

 Navigation

 	
 index

 	
 next |

 	SmartThings Classic Developer Documentation

SmartThings Classic Developer Documentation

 Getting Started

 Get started developing with SmartThings.

 Write Your First SmartApp

 Ready to dive in? Write your first SmartApp by following our step-by-step tutorial.

 SmartApps

 SmartApps orchestrate devices in the home to perform specific actions based on events and triggers. Learn the what and how here.

 Web Services SmartApps

 Create your own RESTful API with Web Services SmartApps.

 Hub-Connected Devices

 Learn how to integrate a ZigBee or Z-Wave device with SmartThings.

 Cloud and LAN-Connected Devices

 Learn how to integrate a Cloud or LAN-connected device with SmartThings.

 Capabilities Reference

 An up-to-date introduction and reference of all supported SmartThings Capabilities.

 API Reference

 Browse the complete Groovy API reference documentation.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

Latest Updates

July 07 2017

Changes to the thermostatCoolingSetpoint Capability:

	coolingSetpointMin and coolingSetpoingMax attributes replaced with coolingSetpointRange.

Changes to the thermostatFanMode Capability:

	supportedThermostatFanModes attribute added.

Changes to the thermostatHeatingSetpoint Capability:

	heatingSetpointMin and heatingSetpointMax attributes replaced with heatingSetpointRange.

Changes to the thermostatMode Capability:

	supportedThermostatModes attribute added.

Changes to the thermostatSetpoint Capability:

	thermostatSetpointMin and thermostatSetpointMax attributes replaced with thermostatSetpointRange.

Changes to the thermostat Capability:

	coolingSetpointMin and coolingSetpointMax attributes replaced with coolingSetpointRange.

	heatingSetpointMin and heatingSetpointMax attributes replaced with heatingSetpointRange.

	thermostatSetpointMin and thermostatSetpointMax attributes replaced with thermostatSetpointRange.

	supportedThermostatFanModes attribute added.

	supportedThermostatModes attribute added.

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/07-July-2017]

June 08 2017

	HubAction reference documentation updated to clarify that HOST parameter is part of the headers map.

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/08-June-2017]

May 04 2017

	Asynchronous HTTP requests now support optional response handler methods. For cases when you just need to make a request, but don’t care about the response, just pass null for the response handler. Docs updated here.

	Creating a Composite Device Handler? Check out the new Composite Device Tiles documentation!

	
	Some changes and additions to several Capabilities:

	
	getAllActivities() and getCurrentActivity() Commands removed from mediaController Capability.

	startActivity() Command updated to accept the ID of the activity, instead of the name.

	Optional coolingSetpointMin and coolingSetpointMax attributes added to the thermostatCoolingSetpoint Capability.

	Optional heatingSetpointMin and heatingSetpointMax attributes added to the thermostatHeatingSetpoint Capability.

	Optional thermostatSetpointMin and thermostatSetpointMax attributes added to the thermostatSetpoint Capability.

	Optional coolingSetpointMin, coolingSetpointMax, heatingSetpointMin, heatingSetpointMax, thermostatSetpointMin, and thermostatSetpointMax attributes added to the thermostat Capability.

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/04-May-2017]

April 20 2017

	Image capturing and viewing documentation is here! Learn how to store, retrieve, and display images from a LAN- or Cloud-connected camera device.

	Updated Rate Limiting documenation with new child SmartApp and Device Handler limits, as well as clarify existing rate limits.

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/20-April-2017]

March 22 2017

	Composite Devices are here! Composite Devices allow developers to better model devices through a parent-child relationship between Device Handlers. Check out the documentation and leverage this new design pattern for your composite devices!

	SmartThings has a new set of color standards for Device Handler Tiles. The Color standards documentation covers all the new color standards.

	Updates to the Writing Style Guide and existing documentation to conform to new guidelines.

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/22-March-2017]

March 08 2017

	Do you have custom LAN device integrations? If so, check out the Automatic LAN Device Discovery documentation to see what (if any) impact this has on your custom code.

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/08-March-2017]

March 02 2017

	Does your SmartApp or Device Handler need to execute every minute? Instead of writing your own cron expression, use the new runEvery1Minute()!

	Need to convert color values between hexadecimal and RGB? The ColorUtilities class has what you need.

	If you are writing a parent-child SmartApp, check out the expanded and clarified documentation for using the app() input type.

	A new capability, bridge, allows devices to declare they act as a bridge to other devices.

	A new attribute, held, has been added to the button capability!

	The Writing Style Guide has been updated with guidelines for document title and headings capitalization and formatting. If you are a contributor to these docs, make sure you check it out!

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/02-March-2017]

February 10 2017

	Did you notice? We’ve updated the docs homepage to help readers quickly identify and navigate to common areas of interest.

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/10-February-2017]

February 08 2017

	Z-Wave fingerprinting updates! The Z-Wave fingerprinting documentation has been expanded and updated with the latest information.

	Get information about a Device’s status and last activity using the new getStatus() and getLastActivity() methods.

	New to Device Handler development, or looking for a refresher? We’ve overhauled our Quick Start to ensure you can get up and running quickly and pain-free.

	Do you use cron to create recurring schedules? Have you seen if you could replace that often-difficult to understand, write, and maintain cron expression with any of our runEvery* methods? We’ve updated the documentation to highlight these methods and encourage their use, instead of using cron.

	Did you know you can copy code examples right to your clipboard? We updated the UX to increase the visibility of this handy feature.

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/08-February-2017]

January 23 2017

	Search, discover and communicate with the devices in your network with the HubAction class. Check out the new reference document for HubAction.

	If you need to get the account ID associated with an installed SmartApp, check out the getAccountId() method available on the InstalledSmartApp object!

	We’ve updated the Editor and Simulator guide to clarify that you need to ensure you are on the correct shard when creating SmartApps or Device Handlers.

	A new Capability, infraredLevel, is now available!

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/23-January-2017]

January 03 2017

	Thinking about setting up a regular on and off schedule for your SmartThings? See our latest update, with examples, in Schedule using cron.

	Confused about sharding and where to publish your SmartApp or Device Handler? Here is a big picture view that clarifies Publishing Custom Code.

	Did you know there’s a default delay between commands when you send a sequence of them to the Hub? See sendHubCommand() reference documentation for details.

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/03-January-2017]

December 08 2016

	Quick, how do you know what Capabilities are supported by SmartThings? Checkout out the new generated Capabilities Reference, now live.

	Don’t know much about ZigBee? We got you covered with our updated ZigBee documentation in the ZigBee Primer and ZigBee Reference guides.

	What you, as a developer, must know while working with the SmartThings IDE. Checkout latest in the Hubs and Locations guide.

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/08-December-2016]

November 30 2016

	Did you know you can refresh any page of the SmartApp on the mobile device with a set interval? See the dynamicPage() options guide.

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/30-November-2016]

November 17 2016

	Changed code blocks to use the monokai dark theme.

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/17-November-2016]

November 15 2016

	Added ability to copy code blocks to the clipboard.

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/15-November-2016]

November 14 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/14-November-2016_2]

	Added documentation for working with time zones.

	Fixed warnings related to lexical parsing of code blocks.

November 10 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/10-November-2016]

	Documented new getModelName() and getManufacturerName().

	Styling and organiational changes to the left-hand navigation.

	Internal build error fixes.

November 03 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/03-November-2016]

	Revised timeTodayAfter() method description in the SmartApp Guide

	Added Working With Time guide to the SmartApp Developers Guide

	Fixed up scheduling reference docs in Device Handler, and SmartApp Guides

	Clarify getting latest device state in Device, and Working with Devices

	Corrected timeZone() method description in the SmartApp Guide

October 26 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/26-October-2016]

	Documentation for nextOccurrence().

	Documentation for getAllChildApps(), findAllChildAppsByName(), findAllChildAppsByNamespaceAndName(), findChildAppByNamespaceAndName(), and getAllChildApps().

	Updated documentation for getChildApps() to reflect that only “complete” child app installations will be returned.

	Changed reference API docs to use getter forms instead of property access.

	New attribute values added for the lock capability.

	Typo fixes and other copy edits.

October 17 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/17-October-2016]

	Documentation for beta asynchronous HTTP APIs

	Typo fixes and other copy edits

October 13 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/13-October-2016]

	Moved rate limiting documentation into its own guide

	Typo fixes and other copy edits

October 11 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/11-October-2016]

	Documented SMS rate limits

	Fixed typos

October 06 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/06-October-2016]

	Added instructions for creating a simple code example when creating a developer support ticket.

	Added documentation for specifying a custom Remove button for preferences.

October 05 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/05-October-2016]

	Added documentation for passing data to schedule handler methods.

	Added best practices for parent-child relationships.

	Updated the repository’s README with pull request guidelines.

	Added scheduling APIs to the Device Handler reference documentation (including all runEvery* APIs, which are now supported in Device Handlers).

	Fixed broken cron tutorial link the Scheduling guide.

	Added note to the first SmartApp tutorial and Editor and Simulator that the Simulator is inconsistent with the mobile application.

September 23 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/23-September-2016]

	Added link to the Z-Wave public spec on the following Z-Wave pages: Building Z-Wave Device Handlers and Z-Wave Primer

	Updated the Color Control capability to correctly reflect the capability definition.

	Updated Jinja template to add some more features for the ongoing generated capability documentation project.

	Fixed minor grammatical errors.

September 14 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/14-September-2016]

	Update to the State and Atomic State documentation to reorganize, clarify, and expand content.

September 09 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/09-September-2016]

	Removed Occupancy capability

	Fixed unschedule() docs to clarify that a specific handler method name can be passed to unschedule().

September 02 2016 (3)

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/02-September-2016-03]

	Fixing RTD build

September 02 2016 (2)

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/02-September-2016-02]

	Fixing RTD build

September 02 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/02-September-2016]

	Typos and spelling fixes

	Added more around the generated capabilities documentation framework

	Added Troubleshooting document to the SmartApp Web Services guide

	Fixed colorControl example code in the capabilities reference

August 17 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/17-August-2016]

	Fix documentation for subscribeToCommand() (only takes a Device argument, not a list of Devices)

	Typos and spelling fixes

August 16 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/16-August-2016]

	Documentation for the ability to pass a Throwable to logging methods to get more logging details about the exception shown in the logs.

August 15 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/15-August-2016]

	Make edits to Makefile as a first step in getting generated capabilities documentation integrated into the documentation build.

August 04 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/04-August-2016]

	Added zigbee.parseZoneStatus() documentation

	Added documentation for Additional ZigBee classes

	Clarified findChildAppByName() API documentation

	Added documentation to Device Handler Guide for other useful APIs available to Device Handlers, including Scheduling, HTTP Requests, and State.

	Fixed documentation for Event.dateValue to indicate that it returns null if date cannot be parsed

	Various fixes for reStructuredText formatting and legal syntax warnings

	Moved this documentation change log to top of navigation

July 28 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/28-July-2016]

	Document the new hideWhenEmpty preferences option.

July 25 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/25-July-2016]

	Add a strong warning to the State documentation to emphasize the importance of never mixing atomicState and state in the same SmartApp.

July 21 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/21-July-2016]

	Documented the new redirect URI field on OAuth SmartApps

July 07 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/07-July-2016]

	Added documentation for working with collections in State and Atomic State.

	Added documentation for AppState

	Added documentation for InstalledSmartApp

	Added clarification that the callable URL for Web Services SmartApps will vary by installed location

	Updated developer call schedule

June 23 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/23-June-2016]

	
	Splitting the Music Player capability [http://docs.smartthings.com/en/latest/capabilities-reference.html] into three capabilities

	
	Audio Notification

	Music Player

	Tracking Music Player

June 17 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/17-June-2016]

	Adding WOL (Wake On Lan) documentation [http://docs.smartthings.com/en/latest/cloud-and-lan-connected-device-types-developers-guide/building-lan-connected-device-types/building-the-device-type.html#wake-on-lan-wol]

June 13 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/13-June-2016]

	Adding Code Review Guidelines and Best Practices for SmartApps and Device Handlers.

June 9 2016

GitHub Release Tag [https://github.com/SmartThingsCommunity/Documentation/releases/tag/09-June-2016]

	Fix spelling of “capability” in Attribute docs

	Fix capitalization of “localIP” in Hub docs

	Document the SmartThings developer support form

	Document Device Handler Preferences

	Document device-specific preference inputs

	Clarify GitHub Integration only available in the US

May 27 2016

	Add additionalParams argument for ZigBee library. Docs | GitHub PR [https://github.com/SmartThingsCommunity/Documentation/pull/315]

May 23 2016

	Updated and expanded Device Handler tiles docs. Docs | GitHub PR [https://github.com/SmartThingsCommunity/Documentation/pull/314].

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

Overview

SmartThings is the open developer platform for the Internet of Things.

With SmartThings, developers can:

	Create applications that let users connect devices, actions, and external services to create automations.

	Integrate new devices into the SmartThings ecosystem.

	Publish applications and device integrations to the SmartThings catalog.

Developer highlights

SmartThings was built to be developer-friendly. Some of the key developer features:

	A simple programming framework using the Groovy programming language. Don’t know Groovy? No worries. We’ve written a tutorial to get you up to speed.

	An architecture that allows developers to control hardware with simple software. Turning a switch on is as easy as switch.on().

	A web-based IDE for developing SmartThings solutions.

	A Simulator for testing your code, even if you don’t have specific devices you are developing for.

	An active and growing community [https://community.smartthings.com/] of SmartThings developers.

How it works

There are two primary ways that developers can create with SmartThings.

SmartApps

def someoneArrived(evt) {
 lights.on()
 sendPush("Someone has arrived!")
}

SmartApps are small programs that allow users to connect their devices to make their home more intelligent. As the world around us becomes more and more connected, it is the intelligence between these devices that makes our world smart. SmartApps allow developers to control hardware with simple software.

SmartApps can typically be summarized by what they do. Some example SmartApps:

	“Turn the lights off after a certain time when no motion is detected”

	“Notify me if a door opens when I’m not home”

	“Turn my thermostat down when I leave home”

SmartThings ships with many SmartApps already available. Almost all automations that you configure with your SmartThings mobile application are SmartApps. If you’ve set up your lights to come on when motion is detected, or to receive a notification if your door opens when you aren’t home, you’ve used SmartApps.

Of course, SmartApps are capable of much more than the above examples. SmartApps can communicate with external web services, send push and SMS notifications, expose their own REST endpoints, and more.

Device Handlers

def on() {
 zigbee.on()
}

Developers can also integrate new devices into the SmartThings ecosystem by creating Device Handlers. These Groovy programs encapsulate the details of communication between SmartThings and the physical devices. In the SmartApp code example above, we turned the lights on by simply calling lights.on(). The Device Handler is responsible for physically turning the light on (don’t worry about the details of this just yet).

An open platform

SmartThings was built by developers, for developers. We recognized that only by creating an open development platform, will the power of the IoT be fully unleashed.

Our web-based IDE and simulator allows developers to create, edit, test, and publish their SmartThings code. SmartApps and Device Handlers are hosted in our public GitHub Repository [https://github.com/SmartThingsCommunity/SmartThingsPublic], and our web-based IDE and Simulator is integrated with GitHub.

Our vibrant developer community [https://community.smartthings.com/c/developers] is a great place to learn, collaborate, and help each other.

What’s next

To start developing with SmartThings, you will need to create a developer account and become familiar with the developer tools. This is covered next in the Up and Running.

SmartThings uses the Groovy programming language. Don’t know Groovy? Check out our Groovy Basics and Groovy With SmartThings tutorials.

Then, take a deep dive into developing with SmartThings by writing your first SmartApp, using the Writing Your First SmartApp.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

Up and Running

SmartThings offers a rich toolset to develop, test, and publish custom code.

Don’t have a SmartThings Hub or any devices yet? Carry on! You can still create an account and even develop without any hardware, by using our online IDE and Simulator.

Of course, you’ll want to have the hardware sooner than later, but you can start developing with SmartThings with nothing more than the free SmartThings mobile app, a web browser, and an internet connection.

Register

If you already have the SmartThings mobile app, you can access the developer IDE at https://graph.api.smartthings.com, using the same email and password.

If you don’t have the mobile app, you can register for an account by visiting https://account.samsung.com/account/signUp.do.
You can then download the free SmartThings mobile app for iOS [https://geo.itunes.apple.com/us/app/smartthings-mobile/id590800740?mt=8], Android [https://play.google.com/store/apps/details?id=com.smartthings.android], or Windows [https://www.microsoft.com/en-us/store/apps/smartthings-mobile/9wzdncrdszmq].

Explore

The Tools and IDE guide discusses the developer tools in more detail, but for now, let’s look at a few key features to get you comfortable.

Account management

You can use the tools available to view and manage the Locations, Hubs, and Devices, as well as view a live log for locations where you are listed as the owner.

IDE and Simulator

[image: ../_images/building-img1.png]
At the top of the page, you’ll notice links for My SmartApps and My Device Handlers. This is where any custom code will be listed. Clicking on any SmartApp or Device Handler will bring you to the code editor, where you can view, edit, test, and publish your custom code.

As a new SmartThings developer, you won’t have any SmartApps or Device Handlers yet. We will guide you through creating one later in the Writing Your First SmartApp.

Next steps

Now that you know what the SmartThings developer platform offers, you can dive in to the fun stuff.

If you’re new to Groovy, we recommend that you read through the Groovy Basics tutorial. You’ll learn about Groovy, and how SmartThings uses it for development. The Groovy With SmartThings tutorial discusses some key differences between regular Groovy and Groovy with SmartThings.

Once you’ve completed that (or maybe you’re the adventurous sort and just want to dive right in to some SmartApp code), check out the Writing Your First SmartApp tutorial.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

Groovy Basics

SmartThings uses the Groovy programming language. If you’ve programmed before, you can learn Groovy.

The Groovy programming language is documented at http://www.groovy-lang.org/documentation.html. This tutorial will familiarize you with Groovy and its use in SmartThings, but is not a complete reference for the language.

Tip

If you already know Groovy, or prefer to learn as you go, you can skip this tutorial and refer to this page as a mini-reference of sorts. It is important, however, that you understand how Groovy is used in SmartThings. That is discussed in the Groovy With SmartThings tutorial.

To develop with SmartThings, you do not need to be an expert in Groovy. The SmartThings development environment was created to be easy-to-use, so that it does not require someone to be proficient in Groovy (or any other language). That said, having a basic understanding of some of the core concepts of Groovy will help you be most productive in your development.

Overview

Groovy is an object-oriented programming language for the Java platform. It is a dynamic language with features similar to those of Python, Ruby, Perl, and Smalltalk.

If you are familiar with languages like Java, C/C++, Python, Ruby, or JavaScript, you will see many similarities in Groovy.

Groovy code is compiled to byte code that is executed by the Java Virtual Machine (JVM). We choose Groovy as the SmartThings programming language for its simplicity and flexibility, as well as the performance and stability of the JVM.

Because Groovy is compiled to byte code that runs on the JVM Java Virtual Machine (JVM), 99% of Java code is valid Groovy. The standard Java libraries are available to Groovy programs. Groovy extends Java in many useful ways, which we’ll learn about here.

Installing Groovy

The best way to get familiar with Groovy is by installing it and experimenting. SmartThings development does not require you to have a copy of Groovy installed, since SmartThings code is executed within SmartThings infrastructure, but having a local copy of Groovy is useful for learning.

Head over to the Groovy Documentation [http://www.groovy-lang.org/documentation.html] site and follow the Getting Started guides for downloading and installing Groovy (the rest of the Getting Started material is pretty awesome too, and definitely worth a read).

We make heavy use of the Groovy Console to test things out, and recommend you do to.

Note

In the code snippets below, you’ll see a method assert() used often. This method is built in to Groovy, and we use it to verify assumptions. If the value passed to assert() is not true, the program will terminate. This lets us test out our code easily.

For example, assert true is valid, and the program will continue. Anything that evaluates to false will cause the program to halt, so assert false will terminate with an informative message.

While useful for learning, it’s important to note that assert() is not available for you to use in SmartThings code. Neither is the method println(), for that matter. For security and performance reasons, SmartThings runs in a sandboxed environment that restricts access to certain features. The sandboxed environment is discussed further in the Groovy With SmartThings tutorial.

Optional semicolons

Semicolons are optional in Groovy, and generally not used:

def someString = "this statement has a semicolon";
def someOtherString = "this one does not"

Comments

Groovy supports single line comments:

// this is a single line comment
// each line requires slashes
def myNum = 2 // comments can also come at the end of a statement

Multiline comments are also supported:

/* this is a comment that
 spans multiple lines.*/
def myNum = 2

Objects

In Groovy, everything is an object. Objects have methods and properties.

Methods are the things the object can do, and similar to other languages, are optionally (more on that later) invoked with parentheses () that may contain arguments.

// calling method doSomething on someObject
someObject.doSomething()

// calling method doSomethingElse with one argument
someObject.doSomethingElse("a string argument")

// get the property named someProperty on someObject
someObject.someProperty

Optionally typed

Groovy is an optionally typed language. The following are both valid Groovy:

// explicit typing
Person person = new Person()

// using def
def person2 = new Person()

In Groovy, we can use def in place of an explicit type. The exact type of object that will be assigned will vary when using def.

Why use def instead of explicit types? While not required, def is commonly used in Groovy (and in SmartThings) because it provides greater flexibility and readability.

Consider this strongly typed example:

String addThem(String str1, String str2) {
 return str1 + str2
}

String added = addThem("Smart", "Things");
assert "SmartThings" == added

In the example above, addThem() is defined to accept two String parameters. Groovy supports operator overloading, so using the + operator concatenates the two strings.

What happens when we try to invoke addThem() with two numbers?

// fails!
assert 3 == addThem(1, 2)

This results in an exception like this:

groovy.lang.MissingMethodException: No signature of method: Script1.addThem() is applicable for argument types: (java.lang.Integer, java.lang.Integer) values: [1, 2]
Possible solutions: addThem(java.lang.String, java.lang.String)
at Script1.run(Script1.groovy:7)

Because addThem() is defined to accept two String parameters, we get a MissingMethodException when calling addThem(1, 2), since there is no method named addThem that accepts two numbers.

If we use def instead of an explicit type, we can take advantage of something called duck typing [https://en.wikipedia.org/wiki/Duck_typing]. Put simply, duck typing is the principle that if it walks like a duck and quacks like a duck, then it’s a duck. In programming terms, this means that if an object supports certain properties or methods, then we can use those regardless of its type.

To illustrate this with an example, consider the above example refactored to use def:

def addThem(str1, str2) {
 // strings and numbers support the + operator
 return str1 + str2
}

def added = addThem("Smart", "Things")
assert added == "SmartThings"

def added2 = addThem(4, 2)
assert added2 == 6

Omitting the explicit type information in favor of def allows us to build flexible programs without getting bogged down in ensuring we have all our typing information correct. This is particularly useful for smaller programs, which is what you will be writing with SmartThings.

Note

Strict statically typed languages like Java determine the method that will be called at compile time. Groovy determines the methods to invoke at runtime, using something called multi-methods or dynamic dispatch. You can read more about multi-methods here [http://www.groovy-lang.org/differences.html#_multi_methods] in the Groovy documentation.

Operators

Groovy supports all the typical operators, such as arithmetic operators, assignment operators, and relational operators:

assert 1 + 2 == 3 // use == for checking equality
assert 1 < 2

def a = 1
def b = a += 2
assert a == 3

def c = 4
def d = c++
assert d == 5

There a few other notable operators that you may not have seen in other languages; one of them is the Safe Navigation Operator. Using Groovy’s Safe Navigation Operator, you can navigate object structures without fear of getting a NullPointerException on a null object.

Suppose we have a property named location, that also has a method getHelloHome(). Further, suppose that the object returned by getHelloHome() has a method named getPhrases(). Ultimately, we want to get the phrases.

We could do:

def phrases = location.getHelloHome().getPhrases()

But, what if getHelloHome() returns null? We’d then get a NullPointerException at runtime when trying to call getPhrases() on a null object.

If you’re not familiar with Groovy, you might try something like this to avoid that:

def hh = location.getHelloHome()
def phrases
// recall that non-null objects are "true"
if (hh) {
 phrases = hh.getPhrases()
}

That works, and is valid Groovy, but we can do better. Using the safe navigation operator (?.), we can safely traverse the object graph. If any objects are null, the method simply will not be invoked and null will be returned.

This results in much cleaner code:

def phrases = location.getHelloHome()?.getPhrases()

In this example, if getHelloHome() is not null, we’ll call the getPhrases() method on it. If it does return null, the whole expression simply returns null.

If there’s ever a chance of running into a NullPointerException when navigating an object structure, use the safe navigation operator to safely (and concisely) avoid it.

There are many more Groovy operators documented here [http://docs.groovy-lang.org/latest/html/documentation/#groovy-operators].

Strings

Strings can be defined using single, double, or triple quotes:

def a = "some string"
def b = 'another string'
def c = '''Triple quotes
 allow multiple
 lines'''

Strings defined with double quotes support interpolation. This allows us to substitute any Groovy expression into a String at the specified location. Interpolation is achieved using the ${} syntax:

def name = "Your Name"
def greeting = "Hello, ${name}"
assert "Hello, Your Name" == greeting

Of course, more interesting interpolations are possible. Any expression can be placed inside the ${}:

def name = "Your Name"
def greeting = "Hello, ${name.toUpperCase()}"
assert "Hello, YOUR NAME" == greeting

You can also use the $ without the {} for simple property substitutions or simple dotted expressions:

def name = "Your Name"

// can omit the {} here
def greeting = "Hello, $name"
assert "Hello, Your Name" == greeting

def person = [firstName: 'Walter', lastName: 'Sobchak']
def greeting = "Hello, $person.firstName $person.lastName"

Note

Dotted expressions are expressions of the form a.b or a.b.c. Expressions that would contain parentheses like method calls, curly braces for closures, or arithmetic operators, are not dotted expressions and you should use ${}. We recommend always using the ${} notation.

You’ll see String interpolations frequently in SmartThings.

There are some other handy Groovy String features, like the ability to remove part of a string using the - operator:

def lannisters = "A Lannister does not always pays their debts"
def corrected = lannisters - "does not "
assert "A Lannister always pays their debts" == corrected

You can read more about Strings here [http://docs.groovy-lang.org/latest/html/documentation/#all-strings].

Lists and Maps

Groovy supports the typical collection structures like Lists and Maps in an easy-to-use way.

Here are some examples showing how to work with Lists in Groovy:

// simple list of Numbers
def myList = [2, 3, 5, 8, 13, 21]

// use the << operator to append items to a list
myList << 34
assert myList == [2, 3, 5, 8, 13, 21, 34]

// get elements in a list
// first element is at index 0
assert 8 == myList[3]

// can use negative index to start from the end
assert 21 == myList[-2]

// lists can support different types of data
def myMixedList = [1, "two", true]

Maps are similarly straightforward:

// simple map of key/value pairs
def myMap = [key1: "value1", key2: "value2"]

// can get value for a key with the "." notation:
assert "value1" == myMap.key1

// can also get the value using subscript notation:
assert "value2" == myMap['key2']

// a list of maps
def listOfMaps = [[key1: "val1", key2: "val2"],
 [key1: "another val", key2: "and another"]]
assert "another val" == listOfMaps[1].key1

While lists and maps are simple in Groovy, there are many powerful methods in the Groovy collections APIs that extend their power. You are encouraged to read the Groovy documentation for more information, but here are some cool examples:

def colors = ["red", "green", 42, "blue"]

// remove items from a list with the "-" operator
colors = colors - 42
assert ["red", "green", "blue"] == colors

def people = [[first: "Jimmy", last: "James"],
 [first: "Bill", last: "McNeal"]]

// The * operator allows us to invoke an action on every item in the
// collection, returning a new list of results.
def firstNames = people*.first
assert ["Jimmy", "Bill"] == firstNames

// this is also useful for invoking the same method on a collection of objects:
def listOfStrings = ["a", "b", "c"]
assert ["A", "B", "C"] == listOfStrings*.toUpperCase()

Control structures

Groovy supports the conditional if/else syntax as you’d expect:

if (...) {
 ...
} else if (...) {
 ...
} else {
 ...
}

You can also use the switch statement to handle possible values conditionally:

def deviceDescription = "presence: 1"
def result = ""

switch (deviceDescription) {
 case "presence: 0":
 result = "not present"
 break
 case "presence: 1":
 result = "present"
 break
 default:
 result = "unknown"
}

assert "present" == result

Looping is also similar to Java or C:

def result = ""
for (int i = 0; i < 3; i++) {
 result += "Z"
}
assert "ZZZ" == result

You can also use the for/in loop when working with collections:

def next = 0
for (i in [8, 13]) {
 next += i
}
assert next == 21

Calling methods

When invoking methods, parentheses are sometimes optional. Methods that do not accept any parameters must include the parentheses.

def myMethod() {
 // ...
}

def myOtherMethod(someArg1, someArg2) {
 // ...
}

myMethod() // OK
myMethod // error
myOtherMethod(2, 3) // OK
myOtherMethod 4, 5 // OK

Getters and setters

Groovy adds in some convenience JavaBean style getter and setter methods.
It’s worth being aware of this in case you see some code that references a property that seemingly isn’t defined anywhere:

def getSomeValue() {
 return "got it"
}

assert "got it" == someValue

How did referencing someValue end up invoking the method getSomeValue()?
When Groovy sees a reference to the property named someValue, it first looks to see if it is defined somewhere.
In the above example, it is not.
So, Groovy then looks to see if there is a getter method.
JavaBean conventions specify that a properties getter method should be named beginning with “get”, followed by the name of the property (with the first letter of the property capitalized).

Don’t worry if that’s somewhat confusing; just know that if you a reference to a property name that doesn’t appear to exist, it might be invoking a getter method.

Defining methods

Methods are generally defined and invoked as in other modern languages, with some notable enhancements.

First, the basics. Method signatures can accept both typed and untyped arguments:

// arguments types are optional:
def asMap(arg1, arg2) {
 return [arg1: arg2]
}
assert [key: "val"] == asMap("key", "val")

// can use typed arguments as well
Map asMapWithTypedArgs(String arg1, String arg2) {
 return [arg1: arg2]
}
assert [key: "another val"] = asMap("key", "another val")

The return statement is optional in a Groovy method. The value of the last expression evaluated is returned by default:

def asMap(arg1, arg2) {
 // no return statement
 [arg1: arg2]
}
assert [key: "val"] == asMap("key", "val")

Methods can also be defined to accept named parameters. This is frequently used in SmartThings, as it allows for flexible and easily-extendable methods. This is accomplished by accepting a Map parameter (the typing is optional, but used here for clarity):

def myMethod(Map params) {
 "$params.firstName, $params.lastName"
}

// note the lack of parentheses here also
assert "First, Last" == myMethod firstName: "First", lastName: "Last"

Methods can also define default values for parameters. If not passed when calling the method, the default will be used:

def defaultParams(first, last, middle = "") {
 "Welcome, $first $middle $last"
}

def greetGeorge = defaultParams("George", "Costanza", "Louis")
def greetKramer = defaultParams("Cosmo", "Kramer")

assert "Welcome, George Louis Costanza" == greetGeorge
assert "Welcome, Cosmo Kramer" == greetKramer

Worth noting is that none of the above definitions include any type of explicit visibility modifier information. By default, when using def, the method is public. Want to make your method private? It’s syntactically allowed, but actually isn’t respected by Groovy (gasp!). And in SmartThings, this really isn’t necessary since we are not creating our own classes or object models. So, we typically just omit any visibility modifier for simplicity.

Exception handling

Like other programming languages, Groovy has error conditions, or exceptions. Because Groovy is based on Java, there are similarities to how Java handles exceptions. The big difference is that Groovy does not require you to handle so-called checked exceptions. In Groovy, we are always free to handle exceptions if we want, or disregard them and let them percolate up the call stack.

To handle general exceptions, you can place the potentially exception-causing code in a try/catch block:

try {
 someMethodThatMightGoBoom()
} catch (e)
 // log the error message, and/or handle in some way
}

By not declaring the type of exception we can catch, any exception will be caught here.

Closures

If you are most familiar with languages like C or Java, closures may be something you haven’t heard of or used. You’ll see a lot of closures being used in Groovy and SmartThings, so it’s worth understanding the basics.

First, consider a simple example. Say we have a List of numbers, and want to do something with each item in the list. For our purposes, it doesn’t matter what we want to do, only that we want to iterate over every item in the list and do something.

We could certainly do something like this:

def list = [1, 2, 3, 4]
for (int i = 0; i < list.size(); i++) {
 println list[i]
}

That works, but if you think about it, our code shouldn’t have to know the details of the list’s size or control iterating over its contents. All we really care about is doing something to each item!

Fortunately, because Groovy supports closures, we can rewrite the above code as:

def list [1, 2, 3, 4]
list.each {num ->
 println num
}

If you have a Java background, you might be thinking to yourself that Java already solves this with the for/each statement. And for simple iteration, you’re right - both the for/each statement in Java and the each() method in Groovy appear to do the same thing. But, closures are much more powerful than just providing more convenient ways to iterate, as we’ll see next.

Consider an example where given a list of numbers, we want to know which numbers are greater than 50. Without closures, we would probably write something like this:

def greaterThan50(nums) {
 def result = []
 for (num in nums) {
 if (num > 50) {
 result << num
 }
 }
 result
}

def test = greaterThan50([2, 5, 62, 50, 25, 88])
assert 2 == test.size()
assert test.contains(62)
assert test.contains(88)

This is valid Groovy, but with the ability to use closures, we can write code that is much more expressive and concise:

def greaterThan50(nums) {
 // findAll returns a list of items
 // that match the condition specified in the passed-in closure
 nums.findAll {
 it > 50
 }
}

def test = greaterThan50([2, 5, 62, 50, 25, 88])
assert 2 == test.size()
assert test.contains(62)
assert test.contains(88)

This may look very foreign to you, but once you start using and understanding closures, you’ll find them very useful.

Simply put, Groovy Closures are anonymous blocks of code that can be passed to other methods, and those methods can then call that block of code.

The example above uses the findAll() method that is available on all Groovy collections. The method accepts a closure (defined within {}) as the argument (when passing closures to methods, it is typical and preferred to not put parentheses around the parameters).

findAll() works by calling the passed-in closure on every element in the list, and if the item meets the criteria specified in the closure (greater than 50), adds it to a new list that is returned. The closure ({ it > 50}) is passed the item - by default, this is available in a variable named it. You can also provide a name if you wish, by using the -> operator:

nums.findAll {num ->
 num > 50
}

To deepen our understanding, we will next look at an example of creating a method that accepts a closure.

Let’s say we want to print all even numbers up to a a specified number [1]. While we can do this without closures, using them will illustrate how they work.

Here’s the code to do this:

def pickEven(n, block) {
 for (int i=2; i <= n; i += 2) {
 block(i)
 }
}

pickEven(10) {
 println it
}

The pickEven() method accepts an upper bound (n), and a closure (block). It iterates over all the even numbers up to the upper bound, and calls the passed-in closure on each (block(i)).

When we call pickEven(), the closure simply calls println() on each item. Running this would result in the following output:

2
4
6
8
10

A final note about closures, with regards to the use of the optional parentheses. As discussed earlier, parentheses are optional when calling methods in most cases. This is no different for closures, but convention is to not put parentheses around closures as arguments to methods.

The above call to findAll() could be written as:

nums.findAll({ num ->
 num > 50
})

It is idiomatic Groovy to not surround closure arguments with parentheses. When a method accepts multiple parameters, and the closure is the last parameter, the closure should be outside the parentheses.

// instead of:
pickEven(10 {
 println it
})

// prefer:
pickEven(10) {
 println it
}

There’s much more to know about closures if you’re curious, but if you understand the above concepts you will know enough to use them in your SmartThings development.

Groovy truth

Groovy has some special definitions for what is true and what is false. It’s worth understanding these definitions, as they become very valuable in writing concise, expressive Groovy code.

Boolean values behave as you’d expect:

def t = true
def f = false

assert t
assert !f

If an object reference is null, it will evaluate to false:

def obj
assert !obj

This allows us to remove some boilerplate code around null checks. If you’re familiar with Java, you have probably seen code like this:

if (obj != null) {
 // ...
}

In Groovy, we can simply do:

if (obj) {
 // ...
}

Strings also provide some handy truthiness:

def str1 = ""
def str2 = "some string"

assert !str1 // empty strings are false
assert str2

Collections also support reasonable boolean values - empty collections evaluate to false:

def list1 = [1, 2, 3]
def list2 = []
def map1 = ['myKey': 'myValue']
def map2 = [:]

assert list1
assert !list2 // empty list is false
assert map1
assert !map2 // empty map is false

Back to Java, you may be familiar with writing code like this:

Map<String, String> myMap = someMethodThatReturnsAMap();
if (myMap != null && !myMap.isEmpty()) {
 // ...
}

That’s a lot of noise in the code just to check that the map is not empty. With Groovy, this becomes much more straightforward:

def myMap = someMethodThatReturnsAMap()
if (myMap) {
 // here we know that the map is not null, and contains items.
}

The above should get you through 99% of the code you’ll see and write with SmartThings, but see the Groovy documentation for more on the Groovy Truth [http://docs.groovy-lang.org/latest/html/documentation/#Groovy-Truth].

Default imports

Groovy imports several Java and Groovy packages by default. The following packages are imported for us (no need to explicitly import them via the import statement):

	java.io.*

	java.lang.*

	java.math.BigDecimal

	java.math.BigInteger

	java.net.*

	java.util.*

	groovy.lang.*

	groovy.util.*

What about classes?

At the beginning of this tutorial, we said that Groovy is an object-oriented language. Yet, we haven’t discussed creating classes in this tutorial. The reason for this is that in SmartThings, creating your own classes actually isn’t possible. In SmartThings, each SmartApp or Device Handler is a relatively small, contained piece of code that runs in a sandboxed environment.

If you want to learn more about classes in Groovy in general or for usage outside of SmartThings, see the Groovy documentation.

Further reading

There are many resources available to learn more about Groovy. As we’ll see in the Groovy With SmartThings tutorial, there are some things about the Groovy programming language that we simplify with SmartThings, so a full knowledge of Groovy and all its capabilities is not necessary to develop with SmartThings.

If you want to learn more about Groovy, here are some good resources available online:

	The Groovy Documentation [http://www.groovy-lang.org/documentation.html] is the official language documentation.

	The Style Guide [http://www.groovy-lang.org/style-guide.html] in the Groovy documentation contains many useful guidelines and recommendations for writing idiomatic Groovy code.

	Learn Groovy in Y minutes [http://learnxinyminutes.com/docs/groovy] is an excellent, concise, and code-heavy tutorial for getting familiar with Groovy.

	Groovy for Java Developers [https://www.timroes.de/2015/06/27/groovy-tutorial-for-java-developers/] aims to get Java developers familiar with Groovy quickly.

There are also several books on Groovy. Here are a couple we know and recommend:

	Groovy in Action [http://www.amazon.com/Groovy-Action-Dierk-246-nig/dp/1935182447]

	Programming Groovy [http://www.amazon.com/Programming-Groovy-Productivity-Developer-Programmers/dp/1937785300]

Next steps

Now that you know some of the basics of Groovy, head over to our Groovy With SmartThings tutorial to learn how SmartThings uses Groovy in some very specific ways for development.

	[1]	This example is taken from the book Programming Groovy: Dynamic Productivity for the Java Developer [http://www.amazon.com/Programming-Groovy-Productivity-Developer-Programmers/dp/1934356093/] by Venkat Subramaniam.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

Groovy With SmartThings

SmartThings runs Groovy in a sandboxed environment. This means that not all features of the Groovy programming language are available in SmartThings. To understand why, we need to understand where SmartThings code is executed.

All SmartThings code is executed in, and by, the SmartThings ecosystem. When you write a SmartApp or a Device Handler, it will ultimately be executed by the SmartThings platform. It may execute on the Hub or in the SmartThings cloud, but the important thing to note is that it is executed by SmartThings.

Because SmartApps and Device Handlers execute within the SmartThings ecosystem, SmartThings restricts access to certain methods or features. You can’t create or open a file, for example.

Before we discuss the specifics of what is and what is not available to your SmartApps and Device Handlers, we’ll first discuss how SmartThings makes several APIs available within your SmartApp or Device Handler. While this is not strictly necessary to understand to be able to develop with SmartThings, it may help to shed light on what is happening behind the scenes.

How it works

One of the first things you’ll notice when starting to develop with SmartThings, is that there are many methods available to you that do not require any import statements. In fact, it’s rare to see import statements at all in SmartThings.

This is because every SmartApp or Device Handler is actually an instance of an abstract Executor class defined in the SmartThings platform. This Executor class defines or includes many methods. The result of this is that every SmartApp or Device Handler has available to it (through inheritance) a large number of methods without importing anything.

This model provides a simple framework in which you can develop your SmartApps and Device Handlers - all the necessary methods are simply available to call without needing to import anything.

Now that we understand (at least at a high level) how SmartApps and Device Handlers make various methods available, let’s look at some of the things that are not allowed within SmartThings code. After that, we’ll look at the entire whitelist of allowable classes.

Language simplifications

Classes and JARs

As a SmartApp or Device Handler author, you cannot create your own classes, or import any custom JARs. While at first this may seem like a significant restriction, in practice you’ll rarely find this to be the case. Because of the nature of SmartApps and Device Handlers, and the various methods available to you, the need to create your own classes or object structures is rarely needed.

There may be certain scenarios in which you discover your task would be easier if only you could import some third-party library or create your own helper class. In cases like these, reach out to us on the forums and let us know your specific use case. It’s possible there already exists an API to do what you need, and if not, we may be able to get it added to SmartThings.

Restricted methods

Because SmartThings code executes within its own ecosystem, there are a few methods that we restrict for security purposes. Many of these methods deal with Groovy’s advanced metaprogramming concepts. Groovy metaprogramming allows developers to get and modify runtime information for objects. In SmartThings, this isn’t necessary to do and is a potential security risk, so they are disabled.

Here are the methods that are not available in SmartThings. Trying to access these will result in a SecurityException at runtime.

	addShutdownHook()

	execute()

	getClass()

	getMetaClass()

	setMetaClass()

	propertyMissing()

	methodMissing()

	invokeMethod()

	mixin()

	print()

	printf()

	println()

	sleep()

Global variables

Constants

Due to the sandboxed nature of SmartApp and Device Handler execution, defining global constant variables like this will not work:

def MY_CONSTANT = "some constant value"

Defining constants as above is valid Groovy code and will compile, but the value of MY_CONSTANT will be null.

Instead, for any global constants you’d like in your SmartApp or Device Handler, define a no-op getter method that returns the value:

def getMyConstant() {
 return "some constant value"
}

You can then call the method directly, or use some Groovy magic to invoke no-arg getters.

Mutable variables

Similarly, creating a global variable and then updating it will not work:

def globalVar = "some value"

def someMethod() {
 // update the variable here, but this will not persist across executions!
 globalVar = "some updated val"
}

Instead, any information you need persisted between executions needs to be stored the application state.

Other notable restrictions

There are a few other notable restrictions in SmartThings worth discussing:

	You cannot create your own threads.

	You cannot use System methods, like System.out()

	You cannot create or access files.

	You cannot define closures outside of a method. Something like def squareItClosure = {it * it} is not allowed at the top-level, outside of a method body.

Allowed classes

SmartThings also specifies a whitelist of allowed classes. Only classes included in this whitelist are available for use within SmartThings. Whenever a method is called (any method), SmartThings first checks to see that the receiver of the method (the object the method is being called on) is in the allowable types whitelist. If it isn’t, a SecurityException will be thrown. This same principle applies to the creation of new objects with the new keyword - if the object being created is not in the whitelist, a SecurityException is also thrown.

Most SmartThings solutions will not need to instantiate any of these classes directly. The majority of objects you work with will be available to you via callback parameters or injected right into your SmartApp or Device Handler.
Here is the whitelist of available, non-SmartThings-specific types (i.e., Java, Groovy and third party library classes):

Important

Certain methods that update JVM settings are disallowed, even though the usage of the class is permitted.
For example, calling TimeZone.setDefault() is not allowed, and will throw a SecurityException.

This is due to the fact that many SmartThings applications may be executing on a single JVM.
Updating system-wide properties may have unintended consequences on other applications running on the same JVM.

As a general rule-of-thumb, if a method has impact on the underlying JVM, it will not be allowed, for the reasons discussed above.

	ArrayList

	BigDecimal

	BigInteger

	Boolean

	Byte

	ByteArrayInputStream

	ByteArrayOutputStream

	Calendar

	Closure

	Collection

	Collections

	Date

	DecimalFormat

	Double

	Float

	GregorianCalendar

	HashMap

	HashMap.Entry

	HashMap.KeyIterator

	HashMap.KeySet

	HashMap.Values

	HashSet

	Integer

	JsonBuilder

	LinkedHashMap

	LinkedHashMap.Entry

	LinkedHashSet

	LinkedList

	List

	Long

	Map

	MarkupBuilder

	Math

	Random

	Set

	Short

	SimpleDateFormat

	String

	StringBuilder

	StringReader

	StringWriter

	SubList

	TimeCategory

	TimeZone

	TreeMap

	TreeMap.Entry

	TreeMap.KeySet

	TreeMap.Values

	TreeSet

	URLDecoder

	URLEncoder

	UUID

	XPath

	XPathConstants

	XPathExpressionImpl

	XPathFactory

	XPathFactoryImpl

	XPathImpl

	ZoneInfo

	com.amazonaws.services.s3.model.S3Object

	com.amazonaws.services.s3.model.S3ObjectInputStream

	com.sun.org.apache.xerces.internal.dom.DocumentImpl

	com.sun.org.apache.xerces.internal.dom.ElementImpl

	groovy.json.JsonOutput

	groovy.json.JsonSlurper

	groovy.util.Node

	groovy.util.NodeList

	groovy.util.XmlParser

	groovy.util.XmlSlurper

	groovy.xml.XmlUtil

	java.net.URI

	java.util.RandomAccessSubList

	org.apache.commons.codec.binary.Base64

	org.apache.xerces.dom.DocumentImpl

	org.apache.xerces.dom.ElementImpl

	org.codehaus.groovy.runtime.EncodingGroovyMethods

	org.json.JSONArray

	org.json.JSONException

	org.json.JSONObject

	org.json.JSONObject.Null

Summary and next steps

Now that you understand how and why SmartThings restricts certain features of the Groovy programming language, it’s time to dive deeper and write our first SmartApp! Head over to the Writing Your First SmartApp and learn how easy it is to program the physical world.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

Writing Your First SmartApp

This tutorial will guide you through writing your first SmartApp.
Once you’ve read through the Groovy With SmartThings, this should be your next stop.

Goals

At the end of this tutorial, you will know:

	How to create a SmartApp using the web-based IDE.

	The key components of a SmartApp.

	How to gather input from a user to configure the SmartApp.

	How to subscribe to changes in a device’s state.

	How to control devices.

	How to schedule a SmartApp to execute in the future.

	How to use the Simulator to test your SmartApp.

	How to publish your SmartApp and install it on your mobile phone.

	How to achieve world domination, without even trying.

The SmartApp we will create will be relatively simple, but it will teach you a few core concepts of SmartThings, and get you familiar with the development process.

The purpose of the SmartApp we’ll write is to turn a switch on when motion is detected, and turn it off when motion stops.

Prerequisites

Before completing this tutorial, you should have read the Overview, and registered for an account as discussed in the Up and Running page.
It is recommended that you become at least familiar with the basic Groovy concepts discussed in the Groovy Basics and Groovy With SmartThings tutorials.

Start by logging into IDE at at https://graph.api.smartthings.com.
Next, navigate to My Locations page to see the Locations you created.

[image: ../_images/my-locations.png]
Normally you will see just one Location where you installed your Hub.
Click on the Location name appearing in the far left column (i.e., the Name column). You may need to log in again with your SmartThings userid and password.

Warning

Note that even though the IDE is located at https://graph.api.smartthings.com, it may not always be the correct URL for your SmartApp deployment.
By explicitly selecting the Location name you will ensure that your SmartApp will be published properly.

The SmartApp will utilize a motion sensor and a smart switch.
Even if you don’t have these devices or don’t have a Hub, you can still complete the majority of this tutorial.
We will call out any special steps required if you don’t have the hardware.

Create a SmartApp

In the IDE, navigate to the My SmartApps page.
This will bring you to a page that shows all of the SmartApps that you have created.
This is also where you can create a new SmartApp. Click on the New SmartApp button.

[image: ../_images/new-smartapp.png]
Three options are presented for creating a new SmartApp: From Form, From Code, and From Template.

[image: ../_images/smartapp-form.png]
The From Form option will ask for some details about your SmartApp and create a SmartApp with some boiler plate code.

The From Code option will create a new SmartApp out of code that you paste into the input box.

Lastly, the From Template option will let you select an already existing SmartApp and use its code as a starting point.
This is useful when you want to change or enhance a SmartApp that already exists, and it also a great way to look at examples.

For our SmartApp, let’s stick to the From Form option.

Fill out the form as follows:

	Name

	A name for your SmartApp. Call it something like “My First SmartApp”.

	Namespace

	This field uniquely identifies your SmartApp in the event that someone else has written a SmartApp with the exact same name.
This should be your GitHub username (or if you don’t have a GitHub account, some other unique identifier).

	Author

	This is you. Populate this field with your handle.

	Description

	This describes the intent and functionality of your SmartApp.
This description appears in the SmartApp Marketplace section of SmartThings mobile application, and hence a clear and concise description is recommended.

	Category

	SmartApps are categorized based on functionality.
This is used by SmartThings mobile application.
SmartApps can be published either for Marketplace or for your own use.
When publishing SmartApps for your own use (which is what we will be doing), all SmartApps will appear in My Apps category.

Leave the rest of the fields as they are, and click the Create button at the bottom.
This will create the SmartApp and populate it with some skeleton code.
In the next section we will dive into using the editor to begin writing your first SmartApp.

Editor

Once you’ve created your SmartApp, you’ll be taken to the editor and Simulator.
Before we look at the code, it’s worth becoming familiar with some of the basic features.

Above the code window, there are five buttons:

[image: ../_images/editor-buttons.png]

	Save

	This button saves your SmartApp in the SmartThings cloud.

	Publish

	This allows you to publish your SmartApp for yourself, so you may install it in your SmartThings mobile app, as well as to submit it to the SmartThings team for publication into the SmartThings catalog.

	IDE Settings

	Here you can make changes to personalize the editor to your liking.
You can choose from a variety of themes to control the look and feel, specify your preferred keymapping, and set the font size.

	App Settings

	This takes you back to the form that you created this SmartApp from, where you can view the values entered when you created the SmartApp, as well as edit certain properties about the SmartApp.

	Simulator

	This button toggles the display of the online Simulator. We’ll discuss the Simulator in further detail next.

Tip

On the upper-right side of the IDE, in the Simulator menu, you’ll see a drop-down titled Browse SmartApp Templates.
If you click this, you’ll see a variety of SmartApps that you can browse to learn from, or use as the starting point of a new SmartApp.

Simulator

On the right side of the IDE is the Simulator.
This is where you can install your SmartApp to test it, either using physical devices, or simulated devices.
We will walk you through installing the SmartApp using this later in the tutorial.

[image: ../_images/simulator-1.png]
If you don’t have a Location yet, the Simulator will show a message instructing you to create one. Follow the steps there to create a Location.

SmartApp basics

The first thing to know is that there are a few different types of SmartApps.

Some SmartApps, called Service Manager SmartApps, manage the connection of a Cloud-connected or LAN-connected device.

Solution Module SmartApps provide a dashboard-like user interface in the SmartThings mobile application [1].

The most common type of a SmartApp is one that monitors the user’s devices for certain changes (or simply execute on a defined schedule), and then take certain action (“Turn a light on when motion is detected”).
These SmartApps are called Event-Handler SmartApps.

This tutorial will walk you through building a simple Event-Handler SmartApp, but the core principles you will learn are applicable to all types of SmartApps.

Regardless of what type of SmartApp you are writing, there are a few core principles that apply to all SmartApps:

	SmartApps are not continuously running. They are executed in response to various Events or schedules.

	SmartApps are installed into a user’s Location, and a user may install multiple instances of a SmartApp into the same Location.

	With the exception of Solution Module SmartApps, SmartApps do not have any user interface, except for the preferences page that allows the user to configure the SmartApp (more on this in a bit).

	The code that defines a SmartApp does not run on the user’s mobile phone. SmartApps may execute in the SmartThings cloud, or on the Hub. The mobile application uses some information from the SmartApp to drive the experience in the app.

In your editor, you can see that there is some code already written for you.
This defines the basic structure and skeleton for your SmartApp.
We will discuss each key component as we build our SmartApp.

Definition

Every SmartApp must have a definition method call.
This provides metadata about the SmartApp itself.
The definition method simply expects a map of parameters.
If you look at the code in the editor, you’ll see that these values are already set from the values you entered when creating your SmartApp:

definition(
 name: "My First SmartApp",
 namespace: "mygithubusername",
 author: "Peter Gregory",
 description: "This is my first SmartApp. Woot!",
 category: "My Apps",
 iconUrl: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience.png",
 iconX2Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png",
 iconX3Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png")

We don’t need to change anything here, so let’s move on to defining our preferences.
If you do need to change some of your SmartApp’s metadata, you can change these values later.

Preferences

The preferences method is where we define what information our SmartApp needs from the user.
When a user installs a SmartApp on their mobile device, they will be taken to a screen (or screens) where they can configure the SmartApp.
The content of these screens are derived from our preferences definition.

Preferences can be displayed as a simple, single screen, or multiple screens.
This tutorial will use a simple preferences definition, with only one screen.

In the editor, there is a preferences definition stubbed in for us:

preferences {
 section("Title") {
 // TODO: put inputs here
 }
}

Recall that the purpose of our SmartApp is to turn a switch on when motion is detected.
Our SmartApp needs to know which switch and motion sensor to work with.
Update preferences with this code:

preferences {
 section("Turn on when motion detected:") {
 input "themotion", "capability.motionSensor", required: true, title: "Where?"
 }
 section("Turn on this light") {
 input "theswitch", "capability.switch", required: true
 }
}

Notice that we defined two section calls.
Sections allow us to group related inputs, and can have a text description (“Select a switch to turn on”).

We use the input method to specify what types of devices we want the user to choose from.
Let’s break down in detail the input for the switch:

input "theswitch", "capability.switch", required: true

The first argument to input is what we - inside our SmartApp - want to refer to the device as.
In this case, we use "theswitch".
This becomes the identifier for the device in our SmartApp, so that we can refer to the switch as theswitch (without the quotes).
We’ll see this in action shortly.

The second argument is the type of device our SmartApp will work with.
"capability.switch" states that our SmartApp is requesting the user to pick from any device that supports the Switch capability.
The concept of capabilities is core to SmartThings, and requires a bit more explanation.

First, consider that the catalog of connected devices is growing at a rapid pace.
New devices arrive on the market almost daily.
Many of these devices do similar things, and some do multiple things.

Capabilities

SmartThings abstracts devices into their capabilities - that is, what the device is capable of.
This allows us to build SmartApps that can work with any device that supports a given capability.
In this way, we can build robust SmartApps that will work with any device integrated with SmartThings that supports a given capability.

Capabilities are broken down into commands and attributes.
Commands can be issued to a device, and attributes are what the device reports on.
Every capability defines its commands and attributes, and devices that support a given capability must support those commands and attributes.

Note

A device may (and typically does) support multiple capabilities.
For example, a Phillips Hue Bulb supports the Switch capability, because it can turn on and off.
It also supports the Color Control capability, since the bulb can change colors.
In our example, a Hue bulb could be selected by the user since it supports the Switch capability.

But, our SmartApp is only requesting that a user select a device that supports the Switch capability, so even if the user selects a device that can do more (such as a Hue bulb), we cannot assume that in our SmartApp.
All we can know is that the device supports the Switch capability.

With capabilities, we can be assured that even if a new device supporting the Switch capability is added after we’ve written and published our SmartApp, there’s no need to update any code!

Capabilities are created and maintained by SmartThings.
You can view the reference documentation for capabilities in the Capabilities Reference.

The last thing to note in our input method call is the required: true argument.
This specifies that the user must select a device in order to install the SmartApp.

Important

By requiring users to select which devices the SmartApp will work with, SmartThings is providing a basic security feature - SmartThings can only control those devices which a user explicitly chooses.
SmartApps cannot control devices which the user did not select, and this is by design.

To summarize, when the user selects and installs the SmartApp from within SmartThings mobile app, they will be prompted to select a device that supports the switch capability.
The SmartThings mobile app will provide them with a list of devices for this user’s Location that support the switch capability.
The device chosen will then be identified within the SmartApp as theswitch.

We covered a lot of information for such a small amount of code because it’s important that you understand the importance of preferences and capabilities.

For additional information about preferences, see the Preferences and Settings chapter of the SmartApp guide.

Now that you’ve updated the preferences method, make sure to save your SmartApp by clicking the Save button.

Events and callback methods

Our SmartApp needs to turn a switch on when motion is detected.
To turn the switch on, we first need to know when motion is detected.

SmartApps can subscribe to various Events so that when that Event happens, the SmartApp will be notified.
For our SmartApp we do this by using the subscribe() method.

In your editor, below the preferences, you’ll see some methods already defined:

def installed() {
 log.debug "Installed with settings: ${settings}"
 initialize()
}

def updated() {
 log.debug "Updated with settings: ${settings}"
 unsubscribe()
 initialize()
}

def initialize() {
 // TODO: subscribe to attributes, devices, locations, etc.
}

// TODO: implement event handlers

Every SmartApp must define methods named installed() and updated().
When a user installs a SmartApp by clicking on the Install button in the SmartThings mobile application (after filling out any required preferences inputs), the installed() method we define in our SmartApp will be called.
This is where SmartApps can subscribe to any device changes we are interested in, as well as set up any scheduled tasks we want our SmartApp to perform.

Similarly, the updated() method is called when a user updates their installation of the SmartApp by changing any of the preferences inputs.
For example, a user may want to change which switch is turned on after they have installed the SmartApp.
So, they open the SmartApp settings, select a different switch, and then update the SmartApp.
At this point, the updated() method is called.

In our updated() method, notice that the first thing we do (aside from some logging, which is discussed shortly), is to call a method called unsubscribe().
This method is provided by the SmartThings platform, and simply removes any existing subscriptions this SmartApp has created.
This is important, since the user has just changed their preferences for this SmartApp.
If we didn’t do this, we might still be subscribed to Events for devices that the user has removed from the SmartApp.

Also, note that both installed() and updated() call a method named initialize().
Since both installed() and updated() typically both create subscriptions or schedules, we can reduce code duplication by using a helper method.

We also use the built-in logger (log) to log information.
SmartThings does not currently have a debugger within the IDE, so use the log() method to log information that might be useful for debugging.
The logs are available by clicking Live Logging at the top of the IDE.

Finally, note that we reference a variable named settings in our log statement.
Remember the preference inputs we defined? Every preference input gets stored in a read-only map called settings.
We can get the values of the various inputs by indexing into the settings map with the name of the input (e.g., settings.theswitch).

Now that you understand the purpose and importance of the installed() and updated() methods, we need to subscribe to any Events that we are interested in.
In our case, we need to know when the motion sensor reports that it detected motion.

In the editor, update the initialize() method with this:

def initialize() {
 subscribe(themotion, "motion.active", motionDetectedHandler)
}

The subscribe() method accepts three parameters: The thing we want to subscribe to (themotion), the specific attribute and its state we care about ("motion.active"), and the name of the method (motionDetectedHandler) that should be called when this Event happens.

How do you know what attribute and what state we can subscribe to?
We refer to the Capabilities Reference to find out the available attributes the capability supports.
In the case of the Motion Sensor capability, we see that it supports the "motion" attribute.
In this case, it has two discreet possible values - “active” and “inactive”.

Since the "motion" attribute value is either active or inactive, we can subscribe to either of those specific changes by using the format "<attribute>.<value>".
This will cause the specified event handler method to be called any time the "motion" attribute value changes to "active" (motion is detected).

Now that we’ve created our subscription, we need to define the event handler method.

Event Handler methods

Add the following method to your SmartApp.
We’ll fill in the real meat of the method later.

def motionDetectedHandler(evt) {
 log.debug "motionDetectedHandler called: $evt"
}

Every event handler method must accept a single parameter, which is an Event object that contains information about the Event, such as the Event’s value, time it occurred, and other information.

Since we subscribed to the "active" state of the motion sensor, we know that our event handler method will only be called when the motion sensor changes from inactive to active.

Now that we know motion has been detected, we need to turn the light on!

Controlling devices

Recall that capabilities support commands (things the device can do), as well as attributes (things the attribute knows).
To turn the switch on requires only one line of code to be added to our event handler:

def motionDetectedHandler(evt) {
 log.debug "motionDetectedHandler called: $evt"
 theswitch.on()
}

Simple, right?
But how do we know that we can call the on() method on the switch?
By looking at the Switch Capability Reference, we see that the Switch capability supports the on() and off() commands.
These turn the switch on and off, respectively.

Also note that we referred to the switch selected by the user by the name we provided in the input inside preferences (theswitch).

Using the Simulator

Save your SmartApp by clicking the Save button at the top of the IDE.
Click Simulator and you will see a Location section on the right-hand side:

[image: ../_images/ide-location.png]
SmartApps are installed to a Location in your SmartThings account.
By clicking the Set Location button, you are telling the Simulator that you want to install this SmartApp into the chosen Location.

After you have selected the Location, you will see the Preferences section appear:

[image: ../_images/ide-devices.png]
This is where you can choose devices that the SmartApp will use.
Here we see that it asks for a motion sensor to monitor, and a switch.
These two inputs directly correspond to what we have in the preferences section in our SmartApp.
SmartThings will provide a “Virtual Device” when it can.
When you do not have a physical device to choose from this is a very useful option.
By default the virtual devices will be selected.
Click the Install button, and the SmartApp will be installed into the Location you selected above.

Now we see the Simulator section appear:

[image: ../_images/ide-simulator-unactuated.png]
We have two devices.
A motion sensor, and a switch.
We can manipulate the motion sensor by choosing active or inactive and clicking the play button.
The same with the switch, it can be on or off.
We wrote our SmartApp to turn the switch on when motion is detected, so let’s give that a try.
Choose active if it’s not already selected and then hit the play button.
You should see the switch should go on:

[image: ../_images/ide-simulator-actuated.png]

Warning

The behavior of the Simulator is known to have inconsistencies.
If you are unable to see the correct device status, or unable to actuate the device, you may just be experiencing issues with the Simulator.

In that case, just skip ahead to the next section to install the SmartApp via the SmartThings mobile app.

Publishing and installing

We can now see our first SmartApp in action in the Simulator.
The next question is how can we use this SmartApp on our mobile devices in the SmartThings app?
To accomplish this, we need to publish the SmartApp.

[image: ../_images/publish.png]
When you press the Publish button, a For Me option will appear.
Select it.
This means that the SmartApp will only be published for your account and not be visible for everyone in the SmartThings community.

Note

If you have a SmartApp that you do want to publish publicly, you can do that via the “My Publication Requests” link at the top of the page.
For more information on this, see For public distribution.

Now you should be able to see your SmartApp in the mobile app if you browse to the My Apps category of the Marketplace:

	[image: ../_images/mobile-myapps.png]

	[image: ../_images/mobile-myfirstsmartapp.png]

After selecting your SmartApp, you will be brought to the preferences screen where you can select the devices to work with this SmartApp:

[image: ../_images/installing-smartapp.png]
You can see the sections and inputs we defined in the preferences here.
Notice how the inputs are marked in red, to indicate that the user must set values for these inputs in order to install the SmartApp.

Tap the fields to select a motion sensor and switch.
If you have devices that support the requested capability, you’ll see an option to select them.

You’ll also see that some other inputs were added for us.
For single page preferences, every SmartApp receives an input to allow the user to assign a name of their choosing for this installation.
The name that they choose will then be displayed as the name of the SmartApp.
Also by default, the user can select to only execute this SmartApp when the Location is in certain Modes.
It also includes the ability for the user to uninstall this SmartApp.

Note

A SmartApp may be installed into a Location multiple times.
For example, a person may have multiple rooms for which they want a light to come on when motion is detected.

Even though the code is the same, each installation is unique, and must also be removed by the user individually.

Turn off when motion inactive

We now have a simple SmartApp that turns a switch on when motion is detected.
Let’s extend this further, and turn the switch off when the motion stops.

In our SmartApp, we need to subscribe to not only the motion sensor being active, but also inactive.

Recall that our subscription looks like this:

subscribe(themotion, "motion.active", motionDetectedHandler)

We will also subscribe the "motion.inactive" Event in a similar way.
Add this subscription to the initialize() method:

subscribe(themotion, "motion.inactive", motionStoppedHandler)

Note

We could also subscribe to any change in the motion sensor, by simply specifying the attribute we want to monitor (e.g., "motion" instead of "motion.active").
This would then call the specified handler method when there is any reported change to the "motion" attribute.
For attributes that don’t have a discrete set of possible values (for example, temperature readings), this is how we subscribe to changes for that attribute.

We can then get the value of the Event in the event handler by looking at the value of the passed-in Event.
If we were to do this in our SmartApp, it would look like this:

def initialize() {
 subscribe(themotion, "motion", motionHandler)
}

def motionHandler(evt) {
 if (evt.value == "active") {
 // motion detected
 } else if (evt.value == "inactive") {
 // motion stopped
 }
}

Our SmartApp will use separate subscriptions and event handlers, but you are free to modify it to use a single subscription and handle the different values in your event handler method.

We need to define the motionStoppedHandler event handler method - add this method to your SmartApp:

def motionStoppedHandler(evt) {
 log.debug "motionStoppedHandler called: $evt"
 theswitch.off()
}

Save your SmartApp in the IDE, publish it again for yourself, and then install it again in the Simulator.
Now when you change the motion to “inactive”, the switch will turn off.

Going further–adding flexibility

Our SmartApp now turns a switch on when motion is detected, then turns it off when motion stops.
But consider this scenario:

	A person enters a room, the motion sensors reports that motion is active, and our SmartApp turns the light on.

	The person then sits down, or stands still enough for the motion sensor to report motion is inactive, and our SmartApp turns the light off.

	The person than moves again, causing the motion sensor to again report active motion, and our SmartApp turns the light on again.

As you can imagine, this could be quite annoying.
It would be better if we could allow the user to specify a number of minutes after motion stops to turn the light off.
Then, once motion stops, if no motion is detected within the specified number of minutes, the SmartApp will turn the light off.
If motion is detected within this time window, the switch will not turn off.

We can add this flexibility into our SmartApp easily.
The first thing we need to do is update our preferences to let the user specify the number of minutes to elapse without motion being detected, before the light is turned off.

Replace the preferences in our SmartApp with the following:

preferences {
 section("Turn on when motion detected:") {
 input "themotion", "capability.motionSensor", required: true, title: "Where?"
 }
 section("Turn off when there's been no movement for") {
 input "minutes", "number", required: true, title: "Minutes?"
 }
 section("Turn on/off this light") {
 input "theswitch", "capability.switch", required: true
 }
}

Preferences inputs can be more than just devices - we can ask users to enter in numeric values, text values, booleans, enumerated lists, and more.
You can learn about the various options for preferences inputs here.

Now that the user can specify the number of minutes to wait without motion before turning the light off, we need to implement the logic to do so.

Our motionStoppedHandler() method will be called whenever the motion sensor reports that motion has stopped.
Before turning the light off, we need to check that there is no motion detected for the specified number of minutes in the future.
But since SmartApps are not continuously running, how can we handle checking for future states?
The answer is by using methods that allow us to schedule a SmartApp for future execution.

The first thing we need to do is update our motionStoppedHandler() to execute a method after the number of minutes specified by the user.
This method will then check to see if there has been motion reported within the time interval, and turn the light off if there has been no motion.

Let’s write some skeleton code to do this, and we’ll fill in the details later.
First, update the motionStoppedHandler() method and add a new method as shown below:

def motionStoppedHandler(evt) {
 log.debug "motionStoppedHandler called: $evt"
 runIn(60 * minutes, checkMotion)
}

def checkMotion() {
 log.debug "In checkMotion scheduled method"
}

We use the runIn() method to schedule our checkMotion() method to be called after the number of minutes specified by the user.
We pass runIn() the number of seconds (from the time of the call) to schedule the call, and the name of the method we want executed.

When motion stops, our checkMotion() method will be called after the number of minutes specified by the user.
Now, inside our checkMotion() method, we need to see if there has been any motion detected in the time window specified.
We can use some date/time utility methods, along with information about the device state, to determine if we should turn the switch off.

Here’s the logic we need to implement:

	If the motion sensor is currently reporting active motion, do nothing.

	If the motion sensor is reporting inactive motion, check to see what time the motion sensor reported inactive motion.

	If the motion sensor reported that motion has been inactive for longer than the time specified by the user, turn the switch off.

And here’s the full method definition for checkMotion().
Update your SmartApp with the code below:

def checkMotion() {
 log.debug "In checkMotion scheduled method"

 // get the current state object for the motion sensor
 def motionState = themotion.currentState("motion")

 if (motionState.value == "inactive") {
 // get the time elapsed between now and when the motion reported inactive
 def elapsed = now() - motionState.date.time

 // elapsed time is in milliseconds, so the threshold must be converted to milliseconds too
 def threshold = 1000 * 60 * minutes

 if (elapsed >= threshold) {
 log.debug "Motion has stayed inactive long enough since last check ($elapsed ms): turning switch off"
 theswitch.off()
 } else {
 log.debug "Motion has not stayed inactive long enough since last check ($elapsed ms): doing nothing"
 }
 } else {
 // Motion active; just log it and do nothing
 log.debug "Motion is active, do nothing and wait for inactive"
 }
}

The first thing to note is that we get a State object for the motion sensor, by using the currentState() method with "motion" as the attribute we’re interested in.
This object encapsulates information about an attribute at a particular moment in time.
In our case, we want the current state.

From this object, we can determine when this state record was created.
This will be the time that the motion sensor reported it is inactive.
Using the now() method, we can get the current time (in milliseconds), and then see if the motion stopped within the threshold specified by the user.
If the time elapsed since the motion stopped exceeds the threshold, we turn the switch off.

Go ahead and save and publish your SmartApp again, and try it out!

Complete code listing

Here is the entire code for our SmartApp:

definition(
 name: "My First SmartApp",
 namespace: "mygithubusername",
 author: "Peter Gregory",
 description: "This is my first SmartApp. Woot!",
 category: "My Apps",
 iconUrl: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience.png",
 iconX2Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png",
 iconX3Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png")

preferences {
 section("Turn on when motion detected:") {
 input "themotion", "capability.motionSensor", required: true, title: "Where?"
 }
 section("Turn off when there's been no movement for") {
 input "minutes", "number", required: true, title: "Minutes?"
 }
 section("Turn on this light") {
 input "theswitch", "capability.switch", required: true
 }
}

def installed() {
 initialize()
}

def updated() {
 unsubscribe()
 initialize()
}

def initialize() {
 subscribe(themotion, "motion.active", motionDetectedHandler)
 subscribe(themotion, "motion.inactive", motionStoppedHandler)
}

def motionDetectedHandler(evt) {
 log.debug "motionDetectedHandler called: $evt"
 theswitch.on()
}

def motionStoppedHandler(evt) {
 log.debug "motionStoppedHandler called: $evt"
 runIn(60 * minutes, checkMotion)
}

def checkMotion() {
 log.debug "In checkMotion scheduled method"

 def motionState = themotion.currentState("motion")

 if (motionState.value == "inactive") {
 // get the time elapsed between now and when the motion reported inactive
 def elapsed = now() - motionState.date.time

 // elapsed time is in milliseconds, so the threshold must be converted to milliseconds too
 def threshold = 1000 * 60 * minutes

 if (elapsed >= threshold) {
 log.debug "Motion has stayed inactive long enough since last check ($elapsed ms): turning switch off"
 theswitch.off()
 } else {
 log.debug "Motion has not stayed inactive long enough since last check ($elapsed ms): doing nothing"
 }
 } else {
 // Motion active; just log it and do nothing
 log.debug "Motion is active, do nothing and wait for inactive"
 }
}

How the switch turns on (or off)

Now that we understand how to control devices in a SmartApp, you may be wondering how exactly the method switch.on() turns on the switch.
The answer is Device Handlers.

Device Handlers are software much the same way SmartApps are.
They define what actually happens when you call switch.on().
Let’s look at an example to further understand this.

When you connect a new device to your SmartThings Hub, a Device Handler is picked for it based on the signature the device delivered to the Hub as part of its pairing communication.
The Device Handler will have methods defined in it that support that device.
So in our case, the Device Handler for the specific switch being used will have both on() and off() methods defined.
The actual implementation of these methods vary depending upon the underlying device protocols, but are typically low-level protocol-specific commands to send to the device (like Z-Wave or ZigBee).

So, when switch.on() is executed from your SmartApp, the SmartThings platform will look up the Device Handler associated with the device and call its on() method, which will in turn send the protocol and device-specific command through the Hub to the device.
Device Handlers are discussed in the Device Handlers guide.

Summary

In this tutorial, you learned how to write a SmartApp. To do this, we:

	Created a new SmartApp using the web-based IDE.

	Defined the preferences that specifies what input we need from the user.

	Subscribed to device Events and controlled a device. We used the Capabilities Reference to determine what attributes and commands a capability supports.

	Used the web-based Simulator to test our SmartApp with virtual devices.

	Published the SmartApp for yourself and installed it on your mobile phone.

	Extended our SmartApp by allowing a user to enter the number of minutes to wait before turning the switch off, and implemented this using the runIn() method.

Next steps

Now that you’ve written your first SmartApp and have a basic understanding of the SmartThings developer tools, language, and workflow, here are some further topics for you to pursue.

More about SmartApps

There is much more you can do with SmartApps than what this tutorial covered.
SmartApps can send notifications, execute routines, define advanced schedules for which they execute, call external web services, and more.
You can learn more about developing SmartApps in the SmartApps guide.

You can also make your SmartApp into a web service, capable of exposing its own REST endpoints.
You can read about them in the Web Services SmartApps guide.

Fork it!

SmartThings SmartApps and Device Handlers are now hosted in GitHub.
Further, the IDE can integrate with GitHub, to provide a seamless developer experience.
Learn more about it in the GitHub Integration chapter of the Tools and IDE guide. Happy forking!

Device Handler development

If you are interested in learning more about Device Handlers, and how to write one, head over to the Device Handlers guide.

	[1]	Solution Module SmartApps are not currently available for developers, but support for this is planned in the near future.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

Getting Help

In addition to this documentation, there are other ways to learn and get help developing for SmartThings, discussed below.

Developer documentation

Use this documentation to learn about SmartThings development, as well as serve as a reference. The documentation is searchable, and can be viewed and downloaded in a variety of formats including PDF and EPUB (click on “Read the Docs” on the bottom left of the page to see the download options).

This documentation is open source and available in GitHub here [https://github.com/SmartThingsCommunity/Documentation].

Community

One of the best things about SmartThings is the amazing community [https://community.smartthings.com/] of users, makers, and developers. Make sure to register for an account and introduce yourself. It’s a great place to learn, help others, and make friends.

If you can’t find an answer for your question in the documentation, the community is a great resource as well. You can search for your question in case it has already been addressed, or post a new question.

Many of the SmartThings staff frequents these forums as well. We’ll chime in and try to be helpful.

SmartThings developer support

While our community [https://community.smartthings.com/] is amazing and there are tons of awesome people there to support you, you may sometimes have more in-depth questions that our communtiy can’t answer.
When that happens, we’re here to help.

This form [https://support.smartthings.com/hc/en-us/requests/new?ticket_form_id=110843] is a direct line to our developer advocates in the rare occasion our community can’t help with your question.
Once you submit a ticket you should expect to get a response in 48 hours.

Note

This form is for developers writing SmartApps and Device Handlers on the platform. If you need support for a SmartApp or Device Handler that you found on our community, please reach out to the developer of that SmartApp or Device Handler for support. If they need further support we will work directly with them to support their development.

In order to receive the best support, you should provide a simplified example that clearly illustrates the issue.
This should be in the form of a simple SmartApp or Device Handler that can be easily installed and clearly shows the issue.
This allows us to quickly verify the issue, and use it as a test for any fix provided.

We recommend creating a gist [https://gist.github.com/] with a complete and easily installable SmartApp or Device Handler, and referencing it in your support ticket.

Important

We recognize that sometimes, providing a simple SmartApp or Device Handler that illustrates the issue is not possible.
More often than not, however, it is.
A simplified example enables you (and us) to verify that the issue is in fact with the API in question, and not some other factor.

If you do not provide a simplified example that can be easily installed, our ability to quickly verify, diagnose, and address the issue may be limited.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

Architecture

As a starting point in understanding SmartThings approach, it is important to recognize that it is centered on the separation of intelligence from devices.
SmartThings architecture is developed with a view that most of the value will be created in the space between the devices.
Moreover, the devices themselves can be limited to their primitive capabilities (open/close, on/off, heat/cool, brew/don’t brew), while the intelligence layer exists separately as an application layer.

By doing this we allow the intelligence (or application) layer to apply flexibly across a wide range of devices, and make it easier to create applications that interact with and across the physical world.
In many cases, we also benefit from lower-cost end devices, less maintenance complexity and longer battery life.

The SmartThings platform provides methods such that using these methods in Device Handlers we can abstract away the underlying complexity of devices and protocols, while at the same time coding in only the desired experience into SmartApps.

Each device in SmartThings has “capabilities”, which define and standardize available attributes and commands for a device.
This allows you to develop an application for a type of device, regardless of the connection protocol or the manufacturer.

All of the code that developers can write on our platform is written in Groovy, which is a dynamic, object-oriented language built for the Java platform.
You can learn more about Groovy on the Groovy Basics page.

Big picture

[image: Container Hierarchy]

Devices

Devices are the building blocks of the SmartThings infrastructure.
They are the connection between the SmartThings system and the physical world.
There’s a huge variety in the devices you can use; some are created by SmartThings, but most are not.

The real power of SmartThings is that the platform works with most home automation devices already on the market.
We believe in a fully integrated approach, where you aren’t tied into a particular technology or protocol.
SmartThings offers compatibility with standards such as ZigBee, Z-Wave, LAN, and Cloud-to-cloud integrations.
This allows SmartThings platform to work with hundreds of off the shelf third-party devices.

Hub

The SmartThings Hub connects directly to your broadband router.
The Hub provides communication between all connected devices, the SmartThings cloud and the SmartThings mobile application.
With a SmartThings Hub you:

	Simply plug it into your Ethernet router and provide power.

	Connect any SmartThings or SmartThings-ready device to your SmartThings account.

	Build your own SmartThings kit by combining with other SmartThings devices.

	Work with a variety of standard ZigBee and Z-Wave devices, such as GE Z-Wave in-wall switches and outlets.

The new Samsung SmartThings Hub also supports the ability to execute certain automations locally on the Hub itself, and ships with four AA batteries.
This allows for certain automations to continue, even without AC power.
It also ships with USB ports and is Bluetooth Low Energy capable.
While not active at launch, this allows for greater expansion in the future without requiring new hardware.

Connectivity management

Connectivity Management is the layer that connects your SmartThings Hub, the client devices (mobile phones) to SmartThings servers and to the cloud as a whole.
The Connectivity Management layer is comprised of:

	Hub Connectivity that connects your Hub to the cloud.

	Client Connectivity that connects your client devices to the cloud.

These are the highways by which your messages are sent to the internet.

Device Handler execution

The SmartThings system determines what type of device you are using based on Device Handlers.
Once the Device Handler is selected, the incoming messages are parsed by that particular Device Handler.
The input to the Device Handler is a set of device-specific messages, and the output of the Device Handler is normalized SmartThings Events.
Note that one message can lead to many SmartThings Events.

Subscription management

When Events are created in the SmartThings platform, they don’t inherently do anything besides publish that they’ve happened.
Instead of Events triggering change, SmartApps are configured with subscriptions that listen for defined Events.
The purpose of the subscription management layer is to match up Events that are triggered by the Device Handlers with the SmartApp that is using them.

SmartApp execution

The SmartApp is run when triggered either via subscriptions, or via external calls to SmartApp endpoints, or by scheduled methods.
The SmartApp is transient in nature, as it runs and then stops running on completion of its task.
Any data that needs to persist throughout SmartApp instances must be stored in a special state variable that is discussed in the Storing Data With State documentation.

Web UI and IDE

The Web UI sits on top of all of the other technology and allows you to monitor your devices, Hubs, Locations and many other aspects of your SmartThings system.

You have full control of the configuration, including editing, adding, removing, and even creating SmartApps.
To create, you write code within the IDE for SmartApps and Device Handlers.
SmartThings also has an integrated Simulator that allows you to simulate any devices, so it’s not required to own the devices you develop for.

Important concepts

Asynchronous and eventually consistent programming

When dealing with the physical graph, i.e., a digital representation of the physical things connected around us, there will always be a delay between when you request something to happen and when it actually happens.
There is latency in all networks, but it’s especially pronounced when dealing with the physical graph.

To deal with this, the SmartThings platform utilizes asynchronous execution.
This means that anytime you execute a command, it doesn’t stop everything else from running.
This helps everyone’s code run the most efficiently.

Our basic methodology towards executing a command, such as turning a light switch on, is “fire and forget”.
This means that you execute a command, and assume it will turn on in due time, without any sort of follow up.

You cannot be guaranteed that your command has been executed, because another SmartApp could interact with your end device, and change its state.
For example, you might turn a light switch on, but another app might sneak in and turn it off.

If you need to know if a command was executed, you can subscribe to an Event triggered by the command you executed and check its timestamp to ensure it fired after you told it to.
You will, however, still have latency issues to take into consideration, so it’s impossible to know the exact current status at any given time.

The SmartApps platform follows eventually consistent programming, meaning that responses to a request for a value in SmartApps will eventually be the same, but in the short term they might differ.

Containers

Within the SmartThings platform, there are three different “containers” that are important concepts to understand.
These are: accounts, Locations, and groups.
These containers represent both security boundaries and navigation containers that make it easy for users to browse their devices.

The diagram below shows the hierarchical relationship between these containers.
Each type of container is described below in more detail.

[image: Container Hierarchy]

Accounts

Accounts are the top-level container that represents the SmartThings ‘customer’.
Accounts contain only Locations and no other types of
objects.

Locations and users

Locations are meant to represent a geolocation such as “Home” or “Office”.
Locations can optionally be tagged with a geolocation (latitude and longitude).
In addition, Locations don’t have to have a SmartThings Hub, but generally do.
Finally, locations contain Groups or Devices.

Groups

Groups are meant to represent a room or other physical space within a Location.
This allows for devices to be organized into groups making navigation and security easier.
A group can contain multiple devices, but devices can only be in a single group.
Further, nesting of groups is not currently supported.

Capability taxonomy

Capabilities represent the common taxonomy that allows SmartThings platform to link SmartApps with Device Handlers.
An application interacts with devices based on their capabilities, so once we understand the capabilities that are needed by a SmartApp, and the capabilities that are provided by a device, we can understand which devices (based on the type of device and inherent capabilities) are eligible for use within a specific SmartApp.

The Capabilities Reference is evolving and is heavily influenced by existing standards like ZigBee and Z-Wave.

Capabilities themselves may be decomposed into both ‘Actions’ or ‘Commands’ (these are synonymous), and Attributes.
Actions represent ways in which you can control or actuate the device, whereas Attributes represent state information or properties of the device.

Attributes and events

Attributes represent the various properties or characteristics of a device.
Generally speaking device attributes represent a current device state of some kind.
For a temperature sensor, for example, ‘temperature’ might be an attribute.
For a door lock, an attribute such as ‘status’ with values of ‘open’ or ‘closed’ might be a typical.

Commands

Commands are ways in which you can control the device.
A capability is supported by a specific set of commands.
For example, the ‘Switch’ capability has two required commands: ‘On’ and ‘Off’.
When a device supports a specific capability, it must generally support all of the commands required of that capability.

Custom capabilities

We do not currently support creating custom capabilities.
You can, however, create a device-type handler that exposes custom commands or attributes.

SmartThings cloud

The SmartThings platform assumes a “Cloud First” approach.
This means that in order to use all supported devices and automations, and to ensure that the SmartThings mobile application reflects the correct state of your home, the SmartThings Hub will need to be online and be connected to the SmartThings cloud.

The second generation Hub, the Samsung SmartThings Hub, allows for some Hub-local capabilities.
Certain automations can execute even when disconnected from the SmartThings cloud.
This allows SmartThings to improve performance and insulate the user from intermittent internet outages.

This is accomplished by delivering certain automations to the Samsung SmartThings Hub itself, where it can execute locally.
The engine that executes these automations are typically referred to as “AppEngine”.
Events are still sent to the SmartThings cloud - this is necessary to ensure that the SmartThings mobile application reflects the current state of the home, as well as to send any notifications or perform other cloud-based services.

The specific automations that execute locally are expanding and currently managed by the SmartThings internal team.
The ability for developers to execute their own SmartApps or Device Handlers locally is planned.

That said, there are a number of important scenarios where the cloud is simply required:

Scenario: There may not be a hub at all

Many devices are now already connected devices, via Wi-Fi/IP, and connect directly to the cloud without the need for a gateway device (hub).

The most likely use case for such devices involves adding intelligence to those devices through SmartApps.
These devices may not be connected to a SmartThings Hub, and instead are directly connected to the vendor cloud or the SmartThings Cloud.

Put simply, if there is no Hub, then the SmartApps layer must run in the cloud!

Scenario: SmartApps may run across both cloud- and Hub-connected devices

As a corollary to the first point above, since there are use cases where devices are not Hub-connected, SmartApps might be installed to use one device that is Hub-connected, and another device that is Cloud-connected, all in the same app.
In this case, the SmartApp needs to run in the cloud.

Scenario: There may be multiple Hubs

While the mesh network standards for ZigBee and Z-Wave generally eliminate the need for multiple SmartThings Hubs, we didn’t want to exclude this as a valid deployment configuration for large homes or even business applications of our technology.
In the multi-Hub case, SmartApps that use multiple devices that are split across hubs will run in the cloud in order to simplify the complexity of application deployment.

Scenario: External service integration

SmartApps may call external web services.
Calling them from SmartThings cloud reduces risk as it allows SmartThings to easily monitor for errors and ensure the security and privacy of the users.

In some cases, an external web service might even use IP white-listing such that they simply can’t be called from the Hub running at a user’s home or place of business.

Accordingly, SmartApps that use web services will run in the cloud also.

Important

Note that because of the abstraction layer, SmartApp developers never have to understand where or how devices connect to the SmartThings platform.
All of that is hidden from the developer so that whether a device (such as a Garage Door opener) is Hub-Connected or Cloud-Connected, all they need to understand is:

myGarageDoor.open()

Hubs and Locations

To efficiently manage performance, the SmartThings platform scales its cloud server architecture horizontally with sharding.
Sharding helps reduce the latency between the Hub and the cloud, and handles increasing capacity.
As a developer you must note the impact of sharding on how you work with the SmartThings IDE.

When you first install SmartThings app on your mobile phone, create your user account and claim your Hub, the SmartThings platform automatically assigns your Hub to the Location and connects your Location/Hub to a particular shard.
Before starting your development, you must note that:

	Your Location/Hub is connected to a specific SmartThings shard, based on the geographical location of the Hub, and,

	You must ensure that you are logged into the URL of this specific shard on IDE. Since the Location is always connected to the correct shard URL, you can do this by clicking on your Location from “My Locations” page after you log in.

Note

If for some reason you are not seeing your Hub in the IDE, then from My Locations page select the Location and it will prompt you to log into correct shard where you can see your Hub.

Consequences of sharding

In practice, some consequences of sharding are:

	A global layer, with a few specific services, spans across all shards while all other services are owned by the specific shard itself (which, as emphasized above, is Location-dependent). A few global layer services are: user account creation, authorization, OAuth authentication, mappings of Location-to-shard, users-to-Locations and Hub-to-Locations. All data that is down from the Location level are managed by the specific shard.

	A shard does not share information with another shard. For example, a common login across the shards does not exist yet. You will have to log in to each shard, although the userid and password will be the same (see the note above). At the same time, note that SmartThings mobile app users do not have to log in again because mobile client OAuth tokens are shared across the shards.

	SmartApps and Device Handlers are now published in a specific shard and not for your entire account. For example, if you have a Hub in North America and another Hub in Europe, you will need to publish your SmartApp twice, one in each Location, i.e., shard.

	Note that since a Hub is assigned to a Location, if you delete a Location, the Hub becomes unclaimed. Conversely, it is possible for a Location to exist without a claimed Hub at that Location.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

Tools and IDE

The SmartThings IDE [http://graph.api.smartthings.com] (Integrated Development Environment) provides SmartThings developers with a set of tools to manage their SmartThings account, and build and publish custom SmartApps and Device Handlers.

	Account Managment

	Editor and Simulator

	Logging

	GitHub Integration

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Tools and IDE

Account Managment

The SmartThings IDE allows you to view and edit information about your Locations, Hubs, Devices, custom SmartApps and Device Handlers, as well as view a live log for all your SmartThings devices and apps.

Locations

[image: My Locations]

My Locations will show all Locations registered to your account.
Choosing a particular Location will allow you to see more in depth information on that Location, including the groups created under that Location.
You can also see all Events, notifications, and SmartApps under a particular Location.

Hubs

[image: My Hubs]

My Hubs will show all Hubs registered to your account.
Choosing a particular Hub will give a comprehensive look at all of the attributes of your Hub, with the opportunity to observe all Events that have taken place, by clicking on List Events.
You can also view all of the devices that are registered to your Hub.

Devices

[image: My Devices]

My Devices will show all devices attached to any of your Hubs.
Choosing a particular device will give a comprehensive look at all of the
attributes of your device, with the opportunity to observe all Events
that have taken place, by clicking on List Events.

SmartApps

My SmartApps will show all your custom (written or edited by you) SmartApps.
You can view the SmartApp status, category, and Locations from this list, as well as edit SmartApp metadata.
You can click the SmartApp name to be taken to the editor where you can view and modify the code.

Device Handlers

My Device Handlers will show all your custom (written or edited by you) Device Handlers.
ou can view the status, supported capabilities, and sessions from this list, as well as edit the metadata associated with this Device Handler.
You can click on the name to be taken to the editor, where you can view and modify the code.

Publication requests

My Publication Requests will show all your publication requests for submissions to the SmartThings catalog, along with the publication request status.

Live logging

Live Logging will show a live logging view for your SmartThings account.
Here you will find logs for all your installed SmartApps and Device Handlers.
You can also filter the logs by a specific SmartApp.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Tools and IDE

Editor and Simulator

The SmartThings editor and simulator allows you to create, edit, and test SmartApps and Device Handlers.

[image: Ide]

Creating a new SmartApp

To create a new SmartApp, click the New SmartApp button from the My SmartApps page.

Important

Make sure you have selected the correct Location before creating a new SmartApp.
Follow these steps to ensure your code will be puplished to the correct Location.

There are three different tabs on the New SmartApp page that allow you to create a new SmartApp in different ways:

	From Form allows you to create a new SmartApp based on the some metadata you can enter into the form.

	From Code allows you to create a new SmartApp directly from existing code. This is useful if you receive the code for a SmartApp - just paste it in to the page and a new SmartApp will be created from it.

	From Template allows you to create a new SmartApp based upon existing SmartApps. This is especially useful if you are new to SmartThings development, since you can start from an existing SmartApp.

Important

Only install source code into your account that you fully understand, or that comes from a trusted source.

Creating a new Device Handler

To create a new Device Handler, click the Create New Device Handler button from the My Device Handlers page.

Important

Make sure you have selected the correct Location before creating a new Device Handler.
Follow these steps to ensure your code will be puplished to the correct Location.

There are three different tabs on the New Device Handler page that allow you to create a new Device Handler in different ways:

	From Form allows you to create a new Device Handler based on the some metadata you can enter into the form.

	From Code allows you to create a new Device Handler directly from existing code. This is useful if you receive the code for a Device Handler - just paste it in to the page and a new Device Handler will be created from it.

	From Template allows you to create a new Device Handler based upon existing Device Handlers. This is especially useful if you are new to SmartThings development, since you can start from an existing Device Handlers.

Important

Only install source code into your account that you fully understand, or that comes from a trusted source.

Using the editor

The SmartThings web editor allows you to edit code, and provides syntax highlighting for easy code readability.

You can choose from a variety of themes, key maps, and font sizes to suit your preferences by clicking on the IDE Settings button above the editor frame.

Tip

Save often! To avoid losing unsaved changes when your session login to the IDE expires, get in the habit of saving often using Save button.

Using the Simulator

Warning

The simulator may not work reliably at all times, so we recommend that you validate your code on your SmartThings mobile app before deploying it.

The simulator allows you to test your SmartApps or Device Handlers within the IDE, and without requiring you to have the actual physical devices.

When you run your application in the IDE, it is always running in the simulation framework.
The IDE simulator does two very important things to support simulation:

	It acts as a “Virtual Hub” that has virtual devices connected to it.

	It acts as if it was the SmartThings Mobile application to receive
and process status updates and support direct user actions on devices
through a simulated mobile app control.

The IDE simulation environment also allows you to run the simulator
attached to any of the “Locations” defined within your account.

When editing a SmartApp or Device Handler, you can see the simulator on the right of the page.
You can choose a Location and click the Set Location button, and then input any preferences required by the SmartApp or Device Handler.
Click the Install button to run the simulator.

When simulating a SmartApp, any selected devices will appear in the IDE, along with controls to actuate the devices:

[image: Simulator]

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Tools and IDE

Logging

SmartApps and Device Handlers can log debugging messages using a built-in logger.
This is very useful for debugging purposes.

Overview

There is an instance of a logger (log) injected into each SmartApp and Device Handler available for your use.
SmartThings does not currently support a line-by-line, step-through debugger tool; instead, we use logging to debug our custom code.
To view the logs, organized by app, click on the Live Logging link at the top of the IDE.

Logging levels

The log instance currently supports these log levels, in decreasing order of severity:

	Level
	Usage
	Description

	ERROR
	log.error(String, Throwable = null)
	Runtime errors or unexpected conditions.

	WARN
	log.warn(String, Throwable = null)
	Runtime situations that are unexpected, but not wrong.
Can also be used to log use of deprecated APIs.

	INFO
	log.info(String, Throwable = null)
	Interesting runtime events. For example, turning a switch on or off.

	DEBUG
	log.debug(String, Throwable = null)
	Detailed information about the flow of the SmartApp.

	TRACE
	log.trace(String, Throwable = null)
	Most detailed information.

Logging exceptions

All log methods accept a second, optional parameter of type Throwable.
This is useful when catching an exception - you can pass the exception to any of the log methods, and it will include the exception message along with the line number that caused it.

Consider the following example that simply forces a NullPointerException by invoking a method on an object that does not exist:

(Real applications should never attempt to handle possible NullPointerExceptions like this, of course. It is shown here only to illustrate how to pass the exception to the log methods.)

def initialize() {
 try {
 // foo doesn't exist, causing exception
 foo.boom()
 } catch (e) {
 log.error("caught exception", e)
 }
}

Executing the above code would result in the following message in Live Logging:

12:42:03 PM: debug caught exception java.lang.NullPointerException: Cannot invoke method boom() on null object @ line 47

Logging examples

Consider the following simple SmartApp which sets up some switch devices
and has an event handler method that will log how many switches are currently
turned on.

preferences {
 section {
 input "switches", "capability.switch", multiple: true
 }
}

def installed() {
 log.debug "Installed with settings: ${settings}"
 initialize()
}

def updated() {
 log.debug "Updated with settings: ${settings}"
 unsubscribe()
 initialize()
}

def initialize() {
 subscribe(switches, "switch", someEventHandler)
}

def someEventHandler(evt) {
 // returns a list of the values for all switches
 def currSwitches = switches.currentSwitch

 def onSwitches = currSwitches.findAll { switchVal ->
 switchVal == "on" ? true : false
 }

 log.debug "${onSwitches.size()} out of ${switches.size()} switches are on"
}

Let’s start the above SmartApp execution in the IDE. The first thing that
we can see are messages like this:

[image: ../_images/log_example1.png]

It is easy to see that the debug message came from the updated() method.

def updated() {
 log.debug "Updated with settings: ${settings}"
 ...
}

But where did the other trace messages come from?
These messages are coming from the SmartApp framework.
The SmartApp framework automatically will provide certain information like this during the execution of a SmartApp.
Try turning one of the switches on in the IDE.
You will see some more of these trace messages coming from the SmartApp framework.
You will also see the debug message in the someEventHandler() method.

log.debug "${onSwitches.size()} out of ${switches.size()} switches are on"

You should expect to see something like this in live logging.

Note

The newest messages appear at the top of the live logs, not the bottom.

[image: ../_images/log_example2.png]

Lets see an example of how each one of the log levels look when output
to live logging.
In the someEventHandler() method, I’ve added the following log messages for this example.

log.error "${onSwitches.size()} out of ${switches.size()} switches are on"
log.warn "${onSwitches.size()} out of ${switches.size()} switches are on"
log.info "${onSwitches.size()} out of ${switches.size()} switches are on"
log.debug "${onSwitches.size()} out of ${switches.size()} switches are on"
log.trace "${onSwitches.size()} out of ${switches.size()} switches are on"

The output is nice and color coordinated so we can visually see the severity of
the various levels.

[image: ../_images/log_example3.png]

Finally, an example of how the logger can be used in a try/catch block instead
of getting the exception.

try {
 def x = "some string"
 x.somethingThatDoesNotExist
} catch (all) {
 log.error("Something went horribly wrong!", all)
}

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Tools and IDE

GitHub Integration

Warning

Before proceeding to enable GitHub integration in the IDE, be aware that:

	GitHub IDE integration is not supported outside the US.

	GitHub IDE integration may negatively impact the performance of the IDE.

As an open platform, we recognize that giving our community developers access to the repository housing our SmartApps and Device Handlers is extremely important.
While you can browse the code in the IDE, not having access to the repository itself is limiting.
The SmartThingsCommunity/SmartThingsPublic [https://github.com/SmartThingsCommunity/SmartThingsPublic] GitHub repository is now public, allowing you to browse the source code in a more traditional format.

We have also provided an integration with the GitHub repository into the IDE.
This will allow SmartThings developers to integrate their forked SmartThingsPublic repository with the IDE, including the ability to make commits to the forked repository using the IDE.

If you just want to browse the source in GitHub, you can do that using the tools you are most comfortable with.

If you want to take advantage of the GitHub integration with the IDE, read on for more information.

Note

A working knowledge of Git and GitHub is assumed in this guide. If you are new to Git and GitHub, we recommend checking out the GitHub Bootcamp [https://help.github.com/categories/bootcamp/] to help you learn the basics. We will walk you through some specific Git steps, but a full discussion/explanation of Git is beyond the scope of this guide.

Overview

The GitHub IDE integration allows you to integrate your forked SmartThingsPublic repository with the IDE.
This allows you to easily view and work with SmartApps or Device Handlers already in the repository, as well as update the versions in your IDE with upstream repository changes, and make commits to your forked repository right from the IDE.

When you setup GitHub integration in the IDE, you will create a fork of the SmartThingsPublic repository in GitHub.
This will then be the repository that the IDE will be connected to.
When you add files from the repository to the IDE, this is the repository it will look at to get the available files.
When you commit changes in the IDE, you are making commits in your remote forked repository.

You will need to manage the syncing of your forked repository with the original SmartThingsPublic repository, just as you would with any forked repository in GitHub.

Important

Remember that the IDE is connected to your remote forked repository in GitHub. If you create a local clone of your repository, you will need to keep that in sync with the remote repository.

Setup

To connect your GitHub account with the SmartThingsPublic repository in the IDE, follow these steps.

Step 1 - Enable GitHub integration

Click the Enable GitHub Integration link on the My SmartApps or My Device Handlers page.
This will launch a wizard that will guide you through the process.

[image: ../_images/github-int-enable.png]

Step 2 - Connect your GitHub account to SmartThings

On Step 1 of the wizard, follow the instructions to authorize SmartThings to integrate with your GitHub account.
Click the Next button after you have done this.

[image: ../_images/github-setup-step-1.png]

Step 3 - Create a fork

Follow the instructions to fork the SmartThingsCommunity/SmartThingsPublic repository, and then click the Next button.

[image: ../_images/github-setup-step-2.png]

Step 4 - Clone the forked repository

Tip

While not required to for submitting changes, this is useful so that you have a local copy of the source code (useful for grepping the source locally, using your favorite editor, etc.), and is required to update your fork from the main SmartThingsPublic repository.

Follow these steps to clone your forked repository to your local machine (it is assumed that you have installed and configured Git on your local machine):

On the main page of your forked repository in GitHub, copy the HTTPS clone URL link:

[image: ../_images/github-clone-forked-repo.png]
In a terminal or command prompt, type:

git clone <clone URL copied as above>

Press Enter. This will create a local clone of your forked repository.

Step 5 - Configure Git to sync fork with SmartThings

If you chose to create a local clone of your forked repository, you should configure it get upstream changes from the original SmartThings repository.

On GitHub, navigate to the SmartThingsCommunity/SmartThingsPublic repository.
On the right sidebar of the repository page, copy the clone URL:

Important

This is the clone URL for the main SmartThingsPublic repository, not your fork!

[image: ../_images/github-clone-forked-repo.png]
In a terminal or command prompt, change directories to the location of your cloned fork, and type:

git remote add upstream <remote URL as copied above>

It should look like this:

git remote add upstream https://github.com/SmartThingsCommunity/SmartThingsPublic.git

Press Enter.

In a terminal or command prompt, type:

git remote -v

This will show all the configured remotes.
You should see an upstream remote configured for the SmartThingsPublic repository.

That’s it! You now have connected your GitHub account with the SmartThings IDE.
You will now be able to commit changes made in the IDE to this repository, and update SmartApps and Device Handlers in the IDE from changes merged into this repository from other sources.

Repository structure

The repository is organized by type (SmartApps or Device Handlers) and namespace.

Each SmartApp and Device Handler should be in its own directory, named the same as the SmartApp or Device Handler, and appended with ".src".

For SmartApps:

smartapps/<namespace>/<smartapp-name>.src/<smartapp file>.groovy

For Device Handlers:

devicetypes/<namespace>/<device-type-name>.src/<device handler file>.groovy

The namespace is typically your GitHub user name.
When you create a SmartApp or Device Handler in the IDE, you provide a namespace, which is then populated in the definition method.
This namespace will be used in the directory structure as shown above.

Important

Note that the directory names must all be lowercase and must be consistent with the namespace and the name of the Device Handler or SmartApp. In other words, the directory names must all be lowercase with non-alphanumeric characters replaced with a dash. For example, if a SmartApp has the namespace “My Apps” and the name “My First App” then the path name for it must be smartapps/my-apps/my-first-app.src/my-first-app.groovy.

GitHub integration IDE tour

Color-coded names

The first thing you may notice after enabling GitHub integration is that various SmartApps or Device Handlers are color-coded differently in the IDE.
Each name will be color-coded differently depending on its state in the GitHub repository

Hint

Hover your mouse cursor over the name to display a tooltip to give more information.

	Black

	Indicates that the file is unchanged between your forked GitHub repository and the IDE.

	Green

	Indicates that the file is in the IDE only, and not in any repository.

	Blue

	Indicates that the file exists in your GitHub repository, and has been modified in the IDE but not committed to the repository.

	Magenta

	Indicates that the file has been updated in the repository, but not in the IDE. To resolve this, you should click the Update from Repo button, where you sill see the file appear in the Obsolete column. More information about the Update from Repo button can be found below.

	Red

	Both the IDE version and repository version have been updated, and are in need of a conflict resolution. To resolve this, you should click the Update from Repo button and follow the steps there (more information about the Update from Repo action can be found below).

	Brown

	Indicates that the SmartApp or Device Handler is unattached to the repository version. Typically this happens when a new SmartApp or Device Handler is created from a template, and the name or namespace hasn’t been changed. If you update from the repo without changing the name or namespace, the IDE version will be replaced with the repo version. Typically in this case you would change the name and namespace to be unique for your code.

GitHub actions buttons

When you enable GitHub integration, you will see a few buttons added to the My SmartApps and My DeviceTypes pages in the IDE:

[image: ../_images/github-ide-buttons.png]

Commit Changes

Clicking the Commit Changes button will first prompt you to select what repository you want to commit to, and then launch a wizard allows you to commit any new or modified code to your forked repository. You can (and should) also add a commit message as you would normally do when making commits in Git.

Update from Repo

Clicking the Update from Repo button will first prompt you to select what repository you’d like to update from, and then launch a wizard that allows you to update your IDE code from your forked repository.

