': 1.07,
 'Size_3': 1.07,
 'Size_4': 0.93,
 'Size_5': 0.92,
 'Size_6': 0.92,
 'Size_7': 0.92,
 'Size_8': 0.90,
 'Size_9': 0.88,
 'Size_10': 0.80,
 'sex_female':1.02,
 'Urbanity_Urban': 1.03,
 'age_26_35':1.03,
 'age_36_45':1.03,
 'age_46_55':1.03,
 'Education_Post_Secondary':1.05,
 'Education_College':1.04,
 'Education_Post_Graduate':1.03
}

In [6]:

_ = print_all(
 census, 'year_bias',
 skip = skip,
 bias = bias_to,
 total_pop = census.loc[:, 'pop'],
 title="Projection of aggregated socio-demographic parameters",
 save_data = 'data/benchmarks_year_bias.csv'
)

[image: ../_images/example_ph_Aa_ProjectionAggregates_12_0.png]

Sorsogon. Step 1.b Micro-level Income model

In [1]:

import datetime; print(datetime.datetime.now())

2017-10-25 14:37:54.542583

Notebook Abstract:

A simple micro-level income model. The following notebook presents the
defined income model for the simulation.

The model computes income levels for each household on the proxy sample
data. The data used for the estimation of income drivers and their
corresponding coefficients is the Philippines Family Income and
Expenditure Survey 2009.

Prior income model

In [19]:

import statsmodels.api as sm
import pandas as pd
import numpy as np
from urbanmetabolism._scripts.micro import compute_categories, change_index

In [20]:

income_data = pd.read_csv('data/income.csv', index_col=0)
formula = "Total_Family_Income ~\
Family_Size + C(HH_head_Sex) + HH_head_Age + C(Education) + C(Urbanity)"

In [21]:

income_data.head()

Out[21]:

 	
 	Family_Size
 	HH_head_Sex
 	HH_head_Age
 	Education
 	Electricity_expenditure
 	Water_expenditure
 	Total_Family_Income
 	Urbanity

 	0
 	5.5
 	1
 	52
 	2.0
 	1500
 	0
 	23939.666667
 	0

 	1
 	7.5
 	1
 	70
 	1.0
 	1608
 	0
 	16078.166667
 	0

 	2
 	3.0
 	1
 	49
 	2.0
 	8880
 	0
 	20925.000000
 	0

 	3
 	2.0
 	2
 	51
 	1.0
 	900
 	2190
 	9932.333333
 	0

 	4
 	6.0
 	1
 	36
 	1.0
 	3360
 	0
 	13589.500000
 	0

In [22]:

model_inc = sm.WLS.from_formula(formula, income_data)
model_results_inc = model_inc.fit()

In [23]:

model_results_inc.summary()

Out[23]:

WLS Regression Results

 	Dep. Variable: 	Total_Family_Income 	 R-squared: 	 0.315

 	Model: 	WLS 	 Adj. R-squared: 	 0.315

 	Method: 	Least Squares 	 F-statistic: 	 1908.

 	Date: 	Mon, 23 Oct 2017 	 Prob (F-statistic): 	 0.00

 	Time: 	16:37:05 	 Log-Likelihood: 	-3.5601e+05

 	No. Observations: 	 33208 	 AIC: 	7.120e+05

 	Df Residuals: 	 33199 	 BIC: 	7.121e+05

 	Df Model: 	 8 	 	

 	Covariance Type: 	nonrobust 	 	

 	 	coef 	std err 	t 	P>|t| 	[0.025 	0.975]

 	Intercept 	 1147.6640 	 313.997 	 3.655 	 0.000 	 532.218 	 1763.110

 	C(HH_head_Sex)[T.2] 	 919.0121 	 161.503 	 5.690 	 0.000 	 602.460 	 1235.565

 	C(Education)[T.2.0] 	 6023.8625 	 140.904 	 42.751 	 0.000 	 5747.685 	 6300.040

 	C(Education)[T.3.0] 	 1.196e+04 	 217.209 	 55.058 	 0.000 	 1.15e+04 	 1.24e+04

 	C(Education)[T.4.0] 	 1.873e+04 	 282.176 	 66.368 	 0.000 	 1.82e+04 	 1.93e+04

 	C(Education)[T.5.0] 	 1.679e+04 	 742.048 	 22.624 	 0.000 	 1.53e+04 	 1.82e+04

 	C(Urbanity)[T.1] 	 7105.2245 	 127.941 	 55.535 	 0.000 	 6854.455 	 7355.994

 	Family_Size 	 1666.8464 	 29.035 	 57.409 	 0.000 	 1609.937 	 1723.756

 	HH_head_Age 	 116.5759 	 4.681 	 24.902 	 0.000 	 107.400 	 125.752

 	Omnibus: 	3597.783 	 Durbin-Watson: 	 1.606

 	Prob(Omnibus): 	 0.000 	 Jarque-Bera (JB): 	4994.573

 	Skew: 	 0.865 	 Prob(JB): 	 0.00

 	Kurtosis: 	 3.786 	 Cond. No. 	 642.

