
Smile.jl Documentation
Release 1.0

Tim Wheeler

February 11, 2015

Contents

1 Available Types 3

2 Installation 5
2.1 Advanced . 5

3 QuickStart Guide 7

4 Naive Bayes 9
4.1 Parameters . 9
4.2 Examples . 9

5 Tree Augmented Naive Bayes 11
5.1 Parameters . 11
5.2 Examples . 11
5.3 Algorithm . 11
5.4 Reference . 12

6 Bayesian Search 13
6.1 Parameters . 13
6.2 Examples . 13
6.3 Algorithm . 13
6.4 Reference . 14

7 Greedy Thick Thinning 15
7.1 Parameters . 15
7.2 Examples . 15
7.3 Algorithm . 15
7.4 Reference . 16

8 PC 17
8.1 Parameters . 17
8.2 Examples . 17
8.3 Algorithm . 17
8.4 Reference . 18

i

ii

Smile.jl Documentation, Release 1.0

The Smile.jl package is a wrapper for the C++ SMILE librarydeveloped by the Decision Systems Laboratory at the
University of Pittsburgh. Smile allows users to do structure modelling, inference, and learning for Bayesian Networks.

Contents:

Contents 1

Smile.jl Documentation, Release 1.0

2 Contents

CHAPTER 1

Available Types

Smile.jl represents SMILE objects as Julia types with void pointers to their C++ counterparts. Garbage collection is
handled automatically through the use of a finalizer set in the type constructor.

The available types are:

All objects are constructed without parameters, with the exception of SysCoordinates, which requires a NodeDefini-
tion.

3

Smile.jl Documentation, Release 1.0

4 Chapter 1. Available Types

CHAPTER 2

Installation

The wrapper library for Smile comes pre-built and is installed automatically when Smile is added through the Julia
package manager:

Pkg.add("Smile")

2.1 Advanced

SMILE is a C++ project for which headers and static libraries are freely distributed. It is recommended that users
download a copy of the latest version of SMILE_ for their operating system.

– _SMILE: https://dslpitt.org/genie/

Software for the C++ wrapper is located in /src/wrapper/. If you installed this package through the Julia package
manager it will be in ~/.julia/Smile/src/wrapper/.

Extract the downloaded files in the same directory as the wrapper code. Rename the extracted folder to “lib”. Copy
libsmile.a and libsmilearn.a into the wrapper folder. The filestructure should now be:

libsmile.a Smile core static library
libsmilearn.a Smilearn static library
smile_wrapper.cpp Cpp wrapper source file
smile_wrapper.hpp Cpp wrapper header file
smile_compile.sh Compilation bash script
lib/ Smile Cpp compiled source

Run the bash script:

$ bash -x ./smile_compile.sh

This will produce smile_wrapper.o and libsmilejl.so.1.0. All that is left to do is place it on your library search path
and perform the linking.

Move the file and perform linking:

$ sudo mv libsmilejl.so.1.0 /usr/lib
$ sudo ln -sf /usr/lib/libsmilejl.so.1.0 /usr/lib/libsmilejl.so.1
$ sudo ln -sf /usr/lib/libsmilejl.so.1.0 /usr/lib/libsmilejl.so

Restart the terminal to ensure libsmilejl is found before using Smile.jl

5

https://dslpitt.org/genie/

Smile.jl Documentation, Release 1.0

6 Chapter 2. Installation

CHAPTER 3

QuickStart Guide

This tutorial will cover some basic steps in creating a Bayesian network. It closely mimics the first smile tutorial.

We start by declaring an instance of a network.

net = Network()

Now we are going to create a node called Success. The node will represent a random discrete event (CPT = Conditional
Probability Table).

success = add_node(net, DSL_CPT, "Success")
somenames = IdArray()
add(somenames, "Sucess")
add(somenames, "Failure")
set_number_of_outcomes(definition(get_node(net, success)), somenames)

Here we create the node, obtained a node handle, and then proceed to give it two states. We can similary create a
second node with three states.

forecast = add_node(net, DSL_CPT, "Forecast")
flush(somenames)
add(somenames, "Good")
add(somenames, "Moderate")
add(somenames, "Poor")
set_number_of_outcomes(definition(get_node(net, forecast)), somenames)

Notice that the syntax used closely follows what is defined in SMILE.