The wizard will display three columns, each of which is described below:

Tip

The files considered for this action will depend on if you are on the My SmartApps or My DeviceTypes page in the IDE. Only SmartApps will be considered if launched from My SmartApps, and only device handlers if launched from My DeviceTypes

	Obsolete (updated in GitHub)

	Entries showing in the Obsolete column represent files that you have included in the IDE, but have since been updated in your forked repository (with no conflicts existing). To update your IDE version, select the files you wish to update, and click the Execute Update button.

	Conflicted (updated locally and in GitHub)

	Entries showing in the Conflicted column represent files that have been modified both in the IDE and in your forked repository. To resolve these conflicts, select the files and click the Execute Update button.

	New (only in GitHub)

	Entries showing in the New column are any files found in your forked repository that are not currently in the IDE. To bring these files into your IDE, select the files and click the Execute Update button.

Note

When updating from the repo, you also have the ability to publish any updates (either for yourself or all) by checking the Publish check box.

Settings

This is where you can find information about the repository and branch integrated with the IDE, as well as actions to update, remove, or add new repositories.

How to

Add files from repository to the IDE

To add files from your forked SmartThingsPublic repository into the IDE, follow these steps:

	Step 1 - Navigate to the My SmartApps or My Device Handlers page in the IDE

The files available to add to the IDE vary depending upon the context. If you want to add SmartApps to your IDE, navigate to the My SmartApps page. If you want to add Device Handlers, navigate to the My Device Handlers.

	Step 2 - Update from Repo

Click the Update from Repo button (above the list of SmartApps or device handlers), and select the repo you want to update from.

In the resulting wizard, select the files you want to add to the IDE in the New (only in GitHub) column.

[image: ../_images/github-add-new-files.png]
Click the Execute Update button in the wizard.

The IDE will now have the files you selected.

Get latest code from SmartThingsPublic repository

Note

To get the latest code from the SmartThingsPublic repository, you need to have cloned your forked repository and configured it to fetch changes from the main (upstream) SmartThingsPublic repository.

See Step 4 - Clone the forked repository and Step 5 - Configure Git to sync fork with SmartThings in the Setup section for more information.

To get the latest code from the SmartThingsPublic repository, follow these steps:

Step 1 - Fetch upstream changes

Open a terminal or command prompt and change directory to the root of your forked repository.

Type git fetch upstream and press Enter. This will fetch the branches and their commits from the SmartThingsPublic repository.

Step 2 - Checkout your local master branch

Type git checkout master and press Enter.

Step 3 - Merge the changes from upstream/master to your local master branch

Type git merge upstream/master and press Enter. This will bring your fork’s local master branch up to date with the changes in the SmartThingsPublic master branch.

Step 4 - Push changes to your remote fork

Now that we have our local repository updated synced with the latest SmartThingsPublic repository, we need to push those changes to our remote fork. Remember, this is where the IDE looks for changes (not your local clone!).

Type git push origin master and press Enter. This will push all commits in your local repository on the master branch, to the remote (origin) master branch.

Step 5 - Update the IDE version

Now, to update the IDE versions with your updated forked repository, click the Update from Repo button on the My SmartApps or My device handlers page, and select the repo you want to update from.

In the resulting wizard, check the box next to any of the files you want to update in the IDE, and click the Execute Update button.

The files you chose to update are now updated in the IDE.

Commit changes in the IDE

To commit changes to a SmartApp or Device Handler, whether it is a new file or already exists in the repository, Click on the Commit Changes button on the My SmartApps or My device handlers and select the repository you want to commit to.

In the resulting wizard, check the box next to the file you want to commit, add a commit message, and press the Commit Changes button.

This will make a commit in your fork.

Keep your cloned repo in sync with origin

If you cloned your forked repository to your local machine, you will want to keep it in sync with your remote forked repository in GitHub.

When you make commits in the IDE, you are making a commit and pushing those changes to your forked repository. To sync your cloned repository with the remote forked repository, follow these steps:

Step 1 - Fetch origin changes

Open a terminal or command prompt and change directory to the root of your forked repository.

Type git fetch origin and press Enter. This will fetch the branches and their commits from your forked SmartThingsPublic repository.

Step 2 - Checkout your local branch

Type git checkout master (substitute master for a different branch, if you choose) and press Enter.

Step 3 - Merge the changes from origin/master to your local branch

Type git merge origin/master (substitute master for a different branch, if you want to merge from a different branch) and press Enter. This will bring your cloned repository’s local branch up to date with the changes in your forked SmartThingsPublic branch.

Best practices

Sync with upstream repository frequently

If you have cloned your forked repository locally, you should merge changes from the upstream SmartThingsPublic repository frequently.
This will help prevent your fork from becoming out-of-date with the SmartThingsPublic repository, and minimize the potential for difficult merging of conflicts.

See Get latest code from SmartThingsPublic repository for instructions on syncing from the upstream SmartThingsPublic repository.

FAQ

	I don’t want to grant SmartThings access to my GitHub account. Is there a way around this?

	Integrating the GitHub repositories with the IDE requires that you grant SmartThings read and write access to your GitHub repositories. If you would rather not grant SmartThings this level of access to your GitHub account, we recommend that you create a new GitHub user to use for SmartThings development. That will allow you to keep your primary GitHub account separate from the SmartThings account.

	Do I have to use the GitHub integration?

	No. The GitHub integration is optional.

	Does this change the process for submitting SmartApps or device handlers to SmartThings ?

	The process for submitting a publication request is essentially the same. The result is slightly different, in that the requests themselves become pull requests in the main SmartThingsPublic repository. This is similar to how it was working previously, but now the pull requests will be visible in the repository since the repository is public.

	Can I just a make a pull request to the SmartThingsPublic repository, without using the GitHub IDE Integration?

	If you make a pull request to the SmartThingsPublic repository, but have not enabled GitHub integration in the IDE, your pull request will not be reviewed or merged in to the SmartThingsPublic repository. Enabling GitHub integration is what allows us to connect your GitHub account with your SmartThings account. If you have enabled the GitHub integration, and then would rather make a pull request to the SmartThingsPublic repository (using the GitHub account you enabled in the IDE) instead of publishing through the IDE, you can. We think it’s more efficient to use the tools in the IDE, but nothing prevents you from making a pull request directly in this case.

	Where can I find more information about working with Git?

	See the Getting help section.

	I made a commit to my local GitHub fork (not using the IDE), but don’t see it when I try to Update from Repo in the IDE.

	Did you push your changes to your forked GitHub repository and branch associated with the IDE? Only changes pushed to your forked repository are visible to the IDE - committing changes to your local repository only, without pushing them to the repository and branch associated with the IDE, will not be visible.

	I made a commit through the IDE, but I don’t see it in my cloned forked repository.

	Did you merge the latest changes into your local repository? Remember, when you make a commit in the IDE, you are making a commit to your forked version of the SmartThingsPublic repository. If you cloned the repository locally, you need to sync your local repository with the remote repository. See Keep your cloned repo in sync with origin for more information.

	I think I found a bug. How do I report it?

	First, check out the Getting help section below to see if any of the links may answer your questions. If you’re confident you’ve found a bug, and it’s not already discussed on the community forums, email support@smartthings.com. For the fastest response, be sure to include your SmartThings user name, your GitHub account name, and specific steps that caused the issue.

Getting help

Here are some links for getting help working with Git and GitHub:

	GitHub [http://github.com]

	GitHub Help Page [https://help.github.com/]

	GitHub Bootcamp [https://help.github.com/categories/bootcamp/] - useful for getting started with Git.

	Fork a Repo [https://help.github.com/articles/fork-a-repo/] - documentation on how to fork a repo in GitHub.

	Sync a Repo [https://help.github.com/articles/syncing-a-fork/] - documentation on how to sync a fork to the upstream repository.

	Pushing to a Remote [https://help.github.com/articles/pushing-to-a-remote/] - documentation on how to push to a remote repository.

If your questions are about the IDE integration, and aren’t answered in this documentation, the SmartThings Community Forums [http://community.smartthings.com] is a great place to leverage the power of our active community developers to help.

Finally, if you have ideas to help improve this documentation, feel free to contact docs@smartthings.com.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

SmartApps

SmartApps are Groovy-based programs that allow a user to tap into the capabilities of their devices to automate their lives.

If you haven’t written a SmartApp yet, you should work through the Writing Your First SmartApp.

	Anatomy and Life Cycle of a SmartApp

	Preferences and Settings

	Storing Data With State

	Events and Subscriptions

	Working with Devices

	Modes

	Routines

	Scheduling

	Working With Time

	Sunset and Sunrise

	App Touch

	Making Synchronous External HTTP Requests

	Making Asynchronous External HTTP Requests (Beta)

	Sending Notifications

	Parent-Child SmartApps

	Example: Bon Voyage

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	SmartApps

Anatomy and Life Cycle of a SmartApp

SmartApps are applications that allow users to tap into the capabilities of
their devices to automate their lives.
Most SmartApps are installed by the user via the SmartThings mobile client application. In addition, a few pre-installed SmartApps are readily available in the SmartThings system out-of-the-box.

Types of SmartApps

Generally speaking, there are three different kinds of SmartApps: Event-Handlers, Solution Modules, and Service Managers.
If you are familiar with back-end web development, then you will be more than capable of developing SmartApps.

Event Handler SmartApps

Event Handler SmartApps are the most common apps developed by our
community.
They allow you to subscribe to Events from devices and call a
handler method upon their firing.
This method can then do a variety of
things, most commonly invoking a command on another device.

A very simple example of an Event-Handler SmartApp would involve you walking through a
door and having the lights turn on automatically.

Solution Module SmartApps

These apps exist within the dashboard of the SmartThings app interface,
and are containers for other SmartApps.
The idea behind Solution Module
SmartApps is to combine SmartApps that, in the real world, intuitively
go together.
One example of this would be the “Home & Family” section of
the dashboard which allows you to see the comings and goings of your
family.

Service Manager SmartApps

Service Manager SmartApps are used to connect to LAN or cloud devices,
such as a Sonos or a WeMo device.
These SmartApps are the connecting glue between the unique protocols of such LAN or cloud devices and a Device Handler you would create for such devices.
These Service Manager SmartApps discover LAN or cloud devices and then continue to maintain their connection.

The Service Manager SmartApp must be installed when a user utilizes a
device using LAN or the cloud. So, for example, there is a Sonos Service
Manager SmartApp that is installed when pairing with a Sonos device.

SmartApp structure

SmartApps take the form of a single Groovy [http://groovy.codehaus.org/] script.
A typical SmartApp script is composed of four sections: Definition, Preferences, Predefined Callbacks, and Event Handlers.
There is also a Mappings section that is required for Cloud-connected SmartApps that will be described later.

[image: ../_images/demo-app.png]

Definition

The defintion section of the SmartApp specifies the name of the app along with other information that identifies and describes it.

Preferences

The preferences section is responsible for defining the screens that appear in the mobile app when a SmartApp is installed or updated.
These screens allow the user to specify which devices the SmartApp interacts with along with other configuration options that affect its behavior.

Pre-defined callbacks

The following methods, if present, are automatically called at various times during the lifecycle of a SmartApp:

	installed() - Called when a SmartApp is first installed.

	updated() - Called when the preferences of an installed smart app are updated.

	uninstalled() - Called when a SmartApp is uninstalled.

	childUninstalled() - Called for the parent app when a child app is uninstalled (a SmartApp can have child SmartApps).

The installed() and updated() methods are commonly found in all apps.
Since the selected devices may have changed when an app is updated, both of these methods typically set up the same Event subscriptions, so it is common practice to put those calls in an initialize() method and call it from both the installed and updated methods.

The uninstalled() method is typically not needed since the system automatically removes subscriptions and schedules when a SmartApp is uninstalled.
However, they can be necessary in apps that integrate with other systems and need to perform cleanup on those systems.

Event Handlers

The remainder of the SmartApp contains the event handler methods specified in the Event subscriptions and any other methods necessary for implementing the SmartApp.
Event handler methods must have a single argument, which contains the
Event object.

SmartApp execution

SmartApps aren’t always running.
Their various methods are executed when external Events occur.
SmartApps execute when any of the following types of Events occur:

	Pre-defined callback - Any of the predefined lifecycle Events described above occur.

	Device state change - An attribute changes on a device, which
creates an Event, which triggers a subscription, which calls a
handler method within your SmartApp.

	Location state change - A location attribute such as Mode changes. Sunrise and sunset are other examples of location events.

	User action on the app - The user taps a SmartApp icon or shortcut in the mobile app UI.

	Scheduled event - Using a method like runIn(), you call
a method within your SmartApp at a particular time.

	Web services call Using our web services
API, you
create an endpoint accessible over the web that calls a method within
your SmartApp.

Device preferences

The most common type of input in the preferences section specifies what kind of devices a SmartApp works with.
For example, to specify that an app requires one contact sensor:

input "contact1", "capability.contactSensor"

This will generate an input element in the mobile UI that prompts for the selection of a single contact sensor (capability.contactSensor).
contact1 is the name of a variable that provides access to the device in the SmartApp.

Device inputs can also prompt for more than one device. So to ask for the selection of one or more switches:

input "switch1", "capability.switch", multiple: true

You can find more information about SmartApp preferences here.

Event subscriptions

Subscriptions allow a SmartApp to listen for Events from devices, or from a Location, or from the SmartApp tile in the mobile UI.
Device subscriptions are the most common and take the form:

subscribe(<device>, "<attribute[.value]>", handlerMethod)

For example, to subscribe to all Events from a contact sensor you would write:

subscribe(contact1, "contact", contactHandler)

The contactHandler() method would then be called whenever the sensor opened or closed.
You can also subscribe to specific Event values, so to call a handler only when the contact sensor opens write:

subscribe(contact1, "contact.open", contactOpenHandler)

The subscribe() method call accepts either a device or a list of devices, so you don’t need to explicitly iterate over each device in a list when you specify multiple: true in an input preference.

You can learn more about subscribing to device Events in the Events and Subscriptions section.

SmartApp sandboxing

SmartApps are developed in a sandboxed environment.
The sandbox is a way to limit developers to a specific subset of the Groovy language for performance and security.
We have documented the main ways this should affect you.

Execution location

With the original SmartThings Hub, all SmartApps execute in the SmartThings cloud.
With the new Samsung SmartThings Hub, certain SmartApps may run locally on hub or in the SmartThings cloud.
Execution location varies depending on a variety of factors, and is managed by the SmartThings internal team.

As a SmartThings developer, you should write your SmartApps to satisfy their specific use cases, regardless of where the app executes.
There is currently no way to specify or force a certain execution location.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	SmartApps

Preferences and Settings

The preferences section of a SmartApp specifies what kinds of devices and other information is needed in order for the application to run.
During the installation of the SmartApp the user is prompted, in the mobile UI, to provide such needed information.
The user can present all these inputs on a single page, or break them up into multiple pages.

We strongly recommend you to try out the web IDE [http://ide.smartthings.com] and become familiar with it.

Preferences overview

Preferences are made up of one or more pages.
Later we will see that pages themselves contain one or more sections, which in turn contain
one or more elements.
The general form of creating preferences looks like:

preferences {
 page() {
 section() {
 paragraph "some text"
 input "motionSensors", "capability.motionSensor",
 title: "Motions sensors?", multiple: true
 }
 section() {
 ...
 }
 }
 page() {
 ...
 }
}

All inputs from the user are stored in a read-only map called settings, and they are available simply by referring to the input name (the first argument to input()).

Assuming the following inputs:

preferences {
 section() {
 input "someSwitch", "capability.switch"
 input "someText", "text",
 input "someTime", "time"
 }
}

The values can be accessed like this:

// direct access
log.debug "someSwitch is $someSwitch"
log.debug "someText is $someText"
log.debug "someTime is $someTime"

// via settings
log.debug "settings.someSwitch is $settings.someSwitch"
log.debug "settings.someText is $settings.someText"
log.debug "settings.someTime is $settings.someTime"

Page definition

Pages can be defined two different ways: either by page(String pageName, String pageTitle) {} or by page(options) {}.

page(String pageName, String pageTitle) {}

The code sample below illustrates the first way:

preferences {
 // page with name and title
 page("page name", "page title") {
 // sections go here
 }
}

page(options) {}

This form takes a comma-separated list of name-value arguments.

Note

This is a common Groovy pattern that allows for named arguments to be passed to a method.
More info can be found here [http://docs.groovy-lang.org/latest/html/documentation/#_named_arguments].

preferences {
 page(name: "pageName", title: "page title",
 nextPage: "nameOfSomeOtherPage", uninstall: true) {
 // sections go here
 }
}

The valid options are:

	name (required)

	String - Identifier for this page.

	title

	String - The display title of this page.

	nextPage

	String - Used on multi-page preferences only. Should be the name of the page to navigate to next.

	install

	Boolean - Set to true to allow the user to install this app from this page. Defaults to false. Not necessary for single-page preferences.

	uninstall

	Boolean - Set to true to allow the user to uninstall from this page. Defaults to false. Not necessary for single-page preferences.

We will see more in-depth examples of pages in the following sections.

Section definition

Pages can have one or more sections.
Think of sections as way to group the inputs you want to gather from the user.

Sections can be created in three different ways:

section{}

preferences {
 // section with no title
 section {
 // elements go here
 }
}

section(String sectionTitle){}

preferences {
 // section with title
 section("section title") {
 // elements go here
 }
}

section(options, String sectionTitle) {}

preferences {
 // section will not display in IDE
 section(mobileOnly: true, "section title")
}

The valid options are:

	hideable

	Boolean - Pass true to allow the section to be collapsed. Defaults to false.

	hidden

	Boolean - Pass true to specify the section is collapsed by default. Used in conjunction with hideable. Defaults to false.

	mobileOnly

	Boolean - Pass true to suppress this section from the IDE simulator. Defaults to false.

Single preferences page

A single page preferences declaration is composed of one or more section elements, which in turn contain one or more elements.
Note that there is no page defined in the example below.
When creating a single-page preferences app, there’s no need to define the page explicitly - it’s implied.
Here’s an example:

preferences {
 section("Turn on when motion is detected") {
 input "themotion", "capability.motionSensor", required: true, multiple: true, title: "Where?"
 }
 section("Turn off when there's been no movement for") {
 input "minutes", "number", required: true, title: "Minutes?"
 }
 section("Turn on/off this light") {
 input "theswitch", "capability.switch", required: true
 }

}

Which would be rendered in the mobile app UI as:

[image: ../_images/single-page-preferences-new.png]
Note that in the above example, we did not specify the name or mode input in the preferences section of the code, yet they appeared in the UI of our mobile app at the bottom (“Assign a name” and “Set for specific mode(s)”).
When defining single-page preferences, name and mode are automatically added.
Also note that inputs that are marked as required: true are displayed prominently in red color by the mobile app, so that the user knows they are required.
The mobile application will prevent the user from going to the next page or installing the SmartApp without entering required inputs.

Multiple preferences pages

Preferences can also be broken up into multiple pages.
Each page must contain one or more section elements.
Each page specifies a name property that is referenced by the nextPage property.
The nextPage property is used to define the flow of the pages.

Note

Unlike single page preferences, the name and mode control fields are not automatically added, and must be specified on the desired page or pages.

Here’s an example that defines three pages:

preferences {
 page(name: "pageOne", title: "When there's activity on any of these sensors", nextPage: "pageTwo", uninstall: true) {
 section("Choose sensors to trigger the action") {

 input "contactSensors", "capability.contactSensor",
 title: "Open/close sensors", multiple: true

 input "motionSensors", "capability.motionSensor",
 title: "Motion sensors?", multiple: true
 }
 }
 page(name: "pageTwo", title: "Turn on these lights", nextPage: "pageThree") {
 section {
 input "switches", "capability.switch", multiple: true
 }
 }
 page(name: "pageThree", title: "Name app and configure modes", install: true, uninstall: true) {
 section([mobileOnly:true]) {
 label title: "Assign a name", required: false
 mode title: "Set for specific mode(s)", required: false
 }
 }
}

The resulting pages in the mobile app would show the name and mode control fields only on the third page, and the uninstall button on the first and third pages:

	Page 1
	Page 2
	Page 3

	[image: multiple-pages-page1.png]
	[image: multiple-pages-page2.png]
	[image: multiple-pages-page3.png]

Preference elements and inputs

Preference pages (single or multiple) are composed of one or more sections.
Each section, in turn, contains one or more of the
following elements:

paragraph

Text that is displayed on the page for messaging and instructional purposes.

Example:

preferences {
 section("paragraph") {
 paragraph "This is how you can make a paragraph element"
 paragraph image: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience.png",
 title: "paragraph title",
 required: true,
 "This is a long description that rambles on and on and on..."
 }
}

The above preferences definition would render the mobile app UI as:

[image: ../_images/prefs-paragraph.png]
Valid options are:

	title

	String - The title of the paragraph.

	image

	String - URL of image to use, if desired.

	required

	Boolean - true or false to specify this input is required. Defaults to false.

icon

Allows the user to select an icon to be used when displaying the app in the mobile UI.

Example:

preferences {
 section("paragraph") {
 icon(title: "required is true",
 required: true)
 }
}

The above preferences definition would render the mobile app UI as:

[image: ../_images/prefs-icon.png]
Tapping the icon UI element would then allow the user to choose an icon:

[image: ../_images/prefs-icon-chooser.png]
Valid options are:

	title

	String - The title of the icon.

	required

	Boolean - true or false to specify this input is required. Defaults to false.

href

A control that selects an external HTML page or another preference page.

Example of using href to visit a URL:

preferences {
 section("external") {
 href(name: "hrefNotRequired",
 title: "SmartThings",
 required: false,
 style: "external",
 url: "http://smartthings.com/",
 description: "tap to view SmartThings website in mobile browser")
 }
 section("embedded") {
 href(name: "hrefWithImage", title: "This element has an image and a long title.",
 description: "tap to view SmartThings website inside SmartThings app",
 required: false,
 image: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience.png",
 url: "http://smartthings.com/")
 }
}

The above preferences would render the mobile app UI as:

[image: ../_images/prefs-href-external-embedded.png]
Example of using href to link to another preference page (dynamic pages are discussed later in this section):

preferences {
 page(name: "hrefPage")
 page(name: "deadEnd")
}

def hrefPage() {
 dynamicPage(name: "hrefPage", title: "href example page", uninstall: true) {
 section("page") {
 href(name: "href",
 title: "dead end page",
 required: false,
 page: "deadEnd")
 }
 }
}

def deadEnd() {
 dynamicPage(name: "deadEnd", title: "dead end page") {
 section("dead end") {
 paragraph "this is a simple paragraph element."
 }
 }
}

You can use the params option to pass data to dynamic pages:

preferences {
 page(name: "firstPage")
 page(name: "secondPage")
}

def firstPage() {
 def hrefParams = [
 foo: "bar",
 someKey: "someVal"
]

 dynamicPage(name: "firstPage", uninstall: true) {
 section {
 href(name: "toSecondPage",
 page: "secondPage",
 params: hrefParams,
 description: "includes params: ${hrefParams}")
 }
 }
}

// page def must include a parameter for the params map!
def secondPage(params) {
 log.debug "params: ${params}"
 dynamicPage(name: "secondPage", uninstall: true, install: true) {
 section {
 paragraph "params.foo = ${params?.foo}"
 }
 }
}

Valid options are:

	title

	String - the title of the element.

	required

	Boolean - true or false to specify this input is required. Defaults to false.

	description

	String - the secondary text of the element

	external (deprecated - use style instead)

	Boolean - true to open URL in mobile browser application, false to open URL within the SmartThings app. Defaults to false.

	style

	String - Controls how the link will be handled. Specify “external” to launch the link in the mobile device’s browser. Specify “embedded” to launch the link within the SmartThings mobile application. Specify “page” to indicate this is a preferences page.

If style is not specified, but page is, then style:"page" is assumed. If style is not specified, but url is, then style:"embedded" is assumed.

Currently, Android does not support the “external” style option.

	url

	String - The URL of the page to visit. You can use query parameters to pass additional information to the URL (for example, http://someurl.com?param1=value1¶m2=value1).

	params

	Map - Use this to pass parameters to other preference pages. If doing this, make sure your page definition method accepts a single parameter (that will be this params map). See the page-params-by-href example at the end of this document for more information.

	page

	String - Used to link to another preferences page. Not compatible with the external option.

	image

	String - URL of an image to use, if desired.

mode

Allows the user to select which modes the app executes in. Automatically generated by single-page preferences.

Example:

preferences {
 page(name: "pageOne", title: "page one", nextPage: "pageTwo", uninstall: true) {
 section("section one") {
 paragraph "just some text"
 }
 }
 page(name: "pageTwo", title: "page two") {
 section("page two section one") {
 mode(name: "modeMultiple",
 title: "pick some modes",
 required: false)
 mode(name: "modeWithImage",
 title: "This element has an image and a long title.",
 required: false,
 multiple: false,
 image: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience.png")
 }
 }
}

The second page of the above example would render in the mobile UI as:

[image: ../_images/prefs-mode.png]
Valid options are:

	title

	String - the title of the mode field.

	required

	Boolean - true or false to specify this input is required. Defaults to false.

	multiple

	Boolean - true or false to specify this input allows selection of multiple values. Defaults to true.

	image

	String - URL of an image to use, if desired.

Note

There are a couple of different ways to use modes that are worth pointing out. The first way is to use modes as a type of enum input like this:

input "modes", "mode", title: "only when mode is", multiple: true, required: false

This method will automatically list the defined modes as the options. Please note when using modes in this way that the modes are just data
and can be accessed in the SmartApp as such.
This does not effect SmartApp execution. In this scenario, it is up to the SmartApp itself to react to the mode changes.

The second example actually controls whether the app is executed based on the modes selected:

mode(title: "set for specific mode(s)")

Both of these methods of using modes are valid. The impact on SmartApp execution is different in each scenario and
it is up to the SmartApp developer to properly label whichever form is used and code the app accordingly.

label

Allows the user to name the app installation. Automatically generated by single-page preferences.

Example:

preferences {
 section("labels") {
 label(name: "label",
 title: "required:false",
 required: false,
 multiple: false)
 label(name: "labelRequired",
 title: "required:true",
 required: true,
 multiple: false)
 label(name: "labelWithImage",
 title: "This element has an image and a title.",
 description: "image and a title",
 required: false,
 image: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience.png")
 }
}

The above preferences definition would render in the mobile UI as:

[image: ../_images/prefs-label.png]

Note

Images do not currently render in label inputs on Android.

Valid options are:

	title

	String - the title of the label field.

	description

	String - the text in the input field.

	required

	Boolean - true or false to specify this input is required. Defaults to false. Defaults to true.

	image

	String - URL to an image to use, if desired.

app

Provides user-initiated installation of child apps.

input

Allows the user to select devices or enter values to be used during execution of the SmartApp.

Inputs are the most commonly used preference elements.
They can be used to prompt the user to select devices that provide a certain capability, or devices of a specific type, or constants of various kinds.

Input element method calls take two forms.

The “shorthand” form passes in the name and type unnamed as the required first two parameters, and any other arguments as named options:

preferences {
 section("section title") {
 // name is "temperature1", type is "number"
 input "temperature1", "number", title: "Temperature"
 }
}

The second form explicitly specifies the name of each argument:

preferences {
 section("section title") {
 input(name: "color", type: "enum", title: "Color", options: ["Red","Green","Blue","Yellow"])
 }
}

Valid input options are:

	capitalization

	(Note - this feature is currently only supported on iOS devices) String - if the input is a text field, this controls the behavior of the auto-capitalization on the mobile device. "none" specifies to not enable auto-capitalization for any word. "sentences" will capitlize the first letter of each sentence. "all" will use all caps. "words" will capitalize every word. The default is "words".

	defaultValue

	Object - if specified, a default value for this input.

	name

	String - name of variable that will be created in this SmartApp to reference this input.

	title

	String - title text of this element.

	description

	String - default value of the input element.

	multiple

	Boolean - true or false to specify this input allows selection of multiple devices of the input type (if you have more than one). Defaults to true.
For example, in the motion sensor example above, setting this to true will allow you to select more than one motion sensor, provided you have more than one.

	range

	A range for numeric (number and decimal) that restricts the valid entries to values within the range. For exampe, range: "2..7" will only allow inputs between 2 and 7 (inclusive). range: "-5..8" allows inputs between -5 and 8. A value of “*” will allow any numeric value on that side of the range. Use range: "*..*" to allow the user to enter any value, negative or positive. Note that without specifying a range that allows negative numbers, the mobile clients will only show a keypad to allow positive numeric entries.

	required

	Boolean - true to require the selection of a device for this input or false to not require selection.

	submitOnChange

	Boolean - true to force a page refresh after input selection or false to not refresh the page. This is useful
when creating a dynamic input page.

	options

	List - used in conjunction with the enum input type to specify the values the user can choose from. Example: options: ["choice 1", "choice 2", "choice 3"].

	type

	String - one of the names from the following table:

	Name
	Comment

	capability.capabilityName
	Prompts for all the devices that match the specified capability.

See the Preferences Reference column of the Capabilities Reference
table for possible values.

	device.deviceTypeName
	Prompts for all devices of the specified type. See Using device-specific inputs for more information.

	bool
	A true or false value (value returned as a boolean).

	boolean
	A "true" or "false" value (value returned as a string). It’s recommended that you use the “bool” input instead, since the simulator and mobile support for this type may not be consistent, and using “bool” will return you a boolean (instead of a string). The “boolean” input type may be removed in the near future.

	decimal
	A floating point number, i.e. one that can contain a decimal point

	email
	An email address

	enum
	One of a set of possible values. Use the options element to define the possible values.

	hub
	Prompts for the selection of a hub

	icon
	Prompts for the selection of an icon image

	number
	An integer number, i.e. one without decimal point

	password
	A password string. The value is obscured in the UI and encrypted before storage

	phone
	A phone number

	time
	A time of day. The value will be stored as a string in the Java SimpleDateFormat [http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html] (e.g., “2015-01-09T15:50:32.000-0600”)

	text
	A text value

Using device-specific inputs

If a specific device is required for a SmartApp, the device itself can be used instead of the capability, with the "device.<deviceName>" input type.
For example, if your SmartApp specifically requires a device named “My Fancy Device”, you can prompt the user for that device this way:

input "myDevice", "device.myFancyDevice"

The format of the device name is determined by the following algorithm:

	Remove "device." prefix ("device.myFancyDevice" -> "myFancyDevice").

	Capitalize the result ("myFancyDevice" -> "MyFancyDevice").

	Split the result by camel case ("MyFancyDevice" -> ["My", "Fancy", "Device"]).

	Join result with a space (["My", "Fancy", "Device"] -> "My Fancy Device").

	Replace occurrences of any of these strings in the result with the following, as shown:

	Original
	Replaced With

	"Smart Sense"
	"SmartSense"

	"Smart Power Outlet V 1"
	"SmartPower Outlet V1"

	"Smart Power Outlet"
	"SmartPower Outlet"

	"Open Closed Sensor"
	"Open/Closed Sensor"

	"On Off"
	"On/Off"

	"Door Window"
	"Door/Window"

	"Motion Temp Sensor"
	"Motion/Temp Sensor"

	"Z Wave"
	"Z-Wave"

	"Zwave"
	"Z-Wave"

	"Smart Phone"
	"Mobile Presence"

	"Mobile Presence"
	"Mobile Presence"

Here are a few examples:

	Device Preference Input
	Device Name Searched For

	"device.myFancyDevice"
	"My Fancy Device"

	"device.ecobeeThermostat"
	"Ecobee Thermostat"

	"device.myOnOffDevice"
	"My On/Off Device"

When using device.<name> inputs, the platform first looks up which Device Handler it is, then finds any devices of that type for that Location.
The algorithm searches for a Device Handler in the following order:

	A Device Handler published by SmartThings that matches the name.

	A Device Handler published by the current user that matches the name.

If there are multiple Device Handlers with the same name, the first Device Handler found will be returned.
Only the name of the Device Handler is searched for; namespace is not considered.

There are some caveats to be aware of due to the way the algorithm works:

	The name of the device should have every word capitalized.

	Use of numbers can cause unexpected results.

	Use of spaces in the device input can cause unexpected results.

Here are some examples that illustrate this:

	Device Preference Input
	Device Name Searched For

	"device.myDevice v1"
	"My Device v 1"

	"device.myDeviceV1"
	"My Device V 1"

	"device.myDevicev1"
	"My Devicev 1"

	"device.mydevice"
	"Mydevice"

Hide when empty

Inputs, sections, and pages support the hideWhenEmpty attribute.
This attribute will hide the element that it is associated with when the element is empty.
For example, if you have an input that prompts the user for an audio device, but that user does not have any audio devices, the hideWhenEmpty attribute will hide the input from the user.
Let’s take a look at a few examples.

Add the hideWhenEmpty attribute to SmartApp inputs to completely hide UI control if there are no devices available.
In this example, the SmartApp will not display the valve input if there were no valves in this user’s Location, but would display the switch input even if there were no switches.

preferences {
 section {
 input "switches", "capability.switch", title: "Select a switch"
 input "valves", "capability.valve", title: "Select a valve", hideWhenEmpty: true, required: false
 }
}

Adding the hideWhenEmpty attribute to a section or a page will cascade the attribute down to all of the child input elements.
This means that adding the hideWhenEmpty attribute to any parent element is in effect the same as adding the hideWhenEmpty attribute to all of the child input elements.
Let’s look at a few examples.

The following example will hide the entire section if there are no valves and no switches.
If the user did have a switch or a valve, then the section would be displayed with only the input element that is available.

preferences {
 section(hideWhenEmpty: true) {
 input "switches", "capability.switch", title: "Select a switch"
 input "valves", "capability.valve", title: "Select a valve", required: false
 }
}

The last example illustrates how this attribute applies to an entire page element.
In this case, any section will be hidden if all of its input elements are absent.
For example, if the switch device is available but the valve device is not available, then the section with switches and valves will still display.
However, if both switch and valve devices are entirely absent, then the section with switches and valves will not display.

preferences {
 page(name: "mainPage", title: "Select some things", hideWhenEmpty: true) {
 section {
 input "switches", "capability.switch", title: "Select a switch"
 input "valves", "capability.valve", title: "Select a valve", required: false
 }
 section {
 input "audio", "capability.musicPlayer", title: "Select a music player"
 }
 }
}

It is worth noting that in the last example, the audio input does not have the usual required: false attribute.
This is because the input will not be displayed if there are no audio devices associated to this Location.
However, the SmartApp would have to be able to handle a null value for that input.
Also, it is worth remembering that if the user does have an audio device in this Location, the default value of required: true will be applicable.

Working with other input types

We’ve seen how the hideWhenEmpty attribute works with device inputs, but what about other types of inputs like Number, text, or Boolean inputs?

These types of inputs will always appear because they can never have empty selections.
It is possible to hide these kinds of input elements if they relate to another input element.
Let’s look at an example where we have two inputs, an audio device input, and a volume input.
The volume input can never be empty, so we can’t hide it. But it is related to the audio input which can be empty and hidden.
In this case, we can hide the entire section containing the two inputs by telling the volume input to hide if the audio input is empty.
We do this by referencing the name of the related input.

preferences {
 page(name: "mainPage", title: "Select some things", hideWhenEmpty: true) {
 section {
 input "audio", "capability.musicPlayer", title: "Select a music player"
 input "volume", "number", title: "Set it to this volume level", hideWhenEmpty: "audio"
 }
 }
}

Custom Remove button

By default, a Remove button is added to the bottom of a preferences page that specifies uninstall: true.
This button can be customized by using the remove() method:

page(name: "firstPage") {
 section {
 paragraph "The remove button below normally says 'Remove'"
 }
 remove("Custom Button Text")
}

The specified text is used as the label of the button on the page, as well as the label of the confirmation button on the resulting confirmation dialog:

[image: ../_images/remove-custom-basic.png]
We can also specify custom confirmation text:

page(name: "firstPage") {
 section {
 paragraph "The remove button below normally says 'Remove'"
 }
 remove("Custom Button Text", "Custom Confirmation Text")
}

This renders in the mobile UI as:

[image: ../_images/remove-custom-confirmation.png]
Finally, we can specify custom detail text to show on the confirmation dialog:

page(name: "firstPage") {
 section {
 paragraph "The remove button below normally says 'Remove'"
 }
 remove("Custom Button Text!", "Custom Confirmation Text!", "Custom detail text")
}

This renders in the mobile UI as:

[image: ../_images/remove-custom-all-options.png]
The use of remove() must follow these rules:

	It must be defined after all other sections.

	It must not be nested inside a section.

	It can only be used inside a page.

	It must only be used once per page.

If these rules are not followed, exceptions are thrown and error messages are displayed when pressing Save.

remove() also sets the page uninstall to true.

Dynamic preferences

One of the most powerful features of multi-page preferences is the ability to dynamically generate the content of a page based on previous selections or external inputs, such as the data elements returned from a web services call.
The following example shows how to create a two-page preferences SmartApp where the content of the second page depends on the selections made on the first page.

 preferences {
 page(name: "page1", title: "Select sensor and actuator types", nextPage: "page2", uninstall: true) {
 section {
 input("sensorType", "enum", options: [
 "contactSensor":"Open/Closed Sensor",
 "motionSensor":"Motion Sensor",
 "switch": "Switch",
 "moistureSensor": "Moisture Sensor"])

 input("actuatorType", "enum", options: [
 "switch": "Light or Switch",
 "lock": "Lock"]
)
 }
 }

 page(name: "page2", title: "Select devices and action", install: true, uninstall: true)

}

def page2() {
 dynamicPage(name: "page2") {
 section {
 input(name: "sensor", type: "capability.$sensorType", title: "If the $sensorType device")
 input(name: "sensorAction", type: "enum", title: "is", options: attributeValues(sensorType))
 }
 section {
 input(name: "actuator", type: "capability.$actuatorType", title: "Set the $actuatorType")
 input(name: "actuatorAction", type: "enum", title: "to", options: actions(actuatorType))
 }

 }
}

private attributeValues(attributeName) {
 switch(attributeName) {
 case "switch":
 return ["on","off"]
 case "contactSensor":
 return ["open","closed"]
 case "motionSensor":
 return ["active","inactive"]
 case "moistureSensor":
 return ["wet","dry"]
 default:
 return ["UNDEFINED"]
 }
}

private actions(attributeName) {
 switch(attributeName) {
 case "switch":
 return ["on","off"]
 case "lock":
 return ["lock","unlock"]
 default:
 return ["UNDEFINED"]
 }
}

The previous example shows how you can achieve dynamic behavior between pages.
Next, with the submitOnChange input attribute you can also have dynamic behavior in a single page.

preferences {
 page(name: "examplePage")
}

def examplePage() {
 dynamicPage(name: "examplePage", title: "", install: true, uninstall: true) {

 section {
 input(name: "dimmers", type: "capability.switchLevel", title: "Dimmers",
 description: null, multiple: true, required: false, submitOnChange: true)
 }

 if (dimmers) {
 // Do something here like update a message on the screen,
 // or introduce more inputs. submitOnChange will refresh
 // the page and allow the user to see the changes immediately.
 // For example, you could prompt for the level of the dimmers
 // if dimmers have been selected:

 section {
 input(name: "dimmerLevel", type: "number", title: "Level to dim lights to...", required: true)
 }
 }
 }
}

Note

When a submitOnChange input is changed, the whole page will be saved and then a refresh is triggered with the saved page state.
This means that all of the methods will execute each time you change a submitOnChange input.

dynamicPage() options

Any valid option for page() will work for dynamicPage() also.
In addition, the refreshInterval input option is specific to dynamicPage() method:

preferences {
 page(name: "page0")
 page(name: "page1")
 page(name: "page3")
}

...

def page1() {
 dynamicPage(name: "page1", title: "Page 1", nextPage: "page2", refreshInterval: 5, uninstall: "true")
}

	refreshInterval

	Integer - refreshes the specific page of the SmartApp on the mobile device for the integer number of seconds.
In the above example, it refreshes the page1 every 5 seconds.

Private settings

Some SmartApps may need to reference sensitive data, such as API keys or secrets.
These should not be placed directly in the source code, since anyone with access to the source will then be able to view this sensitive information.

Instead, you should specify appSettings in the SmartApp’s definition:

definition(
 name: "your app name",
 namespace: "your-namespace",
 // ...
) {
 appSetting "setting1"
 appSetting "setting2"
}

The string passed to appSetting will be the name of the setting.
The actual values are set on the Edit SmartApp page, accessed by pressing the App Settings button.
Scroll down the page, expand the Settings group, and set the values as needed.

The values are stored in a map in app.appSettings.
You can access the values like this:

definition(
 //...
) {
 appSetting "apiSecret"
}

// get the value of apiSecret
def mySecret = appSettings.apiSecret

Note

All values in appSettings are stored as strings.
Any desired type conversion will need to be performed manually.

Any SmartApp that requires the use of API keys or other information that is sensitive in nature should use appSettings to store this information.

Examples

The Github page page-params-by-href.groovy [https://github.com/SmartThingsCommunity/Code/blob/master/smartapps/preferences/page-params-by-href.groovy] shows how to pass parameters to dynamic pages using the href element.

Almost every SmartApp makes use of preferences to some degree. You can browse them in the IDE under the “Browse SmartApp Templates” menu.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	SmartApps

Storing Data With State

SmartApps and Device Handlers execute in response to various Events or schedules; they are not continuously running.
Since each execution is executed independently, it has no information regarding previous executions.
This is often adequate for most SmartApps or Device Handlers, but sometimes, they need to remember information across executions.

For this reason, SmartApps and Device Handlers can store small amounts of data using a map-like API, and retrieve this data in later executions.

SmartApps can persist and retrieve data one of two ways - using the built-in state or atomicState objects (the details and difference between these implementations are discussed in detail in this document).
Device Handlers can use the built-in state object, just as SmartApps can, but do not have atomicState available.

Warning

As discussed in the documentation below, state and atomicState should never be used in the same SmartApp.

Doing so can cause inconsistencies or even loss of data.
At some point, this may be enforced through a compile-time check to prevent making this mistake.

Quick example

Consider this simple example that keeps track of how many time a switch is turned on:

preferences {
 section() {
 input "theswitch", "capability.switch"
 }
}

def installed() {
 initialize()
}

def updated() {
 unsubscribe()
 initialize()
}

def initialize() {
 // initialize counter
 state.switchCounter = 0

 subscribe(theswitch, "switch.on", incrementCounter)
}

def incrementCounter() {
 state.switchCounter = state.switchCounter + 1
 log.debug "switch has been turned on $state.switchCounter times"
}

As you can see, using State is straightforward - we can add and retrieve data just as we would with a map (actually, State is an implementation of java.util.Map, as discussed more below).

While working with State appears straightforward (and for simple use cases, it is), an understanding of the workings of State is necessary to avoid debugging headaches, inconsistent data results, and even potential data loss in certain scenarios.
With this information, you can make the best use of State (and Atomic State) and save yourself and your customers a good deal of trouble that could be encountered.

State and Atomic State overview

There are two objects injected into every SmartApp to persist and retrieve data across executions: state and atomicState (Device Handlers only have state available, but an understanding of how state works is still important for Device Handler developers).

Here are the key features and differences between State and Atomic State.
The details of both are discussed in this document, along with guidelines for understanding which to use in different situations.

State:

	State is an implementation of java.util.Map, making it simpler and more feature-rich to work with.

	Modifications (addition, removal, updating) to State within an execution are only persisted to external storage after execution completes. This makes State the more performant choice.

Atomic State:

	Atomic State is not an implementation of java.util.Map, so working with it is not as feature-rich as State.

	Modifications (additional, removal, updating) to Atomic State within an execution are persisted to external storage more or less immediately. This incurs a performance penalty when compared to State.

Persistence model

Both State and Atomic State use a database table to store values.
The same table is used by both State and Atomic State.

The values are stored as JSON strings.
Given the following code:

def initialize() {
 state.someString = "some string"
 state.someNum = 42
 state.collection = [k1: 1, k2: [n1: "nested"]]
}

The data stored in the database table would look like this:

	Installed SmartApp ID
	Name
	Value

	<installed-smartapp-id>
	someString
	“some string”

	<installed-smartapp-id>
	someNum
	42

	<installed-smartapp-id>
	collection
	{“k1”:1,”k2”:{“n1”:”nested”}}

How State works

All SmartApps and Device Handlers have available to them a state object (it is a map) to persist data between executions.

The general flow for SmartApp state is as follows:

	When a SmartApp or Device Handler is scheduled for execution, the state object is populated with the values from the database. The SmartThings platform also makes a copy of the contents of state prior to execution, for later comparison.

	SmartApp or Device Handler execution begins, and can add, read, or modify the contents in the state object just as with any other map.

	Execution ends. The SmartThings platform compares the state object at execution ends with the contents of state before execution began. If there are any changes (additions, removals, updates), those entries are written to the database.

This is summarized in the following diagram:

[image: ../_images/state-execution-lifecycle.png]

State and potential race conditions

Since state is initialized from persistent storage when a SmartApp executes, and is written to storage only when the application is done executing, there is the possibility that another execution could happen within that time window, and cause the values stored in state to appear inconsistent.

Consider the scenario of a SmartApp that keeps a counter of executions.
Each time the SmartApp executes, it increments the counter by 1.
Assume that the initial value of state.counter is 0.

	An execution (“Execution 1”) occurs, and increments state.counter by one:

state.counter = state.counter + 1 // counter == 1

	Another execution (“Execution 2”) occurs before “Execution 1” has finished. It reads state.counter and increments it by one:

state.counter = state.counter + 1 // counter == 1!!!

Because “Execution 1” hasn’t finished executing by the time that “Execution 2” begins, the value of counter is still 0!

Additionally, because the contents of state are only persisted when execution is complete, it’s also possible to inadvertently overwrite values (last finished execution “wins”).

To avoid this type of scenario, SmartApps can use Atomic State, which is discussed next.
Atomic State writes to the data store when a value is set, and reads from the data store when a value is read - not just when the application execution initializes and completes.

Before using Atomic State, you should read about how to choose between State and Atomic State.

How Atomic State works

SmartApps have available to them, in addition to state, also the object atomicState, which operates like state with two notable differences:

	Atomic State does not implement java.util.Map.

	When items are added or modified to Atomic State, those values are persisted more or less immediately (unlike State, which only persists its data when execution finishes).

The following diagram illustrates how Atomic State is initialized and updated when a SmartApp executes:

[image: ../_images/atomic-state-execution-lifecycle.png]

Choosing between State and Atomic State

Given the choice between State and Atomic State, which should you use?

In short, prefer State until analysis and testing shows you otherwise.
The reasons for this are:

	State is easier to work with, since it supports java.util.Map.

	State is more performant than Atomic State, since it does not read or write to external storage during SmartApp execution.

You may need to use Atomic State if code that updates a value in State may execute at the same time as another instance of the same SmartApp, updating the same State key, as discussed here.

Important

Never use both Atomic State and State in the same SmartApp. This can’t be emphasized enough - doing so may result in data inconsistency, data corruption, or even data loss.

What can be stored in State and Atomic State

state and atomicState values are stored as a JSON string by SmartThings.

Supported types

The following types are supported for storage in State and Atomic State:

	String

	long

	int

	BigDecimal

	true

	false

	null

	ArrayList

	Map

Here is an example illustrating this:

def initialize() {
 state.string = "string"
 state.int = 42
 state.long = now()
 state.decimal = 4.2
 state.yes = true
 state.no = false
 state.empty = null
 state.list = [1, 2, 3, 4]
 state.map = [a: 1, b: 2, c: "three"]
 runIn(60, check)
}

def check() {
 def isString = state.string instanceof String // -> true
 def isInt = state.int instanceof Integer // -> true
 def isLong = state.long instanceof Long // -> true
 def isDecimal = state.decimal instanceof BigDecimal // -> true
 def isBoolean = state.yes instanceof Boolean // -> true
 def isAlsoBoolean = state.no instanceof Boolean // -> true
 def isNull = state.empty == null // -> true
 def isList = state.list instanceof List // -> true
 def isMap = state.map instanceof Map // -> true

 // items in map
 def isMapInt = state.map.b instanceof Integer // -> true
 def isMapString = state.map.c instanceof String // -> true

Other object types

SmartThings objects (like Event, Device, etc.) cannot be stored in State or Atomic State.
If you attempt to store these objects, it will silently fail without any messages in Live Logging.

If you need to store such information on State, get the specific data you need from the object and assign it to state, like so:

def someEventHandler(evt) {
 state.someEvent = [name: evt.name, value: evt.value, id: evt.id]
}

Dates also require some care when storing in state.
If you were to store a date directly, you would end up with a string representation of the date when retrieving it.

def initialize() {
 state.date = new Date()
 runIn(30, check)
}

def check() {
 def isDate = state.date instanceof Date // -> false
 def isString = state.date instanceof Date // -> true
}

If you need to store time information, consider using an epoch time stamp, conveniently available via the now() method:

def installed() {
 state.installedAt = now()
}

def someEventHandler(evt) {
 def millisSinceInstalled = now() - state.installedAt
 log.debug "this app was installed ${millisSinceInstalled / 1000} seconds ago"

 // you can also create a Date object back from epoch time:
 log.debug "this app was installed at ${new Date(state.installedAt)}"
}

Working with the state object

state is an implementation of java.util.Map.
This means you can interact with the state object in a SmartApp or Device Handler just as you would with any other map.

Just remember that all modifications done to state within a SmartApp or Device Handler are only written to external storage after the execution completes.

Important

Be sure to read the Overview and How State works documentation before using state.

Adding values

Add values to state just as you would with a map:

state.someKey = "some val"
state['otherKey'] = 32

Retrieving values

Get values from state just as you would with a map, using either dot notation or index notation (we prefer dot notation for simplicity):

state.someKey = "some val"
log.debug "value of state.someKey: $state.someKey"

state.someOtherKey = 42
log.debug "value of state['someOtherKey']: ${state['someOtherKey']}"

Updating values

To update the value for an existing key in state, simply assign a new value to it:

state.someKey = "some val"
log.debug "state.someKey: $state.someKey" // -> some val
state.someKey = "updated"
log.debug "state.someKey: $state.someKey" // -> updated

Removing values

Because state is a map, we can use the remove() method to remove the item:

state.someKey = "some val"
log.debug "state: $state" // -> [someKey: "some val"]
state.remove('someKey')
log.debug "state: $state" // -> [:]

Iterating over state

We can iterate over the values in state just as we would with a map, using each():

state.keyOne = "val one"
state.keyTwo = "val two"

state.each {key, val ->
 log.debug "state key: $key, value: $val"
}

We can also find entries using any of Groovy’s collections methods like find(), findAll(), collect(), etc:

state.key_one = "val one"
state.key_two = "val two"
state.someOther = 42

def found = state.findAll {k, v ->
 k.startsWith('key_')
}

log.debug "found: $found" // -> [key_one: "val one", key_two: "val two"]

Working with collections

Working with collections in state is straightforward:

state.collection = [k1: "one", k2: "two", k3: [n1: 2, n2: 3]]
state.collection.k1 = "UPDATED"
state.k3.n1 = "ALSO UPDATED"

// [k1: "UPDATED", k2: "two", k3: [n1: 2, n2: "ALSO UPDATED"]
log.debug "state: $state"

Working with the atomicState object

For simple use cases, working with Atomic State is just like working with State - you can assign and retrieve values just as with State.
The key difference is that Atomic State does not implement java.util.Map, so using map operations like remove(), forEach(), find(), etc., will not work with Atomic State.

Important

Be sure to read the Overview, How Atomic State works, and Choosing between State and Atomic State documentation before using atomicState.

Adding values

We can add values to Atomic State just as we do with State:

atomicState.someKey = "some val"
log.debug "value of atomicState.someKey: $atomicState.someKey"

atomicState.someOtherKey = 42
log.debug "value of atomicState['someOtherKey']: ${atomicState['someOtherKey']}"

Updating values

To update the value for an existing key in Atomic State, simply assign a new value to it.

Note

Updating collections in atomicState is a special case, and is discussed here.

atomicState.someKey = "some val"
log.debug "atomicState.someKey: $atomicState.someKey" // -> some val
atomicState.someKey = "updated"
log.debug "atomicState.someKey: $atomicState.someKey" // -> updated

Removing values

Removing items from Atomic State is not possible, since it does not implement java.util.Map.
Instead, you can set the value to null:

atomicState.someExistingKey = null

Note that this does not remove the key from Atomic State; it simply sets the value to null.

Iterating over all values

Iterating over all items in Atomic State is not possible, because it does not implement java.util.Map.

Working with collections

Updating collections stored in Atomic State is different than working with collections in State.

Instead, you will need to assign the collection to a local variable, make changes as needed, then assign it back to atomicState.
Here’s an example:

def initialize() {
 atomicState.myMap = [key1: "val1"]
 log.debug "atomicState: $atomicState"

 // assign collection to local variable and update
 def temp = atomicState.myMap
 // update existing entry
 temp.key1 = "UPDATED"
 // add new entry
 temp.key2 = "val2"

 // assign collection back to atomicState
 atomicState.myMap = temp
 log.debug "atomicState: $atomicState"
}

Storage size limits

The contents of State and Atomic State are limited to 100,000 characters when serialized to JSON.

This should be more than sufficient for typical use cases.
If you find yourself running into this limitation, you should evaluate your use case - remember, State and Atomic State are intended to persist small amounts of data across executions. It is not intended to be an unbounded or large database.

To get the character size of state or atomicState, you can do:

def stateCharSize = state.toString().length()

When the character limit has been exceeded, a physicalgraph.exception.StateCharacterLimitExceededException will be thrown.

Important

Remember that when using state, the contents are written to the external data store when the app is finished executing - not immediately on write/read from the object.

This means that if the character limit is exceeded for state, you won’t be able to handle a StateCharacterLimitExceededException in your code - it will only be visible in the logs.

If using atomicState, which reads and writes to the external data store when the object is updated or accessed, you will be able to handle a StateCharacterLimitExceededException in your code.

Additional helper methods to get the remaining available size and the character limit will be added in a future release.

State in parent-child relationships

If you are attempting to access the State or Atomic State of a parent or child relationship, you may encounter a NullPointerException.
As a workaround, you can create a method to get State or Atomic State values like this:

def getStateValue(key) {
 return state[key]
}

You could create a similar method to update State or Atomic State across parent-child relationships, but be careful.
Because there could be multiple children for a parent SmartApp, for example, updating the parent’s State or Atomic State from the children may introduce additional complexity and opportunity for race conditions and inconsistent values.

Summary

	State and Atomic State allow developers to persist data across executions.

	State and Atomic State are both available to SmartApps; only State is available to Device Handlers.

	State and Atomic State use the same underlying database table.

	State values are persisted after the current execution ends. Atomic State values are persisted immediately.

	State implements java.util.Map, Atomic State does not.

	State and Atomic State allow for the storage of strings, numbers, booleans, null values, lists, and maps.

	Never mix State and Atomic State in the same SmartApp.

	Prefer State unless analysis and testing shows Atomic State is necessary.

	State and Atomic State are limited to 100,000 characters of data (when serialized to JSON) per installed SmartApp or Device Handler.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	SmartApps

Events and Subscriptions

Turn on a light when a door opens.
Turn the lights off at sunrise.
Send a message if a door opens when you’re not home.
These are all examples of event-handler SmartApps.
They follow a common pattern - subscribe to some Event, and take action when the Event happens.

This section will discuss Events and how you can subscribe to them in your SmartApp.

Subscribe to specific device Events

The most common use case for Event subscriptions is for device Events:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	preferences {
 section {
 input "theSwitch", "capability.switch"
 }
}

def install() {
 subscribe(theSwitch, "switch.on", switchOnHandler)
}

def switchOnHandler(evt) {
 log.debug "switch turned on!"
}

The handler method must accept an Event parameter.

Refer to the Event API documentation for more information about the Event object.

You can find the possible Events to subscribe to by referring to the Attributes column for a capability in the Capabilities Reference.
The general form we use is “<attributeName>.<attributeValue>”.
If the attribute does not have any possible values (for example, “battery”), you would just use the attribute name.

In the example above, the switch capability has the attribute “switch”, with possible values “on” and “off”.
Putting these together, we use “switch.on”.

Subscribe to all device Events

You can also subscribe to all states by just specifying the attribute name:

subscribe(theSwitch, "switch", switchHandler)

def switchHandler(evt) {
 if (evt.value == "on") {
 log.debug "switch turned on!"
 } else if (evt.value == "off") {
 log.debug "switch turned off!"
 }
}

In this case, the switchHandler method will be called for both the “on” and “off” Events.

Subscribe to multiple devices

If your SmartApp allows multiple devices, you can subscribe to Events for all the devices:

preferences {
 section {
 input "switches", "capability.switch", multiple: true
 }
}

def installed() {
 subscribe(switches, "switch", switchesHandler)
}

def switchesHandler(evt) {
 log.debug "one of the configured switches changed states"
}

Subscribe to Location Events

In addition to subscribing to device Events, you can also subscribe to Events for the user’s Location.

You can subscribe to the following Location Events:

	mode

	Triggered when the mode changes.

	position

	Triggered when the geofence position changes for this Location. Does not get triggered when the fence is widened or narrowed - only fired when the position changes.

	sunset

	Triggered at sunset for this Location.

	sunrise

	Triggered at sunrise for this Location.

	sunriseTime

	Triggered around sunrise time. Used to get the time of the next sunrise for this Location.

	sunsetTime

	Triggered around sunset time. Used to get the time of the next sunset for this Location.

Pass in the Location property automatically injected into every SmartApp as the first parameter to the subscribe method.

subscribe(location, "mode", modeChangeHandler)

// shortcut for mode change handler
subscribe(location, modeChangeHandler)

subscribe(location, "position", positionChange)
subscribe(location, "sunset", sunsetHandler)
subscribe(location, "sunrise", sunriseHandler)
subscribe(location, "sunsetTime", sunsetTimeHandler)
subscribe(location, "sunriseTime", sunriseTimeHandler)

Refer to the Sunset and Sunrise [http://docs.smartthings.com/en/latest/smartapp-developers-guide/sunset-and-sunrise.html] section for more information about sunrise and sunset.

The Event object

Event-handler methods must accept a single parameter, the Event itself.

Refer to the Event API documentation for more information.

A few of the common ways of using the Event:

def eventHandler(evt) {
 // get the event name, e.g., "switch"
 log.debug "This event name is ${evt.name}"

 // get the value of this event, e.g., "on" or "off"
 log.debug "The value of this event is ${evt.value}"

 // get the Date this event happened at
 log.debug "This event happened at ${evt.date}"

 // did the value of this event change from its previous state?
 log.debug "The value of this event is different from its previous value: ${evt.isStateChange()}"
}

Note

The contents of each Event instance will vary depending on the exact Event. If you refer to the Event reference documentation, you will see different value methods, like “floatValue” or “dateValue”. These may or may not be populated depending on the specific Event, and may even throw exceptions if not applicable.

See also

	Sunset and Sunrise

	Event API Documentation

	Location API Documentation

	Interacting with Devices

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	SmartApps

Working with Devices

SmartApps almost always interact with devices.
We often need to get information about a specific device (is this switch on?), or send a device a command (turn this switch off).

Device overview

Devices are the “things” that SmartApps interact with.
Devices may support one or many capabilities.

Capabilities represent the things a device knows (attributes) and the things they can do (commands).
They are an abstraction that allows us to work with many different manufacturer’s devices transparently.

To build a flexible SmartApp, we should write our SmartApp to work with any device that supports a given capability.
We don’t want to write a SmartApp that only works with a specific manufacturer’s switch, for example.
We want to write an app that works with any device that supports the switch capability.

Preferences–selecting the devices

To allow the user to select devices that support a given capability, we use the preferences input element:

preferences {
 section {
 input "presenceSensors", "capability.presenceSensor"
 }
}

The above example will allow the user to select any device that supports the presence sensor capability.
This could be a mobile phone, or a SmartSense presence sensor [https://shop.smartthings.com/#!/products/smartsense-presence].
We don’t care about the specific device - we just declare we want a device that supports the presence sensor capability.

You can refer to the Capabilities Reference for information on all the supported capabilities.
The “Preferences Reference” column tells you what to use in your preferences for a given capability.

Interacting with devices

After you have declared the devices your SmartApp needs to interact with, a Device object instance will be available in your SmartApp, with the name that you provided.

preferences {
 section {
 input "theSwitch", "capability.switch"
 }
}

def someEventHandler(evt) {
 theSwitch.on()
}

Device attributes

Attributes represent the state of a device. A device that supports the “temperatureMeasurement” capability has a “temperature” attribute, for example.

Attributes have state - the “temperature” attribute has an associated State object that contains information about the temperature (its value, the date it was recorded, etc.).

Attribute data is stored in the SmartThings Cloud and updated when the device reports its status.

Device commands

Devices may expose one or many commands.
Commands are the things that devices can do.
A switch supports the “on” and “off” commands, that turn the switch “on” and “off”, respectively.

Not all devices have commands.
Commands typically perform some sort of physical actuation (turn a switch on, or unlock a lock, for example).
A humidity sensor has nothing to physically actuate, for example.

Getting device current values

Information about the most recently reported device attribute state can be retrieved in two ways:

currentState() and <attribute name>State return a State object that encapsulates the most recently reported state of the device.

preferences {
 section() {
 input "tempSensor", "capability.temperatureMeasurement"
 }
}

def someEventHandler(evt) {

 def currentState = tempSensor.currentState("temperature")
 log.debug "temperature value as a string: ${currentState.value}"
 log.debug "time this temperature record was created: ${currentState.date}"

 // shortcut notation - temperature measurement capability supports
 // a "temperature" attribute. We then append "State" to it.
 def anotherCurrentState = tempSensor.temperatureState
 log.debug "temperature value as an integer: ${anotherCurrentState.integerValue}"
}

latestValue(), currentValue(), and current<Uppercase attribute name> returns the most recently reported attribute value.
These can be used interchangeably; they all do the same thing.

preferences {
 section() {
 input "myLock", "capability.lock"
 }
}

def someEventHandler(evt) {
 def currentValue = myLock.currentValue("lock")
 log.debug "the current value of myLock is $currentValue"

 def latestValue = myLock.latestValue("lock")
 log.debug "the latest value of myLock is $latestValue"

 // Lock capability has "lock" attribute.
 // <deviceName>.current<uppercase attribute name>:
 def anotherCurrentValue = myLock.currentLock
 log.debug "the current value of myLock using shortcut is: $anotherCurrentValue"
}

Important

The current or latest state for an attribute value is the most recent value the device has reported to SmartThings.
It is not calculated by polling or otherwise directly communicating with the device.

For example, someDevice.currentValue('someAttribute') will get the most recently reported value for the specified attribute.
If the device has malfunctioned, or the SmartThings Hub has gone offline, it is possible that the value returned is not consistent with the physical status of the device.

Querying event history

To get a list of Events in reverse chronological order (newest first), use the events() method:

// returns the last 10 by default
myDevice.events()

// use the max option to get more results
myDevice.events(max: 30)

To get a list of Events in reverse chronological order (newest first) since a given date, use the eventsSince method:

// get all events for this device since yesterday (maximum of 1000 events)
myDevice.eventsSince(new Date() - 1)

// get the most recent 20 events since yesterday
myDevice.eventsSince(new Date() - 1, [max: 20])

To get a list of Events between two dates, use the eventsBetween method:

// get all events between two days ago and yesterday (up to 1000 events)
// returned events sorted in inverse chronological order (newest first)
myDevice.eventsBetween(new Date() - 2, new Date() - 1)

// get the most recent 50 events in the last week
myDevice.eventsBetween(new Date() - 7, new Date(), [max: 50])

Similar date-constrained methods exist for getting State information for a device.

Refer to the full Device API documentation for more information.

Sending commands

SmartApps often need to send commands to a device - tell a switch to turn on, or a lock to unlock, for example.

The commands available to your device will vary by device.
You can refer to the Capabilities Reference to see the available commands for a given capability.

Sending a command is as simple as calling the command method on the device:

myLock.lock()
myLock.unlock()

Some commands may expect parameters.
All commands can take an optional map parameter, as the last argument, to specify delay time in milliseconds to wait before the command is sent to the device:

// wait two seconds before sending on command
mySwitch.on([delay: 2000])

Note

Because specific devices can provide more commands than its supported capabilities, it is possible to have more available commands than the capability declares.
As a best practice, you should write your SmartApp to the capabilities specification, and not to any specific device.
If, however, you are writing a SmartApp for a very specific case, and are willing to forgo the flexibility, you may make use of this ability.

Interacting with multiple devices

If you specified multiple:true in your device preferences, the user may have selected more than one device.
Your device instance will refer to a list of objects if this is the case.

You can send commands to all the devices without needing to iterate over each one:

preferences {
 section {
 input "switches", "capability.switch", multiple: true
 }
}

def someEventHandler(evt) {
 log.debug "will send the on() command to ${switches.size()} switches"
 switches.on()
}

You can also retrieve state and event history for multiple devices, using the methods discussed above.
Instead of single values or objects, they will return a list of values or objects.

Here’s a simple example of getting all switch state values and logging the switches that are on:

preferences {
 section {
 input "switches", "capability.switch", multiple: true
 }
}

def someEventHandler(evt) {
 // returns a list of the values for all switches
 def currSwitches = switches.currentSwitch

 def onSwitches = currSwitches.findAll { switchVal ->
 switchVal == "on" ? true : false
 }

 log.debug "${onSwitches.size()} out of ${switches.size()} switches are on"
}

See also

	Capabilities Reference

	Preferences and Settings

	Events and Subscriptions

	Device API Documentation

	Event API Documentation

	State API Documentation

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	SmartApps

Modes

SmartThings allows users to specify that SmartApps only execute when in certain modes.

Overview

Modes can be thought of as behavior filters for the smart home. Users can change how things act or behave based on the mode you’re in. For example:

	When in “Home” mode, motion should turn on a light.

	When in “Away” mode, motion should send a text message and turn on an alarm.

SmartThings comes with a few pre-configured modes, such as “Home”, “Away”, and “Night”.
Users can also create their own modes for each Location.

Getting the current Mode

You can get the current mode by using the mode or currentMode property on the location in a SmartApp:

def currMode = location.mode // "Home", "Away", etc.
log.debug "current mode is $currMode"

def anotherWay = location.currentMode
log.debug "current mode is $anotherWay"

Getting all Modes

You can get a list of all the modes for the Location the SmartApp is installed into:

def allModes = location.modes // ex: [Home, Away, Night]
log.debug "all modes for this location: $allModes"

Setting the Mode

You can use setLocationMode() or location.setMode() to set the mode for the Location:

setLocationMode("Away")

location.setMode("Away")

These methods will raise an error if the mode specified does not exist for the Location.

Allowing users to select Modes

In the SmartApp preferences block, you can specify that the user select a mode by using the "mode" input type:

input "modes", "mode", title: "select a mode(s)", multiple: true

This will allow the user to select a mode (or multiple modes), and the SmartApp can then vary its behavior based upon the mode(s) selected.

You can also use the mode() method to allow a user to select a mode that this SmartApp will execute for:

mode(title: "Set for specific mode(s)")

The SmartApp will then only execute when in the selected mode, without any action needed by the developer to determine the correct mode.

You can learn more about the various ways to allow a user to select a mode here.

Mode events

You can listen for a mode change by subscribing to the "mode" on the location object:

def installed() {
 subscribe(location, "mode", modeChangeHandler)
}

def modeChangeHandler(evt) {
 log.debug "mode changed to ${evt.value}"
}

In the example above modeChangeHandler() will be called whenever the mode changes for the Location this SmartApp is installed into.

Example

The following example is a simplified version of the “Scheduled Mode Change” SmartApp. You can view the SmartApp in the IDE templates for the full example.

This example shows how to use the "mode" input type to ask the user to select a mode, and then (based on the user-defined schedule), changes the mode as specified.

preferences {
 section("At this time every day") {
 input "time", "time", title: "Time of Day"
 }
 section("Change to this mode") {
 input "newMode", "mode", title: "Mode?"
 }
}

def installed() {
 initialize()
}

def updated() {
 unschedule()
 initialize()
}

def initialize() {
 schedule(time, changeMode)
}

def changeMode() {
 log.debug "changeMode, location.mode = $location.mode, newMode = $newMode, location.modes = $location.modes"

 if (location.mode != newMode) {
 if (location.modes?.find{it.name == newMode}) {
 setLocationMode(newMode)
 } else {
 log.warn "Tried to change to undefined mode '${newMode}'"
 }
 }
}

In the changeMode() method above, there are a few things worth calling out.

First, notice we first check if we are already in the mode specified - if we are, we don’t do anything:

if (location.mode != newMode)

If we do need to change the mode, we first verify that the mode actually exists.
This ensures that we don’t try and set the mode to one that does not exist for the Location.

if (location.modes?.find{it.name == newMode})

Further reading

	Mode Input

	Location Object

	Mode Object

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	SmartApps

Routines

Routines (or Hello Home Actions in older mobile apps) allow certain things to happen when the Routine is invoked.

[image: ../_images/routines.png]

Overview

Routines allow for certain things to happen whenever it executes. SmartThings comes with a few Routines already installed:

	Good Morning! - You or the house is waking up

	Good Night! - You or the house is going to sleep

	Goodbye! - You’re leaving the house

	I’m Back! - You’ve returned to the house

Each Routine can be configured to do certain things. For example, when “I’m Back!” executes, you can set the Mode to “Home”, unlock doors, adjust the thermostat, etc.

Routines exist for each Location in a SmartThings account.

Get available Routines

You can get the Routines for the Location the SmartApp is installed into by accessing the helloHome object on the location:

def actions = location.helloHome?.getPhrases()*.label

Tip

If the above code example, with the ? and * operator looks foreign to you, read on.

The ? operator allows us to safely avoid a NullPointerException should helloHome be null. It’s one of Groovy’s niceties that allows us to avoid wrapping calls in if(someThing != null) blocks. Read more about it here [http://docs.groovy-lang.org/latest/html/documentation/#_safe_navigation_operator].

The * operator is called the spread operator, and it invokes the specified action (get the label, in the example above) on all items in a collection, and collects the result into a list. Read more about it here [http://docs.groovy-lang.org/latest/html/documentation/#_spread_operator].

Execute Routines

To execute a Routine, you can call the execute() method on helloHome:

location.helloHome?.execute("Good Night!")

Allowing users to select Routines

A SmartApp may want to allow a user to execute certain Routines in a SmartApp.
Since the Routines for each Location will vary, we need to get the available Routines, and use them as options for an enum input type.

This needs to be done in a dynamic preferences page, since we need to execute some code to populate the available actions:

preferences {
 page(name: "selectActions")
}

def selectActions() {
 dynamicPage(name: "selectActions", title: "Select Hello Home Action to Execute", install: true, uninstall: true) {

 // get the available actions
 def actions = location.helloHome?.getPhrases()*.label
 if (actions) {
 // sort them alphabetically
 actions.sort()
 section("Hello Home Actions") {
 log.trace actions
 // use the actions as the options for an enum input
 input "action", "enum", title: "Select an action to execute", options: actions
 }
 }
 }
}

You can read more about the enum input type and dynamic pages here.

You can then access the selected phrase like so:

def selectedAction = settings.action

Routine Events

When a Routine is executed, a "routineExecuted" event is created for that Location.
Here’s how you can subscribe to a Routine being executed in a SmartApp:

def initialize() {
 // subscribe to the "routineExecuted" event on the location
 subscribe(location, "routineExecuted", routineChanged)
}

def routineChanged(evt) {
 log.debug "routineChanged: $evt"

 // name will be "routineExecuted"
 log.debug "evt name: ${evt.name}"

 // value will be the ID of the SmartApp that created this event
 log.debug "evt value: ${evt.value}"

 // displayName will be the name of the routine
 // e.g., "I'm Back!" or "Goodbye!"
 log.debug "evt displayName: ${evt.displayName}"

 // descriptionText will be the name of the routine, followed by the action
 // e.g., "I'm Back! was executed" or "Goodbye! was executed"
 log.debug "evt descriptionText: ${evt.descriptionText}"
}

Example

This example simply shows executing a selected Routine when a switch turns on, and another action when a switch turns off:

preferences {
 page(name: "configure")
}

def configure() {
 dynamicPage(name: "configure", title: "Configure Switch and Phrase", install: true, uninstall: true) {
 section("Select your switch") {
 input "theswitch", "capability.switch",required: true
 }

 def actions = location.helloHome?.getPhrases()*.label
 if (actions) {
 actions.sort()
 section("Hello Home Actions") {
 log.trace actions
 input "onAction", "enum", title: "Action to execute when turned on", options: actions, required: true
 input "offAction", "enum", title: "Action to execute when turned off", options: actions, required: true
 }
 }
 }
}

def installed() {
 log.debug "Installed with settings: ${settings}"
 initialize()
}

def updated() {
 log.debug "Updated with settings: ${settings}"
 unsubscribe()
 initialize()
}

def initialize() {
 subscribe(theswitch, "switch", handler)
 subscribe(location, "routineExecuted", routineChanged)
 log.debug "selected on action $onAction"
 log.debug "selected off action $offAction"
}

def handler(evt) {
 if (evt.value == "on") {
 log.debug "switch turned on, will execute action ${settings.onAction}"
 location.helloHome?.execute(settings.onAction)
 } else {
 log.debug "switch turned off, will execute action ${settings.offAction}"
 location.helloHome?.execute(settings.offAction)
 }
}

def routineChanged(evt) {
 log.debug "routineChanged: $evt"
 log.debug "evt name: ${evt.name}"
 log.debug "evt value: ${evt.value}"
 log.debug "evt displayName: ${evt.displayName}"
 log.debug "evt descriptionText: ${evt.descriptionText}"
}

Further reading

	Preferences and Settings Guide

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	SmartApps

Scheduling

SmartApps and Device Handlers often need to schedule certain actions to take place at a given point in time.
For example, an app may want to turn off the lights five minutes after someone leaves.
Or, an app may want to turn on the lights every day at a certain time.

Overview

Broadly speaking, there are a few different ways we might want to schedule something to happen:

	Do something after a certain duration of time from now.

	Do something once at a certain time in the future.

	Do something on a recurring schedule.

We’ll look at each scenario in detail, and at the methods SmartThings makes available to address these requirements.

Note

When using the scheduler APIs, the schedule will be created using the time zone of the SmartApp’s Location.

Schedule from now–runIn()

A SmartApp may want to take some action within a certain duration of time after some event has occurred.
Consider a few examples:

	Turn a light off two minutes after a door closes.

	Adjust the thermostat ten minutes after everyone leaves.

	If a door opens and is not shut after five minutes, send a notification.

All these scenarios follow a common pattern: when a certain event happens, take some action after a given duration of time.
This can be accomplished this by using the runIn() method.

The runIn() method executes a specified handler method after a given number of seconds have elapsed.

def someEventHandler(evt) {
 // execute handler in five minutes from now
 runIn(60*5, handler)
}

def handler() {
 theswitch.off()
}

By default, if a method is scheduled to run in the future, and then if another call to runIn() with the same method is made, the last one overwrites the previously scheduled method.
This is usually preferable.

Consider a situation where we have a switch scheduled to turn off after five minutes of a door closing:

	First, the door closes at 2:50 and we schedule the switch to turn off after five minutes (2:55).

	Then, two minutes later (2:52), the door opens and closes again - another call to runIn() will be made to schedule the switch to turn off in five minutes from now (2:57).

By default, there will now be one scheduled execution, at 2:57.
And in this scenario, that is preferable.

But if don’t want the most recent scheduled handler to execute, we can specify [overwrite: false]:

def someEventHandler(evt) {
 runIn(300, handler, [overwrite: false])
}

def handler() {
 // need to handle multiple calls since overwrite:false specified
}

We would now have two schedules to turn off the switch - one at 2:55, and one at 2:57.
So, if you do specify [overwrite: false], be sure to write your handler so that it can handle multiple calls.

Note

It is important to note that you should not rely on runIn() being called in exactly the specified number of seconds.
SmartThings will attempt to execute the method within a minute of the time specified, but cannot guarantee it.
See the Best practices topic below for more information.

Run once in the future–runOnce()

Some SmartApps may need to schedule certain actions to happen once at a specific time and date. runOnce() handles this case.

You can pass a Date object or a Java ISO-8601 formatted string [1].

preferences {
 input "executeTime", "time", title: "enter a time to execute every day"
}

def initialized() {
 // execute once at the time specified by the user
 runOnce(executeTime, handler)

 // execute tomorrow at the current time
 runOnce(new Date() + 1, handler)
}

def handler() {
 log.debug "handler executed at ${new Date()}"
}

Like runIn(), you can also specify the overwrite behavior of runOnce():

runOnce(new Date() + 1, handlerMethod, [overwrite: false])

Run on a recurring schedule

Often, there is a need to schedule a job to run on a specific schedule.
For example, maybe you want to turn the lights off at 11 PM every night.
Or, you might need to execute a certain action every X minutes.

SmartThings provides the schedule() and various runEvery*() methods to allow you to create recurring schedules.

The various schedule() methods follow a similar form - they take an argument representing the desired schedule, and the method to be called on this schedule.

Note

If a method is already scheduled, and later you call schedule() with that method, then that method will be executed as per the new schedule.

Schedule once per day

Use the schedule() method to execute a handler method every day at a certain time:

preferences {
 input "theTime", "time", title: "Time to execute every day"
}

def initialize() {
 schedule(theTime, handler)
}

// called every day at the time specified by the user
def handler() {
 log.debug "handler called at ${new Date()}"
}

You can also use schedule() with a Date object.
Only the time portion of the Date will be used to derive the schedule.

// execute every day at the current time
schedule(new Date(), handler)

Finally, you can pass a Long representing the desired time in milliseconds (using Unix time [http://en.wikipedia.org/wiki/Unix_time]) to schedule():

def someEventHandler(evt) {
 // call handlerMethod every day, at two minutes from the current time
 schedule(now() + 120000, handlerMethod)
}

def handlerMethod() {
 ...
}

Schedule every X minutes or hours

For common recurring schedules, SmartThings provides a few convenience APIs that we can use.

These methods work by creating a random start time in X minutes or hours, and then every X minutes or hours after that.
For example, runEvery5Minutes(handlerMethod) will execute handlerMethod() at a random time in the next five minutes, and then run every five minutes from then.

These methods have the advantage of randomizing the start time for schedules, which reduces the load on the SmartThings scheduler, and results in better performance for end users.
As such, these methods should be preferred over cron expressions when available.

The currently available methods are:

	runEvery1Minute()

	runEvery5Minutes()

	runEvery10Minutes()

	runEvery15Minutes()

	runEvery30Minutes()

	runEvery1Hour()

	runEvery3Hours()

Using these methods is similar to other scheduling methods:

def initialize() {
 runEvery5Minutes(handlerMethod)
}

def handlerMethod() {
 log.debug "handlerMethod called at ${new Date()}"
}

Schedule using cron

Important

Prefer the runEvery*() methods to creating your own cron schedule when possible.
These methods are documented above in the Schedule every X minutes or hours section.

Scheduling jobs to execute at a particular time is useful, but what if, for example, we want a method to execute at fifteen minutes past the hour, every hour?
SmartThings allows you to pass a cron expression to the schedule() method to accomplish this.

def initialize() {
 // execute handlerMethod every hour on the half hour.
 schedule("0 30 * * * ?", handlerMethod)
}

def handlerMethod() {
 ...
}

A cron expression is a way to specify a recurring schedule, based on the UNIX cron tool.
The cron expression supported by SmartThings is a string of six or seven fields, separated by white space.
The seconds field is the left most field.
The below table describes these fields.

	Field
	Allowed Values
	Required
	Allowed Wildcards

	Seconds
	0-59
	Yes
	*

	Minutes
	0-59
	Yes
	, - * /

	Hours
	0-23
	Yes
	, - * /

	Day of Month
	1-31
	Yes
	, - * ? / L W

	Month
	1-12 or JAN-DEC
	Yes
	, - * /

	Day of Week
	1-7 or SUN-SAT
	Yes
	, - * ? / L

	Year
	empty, 1970-2099
	No
	, - * /

Allowed wildcards are:

	, (comma) is used to specify additional values. For example, SAT,SUN,MON in the Day of Week field means “the days Saturday, Sunday, and Monday.”

	- (hyphen) is used to specify ranges. For example, 5-7 in the Hours field means “the hours 5, 6 and 7”.

	* (asterisk) is used to specify all values in the field. For example, * in the Hours field means every hour.

	? (question mark) is used to specify any value. For example, ? in the Day of Week field means regardless of what the day of the week is.

	/ (forward slash) is used to specify increments. For example, 5/15 in the Minutes field means “the minutes 5, 20, 35, and 50”.

	L is used to specify the last day of the month when used in the Day of Month field and the last day of the week when used in the Day of Week fields.

	W is used to specify a weekday (Monday-Friday) that is nearest to the given day when used in the Day of Month field. For example, if you specify 21W in the Day of Month field, it means: “the nearest weekday to the 21st of the month”. So if the 21st is a Saturday, the trigger will fire on Friday the 20th. If the 21st is a Sunday, the trigger will fire on Monday the 22nd. If the 21st is a Tuesday, then it will fire on Tuesday the 21st. However if you specify 1W as the value for day-of-month, and the 1st is a Saturday, the trigger will fire on Monday the 3rd, and not on Friday, as it will not cross over the boundary of a month. The W character can only be specified when the day-of-month is a single day, not a range or list of days.

Warning

You cannot specify both the Day of Month and the Day of Week fields in the same cron expression.
If you specifiy one of these fields, the other one must be ?.

Here is an example with the two fields, i.e., the Day of Month and the Day of Week.
In the table below cases A and C are invalid.

	Case
	Day of Month
	Day of Week
	Cron Interpretation

	A
	*
	MON
	Every day of month and every Monday

	B
	*
	?
	Every day of month and whatever be the day of week

	C
	23
	*
	Every 23rd of month and every day of week

	D
	?
	*
	Whatever be the day of month and every day of week

We recommend that you test your cron expression before using it in a SmartApp or Device Handler.
The cron expression test tool we use is http://www.cronmaker.com/.

Note

Cron jobs are only allowed to run at a rate of 1 minute or slower.
If your cron expression runs faster than once per minute, it will be limited to a one minute interval.
For more information, see this community post [https://community.smartthings.com/t/announcement-changes-coming-to-cron-jobs/41656].

High volume cron schedules are encouraged to specify a random seconds field.
This helps to avoid a large number of scheduled executions being queued up at the same time. If you can, use a random second.

Here are some common examples for recurring schedules using cron:

	Expression Description
	Description

	schedule("12 30 * * * ?", handler)
	Execute handler() every hour on the half hour (using a randomly chosen seconds field of 12)

	schedule("23 0/7 * * * ?", handler)
	Execute handler() every 7 minutes beginning at 0 minutes after the hour (using a randomly chosen seconds field of 23)

	schedule("0 0/5 10-11 * * ?", handler)
	Execute handler() every 5 minutes beginning at 0 minutes after the hour, between the hours of 10 and 11 AM, at 0 seconds past the minute

	schedule("48 25 10 ? * MON-FRI", handler)
	Execute handler() at 10:25 AM Monday through Friday (using a randomly chosen seconds field of 48)

Warning

Note how you use * as it may unwittingly lead to high-frequency schedules.
You may have intended to use ?.
Note the difference between *, which means “every” and ?, which means “any”.

For example, * */5 * * * ? means every 5th minute, run 60 times within that minute.
That’s almost surely not what you want, and SmartThings will not execute your schedule that frequently (see below).

If you were trying to execute every X minutes, it would look like this: 0 0/X * * * ? where X is the minute value.

Passing data to the handler method

Sometimes it is useful to pass data to the handler method.
This is possible by passing in a map as the last argument to the various schedule methods with data as the key and another map as the value.

def someEventHandler(evt) {
 runIn(60, handler, [data: [flag: true]])
}

def handler(data) {
 if (data.flag) {
 theswitch.off()
 }
}

By passing data directly to the handler method, you can avoid having to store data in the SmartApp or Device Handler state.
The following scheduling methods support passing data to their handler methods:

	runIn()

	runOnce()

	schedule()

	All runEveryXMinutes() methods

	All runEveryXHours() methods

Note

To also specify the overwrite flag, pass it as an additional property in the map: [overwrite: false, data: [foo: 'bar']].

Similar to state, only data that can be serialized to JSON can be passed to the handler.

The amount of data is limited to 2500 characters after being serialized.
If this limit is exceeded, a physicalgraph.exception.DataCharacterLimitExceededException exception will be thrown, and the schedule will not be created.

Removing scheduled executions

You can remove scheduled executions using the unschedule() method:

def initialize() {
 // schedule execution every 5 minutes
 runEvery5Minutes(handler)
}

def someEventHandler(evt) {
 // remove the scheduled execution
 unschedule(scheduledHandler)
}

def handler() {
 log.debug "in handler, current time is ${new Date()}"
}

This will remove schedules created with any of the scheduling methods (runIn(), runOnce(), and schedule()).

You can also call unschedule() with no arguments to remove all schedules:

// remove all scheduled executions for this SmartApp install
unschedule()

Note

Due to the way that the scheduling service is currently implemented, unschedule() is a fairly expensive operation, and may take many seconds to execute.

Viewing schedules in the IDE

You can view schedules for any installed SmartApp in the IDE.

Note

Schedules can only be viewed for SmartApps installed via the mobile client.
Schedules for Device Handlers and SmartApps installed via the IDE simulator can not be viewed.

	In the IDE, navigate to Locations.

	Select the Location the SmartApp is installed into.

	Click the List SmartApps link:

[image: ../_images/view-installed-smartapps.png]

	Click the name of the SmartApp you wish to view the schedules for.

You will then see various information about the installed SmartApp, including the scheduled executions:

[image: ../_images/ide-scheduled-jobs.png]
You can view all the scheduled jobs, including the next scheduled run time, the status, and the schedule.

You can also view the SmartApp job history, which shows the previous executions and the scheduled vs. actual execution time, the delay between the scheduled time and actual time, and the total execution time for the handler method:

[image: ../_images/ide-job-history.png]

Best practices

When using any of the scheduling APIs, it’s important to understand some limitations and best practices.

Avoid chained runIn() calls

Use runIn() to schedule one-time executions, not recurring schedules.

For example, do not do this:

def initialize() {
 runIn(60, handler)
}

def handler() {
 // do something here

 // schedule to run again in one minute - this is an antipattern!
 runIn(60, handler)
}

The above example uses a chained runIn() pattern to create a recurring schedule to execute every minute.

This pattern is prone to failure, because any single scheduled execution failure that results in handler() not being called means it will not be able to reschedule itself.
One failure causes the whole chain to collapse.

If you need a recurring schedule, use cron.

Note

Using a chained runIn() pattern can be acceptable for certain short-running tasks, such as gradually dimming a bulb.
But for anything long-running, use cron.

Prefer runEvery*() over cron

Use any of the runEvery*() methods instead of creating your own cron schedule when possible.

Execution time may not be in exact seconds

SmartThings will try to execute your scheduled job at the specified time, but cannot guarantee it will execute at that exact moment.
As a general rule of thumb, you should expect that your job will be called within the minute of scheduled execution.
For example, if you schedule a job at 5:30:20 (20 seconds past 5:30) to execute in five minutes, we expect it to be executed at some point in the 5:35 minute.

Do not aggressively schedule

Every scheduled execution incurs a cost to launch the SmartApp, and counts against the Rate Limits.
While there are some limitations in place to prevent excessive scheduling, it’s important to note that excessive polling or scheduling is discouraged.
It is one of the items we look for when reviewing community-developed SmartApps or device-type handlers.

unschedule() is expensive

As discussed above, unschedule() is currently a potentially expensive operation.

We plan to address this in the near future. Until we do, be aware of the potential performance impacts of calling unschedule().

Note that when the SmartApp is uninstalled, all scheduled executions are removed - there is no need to call unschedule() in the uninstalled() method.

Number of scheduled executions limit

The canSchedule() method returns false if four or more scheduled executions are created.

This currently does not actually impact the ability to create additional schedules, but such a limit may be imposed in the near future.
A community post will be made in advance of any such change.

Examples

Here are some examples in the SmartThingsPublic repository that make use of schedules:

	Once-A-Day [https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/once-a-day.src/once-a-day.groovy] uses schedule() turn switches on and off every day at a specified time.

	Turn-It-On [https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/turn-it-on-for-5-minutes.src/turn-it-on-for-5-minutes.groovy] uses runIn() to turn a switch off after five minutes.

	Left-It-Open [https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/left-it-open.src/left-it-open.groovy] uses runIn() to see if a door has been left open for a specified number of minutes.

	[1]	You may notice that some of the scheduling APIs accept a string to represent the the date/time to be executed.
This is a result of when you define a preference input of the “time” type, it uses a String representation of the value entered.
When using this value later to set up a schedule, the APIs need to be able to handle this type of argument.
When simply using the input from preferences, you don’t need to know the details of the specific date format being used.
But, if you wish to use the APIs with string inputs directly, you will need to understand their expected format.
SmartThings uses the Java standard format of “yyyy-MM-dd’T’HH:mm:ss.SSSZ”. More technical readers may recognize this format as ISO-8601 (Java does not fully conform to this format, but it is very similar).
Full discussion of this format is beyond the scope of this documentation, but a few examples may help:
“January 09, 2015 3:50:32 GMT-6 (Central Standard Time)” converts to “2015-01-09T15:50:32.000-0600”, and “February 09, 2015 3:50:32:254 GMT-6 (Central Standard Time)” converts to “2015-02-09T15:50:32.254-0600”
For more information about date formatting, you can review the SimpleDateFormat JavaDoc [http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html].

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	SmartApps

Working With Time

Monitoring the home and triggering Events based on what is detected often entails asking the question: “Is it the right time?” and then based on the answer, perform “Do this, or not,” actions.
For example, a SmartApp can turn on a room light when a door is opened but only during certain hours, or wake up the house in the morning at different times based on what day of the week it is.

Time methods can be used in a SmartApp to accomplish such automations.
These time methods support a variety of time-related queries such as get the current time or today’s date, know the time zone, or find out if a given moment of time is between a preset time-window.

Taking action within a time window

A common automation with SmartThings is to turn on a room light when the door is opened between certain hours, and do not turn on the light during other times.
The timeOfDayIsBetween() method comes in handy to set up a SmartApp that accomplishes such an automation.

Refer to the SmartApp code below.
First we set up the preferences() section with openCloseSensor, an open/close sensor that detects when the door is opened, and a roomLight that controls the switch to the room light.
With the fromTime and toTime inputs the user will set up the preferred time-window during which the light should be turn on whenever the door is opened.

preferences {
 section("Select SmartThings") {
 input "openCloseSensor", "capability.contactSensor", title: "Which door?", required: true, multiple: false
 input "roomLight", "capability.switch", title: "Which room light?", required: true, multiple: false
 }
 section("Turn on between what times?") {
 input "fromTime", "time", title: "From", required: true
 input "toTime", "time", title: "To", required: true
 }

}

Next, we begin watching the door by creating the contactHandler event handler and have it subscribe to the contact.open attribute of the openCloseSensor contact sensor.
This enables the contactHandler event handler to be sensitive only to the open Event of the contact sensor, i.e, when the door is opened.

def initialize() {
 subscribe(openCloseSensor, "contact.open", contactHandler)
}

In the contactHandler() implementation below, we ensure our SmartApp performs the following checks:

	Is the door open? No? Then do nothing (in this particular example we do not care if the door is closed).

	If the door is open, then are we within the time-window? No? Then do nothing.

	If the door is open, and we are within the time-window, then turn on the room light.

def contactHandler(evt) {

 // Door is opened. Now check if the current time is within the visiting hours window
 def between = timeOfDayIsBetween(fromTime, toTime, new Date(), location.timeZone)
 if (between) {
 roomLight.on()
 } else {
 roomLight.off()
 }
}

The timeOfDayIsBetween() method returns a Boolean true or false following the logic in the table below.

	fromTime
	toTime
	new Date()
	between

	12:30
	12:32
	12:29:59
	false

	12:30
	12:32
	12:30:00
	true

	12:30
	12:32
	12:30:01
	true

	12:30
	12:32
	12:31:59
	true

	12:30
	12:32
	12:32:00
	true

	12:30
	12:32
	12:32:01
	false

Execute only on certain days

A natural extension to the above automation of taking action within a time window is taking action only within a time window on selected days of the week.
This can be easily achieved by a slight modification to the above SmartApp.

First we prompt the user to select the preferred days of the week, by adding an enumerated input days in the preferences section, as below:

preferences {
 section("On Which Days") {
 input "days", "enum", title: "Select Days of the Week", required: true, multiple: true, options: ["Monday": "Monday", "Tuesday": "Tuesday", "Wednesday": "Wednesday", "Thursday": "Thursday", "Friday": "Friday"]
 }
}

Next, we make modifications to the contactHandler event handler so that it checks for the following conditions:

	Is the door open? No? Then do nothing (as in the earlier example, we do not care if the door is closed).

	If the door is open, then is today one of the preferred days-of-the-week?

	If no, then do nothing.

	If yes, i.e., if today is one of the preferred days-of-the-week, then are we within the time-window? No? Then do nothing.

	If yes, then turn on the room light.

def contactHandler(evt) {

 // Door is opened. Now check if today is one of the preset days-of-week
 def df = new java.text.SimpleDateFormat("EEEE")
 // Ensure the new date object is set to local time zone
 df.setTimeZone(location.timeZone)
 def day = df.format(new Date())
 //Does the preference input Days, i.e., days-of-week, contain today?
 def dayCheck = days.contains(day)
 if (dayCheck) {
 def between = timeOfDayIsBetween(fromTime, toTime, new Date(), location.timeZone)
 if (between) {
 roomLight.on()
 } else {
 roomLight.off()
 }
 }
}

Working with time zones

Often we may want to set or adjust the SmartApp automation settings while we are traveling, in which case the time zone of the hub may differ from the time zone of the mobile app (our current travel location).
For this reason, the code defining the SmartApp should be aware of the time zone of the physical location of the hub.

When working with time-related methods, SmartThings provides ways to handle time zone of both the physical location of the hub and of the mobile app (installed on mobile phone).

For example, location.getTimeZone() gives the time zone of the physical location of the hub, whereas invoking timeZone() method will give the current time zone of the mobile app, i.e., the time zone where mobile phone is currently located.

For a hub that is physically located in Eastern Time Zone in the U.S., and the mobile phone with SmartThings mobile app located in the Pacific Time Zone, the below SmartApp code fragment prints the results shown in the comments:

preferences {
 section("What time?") {
 input "myTime", "time", title: "From", required: false
 }
}

...

def contactHandler(evt) {
 // this below outputs "America/New_York", i.e., time zone of hub's physical location
 log.debug "location.getTimeZone() value is: ${location.getTimeZone()}"
 // this below outputs "America/Los_Angeles", the time zone of the mobile app
 log.debug "timeZone() for the preference time input value is: ${timeZone(myTime)}"
}

Many time-related methods, such as timeOfDayIsBetween() and timeToday() require timeZone argument to ensure that the correct time zone of the hub is used.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	SmartApps

Sunset and Sunrise

SmartApps often need to take some action at or around the local sunrise or sunset time.
The SmartThings cloud provides access to this type of rich data, and even generates Events for the Location (if the geofence is set).
We can also get access to sunrise and sunset times using a ZIP code.

Sunrise and sunset Events

Using the sunrise and sunset Events is the preferred (and simpler) way to take some action at (or around) sunrise or sunset.
It is required that the Location has set up a geofence.

Taking action at sunrise or sunset

If you wish to have certain actions take place at sunrise or sunset, you can use the sunrise and sunset Events.
These Events will be fired at (gasp!) sunrise and sunset times for the user’s Location.

You can subscribe to the Events by passing in the Location (automatically injected into every SmartApp), the event (“sunrise” or “sunset”), and your handler method:

def installed() {
 subscribe(location, "sunset", sunsetHandler)
 subscribe(location, "sunrise", sunriseHandler)
}

def sunsetHandler(evt) {
 log.debug "Sun has set!"
 ...
}

def sunriseHandler(evt) {
 log.debug "Sun has risen!"
 ...
}

Taking action before or after

If you want to take some action a certain amount of time before or after sunset or sunrise, you can use the “sunriseTime” and “sunsetTime” Events.
These Events are fired every day around the time of sunset or sunrise, and their value is the next sunrise or sunset.
You can use this information to calculate an offset so that some action happens a certain amount of time before or after sunrise or sunset.

To use, you can subscribe to the Events by passing the Location, the event (“sunriseTime” or “sunsetTime”), and the handler method.

Consider the following example that turns on lights a specified number of minutes before sunset for the user’s Location:

preferences {
 section("Lights") {
 input "switches", "capability.switch", title: "Which lights to turn on?"
 input "offset", "number", title: "Turn on this many minutes before sunset"
 }
}

def installed() {
 initialize()
}

def updated() {
 unsubscribe()
 initialize()
}

def initialize() {
 subscribe(location, "sunsetTime", sunsetTimeHandler)

 //schedule it to run today too
 scheduleTurnOn(location.currentValue("sunsetTime"))
}

def sunsetTimeHandler(evt) {
 //when I find out the sunset time, schedule the lights to turn on with an offset
 scheduleTurnOn(evt.value)
}

def scheduleTurnOn(sunsetString) {
 //get the Date value for the string
 def sunsetTime = Date.parse("yyyy-MM-dd'T'HH:mm:ss.SSS'Z'", sunsetString)

 //calculate the offset
 def timeBeforeSunset = new Date(sunsetTime.time - (offset * 60 * 1000))

 log.debug "Scheduling for: $timeBeforeSunset (sunset is $sunsetTime)"

 //schedule this to run one time
 runOnce(timeBeforeSunset, turnOn)
}

def turnOn() {
 log.debug "turning on lights"
 switches.on()
}

Because the sunriseTime and sunsetTime Events are fired every day for the next sunrise/sunset event, we use runOnce() to schedule one execution.
Sunrise and sunset times change, so the next time the Events are fired, we will create another scheduled execution using the runOnce() method for that time.

We want it to run today too, so we use the sunsetTime value of the user’s Location to schedule the lights to turn on today.

Note

If a user changes their Location’s geofence, it could change the sunrise and sunset times. You can listen for position change Events and reschedule accordingly: subscribe(location, "position", locationPositionChangeHandler)

Looking up sunrise or sunset directly

SmartApps can use the provided getSunriseAndSunset() method to get the sunrise and sunset time.
You can pass in a ZIP code, which can be useful if the user has not set a geofence for their Location.

The return value is a map in the following form:

[sunrise: Date, sunset: Date]

def initialize() {
 def noParams = getSunriseAndSunset()
 def beverlyHills = getSunriseAndSunset(zipCode: "90210")
 def thirtyMinsBeforeSunset = getSunriseAndSunset(sunsetOffset: "-00:30")

 log.debug "sunrise with no parameters: ${noParams.sunrise}"
 log.debug "sunset with no parameters: ${noParams.sunset}"
 log.debug "sunrise and sunset in 90210: $beverlyHills"
 log.debug "thirty minutes before sunset at current Location: ${thirtyMinsBeforeSunset.sunset}"

}

Polling for sunrise or sunset

You may have seen some SmartApp code that runs a task sometime after midnight (usually in a method called “astroCheck”) and calls a third party weather API to get the sunrise/sunset times. This is strongly discouraged now; it is much more efficient to use Location Events as they do not rely on third party services.

Examples

You can refer to these example SmartApps in the IDE to see how sunrise and sunset can be used:

	Smart Nightlight

	Sunrise/Sunset

You can also refer to the following examples in Github:

	Sunset Event Example [https://github.com/SmartThingsCommunity/Code/blob/master/smartapps/sunrise-sunset/turn-on-at-sunset.groovy]

	Sunset Offset Example [https://github.com/SmartThingsCommunity/Code/blob/master/smartapps/sunrise-sunset/turn-on-before-sunset.groovy]

	Sunset by ZIP Code Example [https://github.com/SmartThingsCommunity/Code/blob/master/smartapps/sunrise-sunset/turn-on-by-zip-code.groovy]

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	SmartApps

App Touch

There are certain cases where we want to perform some action when the user chooses to do so, by clicking on the Play icon next to the SmartApp.

For example, a custom voice notification SmartApp might want to play the message when the user presses play.

Subscribe to app

To enable this feature, you simply subscribe to the app:

def initialize() {
 subscribe(app, appHandler)
}

def appHandler(evt) {
 log.debug "app event ${evt.name}:${evt.value} received"
}

Simply subscribing to the event will cause the app to display with a play icon in the mobile application:

[image: ../_images/app-touch.png]
Your app event handler method can then take the action it needs to in response to the touch event.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	SmartApps

Making Synchronous External HTTP Requests

SmartApps or Device Handlers may need to make calls to external web services. There are several APIs available to you to handle making these requests.

The various APIs are named for the underlying HTTP method they will use. httpGet() makes an HTTP GET request, for example.

Note

The APIs discussed here are executed synchrously, within a single SmartApp or Device Handler execution.

For information on making asynchronous HTTP requests, check out the Making Asynchronous External HTTP Requests (Beta) documentation.

HTTP methods

The following methods are available for making HTTP requests.
You can read more about each of them in the SmartApp API documentation.

These methods execute synchrously, and there is a 10 second timeout limit for the response to be received.

	Method
	Description

	httpDelete()
	Executes an HTTP DELETE request

	httpGet()
	Executes an HTTP GET request

	httpHead()
	Executes an HTTP HEAD request

	httpPost()
	Executes an HTTP POST request

	httpPostJson()
	Executes an HTTP POST request with JSON Content-Type

	httpPutJson()
	Executes an HTTP PUT request with JSON Content-Type

Here’s a simple example of making an HTTP GET request:

def params = [
 uri: "http://httpbin.org",
 path: "/get"
]

try {
 httpGet(params) { resp ->
 resp.headers.each {
 log.debug "${it.name} : ${it.value}"
 }
 log.debug "response contentType: ${resp.contentType}"
 log.debug "response data: ${resp.data}"
 }
} catch (e) {
 log.error "something went wrong: $e"
}

Configuring the request

The various APIs for making HTTP requests all accept a map of parameters that define various information about the request:

	Parameter
	Description

	uri
	Either a URI or URL of of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	contentType
	Request content type and Accept header.

	requestContentType
	Content type for the request, if it is different from the expected response content-type.

	body
	Request body that will be encoded based on the given contentType.

Note

Specifying a requestContentType may override the default behavior of the various http API you are calling.
For example, httpPostJson() sets the requestContentType to "application/json" by default.

Handling the response

The HTTP APIs accept a closure that will be called with the response information from the request.

The closure is passed an instance of a HttpResponseDecorator [https://github.com/jgritman/httpbuilder/blob/855e1784be8585de81cc3c99fd19285798c7bc4f/src/main/java/groovyx/net/http/HttpResponseDecorator.java].
You can inspect this object to get information about the response.

Here’s an example of getting various response information:

def params = [
 uri: "http://httpbin.org",
 path: "/get"
]

try {
 httpGet(params) { resp ->
 // iterate all the headers
 // each header has a name and a value
 resp.headers.each {
 log.debug "${it.name} : ${it.value}"
 }

 // get an array of all headers with the specified key
 def theHeaders = resp.getHeaders("Content-Length")

 // get the contentType of the response
 log.debug "response contentType: ${resp.contentType}"

 // get the status code of the response
 log.debug "response status code: ${resp.status}"

 // get the data from the response body
 log.debug "response data: ${resp.data}"
 }
} catch (e) {
 log.error "something went wrong: $e"
}

Tip

Any ‘failed’ response response will generate an exception, so you should wrap your calls in a try/catch block.

If the response returns JSON, data will be in a map-like structure that allows you to easily access the response data:

def makeJSONWeatherRequest() {
 def params = [
 uri: 'http://api.openweathermap.org/data/2.5/',
 path: 'weather',
 contentType: 'application/json',
 query: [q:'Minneapolis', mode: 'json']
]
 try {
 httpGet(params) {resp ->
 log.debug "resp data: ${resp.data}"
 log.debug "humidity: ${resp.data.main.humidity}"
 }
 } catch (e) {
 log.error "error: $e"
 }
}

The resp.data from the request above would look like this (indented for readability):

resp data: [id:5037649, dt:1432752405, clouds:[all:0],
 coord:[lon:-93.26, lat:44.98], wind:[speed:4.26, deg:233.507],
 cod:200, sys:[message:0.012, sunset:1432777690, sunrise:1432722741,
 country:US],
 name:Minneapolis, base:stations,
 weather:[[id:800, icon:01d, description:Sky is Clear, main:Clear]],
 main:[humidity:73, pressure:993.79, temp_max:298.696, sea_level:1026.82,
 temp_min:298.696, temp:298.696, grnd_level:993.79]]

We can easily get the humidity from this data structure as shown above:

resp.data.main.humidity

Host and timeout limitations

Host and IP address restrictions

Requests can only be made to publicly accessible hosts.
Remember that when executing an HTTP request, the request originates from the SmartThings platform (i.e., the SmartThings cloud), not from the hub itself.

Requests made to local or private hosts are not allowed, and will fail with a SecurityException.

Request timeout limit

Requests will timeout after 10 seconds.