In [24]:

params_inc = change_index(model_results_inc.params)
bse_inc = change_index(model_results_inc.bse)
inc = pd.concat([params_inc, bse_inc], axis=1)
inc.columns = ['co_mu', 'co_sd']
inc = compute_categories(inc)

In [25]:

inc.loc['Urbanity', 'p'] = (income_data.Urbanity == 1).sum() / income_data.shape[0]
inc.loc['Sex', 'p'] = (income_data.HH_head_Sex == 2).sum() / income_data.shape[0]

In [26]:

inc.loc[:, 'mu'] = np.nan
inc.loc[:, 'sd'] = np.nan
inc.loc['Intercept', 'p'] = inc.loc['Intercept', 'co_mu']
inc.loc['Intercept', ['co_mu', 'co_sd']] = np.nan

In [27]:

inc.loc['Education','dis'] = 'Categorical'
inc.loc['Urbanity', 'dis'] = 'Bernoulli'
inc.loc['Sex', 'dis'] = 'Bernoulli'
inc.loc['FamilySize', 'dis'] = 'Poisson'
inc.loc['Intercept', 'dis'] = 'Deterministic'
inc.loc['Age', 'dis'] = 'Normal'

In [28]:

inc.loc[:,'ub'] = np.nan
inc.loc[:,'lb'] = np.nan
inc.loc['FamilySize', 'lb'] = 1
inc.loc['FamilySize', 'ub'] = 10
inc.loc['Age', 'ub'] = 100
inc.loc['Age', 'lb'] = 18

In [29]:

inc.index = ['i_'+i for i in inc.index]

In [30]:

inc.to_csv('data/table_inc.csv')

In [31]:

inc

Out[31]:

 	
 	co_mu
 	co_sd
 	p
 	mu
 	sd
 	dis
 	ub
 	lb

 	i_Intercept
 	NaN
 	NaN
 	1147.663992
 	NaN
 	NaN
 	Deterministic
 	NaN
 	NaN

 	i_Sex
 	919.012
 	161.503
 	0.193718
 	NaN
 	NaN
 	Bernoulli
 	NaN
 	NaN

 	i_Urbanity
 	7105.22
 	127.941
 	0.403005
 	NaN
 	NaN
 	Bernoulli
 	NaN
 	NaN

 	i_FamilySize
 	1666.85
 	29.0348
 	NaN
 	NaN
 	NaN
 	Poisson
 	10.0
 	1.0

 	i_Age
 	116.576
 	4.68139
 	NaN
 	NaN
 	NaN
 	Normal
 	100.0
 	18.0

 	i_Education
 	1.0,6023.86254599,11959.091528,18727.4606703,1...
 	1e-10,140.904404522,217.208790314,282.17614554...
 	NaN
 	NaN
 	NaN
 	Categorical
 	NaN
 	NaN

The income model is defined as a table model. This table contains
all the required information for the simulation model to construct a
proxy sample.

The table model defines the coefficient used for the estimation of
income co_mu, with a corresponding standard deviation co_sd. A
value to model the distribution (p, mu, sd), the
distribution type is defined on column dis. The values ub and
lb are used to give the distribution an upper and lower bound.

Sorsogon. Step 1.c Micro-level Electricity demand model

In [1]:

import datetime; print(datetime.datetime.now())

2018-03-15 13:51:59.686128

Notebook Abstract:

A simple micro-level electricity demand model. Similar to the income
demand model, the electricity demand model
used available micro level data for the estimation of regression
coefficients. This regression coefficients are used to define a table
model. The electricity table model is used for the construction of a
proxy micro level sample data set.

Prior electricity demand model

In [2]:

import statsmodels.api as sm
import pandas as pd
import numpy as np
from smum._scripts.micro import compute_categories, change_index

/usr/lib/python3.6/site-packages/statsmodels-0.8.0-py3.6-linux-x86_64.egg/statsmodels/compat/pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.
 from pandas.core import datetools

In [3]:

electricity_data = pd.read_csv('data/electricity.csv', index_col=0)
formula = "Electricity ~ C(Lighting) + C(TV) + C(Cooking) + C(Refrigeration) + C(AC) + C(Urban) + Income"

In [4]:

electricity_data.head()

Out[4]:

 Sorsogon. Step 1.d Micro-level Water demand model

Sorsogon. Step 1.d Micro-level Water demand model

In [1]:

import datetime; print(datetime.datetime.now())

2018-03-15 13:52:14.007748

Notebook abstract

A simple micro-level water demand model.

A simple micro-level water demand model. Similar to the income demand
model and the electricity demand
model, the water demand model uses micro
level consumption demand data for the construction of a table model. The
table model describes simple rules for the construction of the proxy
micro level sample data.