Next we add an arc from “Success” to “Forecast” to represent the conditional dependencies of the latter on the former:

add_arc(net, success, forecast)

Note that handles of the nodes are required to do this.

Next we fill in the probability distribution using the Smile.jl equivalent of the DSL_doubleArray.

theprobs = DoubleArray()
set_size(theprobs, 2)
set_at(theprobs, 0, 0.2)
set_at(theprobs, 1, 0.8)
set_definition(definition(get_node(net, success)), theprobs)

Specifying the 2x3 probability table for the second node is done as follows:

thecoordinates = SysCoordinates(definition(get_node(net, forecast)))
set_unchecked_value(thecoordinates, 0.4); next(thecoordinates)

7

https://dslpitt.org/genie/wiki/SMILE_Tutorial_1:_Creating_a_Bayesian_Network

Smile.jl Documentation, Release 1.0

set_unchecked_value(thecoordinates, 0.4); next(thecoordinates)
set_unchecked_value(thecoordinates, 0.2); next(thecoordinates)
set_unchecked_value(thecoordinates, 0.1); next(thecoordinates)
set_unchecked_value(thecoordinates, 0.3); next(thecoordinates)
set_unchecked_value(thecoordinates, 0.6);

Note that there was no checking. This is for speed reasons, and how the SMILE tutorial was written.

We end by writing the network to a file, either as a ”.dsl” or ”.xdsl”.

write_file(net, "mynet.xdsl")

8 Chapter 3. QuickStart Guide

CHAPTER 4

Naive Bayes

This learning algorithm creates a Naive Bayes graph structure in which a single class variable points to all other
variables. The probability tables are filled out using Expectation Maximization.

4.1 Parameters

classVariableId: the variable id corresponding to the class variable

LearnParams_NaiveBayes() = new("class")
LearnParams_NaiveBayes(var::String) = new(var)

4.2 Examples

net = Network()
learn!(net, dset, LearnParams_NaiveBayes())

9

https://dslpitt.org/genie/wiki/Reference_Manual:_DSL_bs

Smile.jl Documentation, Release 1.0

10 Chapter 4. Naive Bayes

CHAPTER 5

Tree Augmented Naive Bayes

This learning algorithm creates a Tree Augmented Naive Bayes (TAN) graph structure in which a single class variable
have no parents and all other variables have the class as a parent and at most one other attribute as a parent.

The probability tables are filled out using Expectation Maximization.

5.1 Parameters

classvar: the variable id corresponding to the class variable, String

maxSearchTime: the maximum runtime for the algorithm, milliseconds, Cint

seed: the random seed to use, 0 for time-based random seed, Uint32

maxcache: the maximum cache size, Uint64

LearnParams_TreeAugmentedNaiveBayes() = new("class", 0, 0, 2048)
LearnParams_TreeAugmentedNaiveBayes(class) = new(class, 0, 0, 2048)

5.2 Examples

net = Network()
learn!(net, dset, LearnParams_TreeAugmentedNaiveBayes())

5.3 Algorithm

The TAN algorithm is 𝑂(𝑛2log𝑛), where n is the number of graph vertices:

1. Compute the mutual information between each pair of attributes

2. Build a complete undirected graph in which the vertices are the attributes n variables. The edges are weighted
according to the pairwise mutual information

3. Build a maximum weighted spanning tree

4. Transform the resulting undirected graph to a directed graph by selecting the class variable as the root node and
seeting the direction of all edges outward from it

5. Construct a TAN model by adding an arc from the class variable to all other variables

11

https://dslpitt.org/genie/wiki/Reference_Manual:_DSL_tan

Smile.jl Documentation, Release 1.0

5.4 Reference

The Decision Systems Laboratory recommends the following reference:

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine learning,
29(2), 131-163.

