
Smolyak Documentation
Release 0.0.1

EconForge

April 08, 2016

Contents

1 Mathematical Background 3
1.1 Smolyak Grid . 3
1.2 Smolyak Basis Polynomials . 4

2 smolyak 5
2.1 smolyak Package . 5

3 Indices and tables 13

Python Module Index 15

Python Module Index 17

i

ii

Smolyak Documentation, Release 0.0.1

Contents:

Contents 1

Smolyak Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Mathematical Background

This page is still a work in progress. I will try to provide a very basic description of each of the pieces that are
necessary.

1.1 Smolyak Grid

One of the standard forms of building an approximation grid is to use a simple tensor-product. While this seems
relatively trivial for low dimensions, but the number of points to evaluate quickly becomes intractable for larger
dimensions. In Bellman (1961) this problem is referred to as the “curse of dimensionality.” Two years after Bellman’s
paper, Sergey Smolyak introduced a numerical technique where the number of grid points needed to approximate grew
polynomially instead of exponentially. As stated in Judd, Maliar, Maliar, Valero; the idea behind this technique was
“that some elements produced by tensor-product rules are more important for representing multidimensional functions
than the others.” The tensor-product typically takes as parameters the dimension of the grid and the number of points,
𝑛 to be evaluated at in each dimension which produces a grid with 𝑛𝑑 points (Note: There are other ways of doing
this where the number of points is different in each dimension, but the resulting number of points is similar). The
Smolyak grid takes an “accuracy” parameter 𝜇 and the number of dimensions as parameters. The number of points in
the grid is determined by the dimension and 𝜇. The number of Smolyak grid points at 𝜇 = 1 is 1 + 2𝑑, at 𝜇 = 2 it is
1 + 4𝑑+ 4𝑑(𝑑− 1), etc... Notice that the number of grid points grows linearly at 𝜇 = 1, and quadratically at 𝜇 = 2.

The standard construction of a Smolyak grid uses nested sets of points. One typically uses the extrema of the Cheby-
shev Polynomials, which are known as the Chebyshev-Gauss-Lobatto points. We will continue our description using
these points since the code is implemented using them. The nested sets require two conditions. First, that each set 𝑆𝑖

has 2𝑖−1 points for 𝑖 ≥ 2 and 1 if 𝑖 = 1. Secondly, that the sets are nested. The first four nested sets are:

𝑖 = 1 : 𝑆1 = {0}
𝑖 = 2 : 𝑆2 = {−1, 0, 1}

𝑖 = 3 : 𝑆3 = {−1,− 1√
2
, 0,

1√
2
, 1}

𝑖 = 4 : 𝑆4 = {−1,−
√︀
2 +

√
2

2
,− 1√

2
,−

√︀
2−

√
2

2
, 0,

√︀
2−

√
2

2
,
1√
2
,

√︀
2 +

√
2

2
, 1}

One then takes the tensor product of the unidimensional sets and then picks out the products that satisfy 𝑑 ≤
∑︀𝑑

𝑗=1 𝑖𝑗 ≤
𝑑 + 𝜇 where 𝑖𝑗 is the index of the unidimensional sets. For example if the parameters were 𝑑 = 2, 𝜇 = 2 then you
would build the first four nested sets of points (as shown above) and then take all of the tensor products that satisfied
2 ≤ 𝑖1 + 𝑖2 ≤ 4 which would give you 𝑆1 × 𝑆1, 𝑆1 × 𝑆2, 𝑆2 × 𝑆1, 𝑆2 × 𝑆2. Then these would be your points. We
will define the set of grid points to be ℋ𝑑,𝜇 :=

⋃︀
𝑑≤|𝑖*|≤𝑑+𝜇

∏︀
𝑖 = 1𝑑+𝜇𝑆𝑖 where 𝑖* =

[︀
𝑖1 . . . 𝑖𝑑

]︀
.

You can see how there would be repeated points and hence this method could be improved upon. This is one of the
key results of the Judd, Maliar, Maliar, Valero (2013) paper. Instead of building nested sets, they build disjoint sets 𝐴𝑖

3

Smolyak Documentation, Release 0.0.1

such that 𝐴1 = {0} and 𝐴𝑖 = 𝑆𝑖∖𝑆𝑖−1 for all 𝑖 ≥ 2. Then the points are taken from the tensor-products of these sets
in the same fashion as described above.