Prior water demand model

In [2]:

import statsmodels.api as sm
import pandas as pd
import numpy as np
from smum._scripts.micro import compute_categories, change_index

/usr/lib/python3.6/site-packages/statsmodels-0.8.0-py3.6-linux-x86_64.egg/statsmodels/compat/pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.
 from pandas.core import datetools

In [3]:

water_data = pd.read_csv('data/water.csv', index_col=0)
formula = "Water_expenditure ~ Total_Family_Income + Family_Size + C(HH_head_Sex)\
+ HH_head_Age + C(Education) + C(Urbanity)"

In [4]:

water_data.head()

Out[4]:

 Sorsogon Step 1.e Micro-level Non-Residential model

Sorsogon Step 1.e Micro-level Non-Residential model

In [1]:

import datetime; print(datetime.datetime.now())

2018-03-15 13:52:18.424295

Notebook abstract

A simple micro-level building stock model. The consumption model defined
for the building stock works in theory exactly like the other micro
level consumption model. The difference between this model and the
income, electricity and water demand models is that we don’t have a
micro-level consumption data set in order to extract regression
coefficients. In order to define a consumption model we use predefine
building typologies.

Compile building level data

In [2]:

from smum._scripts.sqm_data import get_pop_data, get_sqm_data

In [3]:

census_file = 'data/benchmarks_year_bias.csv'

In [4]:

pop_data_1 = get_pop_data(census_file, sqm_nonres_mean = 800)
nr_data = get_sqm_data()
pop_data = get_pop_data(
 census_file,
 sqm_nonres_mean = nr_data.loc[:, 'sqm'].mean(),
)
pop_data_3 = get_pop_data(census_file, sqm_nonres_mean = 500)

/usr/lib/python3.6/site-packages/pandas-0.22.0-py3.6-linux-x86_64.egg/pandas/util/_decorators.py:118: FutureWarning: The `sheetname` keyword is deprecated, use `sheet_name` instead
 return func(*args, **kwargs)

In [5]:

benchmarks = pop_data.loc[:,['sqm_nonres', 'num_nonres']]
benchmarks.columns = ['BuildingSqm', 'pop']

In [6]:

kwh_2016 = 6.52 * 1000000

In [7]:

pb_kwh = kwh_2016 / benchmarks.loc[2016, 'BuildingSqm']
pb_kwh_sqm = benchmarks.loc[:, 'pop'].mul(pb_kwh)
benchmarks.insert(1, 'BuildingKwh', pb_kwh_sqm)

In [8]:

benchmarks.loc[2016, 'NonRElectricity'] = kwh_2016

In [9]:

benchmarks.head()

Out[9]:

 Sorsogon. Step 2.a Dynamic Sampling Model and GREGWT

Sorsogon. Step 2.a Dynamic Sampling Model and GREGWT

In [1]:

import datetime; print(datetime.datetime.now())

2018-03-26 01:28:43.554147

Notebook abstract

This notebook shows the main sampling and reweighting algorithm.

Import libraries

In [2]:

from smum.microsim.run import run_calibrated_model
from smum.microsim.table import TableModel

/usr/lib/python3.6/site-packages/h5py-2.7.1-py3.6-linux-x86_64.egg/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
 from ._conv import register_converters as _register_converters

Global variables

In [3]:

iterations = 1000
benchmark_year = 2016
census_file = 'data/benchmarks_year_bias.csv'
typ = 'resampled'
model_name = 'Sorsogon_Electricity_Water_wbias_projected_dynamic_{}'.format(typ)
verbose = False
#The number of chains to run in parallel.
njobs = 4

Define Table model

In [4]:

tm = TableModel(census_file = census_file, verbose=verbose)

Income model

In [5]:

tm.add_model('data/table_inc.csv', 'Income')
tm.update_dynamic_model('Income', specific_col = 'Education')
tm.update_dynamic_model('Income',
 specific_col = 'FamilySize',
 specific_col_as = 'Size',
 val = 'mu', compute_average = 0)
tm.update_dynamic_model('Income',
 specific_col = 'Age',
 val = 'mu', compute_average = 0)

In [6]:

tm.models['Income'].loc[2020]

Out[6]:

 Sorsogon. Step 2.b Non-Residential Model

Sorsogon. Step 2.b Non-Residential Model

In [1]:

import datetime; print(datetime.datetime.now())

2018-03-26 01:53:46.635614

Notebook abstract

This notebook shows the main sampling and reweighting algorithm for the
non-residential sector.

Import libraries

In [2]:

from smum.microsim.util_plot import plot_data_projection
from smum.microsim.run import run_calibrated_model
from smum.microsim.table import TableModel

Global variables

In [3]:

iterations = 1000
benchmark_year = 2016
census_file = 'data/benchmarks_nonresidential.csv'
typ = 'resampled'
model_name = 'Sorsogon_NonResidentialElectricity_wbias_projected_dynamic_{}'.format(typ)
verbose = False
drop_col_survey = ['n_BuildingKwh']

Define model

In [4]:

table_model_name = 'data/table_elec_nr.csv'
estimate_var = 'NonRElectricity'
tm = TableModel(census_file = census_file, verbose=verbose)
tm.add_model(table_model_name, estimate_var, static = True)
#tm.update_dynamic_model(estimate_var, specific_col = 'BuildingKwh', static=True)

In [5]:

tm.models[estimate_var].loc[2020]

Out[5]:

 Sorsogon. Step 2.c Model Internal Validation

Sorsogon. Step 2.c Model Internal Validation

In [1]:

import datetime; print(datetime.datetime.now())

2018-03-26 01:55:54.033876

Notebook abstract

Model internal validation.