12 Chapter 5. Tree Augmented Naive Bayes

CHAPTER 6

Bayesian Search

This learning algorithm uses the Bayesian Search procedure. It is a general-purpose graph structure learning algorithm,
meaning it will attempt to search the full space of graphs for the best graph.

The probability tables are filled out using Expectation Maximization.

The algorithm runs a partially directed graph search over Markov equivalence classes instead of directly searching the
space of DAGs (which is superexponential in n).

6.1 Parameters

type LearnParams_BayesianSearch
maxparents :: Int # limits the maximum number of parents a node can have
maxsearchtime :: Int # maximum runtime of the algorithm [seconds?] (0 = infinite)
niterations :: Int # number of searches (and indirectly number of random restarts)
linkprobability :: Float64 # defines the probabilty of having an arc between two nodes
priorlinkprobability :: Float64 # defines a prior existence of an arc between two nodes
priorsamplesize :: Int # influences the "strength" of prior link probability.
seed :: Int # random seed (0=none)
forced_arcs :: Vector{Tuple} # a list of (i->j) arcs which are forced to be in the network
forbidden_arcs :: Vector{Tuple} # a list of (i->j) arcs which are forbidden in the network
tiers :: Vector{Tuple} # a list of (i->tier) associating nodes with a particular tier

LearnParams_BayesianSearch() = new(5, 0, 20, 0.1, 0.001, 50, 0, Array(Tuple,0), Array(Tuple,0), Array(Tuple,0))
end

6.2 Examples

net = Network()
learn!(net, dset, LearnParams_BayesianSearch())

6.3 Algorithm

Bayesian Search is not a specific algorithm, but a class of algorithms. Thus, what exactly is going on under the hood
in SMILE is not known. However, the following is true about partially directed graph search and surmised to be true
about Bayesian Search.

13

https://dslpitt.org/genie/wiki/Reference_Manual:_DSL_bs

Smile.jl Documentation, Release 1.0

A Markov Equivalence class is a graph candidate containing both directed and undirected edges. A directed acyclic
graph G is a member of the Markov equivalence class encoded by a particually directed graph G’ iff G has the
same edges as G’ without regard to direction and has the same v-structures as G’. It follows that the space of marov
equivalence classes is smaller.

Two graphs are Markov equivalent if they encode the same set of conditional independent assumptions. A Markov
Equivalence class is thus a set containing all directed acyclic graphs that are Markov equivalent to each other.

In structure search we would like to maximize the posterior probability of the structure given the data,
argmax𝐺 𝑃 (𝐺|𝐷). An equivalent formulation seeks to maximize the Bayesian Score.

In general, two structures belonging to the same Markov equivalence class may be given different scores. However,
specific priors, such as the BDeu prior, can be used to ensure score equivalence.

6.3.1 Greedy Hill Climbing

Searching over the space of graphs typically runs as follows:

1. Start with a random intial graph

2. Search for the next-best graph reachable by applying one of each of the following operations:

• Adding a new undirected or directed edge

• Removing an existing edge

• Reversing an existing directed edge

• Converting 𝐴−𝐵 − 𝐶 to 𝐴→ 𝐵 ← 𝐶

3. Each candidate graph is scored. The Bayesian Score is defined only for directed acyclic graphs, so a member of
the Markov equivalence graph must be generated from which the score is computed

4. The graph with the highest score is selected, and the process is continued until a local maxima is reached

6.4 Reference

Kochenderfer, M. (2014). Decision Making under Uncertainty, 47-55.

14 Chapter 6. Bayesian Search

CHAPTER 7

Greedy Thick Thinning

This learning algorithm uses the Greedy Thick Thinning procedure. It is a general-purpose graph structure learning
algorithm, meaning it will attempt to search the full space of graphs for the best graph.