Because the request is executed synchronously within a single execution, we encourage you to check out the new (currently beta) Making Asynchronous External HTTP Requests (Beta) feature.

Try it out

If you’re interested in experimenting with the various HTTP APIs, there are a few tools you can use to try out the APIs without signing up for any API keys.

You can use httpbin.org [http://httpbin.org/] to test making simple requests.
The httpGet() example above uses it.

For testing POST requests, you can use PostCatcher [http://postcatcher.in/].
You can generate a target URL and then inspect the contents of the request.
Here’s an example using httpPostJson():

def params = [
 uri: "http://postcatcher.in/catchers/<yourUniquePath>",
 body: [
 param1: [subparam1: "subparam 1 value",
 subparam2: "subparam2 value"],
 param2: "param2 value"
]
]

try {
 httpPostJson(params) { resp ->
 resp.headers.each {
 log.debug "${it.name} : ${it.value}"
 }
 log.debug "response contentType: ${resp. contentType}"
 }
} catch (e) {
 log.debug "something went wrong: $e"
}

See also

A simple example using httpGet() that connects a SmartSense Temp/Humidity Sensor to your Weather Underground personal weather station can be found here [https://github.com/SmartThingsCommunity/Code/blob/e8a6b6926fb32df1e8d79bfe09a1ad063682396a/smartapps/wunderground-pws-connect.groovy].

You can browse some templates in the IDE that use the various HTTP APIs. The Ecobee Service Manager is an example that uses both httpGet() and httpPost().

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	SmartApps

Making Asynchronous External HTTP Requests (Beta)

Beta Feature

The ability to make asynchronous HTTP requests is currently available as a beta development feature.

All beta asynchronous HTTP APIs exist in the asynchttp_v1 namespace.
Approximately 30 days after the launch of this beta feature, we will evaluate metrics and your feedback, and make adjustments as necessary.

When released generally, it is likely that the v1 postfix will be dropped, and a deprecation period will be announced to change existing usages accordingly.

If, for unexpected reasons, usage of asynchronous HTTP requests has negative impacts on the SmartThings platform, SmartThings reserves the right to alter or remove any impacted asynchronous HTTP APIs without notice.
This is highly unlikely and every effort will be made to avoid such a scenario.

If you experience issues or have feedback on these asynchronous HTTP APIs, please share them on this community thread [https://community.smartthings.com/t/asynchronous-http-beta-feedback-thread/60280].

Overview

SmartApps and Device Handlers may need to communicate with third party services via HTTP.
This can be accomplished using the various HTTP APIs such as httpGet(), httpPost(), httpPut(), etc, as discussed in the Making Synchronous External HTTP Requests documentation.
But, these APIs are synchronous in nature - the currently executing SmartApp or Device Handler waits for the response from the third party.
This synchronous execution blocks the current thread executing the SmartApp or Device Handler, and increases the likelihood of hitting the execution timeout.

To address these issues, we’re releasing new APIs so SmartApps and Device Handlers can make HTTP requests asynchronously.
We specify the details of the request, along with the name of a method (that we must implement) to call with the response.
SmartThings will then execute the request, and then call the specified request handler method when the response is received.

With asynchronous HTTP requests, we’re far less likely to encounter execution timeouts due to a slow third party service.

Quick example

Let’s jump right in and look at an example asynchronous HTTP request.
Our example simply makes a GET request to the GitHub API, and logs the response.
Don’t worry about the details yet, the rest of this documentation will cover it.

include 'asynchttp_v1'

def initialize() {
 def params = [
 uri: 'https://api.github.com',
 contentType: 'application/json'
]
 def data = [key1: "hello world"]

 asynchttp_v1.get('responseHandlerMethod', params, data)
}

def responseHandlerMethod(response, data) {
 log.debug "got response data: ${response.getData()}"
 log.debug "data map passed to handler method is: $data"
}

The first thing you may notice is the include directive.
This is a new feature in SmartThings that allows various APIs to be grouped together by their functionality.
Don’t worry too much about it now, it is discussed in detail below.
For now, just think of it as a way to import a set of APIs that exist in a specific namespace - in this case, “asynchttp_v1".

The code to make an asynchronous HTTP request is fairly straightforward.
We call asynchttp_v1.get() with the name of the method we want to be called with the response, a map of data that is used to build the request, and an optional map of data to pass on to the response handler.
The details of the request builder parameters are documented in the Configuring the request section.

We can then define an optional response handler method, which accepts the response of the request, as well as the optional data map we passed to the get() method. If none is provided the request will be made in a ‘fire-and-forget’ mode where the response will be discarded immediately after execution.
The details of handling the response are documented in the Handling the response section.

Synchronous versus asynchronous

The following diagrams illustrate the difference between making synchronous HTTP requests, and using the new asynchronous HTTP APIs.

Synchronous HTTP Request Flow:

[image: Synchronous HTTP Request Flow]
Asynchronous HTTP Request Flow:

[image: Asynchronous HTTP Request Flow]
We can see from the above diagrams that a synchronous HTTP requests makes the requests, waits for the response, then processes the response, all in a single execution.

Asynchronous HTTP requests, on the other hand, handle the response in a separate execution.
The SmartThings platform makes the request, waits for the response, and then schedules a new SmartApp (or Device Handler) execution to call the specified response handler with the response.

It is important to note that these executions are not necessarily sequential.
Other executions may occur between making the request and receiving the response, either as a result of a scheduled execution or event callbacks.
See When to use asynchronous HTTP requests for more information about using asynchronous versus synchronous HTTP requests.

Asynchronous requests are supported for the GET, POST, PUT, DELETE, HEAD, and PATCH HTTP request methods.
A summary of the supported operations is documented below.

The include Statement

All asynchronous HTTP APIs are namespaced in an object that can be included in the SmartApp or Device Handler using the include statement:

include 'asynchttp_v1'

asynchttp_v1 is then a reference to an object that the asynchronous HTTP APIs exist on:

include 'asynchttp_v1'

def initialize() {
 asynchttp_v1.get([uri: 'https://api.github.com'], handler)
}

def handler(response, data) {
 // handle response
}

The include statement should be placed at the top of the file.

Note

The asynchronous HTTP APIs are the first feature to utilize this feature.

The motivation for this feature is to allow a finer-grained control over the APIs available to SmartApps or Device Handlers, and avoid further polluting the global namespace.

When using include(), the SmartThings platform will attempt to find an internally registered API that matches the name provided.
If one is found, an instance of the class representing that API will be injected into the SmartApp or Device Handler.
If no API is found for the given name, an exception will be thrown and the SmartApp or Device Handler will fail to save.

Configuring the request

All asynchronous HTTP request methods require, as the first argument, the name of the method to call with the response.
We also need to specify some information about the request, such as the URI, an optional path, URL query parameters, HTTP headers, and the content type of the request.
We do so by passing a map of parameters.
The table below lists the supported keys in the map.

	Key
	Description

	uri (required)
	Either a URI or URL of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	requestContentType
	The value of the Content-Type request header. Defaults to 'application/json'.

	contentType
	The value of the Accept request header. Defaults to the value of the requestContentType parameter if not specified.

	body
	The request body to send. Can be a string, or if the requestContentType is "application/json", a Map or List (will be serialized to JSON). Only valid for PUT, POST, DELETE, and PATCH requests.

URI and path

The uri is required for all asynchronous HTTP request methods.
If specified, the path will be merged with the URI:

// uri and path merged to form "https://someapi.com/some/path"
def params = [
 uri: 'https://someapi.com',
 path: '/some/path'
]

Note that only publicly accessible (i.e., non-local) addresses can be used when making HTTP requests.
See the Host, timeout, response, and data size limits section below for more information.

Request headers

As you see in the above table, the request headers Content-Type and Accept will be added to every request.
If you need to set other request headers, specify them using the headers key in the parameters map:

def params = [
 uri: 'https://api.github.com',
 path: '/repos/SmartThingsCommunity/SmartThingsPublic/events',
 headers: ['If-None-Match': 'c873e724d02caa124de0884535c32acb']
]
asynchttp_v1.get('someHandlerMethod', params)

As configured above, the request would look like this:

GET /repos/SmartThingsCommunity/SmartThingsPublic/events HTTP/1.1

Host: api.github.com
Content-Type: application/json
Accept: application/json
If-None-Match: c873e724d02caa124de0884535c32acb

Query parameters

URL query parameters can be added to the request by specifying a map as the value for the query key:

include 'asynchttp_v1'

def initialize() {
 // search for occurences of httpGet in the SmartThingsPublic repo
 def params = [
 uri: 'https://api.github.com',
 path: '/search/code',
 query: [q: "httpGet+repo:SmartThingsCommunity/SmartThingsPublic"],
 contentType: 'application/json'
]
 asynchttp_v1.get(processResponse, params)
}

def processResponse(response, data) { ... }

The request made given the code above would look like this:

GET /search/code?q=httpGet+repo:SmartThingsCommunity/SmartThingsPublic HTTP/1.1

Host: api.github.com
Content-Type: application/json
Accept: application/json

Request body

HTTP request methods that may have a body can also specify a body in the parameters map.
The value of body can be a string, or if the requestContentType is "application/json", a Map or List (will be serialized to JSON).
The put(), post(), delete(), and patch() methods support the body option.

Here’s an example making a POST request using a map for the body:

include 'asynchttp_v1'

def initialize() {
 def params = [
 uri: 'https://someapi.com',
 path: '/some/path',
 body: [key1: 'value 1']
]
 asynchttp_v1.post(processResponse, params)
}

def processResponse(response, data) { ... }

Here’s what the request looks like (note that the Content-Type and Accept headers are "application/json" by default):

POST /some/path

Host: someapi.com
Content-Type: application/json
Accept: application/json

{"key1": "value 1"}

Here’s an example making a PUT request using a string as the body:

include 'asynchttp_v1'

def initialize() {
 def params = [
 uri: 'https://someapi.com',
 path: '/some/path',
 body: "<entity><name>test</name></entity>",
 requestContentType: "application/xml"
]
 asynchttp_v1.put(processResponse, params)
}

def processResponse(response, data) { ... }

And here’s the request made by the above example:

PUT /some/path

Host: someapi.com
Content-Type: application/xml
Accept: application/xml

<entity><name>test</name></entity>

Handling the response

Once SmartThings executes the request we specified and receives a response from the third party, the request handler method (if specified) will be called (in a new execution of the SmartApp or Device Handler).
It will be called with an instance of AsyncResponse, which allows us to get information about the response.

The response handler method must also accept a map of data that may have been specified in the request.
This can be useful for passing data between the time we create the request and when the response is received.
If no (optional) data was specified when making the request, the request handler method will be called with null for the second parameter.
We’ll discuss this optional data parameter later in this documentation.

The signature of the response handler method should look like:

def someResponseHandler(response, data) {}

Response status code

We can get the response status code if we need to handle different possible response codes:

def responseHandler(response, data) {
 def status = response.status
 switch (status) {
 case 200:
 log.debug "200 returned"
 break
 case 304:
 log.debug "304 returned"
 break
 default:
 log.warn "no handling for response with status $status"
 break
 }
}

Response headers

The AsyncResponse object contains all headers from the response as a map of key-value pairs (the return type is Map<String, String>):

def responseHandler(response, data) {
 def headers = response.headers
 headers.each { header, value ->
 log.debug "$header: $value"
 }
 // can use array notation to get specific header values
 def etagHeader = response.headers['ETag']
}

Error responses

Use the hasError() to check if the response has an error.
hasError() will return true if any exception occurred during the request.

Any non-2XX response is also considered an error.

You can get any error messages using the getErrorMessage() method.

def responseHandler(response, data) {
 if (response.hasError()) {
 log.debug "response received error: ${response.getErrorMessage()}"
 }
}

In the case of an error response, you can also get the response body using getErrorData(), getErrorJson(), or getErrorXml().
Note that these methods will throw an exception if called on a successful response.

def responseHandler(response, data) {
 if (response.hasError()) {
 log.debug "error response data: $response.errorData"
 try {
 // exception thrown if json cannot be parsed from response
 log.debug "error response json: $response.errorJson"
 } catch (e) {
 log.warn "error parsing json: $e"
 }
 try {
 // exception thrown if xml cannot be parsed from response
 log.debug "error response xml: $response.errorXml"
 } catch (e) {
 log.warn "error parsing xml: $e"
 }
 }
}

JSON responses

If the response from a request is JSON, we can get a fully-formed JSONObject of the response using getJson().
The example below illustrates getting the JSON response from a GitHub API call to get the occurrences of “httpGet” in the SmartThingsPublic repository.

include 'asynchttp_v1'

def initialize() {
 def params = [
 uri: 'https://api.github.com',
 path: '/search/code',
 query: [q: "httpGet+repo:SmartThingsCommunity/SmartThingsPublic"]
]
 asynchttp_v1.get(processResponse, params)
}

def processResponse(response, data) {
 if (response.hasError()) {
 log.error "response has error: $response.errorMessage"
 } else {
 def results
 try {
 // json response already parsed into JSONElement object
 results = response.json
 } catch (e) {
 log.error "error parsing json from response: $e"
 }
 if (results) {
 def total = results?.total_count

 log.debug "there are $total occurences of httpGet in the SmartThingsPublic repo"

 // for each item found, log the name of the file
 results?.items.each { log.debug "httpGet usage found in file $it.name" }
 } else {
 log.debug "did not get json results from response body: $response.data"
 }
 }
}

getJson() will throw an Exception if the response body cannot be parsed to JSON, if the request failed to get a response, or if the response status code is not 2XX.
See the getJson() reference documentation for more information.

XML responses

Handling XML responses is similar to JSON - the XML is parsed into a data structure that we can use:

include 'asynchttp_v1'

def initialize() {
 def params = [
 uri: 'https://httpbin.org',
 path: '/xml',
 requestContentType: 'application/xml'
]
 asynchttp_v1.get('xmlResultsHandler', params)
}

def xmlResultsHandler(response, data) {
 // results look like:
 // <slideshow title="Sample Slide Show" date="Date of publication" author="Yours Truly">
 // <slide type="all">
 // <title>Wake up to WonderWidgets!</title>
 // </slide>
 // </slideshow>
 if (!response.hasError()) {
 def slideshow
 try {
 slideshow = response.xml
 } catch (e) {
 log.error "error parsing XML from response: $e"
 }
 if (slideshow) {
 log.debug "title: ${slideshow.slide.title.text()}" // -> Wake up to WonderWidgets!
 }
 } else {
 log.error "error making request: ${response.getErrorMessage()}"
 }
}

Like getJson(), getXml() throws an exception if the results cannot be parsed to XML from the response body.
See getXml() for more information.

Getting the raw response

If we want to get the raw response data, we can do that using getData().

def responseHandler(response, data) {
 log.debug "the raw response data is: $response.data"
}

Passing data to the request handler

Given that the response for an asynchronous HTTP request is processed in a separate SmartApp or Device Handler execution, we may need a way to share data between when we make the request, and when the response handler is called.
Rather than store such data in State, we can pass a map of data to any of the asynchronous HTTP methods, and this will be be passed along to the response handler:

Note

All response handler methods must accept a second parameter for the data map, even if no data is specified on the request.
In that case, the value passed to the response handler will be null.

If your response handler does not accept the second parameter, a MethodMissingException error will be thrown when the platform tries to call your response handler.

include 'asynchttp_v1'

def initialize() {
 def params = [uri: 'https://someapi.com']
 def data = [key1: "value 1", key2: "value 2"]
 asynchttp_v1.get(handler, params, data)
}

def handler(response, data) {
 // logs [key1: "value 1", key2: "value 2"]
 log.debug "data passed to response handler: $data"
}

Available methods

The following methods are available on the asynchttp_v1 object.
The HTTP request method will match the name of the asynchttp_v1 method–see the reference documentation for more details on each method.

	HTTP Verb
	Method

	GET
	asynchttp_v1.get(String callbackMethod, Map params, Map data = null)

	PUT
	asynchttp_v1.put(String callbackMethod, Map params, Map data = null)

	POST
	asynchttp_v1.post(String callbackMethod, Map params, Map data = null)

	DELETE
	asynchttp_v1.delete(String callbackMethod, Map params, Map data = null)

	PATCH
	asynchttp_v1.patch(String callbackMethod, Map params, Map data = null)

	HEAD
	asynchttp_v1.head(String callbackMethod, Map params, Map data = null)

Host, timeout, response, and data size limits

Host and IP address restrictions

Requests can only be made to publicly accessible hosts.
Remember that when executing an HTTP request, the request originates from the SmartThings platform (i.e., the SmartThings cloud), not from the hub itself.

Requests made to local or private hosts are not allowed, and will fail with a SecurityException.

Request timeout limit

Requests will timeout after 40 seconds.
If the request timeout is hit, the response handler will be called and the response will have an error:

def responseHandler(response, data) {
 if (response.hasError()) {
 log.error "response has error: $response.errorMessage"
 }
}

Response size limit

The current limit is 500,000 characters of response data.
This limit will be studied during the beta period, and may be adjusted as necessary.

When the limit is hit, the response body will be empty, but the response status will reflect the actual response status.
A warning message will be added to getWarningMessages() stating that the response size exceeded the limit.

Data size limit

The size of the data map that can be passed to the response handler is limited to 1000 characters when serialized to JSON.
If this limit is exceeded, an IllegalArgumentException will be thrown when making the request.

Using asynchronous HTTP in parent-child relationships

When making an asynchronous HTTP request, the associated response handler method will be called on the SmartApp that made the request.
This may be obvious, but it is something to keep in mind if you are developing a parent-child relationship SmartApp or Device Handler.

For example, a child SmartApp or Device Handler can call a method on its parent that makes an asynchronous HTTP request, as long as the response handler also exists within the parent.

When to use asynchronous HTTP requests

Simply put, prefer asynchronous unless it is proven that synchronous is required.
Each case needs to be considered on its own, but there are some general cases where synchronous HTTP requests may be required:

	When the response is used in the UI, such as during the OAuth flow during install for cloud-to-cloud device integrations.

	When the response is returned immediately to other APIs, and those APIs cannot be refactored.

The next section discusses some strategies for refactoring synchronous HTTP requests to be asynchronous, and highlights some of the design changes that the asynchronous nature demand.

Refactoring to asynchronous HTTP requests

Find high-value opportunities

When considering if you should refactor synchronous HTTP requests to be asynchronous, look for high-value opportunities.
High-value can be defined as frequent, often scheduled, executions that make HTTP requests.

For example, a SmartApp that executes an HTTP request every five minutes can benefit tremendously from being refactored to use asynchronous HTTP.
On the other hand, a single synchronous HTTP request done only during install or in some other low-frequency occurence, may not benefit as much from being refactored to asynchronous, especially if such a refactoring is costly or risky.

Look for usages of synchronous HTTP requests that occur on schedules or other high-frequency occurences, and refactor those first.

Refactoring strategies

When refactoring synchronous HTTP requests to be asynchronous, we need to be sure that any code executed after the response has been received is moved to the response callback handler.
Consider the following synchronous HTTP example:

def initialize() {
 def results = getSomeData()
 log.debug "got results $results"
 doSomethingWithData(results)
}

def getSomeData() {
 def params = [
 uri: 'https://someapi.com',
 path: '/some/path'
]
 def results
 httpGet(params) { resp ->
 ...
 results = resp.data
 }
 return results
}

def doSomethingWithData(results) {
 // do something with the results data
}

In the example above, the initialize() method (and all methods it calls) will execute in a single execution.
The execution will make the request, wait for the request to return a response, and then parse that response and do something with it.

To change the above example to use the asynchronous HTTP methods, we need to move all code that expects the results into the response handler.
We cannot simply update the getSomeData() method to use asynchronous HTTP, because the code in initialize() following the call to getSomeData() assumes that the response has been received.

Below is the updated code to use asynchronous HTTP requests.
Because the request is handled asynchronously and the response handler called in another execution, we move the logic that requires the response into the response handler.

include 'asynchttp_v1'

def initialize() {
 getSomeData()
}

// execution 1: make the request
def getSomeData() {
 def params = [
 uri: 'https://someapi.com',
 path: '/some/path'
]
 asynchttp_v1.get('responseHandler', params)
}

// execution 1 + n: handle the response
def responseHandler(response, data) {
 def data = response.data
 log.debug "got data: $data"
 doSomethingWithData(data)
}

def doSomethingWithData(results) {
 // do something with the results data
}

Example

A complete SmartApp example illustrating the APIs discussed in this document, along with installation instructions, can be found here [https://gist.github.com/jimmyjames/85a1a46fbd7fc077dee78f6ae1d865c0].

Related documentation

	Making Synchronous External HTTP Requests

	Async HTTP API (Beta)

	AsyncResponse (Beta)

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	SmartApps

Sending Notifications

SmartApps can send notifications, either as a push notification in the mobile app, or as SMS messages to designated recipients.
This allows SmartApps to notify people when important Events happen in their home.

Send notifications with Contact Book

Note

The Contact Book feature is not currently enabled for users.
However, using the Contact Book APIs (with the fall-back to non-Contact Book features), will future-proof your SmartApp for when Contact Book is enabled.

See the Handling disabled Contact Book section for more information.

If a user has added contacts to their Contact Book, SmartApps can prompt a user to select contacts to send notifications to.
This allows a user’s contacts to be managed independently through the Contact Book, and SmartApps can tap into that feature.
This has the advantage that a user does not have to enter in phone numbers for every SmartApp.

Sending notifications by using the Contact Book feature is the preferred way for sending notifications in a SmartApp.

Selecting Contacts to notify

To allow a user to select from a list of their contacts, use the "contact" input type:

preferences {
 section("Send Notifications?") {
 input("recipients", "contact", title: "Send notifications to")
 }
}

When the user configures this SmartApp, they can then select which contacts they want to notify, and how they should be notified (SMS or push):

[image: ../_images/contact-book.png]
In the example above, the users selected will be stored in a variable named recipients. This is just a simple list that we can pass into the sendNotificationToContacts() method.

Note

When creating contacts, the user can enter an email address. Emails are not currently sent by SmartThings, though they are used to identify SmartThings users, and enable them to receive push notifications.

Send notifications to Contacts

Use the sendNotificationToContacts() method to send a notification to the users (and the specified mode of contact) selected.

sendNotificationToContacts() accepts three parameters - the message to send, the contacts selected, and an optional map of additional parameters.
The valid option for the additional parameters is [event: false], which will suppress the message from appearing in the Notifications feed.

Assuming the "contact" input named "recipients" above, you would use:

sendNotificationToContacts("something you care about!", recipients)

If you don’t want the message to appear in the Notifications feed, specify event: false:

sendNotificationToContacts("something you care about!", recipients, [event: false])

Handling disabled Contact Book

A user may not have created any contacts, and SmartApps should be written to handle this.

The "contact" input element takes an optional closure, where you can define additional input elements that will be displayed if the user has no contacts.
If the user has contacts, these input elements won’t be seen when installing or configuring the SmartApp.

Modifying our preferences definition from above, to handle the case of a user having no contacts, would look like:

preferences {
 section("Send Notifications?") {
 input("recipients", "contact", title: "Send notifications to") {
 input "phone", "phone", title: "Warn with text message (optional)",
 description: "Phone Number", required: false
 }
 }
}

If the user configuring this SmartApp does have contacts defined, they will only see the input to select from those contacts.
If they don’t have any contacts defined, they will see the input to enter a phone number.

When attempting to send notifications, we should also check to see if the user has enabled the Contact Book and selected contacts.
You can check the contactBookEnabled property on location to find out if Contact Book has been enabled. It’s a good idea to also check if any contacts have been selected.

// check that Contact Book is enabled and recipients selected
if (location.contactBookEnabled && recipients) {
 sendNotificationToContacts("your message here", recipients)
} else if (phone) { // check that the user did select a phone number
 sendSms(phone, "your message here")
}

Complete example

The example SmartApp below sends a notification to selected contacts when a door opens.
If the user has no contacts, they can enter in a number to receive an SMS notification.

definition(
 name: "Contact Book Example",
 namespace: "smartthings",
 author: "SmartThings",
 description: "Example using Contact Book",
 category: "My Apps",
 iconUrl: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience.png",
 iconX2Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png",
 iconX3Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png")

preferences {
 section("Which Door?") {
 input "door", "capability.contactSensor", required: true,
 title: "Which Door?"
 }

 section("Send Notifications?") {
 input("recipients", "contact", title: "Send notifications to") {
 input "phone", "phone", title: "Warn with text message (optional)",
 description: "Phone Number", required: false
 }
 }
}

def installed() {
 initialize()
}

def updated() {
 initialize()
}

def initialize() {
 subscribe(door, "contact.open", doorOpenHandler)
}

def doorOpenHandler(evt) {
 log.debug "recipients configured: $recipients"

 def message = "The ${door.displayName} is open!"
 if (location.contactBookEnabled && recipients) {
 log.debug "Contact Book enabled!"
 sendNotificationToContacts(message, recipients)
 } else {
 log.debug "Contact Book not enabled"
 if (phone) {
 sendSms(phone, message)
 }
 }
}

Note

The rest of this guide discusses alternative ways to send notifications (push, SMS, Notifications Feed). SmartApps should use Contact Book, and use the methods described below as a precaution in case the user does not have Contact Book enabled.

Send push notifications

To send a push notification through the SmartThings mobile app, you can use the sendPush() or sendPushMessage() methods.
Both methods simply take the message to display.
sendPush() will display the message in the Notifications feed; sendPushMessage() will not.

A simple example below shows (optionally) sending a push message when a door opens:

preferences {
 section("Which door?") {
 input "door", "capability.contactSensor", required: true,
 title: "Which door?"
 }
 section("Send Push Notification?") {
 input "sendPush", "bool", required: false,
 title: "Send Push Notification when Opened?"
 }
}

def installed() {
 initialize()
}

def updated() {
 initialize()
}

def initialize() {
 subscribe(door, "contact.open", doorOpenHandler)
}

def doorOpenHandler(evt) {
 if (sendPush) {
 sendPush("The ${door.displayName} is open!")
 }
}

Push notifications will be sent to all users with the SmartThings mobile app installed, for the account the SmartApp is installed into.

Send SMS notifications

In addition to sending push notifications through the SmartThings mobile app, you can also send SMS messages to specified numbers using the sendSms() and sendSmsMessage() methods.

Both methods take a phone number (as a string) and a message to send.
The message can be no longer than 140 characters.
sendSms() will display the message in the Notifications feed; sendSmsMessage() will not.

Extending the example above, let’s add the ability for a user to (optionally) send an SMS message to a specified number:

preferences {
 section("Which door?") {
 input "door", "capability.contactSensor", required: true,
 title: "Which door?"
 }
 section("Send Push Notification?") {
 input "sendPush", "bool", required: false,
 title: "Send Push Notification when Opened?"
 }
 section("Send a text message to this number (optional)") {
 input "phone", "phone", required: false
 }
}

def installed() {
 initialize()
}

def updated() {
 initialize()
}

def initialize() {
 subscribe(door, "contact.open", doorOpenHandler)
}

def doorOpenHandler(evt) {
 def message = "The ${door.displayName} is open!"
 if (sendPush) {
 sendPush(message)
 }
 if (phone) {
 sendSms(phone, message)
 }
}

SMS notifications will be sent from the number 844647 (“THINGS”).

Send both push and SMS notifications

The sendNotification() method allows you to send both push and/or SMS messages, in one convenient method call.
It can also optionally display the message in the Notifications feed.

sendNotification() takes a message parameter, and a map of options that control how the message should be sent, if the message should be displayed in the Notifications feed, and a phone number to send an SMS to (if specified):

// sends a push notification, and displays it in the Notifications feed
sendNotification("test notification - no params")

// same as above, but explicitly specifies the push method (default is push)
sendNotification("test notification - push", [method: "push"])

// sends an SMS notification, and displays it in the Notifications feed
sendNotification("test notification - sms", [method: "phone", phone: "1234567890"])

// Sends a push and SMS message, and displays it in the Notifications feed
sendNotification("test notification - both", [method: "both", phone: "1234567890"])

// Sends a push message, and does not display it in the Notifications feed
sendNotification("test notification - no event", [event: false])

Only display message in the notifications feed

Use the sendNotificationEvent() method to display a message in the Notifications feed, without sending a push notification or SMS message:

sendNotificationEvent("Your home talks!")

Examples

Several examples exist in the SmartApp templates that send notifications. Here are a few you can look at to learn more:

	Notify Me When [https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/notify-me-when.src/notify-me-when.groovy] sends push or text messages in response to a variety of Events.

	Presence Change Push [https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/presence-change-push.src/presence-change-push.groovy] and Presence Change Text [https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/presence-change-text.src/presence-change-text.groovy] send notifications when people arrive or depart.

Related API documentation

	sendNotificationToContacts()

	getContactBookEnabled()

	sendPush()

	sendPushMessage()

	sendSms()

	sendSmsMessage()

	sendNotification()

	sendNotificationEvent()

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	SmartApps

Parent-Child SmartApps

SmartApps can have child SmartApps. This is often useful whe you want to provide multiple automations that act independently on separate devices. This will consolidate multiple separate automations under one parent.

Overview

Smart Lighting is an example of a parent-child SmartApp.
When you install Smart Lighting, you are installing one parent SmartApp (Smart Lighting), and each unique lighting automation you create is actually a new instance of a child SmartApp.
This child SmartApp is what actually controls each lighting automation.

The diagram below illustrates this relationship:

[image: ../_images/smart-lighting-diagram.png]
The relationship between a parent SmartApp and its children is a one-to-many relationship.
A SmartApp may have many children, and those children can also have children.
A child SmartApp can have only one parent.

The parent SmartApp

To define that a SmartApp is a parent to other SmartApps, use the app input element inside the preferences.
The app input allows the user to install and edit child SmartApp instances, and establishes the relationship between parent and child.

preferences {
 page(name: "mainPage", title: "Child Apps", install: true, uninstall: true) {
 section {
 app(name: "childApps", appName: "Child App", namespace: "mynamespace", title: "New Child App", multiple: true)
 }
 }
}

All child SmartApps installed via the app input will then be listed in the parent SmartApp preferences page, and the user can then edit or remove those instances.

The options for the app input are:

	Option
	Description

	name
	The name of the input. Serves as the identifier for this input element.

	appName
	The name of the child SmartApp, as defined in the definition metadata of the child.

	namespace
	The namespace of the child SmartApp, as defined in the definition metadata of the child.

	title
	The title of the button the user can press to install a new instance of this child SmartApp.

	multiple
	If true, the user can install multiple child SmartApps. If false, only one may be installed. Defaults to false.

The child SmartApp

In the SmartApp you wish to serve as the child, specify the parent option in the child SmartApp’s definition, in the form of "namespace":"Parent App Name":

definition(
 ...
 parent: "yourNameSpace:Parent App Name",
 ...
)

Note

When you save the child SmartApp, the platform will validate that a parent SmartApp with the namespace and name as specified in the parent option exists. If it does not, an error will be raised.

Either make sure your parent SmartApp has been saved first, or come back and add the parent option after your parent SmartApp has been saved.

Communicating between parent and children

Parents and children may need to talk to each other.
In the parent SmartApp, you can get the child SmartApp using the getChildApps() method:

def children = getChildApps()
log.debug "$children.size() child apps installed"
children.each { child ->
 log.debug "Child app id: $child.id"
}

You can then call methods directly on the child SmartApp:

// assumes the child SmartApp has method foo() defined
child.foo()

You can also use the findChildAppByName() method to find a specific child SmartApp by it’s name:

def theChild = findChildAppByName("My Child App")

Children can communicate with their parent by using the parent property in the Child SmartApp:

// assumes the parent SmartApp has a method bar() defined:
parent.bar()

Preventing more than one parent instance

If you want to prevent users from installing more than one parent SmartApp in their Location, you can specify singleInstance: true in the definition:

definition(
 ...
 singleInstance: true
 ...
)

With singleInstance: true, when a user tries to install a parent SmartApp that has already been installed, they will be taken to the existing installation.
From there, they can configure existing child SmartApps or add new ones.
This avoids having multiple instances of parent SmartApp, when only one is necessary.

Example

Below is a simple example illustrating how a parent SmartApp (“Simple Lighting”) can be created to allow multiple child SmartApps (“Simple Automations”).

Here is the parent SmartApp:

definition(
 name: "Simple Lighting",
 namespace: "mynamespace/parent",
 author: "Your Name",
 description: "An example of parent/child SmartApps (this is the parent).",
 category: "My Apps",
 iconUrl: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience.png",
 iconX2Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png",
 iconX3Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png")

preferences {
 // The parent app preferences are pretty simple: just use the app input for the child app.
 page(name: "mainPage", title: "Simple Automations", install: true, uninstall: true,submitOnChange: true) {
 section {
 app(name: "simpleAutomation", appName: "Simple Automation", namespace: "mynamespace/automations", title: "Create New Automation", multiple: true)
 }
 }
}

def installed() {
 log.debug "Installed with settings: ${settings}"
 initialize()
}

def updated() {
 log.debug "Updated with settings: ${settings}"
 unsubscribe()
 initialize()
}

def initialize() {
 // nothing needed here, since the child apps will handle preferences/subscriptions
 // this just logs some messages for demo/information purposes
 log.debug "there are ${childApps.size()} child smartapps"
 childApps.each {child ->
 log.debug "child app: ${child.label}"
 }
}

Here’s the child SmartApp:

definition(
 name: "Simple Automation",
 namespace: "mynamespace/automations",
 author: "Your Name",
 description: "A simple app to control basic lighting automations. This is a child app.",
 category: "My Apps",

 // the parent option allows you to specify the parent app in the form <namespace>/<app name>
 parent: "mynamespace/parent:Simple Lighting",
 iconUrl: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience.png",
 iconX2Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png",
 iconX3Url: "https://s3.amazonaws.com/smartapp-icons/Convenience/Cat-Convenience@2x.png")

preferences {
 page name: "mainPage", title: "Automate Lights & Switches", install: false, uninstall: true, nextPage: "namePage"
 page name: "namePage", title: "Automate Lights & Switches", install: true, uninstall: true
}

def installed() {
 log.debug "Installed with settings: ${settings}"
 initialize()
}

def updated() {
 log.debug "Updated with settings: ${settings}"
 unschedule()
 initialize()
}

def initialize() {
 // if the user did not override the label, set the label to the default
 if (!overrideLabel) {
 app.updateLabel(defaultLabel())
 }
 // schedule the turn on and turn off handlers
 schedule(turnOnTime, turnOnHandler)
 schedule(turnOffTime, turnOffHandler)
}

// main page to select lights, the action, and turn on/off times
def mainPage() {
 dynamicPage(name: "mainPage") {
 section {
 lightInputs()
 actionInputs()
 }
 timeInputs()
 }
}

// page for allowing the user to give the automation a custom name
def namePage() {
 if (!overrideLabel) {
 // if the user selects to not change the label, give a default label
 def l = defaultLabel()
 log.debug "will set default label of $l"
 app.updateLabel(l)
 }
 dynamicPage(name: "namePage") {
 if (overrideLabel) {
 section("Automation name") {
 label title: "Enter custom name", defaultValue: app.label, required: false
 }
 } else {
 section("Automation name") {
 paragraph app.label
 }
 }
 section {
 input "overrideLabel", "bool", title: "Edit automation name", defaultValue: "false", required: "false", submitOnChange: true
 }
 }
}

// inputs to select the lights
def lightInputs() {
 input "lights", "capability.switch", title: "Which lights do you want to control?", multiple: true, submitOnChange: true
}

// inputs to control what to do with the lights (turn on, turn on and set color, turn on
// and set level)
def actionInputs() {
 if (lights) {
 input "action", "enum", title: "What do you want to do?", options: actionOptions(), required: true, submitOnChange: true
 if (action == "color") {
 input "color", "enum", title: "Color", required: true, multiple:false, options: [
 ["Soft White":"Soft White - Default"],
 ["White":"White - Concentrate"],
 ["Daylight":"Daylight - Energize"],
 ["Warm White":"Warm White - Relax"],
 "Red","Green","Blue","Yellow","Orange","Purple","Pink"]

 }
 if (action == "level" || action == "color") {
 input "level", "enum", title: "Dimmer Level", options: [[10:"10%"],[20:"20%"],[30:"30%"],[40:"40%"],[50:"50%"],[60:"60%"],[70:"70%"],[80:"80%"],[90:"90%"],[100:"100%"]], defaultValue: "80"
 }
 }
}

// utility method to get a map of available actions for the selected switches
def actionMap() {
 def map = [on: "Turn On", off: "Turn Off"]
 if (lights.find{it.hasCommand('setLevel')} != null) {
 map.level = "Turn On & Set Level"
 }
 if (lights.find{it.hasCommand('setColor')} != null) {
 map.color = "Turn On & Set Color"
 }
 map
}

// utility method to collect the action map entries into maps for the input
def actionOptions() {
 actionMap().collect{[(it.key): it.value]}
}

// inputs for selecting on and off time
def timeInputs() {
 if (settings.action) {
 section {
 input "turnOnTime", "time", title: "Time to turn lights on", required: true
 input "turnOffTime", "time", title: "Time to turn lights off", required: true
 }
 }
}

// a method that will set the default label of the automation.
// It uses the lights selected and action to create the automation label
def defaultLabel() {
 def lightsLabel = settings.lights.size() == 1 ? lights[0].displayName : lights[0].displayName + ", etc..."

 if (action == "color") {
 "Turn on and set color of $lightsLabel"
 } else if (action == "level") {
 "Turn on and set level of $lightsLabel"
 } else {
 "Turn $action $lightsLabel"
 }
}

// the handler method that turns the lights on and sets level and color if specified
def turnOnHandler() {
 // switch on the selected action
 switch(action) {
 case "level":
 lights.each {
 // check to ensure the switch does have the setLevel command
 if (it.hasCommand('setLevel')) {
 log.debug("Not So Smart Lighting: $it.displayName setLevel($level)")
 it.setLevel(level as Integer)
 }
 it.on()
 }
 break
 case "on":
 log.debug "on()"
 lights.on()
 break
 case "color":
 setColor()
 break
 }
}

// set the color and level as specified, if the user selected to set color.
def setColor() {

 def hueColor = 0
 def saturation = 100

 switch(color) {
 case "White":
 hueColor = 52
 saturation = 19
 break;
 case "Daylight":
 hueColor = 53
 saturation = 91
 break;
 case "Soft White":
 hueColor = 23
 saturation = 56
 break;
 case "Warm White":
 hueColor = 20
 saturation = 80
 break;
 case "Blue":
 hueColor = 70
 break;
 case "Green":
 hueColor = 39
 break;
 case "Yellow":
 hueColor = 25
 break;
 case "Orange":
 hueColor = 10
 break;
 case "Purple":
 hueColor = 75
 break;
 case "Pink":
 hueColor = 83
 break;
 case "Red":
 hueColor = 100
 break;
 }

 def value = [switch: "on", hue: hueColor, saturation: saturation, level: level as Integer ?: 100]
 log.debug "color = $value"

 lights.each {
 if (it.hasCommand('setColor')) {
 log.debug "$it.displayName, setColor($value)"
 it.setColor(value)
 } else if (it.hasCommand('setLevel')) {
 log.debug "$it.displayName, setLevel($value)"
 it.setLevel(level as Integer ?: 100)
 } else {
 log.debug "$it.displayName, on()"
 it.on()
 }
 }
}

// simple turn off lights handler
def turnOffHandler() {
 lights.off()
}

To try it out, create the parent and child SmartApp with the code as shown above, and publish the parent SmartApp for yourself (you don’t need to publish the child SmartApp, since it will be discovered by the parent and you don’t want to install it individually from the Marketplace).
Then, go to the Marketplace and install “Simple Lighting” in “My Apps”. You can then add multiple automations, with each automation being an instance of the child SmartApp (“Simple Automation”).

Tips and best practices

	Think carefully about creating more than one level of parent-to-child relationships, as it may negatively impact usability and create unneeded complications.

	Sharing state or atomicState between parent and child SmartApps is not currently supported.

	The number of children a SmartApp may have is capped as documented in the Parent-child relationship limit.

Summary

Parent-child relationships can be useful when you want to provide multiple automations that act independently on separate devices.
A parent SmartApp may have many children; a child SmartApp has only one parent.

To create a parent-child relationship, the SmartApp that is to be the parent should use the app input type to specify what app can be a child.
The child SmartApp should specify the parent option in its definition to specify what SmartApp should serve as the parent.

A parent SmartApp can get its children by using the getChildApps(), or findChildAppByName() if you know the name of the app you are looking for.
Children can get a reference to their parent through the parent property.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	SmartApps

Example: Bon Voyage

To help illustrate some of the important concepts in writing a SmartApp,
let’s walk through an example.

Bon Voyage

Our example SmartApp is fairly simple - it will monitor a set of presence
detectors, and trigger a Mode change when everyone has left.

To accomplish this, our app will need to do the following:

	Gather the necessary input from the user, including which sensors to monitor, what Mode to trigger, and other app preferences.

	Subscribe to the appropriate Events, and take action when they are triggered.

Let’s begin with configuring the preferences.

SmartApp preferences

To configure the Bon Voyage app, we will want to gather the following information
from the user:

	Which sensors to monitor

	The Mode to trigger when everyone is away

	A false alarm threshold

	Who should be notified, and how

Each of these inputs corresponds into a preferences section:

preferences {
 section("When all of these people leave home") {
 input "people", "capability.presenceSensor", multiple: true
 }
 section("Change to this mode") {
 input "newMode", "mode", title: "Mode?"
 }
 section("False alarm threshold (defaults to 10 min)") {
 input "falseAlarmThreshold", "decimal", title: "Number of minutes", required: false
 }
 section("Notifications") {
 input("recipients", "contact", title: "Send notifications to", required: false) {
 input "sendPushMessage", "enum", title: "Send a push notification?", options: ["Yes", "No"], required: false
 input "phone", "phone", title: "Send a Text Message?", required: false
 }
 }

}

Let’s look at each section in a bit more detail.

The When all of these people leave home section allows the user to configure what sensors to use for this app.
The user will see a section with the main title “When all of these
people leave home.”
A drop down will be populated with all the devices that have the presenceSensor capability (capability.presenceSensor) for them to select the sensor(s) they’d like to use.
multiple: true allows them to add as many sensors as they’d like.
Their choice(s) are then stored in a variable named people.

The Change to this mode section allows the user to specify what Mode
should be triggered when everyone is away.
The input type of mode is used, so a drop down will be populated with all the modes the user has set up.
The title property is used to show the title "Mode?" above
the field. The selection is stored in the variable named newMode.

The section False alarm threshold (defaults to 10 min) allows the
user to specify a false alarm threshold.
These types of thresholds are common in our SmartApps.
A section is shown titled “False alarm threshold (defaults to 10 min)”.
The input field type of decimal is used, to allow the user to input a numeric value that represents minutes.
The title “Number of minutes” is specified, and we set the required
property to false.
By default, all fields are required, so you must explicitly state if it is not required.
We store the user’s input in the variable named falseAlarmThreshold for later use.

Finally, a section is shown labeled as “Notifications”.
This is where the user can configure how they want to be notified when everyone is away.
This input is a little different; it uses the special input type contact.
You can read more about sending notifications in a SmartApp in the Sending Notifications section.

Monitor and react

Now that we have gathered the input we need from the user, we need to listen
to the appropriate Events, and take action when they are triggered.

We do this through the required installed() method:

def installed() {
 log.debug "Installed with settings: ${settings}"
 log.debug "Current mode = ${location.mode}, people = ${people.collect{it.label + ': ' + it.currentPresence}}"
 subscribe(people, "presence", presence)
}

Upon installation, we want to keep track of the status of our people.
We use the subscribe() method to listen to the presence attribute
of the predefined group of presence sensors, people.
When the presence status changes of any of our people, the method presence
(the last parameter above) will be called.

(Also note the log statements. We won’t discuss log statements in detail,
but providing thorough logging is a habit you will want to get into as a SmartApps
developer. It is invaluable when trying to debug or troubleshoot your app!)

Let’s define our presence method.

def presence(evt) {
 log.debug "evt.name: $evt.value"
 if (evt.value == "not present") {
 if (location.mode != newMode) {
 log.debug "checking if everyone is away"
 if (everyoneIsAway()) {
 log.debug "starting sequence"
 runIn(findFalseAlarmThreshold() * 60, "takeAction", [overwrite: false])
 }
 }
 else {
 log.debug "mode is the same, not evaluating"
 }
 }
 else {
 log.debug "present; doing nothing"
 }
}

// returns true if all configured sensors are not present,
// false otherwise.
private everyoneIsAway() {
 def result = true
 // iterate over our people variable that we defined
 // in the preferences method
 for (person in people) {
 if (person.currentPresence == "present") {
 // someone is present, so set our our result
 // variable to false and terminate the loop.
 result = false
 break
 }
 }
 log.debug "everyoneIsAway: $result"
 return result
}

// gets the false alarm threshold, in minutes. Defaults to
// 10 minutes if the preference is not defined.
private findFalseAlarmThreshold() {
 // In Groovy, the return statement is implied, and not required.
 // We check to see if the variable we set in the preferences
 // is defined and non-empty, and if it is, return it. Otherwise,
 // return our default value of 10
 (falseAlarmThreshold != null && falseAlarmThreshold != "") ? falseAlarmThreshold : 10
}

Let’s break that down a bit.

The first thing we need to do is see what event was triggered.
We do this by inspecting the evt variable that is passed to our event handler.
The presence capability can be either "present" or "not present".

Next, we check that the current Mode isn’t already set to the Mode we
want to trigger. If we’re already in our desired Mode, there’s nothing
else for us to do!

Now it starts to get fun!

We have defined two helper methods above:
everyoneIsAway() and findFalseAlarmThreshold().

everyoneIsAway() returns true if all configured sensors are not present,
and false otherwise.
It iterates over all the sensors configured and stored in the people variable, and inspects the currentPresence property.
If the currentPresence is "present", we set the result to false, and terminate the loop.
We then return the value of the result variable.

findFalseAlarmThreshold() gets the false alarm threshold, in minutes,
as configured by the user.
If the threshold preference has not been set,
it returns 10 minutes as the default.

If everyone is away, we call the built-in runIn() method, which runs the method takeAction() in a specified amount of time (we’ll define that method shortly).
We use findFalseAlarmThreshold() multiplied by 60 to convert minutes to seconds, which is what the runIn() method requires.
We specify overwrite: false so it won’t overwrite previously scheduled
takeAction() calls.
In the context of this SmartApp, it means that if one user leaves, and then another user leaves within the false alarm threshold time,
takeAction() will still be called twice.
By default, overwrite is true,
so any previously scheduled takeAction() calls would be
canceled and replaced by your current call.

Now we need to define our takeAction() method:

def takeAction() {
 if (everyoneIsAway()) {
 def threshold = 1000 * 60 * findFalseAlarmThreshold() - 1000
 def awayLongEnough = people.findAll { person ->
 def presenceState = person.currentState("presence")
 def elapsed = now() - presenceState.rawDateCreated.time
 elapsed >= threshold
 }
 log.debug "Found ${awayLongEnough.size()} out of ${people.size()} person(s) who were away long enough"
 if (awayLongEnough.size() == people.size()) {
 //def message = "${app.label} changed your mode to '${newMode}' because everyone left home"
 def message = "SmartThings changed your mode to '${newMode}' because everyone left home"
 log.info message
 send(message)
 setLocationMode(newMode)
 } else {
 log.debug "not everyone has been away long enough; doing nothing"
 }
 } else {
 log.debug "not everyone is away; doing nothing"
 }
}

private send(msg) {
 if (sendPushMessage != "No") {
 log.debug("sending push message")
 sendPush(msg)
 }

 if (phone) {
 log.debug("sending text message")
 sendSms(phone, msg)
 }

 log.debug msg
}

There’s a lot going on here, so we’ll look at some of the more interesting
parts.

The first thing we do is check again if everyone is away.
This is necessary since something may have changed since it was already called, because of the falseAlarmThreshold().

If everyone is away, we need to find out how many people have been
away for long enough, using our false alarm threshold.
We create a variable, awayLongEnough and set it through the Groovy findAll() [http://docs.groovy-lang.org/latest/html/groovy-jdk/java/util/Collection.html#findAll(groovy.lang.Closure)] method.
The findAll() method returns a subset of the collection based on the logic of the passed-in closure.
For each person, we use the currentState() method available to us, and use that to get the time elapsed since the event was triggered.
If the time elapsed since this event exceeds our threshold, we add it to the awayLongEnough collection by returning true in our closure (note that we could omit the “return” keyword, as it is implied in Groovy).

For more information about the findAll() method, or how Groovy utilizes closures, consult the Groovy documentation at http://www.groovy-lang.org/documentation.html

If the number of people away long enough equals the total number of people configured for this app, we send a message (we’ll look at that method next), and then call the setLocationMode() method with the desired Mode.
This is what will cause a Mode change.

The send() method takes a String parameter, msg, which is the message to send.
This is where our app sends a notification to any of the contacts the user has specified.

Finally, we need to write our updated() method, which is called whenever
the user changes any of their preferences.
When this method is called, we need to call the unsubscribe() method, and then subscribe(), to effectively reset our app.

def updated() {
 log.debug "Updated with settings: ${settings}"
 log.debug "Current mode = ${location.mode}, people = ${people.collect{it.label + ': ' + it.currentPresence}}"
 unsubscribe()
 subscribe(people, "presence", presence)
}

Related documentation

	Preferences and Settings

	Events and Subscriptions

	Working with Devices

	Modes

	Scheduling

	Sending Notifications

Complete source code

The complete source code for this SmartApp can be found in the SmartThingsPublic GitHub repository here [https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/bon-voyage.src/bon-voyage.groovy].

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

Web Services SmartApps

SmartApps may themselves be a web service, exposing a URL and any defined endpoints.

This allows external applications to make web API calls to a SmartApp, and get information about, or control, end devices.

	Web Services SmartApps Overview

	Web Services Tutorial–SmartApp

	Web Services SmartApp Tutorial–Authorization Flow

	The SmartApp

	Authorization

	Troubleshooting

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Web Services SmartApps

Web Services SmartApps Overview

IntegratingwithSmartThingsusingSmartAppsWebServices

In this guide, you will learn:

	The overall design of how Web Services SmartApps work.

	Security measures taken to ensure access is only granted to trusted clients, and specific devices as chosen by the user.

	The end user flow for external applications integrating with Web Services SmartApps.

Introduction

In designing a way to allow external systems API access, we wanted to give developers the flexibility they need, while ensuring that the customer understands why their account is being accessed through an external API, and has specifically authorized that access.

As such, we’ve designed an architecture and user experience around external API access that meets the following goals:

	ItusesindustrybestpracticessuchasOAuth2toauthenticateandauthorizebasicexternalAPIaccess.

	Itrequirestheend­ user(customer)tospecificallyauthorizetheaccessto specificdevices.

	Itdeliversauserexperiencethatiseasytounderstand.

	Itdeliversadeveloperexperiencethatiseasytounderstandandimplement.

Concepts

ThereareacoupleofimportantconceptsthatneedtobeunderstoodwithrespecttohowSmartAppsAPIswork:

	All SmartApps APIs are authenticated using OAuth2.

	When we talk about SmartApps APIs, we are referring to APIs that are exposed by SmartApps themselves.

	SmartApps execute in a special security context, where they only have access to devices specifically authorized by the user at installation time. This is no different for SmartApps APIs.

How it works

Ouroverallapproachto API accessrequiresthe end­ userto authenticateand authorizethe API accessin two steps:

	TheinstallationofaSmartThingsWebServices“SmartApp”intotheuser’sSmartThingsAccount/Location, along with specific device preferences that specify the devices to which the external system is being granted access.

	The typical OAuth login flow grants the external system the OAuth access token.

It is important to understand that it is the SmartApp itself that exposes the API endpoints that are then used by the external system to integrate with SmartThings.

This approach is designed to ensure that an external system must have explicit access granted to the devices, before it can control those devices.

OAuth-integrated app installation flow

[image: Alt OAuth-Integrated App Installation]

Thediagramaboveoutlinesthe followingstandardstepsin
the API Connectionand Usageprocess:

	A user of the external system takes some action that initiates a “Connect to SmartThings” flow. An example of this is an IFTTT [http://www.ifttt.com] user adding the SmartThings “channel”.

	The external service will typically redirect to the SmartThings login page. The HTTP request to this page includes the required OAuth client ID (more details below), allowing our login page to recognize this as a login request using OAuth.

	The login page is displayed, and if the login is successful, a subsequent page is displayed that allows the now-authenticated user to install and configure the Web Services SmartApp that is associated with the client ID. When this step is complete, an authorization code is returned to the browser.

	Typically, the authorization code is then given to the external system, and it is used (along with the OAuth client ID and client secret), to request an access token. The authorization code takes the place of the user credentials in this case, and is only valid for a single use. Once the external system has the OAuth access token, API requests can be made using this token.

	The first API call that the external system should make is to the endpoints service. This service exists on a standard URL, and will return the specific URL that the external system should use (for this specific OAuth access token) to make all API requests.

	Finally, the external system can use the specified endpoint URL and the provided OAuth2 access token to make API calls to the SmartApp providing the web services.

The end-user journey

Before discussing the specific steps to building a Web Services SmartApp, you should understand the end user experience.

Initiate connection from external system

The first step is to initiate the connection with the SmartThings cloud from the external web application.
This is different for each web application, but is just a URL.

Authentication and authorization

The typical OAuth journey is the OAuth2 authorization code flow, initiated from the website of the external system, whereby the user is redirected to the SmartThings website.
This is where they enter their SmartThings credentials, as shown below:

[image: ../_images/oauth-login.png]

Once authenticated with SmartThings, they will be prompted to specifically authorize access by the application.

Application configuration

The user is prompted to configure the Web Services SmartApp that will be automatically installed.
The user does not have to select the specific SmartApp, because it can be automatically identified by the OAuth client ID.

ThefirststepintheapplicationconfigurationprocessistoidentifytheLocationinwhichtheSmartAppwillbeinstalled.

[image: ../_images/location.png]

The second step is to configure exactly which devices will be accessible
through any external web services that are exposed by the SmartApp.

An example of the IFTTT SmartApp device selection options is shown
below:

[image: ../_images/preferences.png]

Finally, the user clicks on Authorize to complete both the authorization of the application and the installation of the SmartApp and the connection between the external system and the SmartThings Cloud is now complete.

Oncethe user authorizesaccess,the externalsystemis providedwith the OAuthauthorizationcode,whichis in turn used to requestand receivean OAuthaccesstoken.
Once the externalsystemhasthetoken, it can access the web services provided by the SmartApp.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Web Services SmartApps

Web Services Tutorial–SmartApp

This is the first part of two that will teach you how to build a Web Services SmartApp and a web application to illustrate the authorization flow.

Overview

In part 1 of this tutorial, you will learn:

	How to develop a Web Services SmartApp that exposes endpoints.

	How to call the Web Services SmartApp using simple API calls.

The source code for this tutorial is available here [https://github.com/SmartThingsCommunity/Code/tree/master/smartapps/tutorials/web-services-smartapps].

Part 1 of this tutorial will build a simple SmartApp that exposes endpoints to get information about and control switches.

Create a new SmartApp

Create a new SmartApp in the IDE. Fill in the required fields, and make sure to click on Enable OAuth in SmartApp to receive an auto-generated client ID and secret.

Make sure to specify the redirect URI as this will be used to validate the authorization code request.
For the purposes of this tutorial, simply type in http://localhost:4567/oauth/callback.

Note the Client ID and secret - they’ll be used later (should you forget, you can get them by viewing the “App Settings” in the IDE).

Define preferences

SmartApps declare preferences metadata that is used at installation and configuration time, to allow the user to control what devices the SmartApp will have access to.

This is a configuration step, but also a security step, whereby the users must explicitly select what devices the SmartApp can control.

Web Services SmartApps are no different, and this is part of the power of this approach.
The end user controls exactly what devices the SmartApp will have access to, and therefore what devices the external systems that consume those web services will have access to.

The preferences definition should look like this:

preferences {
 section ("Allow external service to control these things...") {
 input "switches", "capability.switch", multiple: true, required: true
 }
}

Also ensure that you have an installed() and updated() method defined (this should be created by default when creating a SmartApp).
They can remain empty, since we are not subscribing to any device Events in this example.

You can learn more about Web Services SmartApp preferences here.

Specify endpoints

The mappings declaration allows developers to expose HTTP endpoints, and map the various supported HTTP operations to an associated handler.

Our SmartApp will expose two endpoints:

	The /switches endpoint will support a GET request. A GET request to this endpoint will return state information for the configured switches.

	The /switches/:command endpoint will support a PUT request. A PUT request to this endpoint will execute the specified command ("on" or "off") on the configured switches.

Here’s the code for our mappings definition. This is defined at the top-level in our SmartApp (i.e., not in another method):

mappings {
 path("/switches") {
 action: [
 GET: "listSwitches"
]
 }
 path("/switches/:command") {
 action: [
 PUT: "updateSwitches"
]
 }
}

Note the use of variable parameters in our PUT endpoint.
Use the : prefix to specify that the value will be variable. We’ll see later how to get this value.

Go ahead and add empty methods for the various handlers. We’ll fill these in in the next step:

def listSwitches() {}

def updateSwitches() {}

See the Mapping endpoints documentation for more information.

GET switch information

Now that we’ve defined our endpoints, we need to handle the requests in the handler methods we stubbed in above.

Let’s start with the handler for GET requests to the /switches endpoint.
When a GET request to the /switches endpoint is called, we want to return the display name, and the current switch value (e.g., on or off) for the configured switch.

Our handler method returns a list of maps, which is then serialized by the SmartThings platform into JSON:

// returns a list like
// [[name: "kitchen lamp", value: "off"], [name: "bathroom", value: "on"]]
def listSwitches() {
 def resp = []
 switches.each {
 resp << [name: it.displayName, value: it.currentValue("switch")]
 }
 return resp
}

See the Response handling documentation for more information on working with web request responses.

UPDATE the switches

We also need to handle a PUT request to the /switches/:command endpoint. /switches/on will turn the switches on, and /switches/off will turn the switches off.

If any of the configured switches does not support the specified command, we’ll return a 501 HTTP error.

void updateSwitches() {
 // use the built-in request object to get the command parameter
 def command = params.command

 // all switches have the command
 // execute the command on all switches
 // (note we can do this on the array - the command will be invoked on every element
 switch(command) {
 case "on":
 switches.on()
 break
 case "off":
 switches.off()
 break
 default:
 httpError(400, "$command is not a valid command for all switches specified")
 }
}

Our example uses the endpoint itself to get the command.
You can learn more about working with requests here.

Self-publish the SmartApp

Publish the app for yourself, by clicking on the Publish button and selecting For Me.

Run the SmartApp in the Simulator

Using the Simulator, we can quickly test our Web Services SmartApp.

Click the Install button in the Simulator, select a Location to install the SmartApp into, and select a switch.

Note that in the lower right of the Simulator there is an API token and an API endpoint URL:

[image: ../_images/web-services-smartapp-simulator-install.png]

Important

The base URL for of your SmartApp’s API endpoint will vary depending on the Location being installed into.

Be sure to copy the URL from the Simulator to ensure you have the correct URL!

We can use these to test making requests to our SmartApp.

Make API calls to the SmartApp

Using whatever tool you prefer for making web requests (this example will use curl, but Apigee [http://apigee.com] is a good UI-based tool for making requests), we will call one of our SmartApp endpoints.

From the Simulator, grab the API endpoint. It will look something like this:

https://<BASE-URL>/api/smartapps/installations/158ef595-3695-49ab-acc1-80e93288c0c8

Your installation will have a different, unique URL.

Important

The base URL for of your SmartApp’s API endpoint will vary depending on the Location being installed into.

Be sure to copy the URL from the Simulator to ensure you have the correct URL!

To get information about the switch, we will call the /switch endpoint using a GET request.
You’ll need to substitute your unique endpoint and API key.

curl -H "Authorization: Bearer <api token>" "<api endpoint>/switches"

This should return a JSON response like the following:

[{"name":"Kitchen 2","value":"off"},{"name":"Living room window","value":"off"}]

To turn the switch on or off, call the /switches endpoint using a PUT request.
Again, you’ll need to substitute your unique endpoint and API key:

curl -H "Authorization: Bearer <api token>" -X PUT "<api endpoint>/switches/on"

Change the command value to "off" to turn the switch off.
Try turning the switch on and off, and then using curl to get the status, to see that it changed.

Uninstall the SmartApp

Finally, uninstall the SmartApp using the Uninstall button in the IDE Simulator.

Summary

In this tutorial, you learned how to create a SmartApp that exposes endpoints to get information about, and control, a device.
You also learned how to install the SmartApp in the Simulator, and then make API calls to the endpoint.

In the next part of this tutorial, we’ll look at how a external application might interact with SmartThings using the OAuth2 flow (instead of simply using the Simulator and its generated access token).

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Web Services SmartApps

Web Services SmartApp Tutorial–Authorization Flow

In Part 1 of this tutorial, you learned how to create a simple Web Services SmartApp, and install it in the IDE simulator, and make web requests to it.

In Part 2, we’ll build a simple web application that will integrate with SmartThings and the WebServices SmartApp we created in Part 1.

Overview

In Part 2 of this tutorial, you will learn:

	How to get the API token.

	How to discover the endpoints of a Web Services SmartApp.

	How to make calls to the Web Services SmartApp.

The source code for this tutorial is available here [https://github.com/SmartThingsCommunity/Code/tree/master/smartapps/tutorials/web-services-smartapps].

Important

Beginning February 1, 2016, only SmartApps approved and published by SmartThings can be installed via the OAuth flow discussed below.

For testing purposes, you will be able to install into your own account only.

For more information, see this community post [https://community.smartthings.com/t/smartthings-oauth-changes/35019].

We will build a simple Sinatra application that will make calls to the Web Services SmartApp we built in Part 1.

If you’re not familiar with Sinatra, you are encouraged to try it out.
It’s not strictly necessary, however, as our application will simply make web requests to get the API token and the endpoint.

Note

If Node is more your speed, check out the awesome SmartThings OAuth Node app written by community member John S (@schettj) here [https://github.com/schettj/SmartThings]. It shows how you can get an access token using the OAuth flow for a WebServices SmartApp using Node.

Prerequisites

Aside from completing Part 1 of this tutorial, you should have Ruby and Sinatra installed.

Visit the Ruby [http://ruby-lang.org] website to install Ruby, and the Sinatra Getting Started Page [http://www.sinatrarb.com/intro.html] for information about installing Sinatra.

Bootstrap the Sinatra app

Create a new directory for the Sinatra app, and change directories to it:

mkdir web-app-tutorial
cd web-app-tutorial

In your favorite text editor*, create a new file called server.rb and paste the following into it, and save it.

*(If your favorite text editor is vim or emacs, then our hat’s off to you. We’re impressed - maybe even a bit intimidated. If your favorite editor is notepad, well... we’re not as impressed, or intimidated. :@))

require 'bundler/setup'
require 'sinatra'
require 'oauth2'
require 'json'
require "net/http"
require "uri"

Our client ID and secret, used to get the access token
CLIENT_ID = ENV['ST_CLIENT_ID']
CLIENT_SECRET = ENV['ST_CLIENT_SECRET']

We'll store the access token in the session
use Rack::Session::Pool, :cookie_only => false

This is the URI that will be called with our access
code after we authenticate with our SmartThings account
redirect_uri = 'http://localhost:4567/oauth/callback'

This is the URI we will use to get the endpoints once we've received our token
endpoints_uri = 'https://graph.api.smartthings.com/api/smartapps/endpoints'

options = {
 site: 'https://graph.api.smartthings.com',
 authorize_url: '/oauth/authorize',
 token_url: '/oauth/token'
}

use the OAuth2 module to handle OAuth flow
client = OAuth2::Client.new(CLIENT_ID, CLIENT_SECRET, options)

helper method to know if we have an access token
def authenticated?
 session[:access_token]
end

handle requests to the application root
get '/' do
 %(Connect with SmartThings)
end

handle requests to /authorize URL
get '/authorize' do
 'Not Implemented!'
end

hanlde requests to /oauth/callback URL. We
will tell SmartThings to call this URL with our
authorization code once we've authenticated.
get '/oauth/callback' do
 'Not Implemented!'
end

handle requests to the /getSwitch URL. This is where
we will make requests to get information about the configured
switch.
get '/getswitch' do
 'Not Implemented!'
end

Create your Gemfile - open a new file in your editor, paste the contents below in, and save it as Gemfile.

source 'https://rubygems.org'

gem 'sinatra'
gem 'oauth2'
gem 'json'

We’ll use bundler to install our app. If you don’t have it, you can learn how to get started here [http://bundler.io/].

Back at the command line, run bundle:

bundle install

You’ll also want to set environment variables for your ST_CLIENT_ID and ST_CLIENT_SECRET.

Now, run the app on your local machine:

ruby server.rb

Visit http://localhost:4567.
You should see a page with a link to “Connect with SmartThings”.

We’re using the OAuth2 module [https://github.com/intridea/oauth2] to handle the OAuth2 flow.
We create a new client object, using the client_id and client_secret.
We also configure it with the options data structure that defines the information about the SmartThings OAuth endpoint.

We’ve handled the root URL to simply display a link that points to the /authorize URL of our server. We’ll fill that in next.

Get an authorization code

When the user clicks on the “Connect with SmartThings” link, we need to get our OAuth authorization code.

To do this, the user will need to authenticate with SmartThings, and authorize the devices this application can work with.
Once that has been done, the user will be directed back to a specified redirect_uri, with the OAuth authorization code.
When we created the SmartApp in the first part of this tutorial, we set the redirect URI to http://localhost:4567/oauth/callback.
It is important that the redirect URI in the SmartApp and the redirect_uri field in this Sinatra app match, as validation will occur with the authorization code request that will make sure these two URIs match.
This will be used (along with the client_id and client_secret), to get the access token.

Important

When you self-publish a SmartApp, it is published and available in the Location that you published it.
Since SmartThings is moving into the global space, the Location that you published your SmartApp corresponds to a specific server.
This means your self-published SmartApp is only available on that server.

Replace the /authorize route with the following:

get '/authorize' do
 # Use the OAuth2 module to get the authorize URL.
 # After we authenticate with SmartThings, we will be redirected to the
 # redirect_uri, including our access code used to get the token
 url = client.auth_code.authorize_url(redirect_uri: redirect_uri, scope: 'app')
 redirect url
end

Kill the server if it’s running (CTRL+C), and start it up again using ruby server.rb.

Visit http://localhost:4567 again, and click the “Connect with SmartThings” link.

This should prompt you to authenticate with your SmartThings account (if you are not already logged in), and bring you to a page where you must authorize this application.
It should look something like this:

[image: ../_images/preferences.png]

Click the Authorize button, and you will be redirected back your server.

You’ll notice that we haven’t implemented handling this URL yet, so we see “Not Implemented!”.

Get an access token

When SmartThings redirects back to our application after authorizing, it passes a code parameter on the URL.
This is the code that we will use to get the API token we need to make requests to our Web Servcies SmartApp.

We’ll store the access token in the session.
Towards the top of server.rb, we configure our app to use the session, and add a helper method to know if the user has authenticated:

We'll store the access token in the session
use Rack::Session::Pool, :cookie_only => false

def authenticated?
 session[:access_token]
end

Replace the /oauth/callback route with the following:

get '/oauth/callback' do
 # The callback is called with a "code" URL parameter
 # This is the code we can use to get our access token
 code = params[:code]

 # Use the code to get the token.
 response = client.auth_code.get_token(code, redirect_uri: redirect_uri, scope: 'app')

 # now that we have the access token, we will store it in the session
 session[:access_token] = response.token

 # debug - inspect the running console for the
 # expires in (seconds from now), and the expires at (in epoch time)
 puts 'TOKEN EXPIRES IN ' + response.expires_in.to_s
 puts 'TOKEN EXPIRES AT ' + response.expires_at.to_s
 redirect '/getswitch'
end

We first retrieve the access code from the parameters.
We use this to get the token using the OAuth2 module, and store it in the session.

We then redirect to the /getswitch URL of our server.
This is where we will retrieve the endpoint to call, and get the status of the configured switch.

Restart your server, and try it out.
Once authorized, you should be redirected to the /getswitch URL. We’ll start implementing that next.

Discover the endpoint

Now that we have the OAuth token, we can use it to discover the endpoint of our WebServices SmartApp.

Replace the /getswitch route with the following:

get '/getswitch' do
 # If we get to this URL without having gotten the access token
 # redirect back to root to go through authorization
 if !authenticated?
 redirect '/'
 end

 token = session[:access_token]

 # make a request to the SmartThins endpoint URI, using the token,
 # to get our endpoints
 url = URI.parse(endpoints_uri)
 req = Net::HTTP::Get.new(url.request_uri)

 # we set a HTTP header of "Authorization: Bearer <API Token>"
 req['Authorization'] = 'Bearer ' + token

 http = Net::HTTP.new(url.host, url.port)
 http.use_ssl = (url.scheme == "https")

 response = http.request(req)
 json = JSON.parse(response.body)

 # debug statement
 puts json

 # get the endpoint from the JSON:
 uri = json[0]['uri']

 '<h3>JSON Response</h3>
' + JSON.pretty_generate(json) + '<h3>Endpoint</h3>
' + uri
end

The above code simply makes a GET request to the SmartThings API endpoints service at https://graph.api.smartthings.com/api/smartapps/endpoints, setting the "Authorization" HTTP header with the API token.

The response is JSON that contains (among other things), the endpoint of our SmartApp. The JSON that is returned contains a key called uri that we will use to build our endpoint URLs.
There are other URL keys in the JSON, but the uri key is specific to the server that your SmartApp is on.
Always use the uri key or base_uri for your endpoints.
For this step, we just display the JSON response and endpoint in the page.

By now, you know the drill. Restart your server, refresh the page, and click the link (you’ll have to reauthorize).
You should then see the JSON response and endpoint displayed on your page.

Make API calls

Now that we have our token and endpoint, we can make API calls to our SmartApp.

As you may have guessed by the URL path, we’re just going to display the name of the switch, and it’s current status (on or off).

Remove the line at the end of the getswitch route handler that outputs the response HTML, and add the following:

now we can build a URL to our WebServices SmartApp
we will make a GET request to get information about the switch
switchUrl = uri + '/switches'

debug
puts "SWITCH ENDPOINT: " + switchUrl

getSwitchURL = URI.parse(switchUrl)
getSwitchReq = Net::HTTP::Get.new(getSwitchURL.request_uri)
getSwitchReq['Authorization'] = 'Bearer ' + token

getSwitchHttp = Net::HTTP.new(getSwitchURL.host, getSwitchURL.port)
getSwitchHttp.use_ssl = true

switchStatus = getSwitchHttp.request(getSwitchReq)

'<h3>Response Code</h3>' + switchStatus.code + '
<h3>Response Headers</h3>' + switchStatus.to_hash.inspect + '
<h3>Response Body</h3>' + switchStatus.body

The above code uses the endpoint (obtained from the uri key in our JSON response above) for our SmartApp to build a URL, and then makes a GET request to the /switches endpoint.
It simply displays the the status, headers, and response body returned by our WebServices SmartApp.

Restart your server and try it out.
You should see status of your configured switches displayed!

Summary

In the second part of this tutorial, we learned how an external application can work with SmartThings by getting an access token, discover endpoints, and make API calls to a WebServices SmartApp.

You are encouraged to explore further with this sample, including making different API calls to turn the configured switch on or off.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Web Services SmartApps

The SmartApp

A Web Services SmartApp exposes endpoints that third parties can make REST calls to.
It can then do anything a normal SmartApp can do - get device status, actuate devices, etc. - and send a response back to the calling client.

Enable OAuth

For a SmartApp to expose endpoints that can receive REST calls from a third party, OAuth must be enabled.

OAuth can be enabled for a SmartApp via the App Settings page.
In the OAuth section, check the box to enable OAuth.
A client ID and secret will be generated for this SmartApp.
These will be used as part of the OAuth flow to obtain an access token for this SmartApp.

There is an option to specify a Redirect URI.
This URI will be used to validate the redirect_uri passed in with the request for the authorization code.
The value of this field can be a single value, or a comma-delimited list of values.
For example:

http://myserverhostname.com

or

http://myserverhostname1.com,http://myserverhostname2.com,http://myserverhostname3.com

During validation, the redirect_uri passed in with the authorization code request will be checked against the URIs defined in this field.
The port does matter during validation.
If there is no match, validation will fail with the following error:

OAuth2 Error

error="invalid_grant", error_description="Invalid redirect: http://myserverhostname.com/oauth/callback does not match one of the registered values: [http://myserverhostname1.com/oauth/callback]"

You can also set the Client Display Name and Client Display Link.
These will be used on the SmartThings Authorization page to inform the user who is requesting access to their devices.

[image: ../_images/oauth-settings.png]

Preferences

Part of the Authorization Flow that installs the SmartApp requires the user to authorize specific devices that the third party can interact with.
The types of devices that may be authorized for Web Services SmartApps are controlled through the SmartApp’s preferences.

The intent of the Authorization page is to simply allow the user to authorize specific devices.
This can be accomplished in one of two ways:

	Specify a simple, single page that allows the user to select from a set of devices, or

	Specify a specific preferences page to be used by the Authorization web page.

An example of a simple, single page that will allow the user to select from a set of devices:

preferences {
 section("Control these switches...") {
 input "switches", "capability.switch"
 }
 section("Control these motion sensors...") {
 input "motion", "capability.motionSensor"
 }
}

Here is an example that specifies a specific page to be used during authorization, using the oauthPage option to preferences:

Warning

Currently, using required inputs does not work inside of page declarations when using oauthPage. This is a known issue and is currently being worked on. We recommend using non-required inputs, by explicitly setting required: false, when using oauthPage pages.

preferences(oauthPage: "deviceAuthorization") {
 // deviceAuthorization page is simply the devices to authorize
 page(name: "deviceAuthorization", title: "", nextPage: "instructionPage",
 install: false, uninstall: true) {
 section("Select Devices to Authorize") {
 input "switches", "capability.switch", title: "Switches:", required: false
 input "motions", "capability.motionSensor", title: "Motion Sensors:", required: false
 }

 }

 page(name: "instructionPage", title: "Device Discovery", install: true) {
 section() {
 paragraph "Some other information"
 }
 }
}

If you require additional, non-device preferences inputs, you can use dynamic pages.
The oauthPage must be a static (non-dynamic) page, and be the first page displayed:

preferences(oauthPage: "deviceAuthorization") {
 // deviceAuthorization page is simply the devices to authorize
 page(name: "deviceAuthorization", title: "", nextPage: "otherPage",
 install: false, uninstall: true) {
 section("Select Devices to Authorize") {
 input "switches", "capability.switch", title: "Switches:", required: false
 input "motions", "capability.motionSensor", title: "Motion Sensors:", required: false
 }

 }

 page(name: "otherPage")
}

def otherPage() {
 dynamicPage(name: "otherPage", title: "Other Page", install: true) {
 section("Other Inputs") {
 input "sometext", "text"
 input "sometime", "time"
 }
 }
}

Mapping endpoints

To expose a callable endpoint in your SmartApp, use mappings.
Specify the various endpoints using path, and specify the supported HTTP methods (GET, PUT, POST, and DELETE).
Each action specified is associated with the name of a method that will handle the request.

mappings {
 path("/foo") {
 action: [
 GET: "getFoo",
 PUT: "putFoo",
 POST: "postFoo",
 DELETE: "deleteFoo"
]
 }
 path("/bar") {
 action: [
 GET: "getBar"
]
 }
}

def getFoo() {}
def putFoo() {}
def postFoo() {}
def deleteFoo() {}
def getBar() {}

There is no limit to the number of endpoints a SmartApp exposes, but the path level is restricted to four levels deep (i.e., /level1/level2/level3/level4).

You can specify variable URL path parameters using the : prefix in the path:

mappings {
 path("/foo/:param1/:param2") {
 action: [GET: "getFoo"]
 }
}

Request handling

When a request is made to one of the SmartApp’s endpoints, its associated request handler method will be called.

Every request handler method has available to it a request object that represents information about the request, and a params object that contains information about the request parameters.

Important

All request or path parameters should be validated in your request handler.
Never allow parameters to arbitrarily execute device commands or otherwise modify data.

Path variables

Any path variables you defined in the path are available via the injected params object:

mappings {
 path("/switches/:command") {
 action: [PUT: "updateSwitches"]
 }
}

def updateSwitches() {
 def cmd = params.command
 log.debug "command: $cmd"
 switch(cmd) {
 case "on":
 // handle on command
 break
 case "off":
 // handle off command
 break
 default:
 httpError(501, "$command is not a valid command for all switches specified")
 }
}

Query parameters

URL query parameters sent on the request are available via the params object:

def someHandler() {
 // this endpoint can accept the "foo" query parameter
 def fooParam = params.foo
 log.debug "foo parameter: $foo"
}

Request body parameters

SmartThings supports JSON or XML request body parameters.
They can be accessed via request.JSON and request.XML:

// json on request: '{"foo": "bar"}'
def someJSONHandler() {
 def fooJSON = request.JSON?.foo
 log.debug "foo json: $fooJSON"
}

// xml on request: '<foo>bar</foo>'
def someXMLHandler() {
 def fooXML = request.XML?.foo
 log.debug "foo xml: $fooXML"
}

Tip

Use the ? (safe navigation operator) to avoid a NullPointerException if the request JSON or XML is null (in case the request did not send JSON or XML).

The JSON available on the request will be the result of calling new JsonSlurper().parseText(). You can learn more about working with JSON in Groovy here [http://www.groovy-lang.org/json.html].

Similarly, the XML on request is the result of calling new XmlSlurper().parseText(). Learn more about working with XML in Groovy here [http://www.groovy-lang.org/processing-xml.html].

Response handling

Defaults

Each HTTP method (GET, PUT, POST, DELETE) request handler returns a default response.
Some request handlers may return a map that will be serialized to JSON on the response, and some may specify their own response by using the render() method:

	Request Method
	Default HTTP Response Code
	JSON Serialization Support
	render() support

	GET
	200 OK
	yes
	yes

	POST
	201 Created
	yes
	yes

	PUT
	204 No Content
	no
	no

	DELETE
	204 No Content
	no
	no

Automatic JSON serialization

GET and POST request handlers may return a map, which will be serialized to JSON and returned to the client with Content-Type: application/json:

mappings {
 path("/test") {
 action: [
 GET: "responseTest",
 POST: "responseTest"
]
 }
}

def responseTest() {
 // a map is serialized to JSON and returned on the response
 return [data: "test"]
}

The response of executing a GET or POST request on the /test endpoint results in the following:

HTTP/1.1 200 OK
 Content-Type: application/json;charset=utf-8
 Date: Tue, 29 Mar 2016 13:53:14 GMT
 Server: Apache-Coyote/1.1
 Set-Cookie: JSESSIONID=XXXXXXXXXXXXXXXX-n1; Path=/; Secure; HttpOnly
 X-RateLimit-Current: 0
 X-RateLimit-Limit: 250
 X-RateLimit-TTL: 60
 transfer-encoding: chunked
 Connection: keep-alive

 {"data":"test"}

Using render() to control the response

GET and POST request handlers also support the ability to return a custom response using the render() method:

mappings {
 path("/test") {
 action: [
 GET: "responseTest",
 POST: "responseTest"
]
 }
}

def responseTest() {
 def html = """
 <!DOCTYPE html>
 <html>
 <head><title>Some Title</title></head>
 <body><p>Testing</p></body>
 </html>"""

 render contentType: "text/html", data: html, status: 200
}

The response of executing a GET or POST request on the /test endpoint results in the following:

HTTP/1.1 200 OK
 Content-Type: text/html;charset=utf-8
 Date: Tue, 29 Mar 2016 15:00:32 GMT
 Server: Apache-Coyote/1.1
 Set-Cookie: JSESSIONID=1A4382D4BDFCCB31CD6C4EF3C2E3D693-n5; Path=/; Secure; HttpOnly
 Vary: Accept-Encoding
 X-RateLimit-Current: 0
 X-RateLimit-Limit: 250
 X-RateLimit-TTL: 60
 transfer-encoding: chunked
 Connection: keep-alive

 <!DOCTYPE html>
 <html>
 <head><title>Some Title</title></head>
 <body><p>Testing</p></body>
 </html>

If not specified, the contentType will be “application/json”, and the status will be 200.

Error handling

Default errors

The following errors may be returned by the SmartThings platform:

	HTTP Response Code
	Error Message
	Cause

	401 (Unauthorized)
	{“error”: “invalid_token”, “error_description”: “<TOKEN>”}
	Invalid token for the SmartApp installation.

	403 (Forbidden)
	{“error”:true, “type”:”AccessDenied”, “message”:”This request is not authorized by the specified access token”}
	No installed SmartApp can be found associated with the token.

	404 (Not Found)
	{“error”:true,”type”:”SmartAppException”,”message”:”Not Found”}
	The endpoint path requested does not exist.

	405 (Method Not Allowed)
	{“error”:true,”type”:”SmartAppException”,”message”:”Method Not Allowed”}
	An endpoint path was called but no request handler is defined for the specified request method (e.g., issuing a POST request to an endpoint path that only handles GET requests)

	429 (Too Many Requests)
	{“error”: true, “type”: “RateLimit”, “message”: “Please try again later”}
	The rate limit for this SmartApp installation has been exceeded. See the Web services rate limit headers documentation for more information.

	500 (Server Error)
	{“error”:true, “type”:”<EXCEPTION-TYPE>”, “message”: “An unexpected error has occurred”}
	An unhandled exception occurred in the processing of the request. Check the SmartThings live logging to debug.

Custom errors

If your endpoint needs to send an error response, use the httpError() method:

def someHandler() {
 def foo = request.JSON?.foo

 if (!foo) {
 httpError(400, "Foo parameter required")
 }
}

A SmartAppException will be thrown, and a response will be sent to the client with the specified HTTP code.
The body of the response will be application/json, and look like this:

{
 "error":true,
 "type":"SmartAppException",
 "message":"your error message"
}

You should send appropriate error codes and messages for any errors.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Web Services SmartApps

Authorization

To make REST requests to a SmartApp, the client must establish a trusted relationship using an implementation of the OAuth2 Authorization Code Flow.

Overview

The general flow is:

	Request an authorization code.

	Use the code to request an access token.

	Get the endpoint URI for the SmartApp.

	Make REST calls to the SmartApp using the endpoint URI.

As part of the authorization flow, the SmartApp will be installed to the user’s selected Location.

Important

Beginning February 1, 2016, only SmartApps approved and published by SmartThings can be installed via the OAuth flow discussed below.

For testing purposes, you will be able to install into your own account only.

For more information, see this community post [https://community.smartthings.com/t/smartthings-oauth-changes/35019].

Note

Regardless of the server the SmartApp is actually published to, https://graph.api.smartthings.com should be used to obtain the authorization code, access token, and endpoints.

Get authorization code

Authorization URL: https://graph.api.smartthings.com/oauth/authorize

To obtain an authorization code, make a GET request to https://graph.api.smartthings.com/oauth/authorize:

GET https://graph.api.smartthings.com/oauth/authorize?
 response_type=code&
 client_id=YOUR-SMARTAPP-CLIENT-ID&
 scope=app&
 redirect_uri=YOUR-SERVER-URI

The following parameters are required:

	parameter
	value

	response_type
	Use code to obtain the authorization code.

	client_id
	The OAuth client ID of the SmartApp.

	scope
	This should always be “app” for this authorization flow.

	redirect_uri
	The URI of your server that will receive the authorization code. This URI must match one of the redirect URIs specified in the SmartApp settings, otherwise validation will fail.

This will require the user to log in with their SmartThings account credentials, choose a Location, and select what devices may be accessed by the third party.

The authorization code expires 24 hours after issue.

Get access token

Token URL: https://graph.api.smartthings.com/oauth/token

Use the code you received to obtain the access token:

POST https://graph.api.smartthings.com/oauth/token HTTP/1.1
Host: graph.api.smartthings.com
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=YOUR_CODE&client_id=YOUR_CLIENT_ID&client_secret=YOUR_CLIENT_SECRET&redirect_uri=YOUR_REDIRECT_URI

The content-type header of your request should be of the type application/x-www-form-urlencoded. The following form parameters are required:

	parameter
	value

	grant_type
	This is always “authorization_code” for this flow.

	code
	The code you received.

	client_id
	The client ID for the SmartApp.

	client_secret
	The client secret for the SmartApp.

	redirect_uri
	The URI of the server that will receive the token. This must match the URI you used to obtain the authorization code.

A successful response will look like this:

{
 "access_token": "XXXXXXXXXXXX",
 "expires_in": 1576799999,
 "token_type": "bearer"
}

The expires_in response is the time, in seconds from now, that this token will expire.

Once you have the token, it must be stored securely in the application.

Get SmartApp endpoints

You can use the token to request the callable endpoints of the SmartApp, by making a GET request to https://graph.api.smartthings.com/api/smartapps/endpoints.
The access token should be supplied via a Authorization: Bearer header:

GET -H "Authorization: Bearer ACCESS-TOKEN" "https://graph.api.smartthings.com/api/smartapps/endpoints"

A successful response will return a list of all installed SmartApps for the clientID associated with the given access token.

[
 {
 "oauthClient": {
 "clientId": "CLIENT-ID"
 },
 "location": {
 "id": ID,
 "name": "LOCATION-NAME"
 }
 "uri": "BASE-URL/api/smartapps/installations/INSTALLATION-ID",
 "base_url": "BASE-URL",
 "url": "/api/smartapps/installations/INSTALLATION-ID"
 },
 ...
]

Important

The base_url (and base URL of the uri) will vary depending upon the server the SmartApp is being installed to.

SmartApps may be installed into any number of servers depending upon the location of the end-user.
You should always use the uri and base_url to find the location this SmartApp can be reached at.

Do not assume that the SmartApp will be installed on https://graph.api.smartthings.com.

Make REST calls

Using the uri returned from /api/smartapps/endpoints, you can then make REST calls the SmartApp.

Simply append any paths your SmartApp declares in its mappings to make the appropriate request.

For example, assuming a mappings definition like this:

mappings {
 path("/switches") {
 action: [GET: "getSwitches"]
 }
}

def getSwitches() {
 // ...
}

And a URI of https://graph.api.smartthings.com/api/smartapps/installations/12345, you can make a request to the /switches endpoint like this:

curl -H "Authorization: Bearer ACCESS-TOKEN" -X GET "https://graph.api.smartthings.com/api/smartapps/installations/12345/switches"

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Web Services SmartApps

Troubleshooting

General

Developing and testing Web Services SmartApps can be tricky, in large part due to the nature of the OAuth process.
Here are some general tips and strategies to help you be successful:

	Make you sure you have read and understand the Web Services Authorization documentation.

	Remember that only SmartApps published by SmartThings can be installed into general user accounts. If you self-published the SmartApp, only the account who published it can install the SmartApp for testing purposes.

	Trying to complete the OAuth process through the browser, without exposing a callable URL to receive the token, will not work. Read through the Web Services SmartApp Tutorial–Authorization Flow to see how this can be done.

	Understand that to make API calls to the SmartApp, you must first make a REST call to obtain the specific URL for the installed SmartApp. This should always be made to https://graph.api.smartthings.com/api/smartapps/endpoints, regardless of the specific server the SmartApp is installed into.

Errors during installation

When choosing a Location and selecting devices to authorize, there are some common errors that may occur.

“<clientID> is not associated with a SmartApp in Location” after selecting Location

	Problem

	When attempting to install a Web Services SmartApp via the OAuth flow, SmartThings looks for a SmartApp published to the specific server for that Location with that Client ID.
This error results from either the SmartApp not being published to the server that the user is installing into, or from trying to install a Web Services SmartApp into an account that did not publish the SmartApp.

	Solution

	If the SmartApp was self-published, make sure you are using the same account to install into (only Web Service SmartApps published by SmartThings may be installed into other user accounts).
If it is the same account, and you are trying to install into a different Location, ensure the SmartApp is published on that Location as well (this will require handling different OAuth Client ID and Secret).

If this is a SmartApp published by SmartThings, contact support@smartthings.com.

“Please select at least one device to authorize” error after clicking Authorize

	Problem

	If you have selected devices to authorize, this error likely indicates that an exception occurred during the installation process itself (in the installed() or updated() methods).

	Solution

	Check Live Logging for any exceptions, and look at any code executing in the installed() or updated() methods for possible bugs.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

Device Handlers

Device Handlers are the virtual representation of a physical device.

If you are new to writing Device Handlers, start with the Quick Start.

After that, read the Overview for a broad discussion about Device Handlers and where they fit in the SmartThings architecture.

The rest of the guide discusses the various components of Device Handlers primarily targeted for Hub-connected (ZigBee or Z-Wave) devices (though the common Device Handler principles and patterns apply to other devices as well).

Note

This guide discusses Hub-connected Device Handlers. For information about LAN- and Cloud-connected Device Handlers, see this guide

Table of Contents:

	Quick Start

	Overview

	Simulator

	Definition

	Tiles

	Preferences

	Parse and Events

	Z-Wave Primer

	Building Z-Wave Device Handlers

	Z-Wave Example

	ZigBee Primer

	Building ZigBee Device Handlers

	ZigBee Example

	Other Useful Methods

	Device Certification Overview

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Device Handlers

Quick Start

A Device Handler is a representation of a physical device in the SmartThings platform.
It is responsible for communicating between the actual device and the SmartThings platform.

Alternately, a Device Handler can also be associated with a Virtual Device when a physical device is not yet available.
This section will walk you through creating your first custom Device Handler and testing it with a Virtual Device.

Warning

Before you proceed, ensure that you are on the correct Location on IDE.
Follow the prerequisites described in Prerequisites.

If you are new to SmartThings development, consider starting with the Getting Started material.

Create a new Device Handler

From IDE click on the My Device Handlers link on the top menu.
Here you will see all your Device Handlers, if you have any.

[image: ../_images/ide-device-types.png]

Create a new Device Handler by clicking on the +Create New Device Handler button in the upper-right of the page.

You will see a form for creating a new Device Handler.
Note the tabs at the top of the form, showing different options for creating a new Device Handler:

[image: ../_images/new-device-type-form.png]

Select the From Template tab.

We are going to create a new Device Handler from the Dimmer Switch template.
Click on the Dimmer Switch in the menu on the left.

[image: ../_images/centralite-switch-from-template.png]

You will now see the Dimmer Switch Device Handler code on the right.

Take a minute to look at the code and its structure.
Don’t worry about the details yet - for now, just take note of the anatomy of the Device Handler:

[image: ../_images/device-type-anatomy.png]

Next, make a few changes to this code to make it yours.
In the definition method, change the name from “Dimmer Switch” to something like “My Dimmer Switch”, the namespace to your github user account (or you can leave it blank), and the author to your name.

Click the Create button below the editor, and then click Publish and For Me on the next screen.

[image: ../_images/device-handler-publish.png]

Create a Virtual Device

Next, we will create a Virtual Device and associate it with the Device Handler we just created above.

From the top menu of the IDE, click on the My Devices.

[image: ../_images/ide-my-devices.png]

Click on +New Device on the top-right.
This will take you to Create Device page.

[image: ../_images/create-virtual-device.png]

Follow below steps to fill the above Create Device form:

	Name

	Your Virtual Device, preferably something that’s indicative of the type of the device, such as “Virtual Dimmer Switch”.

	Label

	Optional, but you can have something like “virtual-dimmer-switch”.

	Zigbee Id

	Can be blank.

	Device Network Id

	Should be a unique ID that identifies your Virtual Device. Make sure this ID doesn’t conflict with any other device Ids. Put in “VIRTDIMMERS01”.

	Type

	Pulldown menu lists available Device Handlers.
Note that all your custom Device Handlers are listed at the bottom of the pulldown list.
Scroll down the list and select the customer Device Handler that you created above.

	Version

	Option should be Published.

	Location

	Must be your Hub Location.

	Hub

	Your Hub name associated with the above Location.

	Group

	Not selectable.

Click Create.

You will see virtual-dimmer-switch device appear instantly in your SmartThings mobile app, in the Things screen of the “My Home” view.

[image: ../_images/virtual-device-ios.png]

Test your Device Handler with Virtual Device

With the Virtual Dimmer you just created you can test your Device Handler.
From your SmartThings mobile app, tap on the OFF tile of virtual-dimmer-switch to turn it ON.

[image: ../_images/virtual-dimmer-on.png]

Next, tap on the virtual-dimmer-switch to open the detail view and test the tiles.

[image: ../_images/virtual-dimmer-detail.png]

Note

While the Simulator is useful and necessary for testing how the Device Handler handles incoming messages, we recommended that you test on the mobile app with Virtual Devices wherever possible.

Next steps

Now that you have created and installed your first Device Handler with a Virtual Device, use the rest of this guide to learn more.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Device Handlers

Overview

The SmartThings architecture provides a unique abstraction of devices from their distinct capabilities and attributes in a way that allows developers to build applications that are insulated from the specifics of which device they are using.
For example, there are lots of wirelessly controllable “switches”. A switch is any device that can be turned On or Off.

When a SmartApp interacts with the virtual representation of a device, it knows that the device supports certain actions based on its capabilities.
A device that has the “switch” capability must support both the “on” and “off” actions.
In this way, all switches are the same, and it doesn’t matter to the SmartApp what kind of switch is actually involved.

This virtual representation of the device is called a Device Handler.

Note

This layer of abstraction is key to the successful function and flexibility of the SmartThings platform. Architecturally, device handlers are the bridge between generic capabilities and the device or protocol specific interface actually used to communicate with the device.

The diagram below depicts where device handlers sit in the
SmartThings architecture.

[image: Smart Things Architecture]

In the example shown above, the job of the Device Handler (that is implementing the “switch” capability) is to parse incoming, protocol-specific status messages from the device and turn them into normalized “events”.
It is also responsible for accepting normalized commands (such as “on” and “off”) and turning those into the protocol-specific commands that can be sent to the device to affect the desired action.

For example, for a Z-Wave compatible on-off switch, the incoming status messages used by the device to report an “on” or “off” state are as shown below:

	Device Command
	Protocol-Specific Command Message

	on
	command: 2003, payload: FF

	off
	command: 2003, payload: 00

Whereas the device status reported to the SmartThings platform for the device is literally just a simple “on” or “off”.

Similarly, when a SmartApp or the mobile app invoked an “on” or “off” command for a switch device, the command that is sent to the Device Handler is just that simple: “on” or “off”.
The Device Handler must turn that simple command into a protocol-specific message that can be sent down to the device to affect the desired action.

The table below shows the actual Z-Wave commands that are sent to a Z-Wave switch by the Device Handler.

	Device Command
	Protocol-Specific Command Message

	On
	2001FF

	Off
	200100

Core concepts

To understand how device handlers work, a few core concepts need to be discussed.

Capabilities

Capabilities are the interactions that a device allows. They provide an abstraction layer that allows SmartApps to work with devices based on the capabilities they support, and not be tied to a specific manufacturer or model.

Consider the example of the “Switch” capability.
In simple terms, a switch is a device that can turn on and off.
It may be that a switch in the traditional sense (for example an in-wall light switch), a connected bulb (a Hue or Cree bulb), or even a music player.
All of these unique devices have a Device Handler, and those Device Handler’s support the “Switch” capability.
This allows SmartApps to only require a device that supports the “Switch” capability and thus work with a variety of devices including different manufacturer and model-specific “switches”.
The SmartApp can then interact with the device knowing that it supports the “on” and “off” command (more on commands below), without caring about the specific device being used.

This code illustrates how a SmartApp might interact with a device that supports the “Switch” capability:

preferences() {
 section("Control this switch"){
 input "theSwitch", "capability.switch", multiple: false
 }
}

def someEventHandler(evt) {
 if (someCondition) {
 theSwitch.on()
 } else {
 theSwitch.off()
 }

 // logs either "switch is on" or "switch is off"
 log.debug "switch is ${theSwitch.currentSwitch}"
}

The above example illustrates how a SmartApp requests a device that supports the “Switch” capability. When installing the SmartApp, the user will be able to select any device that supports the “Switch” capability - be it an in-wall light switch, a connected bulb, a music player, or any other device that supports the “Switch” capability.

The Capabilities Reference outlines all the supported capabilities.

Device Handlers typically support more than one capability.
A Device Handler for a Hue bulb would support the “Switch” capability as well as the “Color Control” capability.
This allows SmartApps to be written in a very flexible manner.

Commands and attributes deserve their own discussion - let’s dive in.

Commands

Commands are the actions that your device can do.
For example, a switch can turn on or off, a lock can lock or unlock, and a valve can open or close.
In the example above, we issue the “on” and “off” command on the switch by invoking the on() or off() methods.

Commands are implemented as methods on the Device Handler.
When a device supports a capability, it is responsible for implementing all the supported command methods.

Attributes

Attributes represent particular state values for your device.
For example, the switch capability defines the attribute “switch”, with possible values of “on” and “off”.

In the example above, we get the value of the “switch” attribute by using the “current<attributeName>” property (currentSwitch).

Attribute values are set by creating Events where the attribute name is the name of the Event, and the attribute value is the value of the Event.
This is discussed more in the Parse and Events documentation

Like commands, when a device supports a capability, it is responsible for ensuring that all the capability’s attributes are implemented.

Actuator and Sensor

If you look at the Capabilities Reference , you’ll notice two capabilities that have no attributes or commands - “Actuator” and “Sensor”.

These capabilities are “marker” or “tagging” capabilities (if you’re familiar with Java, think of the Cloneable interface - it defines no state or behavior).

The “Actuator” capability defines that a device has commands.
The “Sensor” capability defines that a device has attributes.

If you are writing a Device Handler, it is a best practice to support the “Actuator” capability if your device has commands, and the “Sensor” capability if it has attributes.
This is why you’ll see most Device Handlers supporting one of, or both, of these capabilities.

The reason for this is convention and forward-looking abilities - it can allow the SmartThings platform to interact with a variety of devices if they do something (“Actuator”), or if they report something (“Sensor”).

Protocols

SmartThings currently supports both the Z-Wave [http://en.wikipedia.org/wiki/Z-Wave] and ZigBee [http://en.wikipedia.org/wiki/ZigBee] wireless protocols.

Since the Device Handler is responsible for communicating between the device and the SmartThings platform, it is usually necessary to understand and communicate in whatever protocol the device supports.
This guide will discuss both Z-Wave and ZigBee protocols at a high level.

Execution location

With the original SmartThings Hub, all Device handlers execute in the SmartThings cloud.
With the new Samsung SmartThings Hub, certain Device handlers may run locally on the Hub or in the SmartThings cloud.
Execution location varies depending on a variety of factors, and is managed by the SmartThings internal team.

As a SmartThings developer, you should write your Device Handlers to satisfy their specific use cases, regardless of where the handler executes.
There is currently no way to specify or force a certain execution location.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Device Handlers

Simulator

Using the IDE Simulator, we can model the behavior of the device without actually requiring a physical device.

Overview

On the right-hand side of the IDE, after you install a Device Handler, you’ll see the Simulator.
The image below is the Simulator seen after installing the “Z-Wave Switch” Device Handler (available via the Browse Device Templates menu).

Go ahead, try it out.
Install the Device Handler in the IDE, and choose a virtual switch.
Modify some of the Simulator metadata as you read through this and see what happens.

[image: ../_images/simulator.png]

The purpose of the Simulator metadata is to model the behavior of the physical device.
Using the Simulator, we can test sending messages and commands to our Device Handler.

There are two types of Simulator declarations to define in a Device Handler - “status” and “reply”.

Status

The “status” declarations specify actions that result in a person physically actuating the device.
In the case of the Z-Wave switch, for example, we have:

status "on": "command: 2003, payload: FF"
status "off": "command: 2003, payload: 00"

status() takes a map as an argument.
The key (“on” in the example above) is just a name for the action.
The value (“command: 2003, payload: FF”) is the message that the device will send to the Device Handler’s parse(message) method when that action is taken on the physical device.

In the Simulator, each status key (“on” or “off” in the example above) will be an available message in the Simulator.

Reply

The “reply” declarations specify responses that the physical device will send to the Device Handler when it receives a certain message from the Hub.
For a Z-Wave switch, for example, we specify:

reply "2001FF,delay 100,2502": "command: 2503, payload: FF"
reply "200100,delay 100,2502": "command: 2503, payload: 00"

Just like status(), reply() accepts a map as a parameter.
The key is a comma-separate list of the raw commands sent to the device, i.e. what’s returned from the Device Handler’s command methods.
For example, the Z-Wave switch commands that send the above methods are:

def on() {
 delayBetween([
 zwave.basicV1.basicSet(value: 0xFF).format(),
 zwave.switchBinaryV1.switchBinaryGet().format()
])
}

def off() {
 delayBetween([
 zwave.basicV1.basicSet(value: 0x00).format(),
 zwave.switchBinaryV1.switchBinaryGet().format()
])
}

Those methods will return the values in the first arguments of the reply declarations.
The second argument in the reply declarations works the same way as the status declarations - they define messages sent to the parse method.
But in this case it’s in response to commands, not physical actuations.

Summary

The purpose of these declarations is to allow a virtual device to function in the IDE Simulator, without being attached to a physical device.
The status() method allows us to simulate physical actuation, while the reply() method allows us to simulate sending messages to the device in response to a command from the Hub.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Device Handlers

Definition

The definition metadata defines core information about your Device Handler.
The initial values are set from the values entered when creating your Device Handler.

Example definition metadata:

metadata {
 definition(name: "test device", namespace: "yournamespace", author: "your name") {

 capability "Alarm"
 capability "battery"

 attribute "customAttribute", "string"

 command "customCommand"

 fingerprint profileId: "0104", inClusters: "0000,0003,0006",
 outClusters: "0019"
 }

 ...
}

The definition method takes a map of parameters, and a closure.

The supported parameters are:

	name

	The name of the Device Handler.

	namespace

	The namespace for this Device Handler. This should be your github user name. This is used when looking up Device Handlers by name to ensure the correct one is found, even if someone else has used the same name.

	author

	The author of this Device Handler.

The closure defines the capabilities, attributes, commands, and fingerprint information for your Device Handler.

Capabilities

To define that your device supports a capability, simply call the capability method in the closure passed to definition.

The argument to the capability method is the Capability name.

capability "Actuator"
capability "Power Meter"
capability "Refresh"
capability "Switch"

Attributes

If you need to define a custom attribute for your Device Handler, call the attribute() method in the closure passed to the definition() method:

attribute(String attributeName, String attributeType, List possibleValues = null)

	attributeName

	Name of the attribute.

	attributeType

	Type of the attribute. Available types are “string”, “number”, and “enum”.

	possibleValues

	Optional. The possible values for this attribute. Only valid with the “enum” attributeType.

// String attribute with name "someName"
attribute "someName", "string"

// enum attribute with possible values "light" and "dark"
attribute "someOtherName", "enum", ["light", "dark"]

Commands

To define a custom command for your Device Handler, call the command() method in the closure passed to the definition() method:

command(String commandName, List parameterTypes = [])

	commandName

	The name of the command. You must also define a method in your Device Handler with the same name.

	parameterTypes

	Optional. An ordered list of the parameter types for the command method, if needed.

// command name "myCommand" with no parameters
command "myCommand"

// comand name myCommandWithParams that takes a string and a number parameter
command "myCommandWithParams", ["string", "number"]

...

// each command specified in the definition must have a corresponding method

def myCommand() {
 // handle command
}

// this command takes parameters as defined in the definition
def myCommandWithParams(stringParam, numberParam) {
 // handle command
}

Fingerprinting

When a ZigBee or Z-Wave device is added to the SmartThings Hub, we need a way to determine which device type to assign it.
This process is known as a “join” process, or “fingerprinting”.

Device Handlers define “fingerprints” to specify which devices or what kinds of devices they support.
Then, when a device is added, its join information is compared to all fingerprints in the default handlers and your
self-published handlers to determine which type of device it is.

The fingerprinting process differs between ZigBee and Z-Wave devices.

ZigBee fingerprinting

For ZigBee devices, the main profileIds you will need to use are:

	HA: Home Automation (0104)

	SEP: Smart Energy Profile

	ZLL: ZigBee Light Link (C05E)

The input and output clusters are defined specifically by your device and should be available via the device’s documentation.

An example of a ZigBee fingerprint definition:

fingerprint profileId: "C05E", inClusters: "0000,0003,0004,0005,0006,0008,0300,1000", outClusters: "0019"

You can also include the manufacturer and model name in the fingerprint to limit the fingerprint to a specific product:

fingerprint inClusters: "0000,0001,0003,0020,0406,0500", manufacturer: "NYCE", model: "3014"

Z-Wave fingerprinting

Z-Wave fingerprints used to be based on the format used for ZigBee, but there is now a new format that is preferred.
You may see the original fingerprints on older Device Handlers; see below for information on the legacy format.

The best place to start is to add your device to SmartThings and look for the Raw Description in its details view
in the SmartThings developer tools.