In [2]:

from smum.microsim.util_plot import plot_error

Residential Sector

In [3]:

iterations = 1000
benchmark_year = 2016
census_file = 'data/benchmarks_year_bias.csv'
typ = 'resampled'
model_name = 'Sorsogon_Electricity_Water_wbias_projected_dynamic_{}'.format(typ)
survey_file = 'data/survey_{}_{}_{}.csv'.format(model_name, iterations, benchmark_year)

In [4]:

REC = plot_error(
 survey_file,
 census_file,
 "{}, {}".format(iterations, typ),
 year = benchmark_year)

[image: ../_images/example_ph_Bc_GREGWT_validation_wbias_6_0.png]

Non-Residential Sector

In [5]:

iterations = 1000
benchmark_year = 2016
census_file = 'data/benchmarks_nonresidential.csv'
typ = 'resampled'
model_name = 'Sorsogon_NonResidentialElectricity_wbias_projected_dynamic_{}'.format(typ)
survey_file = 'data/survey_{}_{}_{}.csv'.format(model_name, iterations, benchmark_year)

In [6]:

REC = plot_error(
 survey_file,
 census_file,
 "{}, {}".format(iterations, typ),
 fit_cols = ['NonRElectricity'],
 verbose = True,
 #save_all = True,
 is_categorical = False,
 year = benchmark_year)

[image: ../_images/example_ph_Bc_GREGWT_validation_wbias_9_0.png]

 Sorsogon. Step 3.a Defining simple transition scenarios

Sorsogon. Step 3.a Defining simple transition scenarios

In [1]:

import datetime; print(datetime.datetime.now())

2018-03-26 01:59:08.226709

Notebook Abstract:

The following notebook describes the process to construct simple
transition scenarios.

The transition scenarios are define as efficiency rates induced by
technology development or behavioral changes. These rates can be
used as proxies for all types of efficiency improvements.

In order to define transition scenarios the model need the following
information:

	A technology penetration rate. This defines the share of the
population adopting the technology. The model uses
sampling rules for the selection of the population adopting this
technology.

	Development of efficiency rates. This define the actual
technology development rate.

Import libraries

In [2]:

from smum.microsim.run import transition_rate
from smum.microsim.util_plot import plot_transition_rate
from smum.microsim.run import reduce_consumption

/usr/lib/python3.6/site-packages/h5py-2.7.1-py3.6-linux-x86_64.egg/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
 from ._conv import register_converters as _register_converters

In order to compute the transition scenarios we make use of three
modules of the urbanmetabolism library:

	growth_rate. This module will return a vector with linear
growth rates given a starting and end rate.

	plot_growth_rate. This a simple function to visualize the
defined growth rates.

	reduce_consumption. This function creates new samples with
reduced consumption levels for the selected selection of the
population.

Define simple population selection rules

In [3]:

sampling_rules = {
 #"i_Education == 'Education_Elementary_School'": 100,
 "i_Education == 'Education_Post_Secondary'": 20,
 "i_Education == 'Education_College'": 20,
 "i_Education == 'Education_Post_Graduate'": 20,
 "i_Urbanity == 'Urbanity_Urban'": 30,
 "Income >= 180000": 30
}

Part of the scenario development is to identified which section of the
population will adopt the new technology. The model defined this by a
sampling probability. This probability is initially define as a
uniform distribution (i.e. each individual on the sample has equal
probability of being selected). A scenario is defined by allocating new
sampling probabilities to a section of the population, by defining
sampling rules. The sampling rules are passes to the
query [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.query.html]
function of a pandas DataFrame.

On the example above, all individuals with a Income larger of equal
to 180 000 Philippine Pesos are 30 times more likely to adopt the
technology that the rest of the population. The sampling probabilities
will sum up. This means that an individual with Income >= 180000 and
living on an urban area e_Urban == 'Urbanity_Urban' is 60 times more
likely to be selected (i.e. adopt a new technology) that other
individuals.

Initial sample data

In [4]:

import pandas as pd
file_name = "data/survey_Sorsogon_Electricity_Water_wbias_projected_dynamic_resampled_1000_{}.csv"
sample_survey = pd.read_csv(file_name.format(2010), index_col=0)
sample_survey.head()

Out[4]:

 Sorsogon. Step 3.b. Visualize transition scenarios

Sorsogon. Step 3.b. Visualize transition scenarios

In [1]:

import datetime; print(datetime.datetime.now())

2018-04-09 11:47:05.326151

Notebook Abstract:

The following notebook visualize the the simple transition scenarios
by plotting the total consumption over all simulation years and the
per-capita consumption rate. Depending on the define scenarios the
per-capita consumption rate can be maintained constant. The per-capita
consumption value is computed as total consumption divided by population
size.