The probability tables are filled out using Expectation Maximization.

7.1 Parameters

type LearnParams_GreedyThickThinning
maxparents :: Int # limits the maximum number of parents a node can have
priors :: Int # either K2 or BDeu
netWeight :: Float64 # for BDeu prior it defines the weight for the uniform prior
forced_arcs :: Vector{Tuple} # a list of (i->j) arcs which are forced to be in the network
forbidden_arcs :: Vector{Tuple} # a list of (i->j) arcs which are forbidden in the network
tiers :: Vector{Tuple} # a list of (i->tier) associating nodes with a particular tier
LearnParams_GreedyThickThinning() = new(5, DSL_K2, 1.0, Tuple[], Tuple[], Tuple[])

end

7.2 Examples

net = Network()
learn!(net, dset, LearnParams_GreedyThickThinning())

7.3 Algorithm

The Greedy Thick Thinning algorithm starts with an empty graph and repeatedly adds the next arc which maximizes
the Bayesian Score metric until a local maxima is reached. It then removes arcs untils a local maxima is reached.

The algorithm is thus fairly efficient at the expense of being prone to being trapped in local maxima.

Two priors can be used. The BDeu prior ensures equal scoring across Markov equivalance classes. The K2 prior
is constant across all variables and is typically used for maximizing 𝑃 (𝐺 | 𝐷) when searching the space of graphs
directly.

15

https://dslpitt.org/genie/wiki/Reference_Manual:_DSL_greedyThickThinning

Smile.jl Documentation, Release 1.0

7.4 Reference

Hesar, A. and Tabatabaee, H. and Jalali, M. (2012). Structure Learning of Bayesian Networks Using Heuristic Meth-
ods.

16 Chapter 7. Greedy Thick Thinning

CHAPTER 8

PC

This learning algorithm uses the PC procedure. It is a general-purpose graph structure learning algorithm, meaning it
will attempt to search the full space of graphs for the best graph.

The probability tables are filled out using Expectation Maximization.

8.1 Parameters

type LearnParams_PC
maxcache :: Uint64 # the maximum algorithm cache size
maxAdjacency :: Cint # thought to be the max number of parents
maxSearchTime :: Cint # the maximum runtime of the algorithm, ms
significance :: Float64 # the significance level used in independence tests
forced_arcs :: Vector{Tuple} # a list of (i->j) arcs which are forced to be in the network
forbidden_arcs :: Vector{Tuple} # a list of (i->j) arcs which are forbidden in the network
tiers :: Vector{Tuple} # a list of (i->tier) associating nodes with a particular tier

LearnParams_PC() = new(2048, 8, 0, 0.05, Tuple[], Tuple[], Tuple[])
end

8.2 Examples

net = Network()
learn!(net, dset, LearnParams_PC())

8.3 Algorithm

• Start with a complete undirected graph on all n variables, with edges between all nodes

• For each pair of variables X and Y, and each set of other variables S, see if X and Y are conditionally indepden-
dent given S. If so, remove the edge between X and Y

• Find colliders by checking for conditional dependence; orient the edges of colliders

• Try to orient undirected edges by consistency with already-oriented edges; do this recursively until no more
edges can be oriented

17

https://dslpitt.org/genie/wiki/Reference_Manual:_DSL_pc

Smile.jl Documentation, Release 1.0

8.4 Reference

Spirtes, P. and Glymour, C. and Scheines, R. (2001). Causation, Prediction, and Search.

18 Chapter 8. PC

	Available Types
	Installation
	Advanced

	QuickStart Guide
	Naive Bayes
	Parameters
	Examples

	Tree Augmented Naive Bayes
	Parameters
	Examples
	Algorithm
	Reference

	Bayesian Search
	Parameters
	Examples
	Algorithm
	Reference

	Greedy Thick Thinning
	Parameters
	Examples
	Algorithm
	Reference

	PC
	Parameters
	Examples
	Algorithm
	Reference