Z-Wave raw description

Z-Wave devices added since the introduction of the new format will have raw description strings with multiple key-value
fields, such as:

zw:Ss type:2101 mfr:0086 prod:0102 model:0064 ver:1.04 zwv:4.05 lib:03 cc:5E,86,72,98,84 ccOut:5A sec:59,85,73,71,80,30,31,70,7A role:06 ff:8C07 ui:8C07

Not all fields will be present for every device.

	zw:

	This field will start with ‘L’ for listening devices, ‘S’ for sleepy devices, and ‘F’ for beamable devices. See the
Z-Wave Primer for the meaning of those terms. That capital letter will be followed by a
lowercase ‘s’ if the device is securely included into the network via the Z-Wave Security Layer.

	type:

	This field is the Z-Wave Device Class as a 16-bit hexadecimal number that combines the Generic and Specific Device
Class codes. [1]

	mfr:

	This 16-bit hexadecimal number identifies the device manufacturer. [1] The three values of mfr, prod and
model uniquely identify a certified Z-Wave product.

	prod:

	This 16-bit hexadecimal number is the Product Type ID reported by the device.

	model:

	This 16-bit hexadecimal number is the Product ID reported by the device.

	ver:

	This is the application firmware version reported by the device.

	zwv:

	This is the version of the Z-Wave protocol stack being used by the device.

	lib:

	This indicates the type of Z-Wave protocol libary the device is based on. ‘01’ is a static controller, ‘02’ is a
remote controller, ‘07’ is a bridge controller, and other values are normal non-controller devices.

	cc:

	The list of Z-Wave command classes supported by the device (without security encapsulation). See the
Z-Wave Command Reference [https://graph.api.smartthings.com/ide/doc/zwave-utils.html] for the command classes
represented by each hex code.

	ccOut:

	The list of Z-Wave command classes that the device can control. This refers to commands sent to other devices versus
reports generated by the device.

	sec:

	These command classes are supported by the device only via Z-Wave Security encapsulation.

	secOut:

	These command classes are controlled by the device only via Z-Wave Security encapsulation.

	role:

	This indicates the Z-Wave Plus Role Type. [1]

	ff:

	This stands for “form factor” and corresponds to the Z-Wave+ Installer Icon type (An offset of 0x8000 is added for
implementation reasons). [1]

	ui:

	This corresponds to the Z-Wave+ User Icon type.

	[1]	(1, 2, 3, 4) See this document [http://zwavepublic.com/files/sds13740-1-z-wave-plus-device-and-command-class-types-and-defines-specificationpdf] for the values of identifiers defined by the Z-Wave standard.

New Z-Wave fingerprint format

If you’re writing a Device Handler for a specific device, you can base the fingerprint on the manufacturer info.
For example, the fingerprint to match the raw description example above would be:

fingerprint mfr: "0086", prod: "0102", model: "0064"

No other parameters are required. Note that you need to add quotes and commas to the more concise raw description format
to make it valid Groovy code.

Sometimes related products are grouped under the same ‘prod’ ID. In that case you can use a fingerprint without the
‘model’ parameter.

If you are writing a general Device Handler that supports all devices of a certain type, you can still base the
fingerprint on command class support.

fingerprint type: "10", cc: "25,32"

That fingerprint would match all devices of the Binary Switch generic device class – i.e. their ‘type’ starts with
“10” – that support the Binary Switch (0x25) and Meter (0x32) command classes.

The supported parameters are:

	type:

	Matches if it’s equal to or a prefix of the device’s ‘type’ value in the raw description. Aliased as ‘deviceId’.

	mfr, prod, model:

	Matches if ‘mfr’ matches the raw description and ‘prod’ and ‘model’ match as prefixes (if present).

	cc, ccOut:

	Takes a list of command class codes as a string: comma-separated, uppercase hexadecimal. Matches if all listed
command class codes are reported as supported or controlled respectively in the device’s raw description.

	sec, secOut:

	The same as the previous parameter, but only matches against command classes the device supports/controls only via
Z-Wave Security encapsulation.

	ff/ui:

	Either of these parameters can be used to match against the corresponding fields of the raw description. It is only
possible to use one of the following in a single fingerprint: ‘type’, ‘deviceId’, ‘ff’, ui’.

	deviceJoinName:

	Not used for matching. If the fingerprint matches, the device will appear to the user with this name.

When multiple device fingerprints match an added Z-Wave device, they are ranked first by number of ‘mfr’, ‘prod’, and
‘model’ parameters, then by the number of command classes listed, and finally by the length of the ‘type’, ‘ff’, or
‘ui’ parameter. When fingerprints have the same rank, self-published Device Handlers take precedence over the default
production ones.

Legacy Z-Wave fingeprint format

Legacy fingerprints include the device class – or type value (see above) – in the deviceId parameter and the
command classes it supports in the inClusters parameter. So the fingerprint:

fingerprint deviceId:"0x1104", inClusters:"0x26, 0x2B, 0x2C, 0x27, 0x73, 0x70, 0x86, 0x72", outClusters: "0x20"

would be formatted in the new style as:

fingerprint type: "1104", cc: "26,2B,2C,27,73,70,86,72", ccOut: "20"

Fingerprinting best practices

Add multiple fingerprints

A Device Handler can have multiple fingerprints in order to work with multiple versions of a device.
Each fingerprint is independent. If any of them is the highest ranking match, the device will use your device type.

You can distinguish between the different devices that use the handler by adding the ‘deviceJoinName’ parameter.
For example:

fingerprint profileId: "0104", inClusters: "0000, 0003, 0004, 0005, 0006, 0008, 0702"
fingerprint profileId: "0104", inClusters: "0000, 0003, 0004, 0005, 0006, 0008, 0702, 0B05", outClusters: "0019", manufacturer: "sengled", model: "Z01-CIA19NAE26", deviceJoinName: "Sengled Element touch"
fingerprint profileId: "0104", inClusters: "0000, 0003, 0004, 0005, 0006, 0008, 0702, 0B05", outClusters: "000A, 0019", manufacturer: "Jasco Products", model: "45852", deviceJoinName: "GE Zigbee Plug-In Dimmer"
fingerprint profileId: "0104", inClusters: "0000, 0003, 0004, 0005, 0006, 0008, 0702, 0B05", outClusters: "000A, 0019", manufacturer: "Jasco Products", model: "45857", deviceJoinName: "GE Zigbee In-Wall Dimmer"

If an added device supports the inClusters in the first fingerprint but doesn’t match all the extra info in any of the
next three, it will join with the name from the handler’s definition metadata, in this case “ZigBee Dimmer Power.”

Device pairing process

The order of the inClusters and outClusters lists is not important to the pairing process.
It is a best practice, however, to list the clusters in ascending order.

The device can have more clusters than the fingerprint specifies, and it will still pair.
If one of the clusters specified in the fingerprint is incorrect, the device will not pair.

Overly general fingerprints

If you wish to publish or share a Device Handler, you must make sure that the fingerprints do not capture other devices
that aren’t covered by your handler.

If you copied a working fingerprint from a default or template handler, it would be ambiguous which type should match if
yours was published. The easiest way to remedy this is to include manufacturer and model info in all fingerprints.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Device Handlers

Tiles

Tiles define how devices are visually represented in the SmartThings mobile application.
Every Device Handler specifies how the device will appear in the mobile application by specifying one or more tiles.

Overview

When a user goes to the Things view in the mobile app, they see all their devices listed:

[image: ../_images/things-view.png]
When tapping on one of the devices in the Things view, the user will see the Details view for that device:

[image: ../_images/details-view.png]
The Details view is where a user can get comprehensive information about the device, as well as actuate the device (if applicable) by interacting with the tile.

A tile may be display only, or can be configured to perform an action on the device when interacted with.

Each tile is associated with one or more attributes of the device.
Some tiles are display-only, while others allow the user to interact with the tile to actuate the device.

Tiles basics

Tip

If you’re the type that prefers to view and experiment with real code examples as you learn, check out the Examples.

Tiles definition and layout is specified using the tiles() builder in the Device Handler’s metadata, and looks like this (we’ll dive into the details shortly):

metadata {
 definition (
 ...
 }

 tiles(scale: 2) {
 // standard tile with actions named
 standardTile("switch", "device.switch", width: 2, height: 2, canChangeIcon: true) {
 state "off", label: '${currentValue}', action: "switch.on",
 icon: "st.switches.switch.off", backgroundColor: "#ffffff"
 state "on", label: '${currentValue}', action: "switch.off",
 icon: "st.switches.switch.on", backgroundColor: "#00a0dc"
 }

 // value tile (read only)
 valueTile("power", "device.power", decoration: "flat", width: 2, height: 2) {
 state "power", label:'${currentValue} Watts'
 }

 // the "switch" tile will appear in the Things view
 main("switch")

 // the "switch" and "power" tiles will appear in the Device Details
 // view (order is left-to-right, top-to-bottom)
 details(["switch", "power"])
 }
}

It’s important to understand that tiles configuration is part of the device’s static metadata.
When the SmartThings platform executes the tiles() builder you have defined, it doesn’t yet know anything about the actual device or the current device state.
Only later, when the device details screen is rendered in the mobile client, does the platform know information about the specific device.
For this reason, trying to conditionally configure tiles based on device state will not work.

Tiles are associated with attributes of a device.
Device tiles come in two varieties:

	Single-attribute tiles. These tiles are associated with one attribute of the device.

	Multi-attribute tiles. These tiles can display information about multiple attribute of a device.

Main and details tiles configuration

The main tile is what appears in the Things view. It’s configured in the tiles() builder with main():

tiles(scale: 2) {
 standardTile(name: 'someTile', ...)
 controlTile(name: 'otherTile', ...)

 // tile with name 'someTile' appears in the Things view
 main('someTile')
}

Use details() to specify all other tiles that should be available on the device details screen. The tiles will layout in left-to-right, top-to-bottom order beginning with the first argument:

tiles(scale: 2) {
 standardTile(name: 'someTile', ...)
 controlTile(name: 'otherTile', ...)
 valueTile(name: 'valueTile', ...)

 main('someTile')
 // someTile is top left, then otherTile, then anotherTile,
 // all flowing left-to-right, top-to-bottom:
 details('someTile', 'otherTile', 'anotherTile')
}

Grid layout

Tiles are rendered using a grid layout.
Tiles support either a 6 x Unlimited (6 wide, unlimited height) or 3 x Unlimited (3 wide, unlimited height) layout.
The grid system used is controlled by the scale argument to the tiles builder.
A value of 1 (the default) enables the 3 x Unlimited grid; a value of 2 enables the 6 x Unlimited grid:

// 3 x Unlimited grid
tiles(scale: 1) {...}

// 6 x Unlimited grid
tiles(scale: 2) {...}

SmartThings recommends using the 6 x Unlimited layout, as it offers a more attractive user experience.
Older versions of the SmartThings mobile application that do not support the 6 x Unlimited layout will be scaled back.

Here you can see how the tiles defined above are laid out using the 6 x Unlimited grid (using the scale: 2 option):

[image: ../_images/grid-layout.png]

Tile size

Every tile can specify a width and a height, which controls the size of the tile within the grid layout.
If not specified, the tile will default to a width and height of 1.

Allowing the user to change the icon

We can specify the canChangeIcon: true option to allow the user to select an icon of their choosing when editing the device:

standardTile("switch", "device.switch", width: 2, height: 2, canChangeIcon: true) {...}

If not specified, canChangeIcon is assumed to be false.
Only the tile specified as the main tile should specify canChangeIcon.

Tiles and Attribute state

Tiles display data about a device’s attributes, and may allow those attributes to be updated through user interaction.

Let’s explore how this works by considering an example.
Consider the case of a Switch - it could be a smart outlet, an in-wall switch, or a smart bulb.
Regardless of the specific device, we want to display a tile that shows the current state of the switch (on or off), and allows the user to toggle the switch by pressing the tile.
We accomplish this by associating one or more states for a tile definition.

When we define a tile, we associate it with a specific attribute of the device.
In our Switch example, this would be the “switch” attribute of the switch capability:

standardTile("tileName", "device.switch", width: 2, height: 2) {...}

Now that we’ve associated the tile with the switch attribute, we need to configure how it will display for the attribute’s possible states.
For single-attribute tiles (standardTile is a single-attribute tile), we do this using state.
Multi-attribute tiles use attributeState, which is used in the same way.

For attributes that have a finite, discrete set of possible values (for example, “on” or “off”, “wet” or “dry”, “open” or “closed”), we create a state definition for each possible value.
Each state definition can be configured to customize the display and what should happen (if anything) when the tile is pressed by the user.
For attributes whose value are not finite values (examples include “temperature”, “power”, or the “level” of a dimmable switch), we simply use one state for the attribute:

valueTile("tileName", "device.level", width: 2, height: 2) {
 state "level", label: '${currentValue}'
}

You can learn more about using dynamic state labels ('${currentValue}' above) here.

In the case of the “switch” attribute, we need to define two states, one for “on” and one for “off”:

standardTile("tileName", "device.switch", width: 2, height: 2) {
 state "off", label: "off", icon: "st.switches.switch.off", backgroundColor: "#ffffff"
 state "on", label: "on", icon: "st.switches.switch.on", backgroundColor: "#00a0dc"
}

The above tile definition is pretty self-explanatory.
When the “switch” attribute is “off”, the label of the tile will be “off”, the icon will be “st.switches.switch.off”, and the background color will be white (#ffffff).
It’s similarly easy to understand how the tile will appear when the switch is “on”.

State actions

Tile states can define what should happen when the tile is interacted with by specifying an action.
For example, to allow a switch to be toggled when pressed, we specify what should happen for each attribute state:

standardTile("tileName", "device.switch", width: 2, height: 2) {
 state "off", label: "off", icon: "st.switches.switch.off", backgroundColor: "#ffffff", action: "switch.on"
 state "on", label: "on", icon: "st.switches.switch.on", backgroundColor: "#00a0dc", action: "switch.off"
}

The value of the action can be formatted in one of two ways:

	In the form "<capability>.<command>".

	In the simpler form "<command>". This form is required for custom (non-capability) commands.

We are showing the form "<capability>.<command>" form above, which translates to action: "switch.on".
We could also simply specify the command, which would look like: action: "on".

If you’re curious about commands that take parameters (on() and off() do not), you do not need to specify parameters in the action.
Any parameters will be populated and passed to the command method by the specific tile control.

Note

While both action forms are supported, you’ll most frequently see the form "<capability>.<command>" in Device Handlers.
This form can be somewhat confusing when the capability has a space in its name; consider this example that would call the setLevel command on a “Switch Level” capability:

action: "switch level.setLevel"

The above reads awkwardly for many, and can cause confusion.

Because of this, we prefer the short form of action: "<command>".

Transition states

We can use the nextState option in state (single-attribute tiles) or attributeState (Multi-Attribute Tiles) to show that the device is transitioning to a next state.
This is useful to provide visual feedback that the device state is transitioning.
When the attribute’s state does change, the tile will be updated according to the state defined for that attribute.

To define a transition state, simply define a state for the transition, and reference that state using the nextState option.

Here’s an example that uses a transition state for the “switch” attribute:

standardTile("switch", "device.switch", width: 2, height: 2) {
 state "off", label:'Off', action:"switch.on", icon:"st.switches.switch.off", backgroundColor:"#ffffff", nextState:"turningOn"
 state "on", label:'On', action:"switch.off", icon:"st.switches.switch.on", backgroundColor:"#00a0dc", nextState:"turningOff"
 state "turningOn", label:'Turning on', icon:"st.switches.switch.on", backgroundColor:"#00a0dc", nextState: "turningOff"
 state "turningOff", label:'Turning off', icon:"st.switches.switch.off", backgroundColor:"#ffffff", nextState: "turningOn"
}

State labels

We can hard-code a label for state values, or use the state name or current value of the attribute.
The following label values can be used to display real-time information about the device:

	Label
	Description

	label: '${currentValue}'
	The current value of this attribute’s state. This is used when the attribute doesn’t have a discrete value set, like temperature or power.

	label: '${name}'
	The name of the attribute state. This is useful when the attribute state is a discrete value, like “on” or “off”.

Here’s an example of using the state name as the label:

standardTile("switch", "device.switch") {
 // use the state name as the label ("off" and "on")
 state "off", label:'${name}', action:"switch.on", icon:"st.switches.switch.off", backgroundColor:"#ffffff"
 state "on", label:'${name}', action:"switch.off", icon:"st.switches.switch.on", backgroundColor:"#00a0dc"
}

When using the current attribute value, the attribute value must be set by sending an Event.
For simplicity, the code examples in this documentation typically will not show the attribute value being set.
Just know that if a label is set like this:

valueTile("power", "device.power") {
 // label will be the current value of the power attribute
 state "power", label: '${currentValue} W'
}

The Device Handler needs to send an Event for the "power" attribute somewhere:

sendEvent(name: "power", value: 42)

Important

Dynamic device state values like '${currentValue}' and '${name}' must be used inside single quotes. This is in contrast to Groovy’s string interpolation that requires double quotes.

This is required because when the platform executes the tiles() builder, it doesn’t know anything about the actual device yet.
Using single quotes will allow the platform to manually substitute the actual value when the device is rendered on the mobile app.

Background color

We’ve seen in the examples above that states can be configured to appear a certain color using backgroundColor.
The value to the backgroundColor option is a hexadecimal value of the color.

We can also specify an array of background colors for attribute values that fall along a range.
This allows for greater user feedback for a given attribute value, since we can specify the background color for various values.
When the value is between the specified ranges, the resulting color will be a shade between the two specified colors.
The “temperature” attribute is a common example of this.
It’s typical to see a tile definition for temperature like this:

valueTile("temperature", "device.temperature", width: 2, height: 2) {
 state("temperature", label:'${currentValue}', unit:"dF",
 backgroundColors:[
 [value: 31, color: "#153591"],
 [value: 44, color: "#1e9cbb"],
 [value: 59, color: "#90d2a7"],
 [value: 74, color: "#44b621"],
 [value: 84, color: "#f1d801"],
 [value: 95, color: "#d04e00"],
 [value: 96, color: "#bc2323"]
]
)
}

The argument to backgroundColors is a list of maps, where each map specifies the hexadecimal color a specific value.
When the attribute value matches a value specified, the color specified will be the background color of the tile.
When the value is between two specified values, the color will be a linear interpolation between the specified ranges.

In the example above, we defined that at 84 degrees the background color will be a shade of green (“#44b621”).
When the temperature reaches 95 degrees, the color will be a shade of yellow (“f1d801”).
When the temperature is between 84 and 95 degrees, the background color will be between green and yellow.
Increasing the temperature causes the color to become progressively more yellow, until arriving at 95 degrees.
Similarly, decreasing the temperature causes the color to become more and more green, until arriving at 84 degrees.

Once an upper or lower bound has been reached, the background color will no longer change.
In the example above, that means that decreasing the temperature below 31 degrees or above 96 degrees will not cause the background color to change from the colors specified at those values.

State selection algorithm

The following algorithm is used to determine which state to display, when there are multiple states:

	If a state is defined for the attribute’s current value, it will render that.

	If no state exists for the attribute value, it will render a state that has specified defaultState: true. Use this in place of the “default” state name that you may see in some Device Handlers.

	If no state matches the above rules, it will render the first state declaration.

Icons

A tile’s state may specify an icon to render using the icon option:

tileAttribute ("device.power", key: "SECONDARY_CONTROL") {
 attributeState "power", label:'${currentValue}W', icon: "st.Appliances.appliances17"
}

We can use an icon provided by SmartThings as above, or an accessible URL to an icon.

Note

Using icons is discussed frequenly [https://community.smartthings.com/t/where-are-the-tile-icons/40086] in the SmartThings developer community forums.

Single-Attribute Tiles

Single-attribute tiles are associated with a single device attribute.
There are several different single-attribute tiles available for use, as documented below.

Standard Tile

Use a Standard Tile for attributes that have discrete, specific values.
For example, a switch is either “on” or “off”; a moisture sensor is “wet” or “dry”; a contact sensor is “open” or “closed”.

Here’s a standard tile that shows if a switch is on or off.

standardTile("actionFlat", "device.switch", width: 2, height: 2, decoration: "flat") {
 state "off", label: '${currentValue}', action: "switch.on", icon: "st.switches.switch.off", backgroundColor: "#ffffff"
 state "on", label: '${currentValue}', action: "switch.off", icon: "st.switches.switch.on", backgroundColor: "#00a0dc"
}

The above tile definition would render as (when the switch is on):

[image: ../_images/standard-tile-switch-on.png]

Standard Tiles may be styled with a ring (the default), or flat, by using the decoration option:

// standard tile with actions
standardTile("actionRings", "device.switch", width: 2, height: 2, canChangeIcon: true) {
 state "off", label: '${currentValue}', action: "switch.on", icon: "st.switches.switch.off", backgroundColor: "#ffffff"
 state "on", label: '${currentValue}', action: "switch.off", icon: "st.switches.switch.on", backgroundColor: "#00a0dc"
}

// standard flat tile without actions
standardTile("noActionFlat", "device.switch", width: 2, height: 2, canChangeIcon: true) {
 state "off", label: '${currentValue}',icon: "st.switches.switch.off", backgroundColor: "#ffffff"
 state "on", label: '${currentValue}', icon: "st.switches.switch.on", backgroundColor: "#00a0dc"
}

The above tiles definition renders as below, with the tile on the left being the ring decoration:

[image: ../_images/standard-tile-decoration.png]

Tip

Check out the Examples to see it in action!

Value Tile

Use a Value Tile for attributes that have non-discrete values.
Typical examples include temperature, humidity, or power values.

The following shows a few examples of the Value Tile:

tiles(scale: 2) {
 valueTile("integerFloat", "device.integerFloat", width: 2, height: 2) {
 state "val", label:'${currentValue}', defaultState: true
 }

 valueTile("pi", "device.pi", width: 2, height: 2) {
 state "val", label:'${currentValue}', defaultState: true
 }

 valueTile("floatAsText", "device.floatAsText", width: 2, height: 2) {
 state "val", label:'${currentValue}', defaultState: true
 }

 valueTile("bgColor", "device.integer", width: 2, height: 2) {
 state "val", label:'${currentValue}', backgroundColor: "#e86d13", defaultState: true
 }

 valueTile("bgColorRange", "device.integer", width: 2, height: 2) {
 state "val", label:'${currentValue}', defaultState: true, backgroundColors: [
 [value: 10, color: "#ff0000"],
 [value: 90, color: "#0000ff"]
]
 }
}

def installed() {
 sendEvent(name: "integer", value: 47)
 sendEvent(name: "integerFloat", value: 47.0)
 sendEvent(name: "pi", value: 3.14159)
 sendEvent(name: "floatAsText", value: "3.14159")
}

This renders as:

[image: ../_images/value-tile.png]

Note

While it’s possible to specify an action for a Value Tile, that is not the intended purpose.
If your tile should support an action, use a Standard Tile.
Value Tiles are intended to be used for display-only attributes.

Tip

Check out the Examples to see it in action!

Slider Control Tile

Use a Slider Control Tile to display a tile that shows a value along a range, and allows the user to adjust the value using the slider control.

These tiles are useful for attributes like the level of a dimmable bulb.

Here’s an example of a Slider Control Tile:

controlTile("levelSliderControl", "device.level", "slider",
 height: 1, width: 2) {
 state "level", action:"switch level.setLevel"
}

This renders as:

[image: ../_images/slider-control-tile.png]

By default, the range of the slider will be 0-100.
You can specify a custom range by using a range parameter.
It is a string, in the form "(<lower bound>..<upper bound>)".
Only integers (negative and positive) are supported for custom ranges; decimal values will not work.

controlTile("levelSliderControl", "device.level", "slider", height: 1,
 width: 2, inactiveLabel: false, range:"(20..80)") {
 state "level", action:"switch level.setLevel"
}

Tip

Check out the Examples to see it in action!

Color Control Tile

If your device supports the colorControl capability, you can use a Control Tile that displays a color wheel.
The user can then set the color by interacting with the control.

Here’s an example of a color control tile:

controlTile("rgbSelector", "device.color", "color", height: 6, width: 6,
 inactiveLabel: false) {
 state "color", action: "color control.setColor"
}

The tile may render differently depending on the mobile OS.
The command method specified by action will be called with a map that looks like this:

[red:241, hex:#F1E3FF, saturation:10.980392, blue:255, green:227, hue:75.0]

The values are summarized in the table below:

	Key
	Description

	red
	The red value chosen in the standard RGB color space

	hex
	The hexacecimal representation of the color chosen

	saturation
	The saturation value of the value chosen, between 0 and 100

	blue
	The blue value chosen in the standard RGB color space

	green
	The green value chosen in the standard RGB color space

	hue
	The hue value of the color chosen, between 0 and 100

You may also see a level and alpha attribute returned from the color control.
These values are not controlled by the color control tile, so are not useful.

Tip

Check out the Examples to see it in action!

Carousel Tile

A Carousel Tile is often used in conjunction with the imageCapture capability, to allow users to scroll through recent pictures.

Many of the camera Device Handlers will make use of the carouselTile().

carouselTile("cameraDetails", "device.image", width: 3, height: 2) { }

[image: ../_images/carouselTile.png]
The Carousel Tile displays the ten most recent images captured within the past seven days.

Note

See Capturing and Displaying Camera Pictures for more information on working with camera devices.

Multi-Attribute Tiles

Multi-Attribute Tiles combine multiple attributes into a single tile presented with a rich UI.
Here are some of the types of tiles that you can create:

	Lighting
	Thermostat
	Multimedia

	[image: ../_images/lighting-tile.png]

	[image: ../_images/thermostat-tile.png]

	[image: ../_images/multimedia-tile.png]

Basics

Multi-Attribute Tiles must be given a width of 6 and a height of 4.
To enable this, the tiles builder of your Device Handler must use the new 6 X Unlimited grid layout by specifying scale: 2:

tiles(scale: 2) {
 multiAttributeTile(name:"switch", type: "lighting", width: 6, height: 4, canChangeIcon: true) {
 ...
 }
}

Multi-Attribute Tile types

Multi-Attribute Tiles specify a type:

multiAttributeTile(name:"switch", type: "lighting", width: 6, height: 4) { ... }

The following types are supported, and each type is documented in detail below:

	"lighting"

	"thermostat"

	"mediaPlayer"

	"generic"

Attribute state and control keys

Like Single-Attribute Tiles, Multi-Attribute Tiles are associated with device attributes.
As the name suggests, Multi-Attribute Tiles can be associated with more than one attribute, using tileAttribute() and attributeState():

multiAttributeTile(name:"switch", type: "lighting", width: 6, height: 4, canChangeIcon: true) {
 tileAttribute ("device.switch", key: "PRIMARY_CONTROL") {
 attributeState "on", label:'${name}', action:"switch.off", icon:"st.lights.philips.hue-single", backgroundColor:"#00a0dc", nextState:"turningOff"
 attributeState "off", label:'${name}', action:"switch.on", icon:"st.lights.philips.hue-single", backgroundColor:"#ffffff", nextState:"turningOn"
 attributeState "turningOn", label:'${name}', action:"switch.off", icon:"st.lights.philips.hue-single", backgroundColor:"#00a0dc", nextState:"turningOff"
 attributeState "turningOff", label:'${name}', action:"switch.on", icon:"st.lights.philips.hue-single", backgroundColor:"#ffffff", nextState:"turningOn"
 }
 tileAttribute ("device.power", key: "SECONDARY_CONTROL") {
 attributeState "power", label:'Power level: ${currentValue}W', icon: "st.Appliances.appliances17"
 }
 tileAttribute ("device.level", key: "SLIDER_CONTROL") {
 attributeState "level", action:"switch level.setLevel"
 }
 tileAttribute ("device.color", key: "COLOR_CONTROL") {
 attributeState "color", action:"setAdjustedColor"
 }
}

The key difference between the Multi-Attribute Tile tileAttribute and the single-attribute state is the key option for attributeState.
The key informs the platform the type of control for the tile attribute, which is then used to render the appropriate control.
The keys commonly used for each type of tile will be discussed below, and a complete reference list is also available.

Every Multi-Attribute Tile must specify a PRIMARY_CONTROL.
This is the main control, and will control the background color for the entire Multi-Attribute Tile (except for the Thermostat Multi-Attribute Tile).

Lighting Multi-Attribute Tile

The lighting Multi-Attribute Tile makes it easy to create rich tiles for lighting devices.
There are several ways a lighting Multi-Attribute Tile can be configured, depending on the type of bulb and its supported capabilities.

Consider the following Multi-Attribute Tile for a bulb that supports the switch, colorControl, powerMeter, and switchLevel capabilities:

multiAttributeTile(name:"switch", type: "lighting", width: 6, height: 4, canChangeIcon: true) {
 tileAttribute ("device.switch", key: "PRIMARY_CONTROL") {
 attributeState "on", label:'${name}', action:"switch.off", icon:"st.lights.philips.hue-single", backgroundColor:"#00a0dc", nextState:"turningOff"
 attributeState "off", label:'${name}', action:"switch.on", icon:"st.lights.philips.hue-single", backgroundColor:"#ffffff", nextState:"turningOn"
 attributeState "turningOn", label:'${name}', action:"switch.off", icon:"st.lights.philips.hue-single", backgroundColor:"#00a0dc", nextState:"turningOff"
 attributeState "turningOff", label:'${name}', action:"switch.on", icon:"st.lights.philips.hue-single", backgroundColor:"#ffffff", nextState:"turningOn"
 }
 tileAttribute ("device.power", key: "SECONDARY_CONTROL") {
 attributeState "power", label:'Power level: ${currentValue}W', icon: "st.Appliances.appliances17"
 }
 tileAttribute ("device.level", key: "SLIDER_CONTROL") {
 attributeState "level", action:"switch level.setLevel"
 }
 tileAttribute ("device.color", key: "COLOR_CONTROL") {
 attributeState "color", action:"setColor"
 }
}

This tile renders as:

[image: ../_images/lighting-tile.png]

Note

Android will display the SECONDARY_CONTROL and SLIDER_CONTROL attribute values as a marquee when used in conjunction with COLOR_CONTROL.

The tileAttribute keys and their description used for the lighting Multi-Attribute Tile are summarized in the following table:

	Key
	Description

	PRIMARY_CONTROL
	Displays the status of the switch, and allows the switch state to be toggled when pressed.

	SECONDARY_CONTROL
	Used to display textual information. Often used to display power usage.

	SLIDER_CONTROL
	For bulbs that support the switchLevel capability, allows the user to set the switch level.

	COLOR_CONTROL
	For bulbs that support the colorControl capability, allows the user to select a color.

The command method specified by action will be called with a map that looks like this:

[red:241, hex:#F1E3FF, saturation:10.980392, blue:255, green:227, hue:75.0]

The values are summarized in the table below:

	Key
	Description

	red
	The red value chosen in the standard RGB color space

	hex
	The hexacecimal representation of the color chosen

	saturation
	The saturation value of the value chosen, between 0 and 100

	blue
	The blue value chosen in the standard RGB color space

	green
	The green value chosen in the standard RGB color space

	hue
	The hue value of the color chosen, between 0 and 100

You may also see a level and alpha attribute returned from the color control.
These values are not controlled by the color palette, so are not useful.

Note

You may see code for Color Control bulbs that adjusts the Hue using some magic numbers and fun math.

This is an artifact of the original Hue bulb sacrificing the ability to render greens in favor of more pleasant whites.
This tradeoff threw off the actual colors version the apparent color on the color wheel.
These calculations compensated for this behavior somewhat so that when you selected blue on the color wheel you actually saw blue on the bulb.

These adjustments would not apply to other color bulbs.

Tip

Check out the Examples to see it in action!

Thermostat Multi-Attribute Tile

The Thermostat Multi-Attribute Tile allows for rich viewing and control of thermostat devices.
Here’s an image of a thermostat tile (when heating):

[image: ../_images/thermostat-tile.png]
The tiles configuration for the above tile is:

multiAttributeTile(name:"thermostatFull", type:"thermostat", width:6, height:4) {
 tileAttribute("device.temperature", key: "PRIMARY_CONTROL") {
 attributeState("temp", label:'${currentValue}', unit:"dF", defaultState: true)
 }
 tileAttribute("device.temperature", key: "VALUE_CONTROL") {
 attributeState("VALUE_UP", action: "tempUp")
 attributeState("VALUE_DOWN", action: "tempDown")
 }
 tileAttribute("device.humidity", key: "SECONDARY_CONTROL") {
 attributeState("humidity", label:'${currentValue}%', unit:"%", defaultState: true)
 }
 tileAttribute("device.thermostatOperatingState", key: "OPERATING_STATE") {
 attributeState("idle", backgroundColor:"#00A0DC")
 attributeState("heating", backgroundColor:"#e86d13")
 attributeState("cooling", backgroundColor:"#00A0DC")
 }
 tileAttribute("device.thermostatMode", key: "THERMOSTAT_MODE") {
 attributeState("off", label:'${name}')
 attributeState("heat", label:'${name}')
 attributeState("cool", label:'${name}')
 attributeState("auto", label:'${name}')
 }
 tileAttribute("device.heatingSetpoint", key: "HEATING_SETPOINT") {
 attributeState("heatingSetpoint", label:'${currentValue}', unit:"dF", defaultState: true)
 }
 tileAttribute("device.coolingSetpoint", key: "COOLING_SETPOINT") {
 attributeState("coolingSetpoint", label:'${currentValue}', unit:"dF", defaultState: true)
 }
}

The below table summarizes the basic controls for a Thermostat Multi-Attribute Tile:

	Key
	Description

	PRIMARY_CONTROL
	Used to display the current temperature.

	VALUE_CONTROL
	Renders controls for increasing or decreasing the temperature.

	SECONDARY_CONTROL
	Used to display textual data about the thermostat, like humidity. Appears on the bottom-left of the tile.

In addition to the controls above, there are four additional controls that work together to show the status label at the bottom of the tile:

[image: ../_images/thermostat-heating-tile-op-state.png]
This label provides users with more information on the state of the thermostat.
Additionally, thermostat tiles also look to the OPERATING_STATE attribute for its background color, falling back on the colors for PRIMARY_CONTROL.

In order to provide the relevant data to present the label, there are four additional attributes you should include:

	Value
	Description
	Notes

	OPERATING_STATE
	What the thermostat is doing
	The label will not show if OPERATING_STATE is omitted, as this is the baseline amount of meaningful information

	THERMOSTAT_MODE
	Thermostat Mode (i.e. Heat, Cool, or Auto)
	This allows the user to know the Mode (and temperature) if the system is idle (e.g. “Idle—Heat at 66°”)

	HEATING_SETPOINT
	At which point the system will begin heating
	Informs the user when heating will start (or stop, if currently heating)

	COOLING_SETPOINT
	At which point the system will begin cooling
	Informs the user when cooling will start (or stop, if currently cooling)

Note

Only OPERATING_STATE is required to present the status label, but providing all four attributes will ensure the best experience for your users.

Tip

Check out the Examples to see it in action!

Multimedia Multi-Attribute Tile

The Multimedia Multi-Attribute Tile is intended for devices that support the musicPlayer capability.
It can render controls for playing, pausing, next/previous tracks, and volume levels for a music player.
It can also display information about the currently playing track.

[image: ../_images/multimedia-tile.png]
The code for this tiles configuration is shown below:

tiles(scale: 2) {
 multiAttributeTile(name: "mediaMulti", type:"mediaPlayer", width:6, height:4) {
 tileAttribute("device.status", key: "PRIMARY_CONTROL") {
 attributeState("paused", label:"Paused",)
 attributeState("playing", label:"Playing")
 attributeState("stopped", label:"Stopped")
 }
 tileAttribute("device.status", key: "MEDIA_STATUS") {
 attributeState("paused", label:"Paused", action:"music Player.play", nextState: "playing")
 attributeState("playing", label:"Playing", action:"music Player.pause", nextState: "paused")
 attributeState("stopped", label:"Stopped", action:"music Player.play", nextState: "playing")
 }
 tileAttribute("device.status", key: "PREVIOUS_TRACK") {
 attributeState("status", action:"music Player.previousTrack", defaultState: true)
 }
 tileAttribute("device.status", key: "NEXT_TRACK") {
 attributeState("status", action:"music Player.nextTrack", defaultState: true)
 }
 tileAttribute ("device.level", key: "SLIDER_CONTROL") {
 attributeState("level", action:"music Player.setLevel")
 }
 tileAttribute ("device.mute", key: "MEDIA_MUTED") {
 attributeState("unmuted", action:"music Player.mute", nextState: "muted")
 attributeState("muted", action:"music Player.unmute", nextState: "unmuted")
 }
 tileAttribute("device.trackDescription", key: "MARQUEE") {
 attributeState("trackDescription", label:"${currentValue}", defaultState: true)
 }
 }

 main "mediaMulti"
 details(["mediaMulti"])
}

The tileAttribute control keys and their description used for the Multimedia Multi-Attribute Tile are summarized in the following table:

	Key
	Description

	PRIMARY_CONTROL
	Necessary to render the background of the tile

	MEDIA_STATUS
	Used to display and control the current play status (playing, paused, stopped)

	PREVIOUS_TRACK
	Renders a control for going to the previous track

	NEXT_TRACK
	Renders a control for going to the next track

	SLIDER_CONTROL
	Renders a control to select a volume level

	MEDIA_MUTED
	Allows the user to press the volume icon to mute

	MARQUEE
	Will display the currently playing track description below the PRIMARY_CONTROL. Use newlines ("\n") to delimit fields such as title, artist, album, etc.

Note

The background color of the media Multi-Attribute Tile defaults to blue, and cannot be overridden.

Tip

Check out the Examples to see it in action!

Generic Multi-Attribute Tile

If none of the predefined Multi-Attribute Tile types fit your needs, you can use the Generic Multi-Attribute Tile.
The supported tile attribute types for the Generic Multi-Attribute Tile are shown in the following table:

	Key
	Description

	PRIMARY_CONTROL
	The primary control tile for this device, controls the background color

	SECONDARY_CONTROL
	Displays textual data below the primary control

	VALUE_CONTROL
	Renders Up and Down buttons for increasing or decreasing values

	SLIDER_CONTROL
	Renders a slider control for selecting a value along a range

	COLOR_CONTROL
	Renders the color picker that allows users to select a color (useful for Color Control devices)

Here’s an example of a generic tile:

multiAttributeTile(name:"sliderTile", type:"generic", width:6, height:4) {
 tileAttribute("device.switch", key: "PRIMARY_CONTROL") {
 attributeState "on", label:'${name}', backgroundColor:"#00A0DC", nextState:"turningOff"
 attributeState "off", label:'${name}', backgroundColor:"#ffffff", nextState:"turningOn"
 attributeState "turningOn", label:'${name}', backgroundColor:"#79b821", nextState:"turningOff"
 attributeState "turningOff", label:'${name}', backgroundColor:"#ffffff", nextState:"turningOn"
 }
 tileAttribute("device.level", key: "SECONDARY_CONTROL") {
 attributeState "level", icon: 'st.Weather.weather1', action:"randomizeLevel", defaultState: true
 }
 tileAttribute("device.level", key: "SLIDER_CONTROL") {
 attributeState "level", action:"switch level.setLevel", defaultState: true
 }
}
multiAttributeTile(name:"valueTile", type:"generic", width:6, height:4) {
 tileAttribute("device.level", key: "PRIMARY_CONTROL") {
 attributeState "level", label:'${currentValue}', defaultState: true, backgroundColors:[
 [value: 0, color: "#ff0000"],
 [value: 20, color: "#ffff00"],
 [value: 40, color: "#00ff00"],
 [value: 60, color: "#00ffff"],
 [value: 80, color: "#0000ff"],
 [value: 100, color: "#ff00ff"]
]
 }
 tileAttribute("device.switch", key: "SECONDARY_CONTROL") {
 attributeState "on", label:'${name}', action:"switch.off", icon:"st.switches.switch.on", backgroundColor:"#00A0DC", nextState:"turningOff"
 attributeState "off", label:'${name}', action:"switch.on", backgroundColor:"#ffffff", nextState:"turningOn"
 attributeState "turningOn", label:'…', action:"switch.off", icon:"st.switches.switch.on", backgroundColor:"#79b821", nextState:"turningOff"
 attributeState "turningOff", label:'…', action:"switch.on", backgroundColor:"#ffffff", nextState:"turningOn"
 }
 tileAttribute("device.level", key: "VALUE_CONTROL") {
 attributeState "VALUE_UP", action: "levelUp"
 attributeState "VALUE_DOWN", action: "levelDown"
 }
}

The above tiles render as:

[image: ../_images/generic-tile.png]

Tip

Check out the Examples to see it in action!

Controls summary

The table below summarizes all the available control types.
Not all controls are supported for all tile types; see the tile-specific documentation for more information.

	Key
	Description

	COLOR_CONTROL
	Displays a color palette for the user to select a color from.

	COOLING_SETPOINT
	Used by the Thermostat Multi-Attribute Tile.

	HEATING_SETPOINT
	Used by the Thermostat Multi-Attribute Tile.

	MARQUEE
	Displays a rotating marquee message beneath the PRIMARY_CONTROL.

	MEDIA_MUTED
	Allows the user to press the volume icon to mute on a Multimedia Multi-Attribute Tile.

	MEDIA_STATUS
	Used to display and control the current play status (playing, paused, stopped) on a Multimedia Multi-Attribute Tile.

	NEXT_TRACK
	Renders a control for going to the next track on a Multimedia Multi-Attribute Tile.

	OPERATING_STATE
	Used by the Thermostat Multi-Attribute Tile.

	PREVIOUS_TRACK
	Renders a control for going to the previous track on a Multimedia Multi-Attribute Tile.

	PRIMARY_CONTROL
	All tiles must define a PRIMARY_CONTROL. Controls the background color of tile (except for the Thermostat Multi-Attribute Tile), and specifies the attribute to show on the Device list views.

	SECONDARY_CONTROL
	Used to display textual information below the PRIMARY_CONTROL.

	SLIDER_CONTROL
	Displays a slider input; typically useful for attributes like bulb level or volume.

	THERMOSTAT_MODE
	Used by the Thermostat Multi-Attribute Tile.

	VALUE_CONTROL
	Renders Up and Down controls for increasing and decreasing an attribute’s value by 1.

Color standards

SmartThings has defined a set of common colors for use in device tiles.
Follow these standards when developing device tiles to ensure consistency within the SmartThings mobile app.

Colors

The following table lists the standard colors, their hexadecimal code, and a description of when to use the color:

	Color
	Hex code
	Description
	Color example

	Blue
	#00a0dc
	Represents “on”-like device states
	

	White
	#ffffff
	Represents “off”-like device states
	

	Orange
	#e86d13
	Represents device states that require the user’s attention
	

	Gray
	#cccccc
	Represents “inactive” or “offline” device states
	

Transition states (e.g., “Turning on”) should use the color of the transitioned-to state (e.g., blue for “Turning on”).

In addition to the colors above, tiles that display temperatures follow these standards (see the Background color documentation to understand how the colors are interpolated between values):

	Temperature value (Fahrenheit)
	Hex code
	Color example

	31
	#153591
	

	44
	#1e9cbb
	

	59
	#90d2a7
	

	74
	#44b621
	

	84
	#f1d801
	

	95
	#d04e00
	

	96
	#bc2323
	

Tip

If your Device Handler needs to accomodate Celsius temperature values, you can convert the values above to Celsius, and expand the background colors out to include the range of both Celsius and Fahrenheit values.
You can see an example of this here [https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/f054cb4de1fb41d15a2725cddcc521b5f659572b/devicetypes/smartthings/ecobee-thermostat.src/ecobee-thermostat.groovy#L45].

Examples

The following table contains several common device states and their tile color:

	Attribute state
	Color

	Switch on
	Blue–#00a0dc

	Switch off
	White–#ffffff

	Motion active
	Blue–#00a0dc

	Motion inactive
	White–#ffffff

	Contact sensor open
	Orange–##e86d13

	Contact sensor closed
	Blue–#00a0dc

	Lock locked
	Blue–#00a0dc

	Lock unlocked
	White–#ffffff

	Presence present
	Blue–#00a0dc

	Presence away
	Gray–#cccccc

	Thermostat cool
	Blue–#00a0dc

	Thermostat heat
	Orange–##e86d13

	Siren on
	Orange–##e86d13

	Siren off
	White–#ffffff

	Water sensor dry
	White–#ffffff

	Water sensor wet
	Blue–#00a0dc

	Smoke detector clear
	White–#ffffff

	Smoke detector detected
	Orange–#e86d13

	Smoke detector tested
	Orange–#e86d13

Additional information

	If using the SECONDARY_CONTROL, SLIDER_CONTROL, and COLOR_CONTROL controls in the same Multi-Attribute Tile, the values for the secondary and slider control will display as a Marquee on Android.

	When specifying a Multi-Attribute Tile as the main tile, the PRIMARY_CONTROL tile attribute will display on the details list.

	Tiles may not render the same across all mobile platforms. While we strive for a degree of consistency, it is still recommended to test your tiles on a variety of devices.

	Remember that when tile definitions are consumed by the platform, the platform has no knowledge of device state, etc. Tiles are static in nature; keep this in mind as you design your Device Handler.

	6 x 1 tiles will actually render the tile that is used for the device in the Device List views. This is almost surely not what is desired, so it’s recommended not to use 6 x 1 tiles.

Examples

	[image: ../_images/standard-tile-full.png]

	[image: ../_images/lighting-tile-full.png]

	[image: ../_images/generic-tile-full.png]

	[image: ../_images/media-tile-full.png]

We’ve created several Device Handlers for all the tiles discussed in this documentation.
These are a great reference for seeing various tiles in action.

They are located in the tiles-ux [https://github.com/SmartThingsCommunity/SmartThingsPublic/tree/master/devicetypes/smartthings/tile-ux] package in the SmartThingsPublic GitHub Repository.
Refer to the README in the package for information on installing and using the example devices.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Device Handlers

Preferences

Device Handlers may specify simple preferences to allow the user to configure certain properties of their device.

Overview

When a user adds a device to SmartThings, they are given the option to name their device and select a room.
If there are additional configuration options that you wish to expose to the user, you can specify them using preferences.
They will appear on the same page as the device name preference.

Defining preferences

Device preferences should be placed in the Device Handler’s metadata.
They can appear anywhere in the metadata definition.

metadata {
 definition(...) {...}
 tiles() {...}
 preferences {
 input "tempOffset", "number", title: "Degrees", description: "Adjust temperature by this many degrees",
 range: "*..*", displayDuringSetup: false
 }
}

Device preferences are flat

Device preferences are static, and single-page.

Multiple page preferences and dynamic preferences pages are not supported in Device Handlers.
Device Handler preferences are a simple list of inputs:

preferences {
 input name: "text", type: "text", title: "Text", description: "Enter Text", required: true
}

Display on setup

Use displayDuringSetup: true to force the preference input to be displayed when the device is being added to SmartThings:

preferences {
 input name: "email", type: "email", title: "Email", description: "Enter Email Address", required: true,
 displayDuringSetup: true
}

Preferences that do not specify this value, or specify displayDuringSetup: false, will only appear when the user presses the Settings button on the Device in the mobile application.

Supported input types

The following input types are supported in Device Handler preferences:

	bool

	decimal

	email

	enum

	number

	password

	phone

	time

	text

Getting preference input values

Just as with SmartApp preferences, the name of the preferences input is a reference to the preference value:

metadata {
 definition(...) {...}
 tiles() {...}
 preferences {
 input "tempOffset", "number", title: "Degrees", description: "Adjust temperature by this many degrees", range: "*..*", displayDuringSetup: false
 }
}

def someCommandMethod() {
 if (tempOffset) {
 // handle offset value
 }
}

Note

Preference values are only available to the Device Handler when it is executing in response to Events or commands.
It is not possible to use preference values in other metadata definitions, including tiles().

Example

metadata {
 simulator {
 // TODO: define status and reply messages here
 }

 tiles {
 // TODO: define your main and details tiles here
 }

 preferences {
 input name: "email", type: "email", title: "Email", description: "Enter Email Address", required: true, displayDuringSetup: true
 input name: "text", type: "text", title: "Text", description: "Enter Text", required: true
 input name: "number", type: "number", title: "Number", description: "Enter number", required: true
 input name: "bool", type: "bool", title: "Bool", description: "Enter boolean", required: true
 input name: "password", type: "password", title: "password", description: "Enter password", required: true
 input name: "phone", type: "phone", title: "phone", description: "Enter phone", required: true
 input name: "decimal", type: "decimal", title: "decimal", description: "Enter decimal", required: true
 input name: "time", type: "time", title: "time", description: "Enter time", required: true
 input name: "options", type: "enum", title: "enum", options: ["Option 1", "Option 2"], description: "Enter enum", required: true
 }
}

def someCommand() {
 log.debug "email: $email"
 log.debug "text: $text"
 log.debug "bool: $bool"
 log.debug "password: $password"
 log.debug "phone: $phone"
 log.debug "decimal: $decimal"
 log.debug "time: $time"
 log.debug "options: $options"
}

Additional notes

	Setting a default value (defaultValue: "foobar") for an input may render that selection in the mobile app, but the user still needs to enter data in that field. It’s recommended to not use defaultValue to avoid confusion.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Device Handlers

Parse and Events

The parse method is the core method in a typical Device Handler.

Overview

All messages from the device are passed to the parse() method.
It is responsible for turning those messages into something the SmartThings platform can understand.

Because the parse() method is responsible for handling raw device messages, their implementations vary greatly across different device types.
This document will not discuss all these different scenarios (see the Z-Wave Device Handler Guide or ZigBee Device Handler guide for protocol-specific information).

Consider an example of a simplified parse() method (modified from the CentraLite Switch):

def parse(String description) {
 log.debug "parse description: $description"

 def attrName = null
 def attrValue = null

 if (description?.startsWith("on/off:")) {
 log.debug "switch command"
 attrName = "switch"
 attrValue = description?.endsWith("1") ? "on" : "off"
 }

 def result = createEvent(name: attrName, value: attrValue)

 log.debug "Parse returned ${result?.descriptionText}"
 return result
}

Our parse() method inspects the passed-in description, and creates an Event with name “switch” and a value of “on” or “off”.
It then returns the created Event, where the SmartThings platform will handle firing the Event and notifying any SmartApps subscribed to that Event.

Parse, Events, and Attributes

Recall that the “switch” capability specifies an attribute of “switch”, with possible values “on” and “off”.
The parse() method is responsible for creating events for the attributes of that device’s capabilities.

That is a critical point to understand about Device Handlers - it is what allows SmartApps to respond to Event subscriptions!

Note

Only events that constitute a state change are propagated through the SmartThings platform. A state change is when a particular attribute of the device changes. This is handled automatically by the platform, but should you want to override that behavior, you can do so by specifying the isStateChange parameter discussed below.

Creating Events

Use the createEvent() method to create events in your Device Handler.
It takes a map of parameters as an argument.
You should provide the name and value at a minimum.

Important

The createEvent just creates a data structure (a Map) with information about the Event. It does not actually fire an Event.

Only by returning that created map from your parse method will an Event be fired by the SmartThings platform.

The parameters you can pass to createEvent are:

	name (required)

	String - The name of the Event. Typically corresponds to an attribute name of the device-handler’s capabilities.

	value (required)

	The value of the Event. The value is stored as a String, but you can pass in numbers or other objects. SmartApps will be responsible for parsing the Event’s value into back to its desired form (e.g., parsing a number from a string)

	descriptionText

	String - The description of this Event. This appears in the mobile application activity feed for the device. If not specified, this will be created using the Event name and value.

	displayed

	boolean - true to display this Event in the mobile application activity feed. false to not display this Event. Defaults to true.

	linkText

	String - Name of the Event to show in the mobile application activity feed, if specified.

	isStateChange

	boolean - true if this Event caused the device’s attribute to change state. false otherwise. If not provided, createEvent will populate this based on the current state of the device.

	unit

	String - a unit string, if desired. This will be used to create the descriptionText if it (the descriptionText parameter) is not specified.

Multiple Events

You are not limited to returning a single Event map from your parse method.

You can return a list of Event maps to tell the SmartThings platform to generate multiple events:

def parse(String description) {
 ...

 def evt1 = createEvent(name: "someName", value: "someValue")
 def evt2 = createEvent(name: "someOtherName", value: "someOtherValue")

 return [evt1, evt2]
}

Generating Events outside of parse

If you need to generate an Event outside of the parse() method, you can use the sendEvent() method.
It simply calls createEvent() and fires the Event.
You pass in the same parameters as you do to createEvent().

Tips

When creating a Device Handler, determining what messages need to be handled by the parse() method varies by device.
A common practice to figure out what messages need to be handled is to simply log the messages in your parse() method (log.debug "description: $description").
This allows you to see what the incoming message is for various actuations or states.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Device Handlers

Z-Wave Primer

This document covers some important aspects of the Z-Wave application-level standard that you may come in contact with when developing Device Handlers for Z-Wave devices.
If you are already familiar with Z-Wave development, you can learn how SmartThings integrates with it in Building Z-Wave Device
Handlers.
You can also consult the Z-Wave public specification [http://z-wave.sigmadesigns.com/design-z-wave/z-wave-public-specification/] for more information about the Z-Wave protocol.

Command classes

Z-Wave device messages are all called “commands”, even if they are just info reports or other kinds of communications.
They are organized into command classes which group related functionality together.
Some devices list which command classes they support in their manuals.

There is a list of the command classes that SmartThings supports here: Z-Wave Command Reference [https://graph.api.smartthings.com/ide/doc/zwave-utils.html].
Notice some of them have multiple versions.
The Z-Wave standard occasionally adds a new version of a command class that may add new commands or add more data fields to existing commands.
New versions are backwards-compatible and generally our command parsing system can handle different versions interchangeably, but you may need to specify a specific version in some cases.

Some commonly seen command classes:

	
0x20 Basic [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#basicV1]

A generalized get/set/report command class that all devices support.
It is usually mapped to another more specific command class, like
Switch Binary for switches or Sensor Binary for sensors.

	
0x25 Switch Binary [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#switchBinaryV1]

Control of on/off switches.

	
0x26 Switch Multilevel [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#switchMultilevelV3]

Control of dimmer switches.

	
0x30 Sensor Binary [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#sensorBinaryV1]

Sensors with two states, such as motion detectors and open/closed
sensors.

	
0x31 Sensor Multilevel [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#sensorMultilevelV5]

Sensors that report a numeric value, like temperature or illuminance.

	
0x32 Meter [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#meterV3]

Outlets and meters that measure energy use.

	
0x71 Alarm/Notification [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#notificationV3]

The Alarm command class was renamed to Notification in version 3.

Used by sensors and other devices to report events.

	
0x70 Configuration [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#configurationV2]

See Configuration section below.

	
0x80 Battery [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#batteryV1]

Battery level reporting for battery powered devices.

	
0x84 Wake Up [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#wakeUpV2]

See Listening and Sleepy Devices section below.

	
0x85 Association [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#associationV2]

See Association section below.

	
0x86 Version [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#versionV1]

All devices report their Z-Wave framework and firmware version on
request.

	
0x72 Manufacturer Specific [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#manufacturerSpecificV2]

All devices report their manufacturer and model (via numeric code).

	
0x98 Security [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#securityV1]

Commands to and from security-sensitive devices can be sent encrypted
by wrapping them in SecurityMessageEncapsulation commands.

	
0x60 Multi-Channel/Multi-Instance [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#multiChannelV3]

The Multi Instance command class was renamed to Multi Channel in
version 3. It is used by devices to distinguish between multiple
control or reporting end points.

Listening and sleepy devices

Z-Wave devices that are plugged in to power are called listening devices because they keep their receiver on all the time.
Listening devices act as repeaters and therefore extend the Z-Wave mesh network.

Battery powered Z-Wave devices such as sensors or remote controllers are sleepy – they turn off their receivers to save energy, so you can’t send them commands at any time.
Instead, they wake up at a regular interval and send a WakeUpNotification [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#wakeUpV2/wakeUpNotification] to alert other devices that they will be listening for incoming commands for the next few seconds.
The WakeUpIntervalSet [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#wakeUpV2/wakeUpIntervalSet] command is used to configure both how often the device will wake up and which controller it will send its WakeUpNotification to.
When the controller gets the WakeUpNotification and has no commands to send to the device, it can send WakeUpNoMoreInformation [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#wakeUpV2/wakeUpNoMoreInformation] to tell the device that it can go back to sleep.

Some battery powered devices like door locks and thermostats have to be able to receive commands at any time.
These are known as beamable devices, because they wake up for only a tiny slice of time each second or quarter-second and listen for a “beam”.
Thus, the sending device must “beam” the receiving device for a full second to wake it up fully before sending a command.
This makes communication with these devices take a significantly longer time than with a normal listening device.

Configuration

A Z-Wave device can use the Configuration [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#configurationV2] command class to allow the user to change its settings.
Configuration parameters and their interpretation vary between device models, and are usually detailed in the device’s manual or technical documentation.

The command class includes commands to read and set configuration parameter values.
One thing to be careful of is that the ConfigurationSet [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#configurationV2/configurationSet] command encodes the setting value in a 1, 2, or 4 byte format, and many devices will only properly interpret the value if it is sent in the same byte format.
When sending a ConfigurationSet, make sure to set the ‘size’ argument to the same value as it has in an incoming ConfigurationReport [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#configurationV2/configurationReport] from the device for the parameter number in question.

Association

The Association [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#associationV2] command class is used to tell a Z-Wave device that it should send updates to another device.
It provides the ability to add associated devices to different numbered groups that can have different meanings.
This functionality is used in a few different ways, often detailed in the device’s manual or technical documentation:

	Some sensors will send reports of the events they detect only to
devices that have been added to a specific association group.

	Many sensors will send
BasicSet [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#basicV1/basicSet]
commands to associated devices, for example to turn a light on when a
door opens and off when it closes.

	Some devices have multiple groups for different uses, like group 1
gets sent BasicSet commands, group 2 gets sent SensorBinaryReport
events, and group 3 gets sent BatteryReport updates.

	Most door locks will send status updates to associated devices when
they are locked or unlocked manually.

The SmartThings Hub automatically adds itself to association group 1 when a device that supports association joins the network.
If this is inappropriate for your Device Handler, your Device Handler can use AssociationRemove [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#associationV2/associationRemove] to undo it.
To associate to a group higher than 1, the Device Handler can send AssociationSet [https://graph.api.smartthings.com/ide/doc/zwave-utils.html#associationV2/associationSet].
The Hub’s node ID is provided to Device Handler code in the variable zwaveHubNodeId.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Device Handlers

Building Z-Wave Device Handlers

The Z-Wave public specification is available here [http://z-wave.sigmadesigns.com/design-z-wave/z-wave-public-specification/].
SmartThings provides custom Z-Wave command objects that represent the standard commands and messages that Z-Wave devices use to send and request information.

Parsing Events

When Events from Z-Wave devices are passed into your Device Handler’s parse method, they are in an encoded string format.
The first thing your parse method should do is call zwave.parse on the description string to convert it to a Z-Wave command object.
The object’s class is one of the subclasses of physicalgraph.zwave.Command that can be found in the Z-Wave Command
Reference [https://graph.api.smartthings.com/ide/doc/zwave-utils.html].
If the description string does not represent a valid Z-Wave command, zwave.parse will return null.

def parse(String description) {
 def result = null
 def cmd = zwave.parse(description)
 if (cmd) {
 result = zwaveEvent(cmd)
 log.debug "Parsed ${cmd} to ${result.inspect()}"
 } else {
 log.debug "Non-parsed event: ${description}"
 }
 return result
}

Once you have a command object, the recommended way of handling it is to
pass it to a overloaded function such as zwaveEvent() used in this
example, with different argument types for the different types of
commands you intend to handle:

def zwaveEvent(physicalgraph.zwave.commands.basicv1.BasicReport cmd)
{
 def result
 if (cmd.value == 0) {
 result = createEvent(name: "switch", value: "off")
 } else {
 result = createEvent(name: "switch", value: "on")
 }
 return result
}

def zwaveEvent(physicalgraph.zwave.commands.meterv3.MeterReport cmd) {
 def result
 if (cmd.scale == 0) {
 result = createEvent(name: "energy", value: cmd.scaledMeterValue, unit: "kWh")
 } else if (cmd.scale == 1) {
 result = createEvent(name: "energy", value: cmd.scaledMeterValue, unit: "kVAh")
 } else {
 result = createEvent(name: "power", value: cmd.scaledMeterValue, unit: "W")
 }
 return result
}

def zwaveEvent(physicalgraph.zwave.Command cmd) {
 // This will capture any commands not handled by other instances of zwaveEvent
 // and is recommended for development so you can see every command the device sends
 return createEvent(descriptionText: "${device.displayName}: ${cmd}")
}

Remember that when you use createEvent() to build an Event, the resulting map must be returned from parse() for the Event to be sent.
For information about createEvent, see the Creating Events section.

As the Z-Wave Command Reference [https://graph.api.smartthings.com/ide/doc/zwave-utils.html] shows, many Z-Wave command classes have multiple versions.
By default, zwave.parse() will parse a command using the highest version of the command class.
If the device is sending an earlier version of the command, some fields may be missing, or the command may fail to parse and return null.
To fix this, you can pass in a map as the second argument to zwave.parse() to tell it which version of each command class to use:

zwave.parse(description, [0x26: 1, 0x70: 1])

This example will use version 1 of SwitchMultilevel (0x26) and Configuration (0x70) instead of the highest versions.

Sending commands

To send a Z-Wave command to the device, you must create the command object, call format() on it to convert it to the encoded string representation, and return it from the command method.

def on() {
 return zwave.basicV1.basicSet(value: 0xFF).format()
}

There is a shorthand provided to create command objects: zwave.basicV1.basicSet(value: 0xFF) is the same as new physicalgraph.zwave.commands.basicv1.BasicSet(value: 0xFF).
Note the different capitalization of the command name and the ‘V’ in the command class name.

The value 0xFF passed in to the command is a hexadecimal number.
Many Z-Wave commands use 8-bit integers to represent device state.
Generally 0 means “off” or “inactive”, 1-99 are used as percentage values for a variable level attribute, and 0xFF or 255 (the highest value) means “on” or “detected”.

If you want to send more than one Z-Wave command, you can return a list of formatted command strings.
It is often a good idea to add a delay between commands to give the device an opportunity to finish processing each command and possibly send a response before receiving the next command.
To add a delay between commands, include a string of the form "delay N" where N is the number of milliseconds to delay.
There is a helper method delayBetween() that will take a list of commands and insert delay commands between them:

def off() {
 delayBetween([
 zwave.basicV1.basicSet(value: 0).format(),
 zwave.switchBinaryV1.switchBinaryGet().format()
], 100)
}

This example returns the output of delayBetween, and thus will send a BasicSet command, followed by a 100 ms delay (0.1 seconds), then a SwitchBinaryGet command in order to check immediately that the state of the switch was indeed changed by the set command.

Sending commands in response to Events

In some situations, instead of sending a command in response to a request by the user, you want to automatically send a command to the device on receipt of a Z-Wave command.

If you return a list from the parse method, each item of the list will be evaluated separately.
Items that are maps will be processed as Events as usual and sent to subscribed SmartApps and mobile clients.
Returned items that are HubAction items, however, will be sent via the Hub to the device, in much the same way as formatted commands returned from command methods.
The easiest way to send a command to a device in response to an Event is the response() helper, which takes a Z-Wave command or encoded string and supplies a HubAction:

def zwaveEvent(physicalgraph.zwave.commands.wakeupv1.WakeUpNotification cmd)
{
 def event = createEvent(descriptionText: "${device.displayName} woke up", displayed: false)
 def cmds = []
 cmds << zwave.batteryV1.batteryGet().format()
 cmds << "delay 1200"
 cmds << zwave.wakeUpV1.wakeUpNoMoreInformation().format()
 [event, response(cmds)] // return a list containing the event and the result of response()
}

The above example uses the response() helper to send Z-Wave commands and delay commands to the device whenever a WakeUpNotification Event is received.
The reception of this Event that indicates that the sleepy device is temporarily listening for commands.
In addition to creating a hidden Event, the handler will send a BatteryGet request, wait 1.2 seconds for a response, and then issue a WakeUpNoMoreInformation command to tell the device it can go back to sleep to save battery.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Device Handlers

Z-Wave Example

Below is a Device Handler code sample with examples of many common commands and parsed events.

You can also view this example in GitHub here [https://github.com/SmartThingsCommunity/Code/blob/master/device-types/z-wave-example.groovy].

metadata {
 definition (name: "Z-Wave Device Reference", author: "SmartThings") {
 capability "Actuator"
 capability "Switch"
 capability "Polling"
 capability "Refresh"
 capability "Temperature Measurement"
 capability "Sensor"
 capability "Battery"
 }

 simulator {
 // These show up in the IDE simulator "messages" drop-down to test
 // sending event messages to your device handler
 status "basic report on":
 zwave.basicV1.basicReport(value:0xFF).incomingMessage()
 status "basic report off":
 zwave.basicV1.basicReport(value:0).incomingMessage()
 status "dimmer switch on at 70%":
 zwave.switchMultilevelV1.switchMultilevelReport(value:70).incomingMessage()
 status "basic set on":
 zwave.basicV1.basicSet(value:0xFF).incomingMessage()
 status "temperature report 70°F":
 zwave.sensorMultilevelV2.sensorMultilevelReport(scaledSensorValue: 70.0, precision: 1, sensorType: 1, scale: 1).incomingMessage()
 status "low battery alert":
 zwave.batteryV1.batteryReport(batteryLevel:0xFF).incomingMessage()
 status "multichannel sensor":
 zwave.multiChannelV3.multiChannelCmdEncap(sourceEndPoint:1, destinationEndPoint:1).encapsulate(zwave.sensorBinaryV1.sensorBinaryReport(sensorValue:0)).incomingMessage()

 // simulate turn on
 reply "2001FF,delay 5000,2002": "command: 2503, payload: FF"

 // simulate turn off
 reply "200100,delay 5000,2002": "command: 2503, payload: 00"
 }

 tiles {
 standardTile("switch", "device.switch", width: 2, height: 2,
 canChangeIcon: true) {
 state "on", label: '${name}', action: "switch.off",
 icon: "st.unknown.zwave.device", backgroundColor: "#79b821"
 state "off", label: '${name}', action: "switch.on",
 icon: "st.unknown.zwave.device", backgroundColor: "#ffffff"
 }
 standardTile("refresh", "command.refresh", inactiveLabel: false,
 decoration: "flat") {
 state "default", label:'', action:"refresh.refresh",
 icon:"st.secondary.refresh"
 }

 valueTile("battery", "device.battery", inactiveLabel: false,
 decoration: "flat") {
 state "battery", label:'${currentValue}% battery', unit:""
 }

 valueTile("temperature", "device.temperature") {
 state("temperature", label:'${currentValue}°',
 backgroundColors:[
 [value: 31, color: "#153591"],
 [value: 44, color: "#1e9cbb"],
 [value: 59, color: "#90d2a7"],
 [value: 74, color: "#44b621"],
 [value: 84, color: "#f1d801"],
 [value: 95, color: "#d04e00"],
 [value: 96, color: "#bc2323"]
]
)
 }

 main (["switch", "temperature"])
 details (["switch", "temperature", "refresh", "battery"])
 }
}

def parse(String description) {
 def result = null
 def cmd = zwave.parse(description, [0x60: 3])
 if (cmd) {
 result = zwaveEvent(cmd)
 log.debug "Parsed ${cmd} to ${result.inspect()}"
 } else {
 log.debug "Non-parsed event: ${description}"
 }
 result
}

def zwaveEvent(physicalgraph.zwave.commands.basicv1.BasicReport cmd)
{
 def result = []
 result << createEvent(name:"switch", value: cmd.value ? "on" : "off")

 // For a multilevel switch, cmd.value can be from 1-99 to represent
 // dimming levels
 result << createEvent(name:"level", value: cmd.value, unit:"%",
 descriptionText:"${device.displayName} dimmed ${cmd.value==255 ? 100 : cmd.value}%")

 result
}

def zwaveEvent(physicalgraph.zwave.commands.switchbinaryv1.SwitchBinaryReport cmd) {
 createEvent(name:"switch", value: cmd.value ? "on" : "off")
}

def zwaveEvent(physicalgraph.zwave.commands.switchmultilevelv3.SwitchMultilevelReport cmd) {
 def result = []
 result << createEvent(name:"switch", value: cmd.value ? "on" : "off")
 result << createEvent(name:"level", value: cmd.value, unit:"%",
 descriptionText:"${device.displayName} dimmed ${cmd.value==255 ? 100 : cmd.value}%")
 result
}

def zwaveEvent(physicalgraph.zwave.commands.meterv1.MeterReport cmd) {
 def result
 if (cmd.scale == 0) {
 result = createEvent(name: "energy", value: cmd.scaledMeterValue,
 unit: "kWh")
 } else if (cmd.scale == 1) {
 result = createEvent(name: "energy", value: cmd.scaledMeterValue,
 unit: "kVAh")
 } else {
 result = createEvent(name: "power",
 value: Math.round(cmd.scaledMeterValue), unit: "W")
 }

 result
}

def zwaveEvent(physicalgraph.zwave.commands.meterv3.MeterReport cmd) {
 def map = null
 if (cmd.meterType == 1) {
 if (cmd.scale == 0) {
 map = [name: "energy", value: cmd.scaledMeterValue,
 unit: "kWh"]
 } else if (cmd.scale == 1) {
 map = [name: "energy", value: cmd.scaledMeterValue,
 unit: "kVAh"]
 } else if (cmd.scale == 2) {
 map = [name: "power", value: cmd.scaledMeterValue, unit: "W"]
 } else {
 map = [name: "electric", value: cmd.scaledMeterValue]
 map.unit = ["pulses", "V", "A", "R/Z", ""][cmd.scale - 3]
 }
 } else if (cmd.meterType == 2) {
 map = [name: "gas", value: cmd.scaledMeterValue]
 map.unit = ["m^3", "ft^3", "", "pulses", ""][cmd.scale]
 } else if (cmd.meterType == 3) {
 map = [name: "water", value: cmd.scaledMeterValue]
 map.unit = ["m^3", "ft^3", "gal"][cmd.scale]
 }
 if (map) {
 if (cmd.previousMeterValue && cmd.previousMeterValue != cmd.meterValue) {
 map.descriptionText = "${device.displayName} ${map.name} is ${map.value} ${map.unit}, previous: ${cmd.scaledPreviousMeterValue}"
 }
 createEvent(map)
 } else {
 null
 }
}

def zwaveEvent(physicalgraph.zwave.commands.sensorbinaryv2.SensorBinaryReport cmd) {
 def result
 switch (cmd.sensorType) {
 case 2:
 result = createEvent(name:"smoke",
 value: cmd.sensorValue ? "detected" : "closed")
 break
 case 3:
 result = createEvent(name:"carbonMonoxide",
 value: cmd.sensorValue ? "detected" : "clear")
 break
 case 4:
 result = createEvent(name:"carbonDioxide",
 value: cmd.sensorValue ? "detected" : "clear")
 break
 case 5:
 result = createEvent(name:"temperature",
 value: cmd.sensorValue ? "overheated" : "normal")
 break
 case 6:
 result = createEvent(name:"water",
 value: cmd.sensorValue ? "wet" : "dry")
 break
 case 7:
 result = createEvent(name:"temperature",
 value: cmd.sensorValue ? "freezing" : "normal")
 break
 case 8:
 result = createEvent(name:"tamper",
 value: cmd.sensorValue ? "detected" : "okay")
 break
 case 9:
 result = createEvent(name:"aux",
 value: cmd.sensorValue ? "active" : "inactive")
 break
 case 0x0A:
 result = createEvent(name:"contact",
 value: cmd.sensorValue ? "open" : "closed")
 break
 case 0x0B:
 result = createEvent(name:"tilt", value: cmd.sensorValue ? "detected" : "okay")
 break
 case 0x0C:
 result = createEvent(name:"motion",
 value: cmd.sensorValue ? "active" : "inactive")
 break
 case 0x0D:
 result = createEvent(name:"glassBreak",
 value: cmd.sensorValue ? "detected" : "okay")
 break
 default:
 result = createEvent(name:"sensor",
 value: cmd.sensorValue ? "active" : "inactive")
 break
 }
 result
}

def zwaveEvent(physicalgraph.zwave.commands.sensorbinaryv1.SensorBinaryReport cmd)
{
 // Version 1 of SensorBinary doesn't have a sensor type
 createEvent(name:"sensor", value: cmd.sensorValue ? "active" : "inactive")
}

def zwaveEvent(physicalgraph.zwave.commands.sensormultilevelv5.SensorMultilevelReport cmd)
{
 def map = [displayed: true, value: cmd.scaledSensorValue.toString()]
 switch (cmd.sensorType) {
 case 1:
 map.name = "temperature"
 map.unit = cmd.scale == 1 ? "F" : "C"
 break;
 case 2:
 map.name = "value"
 map.unit = cmd.scale == 1 ? "%" : ""
 break;
 case 3:
 map.name = "illuminance"
 map.value = cmd.scaledSensorValue.toInteger().toString()
 map.unit = "lux"
 break;
 case 4:
 map.name = "power"
 map.unit = cmd.scale == 1 ? "Btu/h" : "W"
 break;
 case 5:
 map.name = "humidity"
 map.value = cmd.scaledSensorValue.toInteger().toString()
 map.unit = cmd.scale == 0 ? "%" : ""
 break;
 case 6:
 map.name = "velocity"
 map.unit = cmd.scale == 1 ? "mph" : "m/s"
 break;
 case 8:
 case 9:
 map.name = "pressure"
 map.unit = cmd.scale == 1 ? "inHg" : "kPa"
 break;
 case 0xE:
 map.name = "weight"
 map.unit = cmd.scale == 1 ? "lbs" : "kg"
 break;
 case 0xF:
 map.name = "voltage"
 map.unit = cmd.scale == 1 ? "mV" : "V"
 break;
 case 0x10:
 map.name = "current"
 map.unit = cmd.scale == 1 ? "mA" : "A"
 break;
 case 0x12:
 map.name = "air flow"
 map.unit = cmd.scale == 1 ? "cfm" : "m^3/h"
 break;
 case 0x1E:
 map.name = "loudness"
 map.unit = cmd.scale == 1 ? "dBA" : "dB"
 break;
 }
 createEvent(map)
}

// Many sensors send BasicSet commands to associated devices.
// This is so you can associate them with a switch-type device
// and they can directly turn it on/off when the sensor is triggered.
def zwaveEvent(physicalgraph.zwave.commands.basicv1.BasicSet cmd)
{
 createEvent(name:"sensor", value: cmd.value ? "active" : "inactive")
}

def zwaveEvent(physicalgraph.zwave.commands.batteryv1.BatteryReport cmd) {
 def map = [name: "battery", unit: "%"]
 if (cmd.batteryLevel == 0xFF) { // Special value for low battery alert
 map.value = 1
 map.descriptionText = "${device.displayName} has a low battery"
 map.isStateChange = true
 } else {
 map.value = cmd.batteryLevel
 }
 // Store time of last battery update so we don't ask every wakeup, see WakeUpNotification handler
 state.lastbatt = new Date().time
 createEvent(map)
}

// Battery powered devices can be configured to periodically wake up and
// check in. They send this command and stay awake long enough to receive
// commands, or until they get a WakeUpNoMoreInformation command that
// instructs them that there are no more commands to receive and they can
// stop listening.
def zwaveEvent(physicalgraph.zwave.commands.wakeupv2.WakeUpNotification cmd)
{
 def result = [createEvent(descriptionText: "${device.displayName} woke up", isStateChange: false)]

 // Only ask for battery if we haven't had a BatteryReport in a while
 if (!state.lastbatt || (new Date().time) - state.lastbatt > 24*60*60*1000) {
 result << response(zwave.batteryV1.batteryGet())
 result << response("delay 1200") // leave time for device to respond to batteryGet
 }
 result << response(zwave.wakeUpV1.wakeUpNoMoreInformation())
 result
}

def zwaveEvent(physicalgraph.zwave.commands.associationv2.AssociationReport cmd) {
 def result = []
 if (cmd.nodeId.any { it == zwaveHubNodeId }) {
 result << createEvent(descriptionText: "$device.displayName is associated in group ${cmd.groupingIdentifier}")
 } else if (cmd.groupingIdentifier == 1) {
 // We're not associated properly to group 1, set association
 result << createEvent(descriptionText: "Associating $device.displayName in group ${cmd.groupingIdentifier}")
 result << response(zwave.associationV1.associationSet(groupingIdentifier:cmd.groupingIdentifier, nodeId:zwaveHubNodeId))
 }
 result
}

// Devices that support the Security command class can send messages in an
// encrypted form; they arrive wrapped in a SecurityMessageEncapsulation
// command and must be unencapsulated
def zwaveEvent(physicalgraph.zwave.commands.securityv1.SecurityMessageEncapsulation cmd) {
 def encapsulatedCommand = cmd.encapsulatedCommand([0x98: 1, 0x20: 1])

 // can specify command class versions here like in zwave.parse
 if (encapsulatedCommand) {
 return zwaveEvent(encapsulatedCommand)
 }
}

// MultiChannelCmdEncap and MultiInstanceCmdEncap are ways that devices
// can indicate that a message is coming from one of multiple subdevices
// or "endpoints" that would otherwise be indistinguishable
def zwaveEvent(physicalgraph.zwave.commands.multichannelv3.MultiChannelCmdEncap cmd) {
 def encapsulatedCommand = cmd.encapsulatedCommand([0x30: 1, 0x31: 1])

 // can specify command class versions here like in zwave.parse
 log.debug ("Command from endpoint ${cmd.sourceEndPoint}: ${encapsulatedCommand}")

 if (encapsulatedCommand) {
 return zwaveEvent(encapsulatedCommand)
 }
}

def zwaveEvent(physicalgraph.zwave.commands.multichannelv3.MultiInstanceCmdEncap cmd) {
 def encapsulatedCommand = cmd.encapsulatedCommand([0x30: 1, 0x31: 1])

 // can specify command class versions here like in zwave.parse
 log.debug ("Command from instance ${cmd.instance}: ${encapsulatedCommand}")

 if (encapsulatedCommand) {
 return zwaveEvent(encapsulatedCommand)
 }
}

def zwaveEvent(physicalgraph.zwave.Command cmd) {
 createEvent(descriptionText: "${device.displayName}: ${cmd}")
}

def on() {
 delayBetween([
 zwave.basicV1.basicSet(value: 0xFF).format(),
 zwave.basicV1.basicGet().format()
], 5000) // 5 second delay for dimmers that change gradually, can be left out for immediate switches
}

def off() {
 delayBetween([
 zwave.basicV1.basicSet(value: 0x00).format(),
 zwave.basicV1.basicGet().format()
], 5000) // 5 second delay for dimmers that change gradually, can be left out for immediate switches
}

def refresh() {
 // Some examples of Get commands
 delayBetween([
 zwave.switchBinaryV1.switchBinaryGet().format(),
 zwave.switchMultilevelV1.switchMultilevelGet().format(),
 zwave.meterV2.meterGet(scale: 0).format(), // get kWh
 zwave.meterV2.meterGet(scale: 2).format(), // get Watts
 zwave.sensorMultilevelV1.sensorMultilevelGet().format(),
 zwave.sensorMultilevelV5.sensorMultilevelGet(sensorType:1, scale:1).format(), // get temp in Fahrenheit
 zwave.batteryV1.batteryGet().format(),
 zwave.basicV1.basicGet().format(),
], 1200)
}

// If you add the Polling capability to your device type, this command
// will be called approximately every 5 minutes to check the device's state
def poll() {
 zwave.basicV1.basicGet().format()
}

// If you add the Configuration capability to your device type, this
// command will be called right after the device joins to set
// device-specific configuration commands.
def configure() {
 delayBetween([
 // Note that configurationSet.size is 1, 2, or 4 and generally
 // must match the size the device uses in its configurationReport
 zwave.configurationV1.configurationSet(parameterNumber:1, size:2, scaledConfigurationValue:100).format(),

 // Can use the zwaveHubNodeId variable to add the hub to the
 // device's associations:
 zwave.associationV1.associationSet(groupingIdentifier:2, nodeId:zwaveHubNodeId).format(),

 // Make sure sleepy battery-powered sensors send their
 // WakeUpNotifications to the hub every 4 hours:
 zwave.wakeUpV1.wakeUpIntervalSet(seconds:4 * 3600, nodeid:zwaveHubNodeId).format(),
])
}

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Device Handlers

ZigBee Primer

Before we start, lets take a look at a full ZigBee message as it would look in a SmartThings Device Handler.
Then we’ll break up the message into its parts and dive into what each part means.
Make sure you download the ZigBee Cluster Library as a reference for ZigBee message formatting and what is possible for each device.
You can also see our ZigBee Reference for more detailed descriptions of our library methods.

Here are some full commands:

	Set the level of a device

	zigbee.command(0x0008, 0x04, "FE0500")

	Read the current level (e.g. of a light)

	zigbee.readAttribute(0x0008, 0x0000)

	Write the value 0xBEEF to cluster 0x0008 attribute 0x0010

	zigbee.writeAttribute(0x0008, 0x0010, DataType.UINT16, 0xBEEF)

	Report battery level every 10 minutes to 6 hours if it changes value by 1

	zigbee.configureReporting(0x0001, 0x0021, DataType.UINT8, 600, 21600, 0x01)

The 4 Main types of ZigBee Messages

	zigbee.command - A ZigBee command for a given cluster.

	zigbee.readAttribute - A ZigBee Read Attribute requesting the value of an attribute from a cluster.

	zigbee.writeAttribute - A ZigBee Write Attribute writing a value to the attribute of a cluster.

	zigbee.configureReporting - A ZigBee Configure Report that configures a cluster attribute to report changes of a given amount within a certain time period.

Device Network ID

All connected devices have a Device Network ID that is used to route messages correctly to the device.
In the loosest terms think of the Network ID as the IP Address.
It is a 4 digit hex number that the device gets while pairing.
Since the Network ID is unique by device on a network, it can be handled by the ZigBee library provided by SmartThings and needs not be handled directly.

Endpoints

Endpoints are simple.
Think of them basically as ports.
Different endpoints can support different clusters and a device can have multiple endpoints to do different things.
Endpoints can be used to separate functionality when needed.
For example a temperature sensor can have the Temperature Measurement Cluster on endpoint 1 and have Over The Air Boot loader Cluster on endpoint 2.

Clusters

Clusters are a group of commands and attributes that define what a device can do.
Think of clusters as a group of actions by function.
A device can support multiple clusters to do a whole variety of tasks.
The majority of clusters are defined by the ZigBee Alliance and listed in the ZigBee Cluster Library.
There are also profile specific clusters that are defined by their own ZigBee profile like Home Automation or ZigBee Smart Energy, and Manufacture Specific clusters that are defined by the manufacture of the device.
These are typically used when no existing cluster can be used for a device.

Most used clusters are

	0x0006 - On/Off (Switch)

	0x0008 - Level Control (Dimmer)

	0x0201 - Thermostat

	0x0202 - Fan Control

	0x0402 - Temperature Measurement

	0x0406 - Occupancy Sensing

Commands

Commands are basically actions a device can take.
It’s how we get things to do stuff.
Commands and whats available are defined by the cluster.

Keeping on the On/Off cluster as an example, the available commands are:

	0x00 - Off

	0x01 - On

	0x02 - Toggle

In a SmartThings Device Type the following line would turn a switch off
(look at the last number):
zigbee.command(0x0006, 0x00)

This would turn it on:
zigbee.command(0x0006, 0x01)

This would toggle it:
zigbee.command(0x0006, 0x02)

Read and Write Attributes

Attributes are used to get information from a device and to set preferences on a device.
The two main types are Read and Write.
The data type and values are specified by cluster.

An example of a Read Attribute that would read the current level of a
dimmer and return the value:

zigbee.readAttribute(0x0008, 0x0000)

Write Attributes are used to set specific preferences.
Write attributes can need specific data type that the payload is in.

An example of a Write Attribute that would set the transition time from
on to off of a dimmer look like this:

zigbee.writeAttribute(0x0008, 0x0010, DataType.UINT16, 0x0014)

In this case the value (0x0014) translates to 2 seconds.
Breaking the payload down we see that the hex value of 0x0014 equals the decimal value of 20. 20 * 1/10 of a second equals 2 seconds.

Configure reporting

Many times you will have an attribute for a given device that you are interested in receiving notifications about.
For example you may want to be notified any time the battery level changes.
The way to do this in ZigBee is by configuring a report for that cluster.

An example of configuring a report for the battery level:
zigbee.configureReporting(0x0001, 0x0021, DataType.UINT8, 600, 21600, 0x01)

This is for cluster 0x0001 (power cluster), attribute 0x0021 (battery level), whose type is UINT8, the minimum time
between reports is 10 minutes (600 seconds) and the maximum time between reports is 6 hours (21600 seconds), and the
amount of change needed to trigger a report is 1 unit (0x01).

Device discovery

After a ZigBee device joins the network it must be queried in order to select
the correct Device Handler. After a device joins (or rejoins) the network
the Hub will collect the simple descriptor, manufacturer, model and application
version for each endpoint without any interaction with the cloud. The Hub will
automatically resend any messages that the device does not respond to in a
timely manner. Once all the information has been obtained it is sent to the
cloud in the zbjoin message. This message is visible in Hub Events.

Here is an example of the message when a SmartSense Multi Sensor was joined:

zbjoin: {"dni":"5CF4",
 "d":"000D6F0005767F37",
 "capabilities":"80",
 "endpoints":[{"simple":"01 0104 0402 00 07 0000 0001 0003 0020 0402 0500 0B05 01 0019",
 "application":"",
 "manufacturer":
 "CentraLite",
 "model":"3325-S"},
 {"simple":"02 C2DF 0107 00 05 0000 0001 0003 0B05 FC46 01 0003",
 "application":"",
 "manufacturer":null,
 "model":null}
]
 }

The value is a dictionary that contains all the information gathered from the device. Here is what each part means:

	dni: Device Network ID

	d: the ZigBee EUID aka long address

	capabilities: the MAC capability field from the Device Announce message (not currently used by SmartThings)

	endpoints: a list of information for each available endpoint

	simple: a space separated string of hex values that contains the following pieces of information:
	Endpoint

	Profile ID

	Device ID

	Device version

	Number of in/server clusters

	List of In/server clusters

	Number of out/client clusters

	List of out/client clusters

	application: the Application Version read from attribute 0x0001 of the Basic Cluster

	manufacturer: The Manufacturer value read from attribute 0x0004 of the Basic Cluster

	model: The Model value read from attribute 0x0005 of the Basic Cluster

See ZigBee fingerprinting for more information on how the platform uses this
information to find the correct Device Handler for the device.

Useful ZigBee references

ZigBee Cluster Library (ZCL) [http://www.zigbee.org/download/standards-zigbee-cluster-library/]

ZigBee Home Automation (HA) [http://www.zigbee.org/zigbee-for-developers/applicationstandards/zigbeehomeautomation/]

ZigBee Specification [http://www.zigbee.org/download/standards-zigbee-specification/]

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Device Handlers

Building ZigBee Device Handlers

Note

If you are integrating a new ZigBee switch or bulb with SmartThings, see the Using the ZigBee Device Form section below to learn how you can integrate these devices without the need to write code.

Commands

SmartThings provides a library to make working with ZigBee easier.
Every Device Handler has a reference to this library injected into it, with the name zigbee.

This library will be used in the examples below.
You can see the ZigBee Reference for more detailed documentation.

There are four common ZigBee commands that you will use to integrate
SmartThings with your ZigBee Devices.

Read

Read gets the devices current state and is formatted like this:

def refresh() {
 zigbee.readAttribute(0x0B04, 0x050B)
}

In this example, the device type (from the “CentraLite Switch” device
type) is calling the “refresh” function.
It is sending a ZigBee Read Attribute request via the readAttribute() method to read the current state (the active power draw).
The cluster we are reading here is Electrical Measurement (0xB04) and specifically the Active Power Attribute (0x50B).

	Component
	Description

	0x0B04
	Cluster

	0x050B
	Attribute

Write

Write sets an attribute of a ZigBee device and is formatted like this:

def configure() {
 zigbee.writeAttribute(8, 0x10, 0x21, 0x0014)
 }

In this example (from the “ZigBee Dimmer” Device Handler) we are writing to an attribute to set the amount of time it takes for a light to fully dim on and off.
Here we are using the Level Control Cluster (8) to write to the attribute that defines on and off transition time (0x10).
The value we are using is formatted in an Unsigned 16-bit integer (0x21) with the payload being in 1/10th of a second.
In this case the payload ({0014}) translates to 2 seconds.
Breaking the payload down we see that the hex value of 0x0014 equals the decimal value of 20. 20 * 1/10 of a second equals 2 seconds.

Each attribute possesses a specific data type.
The corresponding value for this data type can be found in table 2.16 of the ZigBee Cluster Library [http://www.zigbee.org/download/standards-zigbee-cluster-library/].

Note

The payload in the example above, {0014}, is a hex string. The length of the payload must be two times the length of the data type. For example, if the datatype is 16-bit, then the payload should be 4 hex digits.

	Component
	Description

	8
	Cluster

	0x10
	Attribute Set

	0x21
	Data Type

	0x0014
	Payload

Command

Command invokes a command on a ZigBee device and is formatted like this:

def on() {
 zigbee.command(0x0006, 0x01)
}

In this example (from the “ZigBee Dimmer” device type) we are sending a ZigBee Command to turn the device on.
We use the On/Off Cluster (6) and send the command to turn on (1).
This commands has no payload, so we exclude it from the passed in parameters.

	Component
	Description

	0x0006
	Cluster

	0x01
	Command

Configure

Configure reporting instructs a device to notify us when an attribute changes and is formatted like this:

def configure() {
 configureReporting(0x0006, 0x0000, 0x10, 0, 600, null)
}

In this example (using the “CentraLite Switch” Device Handler), the bind command is sent to the device using its Network ID which can be determined using 0x${device.deviceNetworkId}.
Then using source and destination endpoints for the device and Hub (1 1), we bind to the On/Off Clusters (6) to get Events from the device.
The last part of the message contains the Hub’s ZigBee id which is set as the Location for the device to send callback messages to.
Note that not at all devices support binding for Events.

	Component
	Description

	0x0006
	Cluster

	0x0000
	Attribute ID

	0x10
	Boolean data type

	0
	Minimum report time

	600
	Maximum report time

	null
	Reportable change (discrete)

ZigBee utilities

In order to work with ZigBee you will need to use the ZigBee Cluster Library extensively to look up the proper values to send back and forth to your device.
You can download this document here [http://www.zigbee.org/download/standards-zigbee-cluster-library/].

There is also a ZigBee utility class covered in the ZigBee Reference.

Best practices

	The use of ‘raw ...’ commands is deprecated. Instead use the documented methods on the ZigBee library. If you need to do something that requires the use of a ‘raw’ command let us know and we will look at adding it to the ZigBee library.

	Do not use sendEvent() in command methods. Sending Events should be handled in the parse method.

Using the ZigBee Device Form

To integrate a new ZigBee switch or bulb with SmartThings, you can use the From ZigBee Device Form.

[image: ../_images/zigbee-form.png]

What it does

By entering the ZigBee information for the device in the form, the appropriate existing Device Handler will be updated with the device’s fingerprint.

Use it if

	You are the device manufacturer, or otherwise have access to the required ZigBee device information requested on the form.

	The device is best described as one of the following:

	ZigBee Switch

	ZigBee Switch with Power

	ZigBee Dimmer/Bulb

	ZigBee Dimmer/Bulb with Power

	ZigBee Color Temperature Bulb

How to use

Simply fill out the required fields in the form with the information for the device, and click Create.

You will then see the updated Device Handler code in the IDE editor.
You can then test that your device pairs with SmartThings and functions as expected, and then make an update as a Publication Request.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Device Handlers

ZigBee Example

An example of a ZigBee device-type is a ZigBee dimmer.

Here is the code.

/**
* Copyright 2015 SmartThings
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License
* for the specific language governing permissions and limitations under the License.
*
*/

metadata {
 definition (name: "ZigBee Dimmer", namespace: "smartthings", author: "SmartThings") {
 capability "Actuator"
 capability "Configuration"
 capability "Refresh"
 capability "Switch"
 capability "Switch Level"

 fingerprint profileId: "0104", inClusters: "0000, 0003, 0004, 0005, 0006, 0008"
 fingerprint profileId: "0104", inClusters: "0000, 0003, 0004, 0005, 0006, 0008, 0B04, FC0F", outClusters: "0019", manufacturer: "OSRAM", model: "LIGHTIFY A19 ON/OFF/DIM", deviceJoinName: "OSRAM LIGHTIFY LED Smart Connected Light"
 fingerprint profileId: "0104", inClusters: "0000, 0003, 0004, 0005, 0006, 0008, FF00", outClusters: "0019", manufacturer: "MRVL", model: "MZ100", deviceJoinName: "Wemo Bulb"
 fingerprint profileId: "0104", inClusters: "0000, 0003, 0004, 0005, 0006, 0008, 0B05", outClusters: "0019", manufacturer: "OSRAM SYLVANIA", model: "iQBR30", deviceJoinName: "Sylvania Ultra iQ"
 }

 tiles(scale: 2) {
 multiAttributeTile(name:"switch", type: "lighting", width: 6, height: 4, canChangeIcon: true){
 tileAttribute ("device.switch", key: "PRIMARY_CONTROL") {
 attributeState "on", label:'${name}', action:"switch.off", icon:"st.switches.light.on", backgroundColor:"#79b821", nextState:"turningOff"
 attributeState "off", label:'${name}', action:"switch.on", icon:"st.switches.light.off", backgroundColor:"#ffffff", nextState:"turningOn"
 attributeState "turningOn", label:'${name}', action:"switch.off", icon:"st.switches.light.on", backgroundColor:"#79b821", nextState:"turningOff"
 attributeState "turningOff", label:'${name}', action:"switch.on", icon:"st.switches.light.off", backgroundColor:"#ffffff", nextState:"turningOn"
 }
 tileAttribute ("device.level", key: "SLIDER_CONTROL") {
 attributeState "level", action:"switch level.setLevel"
 }
 }
 standardTile("refresh", "device.switch", inactiveLabel: false, decoration: "flat", width: 2, height: 2) {
 state "default", label:"", action:"refresh.refresh", icon:"st.secondary.refresh"
 }
 main "switch"
 details(["switch", "refresh"])
 }
}

// Parse incoming device messages to generate events
def parse(String description) {
 log.debug "description is $description"

 def event = zigbee.getEvent(description)
 if (event) {
 sendEvent(event)
 }
 else {
 log.warn "DID NOT PARSE MESSAGE for description : $description"
 log.debug zigbee.parseDescriptionAsMap(description)
 }
}

def off() {
 zigbee.off()
}

def on() {
 zigbee.on()
}

def setLevel(value) {
 zigbee.setLevel(value)
}

def refresh() {
 return zigbee.readAttribute(0x0006, 0x0000) +
 zigbee.readAttribute(0x0008, 0x0000) +
 zigbee.configureReporting(0x0006, 0x0000, 0x10, 0, 600, null) +
 zigbee.configureReporting(0x0008, 0x0000, 0x20, 1, 3600, 0x01)
}

def configure() {
 log.debug "Configuring Reporting and Bindings."

 return zigbee.configureReporting(0x0006, 0x0000, 0x10, 0, 600, null) +
 zigbee.configureReporting(0x0008, 0x0000, 0x20, 1, 3600, 0x01) +
 zigbee.readAttribute(0x0006, 0x0000) +
 zigbee.readAttribute(0x0008, 0x0000)
}

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Device Handlers

Other Useful Methods

Device Handlers have available to them other APIs for features like scheduling, storing data, and making HTTP requests.
While not often necessary for Device Handlers, these features can be useful for certain use cases.

Scheduling

Device Handlers can schedule future executions, just like SmartApps.

You can learn about scheduling in the Scheduling guide.

Storing data

Device Handlers can persist small amounts of data across exections using state, just as SmartApps.
Note that Atomic State is not available to Device Handlers.

You can learn about storing data in the Storing Data With State guide.

Making external HTTP requests

Device Handlers can make HTTP requests to third party services, just like SmartApps.

	Making Synchronous External HTTP Requests

	Making Asynchronous External HTTP Requests (Beta)

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Device Handlers

Device Certification Overview

Because we offer an open platform, a wide range of devices can be certified to work with SmartThings.
Currently, anybody can submit a device for certification at no cost.
Certifying your device will provide a great experience for users, meaning that your device works seamlessly with the rest of the SmartThings platform.

Examples of devices already certified to work with SmartThings can be viewed here [https://www.smartthings.com/works-with-smartthings/].

[image: ../_images/device-cert-overview.png]
The device certification process consists of the following steps:

	Create a virtual representation of your device using a Device Handlers

	Test the Device Handler by publishing it to your account and pairing your device with your Hub

	Once you’ve successfully tested your Device Handler, submit it for publication

	The SmartThings certification team will contact you about how to ship your device to us and complete the certification process

We’re always looking for ways to improve and shorten the time it takes to certify devices.
Stay tuned for future improvements!

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

Cloud- and LAN-connected Devices

Cloud- and LAN-connected devices are devices that use either a third-party service, like the Ecobee thermostat, or communicate over the LAN (local area network) like the Sonos system.
These devices require a unique implementation of their Device Handlers.
Cloud- and LAN-connected devices use a Service Manager SmartApp along with a Device Handler for authentication, maintaining connections, and device communications.
This guide will walk you through Service Manager and Device Handler creation for both of these scenarios.

Table of Contents:

	Service Manager Design Pattern
	Basic overview

	Cloud-connected devices

	LAN-connected devices

	Building Cloud-connected Device Types
	Division of Labor
	Service Manager responsibilities

	Device Handler responsibilities

	How it all works

	Building the Service Manager
	Authentication using OAuth

	Discovery

	Handling adds, changes, deletes

	Building the Device Handler
	The Parse method

	Sending commands to the third-party cloud

	Receiving Events from the third-party cloud

	Generating Events at the request of the Service Manager

	Building LAN-connected Device Types
	Division of Labor
	Service Manager responsibilities

	Device Handler responsibilities

	How it all works

	Building the Service Manager
	Discovery

	Verification

	Inclusion

	Health

	Best practices

	References and resources

	Building the Device Type
	Making outbound HTTP calls with HubAction

	Overview

	Creating a HubAction object

	Parsing the response

	Getting the addresses

	Wake on LAN (WOL)

	REST requests

	UPnP/SOAP requests

	Subscribing to device Events

	References and resources

	Automatic LAN Device Discovery
	Impact on the developer
	Supported LAN-connected Devices

	Capturing and Displaying Camera Pictures
	Image Capture Capability

	Tiles for taking and viewing pictures

	Capture and display images
	LAN-connected cameras

	Cloud-connected cameras

	Retrieving an image

	Image size limits

	Allowed image name characters

	Image storage duration

	Supported image formats

	Related documentation

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Cloud- and LAN-connected Devices

Service Manager Design Pattern

Basic overview

Devices that connect through the internet as a whole (cloud) or LAN
devices (on your local network) require a defined Service-Manager
SmartApp, in addition to the usually expected Device Handler.
The Service Manager makes the connection with the device, handling the input and output interactions, and the Device Handler parses messages.

Cloud-connected devices

When using a Cloud-connected device, the service manager is used to
discover and initiate a connection between the device and your Hub,
using OAuth connections to external third parties.
Then the Device Handler uses this connection to communicate between the Hub and device.

LAN-connected devices

When using a LAN-connected device, the service manager is used to
discover and initiate a connection between the device and your Hub,
using the protocols SSDP or mDNS/DNS-SD.
Then the device-handler uses UPnP/SOAP Calls or REST Calls to communicate outgoing messages between
the Hub and device.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Cloud- and LAN-connected Devices

Building Cloud-connected Device Types

Cloud-connected devices use a third-party service to accomplish device communication.
An example of such a device is the
Ecobee thermostat.

When developing a Device Handler for a Cloud-connected device, you must create a Service Manager SmartApp that will handle authenticating with the third-party service, communicating with the device, and reacting to any device changes that occur.

This guide overviews the concept of the Service Manager/Device Handler architecture and
also gives an example of both the Service Manager and Device Handler creation.

Table of Contents:

	Division of Labor
	Service Manager responsibilities

	Device Handler responsibilities

	How it all works

	Building the Service Manager
	Authentication using OAuth

	Discovery

	Handling adds, changes, deletes

	Building the Device Handler
	The Parse method

	Sending commands to the third-party cloud

	Receiving Events from the third-party cloud

	Generating Events at the request of the Service Manager

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Cloud- and LAN-connected Devices

 	Building Cloud-connected Device Types

Division of Labor

The Cloud-connected device paradigm consists of a Service Manager and Device Handlers.
The purpose of this guide is
to introduce you to the core concepts of Cloud-connected device development, and provide some examples to help you get
started.

Service Manager responsibilities

The service manager is responsible for the discovery of the devices. It
sends out a request to a third party cloud and parses through the
response, finding just the devices you are looking for. Upon discovery,
it allows you to add device(s) that it has found. From there, it saves
your connection to be able to make future interactions with the device.

Device Handler responsibilities

The Device Handler is responsible for creating and receiving device
specific messages, and allowing them to work within the SmartThings
infrastructure. It takes in a SmartApp specific command and outputs
device specific commands to be passed to the cloud. It also allows you
to subscribe to responses from the device and trigger other commands as
needed.

How it all works

The following depiction gives a general overview of how a Cloud-connected device works. Take note of
the Service Manager and Device Handler. We will dive into how to build these next.

[image: ../../_images/cloud_overview.png]

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Cloud- and LAN-connected Devices

 	Building Cloud-connected Device Types

Building the Service Manager

The Service Manager’s responsibilities are:

	To authenticate with the third-party cloud service.

	Device discovery.

	Add/Change/Delete device actions.

	Handle sending any messages that require the authentication obtained.

Below we will get into the details of what is outlined above.
First, let’s see an illustration of it in a SmartThings application using the Ecobee Thermostat.

Authentication using OAuth

Any Service Manager authenticated with a third party via OAuth must itself have OAuth enabled.
This is because eventually the third-party service will call back into the SmartApp and hit the /oauth/initialize and /oauth/callback endpoints.

End user experience

As an end user you start by selecting the Service Manager SmartApp for Ecobee Thermostat from the SmartApps screen of the SmartThings mobile app.

Authorization with the third party is the first part of the
configuration process.
You will be taken to a page that describes how the authorization process works.

[image: ../../_images/click-to-login.png]

From this screen you will then be directed to the third-party site, i.e., the Ecobee Thermostat site in this case, embedded within the SmartThings mobile application.
Here you will enter your Ecobee Thermostat service username and password.

[image: ../../_images/ecobee-login.png]

Next this third-party Ecobee server will show you what access permissions SmartThings will have to your Ecobee account.
It also gives you an opportunity to accept or decline.

[image: ../../_images/authorize-ecobee.png]

After you accept, on the following screen you will finish the configuration by tapping on the Done icon on the top right.

[image: ../../_images/ecobee-authorization-complete.png]

Next, you will be taken back to the initial configuration screen where you select your device to complete the installation.

Implementation

OAuth is an industry standard for authentication. However, the third-party service may use a different standard.
In that case, consult their documentation and implement it.
The basic concepts will be similar to that of OAuth.
The below example will walk through what is necessary for OAuth authentication.

There are two endpoints that all Service Manager SmartApps must define.

mappings {
 path("/oauth/initialize") {action: [GET: "oauthInitUrl"]}
 path("/oauth/callback") {action: [GET: "callback"]}
}

The /oauth/initialize endpoint will be called during initialization.
This endpoint will then forward the user to the third-party service so they can log in.

The third-party service will be redirected to the /oauth/callback endpoint after the authentication has been successful.
Usually this is where the call is made to the third-party service to exchange an authorization code for an access token.

The overall idea is this:

	You will create a page on Service Manager SmartApp that will call out to the third-party API to initiate the authentication.

	The end result is an access token that SmartThings platform will then use to communicate with the third-party API.

In your Service Manager SmartApp preferences you create a page for authorization.

preferences {
 page(name: "Credentials", title: "Sample Authentication", content: "authPage", nextPage: "sampleLoggedInPage", install: false)
 ...
}

The authPage method will perform the following tasks:

	Create a SmartApp access token that will be sent to the third party so that the third party can call back into SmartThings SmartApp.

	Check to make sure an access token doesn’t already exist for this particular third-party service.

	Initialize the OAuth flow with the third party service if there is no access token.