Import libraries

In [2]:

from smum.microsim.util_plot import plot_data_projection

The visualization is performed with help of the module function
plot_data_projection().

Global variables

In [3]:

iterations = 1000
typ = 'resampled'
model_name = 'Sorsogon_Electricity_Water_wbias_projected_dynamic_{}'.format(typ)
reweighted_survey = 'data/survey_{}_{}'.format(model_name, iterations)

Base scenario

In [4]:

var = ['Income', 'Water', 'Electricity']
data = plot_data_projection(
 reweighted_survey, var, "{}, {}".format(iterations, typ),
 benchmark_year=2016,
)

[image: ../_images/example_ph_Cb_VisualizeTransitions_9_0.png]

Base scenario grouped by Urban-Rural households

In [5]:

var = ['Income', 'Water', 'Electricity']
groupby = 'i_Urbanity'
data = plot_data_projection(
 reweighted_survey, var, "{}, {} by {}".format(iterations, typ, groupby),
 benchmark_year = 2016,
 groupby = groupby
)

[image: ../_images/example_ph_Cb_VisualizeTransitions_11_0.png]

Base scenario grouped by family size

In [6]:

var = ['Income', 'Water', 'Electricity']
groupby = 'i_FamilySize'
data = plot_data_projection(
 reweighted_survey, var, "{}, {} by {}".format(iterations, typ, groupby),
 benchmark_year = 2016,
 groupby = groupby
)

[image: ../_images/example_ph_Cb_VisualizeTransitions_13_0.png]

Base scenario grouped by AC ownership

In [7]:

var = ['Income', 'Water', 'Electricity']
groupby = 'e_AC'
data = plot_data_projection(
 reweighted_survey, var, "{}, {} by {}".format(iterations, typ, groupby),
 benchmark_year = 2016,
 verbose = False,
 groupby = groupby
)

[image: ../_images/example_ph_Cb_VisualizeTransitions_15_0.png]

Scenario 1 compared to base scenario

In [8]:

import numpy as np
pr = [i for i in np.linspace(0, 0.3, num=15)]
pr = [0]*6 + pr
scenario_name = 'scenario 1'

In [9]:

reweighted_survey

Out[9]:

'data/survey_Sorsogon_Electricity_Water_wbias_projected_dynamic_resampled_1000'

In [10]:

variables = ['Income', 'Water', 'Electricity']
for var in variables:
 var = [var]
 data = plot_data_projection(
 reweighted_survey, var, "{}, {}, alt. scenario 1".format(iterations, typ),
 benchmark_year=2016, pr = pr, scenario_name = scenario_name,
 aspect_ratio = 2,
)

[image: ../_images/example_ph_Cb_VisualizeTransitions_19_0.png]

[image: ../_images/example_ph_Cb_VisualizeTransitions_19_1.png]

[image: ../_images/example_ph_Cb_VisualizeTransitions_19_2.png]

Scenario 1 grouped by education

In [11]:

variables = ['Income', 'Water', 'Electricity']
groupby = 'i_Education'
for var in variables:
 var = [var]
 data = plot_data_projection(
 reweighted_survey, var, "{}, {} by {}, alt. scenario 1".format(iterations, typ, groupby),
 #benchmark_year=2016,
 pr = pr, scenario_name = scenario_name,
 groupby = groupby,
 aspect_ratio = 2,
)

[image: ../_images/example_ph_Cb_VisualizeTransitions_21_0.png]

[image: ../_images/example_ph_Cb_VisualizeTransitions_21_1.png]

[image: ../_images/example_ph_Cb_VisualizeTransitions_21_2.png]

In [12]:

import numpy as np
pr = [i for i in np.linspace(0, 0.6, num=15)]
pr = [0]*6 + pr
scenario_name = 'scenario 2'

Scenario 2 compared to base scenario

In [13]:

variables = ['Income', 'Water', 'Electricity']
for var in variables:
 var = [var]
 data = plot_data_projection(
 reweighted_survey, var, "{}, {}, alt. scenario 2".format(iterations, typ),
 benchmark_year=2016, pr = pr, scenario_name = scenario_name,
 aspect_ratio = 2,
)

[image: ../_images/example_ph_Cb_VisualizeTransitions_24_0.png]

[image: ../_images/example_ph_Cb_VisualizeTransitions_24_1.png]

[image: ../_images/example_ph_Cb_VisualizeTransitions_24_2.png]

Scenario 2 grouped by education

In [14]:

variables = ['Income', 'Water', 'Electricity']
groupby = 'i_Education'
for var in variables:
 var = [var]
 data = plot_data_projection(
 reweighted_survey, var, "{}, {} by {}, alt. scenario 2".format(iterations, typ, groupby),
 #benchmark_year=2016,
 pr = pr, scenario_name = scenario_name,
 groupby = groupby,
 aspect_ratio = 2,
)