The following is a computationally efficient way of finding these grid points. The first step is to create the first
𝜇 + 1 unidimensional disjoint sets 𝐴𝑖 as described above. Then one should create a vector of possible values i.e.[︀
1, 2, . . . , 𝜇+ 1

]︀
. It is important to note that these possible values only range from 1 to 𝜇 + 1 since the smallest

possible index is 1 (To see this think of given 𝑑 indexes. The smallest the first 𝑑− 1 of them can be is 1 which would
sum to 𝑑− 1 hence the last index could only be valued up to 𝜇+ 1. We can then check all of the combinations (with
replacement) of these to find the sets of indexes that would work. Once we have these we can permute them to capture
all of the indexes that would work. Then you only take the tensor-products of these sets (Add reference to our code
smol_inds and build_grid here).

1.2 Smolyak Basis Polynomials

Generated documentation:

4 Chapter 1. Mathematical Background

CHAPTER 2

smolyak

2.1 smolyak Package

2.1.1 smolyak Package

grid Module

This file contains a class that builds a Smolyak Grid. The hope is that it will eventually contain the interpolation
routines necessary so that the given some data, this class can build a grid and use the Chebychev polynomials to
interpolate and approximate the data.

Method based on Judd, Maliar, Maliar, Valero 2013 (W.P)

Authors

• Chase Coleman (ccoleman@stern.nyu.edu)

• Spencer Lyon (slyon@stern.nyu.edu)

References

Judd, Kenneth L, Lilia Maliar, Serguei Maliar, and Rafael Valero. 2013. “Smolyak Method for Solving Dynamic
Economic Models: Lagrange Interpolation, Anisotropic Grid and Adaptive Domain”.

Krueger, Dirk, and Felix Kubler. 2004. “Computing Equilibrium in OLG Models with Stochastic Production.”
Journal of Economic Dynamics and Control 28 (7) (April): 1411-1436.

smolyak.grid.num_grid_points(d, mu)
Checks the number of grid points for a given d, mu combination.

Parameters d, mu : int

The parameters d and mu that specify the grid

Returns num : int

The number of points that would be in a grid with params d, mu

5

mailto:ccoleman@stern.nyu.edu
mailto:slyon@stern.nyu.edu

Smolyak Documentation, Release 0.0.1

Notes

This function is only defined for mu = 1, 2, or 3

smolyak.grid.m_i(i)
Compute one plus the “total degree of the interpolating polynoimals” (Kruger & Kubler, 2004). This shows up
many times in Smolyak’s algorithm. It is defined as:

𝑚𝑖 =

{︃
1 if 𝑖 = 1

2𝑖−1 + 1 if 𝑖 ≥ 2

Parameters i : int

The integer i which the total degree should be evaluated

Returns num : int

Return the value given by the expression above

smolyak.grid.cheby2n(x, n, kind=1.0)
Computes the first 𝑛+ 1 Chebychev polynomials of the first kind evaluated at each point in 𝑥 .

Parameters x : float or array(float)

A single point (float) or an array of points where each polynomial should be evaluated

n : int

The integer specifying which Chebychev polynomial is the last to be computed

kind : float, optional(default=1.0)

The “kind” of Chebychev polynomial to compute. Only accepts values 1 for first kind
or 2 for second kind

Returns results : array (float, ndim=x.ndim+1)

The results of computation. This will be an (𝑛 + 1 × 𝑑𝑖𝑚 . . .) where (𝑑𝑖𝑚 . . .) is
the shape of x. Each slice along the first dimension represents a new Chebychev poly-
nomial. This dimension has length 𝑛 + 1 because it includes 𝜑0 which is equal to 1
∀𝑥

smolyak.grid.s_n(n)
Finds the set 𝑆𝑛 , which is the 𝑛 th Smolyak set of Chebychev extrema

Parameters n : int

The index 𝑛 specifying which Smolyak set to compute

Returns s_n : array (float, ndim=1)

An array containing all the Chebychev extrema in the set 𝑆𝑛

smolyak.grid.a_chain(n)
Finds all of the unidimensional disjoint sets of Chebychev extrema that are used to construct the grid. It improves
on past algorithms by noting that 𝐴𝑛 = 𝑆𝑛 [evens] except for 𝐴1 = {0} and 𝐴2 = {−1, 1} . Additionally,
𝐴𝑛 = 𝐴𝑛+1 [odds] This prevents the calculation of these nodes repeatedly. Thus we only need to calculate
biggest of the S_n’s to build the sequence of 𝐴𝑛 ‘s

Parameters n : int

This is the number of disjoint sets from Sn that this should make

Returns A_chain : dict (int -> list)

6 Chapter 2. smolyak

Smolyak Documentation, Release 0.0.1

This is a dictionary of the disjoint sets that are made. They are indexed by the integer
corresponding

smolyak.grid.phi_chain(n)
For each number in 1 to n, compute the Smolyak indices for the corresponding basis functions. This is the 𝑛 in
𝜑𝑛

Parameters n : int

The last Smolyak index 𝑛 for which the basis polynomial indices should be found

Returns aphi_chain : dict (int -> list)

A dictionary whose keys are the Smolyak index 𝑛 and values are lists containing all
basis polynomial subscripts for that Smolyak index

smolyak.grid.smol_inds(d, mu)
Finds all of the indices that satisfy the requirement that 𝑑 ≤

∑︀𝑑
𝑖=1 ≤ 𝑑+ 𝜇.

Parameters d : int

The number of dimensions in the grid

mu : int or array (int, ndim=1)

The parameter mu defining the density of the grid. If an array, there must be d elements
and an anisotropic grid is formed

Returns true_inds : array

A 1-d Any array containing all d element arrays satisfying the constraint

Notes

This function is used directly by build_grid and poly_inds

smolyak.grid.build_grid(d, mu, inds=None)
Use disjoint Smolyak sets to construct Smolyak grid of degree d and density parameter 𝑚𝑢

The return value is an 𝑛× 𝑑 Array, where 𝑛 is the number of points in the grid

Parameters d : int

The number of dimensions in the grid

mu : int

The density parameter for the grid

inds : list (list (int)), optional (default=None)

The Smolyak indices for parameters d and mu. Should be computed by calling
smol_inds(d, mu). If None is given, the indices are computed using this function call

Returns grid : array (float, ndim=2)

The Smolyak grid for the given d, 𝑚𝑢

smolyak.grid.build_B(d, mu, pts, b_inds=None, deriv=False)
Compute the matrix B from equation 22 in JMMV 2013 Translation of
dolo.numeric.interpolation.smolyak.SmolyakBasic

Parameters d : int

The number of dimensions on the grid

2.1. smolyak Package 7

Smolyak Documentation, Release 0.0.1

mu : int or array (int, ndim=1, legnth=d)

The mu parameter used to define grid

pts : array (float, dims=2)

Arbitrary d-dimensional points. Each row is assumed to be a new point. Often this is
the smolyak grid returned by calling build_grid(d, mu)

b_inds : array (int, ndim=2)

The polynomial indices for parameters a given grid. These should be computed by
calling poly_inds(d, mu).

deriv : bool

Whether or not to compute the values needed for the derivative matrix B_prime.

Returns B : array (float, ndim=2)

The matrix B that represents the Smolyak polynomial corresponding to grid

B_Prime : array (float, ndim=3), optional (default=false)

This will be the 3 dimensional array representing the gradient of the Smolyak polyno-
mial at each of the points. It is only returned when deriv=True

class smolyak.grid.SmolyakGrid(d, mu, lb=None, ub=None)
Bases: object

This class currently takes a dimension and a degree of polynomial and builds the Smolyak Sparse grid. We base
this on the work by Judd, Maliar, Maliar, and Valero (2013).

Parameters d : int

The number of dimensions in the grid

mu : int or array(int, ndim=1, length=d)

The “density” parameter for the grid

Examples

>>> s = SmolyakGrid(3, 2)
>>> s
Smolyak Grid:

d: 3
mu: 2
npoints: 25
B: 0.65% non-zero

>>> ag = SmolyakGrid(3, [1, 2, 3])
>>> ag
Anisotropic Smolyak Grid:

d: 3
mu: 1 x 2 x 3
npoints: 51
B: 0.68% non-zero

8 Chapter 2. smolyak

Smolyak Documentation, Release 0.0.1

Attributes

d int This is the dimension of grid that you are building
mu int mu is a parameter that defines the fineness of grid that we want to build
lb array (float,

ndim=2)
This is an array of the lower bounds for each dimension

ub array (float,
ndim=2)

This is an array of the upper bounds for each dimension

cube_grid array (float,
ndim=2)

The Smolyak sparse grid on the domain [−1, 1]𝑑

grid: array (float,
ndim=2)

The sparse grid, transformed to the user-specified bounds for the
domain

inds list (list (int)) This is a lists of lists that contains all of the indices
B array (float,

ndim=2)
This is the B matrix that is used to do lagrange interpolation

B_L array (float,
ndim=2)

Lower triangle matrix of the decomposition of B

B_U array (float,
ndim=2)

Upper triangle matrix of the decomposition of B

Methods

cube2dom(pts) Takes a point(s) and transforms it(them) from domain [-1, 1]^d
dom2cube(pts) Takes a point(s) and transforms it(them) into the [-1, 1]^d domain
plot_grid() Beautifully plots the grid for the 2d and 3d cases

cube2dom(pts)
Takes a point(s) and transforms it(them) from domain [-1, 1]^d back into the desired domain

dom2cube(pts)
Takes a point(s) and transforms it(them) into the [-1, 1]^d domain

plot_grid()
Beautifully plots the grid for the 2d and 3d cases

Parameters None :

Returns None :

interp Module

This file contains the interpolation routines for the grids that are built using the grid.py file in the smolyak package...
Write more doc soon.

smolyak.interp.find_theta(sg, f_on_grid)
Given a SmolyakGrid object and the value of the function on the points of the grid, this function will return the
coefficients theta

class smolyak.interp.SmolyakInterp(sg, f_on_grid)
Bases: object

This class is going to take several inputs. It will need a SmolyakGrid object to be passed in and the values of the
function evaluated at the grid points

2.1. smolyak Package 9

Smolyak Documentation, Release 0.0.1

Methods

interpolate(pts[, interp, deriv, deriv_th, ...]) Basic Lagrange interpolation, with optional first derivatives
update_theta(f_on_grid)

interpolate(pts, interp=True, deriv=False, deriv_th=False, deriv_X=False)
Basic Lagrange interpolation, with optional first derivatives (gradient)

Parameters pts : array (float, ndim=2)

A 2d array of points on which to evaluate the function. Each row is assumed to be a
new d-dimensional point. Therefore, pts must have the same number of columns as
si.SGrid.d

interp : bool, optional(default=false)

Whether or not to compute the actual interpolation values at pts

deriv : bool, optional(default=false)

Whether or not to compute the gradient of the function at each of the points. This will
have the same dimensions as pts, where each column represents the partial derivative
with respect to a new dimension.

deriv_th : bool, optional(default=false)

Whether or not to compute the ???? derivative with respect to the Smolyak polynomial
coefficients (maybe?)

deriv_X : bool, optional(default=false)

Whether or not to compute the ???? derivative with respect to grid points

Returns rets : list (array(float))

A list of arrays containing the objects asked for. There are 4 possible objects that can be
computed in this function. They will, if they are called for, always be in the following
order:

1. Interpolation values at pts

2. Gradient at pts

3. ???? at pts

4. ???? at pts

If the user only asks for one of these objects, it is returned directly as an array and not
in a list.

Notes

This is a stripped down port of dolo.SmolyakBasic.interpolate

TODO: There may be a better way to do this

TODO: finish the docstring for the 2nd and 3rd type of derivatives

update_theta(f_on_grid)

10 Chapter 2. smolyak

Smolyak Documentation, Release 0.0.1

util Module

smolyak.util.permute(a)
Creates all unique combinations of a list a that is passed in. Function is based off of a function written by John
Lettman: TCHS Computer Information Systems. My thanks to him.

2.1. smolyak Package 11

Smolyak Documentation, Release 0.0.1

12 Chapter 2. smolyak

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

13

Smolyak Documentation, Release 0.0.1

14 Chapter 3. Indices and tables

Python Module Index

s
smolyak.grid, 5
smolyak.interp, 9
smolyak.util, 11

15

Smolyak Documentation, Release 0.0.1

16 Python Module Index

Python Module Index

s
smolyak.grid, 5
smolyak.interp, 9
smolyak.util, 11

17

Smolyak Documentation, Release 0.0.1

18 Python Module Index

Index

A
a_chain() (in module smolyak.grid), 6

B
build_B() (in module smolyak.grid), 7
build_grid() (in module smolyak.grid), 7

C
cheby2n() (in module smolyak.grid), 6
cube2dom() (smolyak.grid.SmolyakGrid method), 9

D
dom2cube() (smolyak.grid.SmolyakGrid method), 9

F
find_theta() (in module smolyak.interp), 9

I
interpolate() (smolyak.interp.SmolyakInterp method), 10

M
m_i() (in module smolyak.grid), 6

N
num_grid_points() (in module smolyak.grid), 5

P
permute() (in module smolyak.util), 11
phi_chain() (in module smolyak.grid), 7
plot_grid() (smolyak.grid.SmolyakGrid method), 9

S
s_n() (in module smolyak.grid), 6
smol_inds() (in module smolyak.grid), 7
smolyak.grid (module), 5
smolyak.interp (module), 9
smolyak.util (module), 11
SmolyakGrid (class in smolyak.grid), 8
SmolyakInterp (class in smolyak.interp), 9

U
update_theta() (smolyak.interp.SmolyakInterp method),

10

19

	Mathematical Background
	Smolyak Grid
	Smolyak Basis Polynomials

	smolyak
	smolyak Package

	Indices and tables
	Python Module Index
	Python Module Index