Let’s take a look at how we would accomplish this with authPage().

def authPage() {
 // Check to see if SmartApp has its own access token and create one if not.
 if(!state.accessToken) {
 // the createAccessToken() method will store the access token in state.accessToken
 createAccessToken()
 }

 def redirectUrl = "https://graph.api.smartthings.com/oauth/initialize?appId=${app.id}&access_token=${state.accessToken}&apiServerUrl=${getApiServerUrl()}"
 // Check to see if SmartThings already has an access token from the third-party service.
 if(!state.authToken) {
 return dynamicPage(name: "auth", title: "Login", nextPage: "", uninstall: false) {
 section() {
 paragraph "tap below to log in to the third-party service and authorize SmartThings access"
 href url: redirectUrl, style: "embedded", required: true, title: "3rd Party product", description: "Click to enter credentials"
 }
 }
 } else {
 // SmartThings has the token, so we can just call the third-party service to list our devices and select one to install.
 }
}

There are a few things worth noting here:

	First, we are using state to store our tokens. Your specific needs may be different depending on your implementation. To learn more about how state works and what your options are, visit the Storing Data With State guide.

	If we do not have a token from the third-party service, we start the OAuth flow by calling the SmartThings initialize endpoint. This is a static endpoint that will store a few bits of information about your SmartApp, such as the id, and forwards the request to the /oauth/initalize endpoint defined in the SmartApp.

Initialize endpoint

This endpoint is used to initialize the OAuth flow to a third-party service.
The /oauth/initialize endpoint will save all the query parameters passed to it, but requires the following three parameters:

	The SmartApp ID,

	The SmartApp’s access token, and

	The installed URL of the SmartApp. The endpoint will then call the mapped /oauth/initialize endpoint defined in the SmartApp with all the query parameters passed to it.

https://graph.api.smartthings.com/oauth/initialize

	Required parameters
	Value

	appId
	The SmartApp ID

	access_token
	The SmartApp’s access token

	apiServerUrl
	The URL of the server that the SmartApp is installed on. This information can be retrieved with the getApiServerUrl() method call.

Example:

def redirectUrl = "https://graph.api.smartthings.com/oauth/initialize?appId=${app.id}&access_token=${state.accessToken}&apiServerUrl=${getApiServerUrl()}"

The initialize endpoint will forward the mapping defined in SmartApp to the /oauth/initialize.
This method will be responsible for redirecting the user to the third-party login page.
Below is an example of how it works:

def oauthInitUrl() {

 // Generate a random ID to use as a our state value. This value will be used to verify the response we get back from the third-party service.
 state.oauthInitState = UUID.randomUUID().toString()

 def oauthParams = [
 response_type: "code",
 scope: "smartRead,smartWrite",
 client_id: appSettings.clientId,
 client_secret: appSettings.clientSecret,
 state: state.oauthInitState,
 redirect_uri: "https://graph.api.smartthings.com/oauth/callback"
]

 redirect(location: "${apiEndpoint}/authorize?${toQueryString(oauthParams)}")
}

// The toQueryString implementation simply gathers everything in the passed in map and converts them to a string joined with the "&" character.
String toQueryString(Map m) {
 return m.collect { k, v -> "${k}=${URLEncoder.encode(v.toString())}" }.sort().join("&")
}

The oauthInitUrl() method sets up a request used to present the user with the third-party login page.
Often the third-party service will require information passed along with this request as query parameters.
The actual parameters sent with the request will vary depending on what the third-party service expects, so consult their API documentation to find specifics.

We are expecting to get an authorization code as a result of this request.
We will later exchange this authorization code for an access token.
We will create the access token request in our callback handler as seen below.
But for now, let’s look at some basic parameters usually associated with authorization code requests.

	Common parameters
	Value

	response_type
	The type of authorization defined by third-party service. Usually code or token.

	scope
	Defines the scope of the request, i.e., what actions will be performed.

	client_id
	The client ID issued by the third-party service when signing up for access to their API. A best practice is to configure this parameter as an app setting in your SmartApp.

	client_secret
	The client secret issued by the third-party service when signing up for access to their API. A best practice is to configure this parameter as an app setting in your SmartApp.

	state
	Usually the state is not required, but is used to track state across requests. We will use this to validate the response we get back from the third party.

	redirect_uri
	The URI to be redirected to after the user has successfully authenticated with the third-party service. Usually this information is requested when signing up with the third-party service. This parameter must match what was entered at that time. For SmartApp development, this should always be the static value: https://graph.api.smartthings.com/oauth/callback.

Callback endpoint

The third-party service will redirect the user to the callback endpoint after the user has been successfully authenticated.
For SmartApp development, this should always be the static value: https://graph.api.smartthings.com/oauth/callback.
The callback endpoint is typically where the authorization code–that was acquired from the initialization–will be used to request the access token.
Let’s look at an example.

def callback() {
 log.debug "callback()>> params: $params, params.code ${params.code}"

 def code = params.code
 def oauthState = params.state

 // Validate the response from the third party by making sure oauthState == state.oauthInitState as expected
 if (oauthState == state.oauthInitState){
 def tokenParams = [
 grant_type: "authorization_code",
 code : code,
 client_id : appSettings.clientId,
 client_secret: appSettings.clientSecret,
 redirect_uri: "https://graph.api.smartthings.com/oauth/callback"
]

 // This URL will be defined by the third party in their API documentation
 def tokenUrl = "https://www.someservice.com/home/token?${toQueryString(tokenParams)}"

 httpPost(uri: tokenUrl) { resp ->
 state.refreshToken = resp.data.refresh_token
 state.authToken = resp.data.access_token
 }

 if (state.authToken) {
 // call some method that will render the successfully connected message
 success()
 } else {
 // gracefully handle failures
 fail()
 }

 } else {
 log.error "callback() failed. Validation of state did not match. oauthState != state.oauthInitState"
 }
}

// Example success method
def success() {
 def message = """
 <p>Your account is now connected to SmartThings!</p>
 <p>Click 'Done' to finish setup.</p>
 """
 displayMessageAsHtml(message)
}

// Example fail method
def fail() {
 def message = """
 <p>There was an error connecting your account with SmartThings</p>
 <p>Please try again.</p>
 """
 displayMessageAsHtml(message)
}

def displayMessageAsHtml(message) {
 def html = """
 <!DOCTYPE html>
 <html>
 <head>
 </head>
 <body>
 <div>
 ${message}
 </div>
 </body>
 </html>
 """
 render contentType: 'text/html', data: html
}

In this callback we first check to make sure that the state returned from the authorization code request matches what we sent as the state.
This is how we know that the response is intended for us.
If it matches, we then set up the parameters for the access token request.
Common parameters are as follows:

	Common parameters
	value

	grant_type
	This is the type of grant we are requesting. The third-party service will define the expected value.

	code
	The authorization code we obtained in the previous request.

	client_id
	The same client_id that we used in the previous request, which was issued by the third-party service.

	client_secret
	The same client_secret that we used in the previous request, which was issued by the third-party service.

	redirect_uri
	The same redirect_uri that we used in the previous request. This will usually be verified by the third-party service.

We issue an HTTP POST request to get the token.
If we receive a success response, we will save the access token that was issued by the third-party service, along with the refresh token, in state.

Once we have acquired the access token, our authentication process is complete.
Usually the next step is to display some message to the end user about the success of the operation.

Important

revokeAccessToken() should be called when the SmartApp’s access token is no longer required.
This is true when a user uninstalls the SmartApp.
It is also a good practice to revoke the access token after successful authentication with the 3rd party, unless the token will be used to access other endpoints in your SmartApp.

Refreshing the OAuth token

OAuth tokens are available for a finite amount of time, so you will
often need to account for this, and if needed, refresh your
access_token.
Above we illustrated how we initiate the request for the access and refresh tokens, and how we saved them in our SmartApp.
If we make a request to the third-party service API and get an “expired token” response, it is up to us to issue a new request to refresh the access token.
This is where the refresh token comes into play.

If you run an API request and your access_token is determined invalid, for example:

if (resp.status == 401 && resp.data.status.code == 14) {
 log.debug "Storing the failed action to try later"
 def action = "actionCurrentlyExecuting"
 log.debug "Refreshing your auth_token!"
 refreshAuthToken()
 // replay initial request from the action variable
 retryInitialRequest(action)
}

you can use your refresh_token to get a new access_token.
To do this, you just need to post to a specified endpoint and handle the response properly.

private refreshAuthToken() {
 def refreshParams = [
 method: 'POST',
 uri: "https://api.thirdpartysite.com",
 path: "/token",
 query: [grant_type:'refresh_token', code:"${state.sampleRefreshToken}", client_id:XXXXXXX],
]
 try{
 def jsonMap
 httpPost(refreshParams) { resp ->
 if(resp.status == 200)
 {
 jsonMap = resp.data
 if (resp.data) {
 state.sampleRefreshToken = resp?.data?.refresh_token
 state.sampleAccessToken = resp?.data?.access_token
 }
 }
 }
}

There are some outbound connections in which we are using OAuth to
connect to a third party device cloud (Ecobee, Quirky, Jawbone, etc).
In these cases it is the third-party device cloud that issues an OAuth token to SmartThings so that SmartThings can call their APIs.

However, these same third-party device clouds also support webhooks and subscriptions that allow SmartThings to receive notifications when something changes in their cloud.

In this case, and ONLY in this case, the Service Manager SmartApp issues its own OAuth token and embeds it in the callback URL, as a way to authenticate the post backs from the external cloud.

Discovery

Identifying devices in the third-party device cloud

The techniques you will use to identify devices in the third-party
cloud will vary, because you are interacting with unique third-party
APIs which all have unique parameters.
Typically you will authenticate with the third-party API using OAuth; then call an API-specific method.
For example, it could be as simple as this:

def deviceListParams = [
 uri: "https://api.thirdpartysite.com",
 path: "/get-devices",
 requestContentType: "application/json",
 query: [token:"XXXX",type:"json"]

httpGet(deviceListParams) { resp ->
 //Handle the response here
}

Creating child devices

Within a Service Manager SmartApp, you create child devices for all your respective cloud devices.

settings.devices.each {deviceId->
 def device = state.devices.find{it.id==deviceId}
 if (device) {
 def childDevice = addChildDevice("smartthings", "Device Name", deviceId, null, [name: "Device.${deviceId}", label: device.name, completedSetup: true])
 }
}

Getting initial device state

Upon initial discovery of a device, you need to get the state of your device from the third-party API.
This would be the current status of various attributes of your device.
You need to have a method defined in your Service Manager that is responsible for connecting to the API and to check for the updates.
You set this method to be called from a poll method in your Device Handler, and in this case, it is called immediately on initialization.
Here is a very simple example which doesn’t take into account error checking for the http request.

def pollParams = [
 uri: "https://api.thirdpartysite.com",
 path: "/device",
 requestContentType: "application/json",
 query: [format:"json",body: jsonRequestBody]

httpGet(pollParams) { resp ->
 state.devices = resp.data.devices { collector, stat ->
 def dni = [app.id, stat.identifier].join('.')
 def data = [
 attribute1: stat.attributeValue,
 attribute2: stat.attribute2Value
]
 collector[dni] = [data:data]
 return collector
 }
}

Handling adds, changes, deletes

singleInstance Service Manager

Adding the tag singleInstance: true to your Service Manager will ensure only one instance of the Service Manager will be installed.
All child devices will be installed under the single parent Service Manager.
This enforces a one-to-many relationship between the parent Service Manager SmartApp and any child devices.

definition(
 name: "Ecobee (Connect)",
 namespace: "smartthings",
 author: "SmartThings",
 description: "Connect your Ecobee thermostat to SmartThings.",
 category: "SmartThings Labs",
 iconUrl: "https://s3.amazonaws.com/smartapp-icons/Partner/ecobee.png",
 iconX2Url: "https://s3.amazonaws.com/smartapp-icons/Partner/ecobee@2x.png",
 singleInstance: true)

Implicit creation of new child Devices

When you update your settings in a Service Manager to add additional
devices, the Service Manager needs to respond by adding a new device
in SmartThings.

updated(){
 initialize()
}

initialize(){
 settings.devices.each {deviceId ->
 try {
 def existingDevice = getChildDevice(deviceId)
 if(!existingDevice) {
 def childDevice = addChildDevice("smartthings", "Device Name", deviceId, null, [name: "Device.${deviceId}", label: device.name, completedSetup: true])
 }
 } catch (e) {
 log.error "Error creating device: ${e}"
 }
 }
}

Implicit removal of child Devices

Similarly when you remove devices in your Service Manager, they
need to be removed from SmartThings platform.

def delete = getChildDevices().findAll { !settings.devices.contains(it.deviceNetworkId) }

delete.each {
 deleteChildDevice(it.deviceNetworkId)
}

Also, when a Service Manager SmartApp is uninstalled, you need to remove its child devices.

def uninstalled() {
 removeChildDevices(getChildDevices())
}

private removeChildDevices(delete) {
 delete.each {
 deleteChildDevice(it.deviceNetworkId)
 }
}

Note

The addChildDevice, getChildDevices, and deleteChildDevice methods are a part of the SmartApp API.

Changes in Device name

The device name is stored within the device and you need to monitor if it changes in the third-party cloud.

Explicit delete actions

When a user manually deletes a device in the Things screen on the client device, you need to delete the child device from within the Service Manager.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Cloud- and LAN-connected Devices

 	Building Cloud-connected Device Types

Building the Device Handler

The Device Handler for a Cloud-connected device is generally the same as any other Device Handler.
The means in which
it handles sending and receiving messages from its device is a little bit different.
Let’s walk through a Cloud-connected
Device Handler example.

The Parse method

The parse method for Cloud-connected devices will always be empty. In a
Cloud-connected device, Event data is passed down from the Service
Manager, not from the device itself, so the parsing is handled in a
separate method. The Device Handler doesn’t interface directly with
a hardware device, which is what parse is used for.

Sending commands to the third-party cloud

Usually the actual implementation of device methods are delegated to its Service Manager. This is because the Service
Manager is the entity that has the authentication information. To invoke a method on the parent Service Manager,
you simply need to call it in the following format:

parent.methodName()

As with any other device-type, you need to define methods for all of the
possible commands for the capabilities you’d like to support. Then when
a user calls this method, it will pass information up to the parent
Service Manager, who will make the direct connection to the third party
cloud. You might for example want to turn a switch on, so you would call
the following.

def on() {
 parent.on(this)
}

Receiving Events from the third-party cloud

The Device Handler continuously polls the third-party cloud through
the service manager to check on the status of devices. When an Event is
fired, they can then be passed to the child Device Handler. Note that
poll runs every 10 minutes for Service Manager SmartApps.

In the device-type handler:

def poll() {
 results = parent.pollChildren()
 parseEventData(results)
}

def parseEventData(Map results){
 results.each { name, value ->
 //Parse events and optionally create SmartThings events
 }
}

In the service manager:

def pollChildren(){
 def pollParams = [
 uri: "https://api.thirdpartysite.com",
 path: "/device",
 requestContentType: "application/json",
 query: [format:"json",body: jsonRequestBody]
]

 httpGet(pollParams) { resp ->
 state.devices = resp.data.devices { collector, stat ->
 def dni = [app.id, stat.identifier].join('.')
 def data = [
 attribute1: stat.attributeValue,
 attribute2: stat.attribute2Value
]
 collector[dni] = [data:data]
 return collector
 }
 }
}

Generating Events at the request of the Service Manager

You won’t generate events directly within the Service Manager, but
rather request that they are generated within the Device Handler.
For example:

In the service manager:

childName.generateEvent(data)

In the Device Handler:

def generateEvent(Map results) {
 results.each { name, value ->
 sendEvent(name: name, value: value)
 }
 return null
}

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Cloud- and LAN-connected Devices

Building LAN-connected Device Types

LAN-connected devices communicate with the SmartThings Hub over the LAN.
An example of such a device is the Sonos system.

When developing a Device Handler for a LAN device, you must create a service manager
SmartApp that will handle discovery of devices on the LAN, in some cases communicate with the device, and react to any
device changes that occur via Events.

This guide overviews the concept of the Service Manager/Device Handler architecture
and also gives an example of both the Service Manager and Device Handler creation.

Table of Contents:

	Division of Labor
	Service Manager responsibilities

	Device Handler responsibilities

	How it all works

	Building the Service Manager
	Discovery

	Verification

	Inclusion

	Health

	Best practices

	References and resources

	Building the Device Type
	Making outbound HTTP calls with HubAction

	Overview

	Creating a HubAction object

	Parsing the response

	Getting the addresses

	Wake on LAN (WOL)

	REST requests

	UPnP/SOAP requests

	Subscribing to device Events

	References and resources

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Cloud- and LAN-connected Devices

 	Building LAN-connected Device Types

Division of Labor

The LAN-connected device paradigm consists of a Service Manager and Device Handlers. The purpose of this guide is
to introduce you to the core concepts of LAN-connected device development, and provide some examples to help you get
started.

Service Manager responsibilities

The service manager is responsible for the discovery of the devices. It
sends out a request and parses through the response, finding just the
devices you are looking for. Upon discovery, it allows you to add
device(s) that it has found. From there, it saves your connection to be
able to make future interactions with the device.

Device Handler responsibilities

The Device Handler is responsible for creating and receiving device
specific messages, and allowing them to work within the SmartThings
infrastructure. It takes in a SmartApp-specific command and outputs
device specific commands. It also allows you to subscribe to responses
from the device and trigger other commands as needed.

How it all works

[image: ../../_images/lan_overview.png]

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Cloud- and LAN-connected Devices

 	Building LAN-connected Device Types

Building the Service Manager

The Service Manager’s responsibilities are:

	Discovery - Discover devices on the LAN via SSDP (mDNS/DNS-SD or Bonjour is not currently supported)

	Verification - Verify each discovered device through successful fetching of the UPnP device description

	Inclusion - Add the device as a child of the service manager

	Health - Track IP address and port changes and allow these to make it down to the child device(s) as necessary

Let’s take a look at some of the key parts of a Service Manager implementation. The example code referenced throughout
this document is derived from the below SmartApp and DeviceType:

Generic UPnP Service Manager
Generic UPnP Device

The above referenced Generic UPnP Device is incomplete. For the complete guide, please see Building the Device Type.

Discovery

Simple Service Discovery Protocol (SSDP) is the main protocol used to find devices on your network. It serves as the backbone of Universal Plug and Play (UPnP), which
allows you to easily connect new network devices to a system. See UPnP Device Architecture 1.1 [http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf]
for full specification details.

To discover new devices, you first need to subscribe to Location Events with the correct search target for the device. The
search target in the below example, urn:schemas-upnp-org:device:ZonePlayer:1, is for discovery of a Sonos, but search targets will vary by manufacturer and device.
For UPnP, this information should be published on documentation for the device, but you may
alternatively have to contact the manufacturer directly to obtain it. Here is the Event subscription:

subscribe(location, "ssdpTerm.urn:schemas-upnp-org:device:ZonePlayer:1", ssdpHandler)

This means that any time an SSDP search response with a search target of urn:schemas-upnp-org:device:ZonePlayer:1
(e.g. Sonos) is received from a Hub in this Location, it will fire the ssdpHandler method.

Next, you need to send an appropriate discovery command for the desired search target:

void ssdpDiscover() {
 sendHubCommand(new physicalgraph.device.HubAction("lan discovery urn:schemas-upnp-org:device:ZonePlayer:1", physicalgraph.device.Protocol.LAN))
}

Note

HubAction is a class supplied by the SmartThings platform

The class physicalgraph.device.HubAction encapsulates request information
for communicating with the device.

When you create an instance of a HubAction, you provide details about the
request, such as the request method, headers, and path. By itself, HubAction is little more than a wrapper for these request details.
In this case, it’s a thin wrapper around discovery information.

In the above HubAction example, the main message to be sent through the Hub is:

lan discovery urn:schemas-upnp-org:device:ZonePlayer:1

This is converted by our device connectivity layer into an M-SEARCH multicast request that is sent to the LAN via the Hub, and
should look something like the following:

M-SEARCH * HTTP/1.1
HOST: 239.255.255.250:1900
MAN: "ssdp:discover"
MX: 4
ST: urn:schemas-upnp-org:device:ZonePlayer:1

After the end device receives the multicast M-SEARCH, it is supposed to issue a unicast search response, delayed by a random number of seconds between 0 and MX (4 in this case).
The search response sent from the device back to the Hub should look something like this:

HTTP/1.1 200 OK
CACHE-CONTROL: max-age=100
EXT:
LOCATION: http://10.0.1.14:80/xml/device_description.xml
SERVER: FreeRTOS/6.0.5, UPnP/1.0, IpBridge/0.1
ST: urn:schemas-upnp-org:device:ZonePlayer:1
USN: uuid:RINCON_000E58F0FFFFFF400::urn:schemas-upnp-org:device:ZonePlayer:1

This will get routed back to the cloud where it will be converted into an Event that will fire the ssdpHandler method with the following description:

devicetype:04, mac:000E58F0FFFF, networkAddress:0A00010E, deviceAddress:0578, stringCount:04, ssdpPath:/xml/device_description.xml, ssdpUSN:uuid:RINCON_000E58F0FFFFFF400::urn:schemas-upnp-org:device:ZonePlayer:1, ssdpTerm:urn:schemas-upnp-org:device:ZonePlayer:1, ssdpNTS:

The ssdpHandler method should record the data from the search response, in preparation for verification.

def ssdpHandler(evt) {
 def description = evt.description
 def hub = evt?.hubId

 def parsedEvent = parseEventMessage(description)
 parsedEvent << ["hub":hub]

 def devices = getDevices()
 String ssdpUSN = parsedEvent.ssdpUSN.toString()
 if (!devices."${ssdpUSN}") {
 devices << ["${ssdpUSN}": parsedEvent]
 }
}

Verification

Once we’ve recorded the presence of a device on the LAN with the desired SSDP search target, the next step is to verify the
availability of the device by fetching some more information about it. In UPnP, this is called the device description.
In the search response, there is a LOCATION header which shows the Location of the device description on the LAN. SmartThings
splits this into networkAddress, deviceAddress, and ssdpPath in the Event, which at this point should exist in app state.
This can be pulled out of state and put into a HubAction. Note that the HubAction has a callback, which means that
when an HTTP response is issued from the device to the Hub, it will fire the deviceDescriptionHandler method.

void verifyDevices() {
 def devices = getDevices().findAll { it?.value?.verified != true }
 devices.each {
 int port = convertHexToInt(it.value.port)
 String ip = convertHexToIP(it.value.ip)
 String host = "${ip}:${port}"
 sendHubCommand(new physicalgraph.device.HubAction("""GET ${it.value.ssdpPath} HTTP/1.1\r\nHOST: $host\r\n\r\n""", physicalgraph.device.Protocol.LAN, host, [callback: deviceDescriptionHandler]))
 }
}

void deviceDescriptionHandler(physicalgraph.device.HubResponse hubResponse) {
 def body = hubResponse.xml
 def devices = getDevices()
 def device = devices.find { it?.key?.contains(body?.device?.UDN?.text()) }
 if (device) {
 device.value << [name: body?.device?.roomName?.text(), model: body?.device?.modelName?.text(), serialNumber: body?.device?.serialNum?.text(), verified: true]
 }
}

Note

HubResponse is a class supplied by the SmartThings platform. Here are some pieces of data that are included:

	description - The raw message received by the device connectivity layer

	hubId - The UUID of the SmartThings Hub that received the response

	status - HTTP status code of the response

	headers - Map of the HTTP headers of the response

	body - String of the HTTP response body

	error - Any error encountered during any automatic parsing of the body as either JSON or XML

	json - If the HTTP response has a Content-Type header of application/json, the body is automatically parsed as JSON and stored here

	xml - If the HTTP response has a Content-Type header of text/xml, the body is automatically parsed as XML and stored here

Inclusion

Now that the device has been verified, we need to add it as a child device.

def addDevices() {
 def devices = getDevices()

 selectedDevices.each { dni ->
 def selectedDevice = devices.find { it.value.mac == dni }
 def d
 if (selectedDevice) {
 d = getChildDevices()?.find {
 it.deviceNetworkId == selectedDevice.value.mac
 }
 }

 if (!d) {
 log.debug "Creating Generic UPnP Device with dni: ${selectedDevice.value.mac}"
 addChildDevice("smartthings", "Generic UPnP Device", selectedDevice.value.mac, selectedDevice?.value.hub, [
 "label": selectedDevice?.value?.name ?: "Generic UPnP Device",
 "data": [
 "mac": selectedDevice.value.mac,
 "ip": selectedDevice.value.ip,
 "port": selectedDevice.value.port
]
])
 }
 }
}

Note

It’s important to not use IP and port as the DNI (Device Network ID) of the device. This is because if/when the IP
address changes, we do not want to update the device’s DNI. Instead, we choose MAC address as DNI, which is guaranteed not
to change.

Health

Lastly, we need to handle the possibility of IP address or port changes. Unless you have setup a static DHCP reserveration in
your network router, there is a possibility that the IP address of the device will change, and the child device can be told
when this changes by the Service Manager. We’ll start by modifying the above ssdpHandler method to handle changing IP and port data:

def ssdpHandler(evt) {
 def description = evt.description
 def hub = evt?.hubId

 def parsedEvent = parseEventMessage(description)
 parsedEvent << ["hub":hub]

 def devices = getDevices()
 String ssdpUSN = parsedEvent.ssdpUSN.toString()
 if (devices."${ssdpUSN}") {
 def d = devices."${ssdpUSN}"
 if (d.ip != parsedEvent.ip || d.port != parsedEvent.port) {
 d.ip = parsedEvent.ip
 d.port = parsedEvent.port
 def child = getChildDevice(parsedEvent.mac)
 if (child) {
 child.sync(parsedEvent.ip, parsedEvent.port)
 }
 }
 } else {
 devices << ["${ssdpUSN}": parsedEvent]
 }
}

This assumes that the DeviceType has a sync method that has the ability to alter the internally stored ip and port.

def sync(ip, port) {
 def existingIp = getDataValue("ip")
 def existingPort = getDataValue("port")
 if (ip && ip != existingIp) {
 updateDataValue("ip", ip)
 }
 if (port && port != existingPort) {
 updateDataValue("port", port)
 }
}

Finally, we need to make sure that the M-SEARCH for our desired search target is periodically sent out over the LAN. We can
use the scheduler to do that from the Service Manager:

runEvery5Minutes("ssdpDiscover")

Best practices

For LAN Service Manager SmartApps, there are a couple items to keep in mind that might not be immediately apparent.

	Use something static as the DNI for the child device, such as MAC address.

	Avoid making calls from your child devices into the parent if possible, as this can lead to increased latency and unnecessary platform load. Instead, supply your child devices with enough information to make calls into the parent unnecessary, and use the Service Manager to manage any child device updates that need to happen based on network changes.

References and resources

	UPnP Device Architecture 1.1 [http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf]

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Cloud- and LAN-connected Devices

 	Building LAN-connected Device Types

Building the Device Type

The Device Handler for a LAN-connected device is generally the same as any other Device Handler. The means in which
it handles sending and receiving messages from its device is a little bit different. Let’s walk through a LAN-connected
Device Handler example.

Making outbound HTTP calls with HubAction

Depending on the type of device you are using, you will send requests to
your devices through the Hub via REST or UPnP. You can do this using
the SmartThings provided HubAction class.

Overview

The class physicalgraph.device.HubAction encapsulates request information
for communicating with the device.

When you create an instance of a HubAction, you provide details about the
request, such as the request method, headers, and path. By itself, HubAction is little more than a wrapper for these request details.

It is when an instance of a HubAction is returned from a command method that it becomes useful.

When a command method of your Device Handler returns an instance of a HubAction, the SmartThings platform will use the request information within it to actually perform the request. It will then call the device-handler’s parse method with any response data.

Herein lies an important point - if your HubAction instance is not returned from your command method, no request will be made. It will just be an object allocating system memory. Not very useful.

So remember - the HubAction instance should be returned from your command method so that the platform can make the request!

Creating a HubAction object

To create a HubAction object, you can pass in a map of parameters to the constructor that defines the request information:

def result = new physicalgraph.device.HubAction(
 method: "GET",
 path: "/somepath",
 headers: [
 HOST: "device IP address"
],
 query: [param1: "value1", param2: "value2"]
)

A brief discussion of the options that can be provided follows:

	method

	The HTTP method to use for the request.

	path

	The path to send the request to. You can add URL parameters to the request directly, or use the query option.

	headers

	A map of HTTP headers and their values for this request. This is where you will provide the IP address of the device as the HOST.

	query

	A map of query parameters to use in this request. You can use URL parameters directly on the path if you wish, instead of using this option.

Parsing the response

When you make a request to your device using HubAction, any response will be passed to your device-handler’s parse method, just like other device messages.

You can use the parseLanMessage method to parse the incoming message.

parseLanMessage example:

def parse(description) {
 ...
 def msg = parseLanMessage(description)

 def headersAsString = msg.header // => headers as a string
 def headerMap = msg.headers // => headers as a Map
 def body = msg.body // => request body as a string
 def status = msg.status // => http status code of the response
 def json = msg.json // => any JSON included in response body, as a data structure of lists and maps
 def xml = msg.xml // => any XML included in response body, as a document tree structure
 def data = msg.data // => either JSON or XML in response body (whichever is specified by content-type header in response)

 ...
}

For more information about the JSON or XML response formats, see the Groovy JsonSlurper [http://docs.groovy-lang.org/latest/html/gapi/groovy/json/JsonSlurper.html] and XmlSlurper [http://docs.groovy-lang.org/latest/html/api/groovy/util/XmlSlurper.html] documentation.

Getting the addresses

To use HubAction, you will need the IP address of the device, and sometimes the Hub.

How the device IP and port are stored my vary depending on the device type. There’s currently not a public API to get this information easily, so until there is, you will need to handle this in your device-type handler. Consider using helper methods like these to get this information:

// gets the address of the Hub
private getCallBackAddress() {
 return device.hub.getDataValue("localIP") + ":" + device.hub.getDataValue("localSrvPortTCP")
}

// gets the address of the device
private getHostAddress() {
 def ip = getDataValue("ip")
 def port = getDataValue("port")

 if (!ip || !port) {
 def parts = device.deviceNetworkId.split(":")
 if (parts.length == 2) {
 ip = parts[0]
 port = parts[1]
 } else {
 log.warn "Can't figure out ip and port for device: ${device.id}"
 }
 }

 log.debug "Using IP: $ip and port: $port for device: ${device.id}"
 return convertHexToIP(ip) + ":" + convertHexToInt(port)
}

private Integer convertHexToInt(hex) {
 return Integer.parseInt(hex,16)
}

private String convertHexToIP(hex) {
 return [convertHexToInt(hex[0..1]),convertHexToInt(hex[2..3]),convertHexToInt(hex[4..5]),convertHexToInt(hex[6..7])].join(".")
}

You’ll see the rest of the examples in this document use these helper methods.

Wake on LAN (WOL)

HubAction can be used to make WOL [https://en.wikipedia.org/wiki/Wake-on-LAN] requests.

Here is an example:

def myWOLCommand() {
 def result = new physicalgraph.device.HubAction (
 "wake on lan <your mac address w/o ':'>",
 physicalgraph.device.Protocol.LAN,
 null,
 [secureCode: "111122223333"]
)
 return result
}

The first argument to HubAction tells the HubAction class that this will be a WOL request.
The argument must be in the form “wake on lan <mac address>” where the mac address is the address without the ‘:’ separator characters.
For example, if the mac address of the NIC is 01:23:45:67:89:ab, the first parameter to HubAction would be "wake on lan 0123456789ab".

The second parameter simply specifies that the request will be a LAN request.
This will always be the case for a WOL type request. So the value must always be physicalgraph.device.Protocol.LAN.

The third parameter is the Device Network ID, or dni. In the case of a WOL request, this parameter should be null.

The last parameter is a map representing the options on the request.
For a WOL request, this map will only ever consist of one parameter, secureCode.
Some NIC’s support the SecureOn feature which requires the request to not only have a valid mac address, but also supply a valid password.
This password must be configured on the NIC. If the NIC does not support SecureOn or does not have a password set, simply leave out the options map.

REST requests

HubAction can be used to make REST [http://en.wikipedia.org/wiki/Representational_state_transfer] calls to communicate with the device.

Here’s a quick example:

def myCommand() {
 def result = new physicalgraph.device.HubAction(
 method: "GET",
 path: "/yourpath?param1=value1¶m2=value2",
 headers: [
 HOST: getHostAddress()
]
)
 return result
}

UPnP/SOAP requests

Alternatively, after making the initial connection you can use UPnP.
UPnP uses SOAP [http://en.wikipedia.org/wiki/SOAP_%28protocol%29]
(Simple Object Access Protocol) messages to communicate with the device.

SmartThings provides the HubSoapAction class for this purpose. It is similar to the HubAction class (it actually extends the HubAction class), but it will handle creating the soap envelope for you.

Here’s an example of using HubSoapAction:

def someCommandMethod() {
 return doAction("SetVolume", "RenderingControl", "/MediaRenderer/RenderingControl/Control", [InstanceID: 0, Channel: "Master", DesiredVolume: 3])
}

def doAction(action, service, path, Map body = [InstanceID:0, Speed:1]) {
 def result = new physicalgraph.device.HubSoapAction(
 path: path,
 urn: "urn:schemas-upnp-org:service:$service:1",
 action: action,
 body: body,
 headers: [Host:getHostAddress(), CONNECTION: "close"]
)
 return result
}

Subscribing to device Events

If you’d like to hear back from a LAN-connected device upon a particular
Event, you can subscribe using a HubAction. The parse method will be called when this Event is fired on the device.

Here’s an example using UPnP:

def someCommand() {
 subscribeAction("/path/of/event")
}

private subscribeAction(path, callbackPath="") {
 log.trace "subscribe($path, $callbackPath)"
 def address = getCallBackAddress()
 def ip = getHostAddress()

 def result = new physicalgraph.device.HubAction(
 method: "SUBSCRIBE",
 path: path,
 headers: [
 HOST: ip,
 CALLBACK: "<http://${address}/notify$callbackPath>",
 NT: "upnp:event",
 TIMEOUT: "Second-28800"
]
)

 log.trace "SUBSCRIBE $path"

 return result
}

References and resources

	UPnP [http://en.wikipedia.org/wiki/Universal_Plug_and_Play]

	SOAP [http://en.wikipedia.org/wiki/SOAP]

	REST [http://en.wikipedia.org/wiki/Representational_state_transfer]

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Cloud- and LAN-connected Devices

Automatic LAN Device Discovery

Automatic LAN device discovery minimizes the complexity in discovering LAN-connected devices.

Normally the SmartThings platform will discover a LAN-connected or a Cloud-connected device only when a Service Manager SmartApp for that specific device is present.
This means that if you want to integrate multiple LAN devices, such as a Wemo motion sensor and a Bose Speaker, then you will need multiple Service Manager SmartApps, i.e., a separate Service Manager SmartApp for each LAN-connected device.
On the contrary, the platform does not have any such Service Manager SmartApp requirement for a ZigBee or a Z-Wave device.

The new automatic LAN device discovery eliminates the Service Manager SmartApp requirement for some LAN-connected devices, thereby making for a much smoother and quicker LAN-connected device discovery.
See Supported LAN-connected Devices.

Impact on the developer

For the Supported LAN-connected Devices if you have made any customizations to either your Service Manager SmartApp or your Device Handler, then your LAN-connected device integration will be impacted.
See the table below.

	Custom Device Handler
	Custom Service Manager SmartApp
	Impact

	Yes
	No
	Custom LAN Device Handler is overwritten with the SmartThings version.

	Yes
	Yes
	No impact

Supported LAN-connected Devices

Currently a limited number of LAN-connected devices can be discovered with automatic LAN device discovery.
See How to connect Wi-Fi devices [https://support.smartthings.com/hc/articles/115001164026].

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Cloud- and LAN-connected Devices

Capturing and Displaying Camera Pictures

Cameras connected to SmartThings can use the imageCapture Capability, along with the Carousel Tile, to capture and view images.
SmartThings-connected cameras are either LAN- or Cloud-Connected; this document outlines the steps to capture and display images for both.

Image Capture Capability

Add support for the imageCapture Capability by including it in the Device Handler’s metadata:

metadata {
 definition(name: "My Camera Device", namespace: "MyNamespace", author: "My Name") {
 capability "Image Capture"
 // other definition metadata...
 }
}

The Image Capture Capability defines one attribute, “image”, and one command, take().
The Carousel Tile can be used to display images and allow the user to manually take a photo, as discussed next.

Tiles for taking and viewing pictures

Add tiles to allow the viewing and taking of images:

tiles {
 standardTile("image", "device.image", width: 1, height: 1, canChangeIcon: false, inactiveLabel: true, canChangeBackground: true) {
 state "default", label: "", action: "", icon: "st.camera.dropcam-centered", backgroundColor: "#FFFFFF"
 }

 carouselTile("cameraDetails", "device.image", width: 3, height: 2) { }

 standardTile("take", "device.image", width: 1, height: 1, canChangeIcon: false, inactiveLabel: true, canChangeBackground: false) {
 state "take", label: "Take", action: "Image Capture.take", icon: "st.camera.dropcam", backgroundColor: "#FFFFFF", nextState:"taking"
 state "taking", label:'Taking', action: "", icon: "st.camera.dropcam", backgroundColor: "#00A0DC"
 state "image", label: "Take", action: "Image Capture.take", icon: "st.camera.dropcam", backgroundColor: "#FFFFFF", nextState:"taking"
 }

 main "image"
 details(["cameraDetails", "take"])
}

The carouselTile is where the images will be displayed, and the “take” tile allows users to capture images.
Note that both are associated with the "image" attribute; this association allows the images to be taken and displayed properly.

Capture and display images

The take() command of the Image Capture Capability is responsible for capturing the image.
Follow the protocol-specific instructions for implementing this command method below.

LAN-connected cameras

LAN-connected devices can capture images using HubAction, store them using storeTemporaryImage(), and display them with the Carousel Tile.

The take() command will issue a request to take a picture via a HubAction.
The response from the device will be sent to the Device Handler’s parse() method, where it can then be moved to longer-lasting storage using storeTemporaryImage().
storeTemporaryImage() also emits the “image” event, causing the Carousel Tile to be updated with the new image.

Here’s an example of the take() command (details of the request will be specific to each device):

def take() {
 def host = getHostAddress()
 def port = host.split(":")[1]

 def path = "/some/path/"

 def hubAction = new physicalgraph.device.HubAction(
 method: "GET",
 path: path,
 headers: [HOST:host]
)

 hubAction.options = [outputMsgToS3:true]

 return hubAction
}

/**
* Utility method to get the host addresses
*/
private getHostAddress() {
 def parts = device.deviceNetworkId.split(":")
 def ip = convertHexToIP(parts[0])
 def port = convertHexToInt(parts[1])
 return ip + ":" + port
}

Some things to note about the implementation of the take() command:

	The specific path, method, and headers of the HubAction will vary for each device. Consult the device manufacturer’s documentation for this information.

	Make sure to specify hubAction.options = [outputMsgToS3: true]. This will result in the image being stored (temporarily). We will move the image to longer-lasting storage next.

	Remember to return the HubAction from the command method, otherwise it will not be executed!

Once we’ve made the request in the take() command method, the response from the device will be sent to the Device Handler’s parse() method.
This response will contain a tempImageKey, which is the key of the photo just taken.

def parse(String description) {

 def map = stringToMap(description)

 if (map.tempImageKey) {
 try {
 storeTemporaryImage(map.tempImageKey, getPictureName())
 } catch (Exception e) {
 log.error e
 }
 } else if (map.error) {
 log.error "Error: ${map.error}"
 }

 // parse other messages too
}

private getPictureName() {
 return java.util.UUID.randomUUID().toString().replaceAll('-', '')
}

parse() does the following:

	Checks the response to see if tempImageKey was sent. If it was, this means that this is the image response from our take() command.

	Calls storeTemporaryImage() with the tempImageKey and a name for the picture. The name must be unique per device instance, contain only alphanumeric, “-”, “_”, and ”.” characters. This will move the image from temporary storage to a location where the image will be stored for 365 days, before being permanently deleted.

storeTemporaryImage() also emits the “image” event, which is the attribute our Carousel Tile is associated with.
This is what allows the image to be displayed in the tile.

Cloud-connected cameras

The take() command will issue an HTTP request to the third-party service to capture the image, and store the resulting image bytes using storeImage().

Below is a simplified example (A real application will need to handle authentication with the third-party, as well as additional error handling):

def take() {
 def params = [
 uri: "https://some-uri",
 path: "/some/path"
]

 try {
 httpGet(params) { response ->
 // we expect a content type of "image/jpeg" from the third party in this case
 if (response.status == 200 && response.headers.'Content-Type'.contains("image/jpeg")) {
 def imageBytes = response.data
 if (imageBytes) {
 def name = getImageName()
 try {
 storeImage(name, imageBytes)
 } catch (e) {
 log.error "Error storing image ${name}: ${e}"
 }

 }
 } else {
 log.error "Image response not successful or not a jpeg response"
 }
 }
 } catch (err) {
 log.debug "Error making request: $err"
 }

}

def getImageName() {
 return java.util.UUID.randomUUID().toString().replaceAll('-','')
}

Warning

Only synchronous HTTP requests are supported when using the Carousel Tile.

The take() command above does the following:

	Makes a request to a URI that will return an image response. A real integration would need to provide authorization information on the request. This would typically be an OAuth token obtained through the setup process, as documented here.

	If the response is successful and its Content-Type is our expected content, it gets the image bytes from response.data.

	Stores the image using storeImage(), using a name generated from a UUID. The name of the image is required to be unique for each device instance.

storeImage() will emit the “image” event, which causes the Carousel Tile to be updated with the new image.

Tip

httpGet() will serialize the response data for images into a ByteArrayInputStream, which is why we can pass the response body to storeImage().

Retrieving an image

If you need to retrieve the byte representation of an image stored with storeImage() or storeTemporaryImage(), use getImage().
This will return the bytes of the image in a ByteArrayInputStream [https://docs.oracle.com/javase/7/docs/api/java/io/ByteArrayInputStream.html].

// Image with "some-name" that was previously stored
ByteArrayInputStream img = getImage("some-name")

Image size limits

Images are limited to a maximum of one megabyte.

storeImage() will throw an InvalidParameterException if this limit is exceeded.

Attempting to capture an image exceeding this maximum using HubAction will result in the message sent to parse() containing an error response:

def parse(String description) {
 def map = stringToMap(description)

 if (map.error) {
 log.error "error: ${map.error}"
 } else if (map.tempImageKey) {
 //...
 }
}

Allowed image name characters

Image names are restricted to alphanumeric, “-”, “_”, and ”.” characters.

An InvalidParameterException is thrown by storeTemporaryImage() and storeImage() if the name contains other characters.

Image storage duration

Images stored via a HubAction are stored for 24 hours, after which it is deleted (this is why we use storeTemporaryImage() to move images captured by a HubAction).

Images stored via storeImage() or storeTemporaryImage() are available to clients for seven days, and stored by SmartThings for 365 days, after which it is deleted.

Supported image formats

storeImage() supports both JPEG and PNG image formats.
The content type can be specified when calling storeImage():

storeImage("some-image-name", imgBytes, "image/png")

The content type of "image/jpeg" is the default.

Images captured via a HubAction and stored with storeTemporaryImage() must be in JPEG format.

In either case, there is no need to include the file extension (e.g., ".jpg" or ".png" in the image name).

Related documentation

	storeTemporaryImage() reference documentation

	storeImage() reference documentation

	HubAction reference documentation

	Image Capture Capability reference documentation

	Tiles documentation

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

Composite Devices

Devices such as Hue LAN bridge, AEON Z-Wave SmartStrip, or a Zooz ZEN20 Z-Wave Power Strip have multiple components, and each component can be controlled independently.
For example, a Zooz ZEN20 Z-Wave Power Strip can be used with a separate Thing connected to each of its five outlets and each Thing can have its own SmartApp.

SmartThings categorizes such a multiple-component device as a composite device.
A device is said to be a composite device when it treats each of its component as its child device.
Integrating a composite device into SmartThings platform involves incorporating the composite device functionality into its Device Handler.
Additionally, you may need to modify the Service Manager SmartApp and the SmartApp.

Device Handler for a Composite Device

When you integrate a composite device into SmartThings, the composite device maintains a parent-child relationship between itself and its child devices.
For example, the Device Handler of Zooz ZEN20 Z-Wave Power Strip composite device implements the Power Strip as a parent device and each outlet as a separate child device.
More specifically, each individual outlet of the Power Strip is implemented as a child device instance of Zooz Power Strip Outlet, whereas the Power Strip itself is an instance of Zooz Power Strip as a parent device.

Similarly, the Hue bridge Device Handler implements the Hue bridge as a parent device and Hue bulbs as child devices of the Hue bridge parent device.

Parent Device Handler

Let’s look at how to set up a parent Device Handler.
For example, in the Device Handler of the Zooz ZEN20 Z-Wave Power Strip composite device, the parent device functionality shown below:

	Creates a child device instance of Zooz Power Strip Outlet device for each outlet of the Power Strip, by using the addChildDevice() method, as below:

metadata {
 definition (name: "ZooZ Power Strip", namespace: "smartthings", author: "SmartThings") {
 capability "Switch"
 capability "Refresh"
 capability "Configuration"
 capability "Actuator"
 capability "Sensor"
 fingerprint deviceId: "0x1004", inClusters: "0x5E,0x85,0x59,0x5A,0x72,0x60,0x8E,0x73,0x27,0x25,0x86", manufacturer: "015D", model: "F51C", prod: "0651", deviceJoinName: "ZooZ ZEN 20 Power Strip"
}

...

def installed() {
 createChildDevices()
 response(refresh() + configure())
}

...

private void createChildDevices() {
 // Save the device label for updates by updated()
 state.oldLabel = device.label
 // Add child devices for all five outlets of Zooz Power Strip
 for (i in 1..5) {
 addChildDevice("ZooZ Power Strip Outlet", "${device.deviceNetworkId}-${i}", null,[completedSetup: true, label: "${device.displayName} (CH${i})", isComponent: true, componentName: "ch$i", componentLabel: "Channel $i"])
 }
}

and,

	Creates child device APIs such as:

void childOn(String dni) {
 onOffCmd(0xFF, channelNumber(dni))
}
void childOff(String dni) {
 onOffCmd(0, channelNumber(dni))
}

Child Device Handler

Next, the below Device Handler code sets up the outlet of the Zooz ZEN20 Z-Wave Power Strip device as the child device instance.

metadata {
definition (name: "ZooZ Power Strip Outlet", namespace: "smartthings", author: "SmartThings") {
 capability "Switch"
 capability "Actuator"
 capability "Sensor"
}

...

void on() {
 parent.childOn(device.deviceNetworkId)
}

void off() {
 parent.childOff(device.deviceNetworkId)
}

In the above example, the method calls, parent.childOn(device.deviceNetworkId) and parent.childOff(device.deviceNetworkId), are the means of communication between the parent and the child instances of this composite device.

Deleting a Composite Device

Deleting a composite parent device will delete all children devices.
For example, deleting the Power Strip itself will delete its outlets as devices from the SmartThings platform.

SmartApps can be configured to control individual outlets as well as the entire power strip.
In such a case, if you try to delete the Power Strip parent device itself, then you are given an option to force-delete the outlet device.

If you try to delete a composite device from your SmartThings mobile app, then the following applies:

	If the parameter isComponent is set to true, as shown in the Parent Device Handler example above, then the device is hidden from the Things view and you will not be presented with the option of deleting child devices individually.

	If the parameter isComponent is set to false, then you can delete individual child devices.

Note

Note that the following applies for a composite device:

	A single SmartApp can control all the components, each independently, sending and receive messages from each component device.

	A single SmartApp can control all components together in an all-or-nothing fashion.

Composite Device Tiles

Child device tiles can be visually pulled together into a composite tile.
On SmartThings mobile app, such a composite tile represents a rich interface for the display and control of a composite device.

For example, consider a refrigerator composite device that is built with two child components, i.e., the fridge door and the temperature control.

In the fridge door child Device Handler, the tile for the fridge door mainDoor is defined normally with the standardTile method, as below:

// Fridge door child component Device Handler
metadata {
 definition (name: "Simulated Refrigerator Door", namespace: "smartthings/testing", author: "SmartThings") {
 capability "Contact Sensor"
 capability "Sensor"
 capability "open"
 capability "close"
 }
 tiles {
 standardTile("mainDoor", "device.contact", width: 2, height: 2, decoration: "flat") {
 state("closed", label:'Fridge', icon:"st.contact.contact.closed", backgroundColor:"#79b821")
 state("open", label:'Fridge', icon:"st.contact.contact.open", backgroundColor:"#ffa81e")
 }
 }
...

}

Then, by using the method childDeviceTile() within the refrigerator parent Device Handler, we can customize how the above fridge door tile mainDoor is pulled visually into the refrigerator composite tile.
See below:

// Refrigerator parent Device Handler
metadata {
 definition (name: "Simulated Refrigerator", namespace: "smartthings/testing", author: "SmartThings") {
 capability "Contact Sensor"
 }
 tiles {
 childDeviceTile("mainDoor", "mainDoor", height: 2, width: 2, childTileName: "mainDoor")
 }
...

}

The example below illustrates how to put together a mobile visual interface on SmartThings mobile app for a simulated refrigerator composite device.

Example: Simulated refrigerator

The simulated refrigerator in this example is a composite device with two components (child devices):

	The simulated main refrigerator (fridge) compartment, and

	A simulated freezer compartment.

Each compartment has its own door, its own temperature, and its own temperature setpoint.
Each compartment is modeled as a child device of the main refrigerator device.

From IDE, create a New Device (see Create a Virtual Device) and set it to Type “Simulated Refrigerator”.
This will create the composite parent device Simulated Refrigerator.
You will see it appear in the Things view of your SmartThings mobile app.
Tap on it to see the Detail view of it.

The mobile app view of the Simulated Refrigerator composite device, with the detail view on the right, looks as below:

[image: ../_images/sim_fridge_thing.png]
[image: ../_images/sim_fridge_detail.png]

Note

If you are new to SmartThings tiles, see Tiles before you proceed further.

The composite device tile for the refrigerator door, shown in the top row of the detail view above, is put together as below:

	In the child Device Handler for the Simulated Refrigerator Door, the tile mainDoor is defined in the tiles() section. The width and height parameters defined here will be overridden by the parent Device Handler setting.

metadata {
 definition (name: "Simulated Refrigerator Door", namespace: "smartthings/testing", author: "SmartThings") {
 capability "Contact Sensor"
 capability "Sensor"
 command "open"
 command "close"
 }
 tiles {
 standardTile("mainDoor", "device.contact", width: 2, height: 2, decoration: "flat") {
 state("closed", label:'Fridge', icon:"st.contact.contact.closed", backgroundColor:"#79b821")
 state("open", label:'Fridge', icon:"st.contact.contact.open", backgroundColor:"#ffa81e")
 }
 }
}

	In the Simulated Refrigerator parent Device Handler, the method childDeviceTile() is used in the tiles() section to visually configure this child device mainDoor tile. The width and height settings here will override the settings for this tile in the child Device Handler.

metadata {
 definition (name: "Simulated Refrigerator", namespace: "smartthings/testing", author: "SmartThings") {
 capability "Contact Sensor"
 }
 tiles {
 childDeviceTile("mainDoor", "mainDoor", height: 2, width: 2, childTileName: "mainDoor")
 }
...

}
def installed() {
 state.counter = state.counter ? state.counter + 1 : 1
 if (state.counter == 1) {
 // A tile with the name "mainDoor" exists in the tiles() method of the child Device Handler "Simulated Refrigerator Door" above.
 addChildDevice(
 "Simulated Refrigerator Door",
 "${device.deviceNetworkId}.2",
 null,
 [completedSetup: true, label: "${device.label} (Main Door)", componentName: "mainDoor", componentLabel: "Main Door"])
 }
}

Note

While the width and height parameters in the childDeviceTile() in the parent Device Handler will override the settings of these parameters in the child Device Handler, any icon setting specified in the child Device Handler will not be overriden by the childDeviceTile().

Example composite tile code

Copy the following three composite device Device Handler files and create your own three Device Handlers with From Code option (see Create a new Device Handler):

	Parent Device Handler file for the Simulated Refrigerator [https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/devicetypes/smartthings/testing/simulated-refrigerator.src/simulated-refrigerator.groovy] composite parent device.

	Child Device Handler file for the Simulated Refrigerator Door [https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/devicetypes/smartthings/testing/simulated-refrigerator-door.src/simulated-refrigerator-door.groovy] component device, and

	Child Device Handler for the Simulated Refrigerator Temperature Control [https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/devicetypes/smartthings/testing/simulated-refrigerator-temperature-control.src/simulated-refrigerator-temperature-control.groovy] component device.

Note

Make sure to publish For Me the above three Device Handlers before you proceed further.

Follow the code in the Device Handlers you copied over to see how the rest of the visual layout is configured for the entire Simulated Refrigerator composite device.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

Arduino ThingShield

Warning

The SmartThings Arduino ThingShield has been discontinued, and is no longer supported.

All code and libraries discussed in this document are no longer supported by SmartThings, and should be used on a as-is basis.

Using the SmartThings Arduino Shield (ThingShield), you can add SmartThings capability to any Arduino compatible board with the R3 pinout, including the Uno, Mega, Duemilanove, and Leonardo.

Specs:

	Works with: Uno, Mega, Duemilanove, Leonardo

	Dimensions: 2.5 x 1.9 x 0.3”

	Weight: 8 ounces

Installing the library

To install, copy the entire SmartThings directory into the ‘libraries’ directory in your sketchbook. Your sketchbook location is set in the Arduino IDE preferences, by default, the location will be:

Windows:
‘My DocumentsArduinolibrariesSmartThings’

OSX:
‘~/Documents/Arduino/libraries/SmartThings’

You can download the SmartThings Arduino Library here [http://cl.ly/ZMHh].

Pairing the shield

To join the shield to your SmartThings Hub, go to “Add SmartThings” mode in the
SmartThings app by hitting the “+” icon in the desired location, and then press the Switch button on the shield. You should see the shield appear in the app.

To unpair the shield, press and hold the Switch button for 6 seconds and release. The shield will now be unpaired from your SmartThings Hub. Make sure to delete from your account if you plan to re-pair it!

Changing the Device Handler

By changing the Device Handler in the SmartThings cloud you can change how to interact with your Arduino + ThingShield. When a shield first pairs, it has no functionality and only serves to help identify the device in the mobile app. We have some pre-built Device Handlers that you can use for most functionality. One pre-built Arduino Device Handler is the “On/Off Shield (example)”

To change your Device Handler, log into http://graph.api.smartthings.com/ and click on “Devices” Navigate to and click on the Arduino ThingShield then click on “Edit” on the bottom left of the page.

Select the “Type” drop down menu.

Choose “On/Off Shield (example)”

Hit the “Update” button

Your Arduino will now be able to accept the commands “on” “off”, and “hello”

Here is what the Arduino sketch looks like [https://gist.github.com/aurman/6546221] and here is the Device Handler [https://gist.github.com/aurman/6862503].

Here is a different Device Handler that can read a string sent from an Arduino and display it in a tile [https://gist.github.com/aurman/6546257].

Arduino examples

We have created some example Arduino Sketches (code) to use as a reference for building your own devices. The following is meant to go with the ”On/Off Shield (example)” Device Handler.

Download all of our examples here [https://www.dropbox.com/s/4tz4arq67k21ogs/ThingShield%20Examples.zip?dl=0].

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

Rate Limits

Rate limiting ensures that no single SmartApp or Device Handler will consume too many shared resources.

Rate limits apply to all SmartApps and Device Handlers.

SmartApp and Device Handler rate limits

SmartApps and Device Handlers are monitored for excessive resource utilization on two measures: Execution count limits and Execution time limits.

Execution count limits

SmartApps and Device Handlers are subject to the following execution count limits.
These limits are per installed SmartApp or Device Handler.

	Execution count limit
	Time window
	Description

	250 executions
	60 seconds
	A maximum of 250 executions per minute is allowed for each installed SmartApp or Device Handler.

If the limit is exceeded, an error will be displayed in Live Logging, and no further executions for this installed SmartApp or Device Handler will occur until the current 60-second time window expires.

Execution time limits

These execution time limits apply to SmartApps and Device Handlers:

	What
	Limit

	Method execution time
	20 seconds

	Total continuous execution time
	40 seconds

If these limits are exceeded, the current execution will be suspended.

Web services rate limit headers

SmartApps and Device Handlers that expose RESTful APIs are subject to the same rate limits as documented above.
The SmartThings platform will set three HTTP headers on the response for every inbound API call, so that a client may understand the current rate limit status.

	Header
	Description

	X-RateLimit-Limit
	The total enforced rate limit (250)

	X-RateLimit-Current
	The number of executions within the current rate limit time window, for this installed SmartApp or Device Handler.

	X-RateLimit-TTL
	The time remaining (in seconds) before the current rate limit window resets, for this installed SmartApp or Device Handler.

If the rate limit is exceeded, the following response is sent to the client:

	HTTP Response Code
	Error Response

	429 (Too Many Requests)
	{"error": true, "type": "RateLimit", "message": "Please try again later"}

SMS rate limits

The following limits apply to sending SMS messages:

	Limit
	If exceeded

	15 SMS messages per number, per 60 seconds
	No additional SMS messages will be sent until the next minute.

Note

This limit applies per number, not per SmartApp or user.

Parent-child relationship limit

The number of child SmartApps or child devices that a SmartApp or Device Handler may have are subject to the following limits:

	Maximum child count
	Description

	500
	A SmartApp may have at most a combination of 500 child SmartApps or Devices. A Device Handler may have at most 500 child Devices.

If this limit is exceeded, an exception is thrown and will be displayed in Live Logging.
If initiated from within the mobile app, an error will be seen in the mobile application as well.

Avoiding rate limits

While SmartThings rate limits are quite high compared to other service platforms, the event-driven nature of SmartThings can result in SmartApps or Device Handlers that may (unintentionally) reach this limit.
It is important to reason carefully about your code, think of worst-case scenarios, and monitor Live Logging when testing to reduce the liklihood of being rate limited.

Here are some common pitfalls to watch out for:

	A SmartApp may subscribe to a large number of “chatty” devices, causing the execution limit to be reached. For example, DLNA devices may be particularly chatty, and frequently changing energy/power values may cause the rate limit to be exceeded.

	Service Manager SmartApps that may be called by their child devices may reach the execution limit, if there are a number of child devices and/or they call the parent in response to frequent events.

	Synchronous (blocking) HTTP requests may hit the execution time rate limit, depending on the third party response time. Avoid this possibility by using Making Asynchronous External HTTP Requests (Beta).

	It’s possible to create an infinite loop of events. For example, subscribing to both “on” and “off” events, and the “on” command triggers the “off” event and vice versa - leading to a never-ending chain of event handlers being called.

	Pay attention to any looping logic around creating child devices or SmartApps. Any error in the looping logic might result in creating too many children, which could encounter the parent-child limit.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

Publishing Code

You can publish your SmartApp or Device Handler either just for yourself, or for public distribution.
Publishing for distribution requires you to submit your SmartApp or Device Handler for review and approval by SmartThings.

For yourself

When you publish for yourself, your SmartApp or Device Handler is available only to your account on your SmartThings mobile app.

Ensure proper Location

To publish your SmartApp or Device Handler properly, you must be at the proper Location before you begin writing your code.

To ensure you are at the correct Location, follow these steps:

	Start by logging into IDE at at https://graph.api.smartthings.com.

	Next, navigate to My Locations page.

[image: ../_images/my-locations1.png]

	On this page is a listing of all the Locations you created. Normally you will see just one Location where you installed your Hub.

	Click on the Location name appearing in the far left column (i.e., the Name column). You may need to log in again with your SmartThings userid and password.

Note

Note that even though the IDE is located at https://graph.api.smartthings.com, it may not always be the correct URL for your SmartApp or Device Handler deployment.
By explicitly selecting the Location name you will ensure that your SmartApp or Device Handler will be published properly.

Publish

Next, to publish for yourself, follow these steps:

	Make sure that you are in the proper Location (see above).

	From your SmartApp or Device Handler view, click on Publish button and click the For Me option.

This will publish your SmartApp or Device Handler for only your account.
Open your SmartThing mobile app, navigate to Marketplace and choose SmartApps section.
Tap on the My Apps category at the bottom and you will see your SmartApp.

For public distribution

Note

SmartThings is not reviewing submissions for public distribution at this time.

To publish your SmartApp or Device Handler for public distribution, you will need to submit it for review and approval by SmartThings.
Follow these steps:

	On IDE, click on My Publication Requests in the top navigation bar. This will take you to your Publication Requests page.

	From this page click on +New Request. This will take you to Submit a SmartApp or device type for publication page.

	Follow the instructions on this page to submit your SmartApp or Device Handler for review by SmartThings.

Review process

SmartThings team will review your SmartApp or Device Handler for approval.

Note

To enhance the chances of your code getting your SmartApp or Device Handler approved, review and ensure your code follows the Code Review Guidelines and Best Practices.

Your SmartApp will be reviewed for the following criteria:

	Does this SmartApp duplicate an existing SmartApp? If so, does it improve the current SmartApp?

	Does it have a good title, description, and configuration preferences? Will the user understand how it works?

	Does the SmartApp work as expected?

Your Device Handler could be rejected by SmartThings review team for any of the following reasons:

	The Device Handler adds minor addition or change that may be changed with a core product or UX change in a future update.

	SmartThings is already developing a first-party integration and will not accept a Device Handler for this device.

	The Device Handler should actually be a SmartApp instead, because it is actuating or changing a device.

	No discovery mechanism is provided. For LAN-Connected devices, a Service Manager SmartApp [http://docs.smartthings.com/en/latest/cloud-and-lan-connected-device-types-developers-guide/understanding-the-service-manage-device-handler-design-pattern.html] should serve to discover and create the device.

	Multiple community submissions exist and SmartThings is rolling up several improvements together, so this specific one is being rejected.

Once your SmartApp or Device Handler has been approved, it will be published for worldwide public distribution in SmartThings mobile app.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

Code Review Guidelines and Best Practices

Before submitting your SmartApp or Device Handler, you should ensure that your code adheres to the guidelines documented here.
Any code that does not adhere to these guidelines may be rejected.

This document also serves as a collection of best practices for SmartThings development.

General

Code should be readable

Code is executed by machines, but read by humans.
Readability can be subjective, but there are some general guidelines that should be followed:

	Use meaningful variable and method names.

	Don’t repeat yourself

	Methods should serve a single purpose

	Comment appropriately

Don’t repeat yourself

Follow the DRY principle [https://en.wikipedia.org/wiki/Don%27t_repeat_yourself] (don’t repeat yourself).

Don’t copy/paste code blocks - pull common code out into a shared utility method.

Methods should serve a single purpose

Methods should serve a single purpose, and be concise.
If a method definition doesn’t fit on a standard computer screen, it’s way too big.

Look for opportunities to split out code into utility methods.
For example, parsing a large HTTP response inline can bloat a method; instead, split out the parsing into a method that can then be called.
This facilitates easier understanding of the code, and promotes better separation of concerns [https://en.wikipedia.org/wiki/Separation_of_concerns].

Do not submit unused code

Unused or commented-out code should be removed prior to submitting.

Do not use offensive, profane, or libelous language

This is pretty self-explanatory - language should be clean and professional.

Comment appropriately

Comments can add clarity and context to code when used appropriately.
When over-used, they clutter the code and provide no value.

There are some guidelines that should be followed:

	In general, when the code is doing something out of the ordinary, a comment is appropriate.

	Device Handler custom commands and attributes should have a comment describing the purpose, parameters, and exception conditions (if applicable).

	Non-trivial methods should be documented with comments describing what it does, its return type, exception conditions, and parameters. JavaDoc style comments [https://en.wikipedia.org/wiki/Javadoc#Overview_of_Javadoc] can be used, though there is no tooling in place to generate documentation from the source.

	Comments should add value - commenting every line of readable code simply clutters the code and is unnecessary.

Here’s an example of using comments appropriately for documenting a method:

def capabilityCommands = getDeviceCapabilityCommands(device.capabilities)

/**
 * Builds a map of capability names to their supported commands.
 *
 * @param a list of Capabilities.
 * @return a map of device capability -> supported commands.
*/
def getDeviceCapabilityCommands(deviceCapabilities) {
 def map = [:]
 deviceCapabilities.collect {
 map[it.name] = it.commands.collect{ it.name.toString() }
 }
 return map
}

Here’s an example of an in-line code comment explaining why the code is checking if a percentage value is within a certain hard-coded range:

log.trace "stopDimmersHandler evt: ${evt.value}"
def percentComplete = completionPercentage()

// Oftentimes, the first thing we do is turn lights on or off,
// so make sure we don't stop as soon as we start
if (percentComplete > 2 && percentComplete < 98) {
 ...

}

An example of inappropriate comments is below.
Note how the comments simply repeat what is obvious by reading the code; no value is added.

// get all the children
def children = pollChildren()
// iterate over all the children
children.each {child ->
 // log each child
 log.debug "child: $child"
}

Handle all if() and switch() cases

Make sure any if() or switch() blocks handle all expected inputs.
Forgetting to handle a certain condition can cause unexpected logic errors.

Also, every switch() statement should have a default: case statement to handle any cases where there is no match.

Verify assumptions

If a method operates on some input, it should handle all possible input values, including any differences if the method is called from a parent or child SmartApp or Device Handler.

Use consistent return values

Groovy is a dynamically typed language.
That’s great for a lot of things, but it’s a sharp knife - highly effective, yet also easy to cut yourself accidentally.

A method should return a single type of data, regardless of if the method signature is typed or not.
For example, don’t do something like this:

def getSomeResult(input) {
 if (input == "option1") {
 return true
 }
 if (input == "option2") {
 return false
 }
 return [name: "someAttribute", value: input]
}

The example above fails to return a consistent data type.
Calling clients of this code have to accommodate both a boolean and map return values.
Instead, methods should always return the same data type.

Note

In certain cases, it may make sense for a method to return different types.
Such cases are the exception, and the different types returned, and under what circumstances, should be documented in the method’s comments.

Be careful indexing into arrays

When parsing data, pay attention to arrays if you use them.
Do not index into arrays directly without making sure that the array actually has enough elements.

Consider the following code that splits a string on the ":" character, and returns the value after the ":":

def getSplitString(input) {
 return input.split(":")[1]
}

// -> "123"
getSplitString("abc:123")

// -> ArrayIndexOutOfBounds exception!
getSplitString("abc:")

Because getSplitString() does not verify that the result of split() split has more than one element, we get an ArrayIndexOutOfBounds exception when trying to access the second item in the parsed result.
In cases like this, make sure your code verifies the array contains the item:

def getSplitString(input) {
 def splitted = input?.split(":")
 if (splitted?.size() == 2) {
 return splitted[1]
 } else {
 return null
 }
}

Use the Elvis operator correctly

Groovy supports the Elvis operator, which allows us write more concise conditional expressions than otherwise possible.
However, we need to understand Groovy truth to use it effectively.

Consider this example that attempts to set the variable bulbLevel to 100 if it is not already set:

def bulbLevel = settings.level ?: 100

But what happens if settings.level is 0 in the example above? Because Groovy considers zero as false, we’ve set bulbLevel to 100 !

The above expression should be rewritten as:

def bulbLevel = settings.level == null ?: 100

Handle null values

Important

NullPointerExceptions are one of the most frequently occurring exceptions on the SmartThings platform - take care to avoid them!

This is very common in LAN and SSDP interactions, so always double check that code.

A NullPointerException will terminate the SmartApp or Device Handler execution, but can be avoided easily with the safe navigation [http://groovy-lang.org/operators.html#_safe_navigation_operator] (?) operator.
Any code that may encounter a null value should anticipate and handle this.

The examples below show a few common scenarios in which null is possible, and how to deal with it using the ? operator:

// if the LAN event does not have headers, or a "content-type" header,
// don't blow up with a NullPointerException!
if (lanEvent.headers?."content-type"?.contains("xml")) { ... }

// if a location does not have any modes, statement simply returns null
// but does not throw a NullPointerException
if (location.modes?.find{it.name == newMode}) { ... }

Use Groovy truth correctly

Be aware of, and ensure your code is consistent with, what Groovy considers true and false.
Groovy truth is documented here [http://groovy-lang.org/semantics.html#Groovy-Truth].

Here are some gotchas to be aware of:

	Empty strings are considered false; non-empty strings are considered true.

	Empty maps and lists are considered false; non-empty maps and lists are considered true.

	Zero is considered false; non-zero numbers are considered true.

Consider the following example that verifies that a number is between 0 and 100:

def verifyLevel(level) {
 if (!level) {
 return false
 } else {
 return (level >= 0 && level <= 100)
 }
}

If we call verifyLevel(0), the result is false, because 0 is treated as false by Groovy.
Instead, it should be written as:

def verifyLevel(level) {
 return (level instanceof Number && level >= 0 && level <= 100)
}

This can be a common source of errors; make sure you understand and use Groovy truth appropriately.

Using State

state is not an unbounded database

state (SmartApps and Device Handlers) and atomicState (SmartApps only) are provided to persist small amounts of data across executions.
Do not think of state as a virtually unlimited database for your app.

The amount of data that can be stored in state is limited.
Avoid code that adds items to state regularly (perhaps in response to Events or schedules), but does not remove items.

Understand how state works

Remember that when using state, the results are not persisted until the app is done executing.
This can have unintended consequences, such as state values being overridden by another concurrently executing instance of the SmartApp.

Understand when to use atomicState vs. state

Understand the difference between atomicState and state, make sure you use the correct one for your needs, and avoid using both in the same SmartApp.

Take care when storing collections in atomicState

Modifying collections in Atomic State does not work as it does with State.
Read the documentation to understand how to best work with collections stored in Atomic State.

Web Services

Document external HTTP requests

HTTP requests to outside services should be documented, explaining the need to make external requests, what data is sent, and how it will be used.
Please also include a comment with a link to the third party’s privacy policy, if applicable.

Document any exposed endpoints

If your SmartApp or Device Handler exposes any endpoints, add comments that document what the API will be used for, what data may be accessed by those APIs, and where possible, include a link to the privacy policies of any remote services that may access those APIs.

Scheduling

Avoid recurring short schedules

Scheduled and other periodic functions should not execute more often than every five minutes, unless there is a good reason for it, and the reviewers agree.

If your code executes more frequently than every five minutes, add a comment to your code explaining why this is necessary.

Avoid chained runIn() calls

Do not chain runIn() calls.

If for some reason it is necessary, add a comment describing why it is necessary.

Security considerations

Subscriptions should be clear

It is possible to subscribe to Events using a string variable, so what the SmartApp is subscribing to might be somewhat opaque.

For example:

def myContactSubscription = "contact.open"

...

subscribe(contact1, myContactSubscription, myContactHandler)

The best practice is to subscribe explicitly to the attribute:

subscribe(contact1, "contact.open", myContactHandler)

However, if the SmartApp must subscribe to a variable (from state, for instance), the reviewer should be able to trace how the variable is set and what the expected attribute will be.

Subscriptions should be specific

Do not create overly-broad subscriptions.

A SmartApp that is subscribed to every location Event will execute excessively, and is rarely necessary.
Instead, create subscriptions specific to the Event you are interested in.

If you’re creating a service manager for a LAN-connected device, be sure to subscribe to the device search target.

Do not use dynamic method execution

In groovy you can execute functions based on a string, like so:

object."${mystring}"()

Which can be very handy, but when ${mystring} comes from a HTTP request, outside the SmartThings platform, or from another SmartApp or Device Handler, we need to validate the input.

The preferred method of validation is to use a switch() statement on the input before doing anything with it:

switch(mystring) {
 case "cmd1":
 object.cmd1()
 break
 case "cmd2":
 object.cmd2()
 break
 case "cmd3":
 object.cmd3()
 break
 default:
 return "ERROR"
}

Do not hard-code SMS messages

Notifications should never be sent to a hard-coded number.
They should always use a number provided by the user using the contact input (even though Contact Book is not enabled, the contact input type is available and contains a fall-back mechanism for non-Contact Book users. Using this future-proofs your SmartApp).

Performance

Do not use busy loops

There is no good reason for the code to run busy loops.
Don’t do things like this:

def mywait(ms) {
 def start = now()
 while (now() < start + ms) {
 // do nothing, just wait
 }
}

The goal of the above code is to delay execution for a number of milliseconds.
This wastes resources and increases the likelihood that the 20 second execution limit will be exceeded.

Instead of trying to force a delay in execution, you should schedule a future execution of your app.

Do not use synchronized()

Using synchronized incurs a performance overhead, and is highly unlikely to have any effect.
It should not be used.

When a SmartApp or Device Handler executes, it is executing on one of n available servers assigned for that Location, where n is variable depending on Location, current load, and other factors.
Concurrent executions of the SmartApp or Device Handler are not guaranteed, or even likely, to be executing on the same server.
Because of this, trying to force synchronous behavior by using synchronized would only work in the rare occurrence that a concurrent execution happens on the same server, yet it always incurs overhead.

LAN-specific

Use the device-specific search

Service managers for LAN-connected devices should subscribe to the device search target for device discovery.

Handle IP change

Service managers for LAN-connected devices should handle any IP change.
This can happen when the router power cycles and loses its DHCP mappings.

Parent-child relationships

Use separate files

When using a parent-child relationship, be it a parent SmartApp with child devices, or a parent SmartApp with child SmartApps, the parent and child should exist in separate files.

Putting the parent and child code in the same file leads to file size bloat, makes the code harder to understand, is error-prone, and difficult to debug.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

Capabilities Reference

Important

The Capabilities in this document are supported in the SmartThings Classic mobile app.
Visit the SmartThings Developer Portal [https://smartthings.developer.samsung.com/develop/api-ref/capabilities.html] for the Capabilities supported in the new SmartThings app.

Introduction

Capabilities are core to the SmartThings architecture. They allow us to abstract specific devices into their underlying capabilities.
An application interacts with devices based on their capabilities, so once we understand the capabilities that are needed by a SmartApp, and the capabilities that are provided by a device, we can understand which devices (based on the Device’s declared capabilities) are eligible for use within a specific SmartApp.
Capabilities themselves are decomposed into both Commands and Attributes. Commands represent ways in which you can control or actuate the device, whereas Attributes represent state information or properties of the device.
Capabilities are created and maintained by the SmartThings development team.
This page serves as a reference for the supported capabilities.

Data Types

Before we present the Capabilities, it’s worth covering the various data types associated with Attributes and Commands. Note that these data types are guidelines as to how actual values can be represented. In most cases, the SmartThings platform contains the implementation logic and defines the actual objects for these data types. Below is a table outlining the the possible data types and what they mean.

	Data Type
	Example
	Description

	STRING
	“This is a String”
	Represents character strings

	NUMBER
	5, 10.67
	The Number data type is a guideline indicating that a number should be expected, and not a specific type. Device Handlers contain the implementation of what kind of number object is actually returned.

	VECTOR3
	(x,y,z)
	This Data Type is a representation of x,y,z coordinates in space. Device Handlers contain the implementation of the actual data structure, but it is usually as a Map: [x: 0, y: 0, z: 0].

	ENUM
	“one”, “two”, “three”
	The Enum Data Type is a static set of predefined String values that an Attribute can have, or that a Command can accept as an argument.

	DYNAMIC_ENUM
	“Any”, “value”
	Much like the Enum Data Type, Dynamic Enum is a set of String values. However, the set is not static or predefined.

	COLOR_MAP
	[hue: 50, saturation: 75]
	The Color Map is a Map specifically for the use of color control. As such, the Map should contain a Hue and a Saturation value.

	JSON_OBJECT
	
	A standard JSON object. Device Handlers contain the implementation and thus should be consulted when looking for the JSON object structure.

	DATE
	
	A Date, usually represented as a java.util.Date object.

	BOOLEAN
	true, false
	A boolean data type with a value of true or false.

Acceleration Sensor

The Acceleration Sensor capability allows for acceleration detection.
Some use cases for SmartApps using this capability would be detecting if
a washing machine is vibrating, or if a case has moved (particularly
useful for knowing if a weapon case has been moved).

Definition

reviewed 2018-01-03
name: Acceleration Sensor
status: live
attributes:
 acceleration:
 schema:
 type: object
 properties:
 value:
 $ref: ActivityState
 required: ["value"]
 type: ENUM
 values:
 - active
 - inactive
commands: {
 }
public: true
id: accelerationSensor
ocfResourceType: x.com.st.acceleration
version: 1

Actuator

The Actuator capability is a “tagging” capability. It defines no
attributes or commands. In SmartThings terms, it represents that a
Device has commands.

Definition

reviewed 2018-02-01
name: Actuator
status: deprecated
attributes: {
 }
commands: {
 }
public: true
id: actuator
version: 1

Air Conditioner Mode

Allows for the control of the air conditioner.

Definition

reviewed 2018-01-03
name: Air Conditioner Mode
status: proposed
attributes:
 airConditionerMode:
 schema:
 type: object
 properties:
 value:
 $ref: HvacMode
 required: ["value"]
 type: ENUM
 values:
 - auto
 - cool
 - dry
 - coolClean
 - dryClean
 - fanOnly
 - heat
 - heatClean
 - notSupported
 setter: setAirConditionerMode
commands:
 setAirConditionerMode:
 arguments:
 - name: mode
 required: true
 schema:
 $ref: HvacMode
 type: ENUM
 values:
 - auto
 - cool
 - dry
 - coolClean
 - dryClean
 - fanOnly
 - heat
 - heatClean
 - notSupported
public: true
id: airConditionerMode
ocfResourceType: x.com.st.mode.airconditioner
version: 1

Air Quality Sensor

Gets the air quality number.

Definition

reviewed 2018-01-11
name: Air Quality Sensor
status: proposed
attributes:
 airQuality:
 schema:
 type: object
 properties:
 value:
 $ref: PositiveInteger
 required: ["value"]
 type: NUMBER
commands: {
 }
public: true
id: airQualitySensor
ocfResourceType: x.com.st.airqualitylevel
version: 1

Alarm

The Alarm capability allows for interacting with devices that serve as
alarms

Definition

reviewed 2018-01-03
name: Alarm
status: live
attributes:
 alarm:
 schema:
 type: object
 properties:
 value:
 $ref: AlertState
 required: ["value"]
 type: ENUM
 values:
 - both
 - 'off'
 - siren
 - strobe
 enumCommands:
 - command: both
 value: both
 - command: 'off'
 value: 'off'
 - command: siren
 value: siren
 - command: strobe
 value: strobe
commands:
 both:
 arguments: [
]
 'off':
 arguments: [
]
 siren:
 arguments: [
]
 strobe:
 arguments: [
]
public: true
id: alarm
ocfResourceType: x.com.st.alarm
version: 1

Audio Mute

Allows for the control of audio mute.

Definition

reviewed 2018-02-01
name: Audio Mute
status: live
attributes:
 mute:
 schema:
 type: object
 properties:
 value:
 $ref: MuteState
 required:
 - value
 type: ENUM
 values:
 - muted
 - unmuted
 setter: setMute
 enumCommands:
 - command: mute
 value: muted
 - command: unmute
 value: unmuted
commands:
 setMute:
 arguments:
 - name: state
 required: true
 schema:
 $ref: MuteState
 type: ENUM
 values:
 - muted
 - unmuted
 mute:
 arguments: [
]
 unmute:
 arguments: [
]
public: true
id: audioMute
version: 1

Audio Notification

Play a track or a message as an audio notification

Definition

reviewed 2018-01-03
name: Audio Notification
status: proposed
attributes: {
 }
commands:
 playTrack:
 arguments:
 - name: uri
 required: true
 schema:
 $ref: URI
 type: STRING
 - name: level
 schema:
 $ref: IntegerPercent
 type: NUMBER
 required: false
 playTrackAndResume:
 arguments:
 - name: uri
 required: true
 schema:
 $ref: URI
 type: STRING
 - name: level
 schema:
 type: integer
 minimum: 0
 maximum: 100
 type: NUMBER
 required: false
 playTrackAndRestore:
 arguments:
 - name: uri
 required: true
 schema:
 $ref: URI
 type: STRING
 - name: level
 schema:
 type: integer
 minimum: 0
 maximum: 100
 type: NUMBER
 required: false
public: true
id: audioNotification
ocfResourceType: x.com.st.audionotification
version: 1

Audio Track Data

Gets the value of the audio track data.

Definition

reviewed 2018-02-01
name: Audio Track Data
status: proposed
attributes:
 audioTrackData:
 schema:
 type: object
 properties:
 value:
 $ref: AudioTrackAddress
 required:
 - value
 type: JSON_OBJECT
commands: {
 }
public: true
id: audioTrackData
ocfResourceType: x.com.st.audiotrackdata
version: 1

Audio Volume

Allows for the control of audio volume.

Definition

reviewed 2018-01-03
name: Audio Volume
status: proposed
attributes:
 volume:
 schema:
 $ref: IntegerPercent
 type: NUMBER
 setter: setVolume
 actedOnBy:
 - volumeUp
 - volumeDown
commands:
 setVolume:
 arguments:
 - name: volume
 required: true
 schema:
 type: integer
 minimum: 0
 maximum: 100
 type: NUMBER
 volumeUp:
 arguments: [
]
 volumeDown:
 arguments: [
]
public: true
id: audioVolume
ocfResourceType: x.com.st.audiovolume
version: 1

Battery

Defines that the device has a battery

Definition

reviewed 2018-01-03
name: Battery
status: live
attributes:
 battery:
 schema:
 $ref: IntegerPercent
 type: NUMBER
 unit: '%'
commands: {
 }
public: true
id: battery
ocfResourceType: oic.r.energy.battery
version: 1

Beacon

Detect whether or not the beacon is present

Definition

reviewed 2018-02-01
name: Beacon
status: deprecated
attributes:
 presence:
 schema:
 type: object
 properties:
 value:
 $ref: PresenceState
 required:
 - value
 type: ENUM
 values:
 - not present
 - present
commands: {
 }
public: true
id: beacon
version: 1

Bridge

The Bridge capability is a “tagging” capability. It defines no
attributes or commands. In SmartThings terms, it represents that a
Device is a bridge to other devices.

Definition

reviewed 2018-02-01
name: Bridge
status: deprecated
attributes: {
 }
commands: {
 }
public: true
id: bridge
version: 1

Bulb

Allows for the control of a bulb device

Definition

reviewed 2018-01-11
name: Bulb
status: dead
attributes:
 switch:
 schema:
 type: object
 properties:
 value:
 $ref: SwitchState
 required: ["value"]
 type: ENUM
 values:
 - 'off'
 - 'on'
 enumCommands:
 - command: 'off'
 value: 'off'
 - command: 'on'
 value: 'on'
commands:
 'off':
 arguments: [
]
 'on':
 arguments: [
]
public: true
id: bulb
version: 1

Button

A device with one or more buttons

Definition

reviewed 2018-02-22
name: Button
status: deprecated
attributes:
 button:
 schema:
 type: object
 properties:
 value:
 $ref: ButtonState
 required:
 - value
 type: ENUM
 values:
 - held
 - pushed
 numberOfButtons:
 schema:
 type: object
 properties:
 value:
 $ref: PositiveInteger
 required:
 - value
 type: NUMBER
commands: {
 }
public: true
id: button
ocfResourceType: x.com.st.button
version: 1

Carbon Dioxide Measurement

Measure carbon dioxide levels

Definition

reviewed 2018-02-20
name: Carbon Dioxide Measurement
status: live
attributes:
 carbonDioxide:
 schema:
 type: object
 properties:
 value:
 type: integer
 minimum: 0
 maximum: 1000000
 unit:
 type: string
 enum:
 - ppm
 default:
 - ppm
 required:
 - value
 type: NUMBER
commands: {
 }
public: true
id: carbonDioxideMeasurement
version: 1

Carbon Monoxide Detector

Measure carbon monoxide levels

Definition

reviewed 2018-01-09
name: Carbon Monoxide Detector
status: live
attributes:
 carbonMonoxide:
 schema:
 type: object
 properties:
 value:
 $ref: CarbonMonoxideState
 required: ["value"]
 type: ENUM
 values:
 - clear
 - detected
 - tested
commands: {
 }
public: true
id: carbonMonoxideDetector
ocfResourceType: x.com.st.carbonmonoxidedetector
version: 1

Color Control

Allows for control of a color changing device by setting its hue,
saturation, and color values

Definition

reviewed 2018-01-16
name: Color Control
status: live
attributes:
 color:
 schema:
 type: object
 properties:
 value:
 $ref: String
 type: STRING
 setter: setColor
 actedOnBy:
 - setHue
 - setSaturation
 hue:
 schema:
 type: object
 properties:
 value:
 $ref: PositiveInteger
 type: NUMBER
 setter: setHue
 saturation:
 schema:
 type: object
 properties:
 value:
 $ref: PositiveInteger
 type: NUMBER
 setter: setSaturation
commands:
 setColor:
 arguments:
 - name: color
 required: true
 type: COLOR_MAP
 schema:
 type: object
 properties:
 value:
 $ref: color-map
 setHue:
 arguments:
 - name: hue
 required: true
 schema:
 $ref: PositiveInteger
 type: NUMBER
 setSaturation:
 arguments:
 - name: saturation
 required: true
 schema:
 $ref: PositiveInteger
 type: NUMBER
public: true
id: colorControl
ocfResourceType: oic.r.colour.chroma
version: 1

Color Temperature

Set the color temperature attribute of a color changing device

Definition

reviewed 2018-01-16
name: Color Temperature
status: live
attributes:
 colorTemperature:
 schema:
 type: object
 properties:
 value:
 type: integer
 minimum: 1
 maximum: 30000
 unit:
 type: string
 enum:
 - K
 default: K
 required:
 - value
 type: NUMBER
 setter: setColorTemperature
commands:
 setColorTemperature:
 arguments:
 - name: temperature
 required: true
 schema:
 type: integer
 minimum: 1
 maximum: 30000
 type: NUMBER
public: true
id: colorTemperature
ocfResourceType: x.com.st.color.temperature
version: 1

Color

Allows for control of a color changing device by setting its hue and
saturation.

Definition

reviewed 2018-01-16
id: color
status: proposed
public: true
name: Color
attributes:
 colorValue:
 schema:
 type: object
 properties:
 value:
 type: object
 properties:
 hue:
 type: number
 minimum: 0.0
 maximum: 360.0
 saturation:
 type: number
 minimum: 0.0
 maximum: 100.0
 required:
 - value
 setter: setColorValue
 type: JSON_OBJECT
commands:
 setColorValue:
 arguments:
 - name: colorValue
 required: true
 schema:
 type: object
 properties:
 hue:
 type: number
 minimum: 0.0
 maximum: 360.0
 saturation:
 type: number
 minimum: 0.0
 maximum: 100.0
 required:
 - hue
 - saturation
 type: JSON_OBJECT
 - name: switchLevel
 schema:
 type: integer
 minimum: 0
 maximum: 100
 type: NUMBER
 required: false
version: 1

Color Mode

Describes if a device is in color or color temperature mode if it
supports both since state is mutually exclusive.

Definition

reviewed 2018-01-16
id: colorMode
status: proposed
public: true
name: Color Mode
attributes:
 colorMode:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - color
 - colorTemperature
 - other
 type: ENUM
 values:
 - color
 - colorTemperature
 - other
commands: {}
version: 1

Configuration

Allow configuration of devices that support it

Definition

reviewed 2018-02-20
name: Configuration
status: live
attributes: {
 }
commands:
 configure:
 arguments: [
]
public: true
id: configuration
version: 1

Consumable

For devices with replaceable components

Definition

reviewed 2018-02-20
name: Consumable
status: proposed
attributes:
 consumableStatus:
 schema:
 type: object
 properties:
 value:
 $ref: ConsumableState
 required:
 - value
 type: ENUM
 values:
 - good
 - maintenance_required
 - missing
 - order
 - replace
 setter: setConsumableStatus
commands:
 setConsumableStatus:
 arguments:
 - name: status
 required: true
 schema:
 $ref: ConsumableState
 type: ENUM
 values:
 - good
 - maintenance_required
 - missing
 - order
 - replace
public: true
id: consumable
version: 1

Contact Sensor

Allows reading the value of a contact sensor device

Definition

reviewed 2018-01-09
name: Contact Sensor
status: live
attributes:
 contact:
 schema:
 type: object
 properties:
 value:
 $ref: ContactState
 required: ["value"]
 type: ENUM
 values:
 - closed
 - open
commands: {
 }
public: true
id: contactSensor
ocfResourceType: oic.r.sensor.contact
version: 1

Demand Response Load Control

Allows requests to be made to appliances to temporarily reduce their
energy usage to reduce demand on the power grid

Definition

name: Demand Response Load Control
status: proposed
attributes:
 drlcStatus:
 schema:
 type: object
 properties:
 value:
 $ref: DemandResponseLoadControlStatus
 required: ["value"]
 type: JSON_OBJECT
commands:
 requestDrlcAction:
 arguments:
 - name: drlcType
 required: true
 schema:
 $ref: DrlcType
 type: NUMBER
 - name: drlcLevel
 required: true
 schema:
 $ref: DrlcLevel
 type: NUMBER
 - name: start
 required: true
 schema:
 $ref: Iso8601Date
 type: STRING
 - name: duration
 required: true
 schema:
 $ref: PositiveInteger
 type: NUMBER
 - name: reportingPeriod
 schema:
 $ref: PositiveInteger
 type: NUMBER
 required: false
 overrideDrlcAction:
 arguments:
 - name: value
 required: true
 schema:
 type: boolean
 type: BOOLEAN

public: true
id: demandResponseLoadControl
ocfResourceType: oic.r.energy.drlc #https://oneiota.org/revisions/1761
version: 1

Dishwasher Mode

Allows for the control of the dishwasher.

Definition

name: Dishwasher Mode
status: proposed
attributes:
 dishwasherMode:
 schema:
 type: object
 properties:
 value:
 $ref: DishwasherMode
 required: ["value"]
 type: ENUM
 values:
 - auto
 - quick
 - rinse
 - dry
 setter: setDishwasherMode
commands:
 setDishwasherMode:
 arguments:
 - name: mode
 required: true
 schema:
 $ref: DishwasherMode
 type: ENUM
 values:
 - auto
 - quick
 - rinse
 - dry
public: true
id: dishwasherMode
ocfResourceType: x.com.st.mode.dishwasher
version: 1

Dishwasher Operating State

Allows for the control of the dishwasher operational state.

Definition

name: Dishwasher Operating State
status: proposed
attributes:
 machineState:
 schema:
 type: object
 properties:
 value:
 $ref: MachineState
 constraints:
 type: object
 properties:
 values:
 type: array
 items:
 $ref: MachineState
 required: ["value"]
 type: ENUM
 values:
 - pause
 - run
 - stop
 setter: setMachineState
 supportedMachineStates:
 schema:
 type: object
 properties:
 value:
 type: array
 items:
 $ref: MachineState
 requires:
 - value
 type: JSON_OBJECT
 dishwasherJobState:
 schema:
 type: object
 properties:
 value:
 $ref: DishwasherJobState
 constraints:
 type: object
 properties:
 values:
 type: array
 items:
 $ref: DishwasherJobState
 required: ["value"]
 type: ENUM
 values:
 - airwash
 - cooling
 - drying
 - finish
 - preDrain
 - prewash
 - rinse
 - spin
 - unknown
 - wash
 - wrinklePrevent
 completionTime:
 schema:
 type: object
 properties:
 value:
 $ref: Iso8601Date
 required:
 - value
 type: DATE
commands:
 setMachineState:
 arguments:
 - name: state
 required: true
 schema:
 $ref: MachineState
 type: ENUM
 values:
 - pause
 - run
 - stop
public: true
id: dishwasherOperatingState
ocfResourceType: x.com.st.operationalstate.dishwasher
version: 1

Door Control

Allow for the control of a door

Definition

reviewed 2018-02-20
name: Door Control
status: live
attributes:
 door:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - closed
 - closing
 - open
 - opening
 - unknown
 constraints:
 type: object
 properties:
 values:
 type: array
 items:
 type: string
 enum:
 - closed
 - closing
 - open
 - opening
 - unknown
 required:
 - value
 type: ENUM
 values:
 - closed
 - closing
 - open
 - opening
 - unknown
 enumCommands:
 - command: close
 value: closed
 - command: open
 value: open
commands:
 close:
 arguments: [
]
 open:
 arguments: [
]
public: true
id: doorControl
ocfResourceType: x.com.st.doorcontrol
version: 1

Dryer Mode

Allows for the control of the dryer.

Definition

name: Dryer Mode
status: proposed
attributes:
 dryerMode:
 schema:
 type: object
 properties:
 value:
 $ref: DryerMode
 constraints:
 type: object
 properties:
 values:
 type: array
 items:
 $ref: DryerMode
 required: ["value"]
 type: ENUM
 values:
 - regular
 - lowHeat
 - highHeat
 setter: setDryerMode
commands:
 setDryerMode:
 arguments:
 - name: mode
 required: true
 schema:
 $ref: DryerMode
 type: ENUM
 values:
 - regular
 - lowHeat
 - highHeat
public: true
id: dryerMode
ocfResourceType: x.com.st.mode.dryer
version: 1

Dryer Operating State

Allows for the control of the dryer operational state.

Definition

name: Dryer Operating State
status: proposed
attributes:
 machineState:
 schema:
 type: object
 properties:
 value:
 $ref: MachineState
 constraints:
 type: object
 properties:
 values:
 type: array
 items:
 $ref: MachineState
 required: ["value"]
 type: ENUM
 values:
 - pause
 - run
 - stop
 setter: setMachineState
 supportedMachineStates:
 schema:
 type: object
 properties:
 value:
 type: array
 items:
 $ref: MachineState
 required: ["value"]
 type: JSON_OBJECT
 dryerJobState:
 schema:
 type: object
 properties:
 value:
 $ref: DryerJobState
 constraints:
 type: object
 properties:
 values:
 type: array
 items:
 $ref: DryerJobState
 required: ["value"]
 type: ENUM
 values:
 - cooling
 - delayWash
 - drying
 - finished
 - none
 - weightSensing
 - wrinklePrevent
 completionTime:
 schema:
 type: object
 properties:
 value:
 $ref: Iso8601Date
 required:
 - value
 type: DATE
commands:
 setMachineState:
 arguments:
 - name: state
 required: true
 schema:
 $ref: MachineState
 type: ENUM
 values:
 - pause
 - run
 - stop
public: true
id: dryerOperatingState
ocfResourceType: x.com.st.operationalstate.dryer
version: 1

Dust Sensor

Gets the reading of the dust sensor.

Definition

name: Dust Sensor
status: proposed
attributes:
 fineDustLevel:
 schema:
 type: object
 properties:
 value:
 $ref: PositiveInteger
 required: ["value"]
 type: NUMBER
 dustLevel:
 schema:
 type: object
 properties:
 value:
 $ref: PositiveInteger
 required: ["value"]
 type: NUMBER
commands: {
 }
public: true
id: dustSensor
ocfResourceType: x.com.st.dustlevel
version: 1

Energy Meter

Read the energy consumption of an energy metering device

Definition

reviewed 2018-02-20
name: Energy Meter
status: live
attributes:
 energy:
 schema:
 type: object
 properties:
 value:
 type: number
 unit:
 type: string
 enum:
 - kWh
 default: kWh
 required:
 - value
 type: NUMBER
commands: {
 }
public: true
id: energyMeter
ocfResourceType: x.com.st.energymeter
version: 1

Estimated Time Of Arrival

Allow access to estimated time of arrival values for devices that
support it, for example automobiles

Definition

reviewed 2018-02-20
name: Estimated Time Of Arrival
status: proposed
attributes:
 eta:
 schema:
 type: object
 properties:
 value:
 $ref: Iso8601Date
 required:
 - value
 type: DATE
commands: {
 }
public: true
id: estimatedTimeOfArrival
version: 1

Execute

Allows for raw messages to be passed to a device.

Definition

name: Execute
status: proposed
attributes:
 data:
 schema:
 type: object
 properties:
 value:
 $ref: JsonObject
 required:
 - value
 type: JSON_OBJECT
 actedOnBy:
 - 'execute'
commands:
 'execute':
 arguments:
 - name: command
 required: true
 type: STRING
 schema:
 $ref: String
 - name: args
 schema:
 $ref: JsonObject
 type: JSON_OBJECT
 required: false
public: true
id: execute
version: 1

Fan Speed

Allows for the control of the fan speed.

Definition

name: Fan Speed
status: proposed
attributes:
 fanSpeed:
 schema:
 type: object
 properties:
 value:
 $ref: PositiveInteger
 required: ["value"]
 type: NUMBER
 setter: setFanSpeed
commands:
 setFanSpeed:
 arguments:
 - name: speed
 required: true
 schema:
 $ref: PositiveInteger
 type: NUMBER
public: true
id: fanSpeed
ocfResourceType: x.com.st.fanspeed
version: 1

Filter Status

Gets the status of the filter.

Definition

name: Filter Status
status: proposed
attributes:
 filterStatus:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - normal
 - replace
 required: ["value"]
 type: ENUM
 values:
 - normal
 - replace
commands: {
 }
public: true
id: filterStatus
ocfResourceType: x.com.st.filter
version: 1

Garage Door Control

Allow for the control of a garage door. Deprecated in favor of Door
Control.

Definition

reviewed 2018-02-20
name: Garage Door Control
status: deprecated
attributes:
 door:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - closed
 - closing
 - open
 - opening
 - unknown
 constraints:
 type: object
 properties:
 values:
 type: array
 items:
 type: string
 enum:
 - closed
 - closing
 - open
 - opening
 - unknown
 required:
 - value
 type: ENUM
 values:
 - closed
 - closing
 - open
 - opening
 - unknown
 enumCommands:
 - command: close
 value: closed
 - command: open
 value: open
commands:
 close:
 arguments: [
]
 open:
 arguments: [
]
public: true
id: garageDoorControl
ocfResourceType: x.com.st.garagedoorcontrol
version: 1

Geolocation

Gets the value of the geo location.

Definition

id: geolocation
name: Geolocation
status: proposed
public: true
attributes:
 latitude:
 schema:
 type: object
 properties:
 value:
 type: integer
 maximum: 90
 minimum: -90
 type: NUMBER
 longitude:
 schema:
 type: object
 properties:
 value:
 type: integer
 maximum: 180
 minimum: -180
 type: NUMBER
 method:
 schema:
 type: object
 properties:
 value:
 $ref: String
 type: STRING
 accuracy:
 schema:
 type: object
 properties:
 value:
 type: number
 minimum: 0
 # maximum: ??
 type: NUMBER
 altitudeAccuracy:
 schema:
 type: object
 properties:
 value:
 type: number
 minimum: 0
 # maximum: ??
 type: NUMBER
 heading:
 schema:
 type: object
 properties:
 value:
 type: number
 minimum: 0
 maximum: 360
 type: NUMBER
 speed:
 schema:
 type: object
 properties:
 value:
 type: number
 minimum: 0
 # maximum: ??
 type: NUMBER
 lastUpdateTime:
 schema:
 type: object
 properties:
 value:
 $ref: PositiveInteger
 type: NUMBER

commands: {
 }
version: 1

Holdable Button

A device with one or more holdable buttons. Deprecated in favor of
Button.

Definition

reviewed 2018-2-20
name: Holdable Button
status: deprecated
attributes:
 button:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - held
 - pushed
 required:
 - value
 type: ENUM
 values:
 - held
 - pushed
 numberOfButtons:
 schema:
 type: object
 properties:
 value:
 $ref: PositiveInteger
 required:
 - value
 type: NUMBER
commands: {
 }
public: true
id: holdableButton
version: 1

Illuminance Measurement

Gives the illuminance reading from devices that support it

Definition

reviewed 2018-01-09
name: Illuminance Measurement
status: live
attributes:
 illuminance:
 schema:
 type: object
 properties:
 value:
 type: number
 minimum: 0
 maximum: 100000
 unit:
 type: string
 enum:
 - lux
 default: lux
 required: ["value"]
 type: NUMBER
 unit: lux
commands: {
 }
public: true
id: illuminanceMeasurement
ocfResourceType: oic.r.sensor.illuminance
version: 1

Image Capture

Allows for the capture of an image on devices that support it

Definition

reviewed 2018-2-20
name: Image Capture
status: proposed
attributes:
 image:
 schema:
 type: object
 properties:
 value:
 $ref: URL
 required:
 - value
 type: STRING
 setter: take
commands:
 take:
 arguments: [
]
public: true
id: imageCapture
ocfResourceType: x.com.st.imagecapture
version: 1

Indicator

The indicator capability gives you the ability to set the indicator LED
light on a Z-Wave switch. As such, the most common use case for the
indicator capability is in a Device Handler.

Definition

reviewed 2018-2-20
name: Indicator
status: deprecated
attributes:
 indicatorStatus:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - never
 - when off
 - when on
 required:
 - value
 type: ENUM
 values:
 - never
 - when off
 - when on
 enumCommands:
 - command: indicatorNever
 value: never
 - command: indicatorWhenOff
 value: when off
 - command: indicatorWhenOn
 value: when on
commands:
 indicatorNever:
 arguments: [
]
 indicatorWhenOff:
 arguments: [
]
 indicatorWhenOn:
 arguments: [
]
public: true
id: indicator
version: 1

Infrared Level

Allows for the control of the infrared level attribute of a device

Definition

reviewed 2018-2-20
name: Infrared Level
status: live
attributes:
 infraredLevel:
 schema:
 $ref: Percent
 type: NUMBER
 setter: setInfraredLevel
commands:
 setInfraredLevel:
 arguments:
 - name: level
 required: true
 schema:
 type: number
 minimum: 0
 maximum: 100
 type: NUMBER
public: true
id: infraredLevel
version: 1

Light

Allows for the control of a light device

Definition

reviewed 2018-01-11
name: Light
status: deprecated
attributes:
 switch:
 schema:
 type: object
 properties:
 value:
 $ref: SwitchState
 required: ["value"]
 type: ENUM
 values:
 - 'off'
 - 'on'
 enumCommands:
 - command: 'on'
 value: 'on'
 - command: 'off'
 value: 'off'
commands:
 'off':
 arguments: [
]
 'on':
 arguments: [
]
public: true
id: light
version: 1

Lock Only

Allow for the lock control of a lock device

Definition

reviewed 2018-02-22
name: Lock Only
status: deprecated
attributes:
 lock:
 schema:
 type: object
 properties:
 value:
 $ref: LockState
 required:
 - value
 type: ENUM
 values:
 - locked
 - unknown
 - unlocked
 - unlocked with timeout
 enumCommands:
 - command: lock
 value: locked
commands:
 lock:
 arguments: [
]
public: true
id: lockOnly
version: 1

Lock

Allow for the control of a lock device

Definition

reviewed 2018-02-22
name: Lock
status: proposed
attributes:
 lock:
 schema:
 type: object
 properties:
 value:
 $ref: LockState
 data:
 type: object
 properties:
 method:
 type: string
 enum:
 - manual
 - keypad
 - auto
 - command
 codeId:
 type: string
 timeout:
 $ref: Iso8601Date
 required:
 - value
 type: ENUM
 values:
 - locked
 - unknown
 - unlocked
 - unlocked with timeout
 enumCommands:
 - command: lock
 value: locked
 - command: unlock
 value: unlocked
commands:
 lock:
 arguments: [
]
 unlock:
 arguments: [
]
public: true
id: lock
ocfResourceType: oic.r.lock.status
version: 1

Media Controller

Allows for the control of a media controller device

Definition

reviewed 2018-02-22
name: Media Controller
status: proposed
attributes:
 activities:
 schema:
 type: object
 properties:
 value:
 $ref: JsonObject
 required:
 - value
 type: JSON_OBJECT
 actedOnBy:
 - startActivity
 currentActivity:
 schema:
 type: object
 properties:
 value:
 $ref: String
 required:
 - value
 type: STRING
 actedOnBy:
 - startActivity
commands:
 startActivity:
 arguments:
 - type: STRING
 required: true
 schema:
 $ref: String
 name: activityId
public: true
id: mediaController
version: 1

Media Input Source

Allows for the control of the media input source.

Definition

name: Media Input Source
status: proposed
attributes:
 inputSource:
 schema:
 type: object
 properties:
 value:
 $ref: MediaSource
 required: ["value"]
 type: ENUM
 values:
 - AM
 - CD
 - FM
 - HDMI
 - HDMI2
 - USB
 - YouTube
 - aux
 - bluetooth
 - digital
 - melon
 - wifi
 setter: setInputSource
 supportedInputSources:
 schema:
 type: object
 properties:
 value:
 type: array
 items:
 $ref: MediaSource
 required: ["value"]

 type: JSON_OBJECT
commands:
 setInputSource:
 arguments:
 - name: mode
 required: true
 schema:
 $ref: MediaSource
 type: ENUM
 values:
 - AM
 - CD
 - FM
 - HDMI
 - HDMI2
 - USB
 - YouTube
 - aux
 - bluetooth
 - digital
 - melon
 - wifi
public: true
id: mediaInputSource
ocfResourceType: x.com.st.mediainputsource
version: 1

Media Playback Repeat

Allows for the control of the media playback repeat.