[image: ../_images/example_ph_Cb_VisualizeTransitions_26_0.png]

[image: ../_images/example_ph_Cb_VisualizeTransitions_26_1.png]

[image: ../_images/example_ph_Cb_VisualizeTransitions_26_2.png]

Scenario 2 grouped by education, cross tabulation

In [15]:

from smum.microsim.util_plot import cross_tab

In [16]:

a = 'Water'
b = 'i_Education'
ct = cross_tab(a, b, 2030, reweighted_survey + "_{}_scenario 2_0.60.csv", split_a = True)

data saved as: data/Water_i_Education_2030.xlsx

[image: ../_images/example_ph_Cb_VisualizeTransitions_29_1.png]

In [17]:

ct

Out[17]:

 Brussels, Belgium

Brussels, Belgium

Abstract:

This is a simple implementation example of the developed Spatial
Microsimulation Urban Metabolism Model (SMUM).

The aim of this model is to identify and quantify the impact of
transition pathways to a circular economy.

Two main algorithms implemented in the model, giving it it’s name, are:

	A Spatial Microsimulation, used for the construction of a synthetic
population; and

	An Urban Metabolism approach, used to benchmark consumption level at
a city-level or neighbourhood level (making it spatial).

(Step 1) Constructing a synthetic population

On this section the example shows how to construct representative
samples given the distributions of aggregated variables. The
algorithm constructs the samples either by constructing a new sample for
each simulation year (resample method) or by reweighting an initial
sample for each simulation year (reweighting method).

In order to construct the samples the model needs input on: (a) the
distribution functions of aggregate variables and (b) the changes over
time. This means that the model required the projected aggregated
values. The model provides some function to facilitate and visualize
the projection of aggregated values.

For a spatial microsimulation, the model requires also values for each
simulation area. In this case a combination of the resample and
reweighting methodologies is implemented. The algorithm will construct a
new sample for each simulation year at an aggregated level (e.g.
city-level) and reweight this sample for each area (e.g. statistical
census areas).

For the computation of resource consumption the model requires a
consumption model. This model defines how the resource values are
computed. This can be anything from a simple linear model to the
implementation of external libraries.

Aggregate level benchmarks

(Step 1.a) Projecting demographic
variables

Micro level consumption models

(Step 1.c) Micro-level Electricity demand
model

(Step 1.d) Micro-level Water demand model

(Step 1.e) Micro-level Non-Residential model

(Step 2) Sampling and reweighting

This section takes care of the actual sampling procedure and
subsequent reweighting of the proxy data. The sample will be constructed
with help of an MCMC [https://github.com/pymc-devs/pymc3] algorithm
and reweighted with help of the
GREGWT [https://github.com/emunozh/GREGWT] algorithm.

This section also presents the internal validation of the sampling
procedure.

Dynamic samplic models

(Step 2.a) Dynamic Sampling Model and
GREGWT

(Step 2.b) Non-Residential Model

Model internal validation

(Step 2.c) Model Internal
Validation

(Step 3) Constructing scenarions:

The construction of scenarios can be define at different steps of
the model. In a sense, the definition of scenarios start by the
projection of aggregated values (see section 1). This section defines
scenarios by defining technology adoption rates and changes in
technology efficiency.

(Step 3.a.1) Define Transition
Scenarions

(Step 3.b.2) Visualize transition
scenarios

(Step 3.a.2) Define Transition Scenarions,
Non-Residential

(Step 3.b.2) Visualize transition scenarios,
Non-Residential

 Brussels. Step 1.a Projecting demographic variables

Brussels. Step 1.a Projecting demographic variables

In []:

import datetime; print(datetime.datetime.now())

2018-03-26 02:07:05.468122

Notebook Abstract:

This notebook shows an example on how to prepare projected aggregated
benchmarks, as well as how to introduce bias (a proxy for simulating
development scenarios at an aggregated level) to the benchmarks.

This step is not a requirement for running the simulation, the data
containing projections at an aggregated level are a requirement for
running the simulation.

A spatial model requires projected aggregated values for each simulation
area. Depending on the simulation model the estimation of such values
might be difficult.

Aggregated census data

In [2]:

import pandas as pd
from smum._scripts.aggregates import print_all

In [3]:

census = pd.read_csv('data/benchmarks_be_year.csv', index_col=0)
skip = ['pop', 'Income', 'Electricity', 'Water']

In [4]:

census.columns = [
 'pop', 'pop_male', 'pop_female',
 'HHSize_1', 'HHSize_2', 'HHSize_3', 'HHSize_4',
 'HHSize_5', 'HHSize_6', 'HHSize_7', 'HHSize_8',
 'Income',
 'ConstructionYear_1900', 'ConstructionYear_1918',
 'ConstructionYear_1945', 'ConstructionYear_1961',
 'ConstructionYear_1970', 'ConstructionYear_1981',
 'ConstructionYear_1991', 'ConstructionYear_2001',
 'ConstructionYear_2011', 'ConstructionYear_2016',
 'sqm',
 'ConstructionType_appt', 'ConstructionType_hous',
 'Age_24', 'Age_29', 'Age_39',
 'Age_54', 'Age_64', 'Age_79', 'Age_120',
 'Electricity', 'Water']

We read a csv file containing the projected data with help of pandas.
The print_all function is used to print the aggregated data.