Definition

name: Media Playback Repeat
status: proposed
attributes:
 playbackRepeatMode:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - all
 - 'off'
 - one
 required: ["value"]
 type: ENUM
 values:
 - all
 - 'off'
 - one
 setter: setPlaybackRepeatMode
commands:
 setPlaybackRepeatMode:
 arguments:
 - name: mode
 required: true
 schema:
 type: string
 enum:
 - all
 - 'off'
 - one
 type: ENUM
 values:
 - all
 - 'off'
 - one
public: true
id: mediaPlaybackRepeat
ocfResourceType: x.com.st.mediarepeat
version: 1

Media Playback Shuffle

Allows for the control of media playback shuffle.

Definition

name: Media Playback Shuffle
status: proposed
attributes:
 playbackShuffle:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - disabled
 - enabled
 required: ["value"]
 type: ENUM
 values:
 - disabled
 - enabled
 setter: setPlaybackShuffle
commands:
 setPlaybackShuffle:
 arguments:
 - name: shuffle
 required: true
 schema:
 type: string
 enum:
 - disabled
 - enabled
 type: ENUM
 values:
 - disabled
 - enabled
public: true
id: mediaPlaybackShuffle
ocfResourceType: x.com.st.mediashuffle
version: 1

Media Playback

Allows for the control of the media playback.

Definition

name: Media Playback
status: proposed
attributes:
 level:
 schema:
 type: object
 properties:
 value:
 $ref: PositiveInteger
 type: NUMBER
 playbackStatus:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - pause
 - play
 - stop
 type: ENUM
 values:
 - pause
 - play
 - stop
 setter: setPlaybackStatus
 enumCommands:
 - command: play
 value: play
 - command: pause
 value: pause
 - command: stop
 value: stop
commands:
 setPlaybackStatus:
 arguments:
 - name: status
 required: true
 schema:
 type: string
 enum:
 - pause
 - play
 - stop
 type: ENUM
 values:
 - pause
 - play
 - stop
 play:
 arguments: [
]
 pause:
 arguments: [
]
 stop:
 arguments: [
]
public: true
id: mediaPlayback
ocfResourceType: x.com.st.mediaplayer
version: 1

Media Presets

Allows setting a preset from a know list of presets for the media player

Definition

name: Media Presets
status: proposed
attributes:
 presets:
 schema:
 type: object
 properties:
 value:
 type: array
 items:
 $ref: MediaPreset
 type: JSON_OBJECT
commands:
 selectPreset:
 arguments:
 - name: presetId
 required: true
 schema:
 $ref: String
 type: STRING
 playPreset:
 arguments:
 - name: presetId
 required: true
 schema:
 $ref: String
 type: STRING
public: true
id: mediaPresets
version: 1

Media Track Control

Allows for the media track control.

Definition

name: Media Track Control
status: proposed
attributes: {
 }
commands:
 nextTrack:
 arguments: [
]
 previousTrack:
 arguments: [
]
public: true
id: mediaTrackControl
ocfResourceType: x.com.st.mediatrackcontrol
version: 1

Momentary

Allows for the control of a momentary switch device

Definition

reviewed 2018-02-22
name: Momentary
status: live
attributes: {
 }
commands:
 push:
 arguments: [
]
public: true
id: momentary
ocfResourceType: x.com.st.momentary
version: 1

Motion Sensor

Allows for the ability to read motion sensor device states

Definition

reviewed 2018-01-09
name: Motion Sensor
status: live
attributes:
 motion:
 schema:
 type: object
 properties:
 value:
 $ref: ActivityState
 required: ["value"]
 type: ENUM
 values:
 - active
 - inactive
commands: {
 }
public: true
id: motionSensor
ocfResourceType: oic.r.sensor.motion
version: 1

Music Player

Allows for control of a music playing device

Definition

reviewed 2018-02-22
name: Music Player
status: deprecated
attributes:
 level:
 schema:
 type: object
 properties:
 value:
 $ref: PositiveInteger
 type: NUMBER
 setter: setLevel
 mute:
 schema:
 type: object
 properties:
 value:
 $ref: MuteState
 type: ENUM
 values:
 - muted
 - unmuted
 enumCommands:
 - command: mute
 value: muted
 - command: unmute
 value: unmuted
 status:
 schema:
 type: object
 properties:
 value:
 $ref: String
 type: STRING
 actedOnBy:
 - nextTrack
 - pause
 - play
 - playTrack
 - previousTrack
 - restoreTrack
 - resumeTrack
 - setTrack
 - stop
 trackData:
 schema:
 type: object
 properties:
 value:
 $ref: JsonObject
 type: JSON_OBJECT
 actedOnBy:
 - nextTrack
 - pause
 - play
 - playTrack
 - previousTrack
 - restoreTrack
 - resumeTrack
 - setTrack
 - stop
 trackDescription:
 schema:
 type: object
 properties:
 value:
 $ref: String
 type: STRING
commands:
 mute:
 arguments: [
]
 nextTrack:
 arguments: [
]
 pause:
 arguments: [
]
 play:
 arguments: [
]
 playTrack:
 arguments:
 - name: trackToPlay
 required: true
 schema:
 $ref: String
 type: STRING
 previousTrack:
 arguments: [
]
 restoreTrack:
 arguments:
 - name: trackToRestore
 required: true
 schema:
 $ref: String
 type: STRING
 resumeTrack:
 arguments:
 - name: trackToResume
 required: true
 schema:
 $ref: String
 type: STRING
 setLevel:
 arguments:
 - name: level
 required: true
 schema:
 $ref: PositiveInteger
 type: NUMBER
 setTrack:
 arguments:
 - name: trackToSet
 required: true
 schema:
 $ref: String
 type: STRING
 stop:
 arguments: [
]
 unmute:
 arguments: [
]
public: true
id: musicPlayer
version: 1

Notification

Allows for displaying notifications on devices that allow notifications
to be displayed

Definition

name: Notification
status: live
attributes: {
 }
commands:
 deviceNotification:
 arguments:
 - name: notification
 required: true
 schema:
 $ref: String
 type: STRING
public: true
id: notification
version: 1

Odor Sensor

Gets the odor sensor reading.

Definition

name: Odor Sensor
status: proposed
attributes:
 odorLevel:
 schema:
 type: object
 properties:
 value:
 $ref: PositiveInteger
 required: ["value"]
 type: NUMBER
commands: {
 }
public: true
id: odorSensor
ocfResourceType: x.com.st.gaslevel
version: 1

Outlet

Allows for the control of an outlet device. Deprecated in favor of
Switch.

Definition

reviewed 2018-2-20
name: Outlet
status: deprecated
attributes:
 switch:
 schema:
 type: object
 properties:
 value:
 $ref: SwitchState
 required:
 - value
 type: ENUM
 values:
 - 'off'
 - 'on'
 enumCommands:
 - command: 'on'
 value: 'on'
 - command: 'off'
 value: 'off'
commands:
 'off':
 arguments: [
]
 'on':
 arguments: [
]
public: true
id: outlet
version: 1

Oven Mode

Allows for the control of the oven mode.

Definition

name: Oven Mode
status: proposed
attributes:
 ovenMode:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - heating
 - grill
 - warming
 - defrosting
 constraints:
 constraints:
 type: object
 properties:
 values:
 type: array
 items:
 type: string
 enum:
 - heating
 - grill
 - warming
 - defrosting
 required: ["value"]
 type: ENUM
 values:
 - heating
 - grill
 - warming
 - defrosting
 setter: setOvenMode
commands:
 setOvenMode:
 arguments:
 - name: mode
 required: true
 schema:
 type: string
 enum:
 - heating
 - grill
 - warming
 - defrosting
 type: ENUM
 values:
 - heating
 - grill
 - warming
 - defrosting
public: true
id: ovenMode
ocfResourceType: x.com.st.mode.oven
version: 1

Oven Operating State

Allows for the control of the oven operational state.

Definition

name: Oven Operating State
status: proposed
attributes:
 machineState:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - ready
 - running
 - paused
 type: ENUM
 values:
 - ready
 - running
 - paused
 setter: setMachineState
 actedOnBy:
 - stop
 supportedMachineStates:
 schema:
 type: object
 properties:
 value:
 type: array
 items:
 type: string
 enum:
 - ready
 - running
 - paused
 type: JSON_OBJECT
 ovenJobState:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - cleaning
 - cooking
 - cooling
 - draining
 - preheat
 - ready
 - rinsing
 type: ENUM
 values:
 - cleaning
 - cooking
 - cooling
 - draining
 - preheat
 - ready
 - rinsing
 completionTime:
 schema:
 type: object
 properties:
 value:
 $ref: Iso8601Date
 required:
 - value
 type: DATE
 operationTime:
 schema:
 type: object
 properties:
 value:
 $ref: PositiveInteger
 type: NUMBER
 actedOnBy:
 - stop
 progress:
 schema:
 $ref: IntegerPercent
 type: NUMBER
commands:
 setMachineState:
 arguments:
 - name: state
 required: true
 schema:
 type: string
 enum:
 - stop
 type: ENUM
 values:
 - stop
 stop:
 arguments: [
]
public: true
id: ovenOperatingState
ocfResourceType: x.com.st.operationalstate.oven
version: 1

Oven Setpoint

Allows for the control of the oven set point.

Definition

name: Oven Setpoint
status: proposed
attributes:
 ovenSetpoint:
 schema:
 type: object
 properties:
 value:
 $ref: PositiveInteger
 required: ["value"]
 type: NUMBER
 setter: setOvenSetpoint
commands:
 setOvenSetpoint:
 arguments:
 - name: setpoint
 required: true
 schema:
 $ref: PositiveInteger
 type: NUMBER
public: true
id: ovenSetpoint
ocfResourceType: x.com.st.temperature.oven
version: 1

pH Measurement

Read the pH value off of a pH measurement capable device

Definition

reviewed 2018-2-20
name: pH Measurement
status: live
attributes:
 pH:
 schema:
 type: object
 properties:
 value:
 type: number
 minimum: 0
 maximum: 14
 unit:
 type: string
 enum:
 - pH
 default: pH
 required:
 - value
 type: NUMBER
commands: {
 }
public: true
id: pHMeasurement
version: 1

Polling

Allows for the polling of devices that support it. Deprecated, devices
should schedule their own polling using the scheduling API or use the
Ping capability.

Definition

reviewed 2018-2-20
name: Polling
status: deprecated
attributes: {
 }
commands:
 poll:
 arguments: [
]
public: true
id: polling
version: 1

Power Consumption Report

Allows periodically reporting the energy and power consumption

Definition

name: Power Consumption Report
status: proposed
attributes:
 powerConsumption:
 schema:
 type: object
 properties:
 value:
 $ref: PowerConsumption
 required: ["value"]
 type: JSON_OBJECT
commands: {
}

public: true
id: powerConsumptionReport
version: 1

Power Meter

Allows for reading the power consumption from devices that report it

Definition

reviewed 2018-02-20
name: Power Meter
status: live
attributes:
 power:
 schema:
 type: object
 properties:
 value:
 type: number
 unit:
 type: string
 enum:
 - W
 default: W
 required:
 - value
 type: NUMBER
commands: {
 }
public: true
id: powerMeter
ocfResourceType: x.com.st.powermeter
version: 1

Power Source

Gives the ability to determine the current power source of the device

Definition

name: Power Source
status: live
attributes:
 powerSource:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - battery
 - dc
 - mains
 - unknown
 required: ["value"]
 type: ENUM
 values:
 - battery
 - dc
 - mains
 - unknown
commands: {
 }
public: true
id: powerSource
version: 1

Presence Sensor

The ability to see the current status of a presence sensor device

Definition

reviewed 2018-01-09
name: Presence Sensor
status: live
attributes:
 presence:
 schema:
 type: object
 properties:
 value:
 $ref: PresenceState
 required: ["value"]
 type: ENUM
 values:
 - not present
 - present
commands: {
 }
public: true
id: presenceSensor
ocfResourceType: oic.r.sensor.presence
version: 1

Rapid Cooling

Allows for the control of rapid cooling.

Definition

name: Rapid Cooling
status: proposed
attributes:
 rapidCooling:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - 'off'
 - 'on'
 required: ["value"]
 type: ENUM
 values:
 - 'off'
 - 'on'
 setter: setRapidCooling
commands:
 setRapidCooling:
 arguments:
 - name: rapidCooling
 required: true
 schema:
 type: string
 enum:
 - 'off'
 - 'on'
 type: ENUM
 values:
 - 'off'
 - 'on'
public: true
id: rapidCooling
ocfResourceType: x.com.st.rapidcooling
version: 1

Refresh

Allow the execution of the refresh command for devices that support it

Definition

reviewed 2018-2-13
name: Refresh
status: live
attributes: {
 }
commands:
 refresh:
 arguments: [
]
public: true
id: refresh
version: 1

Refrigeration Setpoint

Allows for the control of the refrigeration set point.

Definition

name: Refrigeration Setpoint
status: proposed
attributes:
 refrigerationSetpoint:
 schema:
 $ref: Temperature
 type: NUMBER
 setter: setRefrigerationSetpoint
commands:
 setRefrigerationSetpoint:
 arguments:
 - name: setpoint
 required: true
 schema:
 $ref: TemperatureValue
 type: NUMBER
public: true
id: refrigerationSetpoint
ocfResourceType: x.com.st.temperature.refrigeration
version: 1

Relative Humidity Measurement

Allow reading the relative humidity from devices that support it

Definition

reviewed 2018-2-13
name: Relative Humidity Measurement
status: live
attributes:
 humidity:
 schema:
 $ref: Percent
 type: NUMBER
commands: {
 }
public: true
id: relativeHumidityMeasurement
ocfResourceType: oic.r.humidity
version: 1

Relay Switch

Allows for the control of a relay switch device. This is deprecated
please use switch instead.

Definition

reviewed 2018-01-11
name: Relay Switch
status: deprecated
attributes:
 switch:
 schema:
 type: object
 properties:
 value:
 $ref: SwitchState
 required: ["value"]
 type: ENUM
 values:
 - 'off'
 - 'on'
 enumCommands:
 - command: 'on'
 value: 'on'
 - command: 'off'
 value: 'off'
commands:
 'off':
 arguments: [
]
 'on':
 arguments: [
]
public: true
id: relaySwitch
version: 1

Robot Cleaner Cleaning Mode

Allows for the control of the robot cleaner cleaning mode.

Definition

name: Robot Cleaner Cleaning Mode
status: proposed
attributes:
 robotCleanerCleaningMode:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - auto
 - part
 - repeat
 - manual
 - stop
 - map
 required: ["value"]
 type: ENUM
 values:
 - auto
 - part
 - repeat
 - manual
 - stop
 - map
 setter: setRobotCleanerCleaningMode
commands:
 setRobotCleanerCleaningMode:
 arguments:
 - name: mode
 required: true
 schema:
 type: string
 enum:
 - auto
 - part
 - repeat
 - manual
 - stop
 type: ENUM
 values:
 - auto
 - part
 - repeat
 - manual
 - stop
public: true
id: robotCleanerCleaningMode
ocfResourceType: x.com.st.robot.cleaner.cleaning
version: 1

Robot Cleaner Movement

Allows for the control of the robot cleaner movement.

Definition

name: Robot Cleaner Movement
status: proposed
attributes:
 robotCleanerMovement:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - homing
 - idle
 - charging
 - alarm
 - powerOff
 - reserve
 - point
 - after
 - cleaning
 required: ["value"]
 type: ENUM
 values:
 - homing
 - idle
 - charging
 - alarm
 - powerOff
 - reserve
 - point
 - after
 - cleaning
 setter: setRobotCleanerMovement
commands:
 setRobotCleanerMovement:
 arguments:
 - name: mode
 required: true
 schema:
 type: string
 enum:
 - homing
 type: ENUM
 values:
 - homing
public: true
id: robotCleanerMovement
ocfResourceType: x.com.st.robot.cleaner.movement
version: 1

Robot Cleaner Turbo Mode

Allows for the control of the robot cleaner turbo mode.

Definition

name: Robot Cleaner Turbo Mode
status: proposed
attributes:
 robotCleanerTurboMode:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - 'on'
 - 'off'
 - 'silence'
 required: ["value"]
 type: ENUM
 values:
 - 'on'
 - 'off'
 - 'silence'
 setter: setRobotCleanerTurboMode
commands:
 setRobotCleanerTurboMode:
 arguments:
 - name: mode
 required: true
 schema:
 type: string
 enum:
 - 'on'
 - 'off'
 - 'silence'
 type: ENUM
 values:
 - 'on'
 - 'off'
 - 'silence'
public: true
id: robotCleanerTurboMode
ocfResourceType: x.com.st.robot.cleaner.turbo
version: 1

Sensor

The Sensor capability is a “tagging” capability. It defines no
attributes or commands. In SmartThings terms, it represents that a
Device has attributes.

Definition

reviewed 2018-01-11
name: Sensor
status: deprecated
attributes: {
 }
commands: {
 }
public: true
id: sensor
version: 1

Shock Sensor

A Device that senses whether or not there is a shock

Definition

reviewed 2018-01-11
name: Shock Sensor
status: deprecated
attributes:
 shock:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - clear
 - detected
 required: ["value"]
 type: ENUM
 values:
 - clear
 - detected
commands: {
 }
public: true
id: shockSensor
version: 1

Signal Strength

Gives the ability to read the signal stregth of Devices that support it

Definition

reviewed 2018-2-13
name: Signal Strength
status: live
attributes:
 lqi:
 schema:
 type: object
 properties:
 value:
 type: integer
 minimum: 0
 maximum: 255
 required:
 - value
 type: NUMBER
 rssi:
 schema:
 type: object
 properties:
 value:
 type: number
 minimum: -200
 maximum: 0
 unit:
 type: string
 enum:
 - dBm
 default: dBm
 required:
 - value
 type: NUMBER
commands: {
 }
public: true
id: signalStrength
ocfResourceType: x.com.st.signalstrength
version: 1

Sleep Sensor

A Device that senses whether or not someone is sleeping

Definition

reviewed 2018-01-11
name: Sleep Sensor
status: live
attributes:
 sleeping:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - not sleeping # if ever replaced deal with this space (awake)
 - sleeping
 required: ["value"]
 type: ENUM
 values:
 - not sleeping
 - sleeping
commands: {
 }
public: true
id: sleepSensor
version: 1

Smoke Detector

A device that detects the presence or absence of smoke.

Definition

reviewed 2018-01-09
name: Smoke Detector
status: live
attributes:
 smoke:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - clear
 - detected
 - tested
 required: ["value"]
 type: ENUM
 values:
 - clear
 - detected
 - tested
commands: {
 }
public: true
id: smokeDetector
ocfResourceType: x.com.st.smokedetector
version: 1

Sound Pressure Level

Gets the value of the sound pressure level.

Definition

reviewed 2018-2-13
name: Sound Pressure Level
status: proposed
attributes:
 soundPressureLevel:
 schema:
 type: object
 properties:
 value:
 type: number
 required:
 - value
 type: NUMBER
commands: {
 }
public: true
id: soundPressureLevel
version: 1

Sound Sensor

A Device that senses sound

Definition

reviewed 2018-01-11
name: Sound Sensor
status: live
attributes:
 sound:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - detected
 - not detected
 required: ["value"]
 type: ENUM
 values:
 - detected
 - not detected
commands: {
 }
public: true
id: soundSensor
ocfResourceType: x.com.st.soundsensor
version: 1

Speech Recognition

Gets the spoken phrase string.

Definition

reviewed 2018-2-13
name: Speech Recognition
status: proposed
attributes:
 phraseSpoken:
 schema:
 type: object
 properties:
 value:
 type: string
 maxLength: 1000
 required:
 - value
 type: STRING
commands: {
 }
public: true
id: speechRecognition
version: 1

Speech Synthesis

Allows for the control by speech.

Definition

reviewed 2018-2-13
name: Speech Synthesis
status: proposed
attributes: {
 }
commands:
 speak:
 arguments:
 - name: phrase
 required: true
 schema:
 type: string
 maxLength: 1000
 type: STRING
public: true
id: speechSynthesis
version: 1

Step Sensor

A Device that works as a step counter

Definition

reviewed 2018-01-11
name: Step Sensor
status: proposed
attributes:
 goal:
 schema:
 type: object
 properties:
 value:
 $ref: PositiveInteger
 required: ["value"]
 type: NUMBER
 steps:
 schema:
 type: object
 properties:
 value:
 $ref: PositiveInteger
 required: ["value"]
 type: NUMBER
commands: {
 }
public: true
id: stepSensor
version: 1

Switch Level

Allows for the control of the level attribute of a light

Definition

reviewed 2018-01-09 pending decision on rate
name: Switch Level
status: live
attributes:
 level:
 schema:
 $ref: IntegerPercent
 type: NUMBER
 setter: setLevel
commands:
 setLevel:
 arguments:
 - name: level
 schema:
 type: integer
 minimum: 0
 maximum: 100
 type: NUMBER
 required: true
 - name: rate
 schema:
 $ref: PositiveInteger
 type: NUMBER
 required: false
public: true
id: switchLevel
ocfResourceType: oic.r.light.dimming
version: 1

Switch

Allows for the control of a switch device

Definition

reviewed 2018-01-09
name: Switch
status: live
attributes:
 switch:
 schema:
 type: object
 properties:
 value:
 $ref: SwitchState
 required: ["value"]
 type: ENUM
 values:
 - 'off'
 - 'on'
 enumCommands:
 - command: 'on'
 value: 'on'
 - command: 'off'
 value: 'off'
commands:
 'off':
 arguments: [
]
 'on':
 arguments: [
]
public: true
id: switch
ocfResourceType: x.com.st.powerswitch
version: 1

Tamper Alert

Gets the value of the tamper alert.

Definition

reviewed 2018-2-13
name: Tamper Alert
status: live
attributes:
 tamper:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - clear
 - detected
 required:
 - value
 type: ENUM
 values:
 - clear
 - detected
commands: {
 }
public: true
id: tamperAlert
ocfResourceType: x.com.st.tamperalert
version: 1

Temperature Measurement

Get the temperature from a Device that reports current temperature

Definition

reviewed 2018-01-30
name: Temperature Measurement
status: live
attributes:
 temperature:
 schema:
 type: object
 properties:
 value:
 $ref: TemperatureValue
 unit:
 $ref: TemperatureUnit
 required: ["value", "unit"]
 type: NUMBER
commands: {
 }
public: true
id: temperatureMeasurement
ocfResourceType: x.com.st.temperature.measured
version: 1

Thermostat Cooling Setpoint

Allows for setting the cooling setpoint on a thermostat

Definition

reviewed 2018-01-30
name: Thermostat Cooling Setpoint
status: live
attributes:
 coolingSetpoint:
 schema:
 $ref: Temperature
 type: NUMBER
 setter: setCoolingSetpoint
commands:
 setCoolingSetpoint:
 arguments:
 - name: setpoint
 required: true
 schema:
 $ref: TemperatureValue
 type: NUMBER
public: true
id: thermostatCoolingSetpoint
ocfResourceType: x.com.st.temperature.cooling
version: 1

Thermostat Fan Mode

Definition

reviewed 2018-01-30
name: Thermostat Fan Mode
status: live
attributes:
 thermostatFanMode:
 schema:
 type: object
 properties:
 value:
 $ref: ThermostatFanMode
 required:
 - value
 type: ENUM
 values:
 - auto
 - circulate
 - followschedule
 - 'on'
 setter: setThermostatFanMode
 enumCommands:
 - command: fanAuto
 value: auto
 - command: fanCirculate
 value: circulate
 - command: fanOn
 value: 'on'
 supportedThermostatFanModes:
 schema:
 type: object
 properties:
 value:
 type: array
 items:
 $ref: ThermostatFanMode

 type: JSON_OBJECT
commands:
 fanAuto:
 arguments: [
]
 fanCirculate:
 arguments: [
]
 fanOn:
 arguments: [
]
 setThermostatFanMode:
 arguments:
 - name: mode
 required: true
 schema:
 $ref: ThermostatFanMode
 type: ENUM
 values:
 - auto
 - circulate
 - followschedule
 - 'on'
public: true
id: thermostatFanMode
ocfResourceType: x.com.st.mode.fan.thermostat
version: 1

Thermostat Heating Setpoint

Allows for setting the heating setpoint on a thermostat

Definition

reviewed 2018-01-30
name: Thermostat Heating Setpoint
status: live
attributes:
 heatingSetpoint:
 schema:
 $ref: Temperature
 type: NUMBER
 setter: setHeatingSetpoint
commands:
 setHeatingSetpoint:
 arguments:
 - name: setpoint
 required: true
 schema:
 $ref: TemperatureValue
 type: NUMBER
public: true
id: thermostatHeatingSetpoint
ocfResourceType: x.com.st.temperature.heating
version: 1

Thermostat Mode

Definition

reviewed 2018-01-30
name: Thermostat Mode
status: live
attributes:
 thermostatMode:
 schema:
 type: object
 properties:
 value:
 $ref: ThermostatMode
 required:
 - value
 type: ENUM
 values:
 - auto
 - eco
 - rush hour
 - cool
 - emergency heat
 - heat
 - 'off'
 setter: setThermostatMode
 enumCommands:
 - command: auto
 value: auto
 - command: cool
 value: cool
 - command: emergencyHeat
 value: emergency heat
 - command: heat
 value: heat
 - command: 'off'
 value: 'off'
 supportedThermostatModes:
 schema:
 type: object
 properties:
 value:
 type: array
 items:
 $ref: ThermostatMode
 type: JSON_OBJECT
commands:
 auto:
 arguments: [
]
 cool:
 arguments: [
]
 emergencyHeat:
 arguments: [
]
 heat:
 arguments: [
]
 'off':
 arguments: [
]
 setThermostatMode:
 arguments:
 - name: mode
 required: true
 schema:
 $ref: ThermostatMode
 type: ENUM
 values:
 - auto
 - eco
 - rush hour
 - cool
 - emergency heat
 - heat
 - 'off'
public: true
id: thermostatMode
ocfResourceType: x.com.st.mode.thermostat
version: 1

Thermostat Operating State

Gives the ability to see the current state that the thermostat is
operating in

Definition

reviewed 2018-01-30
name: Thermostat Operating State
status: live
attributes:
 thermostatOperatingState:
 schema:
 type: object
 properties:
 value:
 $ref: ThermostatOperatingState
 required:
 - value
 type: ENUM
 values:
 - cooling
 - fan only
 - heating
 - idle
 - pending cool
 - pending heat
 - vent economizer
commands: {
 }
public: true
id: thermostatOperatingState
ocfResourceType: x.com.st.operationalstate.thermostat
version: 1

Thermostat Setpoint

Gives the ability to read the current setpoint on a thermostat

Definition

reviewed 2018-01-30
name: Thermostat Setpoint
status: deprecated
attributes:
 thermostatSetpoint:
 schema:
 $ref: Temperature
 type: NUMBER
commands: {
 }
public: true
id: thermostatSetpoint
ocfResourceType: x.com.st.temperature.setpoint
version: 1

Thermostat

Allows for the control of a thermostat device

Definition

reviewed 2018-01-30
name: Thermostat
status: deprecated
attributes:
 coolingSetpoint:
 schema:
 $ref: Temperature
 type: NUMBER
 setter: setCoolingSetpoint
 coolingSetpointRange:
 schema:
 type: object
 properties:
 value:
 type: array
 items:
 - $ref: TemperatureValue
 - $ref: TemperatureValue
 minItems: 2
 maxItems: 2
 required:
 - value
 type: VECTOR3
 heatingSetpoint:
 schema:
 $ref: Temperature
 type: NUMBER
 setter: setHeatingSetpoint
 heatingSetpointRange:
 schema:
 type: object
 properties:
 value:
 type: array
 items:
 - $ref: TemperatureValue
 - $ref: TemperatureValue
 minItems: 2
 maxItems: 2
 required:
 - value
 type: VECTOR3
 schedule:
 schema:
 type: object
 properties:
 value:
 $ref: JsonObject
 required:
 - value
 type: JSON_OBJECT
 setter: setSchedule
 temperature:
 schema:
 $ref: Temperature
 type: NUMBER
 thermostatFanMode:
 schema:
 type: object
 properties:
 value:
 $ref: ThermostatFanMode
 required:
 - value
 type: ENUM
 values:
 - auto
 - circulate
 - followschedule
 - 'on'
 setter: setThermostatFanMode
 enumCommands:
 - command: fanAuto
 value: auto
 - command: fanCirculate
 value: circulate
 - command: fanOn
 value: 'on'
 supportedThermostatFanModes:
 schema:
 type: object
 properties:
 value:
 type: array
 items:
 $ref: ThermostatFanMode
 type: JSON_OBJECT
 thermostatMode:
 schema:
 type: object
 properties:
 value:
 $ref: ThermostatMode
 required:
 - value
 type: ENUM
 values:
 - auto
 - eco
 - rush hour
 - cool
 - emergency heat
 - heat
 - 'off'
 setter: setThermostatMode
 enumCommands:
 - command: auto
 value: auto
 - command: cool
 value: cool
 - command: emergencyHeat
 value: emergency heat
 - command: heat
 value: heat
 - command: 'off'
 value: 'off'
 supportedThermostatModes:
 schema:
 type: object
 properties:
 value:
 type: array
 items:
 $ref: ThermostatMode
 type: JSON_OBJECT
 thermostatOperatingState:
 schema:
 type: object
 properties:
 value:
 $ref: ThermostatOperatingState
 required:
 - value
 type: ENUM
 values:
 - cooling
 - fan only
 - heating
 - idle
 - pending cool
 - pending heat
 - vent economizer
 thermostatSetpoint:
 schema:
 $ref: Temperature
 type: NUMBER
 thermostatSetpointRange:
 schema:
 type: object
 properties:
 value:
 type: array
 items:
 - $ref: TemperatureValue
 - $ref: TemperatureValue
 minItems: 2
 maxItems: 2
 type: VECTOR3
commands:
 auto:
 arguments: [
]
 cool:
 arguments: [
]
 emergencyHeat:
 arguments: [
]
 fanAuto:
 arguments: [
]
 fanCirculate:
 arguments: [
]
 fanOn:
 arguments: [
]
 heat:
 arguments: [
]
 'off':
 arguments: [
]
 setCoolingSetpoint:
 arguments:
 - name: setpoint
 required: true
 schema:
 $ref: TemperatureValue
 type: NUMBER
 setHeatingSetpoint:
 arguments:
 - name: setpoint
 required: true
 schema:
 $ref: TemperatureValue
 type: NUMBER
 setSchedule:
 arguments:
 - name: schedule
 required: true
 schema:
 $ref: JsonObject
 type: JSON_OBJECT
 setThermostatFanMode:
 arguments:
 - name: fanmode
 required: true
 schema:
 $ref: ThermostatFanMode
 type: ENUM
 values:
 - auto
 - circulate
 - followschedule
 - 'on'
 setThermostatMode:
 arguments:
 - name: mode
 required: true
 schema:
 $ref: ThermostatMode
 type: ENUM
 values:
 - auto
 - eco
 - rush hour
 - cool
 - emergency heat
 - heat
 - 'off'
public: true
id: thermostat
version: 1

Three Axis

Gives the three axis coordinates for devices that support it

Definition

reviewed 2018-2-13
name: Three Axis
status: live
attributes:
 threeAxis:
 schema:
 type: object
 properties:
 value:
 type: array
 items:
 type: integer
 minimum: -10000
 maximum: 10000
 minItems: 3
 maxItems: 3
 unit:
 type: string
 enum:
 - mG
 default: mG
 required:
 - value
 type: VECTOR3
commands: {
 }
public: true
id: threeAxis
version: 1

Timed Session

Allows for the control of the timed session.

Definition

reviewed 2018-2-13
name: Timed Session
status: proposed
attributes:
 sessionStatus:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - canceled
 - paused
 - running
 - stopped
 constraints:
 type: object
 properties:
 values:
 type: array
 items:
 type: string
 enum:
 - canceled
 - paused
 - running
 - stopped
 required:
 - value
 type: ENUM
 values:
 - canceled
 - paused
 - running
 - stopped
 enumCommands:
 - command: cancel
 value: canceled
 - command: pause
 value: paused
 - command: start
 value: running
 - command: stop
 value: stopped
 completionTime:
 schema:
 type: object
 properties:
 value:
 $ref: Iso8601Date
 required:
 - value
 type: DATE
 setter: setCompletionTime
commands:
 cancel:
 arguments: [
]
 pause:
 arguments: [
]
 setCompletionTime:
 arguments:
 - name: completionTime
 required: true
 schema:
 $ref: Iso8601Date
 type: DATE
 start:
 arguments: [
]
 stop:
 arguments: [
]
public: true
id: timedSession
version: 1

Tone

Allows for the control of a device that can make an audible tone

Definition

reviewed 2018-02-15
name: Tone
status: live
attributes: {
 }
commands:
 beep:
 arguments: [
]
public: true
id: tone
ocfResourceType: x.com.st.tone
version: 1

Touch Sensor

Gives the ability to get the touched status for devices that are touch
sensitive. This has been deprecated in favor of the button
capability

Definition

reviewed 2018-01-11
name: Touch Sensor
status: deprecated
attributes:
 touch:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - touched
 type: ENUM
 values:
 - touched
commands: {
 }
public: true
id: touchSensor
version: 1

Tv Channel

Allows for the control of the TV channel.

Definition

name: Tv Channel
status: proposed
attributes:
 tvChannel:
 schema:
 type: object
 properties:
 value:
 $ref: String
 type: STRING
 setter: setTvChannel
 actedOnBy:
 - channelDown
 - channelUp
commands:
 setTvChannel:
 arguments:
 - name: channel
 required: true
 schema:
 $ref: String
 type: STRING
 channelUp:
 arguments: [
]
 channelDown:
 arguments: [
]
public: true
id: tvChannel
ocfResourceType: x.com.st.tvchannel
version: 1

Ultraviolet Index

Gives the ability to get the ultraviolet index from devices that report
it

Definition

reviewed 2018-02-15
name: Ultraviolet Index
status: live
attributes:
 ultravioletIndex:
 schema:
 type: object
 properties:
 value:
 type: number
 minimum: 0
 maximum: 255
 required: ["value"]
 type: NUMBER
commands: {
 }
public: true
id: ultravioletIndex
version: 1

Valve

Allows for the control of a valve device

Definition

reviewed 2018-02-15
name: Valve
status: live
attributes:
 valve:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - closed
 - open
 required: ["value"]
 type: ENUM
 values:
 - closed
 - open
 enumCommands:
 - command: close
 value: closed
 - command: open
 value: open
commands:
 close:
 arguments: [
]
 open:
 arguments: [
]
public: true
id: valve
ocfResourceType: x.com.st.valve
version: 1

Video Clips

Video clip capture

Definition

name: Video Clips
status: proposed
attributes:
 videoClip:
 schema:
 type: object
 properties:
 value:
 $ref: VideoClip
 required:
 - value
 type: JSON_OBJECT
 actedOnBy:
 - captureClip
commands:
 captureClip:
 arguments:
 - name: duration
 required: true
 schema:
 $ref: PositiveInteger
 type: NUMBER
 - name: preFetch
 required: true
 schema:
 $ref: PositiveInteger
 type: NUMBER
public: true
id: videoClips
version: 1

Video Stream

Allows for the control of the video stream.

Definition

name: Video Stream
status: proposed
attributes:
 stream:
 schema:
 type: object
 properties:
 value:
 $ref: JsonObject
 required:
 - value
 type: JSON_OBJECT
 actedOnBy:
 - startStream
 - stopStream
commands:
 startStream:
 arguments: [
]
 stopStream:
 arguments: [
]
public: true
id: videoStream
ocfResourceType: x.com.st.videostream
version: 1

Voltage Measurement

Get the value of voltage measured from devices that support it

Definition

reviewed 2018-02-15
name: Voltage Measurement
status: live
attributes:
 voltage:
 schema:
 type: object
 properties:
 value:
 $ref: Number
 unit:
 type: string
 enum:
 - V
 default: V
 required:
 - value
 type: NUMBER
commands: {
 }
public: true
id: voltageMeasurement
version: 1

Washer Mode

Allows for the control of the washer mode.

Definition

name: Washer Mode
status: proposed
attributes:
 washerMode:
 schema:
 type: object
 properties:
 value:
 $ref: WasherMode
 required: ["value"]
 type: ENUM
 values:
 - regular
 - heavy
 - rinse
 - spinDry
 setter: setWasherMode
commands:
 setWasherMode:
 arguments:
 - name: mode
 required: true
 schema:
 $ref: WasherMode
 type: ENUM
 values:
 - regular
 - heavy
 - rinse
 - spinDry
public: true
id: washerMode
ocfResourceType: x.com.st.mode.washer
version: 1

Washer Operating State

Allows for the control of the washer operational state.

Definition

name: Washer Operating State
status: proposed
attributes:
 machineState:
 schema:
 type: object
 properties:
 value:
 $ref: MachineState
 required: ["value"]
 type: ENUM
 values:
 - pause
 - run
 - stop
 setter: setMachineState
 supportedMachineStates:
 schema:
 type: object
 properties:
 value:
 type: array
 items:
 $ref: MachineState
 type: JSON_OBJECT
 washerJobState:
 schema:
 type: object
 properties:
 value:
 type: string
 enum:
 - airWash
 - cooling
 - delayWash
 - drying
 - finish
 - none
 - preWash
 - rinse
 - spin
 - wash
 - weightSensing
 - wrinklePrevent
 constraints:
 type: object
 properties:
 values:
 type: array
 items:
 type: string
 enum:
 - airWash
 - cooling
 - delayWash
 - drying
 - finish
 - none
 - preWash
 - rinse
 - spin
 - wash
 - weightSensing
 - wrinklePrevent
 required: ["value"]
 type: ENUM
 values:
 - airWash
 - cooling
 - delayWash
 - drying
 - finish
 - none
 - preWash
 - rinse
 - spin
 - wash
 - weightSensing
 - wrinklePrevent
 completionTime:
 schema:
 type: object
 properties:
 value:
 $ref: Iso8601Date
 required:
 - value
 type: DATE
commands:
 setMachineState:
 arguments:
 - name: state
 required: true
 schema:
 $ref: MachineState
 type: ENUM
 values:
 - pause
 - run
 - stop
public: true
id: washerOperatingState
ocfResourceType: x.com.st.operationalstate.washer
version: 1

Water Sensor

Get the status off of a water sensor device

Definition

reviewed 2018-01-09
name: Water Sensor
status: live
attributes:
 water:
 schema:
 type: object
 properties:
 value:
 $ref: MoistureState
 required: ["value"]
 type: ENUM
 values:
 - dry
 - wet
commands: {
 }
public: true
id: waterSensor
ocfResourceType: oic.r.sensor.water
version: 1

Window Shade

Allows for the control of the window shade.

Definition

reviewed 2018-02-15
name: Window Shade
status: proposed
attributes:
 windowShade:
 schema:
 type: object
 properties:
 value:
 $ref: OpenableState
 constraints:
 type: object
 properties:
 values:
 type: array
 items:
 $ref: OpenableState
 required:
 - value
 type: ENUM
 values:
 - closed
 - closing
 - open
 - opening
 - partially open
 - unknown
 enumCommands:
 - command: close
 value: closed
 - command: open
 value: open
 actedOnBy:
 - presetPosition
commands:
 close:
 arguments: [
]
 open:
 arguments: [
]
 presetPosition:
 arguments: [
]
public: true
id: windowShade
version: 1

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

API Documentation

This is where you can find API-level documentation for the various objects available in your SmartApps and Device Handlers.

How to read the docs

Objects

SmartThings objects are rarely created directly by SmartApp or Device Handler developers. Instead, various objects are already created and available in your applications.

You will rarely see constructor documentation for this reason. Each object will contain a summary at the top of the document that discusses some of the common ways to get a reference to the object.

Also worth noting is that some of the “objects” documented are not really objects at all. A SmartApp is not an object, in the strict sense of the word, for example (neither is a Device Handler). But each running execution of a SmartApp or Device Handler has available to it many methods and properties. For convenience, we have organized the methods available to SmartApps and Device Handlers into the SmartApp or Device Handler API documentation.

Object wrappers

You may notice in various log messages or error messages that the objects are actually wrapper objects. For example, Event is actually an instance of EventWrapper. We have wrapped many of our core objects with wrapper objects to protect access to the underlying system object.

This should be transparent to developers, since these objects cannot be instantiated directly. The underlying wrapper class may even change at some point (the supported APIs should not, without notice).

But, should you be confused about messages in the log, this is why.

Dynamic methods

The Groovy programming language offers a powerful feature called Metaprogramming [http://www.groovy-lang.org/metaprogramming.html] that (among other things) allows for Groovy programs to be written in a way that methods can be created dynamically at run time.

SmartThings makes use of this powerful feature in a few ways. For example, you can get a reference to a Device configured in a SmartApp preference by simply referencing the name of the device configured in the preference. Another example is getting various Attribute values for a Device by invoking a method in the form <someDevice>.current<AttributeName>.

This powerful feature can make documenting all available methods difficult, since methods may not exist until runtime. For any dynamic methods, the method or property will be enclosed in <>, and a description and example will be given.

Conventions

All methods are listed in alphabetical order, with the exception of SmartApp and Device Handler methods that are expected to be defined by SmartApps and Device Handlers - those will be listed first.

Note

Groovy follows the JavaBean convention, and adds some syntactic sugar on top. Any zero-arg getter can be retrieved via property access directly.
For example, getName() could be invoked as name.
You’ll see this shortcut syntax often in Groovy and SmartThings.

Some methods may have many signatures. For example, the schedule method available to SmartApps can be called with a variety of arguments. We have documented all forms in one location (schedule()). All supported signatures will be listed, as well as all parameters for the various signatures.

Optional parameters will be listed inside brackets ([]) in the method signature.

Code examples may not be executable as-is. Since SmartApps and Device Handlers execute in response to various schedules or Events, and rely upon having other metdata defined, the examples have been written with brevity in mind. The code samples may need to be defined inside an event handler or otherwise executable code block to fully function.

When appropriate, we have included various tips or warnings. In cases where an API is not adequately documented currently, we have called attention to that. We plan to add the supporting documentation soon!

API Contents

	SmartApp

	Device Handler

	AppState

	Async HTTP API (Beta)

	AsyncResponse (Beta)

	Attribute

	Capability

	ColorUtilities

	Command

	Device

	Event

	Hub

	HubAction

	InstalledSmartApp

	Location

	Mode

	State

	ZigBee Reference

	Z-Wave Reference

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	API Documentation

SmartApp

A SmartApp is a Groovy-based program that allows developers to create automations for users to tap into the capabilities of their devices.

They are created through the “New SmartApp” action in the IDE. There is no “class” for a SmartApp per se, but there are various methods and properties available to SmartApps that are documented below.

When a SmartApp executes, it executes in the context of a certain installation instance. That is, a user installs a SmartApp on their mobile application, and configures it with devices or rules unique to them. A SmartApp is not continuously running; it is executed in response to various schedules or subscribed-to Events.

The following methods should be defined by all SmartApps. They are called by the SmartThings platform at various points in the SmartApp lifecycle.

installed()

Note

This method is expected to be defined by SmartApps.

Called when an instance of the app is installed. Typically subscribes to Events from the configured devices and creates any scheduled jobs.

	Signature:

	void installed()

	Returns:

	void

Example:

def installed() {
 log.debug "installed with settings: $settings"

 // subscribe to events, create scheduled jobs.
}

updated()

Note

This method is expected to be defined by SmartApps.

Called when the preferences of an installed app are updated. Typically unsubscribes and re-subscribes to Events from the configured devices and unschedules/reschedules jobs.

	Signature:

	void uninstalled()

	Returns:

	void

Example:

def updated() {
 unsubscribe()
 // resubscribe to device events, create scheduled jobs
}

uninstalled()

Note

This method may be defined by SmartApps.

Called, if declared, when an app is uninstalled. Does not need to be declared unless you have some external cleanup to do. subscriptions and scheduled jobs are automatically removed when an app is uninstalled, so you don’t need to do that here.

	Signature:

	void uninstalled()

	Returns:

	void

Example:

def uninstalled() {
 // external cleanup. No need to unsubscribe or remove scheduled jobs
}

The following methods and attributes are available to call in a SmartApp:

<device or capability preference name>

A reference to the device or devices selected during app installation or update.

	Returns:

	Device or a list of Devices - the Device with the given preference name, or a list of Devices if multiple:true is specified in the preferences.

Example:

preferences {
 ...
 input "theswitch", "capability.switch"
 input "theswitches", "capability.switch", multiple:true
 ...
}

...
// the name of the preference becomes the reference for the Device object
theswitch.on()
theswitch.off()

// multiple:true means we get a list of devices
theswitches.each {log.debug "Current switch value: ${it.currentSwitch"}

// we can still call methods directly on the list; it will apply the method to each device:

theswitches.on() // turn all switches on

<number or decimal preference name>

A reference to the value entered for a number or decimal input preference.

	Returns:

	BigDecimal [http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html] - the value entered for a number or decimal input preference.

Example:

preferences {
 ...
 input "num1", "number"
 input "dec1", "decimal"
 ...
}

...
// preference name is a reference to a BigDecimal that is the value the user entered.
log.debug "num1: $num1" //=> value user entered for num1 preference
log.debug "dec1: $dec1" //=> value user entered for dec1 preference
...

<text, mode, or time preference name>

A reference to the value entered for a text, mode, or time input type.

The following table explains the value and format returned for the various input types:

	Input Type
	Return Value

	text
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the value entered as text

	mode
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the name of the mode selected

	time
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the full date string in the format of “yyyy-MM-dd’T’HH:mm:ss.SSSZ”

Example:

preferences {
 ...
 input "mytext", "text"
 input "mymode", "mode"
 input "mytime", "time"
 ...
}

log.debug "mytext: $mytext"
log.debug "mymode: $mymode"
log.debug "mytime: $mytime"

// time is in format compatible with most scheduling APIs.
// we can pass the value directly to the APIs that accept a date string:
runOnce(mytime, someHandlerMethod)
schedule(myTime, someHandlerMethod)

addChildApp()

Adds a child app to a SmartApp.

Warning

A SmartApp may have a maximum of 500 child SmartApps and devices, combined.

	Signature:

	InstalledSmartApp addChildApp(String namespace, String smartAppVersionName, String label, Map properties)

	Throws:

	IllegalArgumentException - If a label was not supplied
NotFoundException - If the given SmartApp name was not found in the given Namespace.

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] namespace - the namespace of the child SmartApp

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] smartAppVersionName - the name of the SmartApp

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] label - a label to give the child app

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] properties (optional) - A map with SmartApp properties for the child app.

	Returns:

	InstalledSmartApp - The InstalledSmartAppWrapper instance that represents the child SmartApp that was created.

	Throws:

	IllegalArgumentException - If the label is not provided.

NotFoundException - If the SmartApp cannot be found.

SizeLimitExceededException - If this SmartApp already has the maximum number of children allowed (500).

addChildDevice()

Adds a child device to a SmartApp.
An example use is in Service Manager SmartApps.

Warning

A parent may have at most 500 children.

	Signature:

	DeviceWrapper addChildDevice(String typeName, String deviceNetworkId, hubId, Map properties)

DeviceWrapper addChildDevice(String namespace, String typeName, String deviceNetworkId, hubId, Map properties)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] namespace - the namespace for the device. Defaults to installedSmartApp.smartAppVersionDTO.smartAppDTO.namespace

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] typeName - the device type name

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] deviceNetworkId - the device network id of the device

hubId - (optional) The Hub id. Defaults to null

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] properties (optional) - A map with device properties.

	Returns:

	Device - The device that was created.

	Throws:

	UnknownDeviceTypeException - If a Device Handler with the specified name and namespace is not found.

IllegalArgumentException - If the deviceNetworkId is not specified.

SizeLimitExceededException - If this SmartApp already has the maximum number of children allowed (500).

apiServerUrl()

Returns the URL of the server where this SmartApp can be reached for API calls, along with the specified path appended to it. Use this instead of hard-coding a URL to ensure that the correct server URL for this installed instance is returned.

	Signature:

	String apiServerUrl(String path)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] path - the path to append to the URL

	Returns:

	The URL of the server for this installed instance of the SmartApp.

Example:

// logs <server url>/my/path
log.debug "apiServerUrl: ${apiServerUrl("/my/path")}"

// The leading "/" will be added if you don't specify it
// logs <server url>/my/path
log.debug "apiServerUrl: ${apiServerUrl("my/path")}"

atomicState

A map of name/value pairs that SmartApp can use to save and retrieve data across SmartApp executions. This is similar to state, but will immediately write and read from the backing data store. Prefer using state over atomicState when possible.

	Signature:

	Map atomicState

	Returns:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] - a map of name/value pairs.

atomicState.count = 0
atomicState.count = atomicState.count + 1

log.debug "atomicState.count: ${atomicState.count}"

// use array notation if you wish
log.debug "atomicState['count']: ${atomicState['count']}"

// you can store lists and maps to make more intersting structures
atomicState.listOfMaps = [[key1: "val1", bool1: true],
 [otherKey: ["string1", "string2"]]]

canSchedule()

Returns true if the SmartApp is able to schedule jobs. SmartApps are limited to 6 pending scheduled executions.

	Signature:

	Boolean canSchedule()

	Returns:

	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html] - true if additional jobs can be scheduled, false otherwise.

Example:

log.debug "Can schedule? ${canSchedule()}"

createAccessToken()

Creates an access token for this installed SmartApp.
This token is intended to be used by third-party services that need to communicate with SmartThings during the OAuth installation flow of cloud-connected devices.

The created token will then be available in state.accessToken.

	Signature:

	def createAccessToken()

	Returns:

	May return the access token itself, though this is not guaranteed (the token will be available in state.accessToken).

Example:

// Check to see if SmartApp has its own access token and create one if not.
if(!state.accessToken) {
 // the createAccessToken() method will store the access token in state.accessToken
 createAccessToken()
}

// Use token to allow third-party to communicate with SmartApp during setup

// Revoke the token once the third-party no longer needs it (after setup)
revokeAccessToken()

See also:

	Building the Service Manager

	revokeAccessToken()

findAllChildAppsByName()

Finds all child SmartApps matching the specified name.
This includes child SmartApps that have both “complete” and “incomplete” installation states.

	Signature:

	List<InstalledSmartApp> findAllChildAppsByName(String namespace, String name)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] name - the name of the SmartApp to find.

	Returns:

	A list of InstalledSmartApp, or an empty list if none are found.

Example:

def children = findAllChildAppsByName("My Child App")
log.debug "found ${children.size()} child apps"

children.each { child ->
 log.debug "child app ${child.id} has installation state ${child.installationState}"
}

findAllChildAppsByNamespaceAndName()

Finds all child SmartApps matching the specified namespace and name.
This includes child SmartApps that have both “complete” and “incomplete” installation states.

	Signature:

	List<InstalledSmartApp> findAllChildAppsByNamespaceAndName(String namespace, String name)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] namespace - the namespace of the SmartApp to find.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] name - the name of the SmartApp to find.

	Returns:

	A list of InstalledSmartApp, or an empty list if none are found.

Example:

def children = findAllChildAppsByNamespaceAndName("somenamespace", "My Child App")
log.debug "found ${children.size()} child apps"

children.each { child ->
 log.debug "child app ${child.id} has installation state ${child.installationState}"
}

findChildAppByName()

Finds a child SmartApp matching the specified name.
This includes child SmartApps that have both “complete” and “incomplete” installation states.

	Signature:

	def findChildAppByName(String appName)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] appName - the name of the SmartApp to find.

	Returns:

	A InstalledSmartApp if a child app is found that matches the specified name; null if no child app that matches the name is found.
If there are multiple child apps that match the specified name, only the first one found will be returned.

Example:

def child = findChildAppByName("My Child App")
log.debug "child app id ${child?.id} has installation state ${child.installationState}"

findChildAppByNamespaceAndName()

Finds a child SmartApp matching the specified namespace and name.
This includes child SmartApps that have both “complete” and “incomplete” installation states.

	Signature:

	def findChildAppsByNamespaceAndName(String namespace, String name)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] namespace - the namespace of the SmartApp to find.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] name - the name of the SmartApp to find.

	Returns:

	A InstalledSmartApp, or null if no child app is found.
If multiple child apps are found that match the namespace and name, the first one will be returned.

Example:

def child = findChildAppByNamespaceAndName("somenamespace", "My Child App")
log.debug "child app id ${child?.id} has installation state ${child.installationState}"

getAllChildApps()

Gets a list of child apps associated with this SmartApp.
This includes child SmartApps that have both “complete” and “incomplete” installation states.

	Signature:

	List<InstalledSmartApp> getAllChildApps()

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] < InstalledSmartApp > - A list of child SmartApps

Example:

def childApps = app.getAllChildApps()
log.debug "This app has ${childApps.size()} child apps"

childApps.each { child ->
 log.debug "child app with id ${child.id} has installation state ${child.installationState}"
}

getChildApps()

Gets a list of child apps associated with this SmartApp.
This only includes child SmartApps that have an installation state of “complete”.

	Signature:

	List<InstalledSmartApp> getChildApps()

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] < InstalledSmartApp > - A list of child SmartApps

Example:

def childApps = getChildApps()

// Update the label for all child apps
childApps.each {
 if (!it.label?.startsWith(app.name)) {
 it.updateLabel("$app.name/$it.label")
 }
}

deleteChildDevice()

Deletes the child device with the specified device network id.

	Signature:

	void deleteChildDevice(String deviceNetworkId)

	Throws:

	NotFoundException

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] deviceNetworkId - the device network id of the device

	Returns:

	void

getAllChildDevices()

Returns a list of all child devices, including virtual devices. This is a wrapper for getChildDevices(true).

	Signature:

	List getAllChildDevices()

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] - a list of all child devices.

getApiServerUrl()

Returns the URL of the server where this SmartApp can be reached for API calls. Use this instead of hard-coding a URL to ensure that the correct server URL for this installed instance is returned.

	Signature:

	String getApiServerUrl()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the URL of the server where this SmartApp can be reached.

getChildDevice()

Returns a device based upon the specified device network id.
This is mostly used in Service Manager SmartApps.

	Signature:

	DeviceWrapper getChildDevice(String deviceNetworkId)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] deviceNetworkId - the device network id of the device

	Returns:

	DeviceWrapper - The device found with the given device network ID.

getChildDevices()

Returns a list of all child devices.
An example use would be in Service Manager SmartApps.

	Signature:

	List getChildDevices(Boolean includeVirtualDevices)

	Parameters:

	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html] true if the returned list should contain virtual devices. Defaults to false. (optional)

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] - A list of all devices found.

getColorUtil()

Returns the ColorUtilities object.

	Signature:

	ColorUtilities getColorUtil()

	Returns:

	ColorUtilities

getLocation()

The Location into which this SmartApp has been installed.

	Signature:

	Location getLocation()

	Returns:

	Location - The Location into which this SmartApp has been installed.

getSunriseAndSunset()

Gets a map containing the local sunrise and sunset times.

	Signature:

	Map getSunriseAndSunset([Map options])

Parameters:

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] options (optional)

The supported options are:

	Option
	Description

	zipCode
	
String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the zip code to use for determining the times.

If not specified then the coordinates of the Hub location are used.

	locationString
	
String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - any location string supported by the Weather Underground APIs.

If not specified then the coordinates of the Hub Location are used

	sunriseOffset
	
String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - adjust the sunrise time by this amount.

See timeOffset() for supported formats

	sunsetOffset
	
String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - adjust the sunset time by this amount.

See timeOffset() for supported formats

	Returns:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] - A Map containing the local sunrise and sunset times as Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] objects: [sunrise: Date, sunset: Date]

Example:

def noParams = getSunriseAndSunset()
def beverlyHills = getSunriseAndSunset(zipCode: "90210")
def thirtyMinsBeforeSunset = getSunriseAndSunset(sunsetOffset: "-00:30")

log.debug "sunrise with no parameters: ${noParams.sunrise}"
log.debug "sunset with no parameters: ${noParams.sunset}"
log.debug "sunrise and sunset in 90210: $beverlyHills"
log.debug "thirty minutes before sunset at current Location: ${thirtyMinsBeforeSunset.sunset}"

getTwcConditions()

Note

If you are considering the development of an application that makes extensive use of weather data, you should consider gaining direct access to APIs from a weather data provider.

Get the current weather conditions.

	Signature:

	def getTwcConditions(String locationString = null)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] locationString - Optional. Must be a 5 digit US zip code or a latitude, longitude string (e.g., “38.25,-76.45”). If not specified, the method will use the latitude and longitude of the Location as set in the SmartThings mobile app.

Example Response:

{
 cloudCeiling: null,
 cloudCoverPhrase: "Clear",
 dayOfWeek: "Wednesday",
 dayOrNight: "D",
 expirationTimeUtc: 1545249077,
 iconCode: 32,
 iconCodeExtend: 3200,
 obsQualifierCode: null,
 obsQualifierSeverity: null,
 precip1Hour: 0,
 precip6Hour: 0,
 precip24Hour: 0,
 pressureAltimeter: 1018.29,
 pressureChange: -2.71,
 pressureMeanSeaLevel: 1018.5,
 pressureTendencyCode: 2,
 pressureTendencyTrend: "Falling",
 relativeHumidity: 55,
 snow1Hour: 0,
 snow6Hour: 0,
 snow24Hour: 0,
 sunriseTimeLocal: "2018-12-19T07:28:58-0500",
 sunriseTimeUtc: 1545222538,
 sunsetTimeLocal: "2018-12-19T17:10:52-0500",
 sunsetTimeUtc: 1545257452,
 temperature: 10,
 temperatureChange24Hour: -2,
 temperatureDewPoint: 2,
 temperatureFeelsLike: 9,
 temperatureHeatIndex: 10,
 temperatureMax24Hour: 12,
 temperatureMaxSince7Am: 10,
 temperatureMin24Hour: -3,
 temperatureWindChill: 9,
 uvDescription: "Low",
 uvIndex: 1,
 validTimeLocal: "2018-12-19T14:41:17-0500",
 validTimeUtc: 1545248477,
 visibility: 16.09,
 windDirection: 180,
 windDirectionCardinal: "S",
 windGust: null,
 windSpeed: 6,
 wxPhraseLong: "Sunny",
 wxPhraseMedium: "Sunny",
 wxPhraseShort: "Sunny"
}

getTwcForecast()

Note

If you are considering the development of an application that makes extensive use of weather data, you should consider gaining direct access to APIs from a weather data provider.

Get the daily weather forecast at the specified location.

	Signature:

	def getTwcForecast(String locationString=null)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] locationString - Optional. Must be a 5 digit US zip code or a latitude, longitude string (e.g., “38.25,-76.45”). If not specified, the method will use the latitude and longitude of the Location as set in the SmartThings mobile app.

Example Response:

{
 dayOfWeek:[
 "Wednesday",
 "Thursday",
 "Friday",
 "Saturday"
],
 expirationTimeUtc:[
 1545251268,
 1545251268,
 1545251268,
 1545251268
],
 moonPhase:[
 "Waxing Gibbous",
 "Waxing Gibbous",
 "Waxing Gibbous",
 "Full Moon"
],
 moonPhaseCode:[
 "WXG",
 "WXG",
 "WXG",
 "F"
],
 moonPhaseDay:[
 11,
 12,
 13,
 15
],
 moonriseTimeLocal:[
 "2018-12-19T15:04:06-0500",
 "2018-12-20T15:44:43-0500",
 "2018-12-21T16:32:25-0500",
 "2018-12-22T17:26:58-0500"
],
 moonriseTimeUtc:[
 1545249846,
 1545338683,
 1545427945,
 1545517618
],
 moonsetTimeLocal:[
 "2018-12-19T03:50:48-0500",
 "2018-12-20T04:56:24-0500",
 "2018-12-21T06:03:51-0500",
 "2018-12-22T07:11:16-0500"
],
 moonsetTimeUtc:[
 1545209448,
 1545299784,
 1545390231,
 1545480676
],
 narrative:[
 "A few clouds. Highs in the low 50s and lows in the upper 30s.",
 "Cloudy, periods of rain. Highs in the upper 40s with temperatures nearly steady overnight.",
 "Cloudy with rain. Highs in the mid 50s and lows in the upper 30s.",
 "Mostly sunny. Highs in the upper 40s and lows in the low 30s."
],
 qpf:[
 0,
 1.44,
 0.49,
 0
],
 qpfSnow:[
 0,
 0,
 0,
 0
],
 sunriseTimeLocal:[
 "2018-12-19T07:28:58-0500",
 "2018-12-20T07:29:31-0500",
 "2018-12-21T07:30:02-0500",
 "2018-12-22T07:30:32-0500"
],
 sunriseTimeUtc:[
 1545222538,
 1545308971,
 1545395402,
 1545481832
],
 sunsetTimeLocal:[
 "2018-12-19T17:10:52-0500",
 "2018-12-20T17:11:19-0500",
 "2018-12-21T17:11:47-0500",
 "2018-12-22T17:12:18-0500"
],
 sunsetTimeUtc:[
 1545257452,
 1545343879,
 1545430307,
 1545516738
],
 temperatureMax:[
 51,
 49,
 54,
 49
],
 temperatureMin:[
 38,
 47,
 37,
 31
],
 validTimeLocal:[
 "2018-12-19T07:00:00-0500",
 "2018-12-20T07:00:00-0500",
 "2018-12-21T07:00:00-0500",
 "2018-12-22T07:00:00-0500"
],
 validTimeUtc:[
 1545220800,
 1545307200,
 1545393600,
 1545480000
],
 daypart:[
 {
 cloudCover:[
 16,
 79,
 100,
 100,
 99,
 85,
 32,
 14
],
 dayOrNight:[
 "D",
 "N",
 "D",
 "N",
 "D",
 "N",
 "D",
 "N"
],
 daypartName:[
 "Today",
 "Tonight",
 "Tomorrow",
 "Tomorrow night",
 "Friday",
 "Friday night",
 "Saturday",
 "Saturday night"
],
 iconCode:[
 34,
 27,
 12,
 12,
 12,
 26,
 34,
 33
],
 iconCodeExtend:[
 3400,
 2700,
 1200,
 1200,
 1200,
 2600,
 3400,
 3300
],
 narrative:[
 "Lots of sunshine. High 51F. Winds light and variable.",
 "Partly cloudy early followed by cloudy skies overnight. Low 38F. Winds light and variable.",
 "Rain likely. High 49F. Winds NE at 5 to 10 mph. Chance of rain 100%. Rainfall near an inch.",
 "Rain likely. Low 47F. Winds light and variable. Chance of rain 90%. Rainfall near a half an inch.",
 "Periods of rain. Thunder possible. High 54F. Winds SSW at 5 to 10 mph. Chance of rain 100%.",
 "Cloudy. Low 37F. Winds WNW at 5 to 10 mph.",
 "A few clouds early, otherwise mostly sunny. High 49F. Winds WNW at 5 to 10 mph.",
 "Clear to partly cloudy. Low 31F. Winds light and variable."
],
 precipChance:[
 0,
 20,
 100,
 90,
 100,
 20,
 0,
 0
],
 precipType:[
 "rain",
 "precip",
 "rain",
 "rain",
 "rain",
 "precip",
 "rain",
 "precip"
],
 qpf:[
 0,
 0,
 0.93,
 0.51,
 0.48,
 0,
 0,
 0
],
 qpfSnow:[
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0
],
 qualifierCode:[
 null,
 null,
 null,
 null,
 "Q8003",
 null,
 null,
 null
],
 qualifierPhrase:[
 null,
 null,
 null,
 null,
 "Thunder possible.",
 null,
 null,
 null
],
 relativeHumidity:[
 63,
 85,
 93,
 96,
 92,
 76,
 55,
 72
],
 snowRange:[
 "",
 "",
 "",
 "",
 "",
 "",
 "",
 ""
],
 temperature:[
 51,
 38,
 49,
 47,
 54,
 37,
 49,
 31
],
 temperatureHeatIndex:[
 50,
 43,
 48,
 50,
 54,
 46,
 48,
 39
],
 temperatureWindChill:[
 44,
 39,
 41,
 46,
 43,
 34,
 33,
 32
],
 thunderCategory:[
 "No thunder",
 "No thunder",
 "No thunder",
 "No thunder",
 "Thunder possible",
 "No thunder",
 "No thunder",
 "No thunder"
],
 thunderIndex:[
 0,
 0,
 0,
 0,
 1,
 0,
 0,
 0
],
 uvDescription:[
 "Low",
 "Low",
 "Low",
 "Low",
 "Low",
 "Low",
 "Low",
 "Low"
],
 uvIndex:[
 1,
 0,
 1,
 0,
 1,
 0,
 2,
 0
],
 windDirection:[
 173,
 44,
 51,
 125,
 208,
 292,
 282,
 274
],
 windDirectionCardinal:[
 "S",
 "NE",
 "NE",
 "SE",
 "SSW",
 "WNW",
 "WNW",
 "W"
],
 windPhrase:[
 "Winds light and variable.",
 "Winds light and variable.",
 "Winds NE at 5 to 10 mph.",
 "Winds light and variable.",
 "Winds SSW at 5 to 10 mph.",
 "Winds WNW at 5 to 10 mph.",
 "Winds WNW at 5 to 10 mph.",
 "Winds light and variable."
],
 windSpeed:[
 3,
 1,
 6,
 5,
 9,
 9,
 9,
 3
],
 wxPhraseLong:[
 "Mostly Sunny",
 "Mostly Cloudy",
 "Rain",
 "Rain",
 "Rain",
 "Cloudy",
 "Mostly Sunny",
 "Mostly Clear"
],
 wxPhraseShort:[
 "M Sunny",
 "M Cloudy",
 "Rain",
 "Rain",
 "Rain",
 "Cloudy",
 "M Sunny",
 "M Clear"
]
 }
]
}

getTwcLocation()

Note

If you are considering the development of an application that makes extensive use of weather data, you should consider gaining direct access to APIs from a weather data provider.

Get location data, such as time zone and zip code at the specified location.

	Signature:

	def getTwcLocation(String locationString = null)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] locationString - Optional. Must be a 5 digit US zip code or a latitude, longitude string (e.g., “38.25,-76.45”). If not specified, the method will use the latitude and longitude of the Location as set in the SmartThings mobile app.

Example Response:

{
 location:{
 latitude:36.23,
 longitude:-80.7,
 city:"Boonville",
 locale:{
 locale1:null,
 locale2:"Boonville",
 locale3:null,
 locale4:null
 },
 neighborhood:null,
 adminDistrict:"North Carolina",
 adminDistrictCode:"NC",
 postalCode:"27011",
 postalKey:"27011:US",
 country:"United States",
 countryCode:"US",
 ianaTimeZone:"America/New_York",
 displayName:"Boonville",
 dstEnd:"2019-11-03T01:00:00-0500",
 dstStart:"2019-03-10T03:00:00-0400",
 dmaCd:"518",
 placeId:"5a75bd28971b1f181dde5085446a99e4abf9adbf1754365bb5dc9ac53d6779a4",
 disputedArea:false,
 countyId:"NCC197",
 locId:null,
 pwsId:null,
 type:"postal",
 zoneId:"NCZ020"
 }
}

getTwcAlerts()

Note

If you are considering the development of an application that makes extensive use of weather data, you should consider gaining direct access to APIs from a weather data provider.

Get the current severe weather alerts at the specified location.

	Signature:

	def getTwcAlerts(String geoLocation=null)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] geoLocation - Optional. A latitude and longitude string (e.g., “38.25,-76.45”). Zip codes are not supported by getTwcAlerts().

Example Response:

{
 metadata:{
 next:null
 },
 alerts:[
 {
 detailKey:"c991e7f1-7519-3501-9481-dce00c81bb9e",
 messageTypeCode:2,
 messageType:"Update",
 productIdentifier:"FLS",
 phenomena:"FL",
 significance:"W",
 eventTrackingNumber:"0087",
 officeCode:"KLCH",
 officeName:"Lake Charles",
 officeAdminDistrict:"Louisiana",
 officeAdminDistrictCode:"LA",
 officeCountryCode:"US",
 eventDescription:"River Flood Warning",
 severityCode:3,
 severity:"Moderate",
 categories:[
 {
 category:"Met",
 categoryCode:2
 }
],
 responseTypes:[
 {
 responseType:"Avoid",
 responseTypeCode:5
 }
],
 urgency:"Unknown",
 urgencyCode:5,
 certainty:"Unknown",
 certaintyCode:5,
 effectiveTimeLocal:null,
 effectiveTimeLocalTimeZone:null,
 expireTimeLocal:"2018-12-20T00:50:00-06:00",
 expireTimeLocalTimeZone:"CST",
 expireTimeUTC:1545288600,
 onsetTimeLocal:null,
 onsetTimeLocalTimeZone:null,
 flood:{
 floodLocationId:"DWYT2",
 floodLocationName:"Sabine River near Deweyville",
 floodSeverityCode:"1",
 floodSeverity:"Minor",
 floodImmediateCauseCode:"ER",
 floodImmediateCause:"Excessive Rainfall",
 floodRecordStatusCode:"NO",
 floodRecordStatus:"A record flood is not expected",
 floodStartTimeLocal:"2018-11-04T05:07:00-06:00",
 floodStartTimeLocalTimeZone:"CST",
 floodCrestTimeLocal:"2018-12-13T09:00:00-06:00",
 floodCrestTimeLocalTimeZone:"CST",
 floodEndTimeLocal:null,
 floodEndTimeLocalTimeZone:null
 },
 areaTypeCode:"C",
 latitude:30.23,
 longitude:-93.33,
 areaId:"LAC019",
 areaName:"Calcasieu Parish",
 ianaTimeZone:"America/Chicago",
 adminDistrictCode:"LA",
 adminDistrict:"Louisiana",
 countryCode:"US",
 countryName:"UNITED STATES OF AMERICA",
 headlineText:"River Flood Warning is in effect",
 source:"National Weather Service",
 disclaimer:null,
 issueTimeLocal:"2018-12-19T10:51:00-06:00",
 issueTimeLocalTimeZone:"CST",
 identifier:"e36df9092f95582ad3b5021bbc480481",
 processTimeUTC:1545238316
 }
]
}

getTwcAlertDetail()

Note

If you are considering the development of an application that makes extensive use of weather data, you should consider gaining direct access to APIs from a weather data provider.

Get detailed description and text of the specified weather alert.

	Signature:

	def getTwcAlertDetail(String alertId)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] alertId - The alertId from the response from getTwcAlerts().

Example Response:

{
 alertDetail:{
 detailKey:"c991e7f1-7519-3501-9481-dce00c81bb9e",
 messageTypeCode:2,
 messageType:"Update",
 productIdentifier:"FLS",
 phenomena:"FL",
 significance:"W",
 eventTrackingNumber:"0087",
 officeCode:"KLCH",
 officeName:"Lake Charles",
 officeAdminDistrict:"Louisiana",
 officeAdminDistrictCode:"LA",
 officeCountryCode:"US",
 eventDescription:"River Flood Warning",
 severityCode:3,
 severity:"Moderate",
 categories:[
 {
 category:"Met",
 categoryCode:2
 }
],
 responseTypes:[
 {
 responseType:"Avoid",
 responseTypeCode:5
 }
],
 urgency:"Unknown",
 urgencyCode:5,
 certainty:"Unknown",
 certaintyCode:5,
 effectiveTimeLocal:null,
 effectiveTimeLocalTimeZone:null,
 expireTimeLocal:"2018-12-20T00:50:00-06:00",
 expireTimeLocalTimeZone:"CST",
 expireTimeUTC:1545288600,
 onsetTimeLocal:null,
 onsetTimeLocalTimeZone:null,
 flood:{
 floodLocationId:"DWYT2",
 floodLocationName:"Sabine River near Deweyville",
 floodSeverityCode:"1",
 floodSeverity:"Minor",
 floodImmediateCauseCode:"ER",
 floodImmediateCause:"Excessive Rainfall",
 floodRecordStatusCode:"NO",
 floodRecordStatus:"A record flood is not expected",
 floodStartTimeLocal:"2018-11-04T05:07:00-06:00",
 floodStartTimeLocalTimeZone:"CST",
 floodCrestTimeLocal:"2018-12-13T09:00:00-06:00",
 floodCrestTimeLocalTimeZone:"CST",
 floodEndTimeLocal:null,
 floodEndTimeLocalTimeZone:null
 },
 areaTypeCode:"C",
 latitude:30.23,
 longitude:-93.33,
 areaId:"LAC019",
 areaName:"Calcasieu Parish",
 ianaTimeZone:"America/Chicago",
 adminDistrictCode:"LA",
 adminDistrict:"Louisiana",
 countryCode:"US",
 countryName:"UNITED STATES OF AMERICA",
 headlineText:"River Flood Warning is in effect",
 source:"National Weather Service",
 disclaimer:null,
 issueTimeLocal:"2018-12-19T10:51:00-06:00",
 issueTimeLocalTimeZone:"CST",
 identifier:"e36df9092f95582ad3b5021bbc480481",
 processTimeUTC:1545238316,
 texts:[
 {
 languageCode:"en-US",
 description:"The Flood Warning continues for The Sabine River Near Deweyville. * until further notice...or until the warning is cancelled. * At 9:45 AM Wednesday the stage was 24.4 feet. * Minor flooding is occurring and Minor flooding is forecast. * Flood stage is 24.0 feet. * Forecast...The river will remain near 24.4 feet. * Impact...At stages near 24.0 feet...Minor lowland flooding will occur. && ",
 instruction:null,
 overview:"...The Flood Warning continues for the following rivers in Texas... Neches River Near Town Bluff Neches River at Neches River Saltwater Barrier ...The Flood Warning continues for the following rivers in Louisiana...Texas.. Sabine River Near Deweyville Neches River Near Evadale "
 }
],
 polygon:[
 {
 lat:30.57,
 lon:-93.63
 },
 {
 lat:30.11,
 lon:-93.64
 },
 {
 lat:30.11,
 lon:-93.78
 },
 {
 lat:30.31,
 lon:-93.81
 },
 {
 lat:30.62,
 lon:-93.78
 },
 {
 lat:30.57,
 lon:-93.63
 }
],
 synopsis:null
 }
}

getWeatherFeature() - Deprecated

Warning

Effective January 1, 2019, this API will be removed. See getTwcConditions(), getTwcForecast(), getTwcAlerts(), getTwcLocation(), or getTwcAlertDetail() for alternative weather APIs.

Calls the Weather Underground API to to return weather forecasts and related data.

	Signature:

	Map getWeatherFeature(String featureName [, String location])

Note

getWeatherFeature simply delegates to the Weather Underground API, using the specfied featureName and location (if specified). For full descriptions on the available features and return information, please consult the Weather Underground API docs [http://www.wunderground.com/weather/api/d/docs?].

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] featureName
The weather feature to get. This corresponds to the available “Data Features” in the Weather Underground API.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] location (optional)
The location to get the weather information for (ZIP code). If not specified, the Location of the user’s Hub will be used.

	Returns:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] - a Map containing the weather information requested. The data returned will vary depending on the feature requested. See the Weather Underground API documentation for more information.

httpDelete()

Executes an HTTP DELETE request and passes control to the specified closure. The closure is passed one HttpResponseDecorator [http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html] argument from which the response content and header information can be extracted.

	Signature:

	void httpDelete(String uri, Closure closure)

void httpDelete(Map params, Closure closure)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] uri - The URI to make the HTTP DELETE call to.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - A map of parameters for configuring the request. The valid parameters are:

	Parameter
	Description

	uri
	Either a URI or URL of of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	contentType
	Forced response content type and request Accept header.

	requestContentType
	Content type for the request, if it is different from the expected response content-type.

	body
	Request body that will be encoded based on the given contentType.

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure - The closure that will be called with the response of the request.

	Returns:

	void

httpError()

Throws a SmartAppException with the specified status code and message.

This should be used to send an HTTP error to any calling client.

	Signature:

	def httpError(Integer status, message)

	Parameters:

	Integer [http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html] status - The HTTP error code to send.
message - the error message.

Example:

def someMethod() {
 httpError(400, "something went wrong")
}

httpGet()

Executes an HTTP GET request and passes control to the specified closure. The closure is passed one HttpResponseDecorator [http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html] argument from which the response content and header information can be extracted.

If the response content type is JSON, the response data will automatically be parsed into a data structure.

	Signature:

	void httpGet(String uri, Closure closure)

void httpGet(Map params, Closure closure)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] uri - The URI to make the HTTP GET call to

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - A map of parameters for configuring the request. The valid parameters are:

	Parameter
	Description

	uri
	Either a URI or URL of of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	contentType
	Forced response content type and request Accept header.

	requestContentType
	Content type for the request, if it is different from the expected response content-type.

	body
	Request body that will be encoded based on the given contentType.

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] - closure - The closure that will be called with the response of the request.

Example:

def params = [
 uri: "http://httpbin.org",
 path: "/get"
]

try {
 httpGet(params) { resp ->
 resp.headers.each {
 log.debug "${it.name} : ${it.value}"
 }
 log.debug "response contentType: ${resp.contentType}"
 log.debug "response data: ${resp.data}"
 }
} catch (e) {
 log.error "something went wrong: $e"
}

httpHead()

Executes an HTTP HEAD request and passes control to the specified closure. The closure is passed one HttpResponseDecorator [http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html] argument from which the response content and header information can be extracted.

	Signature:

	void httpHead(String uri, Closure closure)

void httpHead(Map params, Closure closure)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] uri - The URI to make the HTTP HEAD call to

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - A map of parameters for configuring the request. The valid parameters are:

	Parameter
	Description

	uri
	Either a URI or URL of of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	contentType
	Forced response content type and request Accept header.

	requestContentType
	Content type for the request, if it is different from the expected response content-type.

	body
	Request body that will be encoded based on the given contentType.

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure - The closure that will be called with the response of the request.

httpPost()

Executes an HTTP POST request and passes control to the specified closure. The closure is passed one HttpResponseDecorator [http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html] argument from which the response content and header information can be extracted.

If the response content type is JSON, the response data will automatically be parsed into a data structure.

	Signature:

	void httpPost(String uri, String body, Closure closure)

void httpPost(Map params, Closure closure)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] uri - The URI to make the HTTP POST call to

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] body - The body of the request

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - A map of parameters for configuring the request. The valid parameters are:

	Parameter
	Description

	uri
	Either a URI or URL of of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	contentType
	Forced response content type and request Accept header.

	requestContentType
	Content type for the request, if it is different from the expected response content-type.

	body
	Request body that will be encoded based on the given contentType.

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure - The closure that will be called with the response of the request.

Example:

try {
 httpPost("http://mysite.com/api/call", "id=XXX&value=YYY") { resp ->
 log.debug "response data: ${resp.data}"
 log.debug "response contentType: ${resp.contentType}"
 }
} catch (e) {
 log.debug "something went wrong: $e"
}

httpPostJson()

Executes an HTTP POST request with a JSON-encoded body and content type, and passes control to the specified closure. The closure is passed one HttpResponseDecorator [http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html] argument from which the response content and header information can be extracted.

If the response content type is JSON, the response data will automatically be parsed into a data structure.

	Signature:

	void httpPostJson(String uri, String body, Closure closure)

void httpPostJson(String uri, Map body, Closure closure)

void httpPostJson(Map params, Closure closure)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] uri - The URI to make the HTTP POST call to

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] body - The body of the request

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - A map of parameters for configuring the request. The valid parameters are:

	Parameter
	Description

	uri
	Either a URI or URL of of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	contentType
	Forced response content type and request Accept header.

	requestContentType
	Content type for the request, if it is different from the expected response content-type.

	body
	Request body that will be encoded based on the given contentType.

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure - The closure that will be called with the response of the request.

Example:

def params = [
 uri: "http://postcatcher.in/catchers/<yourUniquePath>",
 body: [
 param1: [subparam1: "subparam 1 value",
 subparam2: "subparam2 value"],
 param2: "param2 value"
]
]

try {
 httpPostJson(params) { resp ->
 resp.headers.each {
 log.debug "${it.name} : ${it.value}"
 }
 log.debug "response contentType: ${resp.contentType}"
 }
} catch (e) {
 log.debug "something went wrong: $e"
}

httpPut()

Executes an HTTP PUT request and passes control to the specified closure. The closure is passed one HttpResponseDecorator [http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html] argument from which the response content and header information can be extracted.

If the response content type is JSON, the response data will automatically be parsed into a data structure.

	Signature:

	void httpPut(String uri, String body, Closure closure)

void httpPut(Map params, Closure closure)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] uri - The URI to make the HTTP PUT call to

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] body - The body of the request

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - A map of parameters for configuring the request. The valid parameters are:

	Parameter
	Description

	uri
	Either a URI or URL of of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	contentType
	Forced response content type and request Accept header.

	requestContentType
	Content type for the request, if it is different from the expected response content-type.

	body
	Request body that will be encoded based on the given contentType.

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure - The closure that will be called with the response of the request.

Example:

try {
 httpPut("http://mysite.com/api/call", "id=XXX&value=YYY") { resp ->
 log.debug "response data: ${resp.data}"
 log.debug "response contentType: ${resp.contentType}"
 }
} catch (e) {
 log.error "something went wrong: $e"
}

httpPutJson()

Executes an HTTP PUT request with a JSON-encoded body and content type, and passes control to the specified closure. The closure is passed one HttpResponseDecorator [http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html] argument from which the response content and header information can be extracted.

If the response content type is JSON, the response data will automatically be parsed into a data structure.

	Signature:

	void httpPutJson(String uri, String body, Closure closure)

void httpPutJson(String uri, Map body, Closure closure)

void httpPutJson(Map params, Closure closure)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] uri - The URI to make the HTTP PUT call to

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] body - The body of the request

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - A map of parameters for configuring the request. The valid parameters are:

	Parameter
	Description

	uri
	Either a URI or URL of of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	contentType
	Forced response content type and request Accept header.

	requestContentType
	Content type for the request, if it is different from the expected response content-type.

	body
	Request body that will be encoded based on the given contentType.

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure - The closure that will be called with the response of the request.

nextOccurrence()

Returns a Date when the time specified in the input occurs next.

	Signature:

	Date nextOccurrence(String timeString)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] timeString - An ISO-8601 date string as returned from time input preferences of the SmartApp.

Note

Note that if the input timeString does not contain time zone, this method will throw an IllegalArgumentException.

	Returns:

	Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] - The Date when the time specified in the timeString occurs next. If the specified time has already occurred, then returns the next day Date object when the specified time occurs next. If the specified time has not yet occurred, then returns today’s Date object when the specified time will occur.

Example:

preferences {

 section() {
 input "Time1", "time", title: "Time1"
 input "Time2", "time", title: "Time2"
 }
}

...

// Current time is 16:25 October 24, 2016, Time1 input is 16:23 and Time2 input is 16:34
log.debug "nextOccurrence(Time1) value is: ${nextOccurrence(Time1)}"
log.debug "nextOccurrence(Time2) value is: ${nextOccurrence(Time2)}"
// The above log statements will print the following:
nextOccurrence(Time1) value is: Tue Oct 25 23:23:00 UTC 2016
nextOccurrence(Time2) value is: Mon Oct 24 23:34:00 UTC 2016

now()

Gets the current Unix time in milliseconds.

	Signature:

	Long now()

	Returns:

	Long [https://docs.oracle.com/javase/7/docs/api/java/lang/Long.] - the current Unix time.

parseJson()

Parses the specified string into a JSON data structure.

	Signature:

	Map parseJson(stringToParse)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] stringToParse - The string to parse into JSON

	Returns:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] - a map that represents the passed-in string in JSON format.

parseXml()

Parses the specified string into an XML data structure.

	Signature:

	GPathResult parseXml(stringToParse)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] stringToParse - The string to parse into XML

	Returns:

	GPathResult [http://docs.groovy-lang.org/latest/html/api/groovy/util/slurpersupport/GPathResult.html] - A GPathResult instance that represents the passed-in string in XML format.

parseLanMessage()

Parses a Base64-encoded LAN message received from the Hub into a map with header and body elements, as well as parsing the body into an XML document.

	Signature:

	Map parseLanMessage(stringToParse)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] stringToParse - The string to parse

	Returns:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] - a map with the following structure:

	key
	type
	description

	header
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	the headers of the request as a single string

	headers
	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html]
	a Map of string/name value pairs for each header

	body
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	the request body as a string

parseSoapMessage()

Parses a Base64-encoded LAN message received from the Hub into a map with header and body elements, as well as parsing the body into an XML document. This method is commonly used to parse UPNP SOAP [http://www.w3.org/TR/soap12-part1/] messages.

	Signature:

	Map parseLanMessage(stringToParse)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] stringToParse - The string to parse

	Returns:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] - A map with the following structure:

	key
	type
	description

	header
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	the headers of the request as a single string

	headers
	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html]
	a Map of string/name value pairs for each header

	body
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	the request body as a string

	xml
	GPathResult [http://docs.groovy-lang.org/latest/html/api/groovy/util/slurpersupport/GPathResult.html]
	the request body as a GPathResult [http://docs.groovy-lang.org/latest/html/api/groovy/util/slurpersupport/GPathResult.html] object

	xmlError
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	error message from parsing the body, if any

render()

Returns a HTTP response to the calling client with the options specified.

	Signature:

	def render(Map options)

	Parameters:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] options - the options for what is returned to the client:

	option
	description

	contentType
	The value of the “Content-Type” request header. “application/json” if not specified.

	status
	The HTTP status of the response. 200 if not specified.

	data
	Required. The data for this response.

Example:

def someMethod() {
 def html = """
 <!DOCTYPE HTML>
 <html>
 <head><title>Some Title</title></head>
 <body><p>Some Text</p></body>
 </html>
 """

 render contentType: "text/html", data: html
}

revokeAccessToken()

Revokes the access token created with createAccessToken() for this installed SmartApp.

	Signature:

	def revokeAccessToken()

Example:

// Check to see if SmartApp has its own access token and create one if not.
if(!state.accessToken) {
 // the createAccessToken() method will store the access token in state.accessToken
 createAccessToken()
}

// Use token to allow third-party to communicate with SmartApp during setup

// Revoke the token once the third-party no longer needs it (after setup)
revokeAccessToken()

See also:

	Building the Service Manager

	createAccessToken()

runIn()

Executes a specified handlerMethod after delaySeconds have elapsed.

	Signature:

	void runIn(delayInSeconds, handlerMethod [, options])

Tip

It’s important to note that we will attempt to run this method at this time, but cannot guarantee exact precision. We typically expect per-minute level granularity, so if using with values less than sixty seconds, your mileage will vary.

	Parameters:

	delayInSeconds - The number of seconds to execute the handlerMethod after.

handlerMethod - The method to call after delayInSeconds has passed. Can be a string or a reference to the method. Make sure that the method being referenced is not scoped to private and/or the method name being used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

	Key
	Possible values
	Description

	overwrite
	true or false
	Specify [overwrite: false] to not overwrite any existing pending schedule handler for the given method (the default behavior is to overwrite the pending schedule). Specifying [overwrite: false] can lead to multiple different schedules for the same handler method, so be sure your handler method can handle this.

	data
	A map of data
	A map of data that will be passed to the handler method.

	Returns:

	void

Example:

runIn(300, myHandlerMethod)
runIn(400, "myOtherHandlerMethod", [data: [flag: true]])

def myHandlerMethod() {
 log.debug "handler method called"
}

def myOtherHandlerMethod(data) {
 log.debug "other handler method called with flag: $data.flag"
}

runEvery1Minute()

Creates a recurring schedule that executes the specified handlerMethod every minute.
Using this method will pick a random start time in the next minute, and run every minute after that.

	Signature:

	void runEvery1Minute(handlerMethod[, options])

Tip

This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method, the executions will be spread out over the 1 minute period.

	Parameters:

	handlerMethod - The method to call every minute. Can be the name of the method as a string, or a reference to the method. Make sure that the method being referenced is not scoped to private and/or the method name being used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

	Key
	Possible values
	Description

	data
	A map of data
	A map of data that will be passed to the handler method.

	Returns:

	void

Example:

runEvery1Minute(handlerMethod1)
runEvery1Minute(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
 log.debug "handlerMethod1"
}

def handlerMethod2(data) {
 log.debug "handlerMethod2, data: $data"
}

runEvery5Minutes()

Creates a recurring schedule that executes the specified handlerMethod every five minutes.
Using this method will pick a random start time in the next five minutes, and run every five minutes after that.

	Signature:

	void runEvery5Minutes(handlerMethod[, options])

Tip

This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method, the executions will be spread out over the 5 minute period.

	Parameters:

	handlerMethod - The method to call every five minutes. Can be the name of the method as a string, or a reference to the method. Make sure that the method being referenced is not scoped to private and/or the method name being used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

	Key
	Possible values
	Description

	data
	A map of data
	A map of data that will be passed to the handler method.

	Returns:

	void

Example:

runEvery5Minutes(handlerMethod1)
runEvery5Minutes(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
 log.debug "handlerMethod1"
}

def handlerMethod2(data) {
 log.debug "handlerMethod2, data: $data"
}

runEvery10Minutes()

Creates a recurring schedule that executes the specified handlerMethod every ten minutes. Using this method will pick a random start time in the next ten minutes, and run every ten minutes after that.

	Signature:

	void runEvery10Minutes(handlerMethod[, options])

Tip

This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method, the executions will be spread out over the ten minute period.

	Parameters:

	handlerMethod - The method to call every ten minutes. Can be the name of the method as a string, or a reference to the method. Make sure that the method being referenced is not scoped to private and/or the method name being used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

	Key
	Possible values
	Description

	data
	A map of data
	A map of data that will be passed to the handler method.

	Returns:

	void

Example:

runEvery10Minutes(handlerMethod1)
runEvery10Minutes(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
 log.debug "handlerMethod1"
}

def handlerMethod2(data) {
 log.debug "handlerMethod2, data: $data"
}

runEvery15Minutes()

Creates a recurring schedule that executes the specified handlerMethod every fifteen minutes. Using this method will pick a random start time in the next five minutes, and run every five minutes after that.

	Signature:

	void runEvery15Minutes(handlerMethod[, options])

Tip

This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method, the executions will be spread out over the fifteen minute period.

	Parameters:

	handlerMethod - The method to call every fifteen minutes. Can be the name of the method as a string, or a reference to the method. Make sure that the method being referenced is not scoped to private and/or the method name being used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

	Key
	Possible values
	Description

	data
	A map of data
	A map of data that will be passed to the handler method.

	Returns:

	void

Example:

runEvery15Minutes(handlerMethod1)
runEvery15Minutes(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
 log.debug "handlerMethod1"
}

def handlerMethod2(data) {
 log.debug "handlerMethod2, data: $data"
}

runEvery30Minutes()

Creates a recurring schedule that executes the specified handlerMethod every thirty minutes. Using this method will pick a random start time in the next thirty minutes, and run every thirty minutes after that.

	Signature:

	void runEvery30Minutes(handlerMethod[, options])

Tip

This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method, the executions will be spread out over the thirty minute period.

	Parameters:

	handlerMethod - The method to call every thirty minutes. Can be the name of the method as a string, or a reference to the method. Make sure that the method being referenced is not scoped to private and/or the method name being used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

	Key
	Possible values
	Description

	data
	A map of data
	A map of data that will be passed to the handler method.

	Returns:

	void

Example:

runEvery30Minutes(handlerMethod1)
runEvery30Minutes(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
 log.debug "handlerMethod1"
}

def handlerMethod2(data) {
 log.debug "handlerMethod2, data: $data"
}

runEvery1Hour()

Creates a recurring schedule that executes the specified handlerMethod every hour. Using this method will pick a random start time in the next hour, and run every hour after that.

	Signature:

	void runEvery1Hour(handlerMethod[, options])

Tip

This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method, the executions will be spread out over the one hour period.

	Parameters:

	handlerMethod- The method to call every hour. Can be the name of the method as a string, or a reference to the method. Make sure that the method being referenced is not scoped to private and/or the method name being used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

	Key
	Possible values
	Description

	data
	A map of data
	A map of data that will be passed to the handler method.

	Returns:

	void

Example:

runEvery1Hour(handlerMethod1)
runEvery1Hour(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
 log.debug "handlerMethod1"
}

def handlerMethod2(data) {
 log.debug "handlerMethod2, data: $data"
}

runEvery3Hours()

Creates a recurring schedule that executes the specified handlerMethod every three hours. Using this method will pick a random start time in the next hour, and run every three hours after that.

	Signature:

	void runEvery3Hours(handlerMethod[, options])

Tip

This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method, the executions will be spread out over the three hour period.

	Parameters:

	handlerMethod - The method to call every three hours. Can be the name of the method as a string, or a reference to the method. Make sure that the method being referenced is not scoped to private and/or the method name being used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

	Key
	Possible values
	Description

	data
	A map of data
	A map of data that will be passed to the handler method.

	Returns:

	void

Example:

runEvery3Hours(handlerMethod1)
runEvery3Hours(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
 log.debug "handlerMethod1"
}

def handlerMethod2(data) {
 log.debug "handlerMethod2, data: $data"
}

runOnce()

Executes the handlerMethod once at the specified date and time.

	Signature:

	void runOnce(dateTime, handlerMethod [, options])

	Parameters:

	dateTime - When to execute the handlerMethod. Can be either a Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] object or an ISO-8601 date string. For example, new Date() + 1 would run at the current time tomorrow, and "2017-07-04T12:00:00.000Z" would run at noon GMT on July 4th, 2017.

handlerMethod - The method to execute at the specified dateTime. This can be a reference to the method, or the method name as a string. Make sure that the method being referenced is not scoped to private and/or the method name being used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

	Key
	Possible values
	Description

	overwrite
	true or false
	Specify [overwrite: false] to not overwrite any existing pending schedule handler for the given method (the default behavior is to overwrite the pending schedule). Specifying [overwrite: false] can lead to multiple different schedules for the same handler method, so be sure your handler method can handle this.

	data
	A map of data
	A map of data that will be passed to the handler method.

	Returns:

	void

Example:

// execute handler at 4 PM CST on October 21, 2015 (e.g., Back to the Future 2 Day!)
runOnce("2015-10-21T16:00:00.000-0600", handler)

def handler() {
 ...
}

schedule()

Creates a scheduled job that calls the handlerMethod once per day at the time specified, or according to a cron schedule.

	Signature:

	void schedule(dateTime, handlerMethod [, options])

void schedule(cronExpression, handlerMethod [, options])

Parameters:

dateTime - A Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] object, an ISO-8601 formatted date time string.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] cronExpression - A cron expression that specifies the schedule to execute on.

handlerMethod - The method to call. This can be a reference to the method itself, or the method name as a string. Make sure that the method being referenced is not scoped to private and/or the method name being used does not include parens (e.g. handlerMethod())

options (optional) - A map of parameters, with the following keys supported:

	Key
	Possible values
	Description

	data
	A map of data
	A map of data that will be passed to the handler method.

	Returns:

	void

Tip

Since calling schedule() with a dateTime argument creates a recurring scheduled job to execute every day at the specified time, the date information is ignored. Only the time portion of the argument is used.

Tip

Full documentation for the cron expression format can be found in the Quartz Cron Trigger Tutorial [http://www.quartz-scheduler.org/documentation/quartz-2.x/tutorials/crontrigger.html]

Example:

preferences {
 section() {
 input "timeToRun", "time"
 }
}

...
// call handlerMethod1 at time specified by user input
schedule(timeToRun, handlerMethod1)

// call handlerMethod2 every day at 3:36 PM CST
schedule("2015-01-09T15:36:00.000-0600", handlerMethod2)

// execute handlerMethod3 every hour on the half hour (using a randomly chosen seconds field)
schedule("12 30 * * * ?", handlerMethod3)
...

def handlerMethod1() {...}
def handlerMethod2() {...}
def handlerMethod3() {...}

sendEvent()

Creates and sends an Event constructed from the specified properties. If a device is specified, then a DEVICE Event will be created, otherwise an APP Event will be created.

Note

SmartApps typically respond to Events, not create them. In more rare cases, certain SmartApps or Service Manager SmartApps may have reason to send Events themselves. sendEvent can be used for those cases.

	Signature:

	void sendEvent(Map properties)

void sendEvent(Device device, Map properties)

	Parameters:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] properties - The properties of the Event to create and send.

Here are the available properties:

	Property
	Description

	name (required)
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - The name of the Event. Typically corresponds to an attribute name of a capability.

	value (required)
	The value of the Event. The value is stored as a string, but you can pass numbers or other objects.

	descriptionText
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - The description of this Event. This appears in the mobile application activity for the device. If not specified, this will be created using the Event name and value.

	displayed
	Pass true to display this Event in the mobile application activity feed, false to not display. Defaults to true.

	linkText
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - Name of the Event to show in the mobile application activity feed.

	isStateChange
	true if this Event caused a device attribute to change state. Typically not used, since it will be set automatically.

	unit
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - a unit string, if desired. This will be used to create the descriptionText if it (the descriptionText option) is not specified.

	Device
	device - The device for which this Event is created for.

	data
	A map of additional information to store with the Event

Tip

Not all Event properties need to be specified. ID properties like deviceId and locationId are automatically set, as are properties like isStateChange, displayed, and linkText.

	Returns:

	void

Example:

// create and send an event with name "temperature" and value 72
sendEvent(name: "temperature", value: 72, unit: "F")

// create and send event with additional data
sendEvent(name: "myevent", value: "myvalue", data: [moreInfo: "more information", evenMoreInfo: 42])

sendHubCommand()

Sends a command to the Hub, with the details of the command encapsulated within a HubAction object.

	Signature:

	void sendHubCommand(HubAction action)

void sendHubCommand(List<HubAction> actions, delay)

	Parameters:

	HubAction action - A HubAction object

List<HubAction> actions - A list of HubAction objects

delay - An integer number representing milliseconds. This is the delay between commands when a list of HubAction objects are sent using List<HubAction> actions parameter. The default value of delay is 1000.

	Returns:

	void

	Example:

	During the discovery phase of a LAN-connected device the following discovery command can be sent to the Hub.

// Send a single HubAction command to the Hub
void ssdpDiscover() {
 sendHubCommand(new physicalgraph.device.HubAction("lan discovery urn:schemas-upnp-org:device:ZonePlayer:1", physicalgraph.device.Protocol.LAN))
}
// Send a List of HubAction commands to the Hub with a delay of 3 seconds between each HubAction command
void sendMultiDevice() {
 List actions = []
 actions.add(new physicalgraph.device.HubAction("lan discovery urn:schemas-upnp-org:device:ZonePlayer:1", physicalgraph.device.Protocol.LAN))
 actions.add(new physicalgraph.device.HubAction("lan discovery urn:schemas-upnp-org:device:MediaRenderer:1", physicalgraph.device.Protocol.LAN))
 actions.add(new physicalgraph.device.HubAction("lan discovery urn:samsung.com:device:RemoteControlReceiver:1", physicalgraph.device.Protocol.LAN))
 sendHubCommand(actions, 3000)
}

sendLocationEvent()

Sends a LOCATION Event constructed from the specified properties. See the Event reference for a list of available properties. Other SmartApps can receive Location Events by subscribing to the Location. Examples of existing Location Events include sunrise and sunset.

	Signature:

	void sendLocationEvent(Map properties)

	Parameters:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] properties - The properties from which to create and send the Event.

Here are the available properties:

	Property
	Description

	name (required)
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - The name of the Event. Typically corresponds to an attribute name of a capability.

	value (required)
	The value of the Event. The value is stored as a string, but you can pass numbers or other objects.

	descriptionText
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - The description of this Event. This appears in the mobile application activity for the device. If not specified, this will be created using the Event name and value.

	displayed
	Pass true to display this Event in the mobile application activity feed, false to not display. Defaults to true.

	linkText
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - Name of the Event to show in the mobile application activity feed.

	isStateChange
	true if this Event caused a device attribute to change state. Typically not used, since it will be set automatically.

	unit
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - a unit string, if desired. This will be used to create the descriptionText if it (the descriptionText option) is not specified.

	data
	A map of additional information to store with the Event

	Returns:

	void

sendNotification()

Sends the specified message and displays it in the Hello, Home portion of the mobile application.

	Signature:

	void sendNotification(String message [, Map options])

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] message - The message to send to Hello, Home

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] options (optional) - Options for the message. The following options are available:

	option
	description

	method
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - One of "phone", "push", or "both". Defaults to “both”.

	event
	false to supress displaying in Hello, Home. Defaults to true.

	phone
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - The phone number to send the SMS message to. Required when the method is "phone". If not specified and method is “both”, then no SMS message will be sent.

	Returns:

	void

Example:

sendNotification("test notification - no params")
sendNotification("test notification - push", [method: "push"])
sendNotification("test notification - sms", [method: "phone", phone: "1234567890"])
sendNotification("test notification - both", [method: "both", phone: "1234567890"])
sendNotification("test notification - no event", [event: false])

sendNotificationEvent()

Displays a message in Hello, Home, but does not send a push notification or SMS message.

	Signature:

	void sendNotificationEvent(String message)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] message - The message to send to Hello, Home

	Returns:

	void

Example:

sendNotificationEvent("some message")

sendNotificationToContacts()

Sends the specified message to the specified contacts.

	Signature:

	void sendNotificationToContacts(String message, String contact, Map options=[:])

void sendNotificationToContacts(String message, Collection contacts, Map options=[:])

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] message - the message to send

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] contact - the contact to send the notification to. Typically set through the contact input type.

Collection [https://docs.oracle.com/javase/7/docs/api/java/util/Collection.html] contacts - the collection of contacts to send the notification to. Typically set through the contact input type.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] options (optional) - a map of additional parameters. The valid parameter is [event: boolean] to specify if the message should be displayed in the Notifications feed. Defaults to true (message will be displayed in the Notifications feed).

	Returns:

	void

Example:

preferences {
 section("Send Notifications?") {
 input("recipients", "contact", title: "Send notifications to") {
 input "phone", "phone", title: "Warn with text message (optional)",
 description: "Phone Number", required: false
 }
 }
}

...
if (location.contactBookEnabled) {
 sendNotificationToContacts("Your house talks!", recipients)
}
...

Tip

It’s a good idea to assume that a user may not have any contacts configured. That’s why you see the nested "phone" input in the preferences (user will only see that if they don’t have contacts), and why we check location.contactBookEnabled.

sendPush()

Sends the specified message as a push notification to users mobile devices and displays it in Hello, Home.

	Signature:

	void sendPush(String message)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] message - The message to send

	Returns:

	void

Example:

sendPush("some message")

sendPushMessage()

Sends the specified message as a push notification to users mobile devices but does not display it in Hello, Home.

	Signature:

	void sendPushMessage(String message)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] message - The message to send

	Returns:

	void

Example:

sendPushMessage("some message")

sendSms()

Sends the message as an SMS message to the specified phone number and displays it in Hello, Home. The message can be no longer than 140 characters.

	Signature:

	void sendSms(String phoneNumber, String message)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] phoneNumber - the phone number to send the SMS message to.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] message - the message to send. Can be no longer than 140 characters.

	Returns:

	void

Example:

sendSms("somePhoneNumber", "some message")

sendSmsMessage()

Sends the message as an SMS message to the specified phone number but does not display it in Hello, Home. The message can be no longer than 140 characters.

	Signature:

	void sendSmsMessage(String phoneNumber, String message)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] phoneNumber - the phone number to send the SMS message to.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] message - the message to send. Can be no longer than 140 characters.

	Returns:

	void

Example:

sendSms("somePhoneNumber", "some message")

setLocationMode()

Set the Mode for this Location.

	Signature:

	void setLocationMode(String mode)
void setLocationMode(Mode mode)

	Returns:

	void

Warning

setMode() will raise an error if the specified Mode does not exist for the Location. You should verify the Mode exists as in the example below.

See Also: location.setMode()

settings

A map of name/value pairs containing all of the installed SmartApp’s preferences.

	Signature:

	Map settings

	Returns:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] - a map containing all of the installed SmartApp’s preferences.

Example:

preferences {
 section() {
 input "myswitch", "capability.switch"
 input "mytext", "text"
 input "mytime", "time"
 }
}

...

log.debug "settings.mytext: ${settings.mytext}"
log.debug "settings.mytime: ${settings.mytime}"

// if the input is a device/capability, you can get the device object
// through the settings:
log.debug "settings.myswitch.currentSwitch: ${settings.myswitch.currentSwitch}"
...

state

A map of name/value pairs that SmartApps can use to save and retrieve data across SmartApp executions.

	Signature:

	Map state

	Returns:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] - a map of name/value pairs.

state.count = 0
state.count = state.count + 1

log.debug "state.count: ${state.count}"

// use array notation if you wish
log.debug "state['count']: ${state['count']}"

// you can store lists and maps to make more intersting structures
state.listOfMaps = [[key1: "val1", bool1: true],
 [otherKey: ["string1", "string2"]]]

Warning

Though state can be treated as a map in most regards, certain convenience operations that you may be accustomed to in maps will not work with state. For example, state.count++ will not increment the count - use the longer form of state.count = state.count + 1.

stringToMap()

Parses a comma-delimited string into a map.

	Signature:

	Map stringToMap(String string)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] string - A comma-delimited string to parse into a map.

	Returns:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] - a map created from the comma-delimited string.