A list of strings is constructed to tell the function which columns to
ignore during plotting.

In [5]:

_ = print_all(
 census, 'year',
 skip = skip,
 start_year = 2016, end_year = 2025,
 total_pop = census.loc[:, 'pop'],
 title="Projection of aggregated socio-demographic parameters"
)

[image: ../_images/example_be_Aa_ProjectionAggregates_8_0.png]

We pass the following variables to the print_all function:

	A pandas DataFrame containing the projected aggregated data.

	A string defining the sufix used to save the file on disk.

	var = defines the type of plot to use.

	skip = defines the list of columns to skip in the plot.

	total_pop = defines a column to use for data normalization.

	title = defines the plot title.

Introduce bias to census data

The manipulations are expressed as growth factors. This factors
increase the share (\(>1\)) or decrease the share (\(<1\)) of
specific categories. In addition we can define gradual changes on these
growth factors. If no starting point is given the function assumes
initial simulation year.

The define growth rates are passed as a python dictionary to the
function ({‘key’=value}). Where key is the variable category to
be modified and value is either a single number (assumed initial
year to be initial simulation year) or a dictionary attributing a growth
rate to sequential steps.

In this case we create three new categories in order to allocate values
to:

	ConstructionYear_2020

	ConstructionYear_2030

	ConstructionYear_2035

In [6]:

start = [0 for _ in census.index]
census.insert(22, 'ConstructionYear_2020', start)
census.insert(23, 'ConstructionYear_2030', start)
census.insert(24, 'ConstructionYear_2035', start)

Iteration (1)

In [7]:

bias = {
 'ConstructionYear_1900': {2016:0.95, 2020:1,
 'allocate_to': 'ConstructionYear_2020'},
 'ConstructionYear_1918':{2016:0.95, 2020:1,
 'allocate_to': 'ConstructionYear_2020'},
 'ConstructionYear_1945':{2016:0.97, 2020:1,
 'allocate_to': 'ConstructionYear_2020'},
 'ConstructionYear_1961':{2016:0.97, 2020:1,
 'allocate_to': 'ConstructionYear_2020'},
 'ConstructionYear_1970':{2016:0.98, 2020:1,
 'allocate_to': 'ConstructionYear_2020'},
 'ConstructionYear_1981':{2016:1,
 'allocate_to': 'ConstructionYear_2020'},
 'ConstructionYear_1991':{2016:1,
 'allocate_to': 'ConstructionYear_2020'},
 'ConstructionYear_2001':{2016:1,
 'allocate_to': 'ConstructionYear_2020'},
 'ConstructionYear_2011':{2016:1,
 'allocate_to': 'ConstructionYear_2020'},
}

In [8]:

census = print_all(
 census, 'year_bias_be',
 skip = skip,
 bias = bias,
 start_year = 2016, end_year = 2025,
 total_pop = census.loc[:, 'pop'],
 title="Projection of aggregated socio-demographic parameters",
 save_data = 'data/benchmarks_be_year_bias.csv'
)

[image: ../_images/example_be_Aa_ProjectionAggregates_15_0.png]

Iteration (2)

In [9]:

bias2 = {
 'ConstructionYear_1900' :{2016:1, 2020:0.75, 2022:1,
 'allocate_to': 'ConstructionYear_2030'
 },
 'ConstructionYear_1918':{2016:1, 2020:0.75, 2022:1,
 'allocate_to': 'ConstructionYear_2030'
 },
 'ConstructionYear_1945':{2016:1, 2020:0.75, 2022:1,
 'allocate_to': 'ConstructionYear_2030'
 },
 'ConstructionYear_1961':{2016:1, 2020:0.75, 2022:1,
 'allocate_to': 'ConstructionYear_2030'
 },
 'ConstructionYear_1970':{2016:1, 2020:0.75, 2022:1,
 'allocate_to': 'ConstructionYear_2030'
 },
 'ConstructionYear_1981':{2016:1, 2020:0.85, 2022:1,
 'allocate_to': 'ConstructionYear_2030'
 },
 'ConstructionYear_1991':{2016:1, 2020:0.85, 2022:1,
 'allocate_to': 'ConstructionYear_2030'
 },
 'ConstructionYear_2001':{2016:1, 2020:0.96, 2022:1,
 'allocate_to': 'ConstructionYear_2030'
 },
 'ConstructionYear_2011':{2016:1,
 'allocate_to': 'ConstructionYear_2030'
 },
}

In [10]:

census = pd.read_csv('data/benchmarks_be_year_bias.csv', index_col=0)

_ = print_all(
 census, 'year_bias_be2',
 skip = skip,
 bias = bias2,
 start_year = 2016, end_year = 2025,
 total_pop = census.loc[:, 'pop'],
 title="Projection of aggregated socio-demographic parametsers",
 save_data = 'data/benchmarks_be_year_bias2.csv'
)