Example:

def testStr = "key1: value1, key2: value2"
def testMap = stringToMap(testStr)

log.debug "stringToMap: ${testMap}"
log.debug "stringToMap.key1: ${testMap.key1}" // => value1
log.debug "stringToMap.key2: ${testMap.key2}" // => value2

subscribe()

Subscribes to the various Events for a device or Location. The specified handlerMethod will be called when the Event is fired.

All event handler methods will be passed an Event that represents the Event causing the handler method to be called.

	Signature:

	void subscribe(deviceOrDevices, String attributeName, handlerMethod)

void subscribe(deviceOrDevices, String attributeNameAndValue, handlerMethod)

void subscribe(Location location, handlerMethod)

void subscribe(Location location, String eventName, handlerMethod)

void subscribe(app, handlerMethod)

	Parameters:

	deviceOrDevices - The Device or list of devices to subscribe to.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] attributeName - The attribute to subscribe to.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] attributeNameAndValue - The specific attribute value to subscribe to, in the format "<attributeName>.<attributeValue>"

handlerMethod - The method to call when the Event is fired. Can be a String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] of the method name or the method reference itself.

Location location - The Location to subscribe to

app - Pass in the available app property in the SmartApp to subscribe to touch Events in the app.

	Returns:

	void

Example:

preferences {
 section() {
 input "mycontact", "capability.contactSensor"
 input "myswitches", "capability.switch", multiple: true
 }
}
// subscribe to all state change Events for ``contact`` attribute of a contact sensor
subscribe(mycontact, "contact", handlerMethod)

// subscribe to all state changes for all switch devices configured
subscribe(myswitches, "switch", handlerMethod)

// subscribe to the "open" event for the contact sensor - only when the state changes to "open" will the handlerMethod be called
subscribe(mycontact, "contact.open", handlerMethod)

// subscribe to all state change Events for the installed SmartApp's Location
subscribe(location, handlerMethod)

// subscribe to touch Events for this app - handlerMethod called when app is touched
subscribe(app, appTouchMethod)

// all event handler methods must accept an event parameter
def handlerMethod(evt) {
 log.debug "event name: ${evt.name}"
 log.debug "event value: ${evt.value}"
}

subscribeToCommand()

Subscribes to device commands that are sent to a device. The specified handlerMethod will be called whenever the specified command is sent.

	Signature:

	void subscribeToCommand(device, commandName, handlerMethod)

Parameters:

device - The Device to subscribe to.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] commandName - The command to subscribe to

handlerMethod - the method to call when the command is called.

	Returns:

	void

Example:

preferences {
 section() {
 input "switch1", "capability.switch"
 }
}
...
subscribeToCommand(switch1, "on", onCommand)
...
// called when the on() command is called on switch1
def onCommand(evt) {...}

timeOfDayIsBetween()

Find if a given date is between a lower and upper bound.

	Signature:

	Boolean timeOfDayIsBetween(Date start, Date stop, Date value, TimeZone timeZone)

	Parameters:

	Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] start - The start date to compare against.

Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] stop - The end date to compare against.

Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] value - The date to compare to start and stop.

TimeZone [http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html] timeZone - The time zone for this comparison.

	Returns:

	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html] - true if the specified date is between the start and stop dates, false otherwise.

Example:

def between = timeOfDayIsBetween(new Date() - 1, new Date() + 1,
 new Date(), location.timeZone)
log.debug "between: $between" => true

timeOffset()

Gets a time offset in milliseconds for the specified input.

	Signature:

	Long timeOffset(Number minutes)

Long timeOffset(String hoursAndMinutesString)

	Parameters:

	Number [http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html] minutes - The number of minutes to get the offset in milliseconds for.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] hoursAndMinutesString - A string in the format of "hh:mm" to get the offset in milliseconds for. Negative offsets are specified by prefixing the string with a minus sign ("-02:30").

	Returns:

	Long [https://docs.oracle.com/javase/7/docs/api/java/lang/Long.] - the time offset in milliseconds for the specified input.

Example:

def off1 = timeOffset(24) // => 1440000
def off2 = timeOffset("2:30") // => 9000000
def off2again = timeOffset(150) // => 9000000
def off3 = timeOffset("-02:30") // => -9000000

timeToday()

Gets a Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] object for today’s date, for the specified time in the date-time parameter.

	Signature:

	Date timeToday(String timeString [, TimeZone timeZone])

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] timeString - Either an ISO-8601 date string as returned from time input preferences, or a simple time string in "hh:mm" format (“21:34”).

TimeZone [http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html] timeZone (optional) - The time zone to use for determining the current day.

Warning

Although the timeZone argument is optional, it is strongly encouraged that you use it. Not specifying the timeZone results in the SmartThings platform trying to calculate the time zone based on the date and time zone offsets in the input string.

To avoid time zone errors, you should specify the timeZone argument (you can get the time zone from the location object: location.timeZone)

Future releases may remove the option to call timeToday without a time zone.

	Returns:

	Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] - the Date that represents today’s date for the specified time.

Example:

preferences {
 section() {
 input "startTime", "time"
 input "endTime", "time"
 }
}
...
def start = timeToday(startTime, location.timeZone)
def end = timeToday(endTime, location.timeZone)

timeTodayAfter()

Returns a Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] of the next occurrence of the time specified in the input, relative to a reference time.

	Signature:

	Date timeTodayAfter(String startTimeString, String timeString [, TimeZone timeZone])

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] startTimeString - The reference time. Can be an ISO-8601 date string as returned from time input preferences, or a simple time string in "hh:mm" format (“21:34”).

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] timeString - The time string whose next occurrence is queried. Can be an ISO-8601 date string as returned from time input preferences, or a simple time string in "hh:mm" format (“21:34”).

TimeZone [http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html] timeZone (optional) - The time zone used for determining the current date and time.

Warning

Although the timeZone argument is optional, it is strongly encouraged that you use it. Not specifying the timeZone results in the SmartThings platform trying to calculate the time zone based on the date and time zone offsets in the input string.

To avoid time zone errors, you should specify the timeZone argument (you can get the time zone from the location object: location.timeZone)

Future releases may remove the option to call timeToday without a time zone.

	Returns:

	Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] - If time specified by timeString has already occurred prior to startTimeString then returns the next day Date object when the timeString time occurs next. If timeString time has not yet occurred relative to startTimeString, then returns today’s Date object when the timeString time will occur. Since only the occurrence of timeString after the elapse of startTimeString time is considered, the Date returned is guaranteed to be later than the startTimeString date.

Example:

preferences {
 section() {
 input "time1", "time"
 input "time2", "time"
 }
}
...
// assume time1 entered as 20:20
// assume time2 entered as 14:05
// since 14:05 time today has already elapsed prior to 20:20 reference time today,
// the nextTime would be tomorrow's date, 14:05 time (the next occurrence of 14:05 time)
def nextTime = timeTodayAfter(time1, time2, location.timeZone)

timeZone()

Get a TimeZone object for the specified time value entered as a SmartApp preference. This will get the current time zone of the mobile app (not the Hub Location).

	Signature:

	TimeZone timeZone(String timePreferenceString)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] timePreferenceString - The time value string in IS0-8061 format as entered as input in SmartApp time preferences.

	Returns:

	TimeZone [http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html] - the TimeZone for the time value as specified by the timePreferenceString.

Example:

preferences {
 section() {
 input "mytime", "time"
 }
}

...
def enteredTimeZone = timeZone(mytime)
...

toDateTime()

Get a Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] object for the specified string.

	Signature:

	Date toDateTime(dateTimeString)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] dateTimeString - the date-time string for which to get a Date object, in ISO-8061 format as used by time preferences

	Returns:

	Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] - the Date for the specified dateTimeString.

Example:

preferences {
 section() {
 input "mytime", "time"
 }
}
...
Date myTimeAsDate = toDateTime(mytime)
...

unschedule()

Deletes all scheduled jobs for the SmartApp.
If using the optional method parameter, then it deletes the scheduled job for the specified handler name only.

	Signature:

	void unschedule(String method = '')

	Returns:

	void

Note

This can be an expensive operation if unscheduling all scheduled jobs; make sure you need to do this before calling. Typically called in the updated() method if the SmartApp has set up recurring schedules.

unsubscribe()

Deletes all subscriptions for the installed SmartApp, or for a specific device or devices if specified.

Typically should be called in the updated() method, since device preferences may have changed.

	Signature:

	unsubscribe([deviceOrDevices])

	Paramters:

	deviceOrDevices (optional) - The device or devices for which to unsubscribe from. If not specified, all subscriptions for this installed SmartApp will be deleted.

	Returns:

	void

Example:

def updated() {
 unsubscribe()
}

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	API Documentation

Device Handler

Device Handlers are the virtual representation of a physical device.

A Device Handler defines a metadata() method that defines the device’s definition, UX information, as well as how it should behave in the IDE simulator.

A Device Handler typically also defines a parse() method that is responsible for transforming raw messages from the device into Events for the SmartThings platform.

Device Handlers must also define methods for any supported commands, either through its supported capabilities, or device-specific commands.

For more information about the structure of Device Handlers, refer to the Device Handler’s Guide.

Tip

Writing a Device Handler is considered a somewhat advanced topic. Understanding of how a Device Handler is organized and operates is assumed in this reference documentation. You should be familiar with the contents of the Device Handler’s Guide to get the most out of this documentation.

Methods expected to be defined by Device Handlers:

<command name>()

Note

This method is expected to be defined by Device Handlers.

The definition for a Command supported by this Device Handler. Every Command that a Device Handler supports, either through its capabilities or custom commands, must have a corresponding command method defined.

Commands are the things that a device can do. For example, the “Switch” capability defines the commands “on” and “off”. Every Device that supports the “Switch” capability must define an implementation of these commands. This is done by defining methods with the name of the command. For example, def on() {} and def off().

The exact implementation of a command method will vary greatly depending upon the device. The command method is responsible for sending protocol and device-specific commands to the physical device.

	Signature:

	Object <command name([arguments])>

	Returns:

	Object [http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html] - Commands may return any object, but typically do not return anything since they perform some type of action.

Example:

metadata {
 // Automatically generated. Make future change here.
 definition (name: "CentraLite Switch", namespace: "smartthings", author: "SmartThings") {
 ...
 capability "Switch"
 ...
}
...
// capability "Switch" declared, so all supported commands
// of "Switch" must be implemented:
def on() {
 // device-specific commands to turn the switch on
}

def off() {
 // device-specific commands to turn the switch off
}
...

parse()

Note

This method is expected to be defined by Device Handlers.

Called when messages from a device are received from the Hub. The parse method is responsible for interpreting those messages and returning Event definitions. Event definitions are maps that contain, at a minimum, name and value entries. They may also contain unit, displayText, displayed, isStateChange, and linkText entries if the default, automatically generated values of these Event properties are to be overridden. See the createEvent() documentation for a description of these properties.

Because the parse() method is responsible for handling raw device messages, their implementations vary greatly across different Device Handlers.

The parse() method may return a map defining the Event to create and propagate through the SmartThings platform, or a list of Events if multiple Events should be created. It may also return a HubAction or list of HubAction objects in the case of LAN-connected devices.

	Signature:

	Map parse(String description)

List<Map> parse(String description)

HubAction parse(String description)

List<HubAction> parse(String description)

Example:

def parse(String description) {
 log.debug "Parse description $description"
 def name = null
 def value = null
 if (description?.startsWith("read attr -")) {
 def descMap = parseDescriptionAsMap(description)
 log.debug "Read attr: $description"
 if (descMap.cluster == "0006" && descMap.attrId == "0000") {
 name = "switch"
 value = descMap.value.endsWith("01") ? "on" : "off"
 } else {
 def reportValue = description.split(",").find {it.split(":")[0].trim() == "value"}?.split(":")[1].trim()
 name = "power"
 // assume 16 bit signed for encoding and power divisor is 10
 value = Integer.parseInt(reportValue, 16).intdiv(10)
 }
 } else if (description?.startsWith("on/off:")) {
 log.debug "Switch command"
 name = "switch"
 value = description?.endsWith(" 1") ? "on" : "off"
 }

 // createEvent returns a Map that defines an Event
 def result = createEvent(name: name, value: value)
 log.debug "Parse returned ${result?.descriptionText}"

 // returning the Event definition map creates an Event
 // in the SmartThings platform, and propagates it to
 // SmartApps subscribed to the device events.
 return result
}

addChildDevice()

Adds a child device to a Device Handler.
An example use is in a composite device Device Handler.

A parent may have multiple children, but only one level of children is allowed (i.e., if a device has a parent, it may not have children itself).

Warning

A parent may have at most 500 children.

	Signature:

	DeviceWrapper addChildDevice(String typeName, String deviceNetworkId, hubId, Map properties)

DeviceWrapper addChildDevice(String namespace, String typeName, String deviceNetworkId, hubId, Map properties)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] namespace - the namespace for the device. If not specified, defaults to the namespace of the current Device Handler executing the call.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] typeName - the device type name

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] deviceNetworkId - the device network id of the device

hubId - (optional) The hub id. Defaults to null

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] properties (optional) - A map with device properties. Available options are:

	Option
	Description

	isComponent
	Allowed values are true and false. When true hides the device from the Things view and doesn’t let it be separately deleted. (Example: This value is true for the ZooZ ZEN 20 and false for Hue bridge.)

	componentName
	A way to refer to this particular child. It should be a Java Bean name (i.e. no spaces). It is used to refer to the device in the parent’s detail view. This option is only needed when isComponent is true.

	componentLabel
	The plain-english name (or i18n key) to be used by the UX.

	completedSetup
	Specify true to complete the setup for the child device; false to have the user complete the installation. It should be true if isComponent is true. Defaults to false.

	label
	The label for the device.

	Returns:

	Device - The device that was created.

	Throws:

	UnknownDeviceTypeException - If a Device Handler with the specified name and namespace is not found.

IllegalArgumentException - If the deviceNetworkId is not specified.

ValidationException - If the this device already has a parent.

SizeLimitExceededException - If this device already has the maximum number of children allowed (500).

Example:

// on installation, create child devices
def installed() {
 createChildDevices()
}

def createChildDevices() {

 // This device (power strip) has five outlets
 for (i in 1..5) {
 // can omit namespace (first arg) if it is the same as this device
 addChildDevice("smartthings", "Zooz Power Strip Outlet", "${device.deviceNetworkId}-ep${i}", null,
 [completedSetup: true, label: "${device.displayName} (CH${i})",
 isComponent: true, componentName: "ch$i", componentLabel: "Channel $i"])
 }
}

apiServerUrl()

Returns the URL of the server where this Device Handler can be reached for API calls, along with the specified path appended to it. Use this instead of hard-coding a URL to ensure that the correct server URL for this installed instance is returned.

	Signature:

	String apiServerUrl(String path)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] path - the path to append to the URL

	Returns:

	The URL of the server for this installed instance of the Device Handler.

Example:

// logs <server url>/my/path
log.debug "apiServerUrl: ${apiServerUrl("/my/path")}"

// The leading "/" will be added if you don't specify it
// logs <server url>/my/path
log.debug "apiServerUrl: ${apiServerUrl("my/path")}"

attribute()

Called within the definition() method to declare that this Device Handler supports an attribute not defined by any of its declared capabilities.

For any supported attribute, it is expected that the Device Handler creates and sends Events with the name of the attribute in the parse() method.

	Signature:

	void attribute(String attributeName, String attributeType [, List possibleValues])

	Parameter:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] attributeName - the name of the attribute

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] attributeType - the type of the attribute. Available types are “string”, “number”, and “enum”

List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] possibleValues (optional) - the possible values for this attribute. Only valid with the "enum" attributeType.

	Returns:

	void

Example:

metadata {
 definition (name: "Some Device Name", namespace: "somenamespace",
 author: "Some Author") {
 capability "Switch"
 capability "Polling"
 capability "Refresh"

 // also support the attribute "myCustomAttriute" - not defined by supported capabilities.
 attribute "myCustomAttribute", "number"

 // enum attribute with possible values "light" and "dark"
 attribute "someOtherName", "enum", ["light", "dark"]
 }
 ...
}

capability()

Called in the definition() method to define that this device supports the specified capability.

Important

Whatever commands and attributes defined by that capability should be implemented by the Device Handler. For example, the “Switch” capability specifies support for the “switch” attribute and the “on” and “off” commands - any Device Handler supporting the “Switch” capability must define methods for the commands, and support the “switch” attribute by creating the appropriate Events (with the name of the attribute, e.g., “switch”)

	Signature:

	void capability(String capabilityName)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] capabilityName - the name of the capability. This is the long-form name of the Capability name, not the “preferences reference”.

	Returns:

	void

Example:

metadata {
 definition (name: "Cerbco Light Switch", namespace: "lennyv62",
 author: "Len Veil") {
 capability "Switch"
 ...
 }
 ...
}

def parse(description) {
 // handle device messages, determine what value of the Event is
 return createEvent(name: "switch", value: someValue)
}

// need to define the on and off commands, since those
// are supported by "Switch" capability
def on() {
 ...
}

def off() {

}

carouselTile()

Called within the tiles() method to define a tile often used in conjunction with the Image Capture capability, to allow users to scroll through recent pictures.

	Signature:

	void carouselTile(String tileName, String attributeName [,Map options, Closure closure])

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] tileName - the name of the tile. This is used to identify the tile when specifying the tile layout.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] attributeName - the attribute this tile is associated with. Each tile is associated with an attribute of the device. The typical pattern is to prefix the attribute name with "device." - e.g., "device.water".

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] options (optional) - Various options for this tile. Valid options are found in the table below:

	option
	type
	description

	width
	Integer [https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html]
	controls how wide the tile is. Default is 1.

	height
	Integer [https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html]
	controls how tall this tile is. Default is 1.

	canChangeIcon
	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html]
	true to allow the user to pick their own icon. Defaults to false.

	canChangeBackground
	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html]
	true to allow a user to choose their own background image for the tile. Defaults to false.

	decoration
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	specify "flat" for the tile to render without a ring.

	range
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	used to specify a custom range. In the form of "(<lower bound>..<upper bound>)"

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure (optional) - a closure that defines any states for the tile.

	Returns:

	void

Example:

tiles {
 carouselTile("cameraDetails", "device.image", width: 3, height: 2) { }
}

childDeviceTile()

Called within the tiles() method in a parent Device Handler of a composite device to define the display of a child device tile.
The mobile user interface of a composite parent device is built typically by combining tiles from multiple child devices.

	Signature:

	void childDeviceTile(String tileName, String componentName [, Map options, Closure closure])

	Returns:

	void

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] tileName - the name of the tile. This is used to identify the tile when specifying the tile layout.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] componentName - the name of the component child device. This name is the same as the componentName in the addChildDevice() in the composite parent Device Handler.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] options (optional) - Various options for this tile. Valid options are found in the table below:

	option
	type
	description

	width
	Integer [https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html]
	controls how wide the tile is. Default is 1.

	height
	Integer [https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html]
	controls how tall this tile is. Default is 1.

	childTileName
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	name of the tile in the child Device Handler.

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure (optional) - A closure that calls any state() methods to define how the tile should appear for various attribute values.

Example:

metadata {
 definition (name: "Simulated Refrigerator", namespace: "smartthings/testing", author: "SmartThings") {
 capability "Contact Sensor"
 }
 tiles {
 childDeviceTile("mainDoor", "mainDoor", height: 2, width: 2, childTileName: "mainDoor")
 }
...

}
def installed() {
 state.counter = state.counter ? state.counter + 1 : 1
 if (state.counter == 1) {
 // A tile with the name "mainDoor" exists in the tiles() method of the child Device Handler "Simulated Refrigerator Door"
 addChildDevice(
 "Simulated Refrigerator Door",
 "${device.deviceNetworkId}.2",
 null,
 [completedSetup: true, label: "${device.label} (Main Door)", componentName: "mainDoor", componentLabel: "Main Door"])
 }
}

command()

Called within the definition() method to declare that this Device Handler supports a command not defined by any of its declared capabilities.

For any supported command, it is expected that the Device Handler define a <command name>() method with a corresponding name.

	Signature:

	void command(String commandName [, List parameterTypes])

	Parameter:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] commandName - the name of the command.

List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] parameterTypes (optional) - a list of strings that defines the types of the parameters the command requires (in order), if any. Typical values are “string”, “number”, and “enum”.

	Returns:

	void

Example:

metadata {
 definition (name: "Some Device Name", namespace: "somenamespace",
 author: "Some Author") {
 capability "Switch"
 capability "Polling"
 capability "Refresh"

 // also support the attribute "myCustomCommand" - not defined by supported capabilities.
 command "myCustomCommand"

 // commands can take parameters
 command "myCustomCommandWithParams", ["string", "number"]

 }
 ...
}

def myCustomCommand() {
 ...
}

def myCustomCommandWithParams(def stringArg, def numArg) {
 ...
}

controlTile()

Called within the tiles() method to define a tile that allows the user to input a value within a range. A common use case for a control tile is a light dimmer.

	Signature:

	void controlTile(String tileName, String attributeName, String controlType [, Map options, Closure closure])

	Returns:

	void

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] tileName - the name of the tile. This is used to identify the tile when specifying the tile layout.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] attributeName - the attribute this tile is associated with. Each tile is associated with an attribute of the device. The typical pattern is to prefix the attribute name with "device." - e.g., "device.water".

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] controlType - the type of control. Either "slider" or "control".

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] options (optional) - Various options for this tile. Valid options are found in the table below:

	option
	type
	description

	width
	Integer [https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html]
	controls how wide the tile is. Default is 1.

	height
	Integer [https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html]
	controls how tall this tile is. Default is 1.

	canChangeIcon
	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html]
	true to allow the user to pick their own icon. Defaults to false.

	canChangeBackground
	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html]
	true to allow a user to choose their own background image for the tile. Defaults to false.

	decoration
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	specify "flat" for the tile to render without a ring.

	range
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	used to specify a custom range. In the form of "(<lower bound>..<upper bound>)"

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure (optional) - A closure that calls any state() methods to define how the tile should appear for various attribute values.

Example:

tiles {
 controlTile("levelSliderControl", "device.level", "slider", height: 1,
 width: 2, inactiveLabel: false, range:"(0..100)") {
 state "level", action:"switch level.setLevel"
 }
}

createEvent()

Creates a Map that represents an Event object. Typically used in the parse() method to define Events for particular attributes. The resulting map is then returned from the parse() method. The SmartThings platform will then create an Event object and propagate it through the system.

	Signature:

	Map createEvent(Map options)

	Parameters:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] options - The various properties that define this Event. The available options are listed below. It is not necessary, or typical, to define all the available options. Typically only the name and value options are required.

	Property
	Type
	Description

	name (required)
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	the name of the Event. Typically corresponds to an attribute name of a capability.

	value (required)
	Object [http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html]
	the value of the Event. The value is stored as a string, but you can pass numbers or other objects.

	descriptionText
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	the description of this Event. This appears in the mobile application activity for the device. If not specified, this will be created using the Event name and value.

	displayed
	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html]
	specify true to display this Event in the mobile application activity feed, false to not display. Defaults to true.

	linkText
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	name of the Event to show in the mobile application activity feed.

	isStateChange
	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html]
	specify true if this Event caused a device attribute to change state. Typically not used, since it will be set automatically.

	unit
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	a unit string, if desired. This will be used to create the descriptionText if it (the descriptionText option) is not specified.

	data
	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html]
	A map of additional information to store with the Event

Example:

def parse(String description) {
 ...

 def evt1 = createEvent(name: "someName", value: "someValue")
 def evt2 = createEvent(name: "someOtherName", value: "someOtherValue")

 return [evt1, evt2]
}

definition()

Called within the metadata() method, and defines some basic information about the device, as well as the supported capabilities, commands, and attributes.

	Signature:

	void definition(Map definitionData, Closure closure)

	Parameters:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] definitionData - defines various metadata about this Device Handler. Valid options are:

	option
	type
	description

	name
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	the name of this Device Handler

	namespace
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	the namespace for this Device Handler. Typically the same as the author’s github user name.

	author
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	the name of the author.

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure - A closure with method calls to capability() , command() , or attribute() .

	Returns:

	void

Example:

metadata {
 definition (name: "My Device Name", namespace: "mynamespace",
 author: "My Name") {
 capability "Switch"
 capability "Polling"
 capability "Refresh"

 command "someCustomCommand"

 attribute "someCustomAttribute", "number"
 }
 ...
}

details()

Used within the tiles() method to define the order that the tiles should appear in.

	Signature:

	void details(List<String> tileDefinitions)

	Parameters:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] < String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] > tileDefinitions - A list of tile names that defines the order of the tiles (left-to-right, top-to-bottom)

	Returns:

	void

Example:

tiles {
 standardTile("switchTile", "device.switch", width: 2, height: 2,
 canChangeIcon: true) {
 state "off", label: '${name}', action: "switch.on",
 icon: "st.switches.switch.off", backgroundColor: "#ffffff"
 state "on", label: '${name}', action: "switch.off",
 icon: "st.switches.switch.on", backgroundColor: "#E60000"
 }
 valueTile("powerTile", "device.power", decoration: "flat") {
 state "power", label:'${currentValue} W'
 }
 standardTile("refreshTile", "device.power", decoration: "ring") {
 state "default", label:'', action:"refresh.refresh",
 icon:"st.secondary.refresh",
 }

 main "switchTile"

 // defines what order the tiles are defined in
 details(["switchTile","powerTile","refreshTile"])
}

device

The Device object, from which its current properties and history can be accessed.
As of now this object is a different type than the Device object available in SmartApps.
At some point these will be merged, but for now the properties and methods of the device object available to the Device Handler are discussed in the example below:

...
// Gets the most recent State for the given attribute
def state1 = device.currentState("someAttribute")
def state2 = device.latestState("someOtherAttribute")

// Gets the current value for the given attribute
// Return type will vary depending on the device
def curVal1 = device.currentValue("someAttribute")
def curVal2 = device.latestValue("someOtherAttribute")

// gets the display name of the device
def displayName = device.displayName

// gets the internal unique system identifier for this device
def thisId = device.id

// gets the internal name for this device
def thisName = device.name

// gets the user-defined label for this device
def thisLabel = device.label

fingerprint()

Called within the definition() method to define the information necessary to pair this device to the Hub.

See the Fingerprinting Section of the Device Handler guide for more information.

getApiServerUrl()

Returns the URL of the server where this Device Handler can be reached for API calls. Use this instead of hard-coding a URL to ensure that the correct server URL for this installed instance is returned.

	Signature:

	String getApiServerUrl()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the URL of the server where this Device Handler can be reached.

getChildDevices()

Gets a list of all child devices for this device.

	Signature:

	List<ChildDeviceWrapper> getChildDevices()

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] <Device> - a list of child devices for this device

Example:

def children = getChildDevices()

log.debug "device has ${children.size()} children"
children.each { child ->
 log.debug "child ${child.displayName} has deviceNetworkId ${child.deviceNetworkId}"
}

getColorUtil()

Returns the ColorUtilities object.

	Signature:

	ColorUtilities getColorUtil()

	Returns:

	ColorUtilities

getImage()

Returns a ByteArrayInputStream [https://docs.oracle.com/javase/7/docs/api/java/io/ByteArrayInputStream.html] for the image stored using storeImage() or storeTemporaryImage() with the specified name.

An exception is thrown if the requested image does not exist for this device.

	Signature:

	ByteArrayInputStream getImage(String name)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] name - The name of the image to retrieve.

	Returns:

	ByteArrayInputStream [https://docs.oracle.com/javase/7/docs/api/java/io/ByteArrayInputStream.html] - The input stream of bytes for this image.

Example:

ByteArrayInputStream imgStream = getImage("some-existing-image-name")

httpDelete()

Executes an HTTP DELETE request and passes control to the specified closure. The closure is passed one HttpResponseDecorator [http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html] argument from which the response content and header information can be extracted.

	Signature:

	void httpDelete(String uri, Closure closure)

void httpDelete(Map params, Closure closure)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] uri - The URI to make the HTTP DELETE call to.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - A map of parameters for configuring the request. The valid parameters are:

	Parameter
	Description

	uri
	Either a URI or URL of of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	contentType
	Request content type and Accept header.

	requestContentType
	Content type for the request, if it is different from the expected response content-type.

	body
	Request body that will be encoded based on the given contentType.

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure - The closure that will be called with the response of the request.

	Returns:

	void

httpGet()

Executes an HTTP GET request and passes control to the specified closure. The closure is passed one HttpResponseDecorator [http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html] argument from which the response content and header information can be extracted.

If the response content type is JSON, the response data will automatically be parsed into a data structure.

	Signature:

	void httpGet(String uri, Closure closure)

void httpGet(Map params, Closure closure)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] uri - The URI to make the HTTP GET call to

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - A map of parameters for configuring the request. The valid parameters are:

	Parameter
	Description

	uri
	Either a URI or URL of of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	contentType
	Request content type and Accept header.

	requestContentType
	Content type for the request, if it is different from the expected response content-type.

	body
	Request body that will be encoded based on the given contentType.

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] - closure - The closure that will be called with the response of the request.

Example:

def params = [
 uri: "http://httpbin.org",
 path: "/get"
]

try {
 httpGet(params) { resp ->
 resp.headers.each {
 log.debug "${it.name} : ${it.value}"
 }
 log.debug "response contentType: ${resp.contentType}"
 log.debug "response data: ${resp.data}"
} catch (e) {
 log.error "something went wrong: $e"
}

httpHead()

Executes an HTTP HEAD request and passes control to the specified closure. The closure is passed one HttpResponseDecorator [http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html] argument from which the response content and header information can be extracted.

	Signature:

	void httpHead(String uri, Closure closure)

void httpHead(Map params, Closure closure)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] uri - The URI to make the HTTP HEAD call to

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - A map of parameters for configuring the request. The valid parameters are:

	Parameter
	Description

	uri
	Either a URI or URL of of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	contentType
	Request content type and Accept header.

	requestContentType
	Content type for the request, if it is different from the expected response content-type.

	body
	Request body that will be encoded based on the given contentType.

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure - The closure that will be called with the response of the request.

httpPost()

Executes an HTTP POST request and passes control to the specified closure. The closure is passed one HttpResponseDecorator [http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html] argument from which the response content and header information can be extracted.

If the response content type is JSON, the response data will automatically be parsed into a data structure.

	Signature:

	void httpPost(String uri, String body, Closure closure)

void httpPost(Map params, Closure closure)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] uri - The URI to make the HTTP GET call to

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] body - The body of the request

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - A map of parameters for configuring the request. The valid parameters are:

	Parameter
	Description

	uri
	Either a URI or URL of of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	contentType
	Request content type and Accept header.

	requestContentType
	Content type for the request, if it is different from the expected response content-type.

	body
	Request body that will be encoded based on the given contentType.

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure - The closure that will be called with the response of the request.

Example:

try {
 httpPost("http://mysite.com/api/call", "id=XXX&value=YYY") { resp ->
 log.debug "response data: ${resp.data}"
 log.debug "response contentType: ${resp.contentType}"
 }
} catch (e) {
 log.debug "something went wrong: $e"
}

httpPostJson()

Executes an HTTP POST request with a JSON-encoded body and content type, and passes control to the specified closure. The closure is passed one HttpResponseDecorator [http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html] argument from which the response content and header information can be extracted.

If the response content type is JSON, the response data will automatically be parsed into a data structure.

	Signature:

	void httpPostJson(String uri, String body, Closure closure)

void httpPostJson(String uri, Map body, Closure closure)

void httpPostJson(Map params, Closure closure)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] uri - The URI to make the HTTP POST call to

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] body - The body of the request

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - A map of parameters for configuring the request. The valid parameters are:

	Parameter
	Description

	uri
	Either a URI or URL of of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	contentType
	Request content type and Accept header.

	requestContentType
	Content type for the request, if it is different from the expected response content-type.

	body
	Request body that will be encoded based on the given contentType.

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure - The closure that will be called with the response of the request.

Example:

def params = [
 uri: "http://postcatcher.in/catchers/<yourUniquePath>",
 body: [
 param1: [subparam1: "subparam 1 value",
 subparam2: "subparam2 value"],
 param2: "param2 value"
]
]

try {
 httpPostJson(params) { resp ->
 resp.headers.each {
 log.debug "${it.name} : ${it.value}"
 }
 log.debug "response contentType: ${resp. contentType}"
 }
} catch (e) {
 log.debug "something went wrong: $e"
}

httpPut()

Executes an HTTP PUT request and passes control to the specified closure. The closure is passed one HttpResponseDecorator [http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html] argument from which the response content and header information can be extracted.

If the response content type is JSON, the response data will automatically be parsed into a data structure.

	Signature:

	void httpPut(String uri, String body, Closure closure)

void httpPut(Map params, Closure closure)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] uri - The URI to make the HTTP GET call to

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] body - The body of the request

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - A map of parameters for configuring the request. The valid parameters are:

	Parameter
	Description

	uri
	Either a URI or URL of of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	contentType
	Request content type and Accept header.

	requestContentType
	Content type for the request, if it is different from the expected response content-type.

	body
	Request body that will be encoded based on the given contentType.

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure - The closure that will be called with the response of the request.

Example:

try {
 httpPut("http://mysite.com/api/call", "id=XXX&value=YYY") { resp ->
 log.debug "response data: ${resp.data}"
 log.debug "response contentType: ${resp.contentType}"
 }
} catch (e) {
 log.error "something went wrong: $e"
}

httpPutJson()

Executes an HTTP PUT request with a JSON-encoded boday and content type, and passes control to the specified closure. The closure is passed one HttpResponseDecorator [http://javadox.com/org.codehaus.groovy.modules.http-builder/http-builder/0.6/groovyx/net/http/HttpResponseDecorator.html] argument from which the response content and header information can be extracted.

If the response content type is JSON, the response data will automatically be parsed into a data structure.

	Signature:

	void httpPutJson(String uri, String body, Closure closure)

void httpPutJson(String uri, Map body, Closure closure)

void httpPutJson(Map params, Closure closure)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] uri - The URI to make the HTTP PUT call to

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] body - The body of the request

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - A map of parameters for configuring the request. The valid parameters are:

	Parameter
	Description

	uri
	Either a URI or URL of of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	contentType
	Request content type and Accept header.

	requestContentType
	Content type for the request, if it is different from the expected response content-type.

	body
	Request body that will be encoded based on the given contentType.

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure - The closure that will be called with the response of the request.

main()

Used to define what tile appears on the main “Things” view in the mobile application. Can be called within the tiles() method.

	Signature:

	void main(String tileName)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] tileName - the name of the tile to display as the main tile.

	Returns:

	void

Example:

tiles {
 standardTile("switchTile", "device.switch", width: 2, height: 2,
 canChangeIcon: true) {
 state "off", label: '${name}', action: "switch.on",
 icon: "st.switches.switch.off", backgroundColor: "#ffffff"
 state "on", label: '${name}', action: "switch.off",
 icon: "st.switches.switch.on", backgroundColor: "#E60000"
 }
 valueTile("powerTile", "device.power", decoration: "flat") {
 state "power", label:'${currentValue} W'
 }
 standardTile("refreshTile", "device.power", decoration: "ring") {
 state "default", label:'', action:"refresh.refresh",
 icon:"st.secondary.refresh",
 }

 // The "switchTile" will be main tile, displayed in the "Things" view
 main "switchTile"
 details(["switchTile","powerTile","refreshTile"])
}

metadata()

Used to define metadata such as this Device Handler’s supported capabilities, attributes, commands, and UX information.

	Signature:

	void metadata(Closure closure)

	Parameters:

	Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure - a closure that defines the metadata. The closure is expected to have the following methods called in it: definition() , simulator() , and tiles() .

	Returns:

	void

Example:

metadata {
 definition(name: "device name", namespace: "yournamespace", author: "your name") {

 // supported capabilities, commands, attributes,
 }
 simulator {
 // simulator metadata
 }
 tiles {
 // tiles metadata
 }
}

reply()

Called in the simulator() method to model the behavior of a physical device when a virtual instance of the Device Handler is run in the IDE.

The simulator matches command strings generated by the device to those specified in the commandString argument of a reply method and, if a match is found, calls the Device Handler’s parse method with the corresponding messageDescription.

For example, the reply method reply "2001FF,2502": "command: 2503, payload: FF" models the behavior of a physical Z-Wave switch in responding to an Basic Set command followed by a Switch Binary Get command. The result will be a call to the parse method with a Switch Binary Report command with a value of 255, i.e., the turning on of the switch. Modeling turn off would be done with the reply method reply "200100,2502": "command: 2503, payload: 00".

	Signature:

	void reply(String commandString, String messageDescription)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] commandString - a String that represents the command.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] messageDescription - a String that represents the message description.

	Returns:

	void

Example:

 metadata {
 ...

 // simulator metadata
 simulator {
 // 'on' and 'off' will appear in the messages dropdown, and send
 // "on/off: 1 to the parse method"
 status "on": "on/off: 1"
 status "off": "on/off: 0"

 // simulate reply messages from the device
 reply "zcl on-off on": "on/off: 1"
 reply "zcl on-off off": "on/off: 0"
 }
 ...
}

runEvery1Minute()

Creates a recurring schedule that executes the specified handlerMethod every minute.
Using this method will pick a random start time in the next minute, and run every minute after that.

	Signature:

	void runEvery1Minute(handlerMethod[, options])

Tip

This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule like this because with a cron expression all installations of a SmartApp will execute at the same time. With this method, the executions will be spread out over the 1 minute period.

	Parameters:

	handlerMethod - The method to call every minute. Can be the name of the method as a string, or a reference to the method.

options (optional) - A map of parameters, with the following keys supported:

	Key
	Possible values
	Description

	data
	A map of data
	A map of data that will be passed to the handler method.

	Returns:

	void

Example:

runEvery1Minute(handlerMethod1)
runEvery1Minute(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
 log.debug "handlerMethod1"
}

def handlerMethod2(data) {
 log.debug "handlerMethod2, data: $data"
}

runEvery5Minutes()

Creates a recurring schedule that executes the specified handlerMethod every five minutes.
Using this method will pick a random start time in the next five minutes, and run every five minutes after that.

	Signature:

	void runEvery5Minutes(handlerMethod[, options])

Tip

This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule like this because with a cron expression all installations of a SmartApp will execute at the same time.
With this method, the executions will be spread out over the 5 minute period.

	Parameters:

	handlerMethod - The method to call every five minutes. Can be the name of the method as a string, or a reference to the method.

options (optional) - A map of parameters, with the following keys supported:

	Key
	Possible values
	Description

	data
	A map of data
	A map of data that will be passed to the handler method.

	Returns:

	void

Example:

runEvery5Minutes(handlerMethod1)
runEvery5Minutes(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
 log.debug "handlerMethod1"
}

def handlerMethod2(data) {
 log.debug "handlerMethod2, data: $data"
}

runEvery10Minutes()

Creates a recurring schedule that executes the specified handlerMethod every ten minutes.
Using this method will pick a random start time in the next ten minutes, and run every ten minutes after that.

	Signature:

	void runEvery10Minutes(handlerMethod[, options])

Tip

This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule like this because with a cron expression all installations of a SmartApp will execute at the same time.
With this method, the executions will be spread out over the ten minute period.

	Parameters:

	handlerMethod - The method to call every ten minutes. Can be the name of the method as a string, or a reference to the method.

options (optional) - A map of parameters, with the following keys supported:

	Key
	Possible values
	Description

	data
	A map of data
	A map of data that will be passed to the handler method.

	Returns:

	void

Example:

runEvery10Minutes(handlerMethod1)
runEvery10Minutes(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
 log.debug "handlerMethod1"
}

def handlerMethod2(data) {
 log.debug "handlerMethod2, data: $data"
}

runEvery15Minutes()

Creates a recurring schedule that executes the specified handlerMethod every fifteen minutes.
Using this method will pick a random start time in the next five minutes, and run every five minutes after that.

	Signature:

	void runEvery15Minutes(handlerMethod[, options])

Tip

This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule like this because with a cron expression all installations of a SmartApp will execute at the same time.
With this method, the executions will be spread out over the fifteen minute period.

	Parameters:

	handlerMethod - The method to call every fifteen minutes. Can be the name of the method as a string, or a reference to the method.

options (optional) - A map of parameters, with the following keys supported:

	Key
	Possible values
	Description

	data
	A map of data
	A map of data that will be passed to the handler method.

	Returns:

	void

Example:

runEvery15Minutes(handlerMethod1)
runEvery15Minutes(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
 log.debug "handlerMethod1"
}

def handlerMethod2(data) {
 log.debug "handlerMethod2, data: $data"
}

runEvery30Minutes()

Creates a recurring schedule that executes the specified handlerMethod every thirty minutes.
Using this method will pick a random start time in the next thirty minutes, and run every thirty minutes after that.

	Signature:

	void runEvery30Minutes(handlerMethod[, options])

Tip

This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule like this because with a cron expression all installations of a SmartApp will execute at the same time.
With this method, the executions will be spread out over the thirty minute period.

	Parameters:

	handlerMethod - The method to call every thirty minutes. Can be the name of the method as a string, or a reference to the method.

options (optional) - A map of parameters, with the following keys supported:

	Key
	Possible values
	Description

	data
	A map of data
	A map of data that will be passed to the handler method.

	Returns:

	void

Example:

runEvery30Minutes(handlerMethod1)
runEvery30Minutes(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
 log.debug "handlerMethod1"
}

def handlerMethod2(data) {
 log.debug "handlerMethod2, data: $data"
}

runEvery1Hour()

Creates a recurring schedule that executes the specified handlerMethod every hour.
Using this method will pick a random start time in the next hour, and run every hour after that.

	Signature:

	void runEvery1Hour(handlerMethod[, options])

Tip

This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule like this because with a cron expression all installations of a SmartApp will execute at the same time.
With this method, the executions will be spread out over the one hour period.

	Parameters:

	handlerMethod- The method to call every hour. Can be the name of the method as a string, or a reference to the method.

options (optional) - A map of parameters, with the following keys supported:

	Key
	Possible values
	Description

	data
	A map of data
	A map of data that will be passed to the handler method.

	Returns:

	void

Example:

runEvery1Hour(handlerMethod1)
runEvery1Hour(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
 log.debug "handlerMethod1"
}

def handlerMethod2(data) {
 log.debug "handlerMethod2, data: $data"
}

runEvery3Hours()

Creates a recurring schedule that executes the specified handlerMethod every three hours.
Using this method will pick a random start time in the next hour, and run every three hours after that.

	Signature:

	void runEvery3Hours(handlerMethod[, options])

Tip

This is preferred over using schedule(cronExpression, handlerMethod) for a regular schedule like this because with a cron expression all installations of a SmartApp will execute at the same time.
With this method, the executions will be spread out over the three hour period.

	Parameters:

	handlerMethod - The method to call every three hours. Can be the name of the method as a string, or a reference to the method.

options (optional) - A map of parameters, with the following keys supported:

	Key
	Possible values
	Description

	data
	A map of data
	A map of data that will be passed to the handler method.

	Returns:

	void

Example:

runEvery3Hours(handlerMethod1)
runEvery3Hours(handlerMethod2, [data: [key1: 'val1']])

def handlerMethod1() {
 log.debug "handlerMethod1"
}

def handlerMethod2(data) {
 log.debug "handlerMethod2, data: $data"
}

runIn()

Executes a specified handlerMethod after delaySeconds have elapsed.

	Signature:

	void runIn(delayInSeconds, handlerMethod [, options])

Tip

It’s important to note that we will attempt to run this method at this time, but cannot guarantee exact precision. We typically expect per-minute level granularity, so if using with values less than sixty seconds, your mileage will vary.

	Parameters:

	delayInSeconds - The number of seconds to execute the handlerMethod after.

handlerMethod - The method to call after delayInSeconds has passed. Can be a string or a reference to the method.

options (optional) - A map of parameters, with the following keys supported:

	Key
	Possible values
	Description

	overwrite
	true or false
	Specify [overwrite: false] to not overwrite any existing pending schedule handler for the given method (the default behavior is to overwrite the pending schedule). Specifying [overwrite: false] can lead to multiple different schedules for the same handler method, so be sure your handler method can handle this.

	data
	A map of data
	A map of data that will be passed to the handler method.

	Returns:

	void

Example:

runIn(300, myHandlerMethod)
runIn(400, "myOtherHandlerMethod", [data: [flag: true]])

def myHandlerMethod() {
 log.debug "handler method called"
}

def myOtherHandlerMethod(data) {
 log.debug "other handler method called with flag: $data.flag"
}

runOnce()

Executes the handlerMethod once at the specified date and time.

	Signature:

	void runOnce(dateTime, handlerMethod [, options])

	Parameters:

	dateTime - When to execute the handlerMethod. Can be either a Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] object or an ISO-8601 date string. For example, new Date() + 1 would run at the current time tomorrow, and "2017-07-04T12:00:00.000Z" would run at noon GMT on July 4th, 2017.

handlerMethod - The method to execute at the specified dateTime. This can be a reference to the method, or the method name as a string.

options (optional) - A map of parameters, with the following keys supported:

	Key
	Possible values
	Description

	overwrite
	true or false
	Specify [overwrite: false] to not overwrite any existing pending schedule handler for the given method (the default behavior is to overwrite the pending schedule). Specifying [overwrite: false] can lead to multiple different schedules for the same handler method, so be sure your handler method can handle this.

	data
	A map of data
	A map of data that will be passed to the handler method.

	Returns:

	void

Example:

// execute handler at 4 PM CST on October 21, 2015 (e.g., Back to the Future 2 Day!)
runOnce("2015-10-21T16:00:00.000-0600", handler)

def handler() {
 ...
}

schedule()

Creates a scheduled job that calls the handlerMethod once per day at the time specified, or according to a cron schedule.

	Signature:

	void schedule(dateTime, handlerMethod)

void schedule(cronExpression, handlerMethod)

Parameters:

dateTime - A Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] object, an ISO-8601 formatted date time string.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] cronExpression - A cron expression that specifies the schedule to execute on.

handlerMethod - The method to call. This can be a reference to the method itself, or the method name as a string.

	Returns:

	void

Tip

Since calling schedule() with a dateTime argument creates a recurring scheduled job to execute every day at the specified time, the date information is ignored. Only the time portion of the argument is used.

Tip

Full documentation for the cron expression format can be found in the Quartz Cron Trigger Tutorial [http://www.quartz-scheduler.org/documentation/quartz-2.x/tutorials/crontrigger.html]

Example:

preferences {
 section() {
 input "timeToRun", "time"
 }
}

...
// call handlerMethod1 at time specified by user input
schedule(timeToRun, handlerMethod1)

// call handlerMethod2 every day at 3:36 PM CST
schedule("2015-01-09T15:36:00.000-0600", handlerMethod2)

// execute handlerMethod3 every hour on the half hour (using a randomly chosen seconds field)
schedule("12 30 * * * ?", handlerMethod3)
...

def handlerMethod1() {...}
def handlerMethod2() {...}
def handlerMethod3() {...}

sendEvent()

Create and fire an Event . Typically a Device Handler will return the map returned from createEvent() , which will allow the platform to create and fire the Event. In cases where you need to fire the Event (outside of the parse() method), sendEvent() is used.

	Signature:

	void sendEvent(Map properties)

	Parameters:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] properties - The properties of the Event to create and send.

Here are the available properties:

	Property
	Description

	name (required)
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - The name of the Event. Typically corresponds to an attribute name of a capability.

	value (required)
	The value of the Event. The value is stored as a string, but you can pass numbers or other objects.

	descriptionText
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - The description of this Event. This appears in the mobile application activity for the device. If not specified, this will be created using the Event name and value.

	displayed
	Pass true to display this Event in the mobile application activity feed, false to not display. Defaults to true.

	linkText
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - Name of the Event to show in the mobile application activity feed.

	isStateChange
	true if this Event caused a device attribute to change state. Typically not used, since it will be set automatically.

	unit
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - a unit string, if desired. This will be used to create the descriptionText if it (the descriptionText option) is not specified.

	data
	A map of additional information to store with the Event

Tip

Not all Event properties need to be specified. ID properties like deviceId and locationId are automatically set, as are properties like isStateChange, displayed, and linkText.

	Returns:

	void

Example:

sendEvent(name: "temperature", value: 72, unit: "F")

simulator()

Defines information used to simulate device interaction in the IDE. Can be called in the metadata() method.

	Signature:

	void simulator(Closure closure)

	Parameters:

	Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure - the closure that defines the status() and reply() messages.

	Returns:

	void

Example:

metadata {
 ...

 // simulator metadata
 simulator {
 // 'on' and 'off' will appear in the messages dropdown, and send
 // "on/off: 1 to the parse method"
 status "on": "on/off: 1"
 status "off": "on/off: 0"

 // simulate reply messages from the device
 reply "zcl on-off on": "on/off: 1"
 reply "zcl on-off off": "on/off: 0"
 }
 ...
}

standardTile()

Called within the tiles() method to define a tile to display current state information. For example, to show that a switch is on or off, or that there is or is not motion.

	Signature:

	void standardTile(String tileName, String attributeName [, Map options, Closure closure])

	Returns:

	void

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] tileName - the name of the tile. This is used to identify the tile when specifying the tile layout.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] attributeName - the attribute this tile is associated with. Each tile is associated with an attribute of the device. The typical pattern is to prefix the attribute name with "device." - e.g., "device.water".

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] options (optional) - Various options for this tile. Valid options are found in the table below:

	option
	type
	description

	width
	Integer [https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html]
	controls how wide the tile is. Default is 1.

	height
	Integer [https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html]
	controls how tall this tile is. Default is 1.

	canChangeIcon
	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html]
	true to allow the user to pick their own icon. Defaults to false.

	canChangeBackground
	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html]
	true to allow a user to choose their own background image for the tile. Defaults to false.

	decoration
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	specify "flat" for the tile to render without a ring.

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure (optional) - A closure that calls any state() methods to define how the tile should appear for various attribute values.

Example:

tile {
 standardTile("water", "device.water", width: 2, height: 2) {
 state "dry", icon:"st.alarm.water.dry", backgroundColor:"#ffffff"
 state "wet", icon:"st.alarm.water.wet", backgroundColor:"#53a7c0"
 }
}

state

A map of name/value pairs that a Device Handler can use to save and retrieve data across executions.

	Signature:

	Map state

	Returns:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] - a map of name/value pairs.

state.count = 0
state.count = state.count + 1

log.debug "state.count: ${state.count}"

// use array notation if you wish
log.debug "state['count']: ${state['count']}"

// you can store lists and maps to make more intersting structures
state.listOfMaps = [[key1: "val1", bool1: true],
 [otherKey: ["string1", "string2"]]]

Warning

Though state can be treated as a map in most regards, certain convenience operations that you may be accustomed to in maps will not work with state. For example, state.count++ will not increment the count - use the longer form of state.count = state.count + 1.

state()

Called within any of the various tiles method’s closure to define options to be used when the current value of the tile’s attribute matches the value argument.

	Signature:

	void state(stateName, Map options)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] stateName - the name of the attribute value for which to display this state for.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] options - a map that defines additional information for this state. The valid options are:

	option
	type
	description

	action
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	the action to take when this tile is pressed. The form is <capabilityReference>.<command>.

	backgroundColor
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	a hexadecimal color code to use for the background color. This has no effect if the tile has decoration: “flat”.

	backgroundColors
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	specify a list of maps of attribute values and colors. The mobile app will match and interpolate between these entries to select a color based on the value of the attribute.

	defaultState
	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html]
	specify true if this state should be the active state displayed for this tile.

	icon
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	the identifier of the icon to use for this state. You can view the icon options here.

	label
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	the label for this state.

	Returns:

	void

Example:

...
standardTile("water", "device.water", width: 2, height: 2) {
 // when the "water" attribute has the value "dry", show the
 // specified icon and background color
 state "dry", icon:"st.alarm.water.dry", backgroundColor:"#ffffff"

 // when the "water" attribute has the value "wet", show the
 // specified icon and background color
 state "wet", icon:"st.alarm.water.wet", backgroundColor:"#53a7c0"
}

valueTile("temperature", "device.temperature", width: 2, height: 2) {
 state("temperature", label:'${currentValue}°',
 backgroundColors:[
 [value: 31, color: "#153591"],
 [value: 44, color: "#1e9cbb"],
 [value: 59, color: "#90d2a7"],
 [value: 74, color: "#44b621"],
 [value: 84, color: "#f1d801"],
 [value: 95, color: "#d04e00"],
 [value: 96, color: "#bc2323"]
]
)
}
...

status()

The status method is called in the simulator() method, and populates the select box that appears under virtual devices in the IDE. Can be called in the simulator() method.

	Signature:

	void status(String name, String messageDescription)

	Parameters:

	String name - any unique string and is used to refer to this status message in the select box.

String messageDescription - should be a parseable message for this Device Handler. It’s passed to the Device Handler’s parse method when select box entry is sent in the simulator. For example, status "on": "command: 2003, payload: FF" will send a Z-Wave Basic Report command to the Device Handler’s parse method when the on option is selected and sent.

	Returns:

	void

Example:

 metadata {
 ...

 // simulator metadata
 simulator {
 // 'on' and 'off' will appear in the messages dropdown, and send
 // "on/off: 1 to the parse method"
 status "on": "on/off: 1"
 status "off": "on/off: 0"

 // simulate reply messages from the device
 reply "zcl on-off on": "on/off: 1"
 reply "zcl on-off off": "on/off: 0"
 }
 ...
}

storeImage()

Stores an image represented by a ByteArrayInputStream [https://docs.oracle.com/javase/7/docs/api/java/io/ByteArrayInputStream.html] and emits an Event with name “image”.

storeImage() is often in used in conjunction with the carouselTile() and cloud-connected camera devices to store and display images.

JPEG and PNG image formats are supported.

Note

Images stored using storeImage() are stored for 365 days, after which they will be permanently deleted.

The carouselTile() can display images for the past seven days.

	Signature:

	void storeImage(String name, ByteArrayInputStream is, String contentType = "image/jpeg") throws Exception

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] name - The name associated with the image, consisting of alphanumeric, ‘_’, ‘-‘, and ‘.’ characters. This name must be unique per device instance, and should not include the file extension.

ByteArrayInputStream [https://docs.oracle.com/javase/7/docs/api/java/io/ByteArrayInputStream.html] is - The input stream of bytes representing the image. The total size may not exceed 1 megabyte.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] contentType (optional) - The content type of the image. Optional, and defaults to "image/jpeg". Other supported values are "image/jpg" and "image/png".

	Throws:

	InvalidParameterException [https://docs.oracle.com/javase/7/docs/api/java/security/InvalidParameterException.html] if the name does not solely consist of alphanumeric, ‘_’, ‘-‘, and ‘.’ characters.

InvalidParameterException [https://docs.oracle.com/javase/7/docs/api/java/security/InvalidParameterException.html] if the size of total bytes to be stored exceeds one megabyte.

Exception [https://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html] - if the current Device Handler execution is attempting to store more than two images.

Example:

def params = [
 uri: "http://static.tvtropes.org/pmwiki/pub/images/catsbeard_9105.jpg"
]

try {
 httpGet(params) { response ->
 if (response.status == 200 && response.headers.'Content-Type'.contains("image/jpeg")) {
 def imageBytes = response.data
 if (imageBytes) {
 state.imgCount = state.imgCount + 1
 def name = "test$state.imgCount"

 // the response data is already a ByteArrayInputStream, no need to convert
 try {
 storeImage(name, imageBytes)
 } catch (e) {
 log.error "error storing image: $e"
 }
 }
 }
 }
} catch (err) {
 log.error ("Error making request: $err")
}

storeTemporaryImage()

Transfers an image temporarily stored via a HubAction request to a LAN-connected camera device to longer-lasting storage, and emits an event with name “image”.
Typically used in conjunction with the carouselTile() to store and display images captured by a camera device.

Only the JPEG image format is supported.

Note

Images stored using storeTemporaryImage() are stored for 365 days, after which they will be permanently deleted.

The carouselTile() can display images for the past seven days.

	Signature:

	void storeTemporaryImage(String key, String name)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] key - The key for this image, extracted from the response map sent to the parse() method.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] name - The name associated with the image, consisting of alphanumeric, ‘_’, ‘-‘, and ‘.’ characters. This name must be unique per device instance, and should not include the file extension.

	Throws:

	InvalidParameterException [https://docs.oracle.com/javase/7/docs/api/java/security/InvalidParameterException.html] if the name does not solely consist of alphanumeric, ‘_’, ‘-‘, and ‘.’ characters.

Example:

// take() command method from the Image Capture capability
def take() {
 def host = getHostAddress()
 def port = host.split(":")[1]

 def path = "/some/path/"

 def hubAction = new physicalgraph.device.HubAction(
 method: "GET",
 path: path,
 headers: [HOST:host]
)

 // outputMsgToS3: true required to store this image temporarily!
 hubAction.options = [outputMsgToS3:true]

 return hubAction
}

/**
* Utility method to get the host addresses
*/
private getHostAddress() {
 def parts = device.deviceNetworkId.split(":")
 def ip = convertHexToIP(parts[0])
 def port = convertHexToInt(parts[1])
 return ip + ":" + port
}

def parse(String description) {

 def map = stringToMap(description)

 // if the message has the tempImageKey, we know it's a response from
 // an image stored via the HubAction. Need to move it to longer-lasting
 // storage with storeTemporaryImage()
 if (map.tempImageKey) {
 try {
 storeTemporaryImage(map.tempImageKey, getPictureName())
 } catch (Exception e) {
 log.error e
 }
 } else if (map.error) {
 log.error ("Error: ${map.error}")
 }

 // parse other messages too
}

/**
* Utility method to get a unique picture name
*/
private getPictureName() {
 return java.util.UUID.randomUUID().toString().replaceAll('-', '')
}

tiles()

Defines the user interface for the device in the mobile app. It’s composed of one or more standardTile() , valueTile() , carouselTile() , or controlTile() methods, as well as a main() and details() method.

	Signature:

	void tiles(Closure closure)

	Parameters:

	Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure - A closure that defines the various tiles and metadata.

	Returns:

	void

Example:

tiles {
 standardTile("switchTile", "device.switch", width: 2, height: 2,
 canChangeIcon: true) {
 state "off", label: '${name}', action: "switch.on",
 icon: "st.switches.switch.off", backgroundColor: "#ffffff"
 state "on", label: '${name}', action: "switch.off",
 icon: "st.switches.switch.on", backgroundColor: "#E60000"
 }
 valueTile("powerTile", "device.power", decoration: "flat") {
 state "power", label:'${currentValue} W'
 }
 standardTile("refreshTile", "device.power", decoration: "ring") {
 state "default", label:'', action:"refresh.refresh",
 icon:"st.secondary.refresh",
 }

 main "switchTile"
 details(["switchTile","powerTile","refreshTile"])
}

valueTile()

Defines a tile that displays a specific value. Typical examples include temperature, humidity, or power values. Called within the tiles() method.

	Signature:

	void valueTile(String tileName, String attributeName [, Map options, Closure closure])

	Returns:

	void

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] tileName - the name of the tile. This is used to identify the tile when specifying the tile layout.

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] attributeName - the attribute this tile is associated with. Each tile is associated with an attribute of the device. The typical pattern is to prefix the attribute name with "device." - e.g., "device.power".

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] options (optional) - Various options for this tile. Valid options are found in the table below:

	option
	type
	description

	width
	Integer [https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html]
	controls how wide the tile is. Default is 1.

	height
	Integer [https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html]
	controls how tall this tile is. Default is 1.

	canChangeIcon
	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html]
	true to allow the user to pick their own icon. Defaults to false.

	canChangeBackground
	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html]
	true to allow a user to choose their own background image for the tile. Defaults to false.

	decoration
	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html]
	specify "flat" for the tile to render without a ring.

Closure [http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html] closure (optional) - A closure that calls any state() methods to define how the tile should appear for various attribute values.

Example:

tiles {
 valueTile("power", "device.power", decoration: "flat") {
 state "power", label:'${currentValue} W'
 }
}

zigbee

A utility class for parsing and formatting ZigBee messages.

	Signature:

	Zigbee zigbee

	Returns:

	A reference to the ZigBee utility class.

zwave

The utility class for parsing and formatting Z-Wave command messages.

	Signature:

	ZWave zwave

	Returns:

	A reference to the ZWave helper class. See the Z-Wave Reference for more information.

Example:

// On command implementation for a Z-Wave switch
def on() {
 delayBetween([
 zwave.basicV1.basicSet(value: 0xFF).format(),
 zwave.switchBinaryV1.switchBinaryGet().format()
])
}

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	API Documentation

AppState

The AppState object encapsulates information about the state of a SmartApp attribute.
These attributes are usually set in SmartApps using the sendEvent method.
Here is a small code snippet that illustrates a potential use case.

// If the current state of the "status" attribute is not what is expected,
// then send and event to update it.
if (app.currentState("status")?.value != "expectedValue") {
 def text = "$app.label someAction"
 sendEvent(name: "status", value: "expectedValue", linkText: app.label,
 descriptionText: text, eventType:"SOLUTION_EVENT", data: [icon: icon, backgroundColor: color])
}

getDateValue()

The value of this Event, if the value can be parsed to a Date.

	Signature:

	Date getDateValue()

	Returns:

	Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] - the value of this Event as a Date.

Warning

getDateValue() will throw an Exception if the value of the Event is not parseable to a Date.

You should wrap calls in a try/catch block.

Example:

def eventHander(evt) {
 def myState = app.currentState("someAttribute")
 // get the value of this event as an Double
 // throws an exception of the value is not convertable to a Date
 try {
 log.debug "The dateValue of this event is ${myState.dateValue}"
 log.debug "myState.dateValue instanceof Date? ${myState.dateValue instanceof Date}"
 } catch (e) {
 log.debug("Trying to get the dateValue for ${myState.name} threw an exception", e)
 }
}

getId()

The unique system identifier for this Event.

	Signature:

	String getId()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the unique device identifier for this Event.

Example:

def eventHandler(evt) {
 def myState = app.currentState("someAttribute")
 log.debug "event id: ${myState.id}"
}

getDescriptionText()

The description of the Event that is to be displayed to the user in the mobile application.

	Signature:

	String getDescriptionText()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the description of this Event to be displayed to the user in the mobile application.

Example:

def eventHandler(evt) {
 def myState = app.currentState("someAttribute")
 log.debug "event description text: ${myState.descriptionText}"
}

getDoubleValue()

The value of this Event, if the value can be parsed to a Double.

	Signature:

	Double getDoubleValue()

	Returns:

	Double [https://docs.oracle.com/javase/7/docs/api/java/lang/Double.html?is-external=true] - the value of this Event as a Double.

Warning

getDoubleValue() will throw an Exception if the value of the Event is not parseable to a Double.

You should wrap calls in a try/catch block.

Example:

def eventHander(evt) {
 def myState = app.currentState("someAttribute")
 // get the value of this event as a Double
 // throws an exception of the value is not convertible to a Double
 try {
 log.debug "The doubleValue of this event is ${myState.doubleValue}"
 log.debug "myState.doubleValue instanceof Double? ${myState.doubleValue instanceof Double}"
 } catch (e) {
 log.debug("Trying to get the doubleValue for ${myState.name} threw an exception", e)
 }
}

getFloatValue()

The value of this Event as a Float, if it can be parsed into a Float.

	Signature:

	Float getFoatValue()

	Returns:

	Float [https://docs.oracle.com/javase/7/docs/api/java/lang/Float.html] - the value of this Event as a Float.

Warning

getFloatValue() will throw an Exception if the Event’s value is not parseable to a Float.

You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
 def myState = app.currentState("someAttribute")
 // get the value of this event as an Float
 // throws an exception if not convertable to Float
 try {
 log.debug "The floatValue of this event is ${myState.floatValue}"
 log.debug "myState.floatValue instanceof Float? ${myState.floatValue instanceof Float}"
 } catch (e) {
 log.debug("Trying to get the floatValue for ${myState.name} threw an exception", e)
 }
}

getIntegerValue()

The value of this Event as an Integer.

	Signature:

	Integer getIntegerValue()

	Returns:

	Integer [https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html] - the value of this Event as an Integer.

Warning

getIntegerValue() throws an Exception of the Event value cannot be parsed to an Integer.

You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
 def myState = app.currentState("someAttribute")
 // get the value of this event as an Integer
 // throws an exception if not convertable to Integer
 try {
 log.debug "The integerValue of this event is ${myState.integerValue}"
 log.debug "The integerValue of this event is an Integer: ${myState.integerValue instanceof Integer}"
 } catch (e) {
 log.debug("Trying to get the integerValue for ${myState.name} threw an exception", e)
 }
}

getIsoDate()

Acquisition time of this Event as an ISO-8601 String.

	Signature:

	String getIsoDate()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - The acquisition time of this Event as an ISO-8601 String.

Example:

def eventHandler(evt) {
 def myState = app.currentState("someAttribute")
 log.debug "event isoDate: ${myState.isoDate}"
}

getJsonValue()

Value of the Event as a parsed JSON data structure.

	Signature:

	Object getJsonValue()

	Returns:

	Object [http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html] - The value of the Event as a JSON structure

Warning

getJsonValue() throws an Exception if the value of the Event cannot be parsed into a JSON object.

You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
 def myState = app.currentState("someAttribute")
 // get the value of this event as a JSON structure
 // throws an exception if the value is not convertable to JSON
 try {
 log.debug "The jsonValue of this event is ${myState.jsonValue}"
 } catch (e) {
 log.debug("Trying to get the jsonValue for ${myState.name} threw an exception", e)
 }
}

getLastUpdated()

The last time this Event was updated as a Date.

	Signature:

	Date getLastUpdated()

	Returns:

	Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] - The last time this Event was updated as a Date.

Example:

def eventHandler(evt) {
 def myState = app.currentState("someAttribute")
 log.debug "event was last updated: ${myState.lastUpdated}"
}

getLongValue()

The value of this Event as a Long.

	Signature:

	Long getLongValue()

	Returns:

	Long [https://docs.oracle.com/javase/7/docs/api/java/lang/Long.html] - the value of this Event as a Long.

Warning

getLongValue() throws an Exception if the value of the Event cannot be parsed to a Long.

You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
 def myState = app.currentState("someAttribute")
 // get the value of this event as an Long
 // throws an exception if not convertable to Long
 try {
 def evtLongValue = myState.longValue
 log.debug "The longValue of this event is $evtLongValue"
 log.debug "evt.longValue instanceof Long? ${evtLongValue instanceof Long}"
 } catch (e) {
 log.debug("Trying to get the longValue for ${myState.name} threw an exception", e)
 }
}

getName()

The name of this Event.

	Signature:

	String getName()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the name of this Event.

Example:

def eventHandler(evt) {
 def myState = app.currentState("someAttribute")
 log.debug "the name of this event: ${myState.name}"
}

getNumberValue()

The value of this Event as a Number.

	Signature:

	Number getNumberValue()

	Returns:

	Number [http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html] - the value of this Event as a BigDecimal.

Warning

getNumberValue() throws an Exception if the value of the Event cannot be parsed to a Number.

You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
 def myState = app.currentState("someAttribute")
 // get the value of this event as an Number
 // throws an exception if the value is not convertable to a Number
 try {
 def evtNumberValue = myState.numberValue
 log.debug "The numberValue of this event is ${evtNumberValue}"
 log.debug "evt.numberValue instanceof BigDecimal? ${evtNumberValue instanceof Number}"
 } catch (e) {
 log.debug("Trying to get the numberValue for ${myState.name} threw an exception", e)
 }
}

getNumericValue()

The value of this Event as a Number.

	Signature:

	Number getNumericValue()

	Returns:

	Number [http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html] - the value of this Event as a BigDecimal.

Warning

getNumericValue() throws an Exception if the value of the Event cannot be parsed to a Number.

You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
 def myState = app.currentState("someAttribute")
 // get the value of this event as an Number
 // throws an exception if the value is not convertable to a BigDecimal
 try {
 def evtNumberValue = myState.numericValue
 log.debug "The numericValue of this event is ${evtNumberValue}"
 log.debug "evt.numericValue instanceof Number? ${evtNumberValue instanceof Number}"
 } catch (e) {
 log.debug("Trying to get the numericValue for ${myState.name} threw an exception", e)
 }
}

getUnit()

The unit of measure for this Event, if applicable.

	Signature:

	String getUnit()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the unit of measure of this Event, if applicable. null otherwise.

Example:

def eventHandler(evt) {
 def myState = app.currentState("someAttribute")
 log.debug "The unit for this event: ${myState.unit}"
}

getValue()

The value of this Event as a String.

	Signature:

	String getValue()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the value of this Event as a String.

Example:

def eventHandler(evt) {
 def myState = app.currentState("someAttribute")
 log.debug "The value of this event as a string: ${myState.getValue()}"
}

getXyzValue()

Value of the Event as a 3-entry Map with keys ‘x’, ‘y’, and ‘z’ with BigDecimal values. For example:

[x: 1001, y: -23, z: -1021]

Typically only useful for getting position data from the “Three Axis” Capability.

	Signature:

	Map<String, BigDecimal> getXyzValue()

	Returns:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] < String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] , BigDecimal [http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html] > - A map representing the X, Y, and Z coordinates.

Warning

getXyzValue() throws an Exception if the value of the Event cannot be parsed to an X-Y-Z data structure.

You should wrap calls in a try/catch block.

Example:

def positionChangeHandler(evt) {
 def myState = app.currentState("someAttribute")
 // get the value of this event as a 3 entry map with keys
 //'x', 'y', 'z', and BigDecimal values
 // throws an exception if the value is not convertable to a Date
 try {
 log.debug "The xyzValue of this event is ${myState.xyzValue }"
 log.debug "myState.xyzValue instanceof Map? ${myState.xyzValue instanceof Map}"
 } catch (e) {
 log.debug("Trying to get the xyzValue for ${myState.name} threw an exception", e)
 }
}

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	API Documentation

Async HTTP API (Beta)

Beta Feature

The ability to make asynchronous HTTP requests is currently available as a beta development feature.

All beta asynchronous HTTP APIs exist in the asynchttp_v1 namespace.
Approximately 30 days after the launch of this beta feature, we will evaluate metrics and your feedback, and make adjustments as necessary.

When released generally, it is likely that the v1 postfix will be dropped, and a deprecation period will be announced to change existing usages accordingly.

If, for unexpected reasons, usage of asynchronous HTTP requests has negative impacts on the SmartThings platform, SmartThings reserves the right to alter or remove any impacted asynchronous HTTP APIs without notice.
This is highly unlikely and every effort will be made to avoid such a scenario.

If you experience issues or have feedback on these asynchronous HTTP APIs, please share them on this community thread [https://community.smartthings.com/t/asynchronous-http-beta-feedback-thread/60280].

All asynchronous HTTP APIs are only availble after including the “asynchttp_v1” API:

include 'asynchttp_v1'

def initialize() {
 // invoke methods on the injected asynchttp_v1 object that was included
 asynchttp_v1.get(...)
}

This documentation is specific to making requests using the Async HTTP API.
For reference documentation on working with the response, see the AsyncResponse (Beta) documentation.

delete()

Make a DELETE request which will not block execution and therefore can run longer than the execution timeout.

	Signature:

	void delete(String callbackMethod = null, Map params, Map data = null)

Parameters:

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] callbackMethod - the name of the method to call with the response. If null the response will be discarded after the request is made.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - parameters for the request. Supported keys below:

	Key
	Description

	uri (required)
	Either a URI or URL of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	requestContentType
	The value of the Content-Type request header. Defaults to 'application/json'.

	contentType
	The value of the Accept request header. Defaults to the value of the requestContentType parameter if not specified.

	body
	The request body to send. Can be a string, or if the requestContentType is "application/json", a Map or List (will be serialized to JSON).

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] data (optional) - A map of data to pass to the response handler.

Example:

include 'asynchttp_v1'

def initialize() {
 def params = [
 uri: 'https://someapi.com',
 path: '/some/path',
 body: [key1: 'value 1']
]
 asynchttp_v1.delete(processResponse, params)
}

def processResponse(response, data) { ... }

get()

Make a GET request which will not block execution and therefore can run longer than the execution timeout.

	Signature:

	void get(String callbackMethod = null, Map params, Map data = null)

Parameters:

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] callbackMethod - the name of the method to call with the response. If null the response will be discarded after the request is made.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - parameters for the request. Supported keys below:

	Key
	Description

	uri (required)
	Either a URI or URL of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	requestContentType
	The value of the Content-Type request header. Defaults to 'application/json'.

	contentType
	The value of the Accept request header. Defaults to the value of the requestContentType parameter if not specified.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] data (optional) - A map of data to pass to the response handler.

Example:

include 'asynchttp_v1'

def initialize() {
 def params = [
 uri: 'https://api.github.com',
 path: '/search/code',
 query: [q: "httpGet+repo:SmartThingsCommunity/SmartThingsPublic"],
 contentType: 'application/json'
]
 asynchttp_v1.get(processResponse, params)
}

def processResponse(response, data) { ... }

head()

Make a HEAD request which will not block execution and therefore can run longer than the execution timeout.

	Signature:

	void head(String callbackMethod = null, Map params, Map data = null)

Parameters:

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] callbackMethod - the name of the method to call with the response. If null the reponse will be discarded after the request is made.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - parameters for the request. Supported keys below:

	Key
	Description

	uri (required)
	Either a URI or URL of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	requestContentType
	The value of the Content-Type request header. Defaults to 'application/json'.

	contentType
	The value of the Accept request header. Defaults to the value of the requestContentType parameter if not specified.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] data (optional) - A map of data to pass to the response handler.

Example:

include 'asynchttp_v1'

def initialize() {
 def params = [
 uri: 'https://someapi.com',
 path: '/some/path',
 query: [key1: 'value 1']
]
 asynchttp_v1.head(processResponse, params)
}

def processResponse(response, data) { ... }

patch()

Make a PATCH request which will not block execution and therefore can run longer than the execution timeout.

	Signature:

	void patch(String callbackMethod = null, Map params, Map data = null)

Parameters:

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] callbackMethod - the name of the method to call with the response. If null the response will be discarded after the request is made.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - parameters for the request. Supported keys below:

	Key
	Description

	uri (required)
	Either a URI or URL of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	requestContentType
	The value of the Content-Type request header. Defaults to 'application/json'.

	contentType
	The value of the Accept request header. Defaults to the value of the requestContentType parameter if not specified.

	body
	The request body to send. Can be a string, or if the requestContentType is "application/json", a Map or List (will be serialized to JSON).

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] data (optional) - A map of data to pass to the response handler.

Example:

include 'asynchttp_v1'

def initialize() {
 def params = [
 uri: 'https://someapi.com',
 path: '/some/path',
 body: [key1: 'value 1']
]
 asynchttp_v1.patch(processResponse, params)
}

def processResponse(response, data) { ... }

post()

Make a POST request which will not block execution and therefore can run longer than the execution timeout.

	Signature:

	void post(String callbackMethod = null, Map params, Map data = null)

Parameters:

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] callbackMethod - the name of the method to call with the response. If null the response will be discarded after the request is made.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - parameters for the request. Supported keys below:

	Key
	Description

	uri (required)
	Either a URI or URL of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	requestContentType
	The value of the Content-Type request header. Defaults to 'application/json'.

	contentType
	The value of the Accept request header. Defaults to the value of the requestContentType parameter if not specified.

	body
	The request body to send. Can be a string, or if the requestContentType is "application/json", a Map or List (will be serialized to JSON).

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] data (optional) - A map of data to pass to the response handler.

Example:

include 'asynchttp_v1'

def initialize() {
 def params = [
 uri: 'https://someapi.com',
 path: '/some/path',
 body: [key1: 'value 1']
]
 asynchttp_v1.post(processResponse, params)
}

def processResponse(response, data) { ... }

put()

Make a PUT request which will not block execution and therefore can run longer than the execution timeout.

	Signature:

	void put(String callbackMethod = null, Map params, Map data = null)

Parameters:

String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] callbackMethod - the name of the method to call with the response. If null the response will be discarded after the request is made.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] params - parameters for the request. Supported keys below:

	Key
	Description

	uri (required)
	Either a URI or URL of the endpoint to make a request from.

	path
	Request path that is merged with the URI.

	query
	Map of URL query parameters.

	headers
	Map of HTTP headers.

	requestContentType
	The value of the Content-Type request header. Defaults to 'application/json'.

	contentType
	The value of the Accept request header. Defaults to the value of the requestContentType parameter if not specified.

	body
	The request body to send. Can be a string, or if the requestContentType is "application/json", a Map or List (will be serialized to JSON).

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] data (optional) - A map of data to pass to the response handler.

Example:

include 'asynchttp_v1'

def initialize() {
 def params = [
 uri: 'https://someapi.com',
 path: '/some/path',
 body: [key1: 'value 1']
]
 asynchttp_v1.put(processResponse, params)
}

def processResponse(response, data) { ... }

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	API Documentation

AsyncResponse (Beta)

Beta Feature

The ability to make asynchronous HTTP requests is currently available as a beta development feature.

All beta asynchronous HTTP APIs exist in the asynchttp_v1 namespace.
Approximately 30 days after the launch of this beta feature, we will evaluate metrics and your feedback, and make adjustments as necessary.

When released generally, it is likely that the v1 postfix will be dropped, and a deprecation period will be announced to change existing usages accordingly.

If, for unexpected reasons, usage of asynchronous HTTP requests has negative impacts on the SmartThings platform, SmartThings reserves the right to alter or remove any impacted asynchronous HTTP APIs without notice.
This is highly unlikely and every effort will be made to avoid such a scenario.

If you experience issues or have feedback on these asynchronous HTTP APIs, please share them on this community thread [https://community.smartthings.com/t/asynchronous-http-beta-feedback-thread/60280].

The AsyncResponse object represents the response of an asynchronous HTTP request.
An instance of it is passed to the response handler specified when making the request.

This documentation is specific to handling responses from asynchronous HTTP requests.
For reference documentation regarding making the request, see the Async HTTP API (Beta) documentation.

getData()

Return the response as a string.
Throws an exception if the request failed to get a response (e.g. Connection timeout, Response timeout), or if the status code was not 2XX.

	Signature:

	String getData()

Example:

def responseHandler(response, data) {
 log.debug "raw response: $response.data"
}

getErrorData()

In the Event of an error response, returns the response body as a string.
Throws an exception if the response is successful and has a 2XX response.

	Signature:

	String getErrorData()

Example:

def responseHandler(response, data) {
 if (response.hasError()) {
 log.debug "raw response: $response.errorData"
 }
}

getErrorJson()

If the response has an error, parses the response body as JSON and returns the corresponding data structure.
Throws an exception if the response is successful and has a 2XX response, or if the body fails to parse as JSON.

	Signature:

	JSONElement getErrorJson()

Example:

def responseHandler(response, data) {
 if (response.hasError()) {
 try {
 log.debug "error json: $response.errorJson"
 } catch (e) {
 log.debug "error parsing json - raw error data is $response.errorData"
 }
 }
}

getErrorMessage()

Gets a human-readable error message if the request failed to get a response (e.g. Connection timeout, Response timeout), or if the status code was not 2XX.

	Signature:

	String getErrorMessage()

Example:

def responseHandler(response, data) {
 if (response.hasError()) {
 log.debug "error on response: $response.errorMessage"
 }
}

getErrorXml()

If the response has an error, parses the response body as XML and returns the corresponding data structure.
Throws an exception if the response is successful and has a 2XX response, or if the body fails to parse as XML.

Note

You can learn more about Groovy XML parsing and GPath here [http://groovy-lang.org/processing-xml.html#_gpath].

	Signature:

	GPathResult getErrorXml()

Example:

def responseHandler(response, data) {
 if (response.hasError()) {
 try {
 def xml = response.errorXml
 } catch(e) {
 log.warn "could not parse body to XML"
 }
 }
}

getHeaders()

Get the headers of the response.

	Signature:

	Map<String, String> getHeaders()

	Returns:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] < String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] , String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] > - A map of response headers keyed by the header name.

Example:

def responseHandler(response, data) {
 def headers = response.headers
 headers.each {header, value ->
 log.debug "$header: $value"
 }
}

getJson()

Parses the response body as JSON and returns the corresponding data structure.
Throws an exception if the body fails to parse as JSON, if the request failed to get a response (e.g. Connection timeout, Response timeout), or if the status code was not 2XX).

	Signature:

	JSONElement getJson()

Example:

include 'asynchttp_v1'

def initialize() {
 def params = [
 uri: 'https://someapi.com',
 path: '/some/path',
 requestContentType: 'application/json'
]
 asynchttp_v1.get(processResponse, params)
}

def processResponse(response, data) {
 try {
 log.debug "json response is: $response.json"
 } catch (e) {
 log.error("exception during response processing", e)
 }

}

getStatus()

Get the status code of the response.

	Signature:

	int getStatus()

Example:

def responseHandler(response, data) {
 log.debug "response status code is: $response.status"
}

getWarningMessages()

Gets a list of warning messages, if applicable.
Returns an empty list if there are no warning messages.

Typically used for debugging purposes.
For example, a warning message will be found if the response is larger than the allowable limit.

	Signature:

	List<String> getWarningMessages()

Example:

def responseHandler(response, data) {
 log.debug "warning messages: $response.warningMessages"
}

getXml()

Parses the response body as XML and returns the corresponding data structure.
Throws an exception if the body fails to parse as XML, if the request failed to get a response (e.g. Connection timeout, Response timeout), or if the status code was not 2XX).

Note

You can learn more about Groovy XML parsing and GPath here [http://groovy-lang.org/processing-xml.html#_gpath].

	Signature:

	GPathResult getXml()

Example:

def responseHandler(response, data) {
 if (!response.hasError()) {
 try {
 def xml = response.xml
 } catch(e) {
 log.warn "could not parse body to XML"
 }
 }
}

hasError()

Return if the request has an error of some sort.
This will be true if the request failed to complete or returned a non-2XX status code, and false if the request succeeded with a 2XX status code.

	Signature:

	boolean hasError()

Example:

def responseHandler(response, data) {
 if (response.hasError()) {
 log.error "response has error: ${response.getErrorMessage()}"
 }
}

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	API Documentation

Attribute

An Attribute represents specific information about the state of a device. For example, the “Temperature Measurement” capability has an attribute named “temperature” that represents the temperature data.

The Attribute object contains metadata information about the Attribute itself - its name, data type, and possible values.

You will typically interact with Attributes values directly, for example, using the current<Uppercase attribute name> method on a Device instance. That will get the value of the Attribute, which is typically what SmartApps are most interested in.

You can get the supported Attributes of a Device through the Device’s getSupportedAttributes() method.

Warning

Referring to an Attribute directly from a Device by calling someDevice.getAttributeName() will return an Attribute object with only the name property available. This is available for legacy purposes only, and will likely be removed at some time.

To get a reference to an Attribute object, you should use the getSupportedAttributes() method on the Device object, and then find the desired Attribute in the returned List.

You can view the available attributes for all Capabilities in our Capabilities Reference.

getDataType()

Gets the data type of this Attribute.

	Signature:

	String getDataType()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the data type of this Attribute. Possible types are “STRING”, “NUMBER”, “VECTOR3”, “ENUM”.

Example:

preferences {
 section() {
 input "thetemp", "capability.temperatureMeasurement"
 }
}
...
def attrs = thetemp.supportedAttributes
attrs.each {
 log.debug "${thetemp.displayName}, attribute ${it.name}, dataType: ${it.dataType}"
}
...

getName()

The name of the Attribute.

	Signature:

	String getName()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the name of this attribute

Example:

preferences {
 section() {
 input "myswitch", "capability.switch"
 }
}
...
// switch capability has an attribute named "switch"
def switchAttr = myswitch.switch
log.debug "switch attribute name: ${switchAttr.name}"
...

getValues()

The possible values for this Attribute, if the data type is “ENUM”.

	Signature:

	List<String> getValues()

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] < String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] > - the possible values for this Attribute, if the data type is “ENUM”. An empty list is returned if there are no possible values or if the data type is not “ENUM”.

Example:

preferences {
 section() {
 input "thetemp", "capability.temperatureMeasurement"
 }
}
...
def attrs = thetemp.supportedAttributes
attrs.each {
 log.debug "${thetemp.displayName}, attribute ${it.name}, values: ${it.values}"
 log.debug "${thetemp.displayName}, attribute ${it.name}, dataType: ${it.dataType}"
}
...

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	API Documentation

Capability

The Capability object encapsulates information about a certain Capability.

A Capability object cannot be created. You can get the Capabilities for a given device using the capabilities method on a Device instance:

def capabilities = mydevice.capabilities

For documentation for the available Capabilities, you can refer to the Capabilities Reference.

getAttributes()

	Signature:

	List<Attribute> getAttributes()

	Returns:

	List [https://docs.oracle.com/javase/7/docs/api/java/util/List.html] <Attribute> - A list of Attributes of this capability. An empty list will be returned if this Capability has no Attributes.

Example:

preferences {
 section() {
 input "mySwitch", "capability.switch"
 }
}
...
def mySwitchCaps = mySwitch.capabilities

// log each capability supported by the "mySwitch" device, along
// with all its supported attributes
mySwitchCaps.each {cap ->
 log.debug "Capability name: ${cap.name}"
 cap.attributes.each {attr ->
 log.debug "-- Attribute name; ${attr.name}"
 }
}
...

getCommands()

	Signature:

	List<Command> getCommands()

	Returns:

	List [https://docs.oracle.com/javase/7/docs/api/java/util/List.html] <Command> - A list of Commands of this capability. An empty list will be returned if this Capability has no commands.

Example:

preferences {
 section() {
 input "mySwitch", "capability.switch"
 }
}
...
def mySwitchCaps = mySwitch.capabilities

// log each capability supported by the "mySwitch" device, along
// with all its supported commands
mySwitchCaps.each {cap ->
 log.debug "Capability name: ${cap.name}"
 cap.commands.each {comm ->
 log.debug "-- Command name: ${comm.name}"
 }
}
...

getName()

The name of the capability.

	Signature:

	String getName()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the name of the capability.

Example:

preferences {
 section() {
 input "mySwitch", "capability.switch"
 }
}
...
def mySwitchCaps = mySwitch.capabilities

// log each capability supported by the "mySwitch" device
mySwitchCaps.each {cap ->
 log.debug "Capability name: ${cap.name}"
}
...

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	API Documentation

ColorUtilities

Provides conversion utilities for working with different color representations.
Every SmartApp and Device Handler can get a reference to the ColorUtilities class using the getColorUtil() method (or the shorthand property reference colorUtil, if you prefer).

def deepSkyBlueInHex = colorUtil.rgbToHex(0, 191, 255)
log.debug "RGB 0,191,255 in Hex is $deepSkyBlueInHex"

The ColorUtilities class works with RGB and hex color values.
A full discussion of web colors is beyond the scope of this document, but the basic definitions used for SmartThings development are defined below.

	RGB (Red, Green, Blue)

	The RGB (Red, Green, Blue) color model “is an additive color model in which red, green, and blue light are added together in various ways to reproduce a broad array of colors.” [1]

	HEX

	“A hex triplet is a six-digit, three-byte hexadecimal number used in HTML, CSS, SVG, and other computing applications to represent colors. The bytes represent the red, green and blue components of the color. One byte represents a number in the range 00 to FF (in hexadecimal notation), or 0 to 255 in decimal notation.” [2]

hexToRgb()

Converts a hex color string to RGB.
Assumes the hex value is three or six characters in length, and may or may not include the leading “#” character.

	Signature:

	static List hexToRgb(String hex)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] hex - The hex color string to convert

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] - The RGB color representation, ordered as [red, green, blue]

Example:

def skyBlueInRgb = colorUtil.hexToRgb('#00BFFF')
log.debug "sky blue in RGB: $skyBlueInRgb"

rgbToHex()

Converts an RGB value to a hexadecimal color string.

	Signature:

	static String rgbToHex(red, green, blue) throws IllegalArgumentException

	Parameters:

	Integer [http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html] red - The red value, between 0 and 255

Integer [http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html] green - The green value, between 0 and 255

Integer [http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html] blue - The blue value, between 0 and 255

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - The hexadecimal representation of the RGB value

	Throws:

	IllegalArgumentException [https://docs.oracle.com/javase/7/docs/api/java/lang/IllegalArgumentException.html] - An IllegalArgumentException is thrown if any of the RGB values are not within the 0 to 255 range.

Example:

def deepSkyBlueInHex = colorUtil.rgbToHex(0, 191, 255)
log.debug "RGB 0,191,255 in Hex is $deepSkyBlueInHex"

	[1]	Wikipedia: https://en.wikipedia.org/wiki/RGB_color_model

	[2]	Wikipedia: https://en.wikipedia.org/wiki/Web_colors

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	API Documentation

Command

A Command represents an action you can perform on a Device.

An instance of a Command object encapsulates information about that Command. You cannot create a Command object; you can retrieve them from a Capability or from a Device:

preferences {
 section() {
 input "theswitch", "capability.switch"
 }
}
...

// Get a list of Commands supported by theswitch:
def switchCommands = theswitch.supportedCommands
log.debug "switchCommands: $switchCommands"

// Iterate through the supported capabilities, log all suported commands:
// commands property available via the Capability object
def caps = theswitch.capabilities
caps.commands.each {comm ->
 log.debug "-- Command name: ${comm.name}"
}

getArguments()

The list of argument types for the command.

	Signature:

	List<String> getArguments()

	Returns:

	List [https://docs.oracle.com/javase/7/docs/api/java/util/List.html] < String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] > - A list of the argument types for this command. One of “STRING”, “NUMBER”, “VECTOR3”, or “ENUM”.

Example:

preferences {
 section() {
 input "theSwitchLevel", "capability.switchLevel"
 }
}
...
def supportedCommands = theSwitchLevel.supportedCommands

// logs each command's arguments
supportedCommands.each {
 log.debug "arguments for swithLevel command ${it.name}: ${it.arguments}"
}
...

getName()

The name of the command.

	Signature:

	String getName()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the name of this command.

Example:

preferences {
 section() {
 input "theswitch", "capability.switch"
 }
}
...
def supportedCommands = theswitch.supportedCommands

// logs each command name supported by theswitch
supportedCommands.each {
 log.debug "command name: ${it.name}"
}
...

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	API Documentation

Device

The Device object represents a physical device in a SmartApp. When a user installs a SmartApp, they typically will select the devices to be used by the SmartApp. SmartApps can then interact with these Device objects to get device information, or send commands to the Device.

Device objects cannot be instantiated, but are created by the SmartThings platform and available via the name given in the preferences definition of a SmartApp:

preferences {
 section() {
 // prompt user to select a device that supports the switch capability.
 // assign the chosen device to a variable named "theswitch"
 input "theswitch", "capability.switch"
 }
}
...
// access Device instance using the input name:
def deviceDisplayName = theswitch.displayName
...

Note

Event history is limited to the last seven days. Methods that query devices for Event history will only query the last seven days. This will be called out in those methods, but is good to be generally aware of.

<attribute name>State

The latest State instance for the specified Attribute.

The exact name will vary depending on the device and its available attributes.

For example, the Thermostat capability supports several attributes. To get the State for any of the attributes, simply use the attribute name to construct the call. Consider the case of the “temperature” and “heatingSetpoint” attributes:

somethermostat.temperatureState
somethermostat.heatingSetpointState

	Signature:

	State <attribute name>State

	Returns:

	State - The latest State instance for the specified Attribute.

Example:

preferences {
 section() {
 input "thetemp", "capability.temperatureMeasurement"
 }
}
...
// The Temperature Measurement has a "temperature" attribute.
// so the form is <attribute name>State = temperatureState
def tempState = thetemp.temperatureState
...

<command name>()

Executes the specified command on the Device.

The method name will vary on the Device and Command being called.

For example, a Device that supports the Switch capability has both the on() and off() commands.

Some commands may take parameters; you will pass those parameters to the command as well.

	Signature:

	void <command name>()

void <command name>([delay: Number])

void <command name>(arguments)

void <command name>(arguments, [delay: Number')])

	Parameters:

	arguments - The arguments to the command, if required.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] options - A map of options to send to the command. Only the delay option is currently supported:

	option
	type
	description

	delay
	Number
	The number of milliseconds to wait before sending the command to the device.

	Returns:

	void

Example:

preferences {
 section() {
 input "theswitch", "capability.switch"
 input "thethermostat", "capability.thermostat"
 }
}
...
// call the "on" command on theswitch - no arguments
theswitch.on()

// call the "setHeatingSetpoint" command on thethermostat - takes an argument:
thethermostat.setHeatingSetpoint(72)

// A map specifiying command options can be specified as the last parameter.
// Only supported options are "delay":
theswitch.on([delay: 30000]) // send command after 30 seconds
thethermostat.setHeatingSetpoint(72, [delay: 30000])
...

current<Uppercase attribute name>

The latest reported values for the specified attribute.

The specific signature will vary depending on the attribute name. Follow the patter of current plus the attribute name, with the first letter capitalized.

For example, the Carbon Monoxide Detector capability has an attribute “carbonMonoxide”. To get the latest value for this attribute, you would call:

def currentCarbon = somedevice.currentCarbonMonoxide

	Signature:

	Object current<Uppercase attribute name>

	Returns:

	Object [http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html] - the latest reported values for the specified attribute. The specific type of object returned will vary depending on the specific attribute.

Tip

The exact returned type for various attributes depends upon the underlying capability and Device Handler.

Example:

preferences {
 section() {
 input "theswitch", "capability.switch"
 input "thetemp", "capability.temperatureMeasurement"
 }
}
...
def switchattr = theswitch.currentSwitch
def tempattr = thetemp.currentTemperature

log.debug "current switch: $switchattr"
log.debug "current temp: $tempattr"

// switch attribute returned as a string
log.debug "switchattr instanceof String? ${switchattr instanceof String}"

// temperature attribute returned as a Number
log.debug "tempatt instanceof Number? ${tempattr instanceof Number}"

...

currentState()

Gets the latest State for the specified attribute.

	Signature:

	State currentState(String attributeName)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] attributeName - The name of the attribute to get the State for.

	Returns:

	State - The latest State instance for the specified attribute.

Example:

preferences {
 section() {
 input "temp", "capability.temperatureMeasurement"
 }
}
...
def tempState = temp.currentState("temperature")
log.debug "state value: ${tempState.value}"
...

currentValue()

Gets the latest reported values of the specified attribute.

	Signature:

	Object currentValue(String attributeName)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] attributeName - The name of the attribute to get the latest values for.

	Returns:

	Object [http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html] - The latest reported values of the specified attribute. The exact return type will vary depending upon the attribute.

Warning

The exact returned type for various attributes is not adequately documented at this time.

Until they are, we recommend that you save often and experiment, or even look at the specific Device Handler for the device you are working with.

Example:

preferences {
 section() {
 input "theswitch", "capability.switch"
 input "thetemp", "capability.temperatureMeasurement"
 }
}
...
def switchattr = theswitch.currentValue("switch")
def tempattr = thetemp.currentValue("temperature")

log.debug "current switch: $switchattr"
log.debug "current temp: $tempattr"

// switch attribute returned as a string
log.debug "switchattr instanceof String? ${switchattr instanceof String}"

// temperature attribute returned as a Number
log.debug "tempatt instanceof Number? ${tempattr instanceof Number}"

...

events()

Get a list of Events for the Device in reverse chronological order (newest first).

Note

Only Events in the last seven days will be returned via the events() method.

	Signature:

	List<Event> events([max: N])

	Parameters:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] options (optional) - Options for the query. Supported options below:

	option
	Type
	Description

	max
	Number [http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html]
	The maximum number of Events to return. By default, the maximum is 10.

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] <Event> - A list of Events in reverse chronological order (newest first).

Example:

def theEvents = somedevice.events()
def mostRecent20Events = somedevice.events(max: 20)

eventsBetween()

Get a list of Events between the specified start and end dates.

Note

Only Events from the last seven days is query-able. Using a date range that ends more than seven days ago will return zero Events.

	Signature:

	List<Event> eventsBetween(Date startDate, Date endDate [, Map options])

	Parameters:

	Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] startDate - the lower Date range for the query.

Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] endDate - the upper Date range for the query.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] options (optional) - Options for the query. Supported options below:

	option
	Type
	Description

	max
	Number [http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html]
	The maximum number of Events to return. By default, the maximum is 10.

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] <:ref:event_ref> - a list of Events between the specified start and end dates.

Example:

// 3 days ago
def startDate = new Date() - 3

// today
def endDate = new Date()

def theEvents = somedevice.eventsBetween(startDate, endDate)
log.debug "there were ${theEvents.size()} events in the last three days"

// events in the last 3 days - maximum of 5 events
def limitedEvents = somedevice.eventsBetween(startDate, endDate, [max: 5])

eventsSince()

Get a list of Events since the specified date.

Note

Only Events from the last seven days is query-able. Using a date range that ends more than seven days ago will return zero Events.

	Signature:

	List<Event> eventsSince(Date startDate [, Map options])

	Parameters:

	Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] startDate - the date to start the query from.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] options (optional) - options for the query. Supported options below:

	option
	Type
	Description

	max
	Number [http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html]
	The maximum number of Events to return. By default, the maximum is 10.

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] <Event> - a list of Events since the specified date.

Example:

def eventsSinceYesterday = somedevice.eventsSince(new Date() - 1)
log.debug "there have been ${eventsSinceYesterday.size()} since yesterday"

getCapabilities()

The List of Capabilities provided by this Device.

	Signature:

	List<Capability> getCapabilities()

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] <Capability> - a List of Capabilities supported by this Device.

Example:

def supportedCaps = somedevice.capabilities
supportedCaps.each {cap ->
 log.debug "This device supports the ${cap.name} capability"
}

getDeviceNetworkId()

Gets the device network ID for the device.

	Signature:

	String getDeviceNetworkId()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the network ID for the device

getDisplayName()

The label of the Device assigned by the user.

	Signature:

	String getDisplayName()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the label of the Device assigned by the user, null if no label iset.

Example:

def devLabel = somedevice.displayName
if (devLabel) {
 log.debug "label set by user: $devLabel"
} else {
 log.debug "no label set by user for this device"
}

getHub()

The Hub associated with this Device.

	Signature:

	Hub getHub()

	Returns:

	Hub - the Hub for this Device.

Example:

log.debug "Hub: ${someDevice.hub.name}"

getId()

The unique system identifier for this Device.

	Signature:

	String getId()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the unique system identifer for this Device.

getLabel()

The name of the Device set by the user in the mobile application or Web IDE.

	Signature:

	String getLabel()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the name of the Device as configured by the user.

getLastActivity()

The date of the last Event with a source of device. (i.e. not commands)

	Signature:

	String getLastActivity()

	Returns:

	Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] - Date of the last Event with a source of device.

getManufacturerName()

Gets the manufacturer name of the device, as specified in the Device Handler’s fingerprint.
If the device was joined using a generic fingerprint, it is whatever the device reported while joining.

Not applicable for cloud or LAN-connected devices (null will be returned).

	Signature:

	String getManufacturerName()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the manufacturer name of the device, or null.

Example:

preferences {
 input "switches", "capability.switch", multiple: true
}

def installed() {
 switches.each {
 log.debug "switch id: ${it.id}, manufacturer name: ${it.getManufacturerName()}"
 }
}

getModelName()

Gets the model name of the device, as specified in the Device Handler’s fingerprint.
If the device was joined using a generic fingerprint, it is whatever the device reported while joining.

Not applicable for cloud or LAN-connected devices (null will be returned).

	Signature:

	String getModelName()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the model name of the device, or null.

Example:

preferences {
 input "switches", "capability.switch", multiple: true
}

def installed() {
 switches.each {
 log.debug "switch id: ${it.id}, model name: ${it.getModelName()}"
 }
}

getStatus()

Get the current status of the Device. If no status is found then INACTIVE is returned.

	Signature:

	String getStatus()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the status of the Device or INACTIVE if one doesn’t exist.

getName()

The internal name of the Device. Typically assigned by the system and editable only by a user in the IDE.

	Signature:

	String getName()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the internal name of the Device.

getSupportedAttributes()

The list of Attribute s for this Device.

	Signature:

	List<Attribute> getSupportedAttributes()

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] <Attribute> - the list of Attributes for this Device. Includes both capability attributes as well as Device-specific attributes.

Example:

preferences {
 section() {
 input "theswitch", "capability.switch"
 }
}
...
def theAtts = theswitch.supportedAttributes
theAtts.each {att ->
 log.debug "Supported Attribute: ${att.name}"
}
...

getSupportedCommands()

The list of Command s for this Device.

	Signature:

	List<Command> getSupportedCommands()

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] <Command> - the list of Commands for this Device. Includes both capability commands as well as Device-specific commands.

Example:

preferences {
 section() {
 input "theswitch", "capability.switch"
 }
}
...
def theCommands = theswitch.supportedCommands
theCommands.each {com ->
 log.debug "Supported Command: ${com.name}"
}
...

getTypeName()

The type of the device.

	Signature:

	String getTypeName()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the type of the device.

hasAttribute()

Determine if this Device has the specified attribute.

Tip

Attribute names are case-sensitive.

	Signature:

	Boolean hasAttribute(String attributeName)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] attributeName - the name of the attribute to check if the Device supports.

	Returns:

	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html] - true if this Device has the specified attribute. Returns a non-true value if not (may be null).

Example:

preferences {
 section() {
 input "theswitch", "capability.switch"
 input "thetemp", "capability.temperatureMeasurement"
 }
}
...
def hasTempAttr = thetemp.hasAttribute("temperature")
// true, since this device supports the 'temperature' capability
log.debug "${thetemp.displayName} has temperature attribute? $hasTempAttr"

def hasTempAttrCaseSensitive = thetemp.hasAttribute("Temperature")
if (hasTempAttrCaseSensitive) {
 log.debug "${thetemp.displayName} supports the Temperature attribute."
} else {
 // this block will execute, since attribute names are case sensitive
 log.debug "${thetemp.displayName} does NOT support the Temperature attribute."
}

...

hasCapability()

Determine if this Device supports the specified capability name.

Tip

Capability names are case-sensitive.

	Signature:

	Boolean hasCapability(String capabilityName)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] capabilityName - the name of the capability to check if the Device supports.

	Returns:

	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html] - true if this Device has the specified capability. Returns a non-true value if not (may be null).

Example:

preferences {
 section() {
 input "theswitch", "capability.switch"
 input "thetemp", "capability.temperatureMeasurement"
 }
}
...
def hasSwitch = theswitch.hasCapability("Switch")
def hasSwitchCaseSensitive = theswitch.hasCapability("switch")
def hasPower = theswitch.hasCapability("Power")

// true
log.debug "${theswitch.displayName} has Switch capability? $hasSwitch"

if (!hasSwitchCaseSensitive) {
 // enters this block (names are case-sensitive!)
 log.debug "${theswitch.displayName} does not have the switch capability"
}

// true
log.debug "${theswitch.displayName} also has Power capability? $multiCapabilities"

...

hasCommand()

Determine if this Device has the specified command name.

Tip

Command names are case-sensitive.

	Signature:

	Boolean hasCommand(String commandName)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] commandName - the name of the command to check if the Device supports.

	Returns:

	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html] - true if this Device has the specified command. Returns a non-true value if not (may be null).

Example:

preferences {
 section() {
 input "theswitch", "capability.switch"
 input "switchlevel", "capability.switchLevel"
 }
}
...

def hasOn = theswitch.hasCommand("on")
def hasOnCaseSensitive = theswitch.hasCommand("On")

// true
log.debug "${theswitch.displayName} has on command? $hasOn"

if (!hasOnCaseSensitive) {
 // enters this block - case-sensitive!
 log.debug "${theswitch.displayName} does not have On command"
}

def hasSetLevelCommand = switchlevel.hasCommand("setLevel")
// true
log.debug "${switchlevel.displayName} has command setLevel? $hasSetLevelCommand"
...

latestState()

Get the latest Device State record for the specified attribute.

	Signature:

	State latestState(String attributeName)

	Parameters:

	String attributeName - The name of the attribute to get the State record for.

	Returns:

	State - The latest State record for the attribute specified for this Device.

Example:

def latestDeviceState = somedevice.latestState("someAttribute")
log.debug "latest state value: ${latestDeviceState.value}"

latestValue()

Get the latest reported value for the specified attribute.

	Signature:

	Object latestValue(String attributeName)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] attributeName - the name of the attribute to get the latest value for.

	Returns:

	Object [http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html] - the latest reported value. The exact type returned will vary depending upon the attribute.

Warning

The exact returned type for various attributes is not adequately documented at this time.

Until they are, we recommend that you save often and experiment, or even look at the specific Device Handler for the device you are working with.

Example:

preferences {
 section() {
 input "theswitch", "capability.switch"
 input "thetemp", "capability.temperatureMeasurement"
 }
}
...
def switchattr = theswitch.latestValue("switch")
def tempattr = thetemp.latestValue("temperature")

log.debug "current switch: $switchattr"
log.debug "current temp: $tempattr"

// switch attribute returned as a string
log.debug "switchattr instanceof String? ${switchattr instanceof String}"

// temperature attribute returned as a Number
log.debug "tempatt instanceof Number? ${tempattr instanceof Number}"

...

statesBetween()

Get a list of Device State objects for the specified attribute between the specified times in reverse chronological order (newest first).

Note

Only State instances from the last seven days is query-able. Using a date range that ends more than seven days ago will return zero State objects.

	Signature:

	List<State> statesBetween(String attributeName, Date startDate, Date endDate [, Map options])

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] attributeName - The name of the attribute to get the States for.

Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] startDate - The beginning date for the query.

Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] endDate - The end date for the query.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] options (optional) - options for the query. Supported options below:

	option
	Type
	Description

	max
	Number [http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html]
	The maximum number of Events to return. By default, the maximum is 10.

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] <State> - A list of State objects between the dates specified. A maximum of 1000 State objects will be returned.

Example:

preferences {
 section() {
 input "theswitch", "capability.switch"
 }
}
...
def start = new Date() - 5
def end = new Date() - 1

def theStates = theswitch.statesBetween("switch", start, end)
log.debug "There are ${theStates.size()} between five days ago and yesterday"
...

statesSince()

Get a list of Device State objects for the specified attribute since the date specified.

Note

Only State instances from the last seven days is query-able. Using a date range that ends more than seven days ago will return zero State objects.

	Signature:

	List<State> statesSince(String attributeName, Date startDate [, Map options])

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] attributeName - The name of the attribute to get the States for.

Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] startDate - The beginning date for the query.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] options (optional) - options for the query. Supported options below:

	option
	Type
	Description

	max
	Number [http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html]
	The maximum number of Events to return. By default, the maximum is 10.

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] <State> - A list of State records since the specified start date. A maximum of 1000 State instances will be returned.

Example:

preferences {
 section() {
 input "theswitch", "capability.switch"
 }
}
...
def theStates = theswitch.statesSince("switch", new Date() -3)
log.debug "There are ${theStates.size()} State records in the last 3 days"
...

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	API Documentation

Event

Events are core to the SmartThings platform. They allow SmartApps to respond to changes in the physical environment, and build automations around them.

Event instances are not created directly by SmartApp or Device Handlers. They are created internally by the SmartThings platform, and passed to SmartApp event handlers that have subscribed to those events.

Note

In a SmartApp or Device Handler, the method createEvent() exists to create a Map that defines properties of an Event. Only by returning the resulting map from a Device Handler’s parse() method is an actual Event instance created and propagated through the SmartThings system.

The reference documentation here lists all methods available on an Event object instance.

getData()

A map of any additional data on the Event.

	Signature:

	String getData()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - A JSON string representing a map of the additional data (if any) on the Event.

Example:

Consider an Event created like this:

createEvent(name: "myevent", value: "myvalue", data: [key1: "val", key2: 42])

Then in an event handler method, we can get at the data like this:

def eventHandler(evt) {
 def data = parseJson(evt.data)
 log.debug "event data: ${data}"
 log.debug "event key1: ${data.key1}"
 log.debug "event key2: ${data.key2}"
}

getDate()

Acquisition time of this device state record.

	Signature:

	Date getDate()

	Returns:

	Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] - the date and time this Event record was created.

Example:

def eventHandler(evt) {
 log.debug "event created at: ${evt.date}"
}

getDateValue()

The value of the Event as a Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] object, if applicable.

	Signature:

	Date getDateValue()

	Returns:

	Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] - If the value of this Event is date, a Date will be returned. null will be returned if the value of the Event is not parseable to a Date.

Example:

def eventHandler(evt) {
 // get the value of this event as a Date
 log.debug "The dateValue of this event is ${evt.dateValue}"
 log.debug "evt.dateValue instanceof Date? ${evt.dateValue instanceof Date}"
}

getDescription()

The raw description that generated this Event.

	Signature:

	String getDescription()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the raw description that generated this Event.

Example:

def eventHandler(evt) {
 log.debug "event raw description: ${evt.description}"
}

getDescriptionText()

The description of the Event that is to be displayed to the user in the mobile application.

	Signature:

	String getDescriptionText()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the description of this Event to be displayed to the user in the mobile application.

Example:

def eventHandler(evt) {
 log.debug "event description text: ${evt.descriptionText}"
}

getDevice()

The Device associated with this Event.

	Signature:

	Device getDevice()

	Returns:

	Device - the Device associated with this Event, or null if no Device is associated with this Event.

getDisplayName()

	Signature:

	String getDisplayName()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - The user-friendly name of the source of this Event. Typically the user-assigned device label.

Example:

def eventHandler(evt) {
 log.debug "event display name: ${evt.displayName}"
}

getDeviceId()

The unique system identifer of the Device associated with this Event.

	Signature:

	String getDeviceId()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the unique system identifier of the device assocaited with this Event, or null if there is no device associated with this Event.

Example:

def eventHandler(evt) {
 log.debug "The device id for this event: ${evt.deviceId}"
}

getId()

The unique system identifier for this Event.

	Signature:

	String getId()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the unique device identifier for this Event.

Example:

def eventHandler(evt) {
 log.debug "event id: ${evt.id}"
}

getDoubleValue()

The value of this Event, if the value can be parsed to a Double.

	Signature:

	Double getDoubleValue()

	Returns:

	Double [https://docs.oracle.com/javase/7/docs/api/java/lang/Double.html?is-external=true] - the value of this Event as a Double.

Warning

doubleValue will throw an Exception if the value of the Event is not parseable to a Double.

You should wrap calls in a try/catch block.

Example:

def eventHander(evt) {
 // get the value of this event as an Double
 // throws an exception of the value is not convertable to a Double
 try {
 log.debug "The doubleValue of this event is ${evt.doubleValue}"
 log.debug "evt.doubleValue instanceof Double? ${evt.doubleValue instanceof Double}"
 } catch (e) {
 log.debug("Trying to get the doubleValue for ${evt.name} threw an exception", e)
 }
}

getFloatValue()

The value of this Event as a Float, if it can be parsed into a Float.

	Signature:

	Float getFloatValue()

	Returns:

	Float [https://docs.oracle.com/javase/7/docs/api/java/lang/Float.html] - the value of this Event as a Float.

Warning

floatValue will throw an Exception if the Event’s value is not parseable to a Float.

You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
 // get the value of this event as an Float
 // throws an exception if not convertable to Float
 try {
 log.debug "The floatValue of this event is ${evt.floatValue}"
 log.debug "evt.floatValue instanceof Float? ${evt.floatValue instanceof Float}"
 } catch (e) {
 log.debug("Trying to get the floatValue for ${evt.name} threw an exception", e)
 }
}

getHubId()

The unique system identifer of the Hub associated with this Event.

	Signature:

	String getHubId()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the unique system identifier of the Hub associated with this Event, or null if no Hub is associated with this Event.

Example:

def eventHandler(evt) {
 log.debug "The hub id associated with this event: ${evt.hubId}"
}

getInstalledSmartAppId()

The unique system identifier of the SmartApp instance associated with this Event.

	Signature:

	String getInstalledSmartAppId()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the unique system identifier of the SmartApp instance associated with this Event.

Example:

def eventHandler(evt) {
 log.debug "The installed SmartApp id associated with this event: ${evt.installedSmartAppId}"
}

getIntegerValue()

The value of this Event as an Integer.

	Signature:

	Integer getIntegerValue()

	Returns:

	Integer [https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html] - the value of this Event as an Integer.

Warning

integerValue throws an Exception of the Event value cannot be parsed to an Integer.

You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
 // get the value of this event as an Integer
 // throws an exception if not convertable to Integer
 try {
 log.debug "The integerValue of this event is ${evt.integerValue}"
 log.debug "The integerValue of this event is an Integer: ${evt.integerValue instanceof Integer}"
 } catch (e) {
 log.debug("Trying to get the integerValue for ${evt.name} threw an exception", e)
 }
}

getIsoDate()

Acquisition time of this Event as an ISO-8601 String.

	Signature:

	String getIsoDate()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - The acquisition time of this Event as an ISO-8601 String.

Example:

def eventHandler(evt) {
 log.debug "event isoDate: ${evt.isoDate}"
}

getJsonValue()

Value of the Event as a parsed JSON data structure.

	Signature:

	Object getJsonValue()

	Returns:

	Object [http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html] - The value of the Event as a JSON structure

Warning

jsonValue throws an Exception if the value of the Event cannot be parsed into a JSON object.

You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
 // get the value of this event as a JSON structure
 // throws an exception if the value is not convertable to JSON
 try {
 log.debug "The jsonValue of this event is ${evt.jsonValue}"
 } catch (e) {
 log.debug("Trying to get the jsonValue for ${evt.name} threw an exception", e)
 }
}

getLinkText()

Warning

Deprecated.

getLinkText() is deprecated. Use getDisplayName() instead.

The user-friendly name of the source of this Event. Typically the user-assigned device label.

getLocation()

The Location associated with this Event.

	Signature:

	Location getLocation()

	Returns:

	Location - The Location associated with this Event, or null if no Location is associated with this Event.

getLocationId()

The unique system identifier for the Location associated with this Event.

	Signature:

	String getLocationId()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the unique system identifier for the Location associated with this Event.

getLongValue()

The value of this Event as a Long.

	Signature:

	Long getLongValue()

	Returns:

	Long [https://docs.oracle.com/javase/7/docs/api/java/lang/Long.] - the value of this Event as a Long.

Warning

longValue throws an Exception if the value of the Event cannot be parsed to a Long.

You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
 // get the value of this event as an Long
 // throws an exception if not convertable to Long
 try {
 def evtLongValue = evt.longVaue
 log.debug "The longValue of this event is evtLongValue"
 log.debug "evt.longValue instanceof Long? ${evtLongValue instanceof Long}"
 } catch (e) {
 log.debug("Trying to get the longValue for ${evt.name} threw an exception", e)
 }
}

getName()

The name of this Event.

	Signature:

	String getName()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the name of this Event.

Example:

def eventHandler(evt) {
 log.debug "the name of this event: ${evt.name}"
}

getNumberValue()

The value of this Event as a Number.

	Signature:

	Number getNumberValue()

	Returns:

	Number [http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html] - the value of this Event as a Number.

Warning

numberValue throws an Exception if the value of the Event cannot be parsed to a Number.

You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
 // get the value of this event as an Number
 // throws an exception if the value is not convertable to a Number
 try {
 def evtNumberValue = evt.numberValue
 log.debug "The numberValue of this event is ${evtNumberValue}"
 log.debug "evt.numberValue instanceof Number? ${evtNumberValue instanceof Number}"
 } catch (e) {
 log.debug("Trying to get the numberValue for ${evt.name} threw an exception", e)
 }
}

getNumericValue()

The value of this Event as a Number.

	Signature:

	Number getNumericValue()

	Returns:

	Number [http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html] - the value of this Event as a Number.

Warning

numericValue throws an Exception if the value of the Event cannot be parsed to a Number.

You should wrap calls in a try/catch block.

Example:

def eventHandler(evt) {
 // get the value of this event as an Number
 // throws an exception if the value is not convertable to a Number
 try {
 def evtNumberValue = evt.numericValue
 log.debug "The numericValue of this event is ${evtNumberValue}"
 log.debug "evt.numericValue instanceof Number? ${evtNumberValue instanceof Number}"
 } catch (e) {
 log.debug("Trying to get the numericValue for ${evt.name} threw an exception", e)
 }
}

getSource()

The source of the Event.

	Signature:

	String getSource()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the source of the Event. The following table lists the possible sources and their meaning:

	Source
	Description

	“APP”
	Event originated by an app touch Event in the mobile application.

	“APP_COMMAND”
	Event originated by using the mobile application (for example, using the mobile application to turn a light off)

	“COMMAND”
	Event originated by a SmartApp or Device Handler calling a command on a device.

	“DEVICE“
	Event originated by the physical actuation of a device.

	“HUB”
	Event originated on the Hub.

	“LOCATION”
	Event originated by a Location state change (for example, sunrise and sunset events)

	“USER”
	

Example:

def eventHandler(evt) {
 log.debug "The source of this event is: ${evt.source}"
}

getStringValue()

The value of this Event as a String.

	Signature:

	String getStringValue()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the value of this Event as a String.

Example:

def eventHandler(evt) {
 log.debug "The value of this event as a string: ${evt.stringValue}"
}

getUnit()

The unit of measure for this Event, if applicable.

	Signature:

	String getUnit()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the unit of measure of this Event, if applicable. null otherwise.

Example:

def eventHandler(evt) {
 log.debug "The unit for this event: ${evt.unit}"
}

getValue()

The value of this Event as a String.

	Signature:

	String getValue()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the value of this Event as a String.

Example:

def eventHandler(evt) {
 log.debug "The value of this event as a string: ${evt.value}"
}

getXyzValue()

Value of the Event as a 3-entry Map with keys ‘x’, ‘y’, and ‘z’ with BigDecimal values. For example:

[x: 1001, y: -23, z: -1021]

Typically only useful for getting position data from the “Three Axis” Capability.

	Signature:

	Map<String, BigDecimal> getXyzValue()

	Returns:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] < String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] , BigDecimal [http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html] > - A map representing the X, Y, and Z coordinates.

Warning

xyzValue throws an Exception if the value of the Event cannot be parsed to an X-Y-Z data structure.

You should wrap calls in a try/catch block.

Example:

def positionChangeHandler(evt) {
 // get the value of this event as a 3 entry map with keys
 //'x', 'y', 'z', and BigDecimal values
 // throws an exception if the value is not convertable to a Date
 try {
 log.debug "The xyzValue of this event is ${evt.xyzValue }"
 log.debug "evt.xyzValue instanceof Map? ${evt.xyzValue instanceof Map}"
 } catch (e) {
 log.debug("Trying to get the xyzValue for ${evt.name} threw an exception", e)
 }
}

isDigital()

true if the Event is from the digital actuation (non-physical) of a Device, false otherwise.

	Signature:

	Boolean physical()

	Returns:

	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html] - true if the Event is from the digital actuation of a Device, false otherwise.

Example:

def eventHandler(evt) {
 log.debug "event from digital actuation? ${evt.isDigital()}"
}

isPhysical()

true if the Event is from the physical actuation of a Device, false otherwise.

	Signature:

	Boolean physical()

	Returns:

	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html] - true if the Event is from the physical actuation of a Device, false otherwise.

Example:

def eventHandler(evt) {
 log.debug "event from physical actuation? ${evt.isPhysical()}"
}

isStateChange()

true if the Attribute value for this Event is different than the previous one.

	Signature:

	Boolean stateChange()

	Returns:

	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html] - true if the Attribute value for this Event is different than the previous one.

Example:

def eventHandler(evt) {
 log.debug "Is this event a state change? ${evt.isStateChange()}"
}

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	API Documentation

Hub

The Hub object encapsulates information about the Hub.

Here’s a code snippet of a SmartApp that logs all available information for the Hub when the SmartApp is installed:

def installed() {
 def hub = location.hubs[0]

 log.debug "id: ${hub.id}"
 log.debug "zigbeeId: ${hub.zigbeeId}"
 log.debug "zigbeeEui: ${hub.zigbeeEui}"

 // PHYSICAL or VIRTUAL
 log.debug "type: ${hub.type}"

 log.debug "name: ${hub.name}"
 log.debug "firmwareVersionString: ${hub.firmwareVersionString}"
 log.debug "localIP: ${hub.localIP}"
 log.debug "localSrvPortTCP: ${hub.localSrvPortTCP}"
}

Below are the available properties on a Hub:

getFirmwareVersionString()

	Signature:

	String getFirmwareVersionString()()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - The firmware version of the Hub

Example:

List getRealHubFirmwareVersions() {
 return location.hubs*.firmwareVersionString.findAll { it }
}

getId()

The unique system identifier for this Hub.

	Signature:

	String getId()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the unique device identifier for this Hub.

Example:

def eventHandler(evt) {
 log.debug "Hub ID associated with event: ${evt?.hub.id}"
}

getLocalIP()

The local IP address of the Hub.

	Signature:

	String getLocalIP()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - The IP address of the Hub.

getLocalSrvPortTCP()

The local server TCP port of the Hub.

	Signature:

	String getLocalSrvPortTCP()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the TCP port for the Hub.

getName()

The name of the Hub.

	Signature:

	String getName()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the name of the Hub.

getType()

The type of the Hub. Either “PHYSICAL” or “VIRTUAL”.

	Signature:

	String getType()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the type of the Hub.

getZigbeeEui()

The ZigBee Extended Unique Identifier of the Hub.

	Signature:

	String getZigbeeEui()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - The ZigBee EUI

getZigbeeId()

The ZigBee ID of the Hub.

	Signature:

	String getZigbeeId()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the ZigBee ID

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	API Documentation

HubAction

The HubAction class is used to encapsulate a detailed request string while communicating with the devices in your network.
For example, this request string can be used for search and discovery of devices in your network.
HubAction can also be used in a SmartApp or in a Device Handler to communicate with the device.

	Signature:

	HubAction myhubAction = new physicalgraph.device.HubAction(String action, Protocol protocol)

HubAction myhubAction = new physicalgraph.device.HubAction(String action, Protocol protocol, String dni, Map options)

HubAction myhubAction = new physicalgraph.device.HubAction(Map params, String dni = null, [Map options])

	Parameters:

	String action - A string comprised of the request details targeted for the device.

Protocol protocol - Specific protocol to be used. Default value is Protocol.LAN.

String dni - Device Network ID of the device. Default value is null. For dni, we recommend using MAC address and not use IP and port numbers.

Map options - Default value is null. Available options are:

	Option
	Description

	callback
	Name of the callback method

	type
	Type of LAN request. Allowed values are: LAN_TYPE_CLIENT, LAN_TYPE_SERVER. Default value is LAN_TYPE_CLIENT.

	protocol
	Allowed values are LAN_PROTOCOL_TCP and LAN_PROTOCOL_UDP and default value is LAN_PROTOCOL_TCP. Note the difference in allowed values of this parameter when used in Maps params and Protocol protocol signatures.

Map params - Available parameters are:

	Parameter
	Description

	path
	Allowed values are any string of the form "/somepath". Default value is "/".

	method
	Allowed values are "POST", "GET", "PUT" and "PATCH". Default value is "POST".

	protocol
	Allowed values are Protocol.LAN. Default value is also Protocol.LAN.

	headers
	A map of HTTP headers. The HOST should be the "IP":"port" string of the device. Default values are ['Accept': '*/*', 'User-Agent': 'Linux UPnP/1.0 SmartThings',]. If 'Content-Type' is not included, then it is set to 'application/json' if params:body is a Map; otherwise 'Content-Type' is set to 'text/xml; charset="utf-8"'.

	query
	A map of URL query parameters.

	body
	Request body.

Example:

Send a device discovery command string to look for Samsung SmartCam device in your LAN network, via SSDP protocol.

// Send a device discovery command string to look for Samsung SmartCam device in your LAN network, via SSDP protocol.
sendHubCommand(new physicalgraph.device.HubAction("lan discovery urn:schemas-upnp-org:device:WANDevice:1", physicalgraph.device.Protocol.LAN))

Note

Typically, the device discovery is done mainly via SSDP protocol.
After the device is discovered, either REST or UPnP calls can be made for verification and communication with the device.

See Building the Service Manager for more information.

Also note that, in the above example, while "urn:schemas-upnp-org:device:WANDevice:1" portion of the request string represents the notation defined by UPnP standard for device types, the terms "lan" and "discovery" are SmartThings-specific terms.

After the device is discovered, additional device information, such as device IP, MAC, port id, is available.
Now it is possible to interact with the device using this additional information.
Send a HubAction to the device as shown below, where myMAC is the MAC address string of the SmartCam device and calledBackHandler is the name of the method that is to be called when the device responds to this HubAction request object.

sendHubCommand(new physicalgraph.device.HubAction("""GET /xml/device_description.xml HTTP/1.1\r\nHOST: $ip\r\n\r\n""", physicalgraph.device.Protocol.LAN, myMAC, [callback: calledBackHandler]))

...

// the below calledBackHandler() is triggered when the device responds to the sendHubCommand() with "device_description.xml" resource

void calledBackHandler(physicalgraph.device.HubResponse hubResponse) {
 log.debug "Entered calledBackHandler()..."
 def body = hubResponse.xml
 def devices = getDevices()
 def device = devices.find { it?.key?.contains(body?.device?.UDN?.text()) }
 if (device) {
 device.value << [name: body?.device?.roomName?.text(), model: body?.device?.modelName?.text(), serialNumber: body?.device?.serialNum?.text(), verified: true]
 }
 log.debug "device in calledBackHandler() is: ${device}"
 log.debug "body in calledBackHandler() is: ${body}"
}

	Returns:

	HubAction object.

Note

A Device Handler’s parse() method can also return a HubAction object, in adddition to the above-described usage by explicitly calling sendHubCommand.

See Building the Device Type for more information.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	API Documentation

InstalledSmartApp

The InstalledSmartApp class represents a SmartApp.
Every SmartApp has an instance of InstalledSmartApp available to it via the app object.
InstalledSmartApp is also used in Parent-Child SmartApps, specifically it is the return type of addChildApp().

currentState()

Gets the current state of the given attribute.

	Signature:

	AppState currentState(String attributeName)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] attributeName - The attribute name to get the state for

	Returns:

	AppState - The latest state information for the specified attribute

Example:

...
def myAppState = app.currentState("someAttribute")
log.debug "state value: ${myAppState.value}"
...

getAccountId()

Gets the account ID of the owner of the Location in to which this SmartApp is installed.

	Signature:

	String getAccountId()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - The account ID of the owner of the Location in to which this SmartApp is installed.

Example:

def accountId = app.getAccountId()
log.debug "This account ID of this installed SmartApp is $accountId"

getAllChildApps()

Gets a list of child SmartApps associated with this SmartApp.
This returns child SmartApps that have both “complete” and “incomplete” installation states.

	Signature:

	def getAllChildApps()

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] < InstalledSmartApp > - A list of child SmartApps

Example:

def childApps = app.getAllChildApps()
log.debug "The app has ${childApps.size()} child SmartApps"

getAppSettings()

Gets the settings currently associated with this SmartApp.

Note

This method applies to the SmartApp’s Private settings.

	Signature:

	Map app.getAppSettings()

	Returns:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] - A map of key, value pairs that represent the current SmartApp settings

getChildApps()

Gets a list of child apps associated with this SmartApp.
This only returns child SmartApps that have an installation states of “complete”.

	Signature:

	def getChildApps()

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] < InstalledSmartApp > - A list of child SmartApps

Example:

def childApps = app.childApps

// Update the label for all child apps
childApps.each {
 if (!it.label?.startsWith(app.name)) {
 it.updateLabel("$app.name/$it.label")
 }
}

getChildDevices()

Gets a list of child devices associated with this SmartApp.

	Signature:

	List<Device> getChildDevices()

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] < Device > - A list of child devices

Example:

def children = app.getChildDevices()
log.debug "SmartApp with id $app.id has ${children.size()} child devices"

children.each { child ->
 log.debug "child device id $child.id with label $child.label"
}

getExecutionIsModeRestricted()

Returns true if the SmartApp’s execution is restricted by modes.
The restrictive modes would have been configured when the SmartApp was installed.

	Signature:

	Boolean getExecutionIsModeRestricted()()

	Returns:

	Boolean [http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html] - True if the execution of the SmartApp is restricted to certain modes

getExecutableModes()

Get a list of modes that this SmartApp is allowed to execute in.

	Signature:

	Mode getExecutableModes()

	Returns:

	Mode - A list of modes that this SmartApp is allowed to execute in

getId()

Get the id of the SmartApp

	Signature:

	String getId()

	Returns:

	The ID of the SmartApp

getInstallationState()

Get the current installation state of the SmartApp.

	Signature:

	String getInstallationState()

	Returns:

	The current installation state of the SmartApp. Can be incomplete or complete

getLabel()

Get the label of the SmartApp

	Signature:

	String getLabel()

	Returns:

	The label of the SmartApp

getName()

Get the name of the SmartApp

	Signature:

	String getName()

	Returns:

	The name of the SmartApp

getNamespace()

Get the namespace of the SmartApp

	Signature:

	String getNamespace()

	Returns:

	The namespace of the SmartApp

getParent()

Gets the parent of the SmartApp.

	Signature:

	InstalledSmartApp getParent()

	Returns:

	InstalledSmartApp - The parent of this SmartApp

getSubscriptions()

	Signature:

	List<EventSubscriptionWrapper> getSubscriptions()

	Returns

	List<EventSubscriptionWrapper[] - A list of subscriptions associated with this SmartApp

statesBetween()

Get a list of app AppState objects for the specified attribute between the specified times in reverse chronological order (newest first).

Note

Only State instances from the last seven days is query-able. Using a date range that ends more than seven days ago will return zero State objects.

	Signature:

	List<AppState> statesBetween(String attributeName, Date startDate, Date endDate [, Map options])

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] attributeName - The name of the attribute to get the States for.

Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] startDate - The beginning date for the query.

Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] endDate - The end date for the query.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] options (optional) - options for the query. Supported options below:

	option
	Type
	Description

	max
	Number [http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html]
	The maximum number of Events to return. By default, the maximum is 10.

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] <AppState> - A list of State objects between the dates specified. A maximum of 1000 State objects will be returned.

Example:

...
def start = new Date() - 5
def end = new Date() - 1

def theStates = app.statesBetween("myAttribute", start, end)
log.debug "There are ${theStates.size()} between five days ago and yesterday"
...

statesSince()

Get a list of app AppState objects for the specified attribute since the date specified.

Note

Only State instances from the last seven days is query-able. Using a date range that ends more than seven days ago will return zero State objects.

	Signature:

	List<AppState> statesSince(String attributeName, Date startDate [, Map options])

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] attributeName - The name of the attribute to get the States for.

Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] startDate - The beginning date for the query.

Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] options (optional) - options for the query. Supported options below:

	option
	Type
	Description

	max
	Number [http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html]
	The maximum number of Events to return. By default, the maximum is 10.

	Returns:

	List [http://docs.oracle.com/javase/7/docs/api/java/util/List.html] <AppState> - A list of State records since the specified start date. A maximum of 1000 State instances will be returned.

Example:

def theStates = app.statesSince("myAttribute", new Date() -3)
log.debug "There are ${theStates.size()} State records in the last 3 days"
...

updateLabel()

Update the label of this SmartApp.

	Signature:

	void updateLabel(String label)

	Parameters:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] label - The updated label value

	Returns:

	void

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	API Documentation

Location

A Location represents a user’s geo-location, such as “Home” or “office”. Locations do not have to have a SmartThings Hub, but generally do.

All SmartApps and Device Handlers are injected with a location property that is the Location into which the SmartApp is installed.

getContactBookEnabled()

true if this Location has Contact Book enabled (has Contacts), false otherwise.

	Signature:

	Boolean getContactBookEnabled()

	Returns:

	true if this Location has Contact Book enabled (has Contacts), false otherwise.

getCurrentMode()

The current Mode for the Location.

	Signature:

	Mode getCurrentMode()

	Returns:

	Mode - The current mode for the Location.

Example:

log.debug "location.currentMode: ${location.currentMode}"

getId()

The unique internal system identifier for the Location.

	Signature:

	String getId()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the unique internal system identifier for the Location.

Example:

log.debug "location.id: ${location.id}"

getHubs()

The list of Hubs for this Location. Currently only Hub can be installed into a Location, though this API returns a List to allow for future expandability.

	Signature:

	List<Hub> getHubs()

	Returns:

	List <Hub> - the Hubs for this Location.

Example:

log.debug "Hubs: ${location.hubs*.id}"

getLatitude()

Geographical latitude of the Location. Southern latitudes are negative. Requires that location services are enabled in the mobile app.

	Signature:

	BigDecimal getLatitude()

	Returns:

	BigDecimal [http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html] - the latitude for the Location.

Example:

log.debug "location.latitude: ${location.latitude}"

getLongitude()

Geographical longitude of the Location. Western longitudes are negative. Requires that location services are enabled in the mobile app.

	Signature:

	BigDecimal getLongitude()

	Returns:

	BigDecimal [http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html] - the longitude for the Location.

Example:

log.debug "location.longitude: ${location.longitude}"

getMode()

The current Mode name for the Location.

	Signature:

	String getMode()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the name of the current Mode for the Location.

Example:

log.debug "location mode name: ${location.mode}"

getModes()

List of Modes for the Location.

	Signature:

	List<Mode> getModes()

	Returns:

	List [https://docs.oracle.com/javase/7/docs/api/java/util/List.html] <Mode> - the List of Modes for the Location.

Example:

log.debug "Modes for this Location: ${location.modes}"

getName()

The name of the Location, as assigned by the user.

	Signature:

	String getName()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the name of the Location as assigned by the user.

Example:

log.debug "The name of this Location is: ${location.name}"

setMode()

Set the mode for this Location.

	Signature:

	void setMode(String mode)
void setMode(Mode mode)

	Returns:

	void

Warning

setMode() will raise an error if the specified mode does not exist for the Location. You should verify the mode exists as in the example below.

Example:

def modeToSetTo = "Home"
if (location.modes?.find {it.name == modeToSetTo}) {
 location.setMode("Home")
}

getTemperatureScale()

The temperature scale (“F” for fahrenheit, “C” for celsius) for this Location.

	Signature:

	String getTemperatureScale()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the temperature scale set for this Location. Either “F” for fahrenheit or “C” for celsius.

Example:

def tempScale = location.temperatureScale
log.debug "Temperature scale for this Location is $tempScale"

getTimeZone()

The time zone for the Location. Requires that location services are enabled in the mobile application.

	Signature:

	TimeZone getTimeZone()

	Returns:

	TimeZone [http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html] - the time zone for the Location.

Example:

log.debug "The time zone for this Location is: ${location.timeZone}"

getZipCode()

The ZIP code for the Location, if in the USA. Requires that location services be enabled in the mobile application.

	Signature:

	String getZipCode()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the ZIP code for the Location.

Example:

log.debug "The zip code for this Location: ${location.zipCode}"

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	API Documentation

Mode

Modes can be thought of as behavior filters for your home. Users want to change how things act or behave in their home based on the Mode you’re in.

SmartThings developers cannot create a new Mode. The most common way to interact with a Mode instance is by using the Location to get Mode information:

// Get the current Mode
def curMode = location.currentMode

// Get a list of all Modes for this location
def allModesForLocation = location.modes

getId()

The unique internal system identifier of the Mode.

	Signature:

	String getId()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the unique internal system identifier for the Mode.

def curMode = location.currentMode
log.debug "The current Mode ID is: ${curMode.id}"

getName()

The name of the Mode.

	Signature:

	String getName()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the name of the Mode, usually assigned by the user.

Example:

def curMode = location.currentMode
log.debug "The current mode name is: ${curMode.name}"

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	API Documentation

State

A State object encapsulates information about a particular Attribute at a particular moment in time.

State objects are associated with a Device - a Device may have zero-to-many Attribute s, and an Attribute has zero-to-many associated State records.

Refer to the Devices section of the SmartApp Guide for more information about the relationship between Devices, Attributes, and State.

A few ways to get a State object instance from a device (See the Device API reference for detailed information):

preferences {
 section() {
 input "thecontact", "capability.contactSensor"
 }
}
...
// <device>.<attributeName>State
def latestState = thecontact.contactState

// <device>.currentState(<attributeName>)
def latestState2 = thecontact.currentState("contact")

// get a list of states between two dates
def recentStates = thecontact.statesBetween(new Date() - 5, new Date())

getDate()

The date and time the State object was created.

	Signature:

	Date getDate()

	Returns:

	Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] - the Date this State object was created.

Example:

def stateDate = contactSensor?.currentState("contact").date

getDateValue()

The value of the underlying attribute as a Date.

	Signature:

	Date getDateValue()

	Returns:

	Date [http://docs.oracle.com/javase/7/docs/api/java/util/Date.html] - the value if the underlying attribute as a Date. Returns null if the attribute value cannot be parsed into a Date.

getDoubleValue()

The value of the underlying Attribute as a Double.

	Signature:

	Double getDoubleValue()

	Returns:

	Double [https://docs.oracle.com/javase/7/docs/api/java/lang/Double.html?is-external=true] - the value of the underlying attribute as a Double.

Warning

getDoubleValue() throws an Exception if the underlying attribute value cannot be parsed into a Double.

You should wrap calls in a try/catch block.

Example:

try {
 def latestStateAsDouble = someDevice.currentState("someAttribute").doubleValue
 log.debug "latestStateAsDouble: $latestStateAsDouble"
} catch (e) {
 log.debug "caught exception trying to get double for state record"
}

getFloatValue()

The value of the underlying Attribute as a Float.

	Signature:

	Float getFloatValue()

	Returns:

	Float [https://docs.oracle.com/javase/7/docs/api/java/lang/Float.html] - the value of the underlying Attribute as a Float.

Warning

getFloatValue() throws an Exception if the underlying attribute value cannot be parsed into a Double.

You should wrap calls in a try/catch block.

Example:

try {
 def latestStateAsFloat = someDevice.currentState("someAttribute").floatValue
 log.debug "latestStateAsFloat: $latestStateAsFloat"
} catch (e) {
 log.debug "caught exception trying to get floatValue for state record"
}

getId()

The unique system identifier for the State object.

	Signature:

	String getId()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the unique system identifer for the State object.

Example:

def latestState = someDevice.currentState("someAttribute")
log.debug "latest state id: ${latestState.id}"

getIntegerValue()

The value of the underlying Attribute as an Integer.

	Signature:

	Integer getIntegerValue()

	Returns:

	Integer [https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html] - the value of the underlying Attribute as a Integer.

Warning

getIntegerValue() throws an Exception if the underlying attribute value cannot be parsed into a Integer.

You should wrap calls in a try/catch block.

Example:

try {
 def latestStateAsInt = someDevice.currentState("someAttribute").integerValue
 log.debug "latestStateAsInt: $latestStateAsInt"
} catch (e) {
 log.debug "caught exception trying to get integerValue for state record"
}

getIsoDate()

The acquisition time of this State object as an ISO-8601 String

	Signature:

	String getIsoDate()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the time this Sate object was created as an ISO-8601 Strring

Example:

def latestState = someDevice.currentState("someAttribute")
log.debug "latest state isoDate: ${latestState.isoDate}"

getJsonValue()

Value of the underlying Attribute parsed into a JSON data structure.

	Signature:

	Object getJsonValue()

	Returns:

	Object [http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html] - the value if the underlying Attribute parsed into a JSON data structure.

Warning

getJsonValue() throws an Exception of the underlying attribute value cannot be parsed into a Integer.

You should wrap calls in a try/catch block.

Example:

try {
 def latestStateAsJSONValue = someDevice.currentState("someAttribute").jsonValue
 log.debug "latestStateAsJSONValue: $latestStateAsJSONValue"
} catch (e) {
 log.debug "caught exception trying to get jsonValue for state record"
}

getLongValue()

The value of the underlying Attribute as a Long.

	Signature:

	Long getLongValue()

	Returns:

	Long [https://docs.oracle.com/javase/7/docs/api/java/lang/Long.] - the value if the underlying Attribute as a Long.

Warning

getLongValue() throws an Exception of the underlying attribute value cannot be parsed into a Long.

You should wrap calls in a try/catch block.

Example:

try {
 def latestStateAsLong = someDevice.currentState("someAttribute").longValue
 log.debug "latestStateAsLong: $latestStateAsLong"
} catch (e) {
 log.debug "caught exception trying to get longValue for state record"
}

getName()

The name of the underlying Attribute.

	Signature:

	String getName()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the name of the underlying Attribute.

Example:

def latest = contactSensor.currentState("contact")
log.debug "name: ${latest.name}"

getNumberValue()

The value of the underlying Attribute as a BigDecimal.

	Signature:

	BigDecimal getNumberValue()

	Returns:

	Number [http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html] - the value if the underlying Attribute as a Number.

Warning

getNumberValue() throws an Exception of the underlying attribute value cannot be parsed into a getNumberValue().

You should wrap calls in a try/catch block.

Example:

try {
 def latestStateAsNumber = someDevice.currentState("someAttribute").numberValue
 log.debug "latestStateAsNumber: $latestStateAsNumber"
} catch (e) {
 log.debug "caught exception trying to get numberValue for state record"
}

getNumericValue()

The value of the underlying Attribute as a Number.

	Signature:

	Number getNumericValue()

	Returns:

	Number [http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html] - the value if the underlying Attribute as a Number.

Warning

getNumericValue() throws an Exception of the underlying attribute value cannot be parsed into a Number.

You should wrap calls in a try/catch block.

Example:

try {
 def latestStateAsNumber = someDevice.currentState("someAttribute").numericValue
 log.debug "latestStateAsNumber: $latestStateAsNumber"
} catch (e) {
 log.debug "caught exception trying to get numericValue for state record"
}

getStringValue()

The value of the underlying Attribute as a String

	Signature:

	String getStringValue()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the value of the underlying Attribute as a String.

Example:

def latest = contactSensor.currentState("contact")
log.debug "stringValue: ${latest.stringValue}"

getUnit()

The unit of measure for the underlying Attribute.

	Signature:

	String getUnit()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the unit of measure for the underlying Attribute, if applicable, null otherwise.

Example:

def latest = tempSensor.currentState("temperature")
log.debug "unit: ${latest.unit}"

getValue()

The value of the underlying Attribute as a String

	Signature:

	String getUnit()

	Returns:

	String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] - the value of the underlying Attribute as a String.

Example:

def latest = contactSensor.currentState("contact")
log.debug "stringValue: ${latest.value}"

getXyzValue()

Value of the underlying Attribute as a 3-entry Map with keys ‘x’, ‘y’, and ‘z’ with BigDecimal values. For example:

[x: 1001, y: -23, z: -1021]

Typically only useful for getting position data from the “Three Axis” Capability.

	Signature:

	Map<String, BigDecimal> getXyzValue()

	Returns:

	Map [http://docs.oracle.com/javase/7/docs/api/java/util/Map.html] < String [http://docs.oracle.com/javase/7/docs/api/java/lang/String.html] , BigDecimal [http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html] > - A map representing the X, Y, and Z coordinates.

Warning

xyzValue throws an Exception if the value of the Event cannot be parsed to an X-Y-Z data structure.

You should wrap calls in a try/catch block.

Example:

def latest = threeAxisDevice.currentState("threeAxis")

// get the value of this event as a 3 entry map with keys
//'x', 'y', 'z', and BigDecimal values
// throws an exception if the value is not convertable to a Date
try {
 log.debug "The xyzValue of this event is ${latest.xyzValue}"
 log.debug "latest.xyzValue instanceof Map? ${latest.xyzValue instanceof Map}"
} catch (e) {
 log.debug "Trying to get the xyzValue threw an exception: $e"
}

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	API Documentation

ZigBee Reference

Note

As of now, any time the ZigBee library logs a message, an error will be seen. This is a known issue and will be fixed with the next deploy.

The ZigBee library contains many shorthands and conveniences for developing ZigBee Device Handlers.

ZigBee devices have fingerprints that define what the device is when it joins a ZigBee network.
Currently you define the expected fingerprint for a device in the Device Handler metadata block as part of the definition. An example would look like this:

metadata {
 // Automatically generated. Make future change here.
 definition (name: "SmartPower Outlet", namespace: "smartthings", author: "SmartThings") {
 capability "Actuator"
 capability "Switch"
 capability "Power Meter"
 capability "Configuration"
 capability "Refresh"
 capability "Sensor"

 // indicates that device keeps track of heartbeat (in state.heartbeat)
 attribute "heartbeat", "string"

 fingerprint profileId: "0104", inClusters: "0000,0003,0004,0005,0006,0B04,0B05", outClusters: "0019", manufacturer: "CentraLite", model: "3200", deviceJoinName: "Outlet"
 fingerprint profileId: "0104", inClusters: "0000,0003,0004,0005,0006,0B04,0B05", outClusters: "0019", manufacturer: "CentraLite", model: "3200-Sgb", deviceJoinName: "Outlet"
 fingerprint profileId: "0104", inClusters: "0000,0003,0004,0005,0006,0B04,0B05", outClusters: "0019", manufacturer: "CentraLite", model: "4257050-RZHAC", deviceJoinName: "Outlet"
 fingerprint profileId: "0104", inClusters: "0000,0003,0004,0005,0006,0B04,0B05", outClusters: "0019"
}

If the fingerprint declaration contains a value for both the manufacturer and model attributes, you have the option to add the deviceJoinName attribute.

	Fingerprint Attribute
	Type
	Value

	deviceJoinName
	String
	Overrides the device type name when pairing. This allows the developer to customize the device name while joining a ZigBee device.

Parse methods

zigbee.getEvent()

The getEvent() method will try to parse ZigBee Clusters into a map whose key/value pairs can be directly handled by the sendEvent() method.

	Signature:

	Map(String:String) zigbee.getEvent(String description)

	Parameters:

	
	description: The description value passed to the parse method from the device.

	Return Values:

	Map: [name: <event name>, value: <event value>]

Example

def parse(String description) {
 def result = zigbee.getEvent(description)

 if(result) {
 sendEvent(result)
 } else {
 // zigbee.getEvent was unable to parse description. Description must be parsed manually.
 }
}

The zigbee.getEvent() method can parse the following event types with work being done to for additional event types:

	Event Type
	Cluster value

	switch
	0x0006

	level
	0x0008

	power
	0x0702 and 0x0B04

	colorTemperature
	0x0300

Note

Only color temperature can be parsed. Full color control is in the works.

Note

For the power event type, the value can be reported in mW, W, or kW. This means that it is up to the developer to make adjustments to the value before calling sendEvent so it will be displayed correctly.

Low level commands

additionalParams

There are several ZigBee methods that support an optional map parameter called additionalParams. This is
intended to be used to support future params without affecting backward compatibility. The following keys are
supported:

	Key
	Type
	Description

	mfgCode
	integer
	The ZigBee manufacturing code (e.g. 0x110A)

	destEndpoint
	integer
	The destination endpoint for the given message (e.g. 0x02)

zigbee.command()

Send a Cluster specific Command. This method is overloaded and has a couple of signatures.

	Signature:

	zigbee.command(Integer Cluster, Integer Command, [String... payload])

	Parameters:

	
	Cluster: The Cluster ID

	Command: The Command ID

	payload (optional): Zero or more arguments required by the Command. Each argument should be passed as an ASCII hex string in little endian format of the appropriate width for the data type. For example, to pass the value 5 for a UINT24 (24-bit unsigned integer) you would pass “050000”.

	Signature:

	zigbee.command(Integer Cluster, Integer Command, String payload, additionalParams=[:])

	Parameters:

	
	Cluster: The Cluster ID

	Command: The Command ID

	payload: An ASCII hex string in little endian format of the appropriate width for the data type. For example, to pass the value 5 for a UINT24 (24-bit unsigned integer) you would pass “050000”. You can also use the DataType.pack() method described below. If you have multiple arguments, they can just be appended in order.

	additionalParams: An optional map to specify additional parameters. See additionalParams for supported attributes.

	Examples:

	
	
	Send Move To Level Command to Level Control Cluster.

	zigbee.command(0x0008, 0x04, "FE", "0500")

Where Level equals 0xFE (full on) and Transition Time equals 0x0005 (5 seconds)

	
	Send Off Command to On/Off Cluster.

	zigbee.command(0x0006, 0x00)

zigbee.readAttribute()

Read the current attribute value of the specified Cluster.

	Signature:

	zigbee.readAttribute(Integer Cluster, Integer attributeId, Map additionalParams=[:])

	Parameters:

	
	Cluster: The Cluster ID to read from

	attributeId: The ID of the attribute to read

	additionalParams: An optional map to specify additional parameters. See additionalParams for supported attributes.

	Example:

	
	
	Read CurrentLevel attribute of the Level Control Cluster.

	zigbee.readAttribute(0x0008, 0x0000)

	
	Read a manufacturer specific attribute on the SmartThings multi-sensor

	zigbee.readAttribute(0xFC02, 0x0010, [mfgCode: 0x110A])

zigbee.writeAttribute()

Write the attribute value of the specified Cluster.

	Signature:

	zigbee.writeAttribute(Integer Cluster, Integer attributeId, Integer dataType, value, Map additionalParams=[:])

	Parameters:

	
	Cluster: The Cluster ID to write

	attributeId: The attribute ID to write

	dataType: The data type ID of the attribute as specified in the ZigBee Cluster library [http://www.zigbee.org/download/standards-zigbee-cluster-library/]

	value: The Integer value to write for data types of boolean, unsigned int, signed int, general data, and enumerations. Other data types are not currently supported but will be added in the future. Let us know if you need a data type that is not currently supported.

	additionalParams: An optional map to specify additional parameters. See additionalParams for supported attributes.

	Example:

	
	
	Write the value 0x12AB to a unsigned 16-bit integer attribute

	zigbee.writeAttribute(0x0008, 0x0010, 0x21, 0x12AB)

	
	Write a manufacturer specific attribute on the SmartThings multi-sensor

	zigbee.writeAttribute(0xFC02, 0x0000, 0x20, 1, [mfgCode: 0x110A])

zigbee.configureReporting()

Configure a ZigBee device’s reporting properties. Refer to the Configure Reporting Command in the ZigBee Cluster Library [http://www.zigbee.org/download/standards-zigbee-cluster-library/] for more information.

Signature:

zigbee.configureReporting(Integer Cluster,
 Integer attributeId, Integer dataType,
 Integer minReportTime, Integer MaxReportTime,
 [Integer reportableChange],
 Map additionalParams=[:])

	Parameters:

	
	Cluster: The Cluster ID of the requested report

	attributeId: The attribute ID for the requested report

	dataType: The two byte ZigBee type value for the requested report (see DataType)

	minReportTime: Minimum number of seconds between reports

	maxReportTime: Maximum number of seconds between reports

	reportableChange (optional): Amount of change needed to trigger a report. Required for analog data types. Discrete data types should always provide null for this value.

	additionalParams: An optional map to specify additional parameters. See additionalParams for supported attributes.

	Examples:

	
	
	Discrete data type

	zigbee.configureReporting(0x0006, 0x0000, 0x10, 0, 600, null)

	
	Analog data type

	zigbee.configureReporting(0x0008, 0x0000, 0x20, 1, 3600, 0x01)

	
	Configure a manufacturer specific report on the SmartThings multi-sensor

	zigbee.configureReporting(0xFC02, 0x0010, 0x18, 10, 3600, 0x01, [mfgCode: 0x110A])

ZigBee Capabilities

The following table outlines the Commands necessary to both configure and get updated information from ZigBee devices that support the capabilities outlined below.

Note

All methods outlined in the table need the zigbee. prefix

	Capability
	Configure
	Refresh
	Notes

	Battery
	configureReporting(0x0001, 0x0020, 0x20, 30, 21600, 0x01)
	
	

	Color Temp
	configureReporting(0x0300, 0x0007, 0x21, 1, 3600, 0x10)
	readAttribute(0x0300, 0x0007)
	For devices that support the Color Control Cluster (0x0300)

	Level
	configureReporting(0x0008, 0x0000, 0x20, 1, 3600, 0x01)
	readAttribute(0x0008, 0x0000)
	

	Power
	configureReporting(0x0702, 0x0400, 0x2A, 1, 600, 0x05)
	readAttribute(0x0704, 0x0400)
	For devices that support the Metering Cluster (0x0704)

	Power
	configureReporting(0x0B04, 0x050B, 0x29, 1, 600, 0x0005)
	readAttribute(0x0B04, 0x050B)
	For devices that support the Electrical Measurement Cluster (0x0B04)

	Switch
	configureReporting(0x0006, 0x0000, 0x10, 0, 600, null)
	readAttribute(0x0006, 0x0000)
	

	Temperature
	configureReporting(0x0402, 0x0000, 0x29, 30, 3600, 0x0064)
	
	

Examples:

	Get the latest level value from a dimmer switch. From the table above, we find the level capability and look at the Refresh column to find the correct Command to execute.

readAttribute(0x0008, 0x0000)

	Configure the level capability for a dimmer type switch. The configure reporting Command from the table above for level configures the device for a min reporting interval of 5 seconds, a reporting interval of 1 hour (3600 s) if there has been no activity, and a min level change of 01.

configureReporting(0x0008, 0x0000, 0x20, 1, 3600, 0x01)

The following utility methods are available as capability based Commands.

zigbee.on()

Sends the on Command, 0x01, to the on/off Cluster, 0x0006

Signature:

zigbee.on()

zigbee.off()

Sends the off Command, 0x00, to the onoff Cluster, 0x0006

Signature:

zigbee.off()

zigbee.setLevel()

Sends the level Command, 0x04, to the level control Cluster, 0x0008 with the passed in rate.

Signature:

zigbee.setLevel(Integer level, Integer rate)

	Parameters:

	
	level: A value between 0-100 inclusive.

	rate: Time in tenths of a second. E.g. rate = 100 //max value translates to 10 seconds.

zigbee.setColorTemperature()

Sets the color to the specified temperature value in K.

Signature:

zigbee.setColorTemperature(Integer value)

	Parameters:

	
	value: The temperature value to set the color to in K. Usually greater than 2700

ZigBee helper commands

zigbee.parseDescriptionAsMap()

Parses a device description into a map that contains data and capabilities.

Signature:

zigbee.parseDescriptionAsMap(String description)

	Parameters:

	
	description: The description string from the device

zigbee.convertToHexString()

Convert the given value to a hex string of given width

Signature:

zigbee.convertToHexString(Integer value, Integer width)

	Parameters:

	
	value: Integer value to be converted

	width: the minimum width of the hex string. Default value is 2

Examples:

zigbee.convertToHexString(10, 2) //result: 0A
zigbee.convertToHexString(10, 4) //result: 000A

zigbee.convertHexToInt()

Convert the given hex value to an Integer

Signature:

zigbee.convertHexToInt(String value)

	Parameters:

	
	value: The hex value to be converted to an Integer

Example:

zigbee.convertHexToInt("0001") //result: 1
zigbee.convertHexToInt("000F") //result: 15
def myInt = zigbee.convertHexToInt("12AB") // result = 4779. The result of calling Integer.parseInt()
 assert myInt == 4779 //true
 assert myInt == 0x12AB //also true

zigbee.hexNotEqual()

Returns true if the compared hex values are not equal.

Signature:

zigbee.hexNotEqual(String hex1, String hex2)

	Parameters:

	
	hex1: Hex value to compare

	hex2: Hex value to compare against first value

zigbee.parseZoneStatus()

Returns a ZoneStatus object (see below) withe the parsed value form the message description. The description
should be of the form “zone status {number}” where {number} is a hex number.

Signature:

zigbee.parseZoneStatus(String description)

	Parameters:

	
	description: A zone status message description.

Additional ZigBee classes

There are some additional classes that are provided to make interacting with and handling Zigbee messages easier.

ZoneStatus

The purpose of the ZoneStatus class is to handle the ZoneStatus attribute in the IAS Zone cluster. It has a
single constructor that takes an int which is the ZoneStatus attribute value.

Constructor:

ZoneStatus(int zonestatus)

Example:

ZoneStatus zs = ZoneStatus(0x41) // Trouble & Alarm1

Accessing a Property/attribute

Once you have created the ZoneStatus object you can query the individual bits in a number of ways. First
you can get the value of each individual bit (1 or 0) by accessing the property with the same name. The
properties are as follows:

	Bit Number
	Property Name
	Values

	0
	alarm1
	
1 - opened or alarmed

0 - closed or not alarmed

	1
	alarm2
	
1 - opened or alarmed

0 - closed or not alarmed

	2
	tamper
	
1 - tampered

0 - not tampered

	3
	battery
	
1 - low battery

0 - battery OK

	4
	supervisionReports
	
1 - reports

0 - does not report

	5
	restoreReports
	
1 - reports restore

0 - does not report restore

	6
	trouble
	
1 - trouble/failure

0 - OK

	7
	ac
	
1 - ac/mains fault

0 - ac/mains OK

	8
	test
	
1 - sensor is in test mode

0 - sensor is in operation mode

	9
	batteryDefect
	
1 - sensor detects a defective battery

0 - sensor battery is functioning normally

See the ZigBee Home Automation (HA) [http://www.zigbee.org/zigbee-for-developers/applicationstandards/zigbeehomeautomation/]
specification and the ZigBee Cluster Library (ZCL) [http://www.zigbee.org/download/standards-zigbee-cluster-library/]
specification for more information.

Example:

ZoneStatus zs = ZoneStatus(0x41) // Trouble & Alarm1

zs.alarm1 // 1
zs.alarm2 // 0
zs.trouble // 1

The ZoneStatus object also exposes a number of query methods for getting a true/false for each attribute
value. They are as follows:

	Property Name
	Query method

	alarm1
	isAlarm1Set()

	alarm2
	isAlarm2Set()

	tamper
	isTamperSet()

	battery
	isBatterySet()

	supervisionReports
	isSupervisionReportsSet()

	restoreReports
	isRestoreReportsSet()

	trouble
	isTroubleSet()

	ac
	isAcSet()

	test
	isTestSet()

	batteryDefect
	isBatteryDefectSet()

Example of DTH parseIasMessage for a motion sensor:

private Map parseIasMessage(String description) {
 ZoneStatus zs = zigbee.parseZoneStatus(description)
 Map resultMap = [:]

 resultMap.name = 'motion'
 resultMap.value = zs.isAlarm1Set() ? 'active' : 'inactive'

 return resultMap
}

DataType

The DataType class contains information and some utility methods for ZCL data types.

DataType constants

The list of types and their DataType constant name are as follows:

	ZCL Data Type
	DataType constant name
	ZCL numeric value

	No Data
	NO_DATA
	0x00

	8-bit data
	DATA8
	0x08

	16-bit data
	DATA16
	0x09

	24-bit data
	DATA24
	0x0a

	32-bit data
	DATA32
	0x0b

	40-bit data
	DATA40
	0x0c

	48-bit data
	DATA48
	0x0d

	56-bit data
	DATA56
	0x0e

	64-bit data
	DATA64
	0x0f

	Boolean
	BOOLEAN
	0x10

	8-bit bitmap
	BITMAP8
	0x18

	16-bit bitmap
	BITMAP16
	0x19

	24-bit bitmap
	BITMAP24
	0x1a

	32-bit bitmap
	BITMAP32
	0x1b

	40-bit bitmap
	BITMAP40
	0x1c

	48-bit bitmap
	BITMAP48
	0x1d

	56-bit bitmap
	BITMAP56
	0x1e

	64-bit bitmap
	BITMAP64
	0x1f

	Unsigned 8-bit int
	UINT8
	0x20

	Unsigned 16-bit int
	UINT16
	0x21

	Unsigned 24-bit int
	UINT24
	0x22

	Unsigned 32-bit int
	UINT32
	0x23

	Unsigned 40-bit int
	UINT40
	0x24

	Unsigned 48-bit int
	UINT48
	0x25

	Unsigned 56-bit int
	UINT56
	0x26

	Unsigned 64-bit int
	UINT64
	0x27

	Signed 8-bit int
	INT8
	0x28

	Signed 16-bit int
	INT16
	0x29

	Signed 24-bit int
	INT24
	0x2a

	Signed 32-bit int
	INT32
	0x2b

	Signed 40-bit int
	INT40
	0x2c

	Signed 48-bit int
	INT48
	0x2d

	Signed 56-bit int
	INT56
	0x2e

	Signed 64-bit int
	INT64
	0x2f

	8-bit enumeration
	ENUM8
	0x30

	16-bit enumeration
	ENUM16
	0x31

	Semi-precision
	FLOAT2
	0x38

	Single precision
	FLOAT4
	0x39

	Double precision
	FLOAT8
	0x3a

	Octet String
	STRING_OCTET
	0x41

	Character String
	STRING_CHAR
	0x42

	Long Octet String
	STRING_LONG_OCTET
	0x43

	Long Character String
	STRING_LONG_CHAR
	0x44

	Array
	ARRAY
	0x48

	Structure
	STRUCTURE
	0x4c

	Set
	SET
	0x50

	Bag
	BAG
	0x51

	Time of day
	TIME_OF_DAY
	0xe0

	Date
	DATE
	0xe1

	UTCTime
	UTCTIME
	0xe2

	Cluster ID
	CLUSTER_ID
	0xe8

	Attribute ID
	ATTRIBUTE_ID
	0xe9

	BACnet OID
	BACNET_OID
	0xea

	IEEE address
	IEEE_ADDRESS
	0xf0

	128-bit security key
	SECKEY128
	0xf1

	Unknown
	UNKNOWN
	0xff

See the ZigBee Cluster Library (ZCL) [http://www.zigbee.org/download/standards-zigbee-cluster-library/] specification for more information on the different data types and how they are used.

DataType.getLength()

This method is used to get the length of a variable of the given type. This length is in number of bytes. For variable length or unknown types it will return null

Signature:

DataType.isVariableLength(type)

	Parameters:

	
	type: The type to check. This should be one of the DataType Constants defined above.

Example

DataType.getLength(DataType.UINT8) // returns 1
DataType.getLength(DataType.CLUSTER_ID) // returns 2
DataType.getLength(DataType.STRING_CHAR) // returns null

DataType.isVariableLength()

This method is used to test if a given type is variable length or not.

Signature:

DataType.isVariableLength(type)

	Parameters:

	
	type: The type to check. This should be one of the DataType Constants defined above.

Example

DataType.isVariableLength(DataType.UINT8) // returns false
DataType.isVariableLength(DataType.STRING_CHAR) // returns true

DataType.isDiscrete()

This method is used to test if a given type is discrete.

Signature:

DataType.isDiscrete(type)

	Parameters:

	
	type: The type to check. This should be one of the DataType Constants defined above.

Example

DataType.isDiscrete(DataType.UINT8) // returns true
DataType.isDiscrete(DataType.FLOAT2) // returns false

DataType.pack()

This method is used to pack data of a given type into hex string form. Currently not all DataTypes are supported by this method. All discrete data types are supported, but only STRING_CHAR is supported for variable length data types. If the type passed in is null, an empty string, or DataType.UNKNOWN the value of data will be returned unmodified.

Signature:

DataType.pack(data, type, littleEndian=false)

	Parameters:

	
	data: The data to pack, the type of this should be appropriate for the type argument

	type: The type of the data being packed. This should be one of the DataType Constants defined above.

	littleEndian: If true it will pack it with the least significant bits first.

Example

DataType.pack(0x01, DataType.UINT8) // returns "01"
DataType.pack(0x01, DataType.UINT64) // returns "0000000000000001"
DataType.pack(0x01, DataType.UINT32, true) // returns "01000000"

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	API Documentation

Z-Wave Reference

You can find the reference documentation for the SmartThings Z-Wave library here [https://graph.api.smartthings.com/ide/doc/zwave-utils.html] (requires login).

The Z-Wave public specification can be found here [http://z-wave.sigmadesigns.com/design-z-wave/z-wave-public-specification].

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

Contributing to the Docs

	Writing Style Guide

	SmartThings Docs Contributing Guide [https://github.com/SmartThingsCommunity/Documentation/blob/master/README.md]

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SmartThings Classic Developer Documentation

 	Contributing to the Docs

Writing Style Guide

When you write for SmartThings platform, your audience should find your documentation readable, interesting and informative.
To accomplish these goals, we encourage you to stick to our recommended writing style.

Titles and headings

Wherever possible, write purpose-driven documentation.
This means writing document titles and section headings that state the benefit explicitly.
Such titles or headings can be written as either calls to actions or tasks that can be done.
This approach makes it easier for the reader to learn how to get her job done.

Examples:

	Preferred: Writing Your First SmartApp (document title)

	Avoid: SmartApp Fundamentals (document title isn’t purpose-driven)

	Preferred: Create your own RESTful API (section heading)

	Avoid: Parent-child SmartApps (document title isn’t purpose-driven)

	Preferred: Combine Multiple Automations (document title)

Note

	A document title is the main title of a document page. A document has only one document title. Example: “Writing Style Guide” at the beginning of this page. The document title also appears at the top level in the navigation bar, so it must be short, preferably four to five words or less.

	A section heading is the title for an individual section within a document page. Example: “Titles and headings” at the top of this section. A document page can have multiple sections, and hence multiple section headings.

Avoid framing as questions

Avoid using questions in document titles and section headings.

Example:

	Avoid: How does the switch turn on?

	Preferred: How the switch turns on (section heading)

Avoid italics (emphasis)

Avoid using emphasis (italics) in document titles or section headings.
See Page structure.

Document titles

Use title case, as in “Document Titles” and not “Document titles.”

Example:

	The title of this document, “Writing Style Guide.”

What not to capitalize in title

	as (SmartApp as a Wakeup Device)

	to (How to Subscribe to Events)

	on (Trigger on Time)

	at (Alarm at a Specific Time)

	of, the (No More Rules of the Game)

	in (Your First SmartApp in Five Minutes)

	the (Motion at the Garage Door)

	a (Three Critical Triggers in a Day)

	for (Temperature Control for Basement)

What to capitalize in title

	is (Device Health Is Reported Weekly)

	was (Motion Was Detected)

	then (Set a Sunrise Automation, Then Sit Back)

	up (Biff Stood Up to Trigger the Alarm)

	that (The Battery That Lasts Forever)

	with (The Day Ends With Cheers All Around)

Section headings

Use sentence case, as in “Subscription management,” and not the title case, as in “Subscription Management.”

Note

	A sentence case is where you only capitalize the first letter of the sentence.

	A title case is where you capitalize first letter of every word of the sentence.

UI elements

Always use italics emphasis when quoting a UI element label such as a button label or an icon label.

Example:

Go to the Simulator menu, and click on Browse SmartApp Templates in the dropdown list.

Here it is in reStructuredText:

Go to the *Simulator* menu, and click on *Browse SmartApp Templates* in the dropdown list.

List elements

Always start a list segment with a heading and a colon.

Example:

To publish a SmartApp or a Device Handler for yourself, follow these steps:

	Make sure that you are in the proper Location.

	From your SmartApp or Device Handler view, click on Publish button. Then click the For Me option.

If it is a complete sentence, always end the list element, numbered or unordered, with a period.

Note

This applies also for a list element that has multiple sentences.

Example:

To publish a SmartApp or a Device Handler for yourself, follow these steps:

	Make sure that you are in the proper Location.

	From your SmartApp or Device Handler view, click on Publish button. Then click the For Me option.

If it is an incomplete sentence, do not end the list element with a period.

Example:

When you finish this tutorial, you will know:

	Key components of a SmartApp

	Features of IDE

	Controlling devices

Always write a list sentence in the sentence case.

Example:

	(YES) Make sure that you are in the proper Location.

	(NO) Make Sure That You Are In the Proper Location.

Avoid more than two levels of lists.

Example:

(YES) SmartThings platform supports various Hub scenarios such as:

	
	There may not be a hub at all

	
	There may be a third-party Hub present

	An all-cloud environment with no Hub whatsoever

	SmartApps may run across both cloud and Hub connected devices

	There may be multiple Hubs

(NO) SmartThings platform supports various Hub scenarios such as:

	
	There may not be a hub at all

	
	
	There may be a third-party Hub present

	
	Highlight supported third-party Hubs

	An all-cloud environment with no Hub whatsoever

	SmartApps may run across both cloud and Hub connected devices

	There may be multiple Hubs

Page structure

Each document should be named with a .rst file extension.
Each page is composed of a title, followed by some short text outlining the purpose of the document.

Sections should be delimited by ----, to insert a line separator.

The structure should look like this:

==========
Page Title
==========

Some introductory material.

Section 1

Section text.

Section 2

Section text.

Subsection 2.1
^^^^^^^^^^^^^^

Subsection text.

Page title

Page titles appear at the top of the document, and have a row of === characters above and below.
Page titles should have title capitalization:

====================
This is a Page Title
====================

Headings

Top-level section headings are followed by a row of --- characters.
They should have sentence capitalization:

This is a section

Subsection headings are followed by a row of ^^ characters.
They should have sentence capitalization.

This is a section

This is a subsection
^^^^^^^^^^^^^^^^^^^^

Note

Not all documents currently follow the guideline of using ^^^ for subsections.
If you are editing a document and see a different heading syntax, feel free to change it.

reStructuredText syntax

Links

Links to external targets look like this:

`SmartThings <http://smartthings.com>`_

Links to sections within the document can be included like this:

Section name

See `Other section`_ for more information.

Other section

The :ref: target allows us to link to other documents or document sections.
It requires placing a label above a section, title, or image:

.. _section_label:

Some section

Another document can then link to Some section like this:

See :ref:`section_label` for more information.

Lists

Ordered lists appear like this:

#. Item 1
#. Item 2
#. Item 3

Which results in:

	Item 1

	Item 2

	Item 3

Unordered lists use a - or * character:

- First bullet
- Second bullet

Inline markup

	Surround text with * for italics text.

	Surround text with ** for strong text.

	Surround text with `` for code samples (someMethod()).

When referring to method calls in the documentation, place () after the method name: methodName().
This helps distinguish methods from other code literals.

Code examples

Code blocks can be included using the code-block directive.
Use the appropriate language for the code sample.
Code blocks may appear with line numbers (use :linenos:) and may emphasize certain lines:

.. code-block:: groovy
 :linenos:
 :emphasize-lines: 3

 def someMethod() {
 def myVar = 14
 doSomethingAmazing(myVar)
 }

The above code block renders as:

	1
2
3
4

	def someMethod() {
 def myVar = 14
 doSomethingAmazing(myVar)
}

Images

Images are found in the /img directory of the documentation, and can be included like this (you may need to alter the path depending on the location of the document):

.. image:: ../img/getting-started/building-img.png

The above will render as:

[image: ../_images/building-img.png]

Admonitions

Admonitions are ways of calling out certain bodies of text:

.. note::

 A note provides more information about the content, in a side-bar like format.

.. tip::

 A tip is some extra information that while not strictly necessary, may lead to the reader learning a new way of doing something.

.. warning::

 A warning is just that - a warning of something that the reader should be aware of.

.. error::

 An error is for error conditions.

The above results in:

Note

A note provides more information about the content, in a side-bar like format.

Tip

A tip is some extra information that while not strictly necessary, may lead to the reader learning a new way of doing something.

Warning

A warning is just that - a warning of something that the reader should be aware of.

Error

An error is for error conditions.

Tables

Simple tables in RST look like this:

========= =========
Heading 1 Heading 2
========= =========
1.1 1.2
2.1 2.2
========= =========

The above renders as:

	Heading 1
	Heading 2

	1.1
	1.2

	2.1
	2.2

Grid tables can be written like this:

+------------+------------+-----------+
| Header 1 | Header 2 | Header 3 |
+============+============+===========+
| body row 1 | column 2 | column 3 |
+------------+------------+-----------+
| body row 2 | Cells may span columns.|
+------------+------------+-----------+
| body row 3 | Cells may | - Cells |
+------------+ span rows. | - contain |
| body row 4 | | - blocks. |
+------------+------------+-----------+

Which results in:

	Header 1
	Header 2
	Header 3

	body row 1
	column 2
	column 3

	body row 2
	Cells may span columns.

	body row 3
	Cells may
span rows.
	
	Cells

	contain

	blocks.

	body row 4

API reference documents

The API reference documentation contains all public API method definitions.
API reference documentation is located in the ref-docs/ directory.

Organization

API reference documents include an introduction and a listing of all APIs in alphabetical order.

Note

The SmartApp and Device Handler API reference documentation lists all required callback methods to be listed first.
The remaining APIs are then listed in alphabetical order.

Introduction

Each API reference document contains a brief overview of the API, along with a quick example of how to reference the object (if applicable).

Consider the example of the Device API reference documentation:

======
Device
======

The Device object represents a physical device in a SmartApp.
When a user installs a SmartApp, they typically will select the devices to be used by the SmartApp.
SmartApps can then interact with these Device objects to get device information, or send commands to the Device.

Device objects cannot be instantiated, but are created by the SmartThings platform and available via the name given in the preferences definition of a SmartApp:

.. code-block:: groovy

 preferences {
 section() {
 // prompt user to select a device that supports the switch capability.
 // assign the chosen device to a variable named "theswitch"
 input "theswitch", "capability.switch"
 }
 }
 ...
 // access Device instance using the input name:
 def deviceDisplayName = theswitch.displayName
 ...

Method documentation

Method documentation adheres to these rules:

	The method name is a first-level heading followed by an open and close parentheses (to denote it is a method, not a property).

	A brief description of the method follows the first-level heading.

	The method’s signature, parameters, return type, any declared exceptions, and a brief example follows.

The example below illustrates this, and can be used as a template when writing API documentation.
Each component title (Signature, Parameters, etc.) of the API documentation is bolded, and the content follows on the next line, indented by one tab (or four spaces).
Details about each component follows.

rgbToHex()

Converts an RGB value to a hexadecimal color string.

Signature:
 ``static String rgbToHex(red, green, blue) throws IllegalArgumentException``

Parameters:
 `Integer`_ red - The red value, between 0 and 255

 `Integer`_ green - The green value, between 0 and 255

 `Integer`_ blue - The blue value, between 0 and 255

Returns:
 `String`_ - The hexadecimal representation of the RGB value

Throws:
 `IllegalArgumentException`_ - An ``IllegalArgumentException`` is thrown if any of the RGB values are not within the 0 to 255 range.

Example:

.. code-block:: groovy

 def deepSkyBlueInHex = colorUtil.rgbToHex(0, 191, 255)
 log.debug "RGB 0,191,255 in Hex is $deepSkyBlueInHex"

Signature

The method signature is the same as the method’s source definition, formatted as an inline code block.

Parameters

Method parameters are documented according to the following rules:

	Each parameter is listed, in order, with a link to the return type.

	All external links are defined at the bottom of the document.

	In cases of standard Java return types, a link to the Java 7 JavaDocs for the type is used. If the return type is a SmartThings object, a link to that SmartThings object reference document is used.

	If the method does not accept parameters, the entire parameters block is omitted.

	Optional parameters are placed inside square brackets.

	Parameters that accept a map include a table listing all the supported key/value pairs:

Signature:
 ``List<Event> events([max: N])``

Parameters:
 `Map`_ options *(optional)* - Options for the query. Supported options:

 ======= ========== ===========
 option Type Description
 ======= ========== ===========
 ``max`` `Number`_ The maximum number of Events to return. By default, the maximum is 10.
 ======= ========== ===========

Returns

Method return values are documented according to the following rules:

	The return statement begins with a link to the return type (external or internal), along with a brief description of the value returned.

	In the case of void return types, do not include the “Returns” component.

For example:

Returns:
 `String`_ - The hexadecimal representation of the RGB value

Throws

Methods that throw an exception as part of their contract include a “Throws” component, with a link to the exception type, and when the exception is thrown:

Throws:
 `IllegalArgumentException`_ - An ``IllegalArgumentException`` is thrown if any of the RGB values are not within the 0 to 255 range.

Example

Most methods include an example of their usage.
The example code should include the minimum amount of code to highlight the documented method.

Some simple methods may not require an example–use your judgement.

Miscellaneous tips

	Spell check before committing.

	Show, don’t tell - include example code.

	Place each sentence on a new line to help with review and readability.

	Not all documents currently follow these guidelines. See the Contributing [https://github.com/SmartThingsCommunity/Documentation/blob/master/README.md] guide to learn how you can contribute, and help address that. :)

SmartThings glossary

	Recommended style
	Not recommended

	Cloud-connected
	cloud-connected, cloud connected, Cloud connected

	Composite Device
	CompositeDevice, Composite device, composite device

	Contact Book
	contact book

	Contacts
	contacts

	Device Handler
	Device handler, DeviceHandler, Device Type Handler, device handler, devicehandler

	editor
	Editor

	Event
	event

	event handler
	Event Handler, Event handler

	Hub
	hub

	“Hub version 2” first time, then “Hub v2”
	Hub v 2, Hub v.2, Hub V2.

	“Internet of Things” first time, then “IoT”
	IOT

	internet
	Internet

	LAN-connected
	lan-connected, lan connected, LAN connected

	Location
	location

	Marketplace
	Market place, Market Place, MarketPlace

	Mode
	mode

	My Home
	MyHome, myHome, My home

	Routines
	routines, Hello Home actions

	Samsung SmartThings Hub
	SamsungSmartThings Hub, Samsung SmartThings hub

	Simulator
	simulator

	smart home
	SmartHome, Smart Home, smarthome

	Smart Home Monitor
	SMH, smarthome monitor, SmartHome monitor

	SmartApp
	Smart app, Smart App, Smartapp, smartapp, smart app

	SmartThings
	Smart Things, Smartthings, Smart things

	Welcome Code
	Welcome code, WelcomeCode, Claim code, ClaimCode

	Z-Wave
	ZWave, Z-wave

	ZigBee
	Zigbee, Zig Bee

Further reading

	Sphinx documentation [http://sphinx-doc.org/contents.html]

	reStructuredText Reference [http://docutils.sourceforge.net/docs/user/rst/quickref.html]

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	
 previous |

 	SmartThings Classic Developer Documentation

Samsung SmartThings Hub FAQ

A collection of frequently asked questions about the new Samsung SmartThings Hub, and updated SmartThings mobile applications, for SmartThings developers.

What can developers do with the new Samsung SmartThings Hub and updated mobile apps?

Developers can use the new Contact Book feature to easily send notifications to a user’s selected contacts, without requesting the user to enter in a phone number for each SmartApp. You can learn more about it in the Sending Notifications documentation.

The new iOS and Android mobile apps also make use of a new Device Tiles layout, that uses a 6 column grid. There is also a new tile available to use for devices - multi-attribute tiles allow a single tile to display information about more than one attribute of a device. You can learn more in the Tiles documentation.

With the new Hub and mobile experience, we’ve also laid the groundwork for exciting new developer features in the near future. Our developers are what makes SmartThings great, and we’re excited to build together!

Do I need to update my SmartApps or Device Handlers?

Most custom SmartApps and Device Types will continue to work without the need for code changes. There are some features that you may wish to take advantage of, however, like the new multi-attribute device tile. SmartApps that send notifications should be updated to use the new Contact Book feature, but they will continue to function as they did before without updating your code.

Despite our best intentions and precautions, it is possible that your custom SmartApp or Device Type may not work as it did before. If this is the case, please report the issue to support at support@smartthings.com (include example code, relevant log messages, and screenshots if applicable). The SmartThings Community Forums [http://community.smartthings.com] are also a good place for developers to help one another. The SmartThings Community Team will be monitoring the forums to identify and help with issues, and incorporating feedback into our documentation.

Hello Home Actions now appear as “Routines” in the mobile application. Do I need to update any of my SmartApps to get or execute Routines?

No. SmartApps that work with Routines still use the methods discussed in the Routines documentation.

At some point in the future, we may create new methods that reflect the terminology change, but we will not do so without advanced notification.

How does local SmartApp or Device Type processing work?

Certain automations can now execute locally on the Samsung SmartThings Hub.
The SmartThings internal team specifies which automations are eligible for local execution. This process requires evaluation and testing of the SmartApp and devices, as well as ensuring that the necessary code artifacts are delivered to the Hub.

Any locally executing SmartApps or Device Handlers still send events to the SmartThings cloud. This is necessary so that the mobile application can accurately reflect the current state of the devices, as well as perform any cloud-required services (e.g., sending notifications). In the event of an internet outage, the events will be queued and sent to the SmartThings cloud when internet is restored.

It is not possible for developers to specify that certain Device Types or SmartApps execute in any particular location (cloud or on the Hub). SmartApps or Device Types that have not been reviewed, tested, and delivered to the Hub by the SmartThings team will execute in the SmartThings cloud.

What happens when the internet to the Hub goes out?

Provided there is still power to the Hub (wired or battery), any SmartApps that are able to execute locally will still run without an internet connection. The mobile app will report the Hub is offline, and because there are no events being sent to the SmartThings cloud, notifications will not work.

The radios in the Hub will still function without internet. Events to the cloud will be queued, and sent when the internet is restored.

The mobile app has some new video-related features. How can developers utilize those capabilities?

The APIs for working with the new video features are not yet available, but we are excited to bring them to you soon!

Does the Hub have UDP support?

UDP access for developers is not currently supported, but may come in future updates.

Does the Hub support local file storage?

The Samsung SmartThings Hub stores some information about SmartApps, Device Types, and Locations locally, but this is not publicly accessible.

Can I SSH into the Hub?

No, you cannot SSH into the Samsung SmartThings Hub.

What about Bluetooth?

The Samsung SmartThings Hub ships with BLE to support future expandability, but will be inactive at product launch.

What can I do with the USB ports?

Adding USB ports to the Samsung SmartThings Hub allows for future expandability, but will have no functionality at product launch.

Does the Hub support IPv6?

No. This may come in future updates.

Does the Hub support WebSocket or Telnet for developers?

The Samsung SmartThings Hub does not support WebSocket, Telnet, or raw socket access for developers.

Does the Hub support getting local device status, or controlling local devices, without going through the SmartThings cloud? For example, can I just access the Hub to get device status or control devices?

Currently, no. We know this is a requested feature, and have identified it for future roadmap consideration.

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 Navigation

 	
 index

 	SmartThings Classic Developer Documentation

Index

 Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

 _images/github-ide-buttons.png
4 Commit Changes ¥ Update from Repo /# Settings

_images/sim_fridge_detail.png
00000 ATRT T 11:10 AM @ 710 87% [+

{ My Home raj-simulated-fridge o)

Right Now Recently SmartApps

Door <_| |_, |-><-|

Control
OPEN CLOSED

RFRG 45° FRZR 6°

Fridge /\ \ V4 Freezer /\ \ V4

Set Set
Fridge: /\ A\ V4 Freezer: /\ A\ V4

37° 8°

5 @& o =
(] uJ
Dashboard My Home Automation Marketplace More

_images/container-hierarchy.png
The Family

Family Living
—

I R
R 0. JEN -)

_images/location.png
Authorize IF to access your SmartThings?

IFTTT (nttps://iftt.com) will be able to...
« View and receive information and events from any of your connected Things.
« Trigger any of your connected Things to take actions on your behal {ike unlocking your door).
o From

P Deny
==

_images/cloud_overview.png
Cloud interacts
with device

Service Manager
Authenticates with the 3rd
party device cloud parent.play()
Translates commands from == | Handies commands from the
device handler into messages SmartApp and delegates to
0 send to cloud the Service Manager.
play() {

sendHitpMessageForPlay() play(){
) parent play()
)

SmartApp
device.play() | App for controling

——=| cloud device

Device Handler

device play()
device status()
etc

e e m o=l

_images/log_example1.png
3:31:01 PM: BELE switch from switches[2] was provided with someEventHandler...creating subscription
3:31:01 PM: BELE) switch from switches[0] was provided with someEventHandler...creating subscription
3:31:01 PM: BELE switch from switches[1] was provided with someEventHandler...creating subscription
3:31:00 PM: test is attempting to unsubscribe from all events

3:31:00 PM: Updated with settings: [switches:[switches[1], switches[0], switches[2]]]

_images/lighting-tile-full.png
0000 ATRT & 9:38 AM 7 % 100% 4

< Back Tile Multiattribute Lighting o)

Right Now

45%

Power level: 3.8W o- —. ‘

_images/atomic-state-execution-lifecycle.png
Key
- SmartThings Platform
- SmartApp Execution

Yes

_images/ide-devices.png
Preferences.

Select motion sensor
Which?
themotion

Select a switch to turn on

Which?
theswitch

h

v

v

_images/virtual-dimmer-on.png
10:33 AM

My Home
Things Rooms Family
€ samsung Camera UNRALABLE

B samsung Speaker

S v-multisensor MoTION
B virtual-dimmer-switch on

virtual-momentary-button-t. PUSH
B virtual-s1

@ virtual-smartsense-camera

+ AddaThing

@ B © %

_images/remove-custom-basic.png
Are you sure?

CANCEL CUSTOM BUTTON TEXT

_images/oauth-login.png
L

Already have SmartThings? Sign in here: New to SmartThings? Learn More or Get SmartThings today.

Email ‘ | ’

Password: 11

Login

Forgot password?

Copyright © 2016 Physical Graph Corporation. All rights reserved. | Terms of Use | Privacy Policy Benefits | Shop | Blog | Developers | Support

_images/virtual-device-ios.png
Things 00ms ami

® Samsung Camera UNAVAILABLE

B samsung Speaker [o

= v-multisensor MOTION

virtual-dimmer-switch

virtual-momentary-button-t... | PUsH

B virtual-s1 oFF
® virtual-smartsense-camera

+ AddaThing

_images/publish.png
My First SmartApp Save

IDE Settings App Settings

[x*
* My First SmartApp

Copyright 2015 DaveAndJim

* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file .
* in compliance with the License. You may obtain a copy of the License at:

0 N o U W N
*

_images/generic-tile.png
ON

77

_images/preferences.png
Authorize IF to access your SmartThings?

IFTTT (nttps://iftt.com) will be able to...
« View and receive information and events from any of your connected Things.
« Trigger any of your connected Things to take actions on your behal {ike unlocking your door).

« From:
T
o | Home G

« Allow IFTTT to control these things...
© Which Switches?
OLight
© Which Motion Sensors?
O SmartSense Motion
© Which Gontact Sensors?
OFront door
© Which Presence Sensors?
OPhilip's iPhone
© Which Temperature Sensors?
O Front door
© Which Vibration Sensors?
OFront door
Which Water Sensors?
Which Light Sensors?
Which Relative Humidity Sensors?
Which Sirens?
Which Locks?

00000

_images/ide-simulator-actuated.png
Simulator

_images/github-setup-step-2.png
Step 2
Fork the SmartThingsCommunity/SmartThingsPublic GitHub Repository

Click the above link and then click Fork on the

GitHub repository page to fork your own copy of G5 Watch ~ 1 % Star 0 i Fork 2
the repository. After you've done that and verified

that the forked repository has been created, return

to this page and click Next.

You be able to commit changes made in the IDE <> Code
into this repository and update SmartApps and lases & 1 contributor

device types in the IDE from changes merged into @ lssues o
I

this repository from other sources.

il Pull Requests 0

Wiki
latest commit efe8cbdc46 @-
de. 16 hours ago 4~ Pulse
3 and servic... 20 hours ago fuli Graphs

Cancel

_images/zigbee-form.png
FromForm FromGode From Template From ZigBee Device Form

ZigBee Application Profi

ZigBee Device:

ZigBee Manufacturer Name

ZigBee Model Name

Device Join Name

ZigBee Server Clusters

Supported

ZigBee Client Clusters
Supported (optional)

Device ID (optional)

If you are interested in integrating a new ZigBee bulb or switch with SmartThings you might not need to do any
coding at all. This form allows you to create fully functifinal ZigBee devices just by entering basic information
about the device. Fillng out and submitting the form adds a fingerprint for your device to the appropriate existing
Device Handler. You can then test the pairing and function of your device and submit the update as a Publication
Request.

ZigBee Home Automation (HA)
Home Automation and Light Link supported

ZigBee Switch
‘What option best describes the device that you are integrating with SmartThings

‘The name specified in Basic Cluster (0x0000), Attribute (0x0004)
‘The name specified in Basic Cluster (0x0000), Attribute (0x0005)

‘The marketing name of the device that you want to show when it pars in the SmartThings App
Comma separated clusters values (nClusters)

Comma separated cluster values (outGlusters)

Device ID

_ co

_images/installing-smartapp.png
&T LTE 1:41PM

(® My First SmartApp

Turn on when motion detected

Where?

Tap to set e

Turn on this light

Which?

Tap to set 0

Assign a name
Tap to set

Set for specific mode(s)
Choose Modes 9

Uninstall

_images/centralite-switch-from-template.png
Bose SoundTouch
CT100 Thermostat
CentraLite Thermostat
Cree Bulb

Danalock

Dimmer Switch

Door Shield

Dropcam

_images/ecobee-login.png
ecobee

Log in to Authorize App

Email
Address

Password

—//
—//

=] =)

_images/remove-custom-all-options.png
Custom Confirmation Text!

Custom detail text

CANCEL CUSTOM BUTTON TEXT!

_images/device-handler-publish.png
Save # | IDESetings || Device Type Settings || Simulator €

For Me

_images/multiple-pages-page2.png
&T = 3:50 PM

® Multiple Preferences Pa...

Turn on these lights

Which?
Tap to set

7

46% @)

Next

_images/create-virtual-device.png
Create Device

Name *

Labol

Zigheo 1d

Device Network 14 *

e

2015 Samsung Smart TV

Version

Pusisned

Location

Hub.

Group.

_images/web-services-smartapp-simulator-install.png
API Token: cf440041-2546-

API Endpoii

htps://graph.ap

_images/details-view.png
&T = 9:00 AM T % 97%C 4

< My Home Downstairs Hallway Lamp £}

Right Now

A

My Home

_images/prefs-href-external-embedded.png
oo AT&T = 9:24 AM

& Preferences - href

external

SmartThings

tap to view SmartThings website in mobile
browser

embedded

[l This element has an image
and a long title.

tap to view SmartThings website inside
SmartThings app

href external:false
this specifies external:false

passes parameters
this specifies external:true

Assign a name
Tap to set

Set for specific mode(s)
Choose Modes °

_images/my-locations.png
LIC R OSmartThings x

& = C [https:/graph.api.smartthings.com

My Hubs My Devices

_images/method-2.png
Access Grant

Connect SmartThings Action
GET Endpoints

Go to Login to SmartThings List of Endpoints

API Request
APl Response

Access Grant (Authorization Code)

|
._. Login with Usemame/Password

< . Redirect to App Install Page.

Install & Configure Web Services SmartApp.
Auhentcated page reqiing oauth access token)

_images/editor-buttons.png
Save || Publsh || IDE Settings | App Setings || Smulator <

_images/device-list.png
‘ , ‘Show Navigation m

Mylocations ~ MyHubs ~ MyDevices MySmarApps MyDeviceTypes Logs Documentation

Devices — List | Tile + New Device
Display Name Type Location Hub Group Zigbee Id Device Network Id Status Last Activity
Adam's Mobile Minneapolis People INACTIVE 3 weeks ago
Android Presence Office
Remote Aeon Minneapolis Minneapolis Maker Lab INACTIVE 2 weeks ago

Minimote Office Office Hub
Lounge Aeon Aeon Minneapolis Minneapolis Lounge INACTIVE 3 weeks ago
Multisensor Multisensor Office Office Hub
Andrew's Mobile Minneapolis People INACTIVE 37 minutes
Android Presence Office ago
Beanbag Lamp Dimmer Minneapolis Minneapolis Bean Bag INACTIVE 1 week ago
Switch Office Office Hub Room
Main Suite Dimmer Minneapolis Minneapolis Main Suite AGTIVE 2 hours ago
Switch Office Office Hub
Kegerator Dropcam Minneapolis Lounge INACTIVE 27 minutes.
Dropcam Office ago
Kitchen Flood Everspring Minneapolis Minneapolis | Kitchen INACTIVE 25 minutes.
Detector Flood Office Office Hub ago
Sensor
Hue Bridge HueBridge Minneapolis Minneapolis Main Suite INACTIVE 25 minutes.
Office Office Hub ago
Huelamp2 HueBulb Minneapolis Minneapolis Main Suite ACTIVE 3 hours ago
Office Office Hub
Hue Lamp 1 testHue Minneapolis Minneapolis Main Suite INACTIVE 18 minutes.

Office Office Hub ago

_images/virtual-dimmer-detail.png

_images/github-clone-forked-repo.png
HTTPS clone URL

https://github. con

You can done with HTTPS, SSH,
or Subversion. @

_images/log_example3.png
3:56:12 PM: [T 2 out of 3 switches are on
3:56:12 PM: EEBIEY 2 out of 3 switches are on
3:56:12 PM: [2 out of 3 switches are on
3:56:12 PM: [2 out of 3 switches are on
3:56:12 PM: (39 2 out of 3 switches are on

_images/sim_fridge_thing.png
00000 ATRT = @ 7 9 85%)

Things Rooms Family
9 e Zigbee Plug-In Dimmer OFF
Raj's iPhone PRESENT
. . . .
- raj-simulated-fridge OPEN
. raj-virtual-switch OFF
% Zooz ZEN 20 Power Strip oFF

-|- Add a Thing

= () @ ®

Dashboard My Home Automation Marketplace More

_images/github-add-new-files.png
New (only in GitHub)

@ smartapps/smarttings/button-controler.groovy

) smartapps/smartthings/camera-power-scheduler. groovy
) smartapps/smartthings/cameras-on-when-im-away.groovy
) smartapps/smartthings/carpool-notifir.groovy
) smartapps/smartthings/curing-iron.groovy
@ smartapps/smartthings/darken-behind-me.groovy
() smartapps/smartthings/double-tap. groovy

_images/ide-simulator-unactuated.png
Simulator

—
—_
NO MOTION

active

_images/github-setup-step-1.png
Step 1

Connect your GitHub account to SmartThings

Authorize application

SmartThings (localhost) by @SmartThingsCommunity
would like permission to access your account

Review permissions

E Repositories
Public and private

Authorize application I e}

Glick the above link and then ciick Authorize application on the GitHub page to connect SmartThings to your GitHub account. This
connection allows you to use the IDE to commit changes to and puil down changes from the repositories you add to your SmartThings

account. Itis also used to create pull requests into the main SmartThingsCommunitry repositories when you submit a SmartApp or device
handler for publication.

e (D

_images/lighting-tile.png
45%

 Power level: 3.8W 3o- _. ’

_images/remove-custom-confirmation.png
Custom Confirmation Text

CANCEL CUSTOM BUTTON TEXT

_images/ide-scheduled-jobs.png
Scheduled Jobs
Handler
runinHandler
cronHandler
timeHandler
‘anotherCronHandler

weekdayCronHandler

Next Run Time
2016-03-16 12:03:18 PM CDT
2016-03-16 12:05:00 PM CDT
2016-03-16 1:10:00 PM CDT

2016-03-17 10:00:00 AM CDT
2016-03-17 10:24:00 AM CDT

Prev Run Time

E

Status

PENDING
PENDING
PENDING
PENDING
PENDING

Schedule
Once

00/5* * * ? America/Chicago
01013 ** 2 * America/Chicago
00/510-11 * * ? America/Chicago

02410 ? * MON-FRI America/Chicago

_images/new-device-type-form.png
New SmartDevice

FromForm | From Code From Template

_images/smartthings-architecture.png
SmartApp Mobile App

Normalized Normalized Normalized

Normalized
Status Commands Status Commands
(On/Off) (onloff) (Onloff) (Onloff)
Data Management Layer
Normalized Status Normalizgdlgommands
(onloff) (Oniof)

'Switch' Capability
Parse Method Methods

Device Type Handler

Protocol-specific

Protocol-specific
Status Message

Commands

Connectivity Layer

_images/ecobee-authorization-complete.png
(<]

ecobee

Your ecobee Account is now
connected to SmartThings!

Click 'Done' to finish setup.

_images/carouselTile.png
Right Now

_images/standard-tile-decoration.png
OFF OFF

_images/ide-location.png
Location

Home

Al

Set Location

_images/multiple-pages-page3.png
&T = 3:51PM

® Multiple Preferences Pa...

Name app and configure modes

Assign a name
Tap to set

Set for specific mode(s)
Choose Modes

Uninstall

7

45% W

Done

_images/async-http-sequence.png
Execution 1

Execution 1 + N

asynchttp.get(‘handlerMethod', params)

Execution immediately returns

Call handlerMethod with response

Make Request

Response

_images/contact-book.png
1:30 PM

Send notifications to

+ Create New Contact

& Ricnard Henaricks

iPhone
Push

@ e Ore Who Knocks
Work

_images/lan_overview.png
Messages to and from

LAN devices sent over LAN
i —
Device =
HUB

Discovery messages sent o
LAN and answers from device
sont back.
Child devices created based Commands send to hub for LAN
on responses. devices, and messages parsed
Location based event from LAN devices.

subscriptions handled

Service Manager
Discovery via SSDP.

Handle Adds/Changes/Deletes
of devices.

SmartApp
device.play() | App for controling

——| AN device

Device Handler
Handles commands from the
SmartApp and passes them
o the hub.

device play()
device status()
etc

Can have many devices with
handers.

play() {

new HubAction()
}

,.................
e e m o=l

_images/app-touch.png
. App Touch

_images/locations.png
‘ , ‘Show Navigation m

Mylocations ~ MyHubs MyDevices MySmarApps MyDeviceTypes Logs Documentation

Locations + New Location

Name. Account Groups

Minneapolis mpls@smartthings.com's « Lounge events | notifications | smartapps
Office Account « Hallway & Stairs

« Small Gonference

Room

« SmartBlock

« People

o MakerLab

* Unassigned

« Main Suite

o Music

« Kitchen

« Bean Bag Room

_images/routines.png
Routines

@

Good Morning!

o

Goodbye!

Good Night!

S

I'm Back!

_images/ide-job-history.png
Job History
Handler
cronHandler
cronHandler
cronHandler

cronHandler

Scheduled Time

2016-03-13 11:55:00 AM CDT
2016-03-13 11:50:00 AM CDT
2016-03-13 11:45:00 AM CDT

2016-03-13 11:40:00 AM CDT

Actual Time

2016-03-13 11:55:00.011 AM CDT
2016-03-13 11:50:00.014 AM CDT
2016-03-13 11:45:00.014 AM CDT

2016-03-13 11:40:00.012 AM CDT

Delay (msec)
1
14
14
12

Execution (msec)
3471

131

21

2192

_images/prefs-label.png
&T = 9:28 AM

(X Preferences - Labels

labels

required:false
Tap to set

required:true
Tap to set

[l This element has animage and a
title.

image and a title

Assign a name
Tap to set

Set for specific mode(s)
Choose Modes e

_images/oauth-settings.png
OAuth

Client ID:

Client Secret:

Redirect URI: (optional)

Display Name: (optional)

Display Link: (optional)

8fa80e9a-e68f-4be0-a5dd-f8cb15cd639¢
Public client ID for accessing this SmartApp via its REST API

Generate New Client ID

6fa9f00f-c4cb-430f-9d70-cOe8alde542b
Confidential secret key for accessing this SmartApp via its REST API

Generate New Client Secret

Redirect URI

URI of authorized server used for redirect URL validation. If a provided redirect URL doesn't match this URI
the authorization request will be rejected.

Display Name

Company or product name representing this application that is displayed to the user during the
authorization process

Display Link

URL of the website representing this application, provided to the user during the authorization

search.html

 Navigation

 		
 index

 		SmartThings Classic Developer Documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2018, SmartThings.
 Created using Sphinx 1.4.

_images/media-tile-full.png
80% MW 1:28 PM

BN 4, .

< Tile Multiattribute Med... £}

Right Now

44

44

Careless Whisper

«“ ——@

_images/simulator1.png
on T
&
\

>

Living Room Motion

«—
-
NO MOTION

_images/single-page-preferences-new.png
00000 ATRT T 12:57 PM @ 7 9@ 78%)

< My First SmartApp Done

Turn on when motion is detected

Where? :
Tap to set

Turn off when there's been no movement for

Minutes?

Tap to set

Turn on/off this light

Which?

There are no devices of this capability

Assign a name

Tap to set

Set for specific mode(s) S

Choose Modes

_images/authorize-ecobee.png
ecobee

Authorize App

You are authorizing "SmartApp2",
provided by SmartThings 2.

This App will have permissions to view the
thermostat settings and data in your
account.
This App is not provided, tested or
warrantied by ecobee. You agree to use this
App at your own risk.

Application Summary:
Connect to SmartThings

Application Description:

_images/things-view.png
10:33 AM v 94%)

My Home
Things Rooms Family
“F Back Door OPEN
Bedroom 61°
4 Christmas Tree OFF
v Dining Room Bloom OFF
¥ Downstairs Hallway Lamp -

= Downstairs Hallway Mot... N0 MOTION
v Downstairs Left OFF

v Downstairs Left Bloom OFF
= (3) @ = =

Dashboard My Home Automation Marketplace More

_images/grid-layout.png
11:11 AM 7 % 100% 4

(My Home Multipurpose Sensor ﬁ-

Right Now

A

My Home

_images/thermostat-tile.png
67 .

0 53% Heating to 72°

_images/new-smartapp.png
DaveAndJim's SmartApps

Enable GitHub Integration

Search:

_images/value-tile.png
47.0 3.14139 3.14159

_images/ide-device-types.png
MyDevices My SmartApps [My Device Handlers | My Publication Requests Live Logging

_images/prefs-paragraph.png
&T = 9:23 AM

(© Paragraph Preferences

paragraph

This us how you can make a paragraph element

B paragraph title
This is a long description that keeps rambles
onand onandon...

Assign a name
Tap to set

Set for specific mode(s)
Choose Modes e

_images/mobile-myapps.png
N N8 46 .4f 45% 1 3:18 PM

Marketplace —

SmartApps

%" Health & Fitness >
¢ Elder Care >
» Energy Management >
v Presence & Modes >
J? Music & Sounds >
& Social D

@

More D
My Apps

B @ %

Dashboard My Home Routines Marketplace

+
V

®

_images/mobile-myfirstsmartapp.png
N N8 46 .af 45% 14 3:18 PM

My First SmartApp S
This is my first SmartApp

_images/simulator-1.png
Location

Home

_images/click-to-login.png
Carrier 12:56 PM

(Connect)

_images/prefs-icon-chooser.png
00000 AT&T = 7 % 94% mm)

required is true Done

. Selected Icon

Appliances

f N
B &2 & = E

(39
m®
5]
i

&
b B ¢ 9 =
Bath
- W F ¢ 0
T 7 & % & ®
& & TN &N
i s Y & X

_images/github-int-enable.png
X Mylocatons MyHubs MyDevices My SmartApps

james anderson's SmartApps
Enable GitHub Integration

_images/thermostat-heating-tile-op-state.png
o/

0 53% Heating to 72°

®
®
o

_images/view-installed-smartapps.png
Installed SmartApps List SmartApps

_images/log_example2.png
3:39:48 PM: B 2 out of 3 switches are on
3:39:48 PM: Replied with ‘switch:on'
3:39:48 PM: Received command 'on' for device 'Switch Capability switches[1]'

_images/generic-tile-full.png
00000 ATRT & 10:07 AM 7 % 100% 4

< My Home Tile Multiattribute Generic £¥

77%

on

_images/overview.png

_images/device-type-anatomy.png
Dimmer Switch
by SmartThings.

* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License

* for the specific language governing permissions and limitations under the License.

*/

metadata {

definition (name: "Dimmer Switch, namespace: "smartthings®, author: "SmartThings”) {

capability “Switch Level®
capability "

ctuator”

capability “Indicator”
capability "Switch”
capability “Polling”
capability "Refresh”

capability
capability

ensor
Health Check”

fingerprint mf:
fingerprint me
fingerprint mf:
fingerprint me;

0063", prod:"4457", deviceJoinName: "GE In-Wall Smart Dimmer "
0063", prod:"4944”, deviceJoinName: "GE In-Wall Smart Dimmer *
0063", prod:"5044”, deviceJoinName: "GE Plug-In Smart Dimmer *
0063", prod:"4944”, model "GE In-Wall Smart

"3034", deviceJoinName
Fan Control”

)

simulator {

_images/state-execution-lifecycle.png
Key
- SmartThings Platform
- SmartApp Execution

Yes

_images/multiple-pages-page1.png
00000 ATRT =T 3:49 PM

< Multiple Preferences Pa...

When there's activity on any of these sensors

Choose sensors to trigger the action

Open/close sensors

lap to set 9

Motion sensors?

lap to set Q

Uninstall

_images/standard-tile-switch-on.png

_static/ajax-loader.gif

_static/images/st-logo.png

_static/comment.png

_static/comment-close.png

_static/comment-bright.png

_static/up-pressed.png

_static/minus.png

_static/down.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_images/building-img.png

_images/standard-tile-full.png
= 10:05 AM 7 % 100% 4

< My Home Tile Device Standard o

Right Now Recently SmartApps

N\

ON ACTION OFF ACTION

PASS! PASS! PASS!

LINE 1 LINE 1

= A @ o

Dashboard My Home Automation Marketplace More

_images/my-locations1.png
LIC R OSmartThings x

& = C [https:/graph.api.smartthings.com

My Hubs My Devices

_images/slider-control-tile.png

_images/simulator.png
Virtual

Tools

Messages
off

5

Raw

oLy

Commands
Switch
on off
Poling
poll

Refresh

refresh

Indicator

indicatorWhenOn

indicatorNever

Raw

_images/building-img1.png

_images/device-cert-overview.png
Create a
Device Handler

Test Your
Device

Publish For
Review

Submit Your
Device

_static/up.png

_images/demo-app.png
definition(

name: Metadata that
determines how the
‘appis described in
, the mobile app Ul
SconUrl: “htéps://s3.amazonaws .con/smartapp-icons/Convenience/Cat-Convenience.png”, along with other
SconXAUzL: Shitps://33. smazonaws .con/smartapp-icons, Convenisnce/Cat-Comveniencetx png”s | opiora

preferences {

Section(*Select devices”) { Defines what devices and
input "contactl’, "capability.contactSensor®, title: “Select contact sensor”

Cgoncact o actse elect other options are required
input “light1”, ‘capability.switch”, title: ‘Select a light "
input “lockl", "capability.lock", title: "Select a lock” toinstallthe app. Drive the
installation screens in the
) mobile app Ul

def installed() (
log.debug “Installed with settings: $(settings)"

initialize()

)

90 10268083 lupdated with settings: S(settings) plguectiprioed
0g.debug ‘Updated with settings: §(settings)® that are called during
sianey et

) updating,and deletion

def initialize() {
subscribe contactl,

‘contact.open”, opentiandler
subscribe contactl,

‘contact closed”, closedHandler

y
def opensandier (eve)
it Event handies spocitod in
L&k inlodk0) eventsubscrptons and oher
) et eauren s
def closednandler(evt) { implement he SrmartApp
Shoretterts

)

_images/prefs-mode.png
AT&T = 9:25 AM

(X Preferences - Mode

page two
page two section one

pick some modes
Choose Modes c

[l This element has an image
and a long title.
Choose Modes c

_images/smart-lighting-diagram.png
/

"l

Smart Lighting
(parent SmartApp)

Acts as a container SmartApp
for all lighting automations.

\

)

"l

Automation
(child SmartApp)

Turn the office light off at 8PM

)

/

Automation
(child SmartApp)

Turn the bathroom light on
when there is motion.

\

_images/prefs-icon.png
&T = 9:23 AM

(X Preferences - Icon

icon

required is true (+)

Assign a name
Tap to set

Set for specific mode(s)
Choose Modes 9

_images/ide-my-devices.png
My Locations

My Hubs

My Devices

My SmartApps

_images/ide.png
Mylocations ~ MyHubs ~ MyDevices MySmarApps MyDeviceTypes Logs Documentation Browse SmartApps ~

Eest Save | Publish IDESettings AppSettings Location
1/ o
2 '+ Virtual Thermostat Home -
4 * Author: SmartThings

*/ Set Location
© preferences {

7 section("Choose a temperature sensor... "

8 input “sensor”, Capability.switchievel®, titles "Sensor”
sy

10 Section("Select the heater or air conditioner outlet(s)..,){

1 input “outlets’, "capability.switch’, title: “outlets’, maltiple: true
2y

11 Section("Set the desired temperature..."){

1 input "setpoint’, ‘decimal’, titie: ‘Set Temp"

15

16 Section(“When there's been movement from (optional, leave blank to not require motion)..."){
17 input “motion', capability.motionSensor’, title: ‘Motion', required: faise
18

19 Section("Within this number of minutes..."){

20 input ‘minutes’, number’, title: ‘Minutes’, required: false

a

22 section("But never go below (or above if A/C) this value with or without motion..."){
b input “emergencySetpoint', "decimal’, title: ‘Emer Temp', required: false
2

25 section("Select 'heat' for a heater and 'cool' for an air conditioner..."){

% input mode”, ‘enun’, title: 'Heating or cooling?”, metadata: [valuest ["heat”,"cool]]
28y

29

0 def installed()

ik

' subscribe(sensor, "temperature”, temperaturefandler)

I Tmotion (

3 Subscribe(motion, "motion’, motionfandler)

3

%)

6 def updated()

39 ¢

20" unsubscrive()

{1 subscribe(sensor, "temperature’, temperatureHandler)

o I motion)

4 Subscribe(motion, "motion’, motionfandler)

a

sy

4

7 def temperaturenandler (evt)

a8 {

25 def isactive = hasseenrecentiotion()

<0 if (ishctive || emergencysetpoint) {

_images/multimedia-tile.png
44 44

Careless Whisper

) —@ 8%

_images/smartapp-form.png
New SmartApp

From Form From Code From Template

Definition

Name:* SmartApp Name

Name of this SmartApp. By convention capitalized with
words separated by spaces, e.g. My First App

Namespace:* Namespace

Used to uniquely identify SmartApps. We suggest
using your GitHub username.

_images/sync-http-sequence.png
Execution 1

httpGet(params, closure)

Call closure with response

Make Request

Response

_images/hub-list.png
[J SshowNavigation mpls@smartthings.com | Logout

Mylocations ~ MyHubs MyDevices MySmarApps MyDeviceTypes Logs Documentation

Hubs Lienite

Name. Zigbee Id Status Last Activity At
Minneapolis Office Hub AGTIVE 28 Mar 2014 17:09:20