[image: ../_images/example_be_Aa_ProjectionAggregates_18_0.png]

Iteration (3)

In [11]:

bias3 = {
 'ConstructionYear_1900' :{2016:1, 2020:1, 2022:0.70,
 'allocate_to': 'ConstructionYear_2035'
 },
 'ConstructionYear_1918':{2016:1, 2020:1, 2022:0.70,
 'allocate_to': 'ConstructionYear_2035'
 },
 'ConstructionYear_1945':{2016:1, 2020:1, 2022:0.75,
 'allocate_to': 'ConstructionYear_2035'
 },
 'ConstructionYear_1961':{2016:1, 2020:1, 2022:0.75,
 'allocate_to': 'ConstructionYear_2035'
 },
 'ConstructionYear_1970':{2016:1, 2020:1, 2022:0.75,
 'allocate_to': 'ConstructionYear_2035'
 },
 'ConstructionYear_1981':{2016:1, 2020:1, 2022:0.80,
 'allocate_to': 'ConstructionYear_2035'
 },
 'ConstructionYear_1991':{2016:1, 2020:1, 2022:0.80,
 'allocate_to': 'ConstructionYear_2035'
 },
 'ConstructionYear_2001':{2016:1, 2020:1, 2022:0.95,
 'allocate_to': 'ConstructionYear_2035'
 },
 'ConstructionYear_2011':{2016:1, 2020:1, 2022:0.99,
 'allocate_to': 'ConstructionYear_2035'
 },
}

In [12]:

census = pd.read_csv('data/benchmarks_be_year_bias2.csv', index_col=0)

_ = print_all(
 census, 'year_bias_be3',
 skip = skip,
 bias = bias3,
 start_year = 2016, end_year = 2025,
 total_pop = census.loc[:, 'pop'],
 title="Projection of aggregated socio-demographic parameters",
 save_data = 'data/benchmarks_be_year_bias3.csv'
)

[image: ../_images/example_be_Aa_ProjectionAggregates_21_0.png]

 Brussels. Step 1.c Micro-level Electricity demand model

Brussels. Step 1.c Micro-level Electricity demand model

In [1]:

import datetime; print(datetime.datetime.now())

2018-03-26 02:08:35.436887

Notebook Abstract:

A simple micro-level electricity demand model. The electricity demand
model used available micro level data for the estimation of regression
coefficients. This regression coefficients are used to define a table
model. The electricity table model is used for the construction of a
proxy micro level sample data set.

Prior electricity demand model

In [2]:

import statsmodels.api as sm
import pandas as pd
import numpy as np
from smum._scripts.micro import compute_categories, change_index

/usr/lib/python3.6/site-packages/statsmodels-0.8.0-py3.6-linux-x86_64.egg/statsmodels/compat/pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.
 from pandas.core import datetools

In [3]:

electricity_data = pd.read_csv('data/elec_data_be.csv', index_col=0)
#formula = "KWH ~ TOTSQMT_EN + CDD30YR + HDD30YR + MONEYPY + NHSLDMEM +\
C(TYPEHUQ, Treatment(reference='House')) + YEARMADE + ELWARM + ELWATER + ELFOOD"
formula = "KWH ~ TOTSQMT_EN + CDD30YR + HDD30YR + MONEYPY + NHSLDMEM +\
 C(TYPEHUQ) + YEARMADE + ELWARM + ELWATER + ELFOOD"

In [4]:

electricity_data.head()

Out[4]:

 Brussels. Step 1.d Micro-level Water demand model

Brussels. Step 1.d Micro-level Water demand model

In [1]:

import datetime; print(datetime.datetime.now())

2018-03-26 02:13:23.269759

Notebook abstract

A simple micro-level water demand model.

A simple micro-level water demand model. Similar to the electricity
demand model, the water demand model uses
micro level consumption demand data for the construction of a table
model. The table model describes simple rules for the construction of
the proxy micro level sample data.

Prior water demand model

In [2]:

import statsmodels.api as sm
import pandas as pd
import numpy as np
from smum._scripts.micro import compute_categories, change_index

/usr/lib/python3.6/site-packages/statsmodels-0.8.0-py3.6-linux-x86_64.egg/statsmodels/compat/pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.
 from pandas.core import datetools

Dataset

The data used for the construction of the household water demand model
is downscale from municipal-level data-sets from the Wallonie region.

This data to construct a water demand model a function of: 1. Building
construction type (classified as house or apartment) 2. Building
construction year 3. Head of household gender 4. Household size 5.
Household income level

In [3]:

water_data = pd.read_csv('data/downscaled_data_be.csv', index_col=0)
water_data.loc[
 water_data.ConstructionType != 'appartements',
 'ConstructionType'] = 'House'

formula = "Water ~ Age + ConstructionType + ConstructionYear + HHSize + Income"

In [4]:

water_data.head()

Out[4]:

