

Smart Emission Data Platform

Contents:

	1. Intro

	2. Architecture

	3. Components

	4. Data Management

	5. Calibration

	6. Web Services

	7. Dataflow and APIs

	8. API and Code

	9. Installation

	10. Kubernetes

	11. Sensors

	12. Administration

	13. Dissemination

	14. Cookbook

	15. Evolution

	16. Contact

	17. Links

	18. Notes

Indices and tables

	Index

	Module Index

	Search Page

1. Intro

This is the main (technical) documentation for the Smart Emission Data Platform.
It can always be found at smartplatform.readthedocs.org [http://smartplatform.readthedocs.org/].
A somewhat lighter introduction can be found in this series of blogs [https://justobjects.nl/category/smartemission/].

The home page for the Smart Emission project and data platform is http://data.smartemission.nl

The home page for the Smart Emission Nijmegen project is http://smartemission.ruhosting.nl

The project GitHub repository is at https://github.com/smartemission/smartemission.

This is document version 1.0.0 generated on 12 February 2019 at 12:41:39.

1.1. History

The Smart Emission Platform was initiated and largely developed within
the Smart Emission Nijmegen project [http://smartemission.ruhosting.nl] (2015-2017, see also below).

The Geonovum/RIVM SOSPilot Project [http://sensors.geonovum.nl] (2014-2015) , where RIVM LML
(Dutch national Air Quality Data) data was harvested and serviced via the OGC Sensor Observation Service (SOS), was
a precursor for the architecture and approach to ETL with sensor data.

In and after 2017 several other projects, web-clients and sensor-types started utilizing the platform hosted at
data.smartemission.nl [http://data.smartemission.nl]. These include:

	the Smart City Living Lab [https://slimstestad.nl/programma-2017-2018/]: around 7 major cities within NL deployed Intemo sensor stations

	AirSensEUR [http://www.airsenseur.org/] - a EU JRC initiative for an Open Sensor HW/SW platform

This put more strain on the platform and required a more structural development and
maintenance approach (than project-based funding).

In 2018, the SE Platform was migrated to the Dutch National GDI infrastructure PDOK [https://pdok.nl] maintained
by the Dutch Kadaster [https://www.kadaster.nl/].
This gives a tremendous opportunity for long-term evolution and stability of the platform beyond the initial
and project-based fundings. This migration targeted hosting within a Docker Kubernetes [https://kubernetes.io/] environment.
All code was migrated to a dedicated Smart Emission GitHub Organization [https://github.com/smartemission] and
hosting of all Docker Images on an SE DockerHub Organization [https://hub.docker.com/r/smartemission/].

1.2. Smart Emission Nijmegen

The Smart Emission Platform was largely developed during the Smart Emission Nijmegen project
started in 2015 and still continuing.

Read all about the Smart Emission Nijmegen project via: smartemission.ruhosting.nl/ [http://smartemission.ruhosting.nl].

An introductory presentation:
http://www.ru.nl/publish/pages/774337/smartemission_ru_24juni_lc_v5_smallsize.pdf

In the paper Filling the feedback gap of place-related externalities in smart cities [http://www.ru.nl/publish/pages/774337/carton_etall_aesop-2015_v11_filling_thefeedback_gap_ofexternalities_insmartcities.pdf]
the project is described extensively.

“…we present the set-up of the pilot experiment in project “Smart Emission”,
constructing an experimental citizen-sensor-network in the city of Nijmegen. This project, as part of
research program ‘Maps 4 Society,’ is one of the currently running Smart City projects in the
Netherlands. A number of social, technical and governmental innovations are put together in this
project: (1) innovative sensing method: new, low-cost sensors are being designed and built in the
project and tested in practice, using small sensing-modules that measure air quality indicators,
amongst others NO2, CO2, ozone, temperature and noise load. (2) big data: the measured data forms
a refined data-flow from sensing points at places where people live and work: thus forming a ‘big
picture’ to build a real-time, in-depth understanding of the local distribution of urban air quality (3)
empowering citizens by making visible the ‘externality’ of urban air quality and feeding this into a
bottom-up planning process: the community in the target area get the co-decision-making control over
where the sensors are placed, co-interpret the mapped feedback data, discuss and collectively explore
possible options for improvement (supported by a Maptable instrument) to get a fair and ‘better’
distribution of air pollution in the city, balanced against other spatial qualities. ….”

The data from the Smart Emission sensors is converted and published as standard web services: OGC WMS(-Time), WFS, SOS
and SensorThings APIs. Some web clients
(SmartApp, Heron) are developed to visualize the data. All this is part of the Smart Emission Data Platform whose technicalities
are the subject of this document.

1.2.1. SE Nijmegen Project Partners

[image: _images/se-partners.jpg]
Smart Emission Nijmegen Project Partners

More on: http://smartemission.ruhosting.nl/over-ons/

1.3. Documentation Technology

Writing technical documentation using standalone documents like Word can be tedious especially for joint
authoring, publication on the web and integration with code.

Luckily there are various
open (web) technologies available for both document (joint) authoring and publication.

We use a combination of three technologies to automate documentation production, hence to produce this document:

	Restructured Text (RST) [http://docutils.sourceforge.net/rst.html] as the document format

	GitHub [https://github.com/smartemission/smartemission] to allow joint authoring, versioning and safe storage of the raw (RST) document

	ReadTheDocs.org (RTD) [http://ReadTheDocs.org] for document generation (on GH commits) and hosting on the web

This triple makes maintaining actualized documentation comfortable.

This document is written in Restructured Text (rst) [http://docutils.sourceforge.net/rst.html]
generated by Sphinx [http://sphinx-doc.org/index.html] and hosted by ReadTheDocs.org (RTD) [http://ReadTheDocs.org].

The sources
of this document are (.rst) text files maintained in the Project’s GitHub: https://github.com/smartemission/smartemission/docs/platform

You can also download a PDF version of this document [https://media.readthedocs.org/pdf/smartplatform/latest/smartplatform.pdf]
and even an Ebook version [https://media.readthedocs.org/epub/smartplatform/latest/smartplatform.epub].

This document is automatically generated whenever a commit is performed on the
above GitHub repository (via a “Post-Commit-Hook”)

Using Sphinx with RTD one effectively has a living document like a Wiki
but with the structure and versioning characteristics of a real document or book.

Basically we let “The Cloud” (GitHub and RTD) work for us!

2. Architecture

This chapter describes the (software) architecture of the Smart Emission Data (Distribution) Platform.
A recent presentation (PDF) and
this paper
also may give more insight.

2.1. Global Architecture

This section sketches “the big picture”: how the Smart Emission Data Platform fits into an overall/global
architecture from sensor to citizen as depicted in Figure 1a and 1b below.

[image: _images/arch-big-picture.jpg]
Figure 1a - Smart Emission Architecture - The Big Picture

Figure 1a shows the main flow of data (red arrows) from sensors to viewers, in the following steps:

	Data is collected by sensors and sent to Data Management

	Data Management (ETL) is responsible for refining raw sensor data

	This refined (validated, calibrated, aggregated) sensor data is made available via Web Services

	Web Services include standardized OCG Web APIs like WMS (Time), WFS, SOS and the SensorThings API (STA)

	Viewers like the SmartApp and Heron and other clients use these Web APIs to fetch sensor (meta)data

Figure 1b expands on this architecture showing additional components and dataflows:

[image: _images/dataflow-apis.jpg]
Figure 1b - Smart Emission Architecture - Expanded with Dataflows

In Figure 1b the following is shown:

	Sensor stations (sensors) send (push) their raw data to Data Collectors

	A Data Collector functions as a buffer, keeping all data history using efficient bulk storage (InfluxDB, MongoDB, SOS)

	A Data Collector can be extern (blue) or internal (green) to the SE Data Platform

	A Data Collector provides an Web API through which its data (history) can be Harvested (pulled)

	The SE Data Platform continuously harvests all sensor data from Data Collectors (push/pull decoupling)

	A set of ETL (Extract, Transform, Load) components refines/aggregates the raw sensor data, making it available via web service APIs

	SOS LML harvesting is used for acquiring reference data for Calibration only

Some details for the Intemo Josene: The sensor installation is connected to a power supply and to
the Internet. Internet connection is made by WIFI or telecommunication network (using a GSM chip).
The data streams are sent encrypted to a Data Collector (see above).
The encrypted data is decrypted by a dedicated “Jose Input Service” that also inserts the data
streams into a MongoDB or InfluxDB database using JSON. This database is the source production database
where all raw sensor data streams of the Jose Sensor installation are stored. A dedicated
REST API – the Raw Sensor API nicknamed the Whale API - is developed by CityGIS and Geonovum for
further distribution of the SE data to other platforms.

In order to store the relevant SE data in the distribution database harvesting and pre-processing of the
raw sensor data (from the CityGIS and Intemo Data Collectors) is performed. First, every N minutes a harvesting
mechanism collects sensor-data from the Data Collectors using the Raw Sensor API. The data encoded in
JSON is then processed by a multi-step ETL-based pre-processing mechanism. In several steps the data streams
are transformed to the Postgres/PostGIS database. For instance, pre-processing is done specifically for the raw data
from the air quality sensors. Based on a calibration activity in de SE project, the raw data from the air
quality sensors is transformed to ‘better interpretable’ values. Post-processing is the activity to transform
the pre-processed values into new types of data using statistics (aggregations), spatial interpolations, etc..

The design of the Smart Emission Data Platform, mainly the ETL design, is further expanded below.

2.2. Data Platform Architecture

Figure 2 below sketches the overall architecture with an emphasis on
the flow of data (arrows). Circles depict harvesting/ETL processes.
Server-instances are in rectangles. Datastores the “DB”-cons.

[image: _images/etl-global.jpg]
Figure 2 - Smart Emission Data Platform ETL Context

This global architecture is elaborated in more detail below. Figure 3 sketches a multistep-ETL approach as used
within the SOSPilot project [http://sensors.geonovum.nl]. Here Dutch Open Air Quality Data provided through
web services by RIVM (LML) was gathered and offered via OGC SOS and W*S services in three steps:
Harvesting, Preprocessing and Publishing, the latter e.g. via SOS-T(ransactional).
The main difference/extension to RIVM LML ETL processing is that the Smart Emission raw O&M data is not
yet validated (e.g. has outliers), calibrated and aggregated (e.g. no hourly averages). Also we need to cater
for publication to the Sensor Things API Server (STA GOST) [https://www.gostserver.xyz/]).

[image: _images/etl-detail.jpg]
Figure 3 - Smart Emission Data Platform ETL Details

The ETL design comprises these main processing steps:

	Step 1: Harvester: fetch raw O&M data from the CityGIS server via the Raw Sensor API

	Step 2: Refiner: validate, calibrate and aggregate the Raw O&M Data, rendering Refined O&M Data with metadata. The datastore is Postgres with PostGIS.

	Step 3: Publisher. Publish to various services, some having internal (PostGIS) datastores.

The services to be published to are:

	SOS ETL: transform and publish to the 52N SOS DB via SOS-Transactional (SOS-T)

	Things ETL: transform and publish to the Geodan GOST SensorThings API (STA, via REST)

	Publication via GeoServer WMS (needs SLDs) and WFS directly

	XYZ: any other ETL, e.g. providing bulk download as CSV

Some more notes for the above dataflows:

	The central DB will be Postgres with PostGIS enabled

	Refined O&M data can be directly used for OWS (WMS/WFS) services via GeoServer (using SLDs and a PostGIS datastore with selection VIEWs, e.g. last values of component X)

	The SOS ETL process transforms refined O&M data to SOS Observations and publishes these via the SOS-T InsertObservation service. Stations are published once via the InsertSensor service.

	Publication to the GOST SensorThings Server goes via the STA REST service

	These three ETL steps run continuously (via Linux cronjobs)

	Each ETL-process applies “progress-tracking” by maintaining persistent checkpoint data. Consequently a process always knows where to resume, even after its (cron)job has been stopped or canceled. All processes can even be replayed from time zero.

2.3. Deployment

Docker [https://www.docker.com] is the main building block for the SE Data Platform deployment architecture.

Docker [https://www.docker.com]
…allows you to package an application with all of its dependencies into a standardized unit for software development..
Read more on https://docs.docker.com.

The details of Docker are not discussed here, there are ample sources on the web. One of the best,
if not the best, introductory books on Docker is The Docker Book [https://www.dockerbook.com].

The SE Platform can be completely deployed using either Docker Compose [https://docs.docker.com/compose/]
or using Docker Kubernetes [https://kubernetes.io/] (K8s, abbreviated).
The platform hosted via PDOK is using K8s.

2.3.1. Docker Strategy

Components from the Smart Emission Data Platform as
described in the architecture above are deployed using Docker. Docker is a
common computing container technology also used extensively within Dutch Kadaster. By using Docker we can create
reusable high-level components, “Containers”, that can be built and run within multiple contexts.
Figure 4 sketches the Docker deployment. The entities denote Docker Containers, the arrows linking.
Like in Object Oriented Design there are still various strategies and patterns to follow with Docker.
There is a myriad of choices how to define Docker Images, configure and run Containers etc.
Within the SE Platform the following strategies are followed:

	define generic/reusable Docker Images,

	let each Docker image perform a single (server) task: Apache2, GeoServer, PostGIS, 52NSOS etc.

	all in all this forms a Microservices Architecture

The Docker Containers as sketched in Figure 4 are deployed.

[image: _images/docker-deploy.jpg]
Figure 4 - Docker Deployment - Container View

Docker Containers will be created/used for:

	Web front-end (Apache2) webserving (viewers/apps) and proxy to backend web-APIs

	GeoServer : container with Tomcat running GeoServer

	52North_SOS : container with Tomcat running 52North SOS

	SensorThings API : container running Geodan GOST SensorThings API Server

	Stetl : container for the Python-based ETL framework used

	PostGIS : container running PostgreSQL with PostGIS extension

	InfluxDB: container running InfluxDB server from InfluxData [https://www.influxdata.com]

	Chronograf: container running Chronograf (InfluxDB Admin) from InfluxData [https://www.influxdata.com]

	Grafana: container running Grafana Dashboard

	MQTT: container running Mosquitto MQTT

The Docker Networking capabilities of Docker will be applied to link Docker Containers,
for example to link GeoServer and the other application servers to PostGIS.
Docker Networking may be even applied (VM-) location independent, thus when required
Containers may be distributed over VM-instances. Initially all data, logging, configuration and
custom code/(web)content was maintained
Local, i.e. on the host, outside Docker Containers/images. This will made the Docker Containers
less reusable. Later, during PDOK migration, most Docker Images were made self-contained as much
as possible.

An Administrative Docker Component is also present. Code, content and configuration
is maintained/synced in/with GitHub (see below). Docker Images are available publicly via Docker Hub.

The list of Docker-based components is available in the Components chapter.

See https://github.com/smartemission for the generic Docker images.

2.3.2. Test and Production

In order to provide a continuous/uninterrupted service both a
Test and Production deployment has been
setup. For local development on PC/Mac/Linux
a Vagrant environment with Docker can be setup.

The Test and Production environments have separate IP-adresses and domains:
test.smartemission.nl [http://test.smartemission.nl]
and data.smartemission.nl [http://data.smartemission.nl] respectively.

2.3.3. Monitoring

The challenge [https://dzone.com/refcardz/intro-to-docker-monitoring] is to monitor services contained in Docker.

Monitoring is based around Prometheus [https://prometheus.io] and a dedicated (for monitoring) Grafana
instance. A complete monitoring stack is deployed via docker-compose based on the
Docker Monitoring Project [https://github.com/vegasbrianc/prometheus/tree/version-2].
In the future this approach by Stefan Prodan [https://github.com/stefanprodan/dockprom] is worthwhile.

[image: _images/grafana-prometheus2.jpg]
Figure 5 - Docker Monitoring in SE

3. Components

This chapter gives an overview of all components within the SE Platform and
how they are organized into a (Docker/Kubernetes)
microservices architecture [https://en.wikipedia.org/wiki/Microservices].

A Component in this architecture is typically realized by a Docker Container
as a configured instance of its Docker Image. A Component typically provides a
(micro)Service and uses/depends on the services of other Components. A deployed Component
is as much self-contained as possible, for example a Component has no
host-specific dependencies like Volume mappings etc.

Docker Images for SE Components are maintained in the
SE GitHub Organization [https://github.com/smartemission] and
made available via the
SE Docker Hub [https://hub.docker.com/r/smartemission]

Components are also divided into (functional) categories, being:

	Apps - user-visible web applications

	Services - API services providing spatiotemporal data (WMS, WFS, STA etc)

	ETL - data handling, conversions and transformations, ETL=Extract Transform Load

	Datastore - databases

	Mon - monitoring and healthchecking of the SE Platform

	Admin - administrative tools, access resticted to admin users

Some Components may fit in multiple categories. For example a Grafana App to visualize
monitoring data will be an App and Monitoring category.

These components are deployed within Kubernetes [https://kubernetes.io/] (2018, Kadaster PDOK migration).

3.1. Overview

In the table below all Components are listed, their function,
source (GitHub, GH) and Docker (Hub, DH) repositories,
Categories, and for development strategy, their priority for the 2018
SE migration to Kubernetes (K8s). The “Status” column denotes the availability
of the Docker Image for K8s deployment:

	-=not yet started

	inprog=in progress

	avail=available for deploy

	done=deployed in K8s

	status on feb.12.2019

	Name

	Categories

	Function

	Repos

	Prio

	Status

	Home

	Apps

	Platform home/landing page

	GH [https://github.com/smartemission/docker-se-home] DH

	1

	done

	Admin

	Apps,Admin

	Admin access pages

	GH [https://github.com/smartemission/docker-se-admin] DH

	2

	done

	Heron

	Apps

	Viewer with history

	GH [https://github.com/smartemission/docker-se-heron] DH

	1

	done

	SmartApp

	Apps

	Viewer for last values

	GH [https://github.com/smartemission/docker-se-smartapp] DH

	1

	done

	Waalkade

	Apps

	Viewer Nijmegen project

	GH [https://github.com/smartemission/docker-se-waalkade] DH

	1

	done

	GostDashboard

	Apps,Admin

	Admin dashboard Gost

	GH [https://github.com/smartemission/docker-se-gostdashboard] DH

	3

	onhold

	Grafana

	Apps

	View InfluxDB Data

	GH [https://github.com/smartemission/docker-se-grafana] DH

	2

	done

	GrafanaDC

	Apps

	View InfluxDB Data Collector Data

	GH [https://github.com/smartemission/docker-se-grafana-dc] DH

	2

	done

	Chronograf

	Apps,Admin

	Admin dashboard InfluxDB

	GH [https://https://www.influxdata.com/time-series-platform/chronograf/] DH

	3

	onhold

	SOSEmu

	Services

	REST API SOS subset

	GH [https://github.com/smartemission/docker-se-sosemu] DH

	1

	done

	GeoServer

	Services

	WMS (Time), WFS server

	GH [https://github.com/smartemission/docker-se-geoserver] DH

	1

	done

	Gost

	Services

	SensorThings API (STA) server

	GH [https://github.com/smartemission/docker-se-gost] DH

	2

	done

	SOS52N

	Services

	52North SOS server

	GH [https://github.com/smartemission/docker-se-sos52n] DH

	3

	done

	Mosquitto

	Services

	MQTT server coupled with Gost

	GH [https://github.com/smartemission/docker-se-mosquitto] DH

	2

	done

	PhpPgAdmin

	Apps,Admin

	Manager PostgreSQL

	GH [https://github.com/smartemission/docker-se-phppgadmin] DH

	2

	done

	HarvesterLast

	ETL

	Harvester last sensor data

	GH [https://github.com/smartemission/docker-se-stetl] DH

	1

	done

	HarvesterWhale

	ETL

	Harvester historic sensor data

	GH [https://github.com/smartemission/docker-se-stetl] DH

	1

	done

	HarvesterInflux

	ETL

	Harvester InfluxDB sensor data

	GH [https://github.com/smartemission/docker-se-stetl] DH

	2

	done

	HarvesterLuftdat

	ETL

	Harvester Luftdaten sensor data

	GH [https://github.com/smartemission/docker-se-stetl] DH

	2

	done

	HarvesterRivm

	ETL

	Harvester RIVM ANN ref-data

	GH [https://github.com/smartemission/docker-se-stetl] DH

	2

	done

	Extractor

	ETL

	Extract SE refdata for ANN ref

	GH [https://github.com/smartemission/docker-se-stetl] DH

	2

	onhold

	Calibrator

	ETL

	ANN Learning engine

	GH [https://github.com/smartemission/docker-se-stetl] DH

	2

	
	

	Refiner

	ETL

	Transformation/Calibration

	GH [https://github.com/smartemission/docker-se-stetl] DH

	1

	done

	SOSPublisher

	ETL

	Publish refined data to SOS

	GH [https://github.com/smartemission/docker-se-stetl] DH

	3

	done

	STAPublisher

	ETL

	Publish refined data to STA

	GH [https://github.com/smartemission/docker-se-stetl] DH

	2

	done

	InfluxDB

	Datastore

	Calibration refdata/collector

	GH [https://github.com/smartemission/docker-se-influxdb] DH

	2

	done

	InfluxDB DC

	Datastore

	Data Collector AirSensEUR

	GH [https://github.com/smartemission/docker-se-influxdb] DH

	2

	done

	Postgis

	Datastore

	Main database (not used in K8s)

	GH [https://github.com/smartemission/docker-se-postgis] DH

	N.A.

	N.A.

	Traefik

	Services

	Proxy server (not used in K8s)

	GH [https://traefik.io/] DH

	N.A.

	N.A.

	Prometheus

	Mon,Apps

	Monitoring metrics collector

	GH [https://prometheus.io/] DH

	4

	
	

	AlertManager

	Mon

	Prometheus (Prom.)alerter

	GH [https://prometheus.io/docs/alerting/alertmanager/] DH

	4

	
	

	CAdvisor

	Mon

	Prom. Docker metrics exporter

	GH [https://github.com/google/cadvisor] DH

	4

	
	

	NodeExporter

	Mon

	Prom. host metrics exporter

	GH [https://github.com/prometheus/node_exporter] DH

	4

	
	

	GrafanaMon

	Mon,Apps

	Grafana Dashboards Prometheus

	GH [https://github.com/smartemission/smartemission/tree/master/services/monitoring] DH

	4

	
	

4. Data Management

This chapter describes technical aspects of the data management, the ETL,
of the Smart Emission (SE) Data Platform, expanding from
the ETL-design in the Architecture chapter.

As sensor data is continuously generated, also ETL processing is a continuous multistep-sequence.

There are three main sequential ETL-steps:

	Harvesters - fetch raw sensor values from sensor data collectors like the “Whale server”

	Refiners - validate, convert, calibrate and aggregate raw sensor values

	Publishers - publish refined values to various (OGC) services

The Extractor is used for Calibration: it fetches reference and raw sensor
data into an InfluxDB time-series DB as input for the Artificial Neural Network (ANN) learning
process, called the Calibrator.

Implementation for all ETL can be found here:
https://github.com/smartemission/docker-se-stetl.

4.1. General

This section describes general aspects applicable to all SE ETL processing.

4.1.1. Stetl Framework

The ETL-framework Stetl [http://stetl.org] is used for all ETL-steps.
The Stetl framework is an Open Source, general-purpose, ETL framework and programming model
written in Python.

Each ETL-process is constructed by a Stetl config file. This config file specifies
the Inputs, Filters and Outputs and parameters for that ETL-process. Stetl provides a
multitude of reusable Inputs, Filters and Outputs. For example
ready-to-use Outputs for Postgres and HTTP. For specific processing
specific Inputs, Filters and Outputs can be developed by deriving from
Stetl-base classes. This applies also to the SE-project.

For each ETL-step a specific Stetl config file is developed with some SE-specific Components.

SE Stetl processes are deployed and run using
an SE Stetl Docker Image [https://github.com/smartemission/docker-se-stetl] derived
from the core Stetl Docker image.

4.1.2. ETL Scheduling

ETL processes run using the Unix cron scheduler or via K8s Job scheduler. See the
SE Platform cronfile [https://github.com/smartemission/smartemission/blob/master/platform/cronfile.txt] for
the schedules.

4.1.3. Sync-tracking

Any continuous ETL, in particular in combination with data from remote systems, is liable to a multitude of
failures: a remote server may be down, systems may be upgraded or restarted, the
ETL software itself may be upgraded. Somehow an ETL-component needs to “keep track”
of its last successful data processing: specifically for which device, which sensor and
which timestamp.

As programmatic tracking may suffer those same vulnerabilities, it
was chosen to use the PostgreSQL (PG) database for tracking. Each of the three main ETL-steps
will track its progress within PG-tables. In the cases of the Harvester
and the Refiner this synchronization is even strongly coupled to a PG TRIGGER: i.e.
only if data has been successfully written/committed to the DB will the
sync-state be updated. An ETL-process will always resume at the point of the
last saved sync-state.

4.1.4. Why Multistep?

Although all ETL could be performed within a single, continuous process, there are several
reasons why a multistep, scheduled ETL processing from all Harvested data
has been applied. “Multistep”, started by Harvesting (pull vs push) in combination with “sync-tracking” provides
the following benefits:

	clear separation of concerns: Harvesting, Refining, Publishing

	all or individual ETL-steps can be “replayed” whenever some bug/enhancement appeared during development

	being more lean towards server downtime and network failures

	testing: each step can be thoroughly tested (using input data for that step)

	Harvesting (thus pull vs push) shields the SE Platform from “push overload”.

Each of the three ETL-steps are expanded below.

4.2. Harvesters

Harvesters fetch raw sensor data from
remote raw sensor sources like data-collectors, services (e.g. SOS) or databases (e.g. InfluxDB).
Currently there are Harvesters for CityGIS and Intemo data collectors for Josene devices
and InfluxDB databases for others like AirSensEUR devices.
Harvesters are scheduled via cron. As a result a Harvester will store its raw
data in the smartem_raw.timeseries database table (see below).

Harvesters, like all other ETL are developed using the Stetl ETL framework [http://stetl.org].
As Stetl already supplies a Postgres/PostGIS output, specific
readers like the the Raw Sensor API needed to be developed:
the RawSensorTimeseriesInput [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/harvester/rawsensortimeseriesinput.py].

4.2.1. Database

The main table where Harvesters store data. Note the use of the data field
as a json column. The device_id is the unique station id.

CREATE TABLE smartem_raw.timeseries (
 gid serial,
 unique_id character varying not null,
 insert_time timestamp with time zone default current_timestamp,
 device_id integer not null,
 day integer not null,
 hour integer not null,
 data json,
 complete boolean default false,
 device_type character varying not null default 'jose',
 device_version character varying not null default '1',
 PRIMARY KEY (gid)
) WITHOUT OIDS;

4.2.2. Whale Harvester

The Whale Harvester uses the Raw Sensor (Whale) API, a custom web-service specifically
developed for the project. Via this API raw timeseries data of Josene devices/stations is fetched as JSON objects.
Each JSON object contains the raw data for all sensors within a single station as accumulated in the current or previous
hour. These JSON data blobs are stored by the Harvester in the smartem_raw.timeseries database table unmodified.
In this fashion we always will have access to the original raw data.

Below are links to the various implementation files related to the Whale Harvester.

	Stetl config: https://github.com/smartemission/docker-se-stetl/blob/master/config/harvester_whale.cfg

	Stetl input: https://github.com/smartemission/docker-se-stetl/blob/master/smartem/harvester/rawsensortimeseriesinput.py

	Database: https://github.com/smartemission/smartemission/blob/master/database/schema/db-schema-raw.sql

	Shell script: https://github.com/smartemission/smartemission/blob/master/etl/harvester_whale.sh

4.2.3. InfluxDB Harvester

The InfluxDB Harvester was introduced (in 2018) to enable harvesting of raw sensor data from AirSensEUR (ASE) sensor devices.
ASEs publish their raw data to remote InfluxDB Measurements collections (like tables).
The InfluxDB Harvester fetches from these InfluxDB Measurements and stores raw data
in the smartem_raw.timeseries database table unmodified. This process is more generic thus
may accomodate both local and remote InfluxDB Measurements.

Below are links to the various implementation files related to the InfluxDB Harvester.

	Stetl config: https://github.com/smartemission/docker-se-stetl/blob/master/config/harvester_influx.cfg

	Stetl input: https://github.com/smartemission/docker-se-stetl/blob/master/smartem/harvester/harvestinfluxdb.py

	Database: https://github.com/smartemission/smartemission/blob/master/database/schema/db-schema-raw.sql

	Shell script: https://github.com/smartemission/smartemission/blob/master/etl/harvester_influx.sh

4.2.4. Last Values

The “Last” values ETL is an optimization/shorthand to provide all three ETL-steps
(Harvest, Refine, Publish) for only the last/current
sensor values within a single ETL process. This was supposed to be a temporary
solution but has survived and foun useful up to this day as the main drawback from the Harvester approach is
the lack of real-time/pushed data.

All refined data is stored within a single
DB-table. This table maintains only last values, no history, thus data is overwritten
constantly. value_stale denotes when an indicator has not provided a fresh values in
2 hours.

CREATE TABLE smartem_rt.last_device_output (
 gid serial,
 unique_id character varying,
 insert_time timestamp with time zone default current_timestamp,
 device_id integer,
 device_name character varying,
 name character varying,
 label character varying,
 unit character varying,
 time timestamp with time zone,
 value_raw integer,
 value_stale integer,
 value real,
 altitude integer default 0,
 point geometry(Point,4326),
 PRIMARY KEY (gid)
) WITHOUT OIDS;

Via Postgres VIEWs, the last values for each indicator are extracted, e.g. for the
purpose of providing a per-indicator WMS/WFS layer. For example:

CREATE VIEW smartem_rt.v_last_measurements_NO2_raw AS
 SELECT device_id, device_name, label, unit,
 name, value_raw, value_stale, time AS sample_time, value, point, gid, unique_id
 FROM smartem_rt.last_device_output WHERE value_stale = 0 AND name = 'no2raw'
 ORDER BY device_id, gid DESC;

In addition, this last-value data from the last_device_output table
is unlocked using a subsetted web-service based on the
52North SOS-REST API.

Implementation file for the Last Values ETL:

	https://github.com/smartemission/smartemission/blob/master/etl/last.sh

	https://github.com/smartemission/smartemission/blob/master/etl/last.cfg

	https://github.com/smartemission/docker-se-stetl/blob/master/smartem/harvester/rawsensorlastinput.py

	database: https://github.com/smartemission/smartemission/blob/master/database/schema/db-schema-last.sql

NB theoretically last values could be obtained by setting VIEWs on the Refined
data tables and the SOS. However in previous projects this rendered significant
performance implications. Also the Last Values API was historically developed
first before refined history data and SOS were available in the project.

4.3. Refiners

Most raw sensor values as harvested from the CityGIS-platform via the Raw Sensor API
need to be converted
and calibrated to standardized units and values. Also values may
be out of range. The sensors themselves will produce an excess data typically every
few seconds while for many indicators (gasses, meteo) conditions will not change
significantly within seconds. Also to make data manageable in all subsequent publication
steps (SOS, WMS etc) a form of aggregation is required.gr

The Refiner implements five data-processing steps:

	Validation (pre)

	Calibration

	Conversion

	Aggregation

	Validation (post)

The implementation of these steps is in most cases specific per sensor-type.
This has been abstracted via the Python base class Device with specific
implementations per sensor station: Josene, AirSensEUR etc.

Validation deals with removing outliers, values outside specific intervals.
Calibration and Conversion go hand-in-hand: in many cases, like Temperature,
the sensor-values are already calibrated but provided in another unit like milliKelvin.
Here a straightforward conversion applies. In particularly raw
gas-values may come as resistance (kOhm) or voltage
values. In most cases there is no linear relationship between these raw values
and standard gas concentration units like mg/m3 or ppm.
In those cases Calibration needs to be applied. This has been elaborated first
for Josene sensors.

4.3.1. Calibration (Josene Sensors)

Raw sensor-values are expressed in
kOhms (NO2, O3 and CO) except for CO2 which is given in ppb.
Audio-values are already provided in decibels (dbA).
Meteo-values are more standard and obvious to convert
(e.g. milliKelvin to deegree Celsius).

The complexity for the calibration of gasses lies in the fact that many parameters may influence
measured values: temperature, relative humidity, pressure but even the concentration of
other gasses! For example O3 and NO2. A great deal of scientific literature is already devoted
to the sensor calibration issue. Gas Calibration using ANN for SE is described more extensively in Calibration.

The units are:

S.TemperatureUnit milliKelvin
S.TemperatureAmbient milliKelvin
S.Humidity %mRH
S.LightsensorTop Lux
S.LightsensorBottom Lux
S.Barometer Pascal
S.Altimeter Meter
S.CO ppb
S.NO2 ppb
S.AcceleroX 2 ~ +2G (0x200 = midscale)
S.AcceleroY 2 ~ +2G (0x200 = midscale)
S.AcceleroZ 2 ~ +2G (0x200 = midscale)
S.LightsensorRed Lux
S.LightsensorGreen Lux
S.LightsensorBlue Lux
S.RGBColor 8 bit R, 8 bit G, 8 bit B
S.BottomSwitches ?
S.O3 ppb
S.CO2 ppb
v3: S.ExternalTemp milliKelvin
v3: S.COResistance Ohm
v3: S.No2Resistance Ohm
v3: S.O3Resistance Ohm
S.AudioMinus5 Octave -5 in dB(A)
S.AudioMinus4 Octave -4 in dB(A)
S.AudioMinus3 Octave -3 in dB(A)
S.AudioMinus2 Octave -2 in dB(A)
S.AudioMinus1 Octave -1 in dB(A)
S.Audio0 Octave 0 in dB(A)
S.AudioPlus1 Octave +1 in dB(A)
S.AudioPlus2 Octave +2 in dB(A)
S.AudioPlus3 Octave +3 in dB(A)
S.AudioPlus4 Octave +4 in dB(A)
S.AudioPlus5 Octave +5 in dB(A)
S.AudioPlus6 Octave +6 in dB(A)
S.AudioPlus7 Octave +7 in dB(A)
S.AudioPlus8 Octave +8 in dB(A)
S.AudioPlus9 Octave +9 in dB(A)
S.AudioPlus10 Octave +10 in dB(A)
S.SatInfo
S.Latitude nibbles: n1:0=East/North, 8=West/South; n2&n3: whole degrees (0-180); n4-n8: degree fraction (max 999999)
S.Longitude nibbles: n1:0=East/North, 8=West/South; n2&n3: whole degrees (0-180); n4-n8: degree fraction (max 999999)

P.Powerstate Power State
P.BatteryVoltage Battery Voltage (milliVolts)
P.BatteryTemperature Battery Temperature (milliKelvin)
P.BatteryGauge Get Battery Gauge, BFFF = Battery full, 1FFF = Battery fail, 0000 = No Battery Installed
P.MuxStatus Mux Status (0-7=channel,F=inhibited)
P.ErrorStatus Error Status (0=OK)
P.BaseTimer BaseTimer (seconds)
P.SessionUptime Session Uptime (seconds)
P.TotalUptime Total Uptime (minutes)
v3: P.COHeaterMode CO heater mode
P.COHeater Powerstate CO heater (0/1)
P.NO2Heater Powerstate NO2 heater (0/1)
P.O3Heater Powerstate O3 heater (0/1)
v3: P.CO2Heater Powerstate CO2 heater (0/1)
P.UnitSerialnumber Serialnumber of unit
P.TemporarilyEnableDebugLeds Debug leds (0/1)
P.TemporarilyEnableBaseTimer Enable BaseTime (0/1)
P.ControllerReset WIFI reset
P.FirmwareUpdate Firmware update, reboot to bootloader

Unknown at this moment (decimal):
P.11
P.16
P.17
P.18

Below are typical values from a Josene station as obtained via the raw sensor API

General
id: "20",
p_unitserialnumber: 20,
p_errorstatus: 0,
p_powerstate: 2191,
p_coheatermode: 167772549,

Date and time
time: "2016-05-30T10:09:41.6655164Z",
s_secondofday: 40245,
s_rtcdate: 1069537,
s_rtctime: 723501,
p_totaluptime: 4409314,
p_sessionuptime: 2914,
p_basetimer: 6,

GPS
s_longitude: 6071111,
s_latitude: 54307269,
s_satinfo: 86795,

Gas componements
s_o3resistance: 30630,
s_no2resistance: 160300,
s_coresistance: 269275,

Meteo
s_rain: 14,
s_barometer: 100126,
s_humidity: 75002,
s_temperatureambient: 288837,
s_temperatureunit: 297900,

Audio
s_audioplus5: 1842974,
v_audioplus4: 1578516,
u_audioplus4: 1381393,
t_audioplus4: 1907483,
s_audioplus4: 1841174,
v_audioplus3: 1710360,
u_audioplus3: 1250066,
t_audioplus3: 1842202,
s_audioplus3: 1841946,
v_audioplus2: 1381141,
u_audioplus2: 1118225,
t_audioplus2: 1645849,
s_audioplus2: 1446679,
v_audioplus1: 1381137,
u_audioplus1: 1119505,
t_audioplus1: 1776919,
s_audioplus1: 1775382,
v_audioplus9: 1710617,
u_audioplus9: 1710617,
t_audioplus9: 1841946,
s_audioplus9: 1776409,
v_audioplus8: 1512983,
u_audioplus8: 1512982,
t_audioplus8: 1578777,
s_audioplus8: 1578776,
v_audioplus7: 1381396,
u_audioplus7: 1381396,
t_audioplus7: 1512981,
s_audioplus7: 1446932,
v_audioplus6: 1249812,
u_audioplus6: 1249555,
t_audioplus6: 2036501,
s_audioplus6: 1315604,
v_audioplus5: 1776923,
u_audioplus5: 1710360,
t_audioplus5: 2171681,
v_audio0: 1184000,
u_audio0: 986112,
t_audio0: 1513984,
s_audio0: 1249536,

Light
s_rgbcolor: 14546943,
s_lightsensorblue: 13779,
s_lightsensorgreen: 13352,
s_lightsensorred: 11977,
s_lightsensorbottom: 80,
s_lightsensortop: 15981,

Accelerometer
s_acceleroz: 783,
s_acceleroy: 520,
s_accelerox: 512,

Unknown
p_6: 1382167
p_11: 40286,
p_18: 167772549,
p_17: 167772549,

Below each of these sensor values are elaborated.
All conversions are implemented in using these Python scripts, called within the
Stetl Refiner ETL process:

	josenedevice.py [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/devices/josene.py] Device implementation

	josenedefs.py [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/devices/josenedefs.py] definitions of sensors

	josenefuncs.py [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/devices/josenefuncs.py] mostly converter routines

By using a generic config file josenedefs.py [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/devices/josenedefs.py]
all validation and calibration is specified generically. Below some sample entries.

SENSOR_DEFS = {
.
.
 # START Gasses Jose
 's_o3resistance':
 {
 'label': 'O3Raw',
 'unit': 'Ohm',
 'min': 3000,
 'max': 6000000
 },
 's_no2resistance':
 {
 'label': 'NO2RawOhm',
 'unit': 'Ohm',
 'min': 800,
 'max': 20000000
 },
.
.
 # START Meteo Jose
 's_temperatureambient':
 {
 'label': 'Temperatuur',
 'unit': 'milliKelvin',
 'min': 233150,
 'max': 398150
 },
 's_barometer':
 {
 'label': 'Luchtdruk',
 'unit': 'HectoPascal',
 'min': 20000,
 'max': 110000

 },
 's_humidity':
 {
 'label': 'Relative Humidity',
 'unit': 'm%RH',
 'min': 20000,
 'max': 100000
 },
.
.
 'temperature':
 {
 'label': 'Temperatuur',
 'unit': 'Celsius',
 'input': 's_temperatureambient',
 'converter': convert_temperature,
 'type': int,
 'min': -25,
 'max': 60
 },
 'pressure':
 {
 'label': 'Luchtdruk',
 'unit': 'HectoPascal',
 'input': 's_barometer',
 'converter': convert_barometer,
 'type': int,
 'min': 200,
 'max': 1100
 },
 'humidity':
 {
 'label': 'Luchtvochtigheid',
 'unit': 'Procent',
 'input': 's_humidity',
 'converter': convert_humidity,
 'type': int,
 'min': 20,
 'max': 100
 },
 'noiseavg':
 {
 'label': 'Average Noise',
 'unit': 'dB(A)',
 'input': ['v_audio0', 'v_audioplus1', 'v_audioplus2', 'v_audioplus3', 'v_audioplus4', 'v_audioplus5',
 'v_audioplus6', 'v_audioplus7', 'v_audioplus8', 'v_audioplus9'],
 'converter': convert_noise_avg,
 'type': int,
 'min': -100,
 'max': 195
 },
 'noiselevelavg':
 {
 'label': 'Average Noise Level 1-5',
 'unit': 'int',
 'input': 'noiseavg',
 'converter': convert_noise_level,
 'type': int,
 'min': 1,
 'max': 5
 },
.
.
 'no2raw':
 {
 'label': 'NO2Raw',
 'unit': 'kOhm',
 'input': ['s_no2resistance'],
 'min': 8,
 'max': 4000,
 'converter': ohm_to_kohm
 },
 'no2':
 {
 'label': 'NO2',
 'unit': 'ug/m3',
 'input': ['s_o3resistance', 's_no2resistance', 's_coresistance', 's_temperatureambient',
 's_temperatureunit', 's_humidity', 's_barometer', 's_lightsensorbottom'],
 'converter': ohm_no2_to_ugm3,
 'type': int,
 'min': 0,
 'max': 400
 },
 'o3raw':
 {
 'label': 'O3Raw',
 'unit': 'kOhm',
 'input': ['s_o3resistance'],
 'min': 0,
 'max': 20000,
 'converter': ohm_to_kohm
 },
 'o3':
 {
 'label': 'O3',
 'unit': 'ug/m3',
 'input': ['s_o3resistance', 's_no2resistance', 's_coresistance', 's_temperatureambient',
 's_temperatureunit', 's_humidity', 's_barometer', 's_lightsensorbottom'],
 'converter': ohm_o3_to_ugm3,
 'type': int,
 'min': 0,
 'max': 400
 },
.
.
}

Each entry has:

	label: name for display

	unit: the unit of measurement (uom)

	input: optionally one or more input Entries required for conversion (josenefuncs.py [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/devices/josenefuncs.py]). May cascade.

	converter: pointer to Python conversion function

	type: value type

	min/max: valid range (for validation)

Entries starting with s_ denote Jose raw sensor indicators. Others like no2 are
“virtual” (SE) indicators, i.e. derived eventually from s_ indicators.

In the Refiner ETL-config [https://github.com/smartemission/docker-se-stetl/blob/master/config/refiner.cfg] the
desired indicators are specified, for example:
temperature,humidity,pressure,noiseavg,noiselevelavg,co2,o3,co,no2,o3raw,coraw,no2raw.
In this fashion the Refiner remains generic: driven by required indicators and their Entries.

4.3.2. Gas Calibration with ANN (Josene)

Within the SE project a separate activity is performed for gas-calibration based on Big Data Analysis
statistical methods. Values coming from SE sensors were compared to actual RIVM reference values. By matching predicted
values with RIVM-values, a formula for each gas-component is established and refined. The initial approach
was to use linear analysis methods. However, further along in the project the use
of Artificial Neural Networks (ANN) [https://en.wikipedia.org/wiki/Artificial_neural_network]
appeared to be the most promising.

Gas Calibration using ANN for SE is described more extensively in Calibration.

Source code for ANN Gas Calibration learning process: https://github.com/smartemission/docker-se-stetl/tree/master/smartem/calibrator .

4.3.3. GPS Data (Josene)

GPS data from a Josene sensor is encoded in two integers: s_latitude and s_longitude.
Below is the conversion algoritm.

See https://github.com/Geonovum/sospilot/issues/22

Example:

07/24/2015 07:27:36,S.Longitude,5914103
07/24/2015 07:27:36,S.Latitude,53949937
wordt

Longitude: 5914103 --> 0x005a3df7
0x05 --> 5 graden (n2 en n3),
0xa3df7 --> 671223 (n4-n8) fractie --> 0.671223
dus 5.671223 graden

Latitude: 53949937 --> 0x033735f1
0x33 --> 51 graden
0x735f1 --> 472561 --> 0.472561
dus 51.472561
n0=0 klopt met East/North.
5.671223, 51.472561

komt precies uit in de Marshallstraat in Helmond bij Intemo, dus alles lijkt te kloppen!!

In TypeScript:

/*
 8 nibbles:
 MSB LSB
 n1 n2 n3 n4 n5 n6 n7 n8
 n1: 0 of 8, 0=East/North, 8=West/South
 n2 en n3: whole degrees (0-180)
 n4-n8: fraction of degrees (max 999999)
*/
private convert(input: number): number {
 var sign = input >> 28 ? -1 : +1;
 var deg = (input >> 20) & 255;
 var dec = input & 1048575;

 return (deg + dec / 1000000) * sign;
}

In Python:

Lat or longitude conversion
8 nibbles:
MSB LSB
n1 n2 n3 n4 n5 n6 n7 n8
n1: 0 of 8, 0=East/North, 8=West/South
n2 en n3: whole degrees (0-180)
n4-n8: fraction of degrees (max 999999)
def convert_coord(input, json_obj, name):
 sign = 1.0
 if input >> 28:
 sign = -1.0
 deg = float((input >> 20) & 255)
 dec = float(input & 1048575)

 result = (deg + dec / 1000000.0) * sign
 if result == 0.0:
 result = None
 return result

def convert_latitude(input, json_obj, name):
 res = convert_coord(input, json_obj, name)
 if res is not None and (res < -90.0 or res > 90.0):
 log.error('Invalid latitude %d' % res)
 return None
 return res

def convert_longitude(input, json_obj, name):
 res = convert_coord(input, json_obj, name)
 if res is not None and (res < -180.0 or res > 180.0):
 log.error('Invalid longitude %d' % res)
 return None
 return res

4.3.4. Meteo Data (Josene)

Applies to Temperature, Pressure and Humidity. Conversions are trivial.

Python code:

def convert_temperature(input, json_obj, name):
 if input == 0:
 return None

 tempC = int(round(float(input)/1000.0 - 273.1))
 if tempC > 100:
 return None

 return tempC

def convert_barometer(input, json_obj, name):
 result = float(input) / 100.0
 if result > 2000:
 return None
 return int(round(result))

def convert_humidity(input, json_obj, name):
 humPercent = int(round(float(input) / 1000.0))
 if humPercent > 100:
 return None
 return humPercent

4.3.5. Audio Data (Josene)

Calculations with audio data (sound pressure, noise values) are somewhat different from
gasses and meteo:

	units are logarithmic (decibels or dB(A))

	sound pressures are divided over frequencies/bands

	total sound pressure values are summations over frequencies/bands (not averages!)

These principles were not immediately understood and evolved during developement.
See also some discussion around this issue [https://github.com/smartemission/smartemission/issues/88].

The links helped in understanding and check calculations via an online sound calculator:

	http://www.sengpielaudio.com/calculator-spl.htm

	http://www.sengpielaudio.com/calculator-octave.htm

4.3.5.1. Raw Data

Audio (sound pressure) data from a Josene station has multiple indicators:

S.AudioMinus5 Octave -5 in dB(A)
S.AudioMinus4 Octave -4 in dB(A)
S.AudioMinus3 Octave -3 in dB(A)
S.AudioMinus2 Octave -2 in dB(A)
S.AudioMinus1 Octave -1 in dB(A)
S.Audio0 Octave 0 in dB(A)
S.AudioPlus1 Octave +1 in dB(A)
S.AudioPlus2 Octave +2 in dB(A)
S.AudioPlus3 Octave +3 in dB(A)
S.AudioPlus4 Octave +4 in dB(A)
S.AudioPlus5 Octave +5 in dB(A)
S.AudioPlus6 Octave +6 in dB(A)
S.AudioPlus7 Octave +7 in dB(A)
S.AudioPlus8 Octave +8 in dB(A)
S.AudioPlus9 Octave +9 in dB(A)
S.AudioPlus10 Octave +10 in dB(A)

Sound pressure values are spread over octaves. For each octave four different indicators apply:

	S momentary, measured just before transmitting data

	T maximum peak, during base timer interval

	U minimum peak, during base timer interval

	V average, during base timer interval

for example:

s_audio<octave> (momentary)
t_audio<octave> (maximum peak)
u_audio<octave> (minimum peak)
v_audio<octave> (average)

and encoded (uint32) example Octave+3:

s_audioplus3: 1841946,
v_audioplus2: 1381141,
u_audioplus2: 1118225,
t_audioplus2: 1645849,

For each octave, values are in uint32 where bytes 0-2 are used for sound pressure at frequencies
according to ANSI frequency bands. For example: sound pressure for octave 8, ANSI bands 38, 39 and 40:

	Bits 31 to 24 : not used

	Bits 23 to 16 : 1/3 octave ANSI band e.g. 40, center frequency: 10kHz

	Bits 15 to 8 : 1/3 octave ANSI band e.g. 39, center frequency: 8kHz

	Bits 7 to 0 : 1/3 octave ANSI band e.g. 38, center frequency: 6.3kHz

This requires decoding bytes 0,1,2 from each uint32 value, in Python:

bands = [float(input_value & 255), float((input_value >> 8) & 255), float((input_value >> 16) & 255)]

Via a bit shift and bitmask (2pow8-1 or 255), an array of 3 band-values (bytes 0-2) for each frequency is decoded.

4.3.5.2. Calculating Noise Indicators

In the first approach only the average (V) indicators are taken and converted/aggregated into
hourly values through the Refiner. There are requirements to produce more indicators like 5 minute aggregations
and peak indicators. Two indicators are produced:

	noiseavg average hourly noise in dB(A)

	noiselevelavg average hourly noise level (value 1-5)

Conversions are implemented as follows. First the definition from josenedefs.py:

'noiseavg':
 {
 'label': 'Average Noise',
 'unit': 'dB(A)',
 'input': ['v_audio0', 'v_audioplus1', 'v_audioplus2', 'v_audioplus3', 'v_audioplus4', 'v_audioplus5',
 'v_audioplus6', 'v_audioplus7', 'v_audioplus8'],
 'meta_id': 'au-V30_V3F',
 'converter': convert_noise_avg,
 'type': int,
 'min': 0,
 'max': 195
 },
'noiselevelavg':
 {
 'label': 'Average Noise Level 1-5',
 'unit': 'int',
 'input': 'noiseavg',
 'meta_id': 'au-V30_V3F',
 'converter': convert_noise_level,
 'type': int,
 'min': 1,
 'max': 5
 },

The convert_noise_avg() function takes all a selection (31,5Hz to 8kHz) of v_audio* audio values (sum per octave) and
calculates the sum over all octaves, from josenefuncs.py.
Note that subbands 0 (40 Hz) of v_audio0 and subband 2 (10KHz) of v_audioplus8 are removed.

Converts audio var and populates sum NB all in dB(A) !
Logaritmisch optellen van de waarden per frequentieband voor het verkrijgen van de totaalwaarde:
#
10^(waarde/10)
En dat voor de waarden van alle frequenties en bij elkaar tellen.
Daar de log van en x10
#
Normaal tellen wij op van 31,5 Hz tot 8 kHz. In totaal 9 oktaafanden.
31,5 63 125 250 500 1000 2000 4000 en 8000 Hz
#
Of 27 1/3 oktaafbanden: 25, 31.5, 40, 50, 63, 80, enz
def convert_noise_avg(value, json_obj, sensor_def, device=None):
 # For each audio observation:
 # decode into 3 bands (0,1,2)
 # determine sum of these bands (sound for octave)
 # determine overall sum of all octave bands

 # Extract values for bands 0-2
 input_names = sensor_def['input']
 dbMin = sensor_def['min']
 dbMax = sensor_def['max']

 # octave_values = []
 for input_name in input_names:
 input_value = json_obj[input_name]

 # decode dB(A) values into 3 bands (0,1,2) for this octave
 bands = [float(input_value & 255), float((input_value >> 8) & 255), float((input_value >> 16) & 255)]

 if input_name is 'v_audio0':
 # Remove 40Hz subband
 del bands[0]
 elif input_name is 'v_audioplus8':
 # Remove 10KHz subband
 del bands[2]

 # determine sum of these 3 bands
 band_sum = 0
 band_cnt = 0
 for i in range(0, len(bands)):
 band_val = bands[i]

 # skip outliers
 if band_val < dbMin or band_val > dbMax:
 continue

 band_cnt += 1

 # convert band value Decibel(A) to Bel and then get "real" value (power 10)
 band_sum += math.pow(10, band_val / 10)
 # print '%s : band[%d]=%f band_sum=%f' %(name, i, bands[i], band_sum)

 if band_cnt == 0:
 return None

 # Take sum of "real" values and convert back to Bel via log10 and Decibel via *10
 # band_sum = math.log10(band_sum / float(band_cnt)) * 10.0
 band_sum = math.log10(band_sum) * 10.0

 # print '%s : avg=%d' %(name, band_sum)

 if band_sum < dbMin or band_sum > dbMax:
 return None

 # octave_values.append(round(band_sum))

 # Gather values
 if 'noiseavg' not in json_obj:
 # Initialize sum value to first 1/3 octave band value
 json_obj['noiseavg'] = band_sum
 json_obj['noiseavg_total'] = math.pow(10, band_sum / 10)
 json_obj['noiseavg_cnt'] = 1
 else:
 # Add 1/3 octave band value to total and derive dB(A) value
 json_obj['noiseavg_cnt'] += 1
 json_obj['noiseavg_total'] += math.pow(10, band_sum / 10)
 #json_obj['noiseavg'] = int(
 # round(math.log10(json_obj['noiseavg_total'] / json_obj['noiseavg_cnt']) * 10.0))
 json_obj['noiseavg'] = int(
 round(math.log10(json_obj['noiseavg_total']) * 10.0))

 if json_obj['noiseavg'] < dbMin or json_obj['noiseavg'] > dbMax:
 return None

 # Determine octave nr from var name
 # json_obj['v_audiolevel'] = calc_audio_level(json_obj['v_audioavg'])
 # print 'Unit %s - %s band_db=%f avg_db=%d level=%d' % (json_obj['p_unitserialnumber'], sensor_def, band_sum, json_obj['v_audioavg'], json_obj['v_audiolevel'])
 return json_obj['noiseavg']

From this value the noiselevelavg indicator is calculated:

From https://www.teachengineering.org/view_activity.php?url=collection/nyu_/activities/nyu_noise/nyu_noise_activity1.xml
level dB(A)
1 0-20 zero to quiet room
2 20-40 up to average residence
3 40-80 up to noisy class, alarm clock, police whistle
4 80-90 truck with muffler
5 90-up severe: pneumatic drill, artillery,
#
Peter vd Voorn:
Voor het categoriseren van de meetwaarden kunnen we het beste beginnen bij de 20 dB(A).
De hoogte waarde zal 95 dB(A) zijn. Bijvoorbeeld een vogel van heel dichtbij.
Je kunt dit nu gewoon lineair verdelen in 5 categorieen. Ieder 15 dB. Het betreft buiten meetwaarden.
20 fluister stil
35 rustige woonwijk in een stad
50 drukke woonwijk in een stad
65 wonen op korte afstand van het spoor
80 live optreden van een band aan het einde van het publieksdeel. Praten is mogelijk.
95 live optreden van een band midden op een plein. Praten is onmogelijk.
def calc_audio_level(db):
 levels = [20, 35, 50, 65, 80, 95]
 level_num = 1
 for i in range(0, len(levels)):
 if db > levels[i]:
 level_num = i + 1

 return level_num

The hourly average is calculated by averaging all values within the Refiner:

M = M + (x-M)/n
Here M is the (cumulative moving) average, x is the new value in the
sequence, n is the count of values. Using floats as not to loose precision.
def moving_average(self, moving_avg, x, n, unit):
 if 'dB' in unit:
 # convert Decibel to Bel and then get "real" value (power 10)
 # print moving_avg, x, n
 x = math.pow(10, x / 10)
 moving_avg = math.pow(10, moving_avg / 10)
 moving_avg = self.moving_average(moving_avg, x, n, 'int')
 # Take average of "real" values and convert back to Bel via log10 and Decibel via *10
 return math.log10(moving_avg) * 10.0

 # Standard moving avg.
 return float(moving_avg) + (float(x) - float(moving_avg)) / float(n)

So summarizing Sound Pressure hourly values are calculated in three steps:

	sum sound pressure dB(A) per octave by summing its 1/3 octave subbands

	sum sound pressure dB(A) for all octaves

	calculate hourly average from these last sums

4.4. Publishers

A Publisher ETL process reads “Refined” indicator data and publishes
these to various web-services. Most specifically this entails publication to:

	OGC Sensor Observation Service (SOS)

	OGC Sensor Things API (STA)

For both SOS and STA the transactional/REST web-services are used.

Publishing to OGC WMS and WFS is not explicitly required: these
services can directly use the PostGIS database tables and VIEWs
produced by the Refiner. For WMS, GeoServer WMS Dimension for the “time” column is
used together with SLDs that show values, in order to provide historical data via WMS.
WFS can be used for bulk download.

4.4.1. General

The ETL chain is setup using the smartemdb.RefinedDbInput class directly coupled
to a Stetl Output class, specific for the web-service published to.

4.4.2. Sensor Observation Service (SOS)

The sosoutput.SOSTOutput class is used to publish to a(ny) SOS using the standardized
SOS-Transactional web-service. The implementation is reasonably straightforward, with the following
specifics:

JSON: JSON is used as encoding for SOS-T requests

Lazy sensor insertion: If InsertObservation returns HTTP statuscode 400 an InsertSensor
request is submitted. If that is succesful the same InsertObservation is attempted again.

SOS-T Templates: all SOS-T requests are built using template files. In these files a complete
request is contained, with specific parameters, like station_id symbolically defined. At publication
time these are substituted. Below an excerpt of an InsertObservation template:

{{
 "request": "InsertObservation",
 "service": "SOS",
 "version": "2.0.0",
 "offering": "offering-{station_id}",
 "observation": {{
 "identifier": {{
 "value": "{unique_id}",
 "codespace": "http://www.opengis.net/def/nil/OGC/0/unknown"
 }},
 "type": "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement",
 "procedure": "station-{station_id}",
 "observedProperty": "{component}",
 "featureOfInterest": {{
 "identifier": {{
 "value": "fid-{station_id}",
 "codespace": "http://www.opengis.net/def/nil/OGC/0/unknown"
.
.

4.4.2.1. Deleting SOS Entities

Also re-init of the 52North SOS DB is possible via the
sos-clear.py script [https://github.com/smartemission/smartemission/blob/master/services/sos52n/config/sos-clear.py]
(use with care!). This needs to go hand-in-hand with
a restart of the SOS Publisher [https://github.com/smartemission/smartemission/blob/master/database/util/sos-publisher-init.sh] .

4.4.2.2. Implementation

Below are links to the sources of the SOS Publisher implementation.

	ETL run script: https://github.com/smartemission/smartemission/blob/master/etl/sospublisher.sh

	Stetl conf: https://github.com/smartemission/docker-se-stetl/blob/master/config/sospublisher.cfg

	Refined DB Input: https://github.com/smartemission/docker-se-stetl/blob/master/smartem/refineddbinput.py

	SOS-T publication: https://github.com/smartemission/docker-se-stetl/blob/master/smartem/publisher/sosoutput.py

	SOS-T templates: https://github.com/smartemission/docker-se-stetl/blob/master/smartem/publisher/sostemplates

	Input database schema: https://github.com/smartemission/smartemission/blob/master/database/schema/db-schema-refined.sql (source input schema)

	Re-init SOS DB schema (.sh): https://github.com/smartemission/smartemission/blob/master/services/sos52n/config/sos-clear.py

	Restart SOS Publisher (.sh): https://github.com/smartemission/smartemission/blob/master/database/util/sos-publisher-init.sh (inits last gis published to -1)

4.4.3. Sensor Things API (STA)

The STAOutput [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/publisher/staoutput.py] class
is used to publish to any SensorThings API server using the standardized
OGC SensorThings REST API [http://docs.opengeospatial.org/is/15-078r6/15-078r6.html].
The implementation is reasonably straightforward, with the following specifics:

JSON: JSON is used as encoding for STA requests.

Lazy Entity Insertion: At POST Observation it is determined via a REST GET requests if the corresponding
STA Entities, Thing, Location, DataStream etc are present. If not these are inserted
via POST requests to the STA REST API and cached locally in the ETL process for the duration
of the ETL Run.

STA Templates: all STA requests are built using
STA template files [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/publisher/statemplates].
In these files a complete request body (POST or PATCH)
is contained, with specific parameters, like station_id symbolically defined. At publication
time these are substituted.

Below the POST Location STA template:

{{
 "name": "{station_id}",
 "description": "Location of Station {station_id}",
 "encodingType": "application/vnd.geo+json",
 "location": {{
 "coordinates": [{lon}, {lat}],
 "type": "Point"
 }}
}}

{{

The location_id is returned from the GET. NB Location may also be PATCHed if
the Location of the Thing has changed.

Below the POST Thing STA template:

{{
 "name": "{station_id}",
 "description": "Smart Emission station {station_id}",
 "properties": {{
 "id": "{station_id}"
 }},
 "Locations": [
 {{
 "@iot.id": {location_id}
 }}
]
}}

Similarly DataStream, ObservedProperty are POSTed if non-existing.
Finally the POST Observation STA template:

{{
 "Datastream": {{
 "@iot.id": {datastream_id}
 }},
 "phenomenonTime": "{sample_time}",
 "result": {sample_value},
 "resultTime": "{sample_time}",
 "parameters": {{
 {parameters}
 }}
}}

4.4.4. Entity Mapping

Data records produced by the Refiner are mapped to STA Entities by the STA Publisher.

	SE Artefact

	STA Entity

	Example

	Station

	Thing

	Intemo station AirSensEUR Box

	Station point location

	Location

	AirSensEUR Box location at 4.982, 52.358 lon/lat

	Sensor Type/Metadata

	Sensor

	AlphaSense NO2B43F

	Type and unit (uom)

	ObservedProperty

	NO2 in ug/m3

	Value and time

	Observation

	42 ug/m3 on 1 aug 2018 13:42:45

	Combination of above

	Datastream

	Combines T, S, OP and O

	Station time+location

	HistoricalLocation

	AirSensEUR Box at lat/lon 52.35,4.92 on on 1 aug 2018 13:42:45

	Station Area

	FeatureOfInterest

	Location of Station 11820004

4.4.4.1. Deleting STA Entities

Also deletion of all Entities is possible via the
staclear.py script [https://github.com/smartemission/smartemission/blob/master/database/util/staclear.py]
(use with care!). This needs to go hand-in-hand with
a restart of the STA Publisher [https://github.com/smartemission/smartemission/blob/master/database/util/sta-publisher-init.sh] .

4.4.4.2. Implementation

Below are links to the sources of the STA Publisher implementation.

	ETL run script: https://github.com/smartemission/smartemission/blob/master/etl/stapublisher.sh

	Stetl conf: https://github.com/smartemission/docker-se-stetl/blob/master/config/stapublisher.cfg

	Refined DB Input: https://github.com/smartemission/docker-se-stetl/blob/master/smartem/refineddbinput.py

	STA publication: https://github.com/smartemission/docker-se-stetl/blob/master/smartem/publisher/staoutput.py

	STA templates: https://github.com/smartemission/docker-se-stetl/blob/master/smartem/publisher/statemplates

	Input database schema: https://github.com/smartemission/smartemission/blob/master/database/schema/db-schema-refined.sql (source schema)

	Restart STA publisher (.sh): https://github.com/smartemission/smartemission/blob/master/database/util/sta-publisher-init.sh (inits last gis published to -1)

	Clear/init STA server (.sh): https://github.com/smartemission/smartemission/blob/master/database/util/staclear.sh (deletes all Entities!)

	Clear/init STA server (.py): https://github.com/smartemission/smartemission/blob/master/database/util/staclear.py (deletes all Entities!)

5. Calibration

This chapter describes how gas measurements in kOhm and ppb are translated
to the standardized and ‘better interpretable’ units of ug/m3 (microgram per cubic meter).

The challenge is that Jose sensors produce noisy and biased measurements of
gas components on a wrong scale. The data is noisy because two consecutive
measurements of the same gas component can vary a lot. The measurements are
biased because the gas sensors are cross sensitive for (at least)
temperature and other gas components. The measurements are on the wrong
scale because the results in kOhm instead of the more interpretable ug/m3
or ppm. These issues are fixed by calibrating the Jose sensors to reliable
RIVM measurements.

Data from Jose and RIVM is pre-processed before using it to train an Artificial Neural Network (ANN). The performance is optimized and the best model is chosen for online predictions.

These processes were initially executed manually. At a later stage, and thus currently,
the entire ANN Calibration process is automated.

The idea to use ANN emerged when initial calibration using Linear Regresssion-based
methods did not render satisfactory results. From studying existing research like

	“Field calibration of a cluster of low-cost available sensors for air quality monitoring” by Spinelle, Gerboles et al [http://www.sciencedirect.com/science/article/pii/S092540051500355X]

	“Air Temperature Estimation by Using Artificial Neural Network Models in the Greater Athens Area, Greece” by A. P. Kamoutsis et al. [https://www.hindawi.com/journals/isrn/2013/489350/]

ANN appeared a good candidate. Though complex when manually performed, we also
aimed to overcome this by automating both the learning and calibration process
within the already existing SE ETL process pipelines.

5.1. Data

Data used for calibration (training the ANN) originates from Jose (raw data) and RIVM (reference data)
stations that are located pairwise in close proximity. They are located at the Graafseweg and Ruyterstraat in
Nijmegen.

Data was gathered for a period of february 2016 to now.

Data was initially manually delivered:

	RIVM reference data by Jan Vonk (RIVM).

	Raw data from the Jose sensors by Robert Kieboom (CityGIS).

At a later stage, and thus currently, this data delivery is
automated and continuous:

	RIVM data is harvested from the public RIVM LML SOS via the ETL Harvester_rivm

	Jose data is harvested from the Whale Server(s) via the ETL Harvester and then further extracted via the ETL Extractor

The overal datastream is depicted in Figure 1 below.

[image: _images/datastream-calibration.jpg]
Figure 1 - Overall setup ANN calibration

The harvested RIVM SOS data provides aggregated hour-records. Data from the Jose sensors have
irregularities due to lost wifi connection or power issues. Figure 2
below shows the periods of valid gas measurements taken by Jose sensors.

[image: _images/jose_measurements.png]
Figure 2 - Valid gas measurements taken by Jose sensors

5.2. Pre-processing

Before using the data form Jose and RIVM it needs to be pre-processed:

	Erroneous measurements are removed based on the error logs from RIVM and
Jose.

	Extremely unlikely measurements are removed (e.g. gas concentrations below 0)

	The RIVM data is interpolated to each time a Jose measurement was taken.

	The RIVM data is merged with the Jose data. For each Jose measurement the
corresponding RIVM measurements are now known.

	A rolling mean is applied to the gas components of the Jose data. Actually
this step is done during the parameter optimization to find out which
length of rolling mean should be used.

	A random subset of 10% of the data is chosen to prevent redundant
measurements. Actually this step is done during the parameter optimization.

The pre-processing was initially done in R, later in Python (see below).

5.3. Neural Networks

There are several options to model the relationship between the Jose
measurements and RIVM measurements. In this project a Feed-forward Neural Network
is used. Its advantage is that it can model complex non-linear
relations. The disadvantage is that understanding the model is hard.

A neural network in general can be thought of as a graph (see Figure 2). A graph
contains nodes and edges. The neural network specifies the relation between
the input nodes and output nodes by several edges and hidden layers. The
values for the input nodes are clamped to the independent variables in the
data set, i.e. the Jose measurements. The neural network should adapt the
weights of each of the edges such that the value of the output node is as
close as possible to the dependent variable, i.e. the RIVM measurement.

The hidden nodes take a weighted average (resembled by de edges to each of
the inputs) and then apply an activation function. The activation function
squashes the weighted average to a finite range (e.g. [-1, 1]). This allows the
neural network to transform the inputs in a non-linear way to the output
variable.

[image: _images/neural_network.png]
Figure 3 - The structure of a Feed-forward Neural Network can be
visualized as a graph

5.4. Training a Neural Network

A neural network is completely specified by the the weights between the
nodes and the activation function of the nodes. The latter is specified on
beforehand and thus only the weights should be learned during the training
phase.

There is no way to find the optimal weights in an efficient way for an
arbitrary neural network. Therefore, a lot of methods are proposed to
iteratively approach the global optimum.

Most of them are based on the idea of back-propagation. With
back-propagation the error for each of the records in the data is used to
change the weights slightly. The change in weights makes the error for that
specific record lower. However, it might increase the error on other
records. Therefore, only a tiny alteration is made for each error in
each record.

As an addition the used L-BFGS method [https://en.wikipedia.org/wiki/Limited-memory_BFGS]
also uses the first and second derivatives
of the error function to converge faster to a solution.

5.5. Performance evaluation

To evaluate the performance of the model the Root Mean Squared Error [https://en.wikipedia.org/wiki/Root-mean-square_deviation] (RMSE) is used.
The RMSE is the average error (prediction - actual value) of
the model. Lower RMSE values are better.

Testing the model on the same data as it is trained on could lead to
over-fitting. This means that the model learn relations that are not there
in practice. For this reason the performance evaluation needs to be done on
different data then the learning of the model. For example, 90% of the data
is used to train the model and 10% is used to test the model. This process
can be repeated when using a different 10% to test the data. With the
90%-10% ratio this process can be repeated 10 times. This is called cross
validation. In practice, cross validation with 5 different splits of the data
is used.

5.6. Parameter optimization

Training a neural network optimizes the weights between the nodes. However,
the training process is also susceptible to parameters. For example, the
number of hidden nodes, the activation function of the hidden nodes, the
learning rate, etc. can be set. For a complete list of all the parameters
see the documentation of MLPRegressor [http://scikit-learn.org/dev/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor].

Choosing different parameters for the neural network learning influences the
performance and complexity of the model. For example, using to few hidden
nodes results in a model that cannot fit the pattern in the data. On the
other hand, using to many hidden nodes may model relationships that are to
complex and do not generalize to unseen data.

Parameter optimization is the process of evaluating different parameters.
RandomizedSearchCV [http://scikit-learn.org/stable/modules/generated/sklearn.grid_search.GridSearchCV.html#sklearn.grid_search.GridSearchCV] from sklearn is used to try different
parameters and evaluate them using cross-validation. This method trains and
evaluates a neural network n_iter times. The actual code looks like this:

gs = RandomizedSearchCV(gs_pipe, grid, n_iter, measure_rmse, n_jobs=n_jobs,
 cv=cv_k, verbose=verbose, error_score=np.NaN)
gs.fit(x, y)

The first argument gs_pipe is the pipeline that filters the data and
applies a neural network, grid is a collection with distributions of
possible parameters, n_iter is the number of parameters to try,
measure_rmse is a function that computes the RMSE performance and cv_k
specifies the number of cross-validations to run for each parameter setting.
The other parameters control the process.

5.7. Choosing the best model

A good model has a good performance but is also as simple as possible.
Simpler models are less likely to over-fit, i.e simple models are less
likely to fit relations that do not generalize to new data. For this reason,
the simplest model that performs about as well (e.g. 1 standard deviation)
as the best model is selected.

For each gas component this results in models with different learning
parameters. Differences are in the size of the hidden layers, the learning
rate, the regularization parameter, the momentum and the activation function
. For more information about these parameters check the documentation of
MLPRegressor [http://scikit-learn.org/dev/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor]. The parameters for each gas
component are listed below:

CO_final = {'mlp__hidden_layer_sizes': [56],
 'mlp__learning_rate_init': [0.000052997],
 'mlp__alpha': [0.0132466772],
 'mlp__momentum': [0.3377605568],
 'mlp__activation': ['relu'],
 'mlp__algorithm': ['l-bfgs'],
 'filter__alpha': [0.005]}

O3_final = {'mlp__hidden_layer_sizes': [42],
 'mlp__learning_rate_init': [0.220055322],
 'mlp__alpha': [0.2645091504],
 'mlp__momentum': [0.7904790613],
 'mlp__activation': ['logistic'],
 'mlp__algorithm': ['l-bfgs'],
 'filter__alpha': [0.005]}

NO2_final = {'mlp__hidden_layer_sizes': [79],
 'mlp__learning_rate_init': [0.0045013008],
 'mlp__alpha': [0.1382210543],
 'mlp__momentum': [0.473310471],
 'mlp__activation': ['tanh'],
 'mlp__algorithm': ['l-bfgs'],
 'filter__alpha': [0.005]}

5.8. Online predictions

The sensorconverters.py converter has routines to refine the Jose data. Here
the raw Jose measurements for meteo and gas components are used to predict
the hypothetical RIVM measurements of the gas components.

Three steps are taken to convert the raw Jose measurement to hypothetical
RIVM measurements.

	The measurements are converted to the units with which the model is
learned. For gas components this is kOhm, for temperature this is Celsius,
humidity is in percent and pressure in hPa.

	A rolling mean removes extreme measurements. Currently the previous
rolling mean has a weight of 0.995 and the new value a weight of 0.005.
Thus alpha is 0.005 in the following code:

def running_mean(previous_val, new_val, alpha):
 if new_val is None:
 return previous_val

 if previous_val is None:
 previous_val = new_val
 val = new_val * alpha + previous_val * (1.0 - alpha)
 return val

	For each gas component a neural network model is used to predict the
hypothetical RIVM measurements. Prediction are only made when all gas
components are available. The actual prediction is made with this code:

Predict RIVM value if all values are available
if None not in [o3, no2, co2, temp_amb, temp_unit, humidity, baro]:
 value_array = np.array([baro, humidity, temp_amb, temp_unit, gasses['co2'], gasses['no2'], gasses['o3']])
 val = pipeline_objects[gas].predict(value_array.reshape(1, -1))[0]

return val

5.9. Results

Calibrated values are also stored in InfluxDB and can be viewed using Grafana [http://data.smartemission.nl/grafana/].
Login with name user and password user.

See an example in Figure 5 and 6 below. Especially in Figure 5, one can see that calibrated values
follow the RIVM reference values quite nicely. More research is needed to see
how the ANN is statistically behaves.

[image: _images/grafana2.jpg]
Figure 5 - Calibrated and Reference values in Grafana

[image: _images/grafana1.jpg]
Figure 6 - Calibrated and Reference values in Grafana

5.10. Implementation

The implementation of the above processes is realized in Python. Like other ETL
within the Smart Emission Platform, the implementation is
completely done using the Stetl ETL Framework [http://stetl.org].
The complete implementation can be found in GitHub [https://github.com/smartemission/docker-se-stetl].

Four Stetl ETL processes realize the three phases of ANN Calibration:

	Data Harvesting - obtaining raw (Jose) and reference (RIVM) data (2 processes)

	Calibrator - the ANN learning process, providing/storing the ANN Model (in PostGIS)

	Refiner - actual calibration using the ANN Model (from PostGIS)

Data Harvesting and Refiner are scheduled (via cron) continously. The Calibrator runs
“once in a while”.

5.10.1. Data Harvesting

The Harvester_rivm ETL process obtains LML measurements records from the RIVM SOS.
Data is stored in InfluxDB.

The standard SE Harvester already obtains raw data from the Whale servers
and stores this data in the PostGIS DB.
To make this data better accessible
the Extractor selects (not all data goes through ANN)
and obtains raw measurements (gases and others like meteo) records from the
PostGIS DB and puts this data in InfluxDB.

The result of Data Harvesting are two InfluxDB Measurements collections (tables) with
timeseries representing the raw (Jose) and reference (RIVM) data.

5.10.2. Calibrator

The Calibrator takes as input the two InfluxDB Measurements (tables): rivm (reference data)
joseraw (Raw Jose data). Here “the magic” is performed in the following steps:

	merging the two datastreams in time

	performing the learning process

	storing the result ANN model in PostGIS

5.10.3. Refiner

This process takes raw data from the harvested timeseries data. By updating the sensordefs
object with references to the ANN model the raw data is calibrated via the sensorconverters
and stored in PostGIS.

6. Web Services

This chapter describes how various mostly OGC OWS web services are realized on top of the
converted/transformed data as described in the data chapter.
In particular:

	WFS and WMS-Time services

	OWS SOS (plus REST) service

	Smart Emission SOS Emulator service for Last Values

	SensorThings API

	InfluxDB + Chronograf

	Grafana

	Monitoring: Prometheus + Grafana

All services are defined under https://github.com/smartemission/smartemission/tree/master/services.

6.1. Web Frontend

All webservices, APIs and the website http://data.smartemission.nl are provided
via an Apache2 HTTP server. This server is the main outside entry to the platform
and run via Docker.

Website and Viewers are run as a standard HTML website. The various API/OGC web-services
are forwarded via proxies to the backed-servers. For example GeoServer
and the 52North SOS are connected via mod-proxy-ajp.

The SOS Emulator for Last Values is hosted as a Python Flask app.

6.1.1. Implementation

	Docker image: https://github.com/smartemission/smartemission/tree/master/docker/apache2

	Main dir: https://github.com/smartemission/smartemission/tree/master/services/web

	Running: https://github.com/smartemission/smartemission/tree/master/services/web/run.sh

	SOS Emulator: https://github.com/smartemission/smartemission/tree/master/services/api/sosrest

	Website and Viewers: https://github.com/smartemission/smartemission/tree/master/services/web/site

	Apache2 config: https://github.com/smartemission/smartemission/tree/master/services/web/config/sites-enabled

NB in 2018 this will be replaced by a setup using Traefik [https://traefik.io/].

6.1.2. Links Traefik

	https://traefik.io/

	http://niels.nu/blog/2017/continuous-blog-delivery-p1.html

	https://www.digitalocean.com/community/tutorials/how-to-use-traefik-as-a-reverse-proxy-for-docker-containers-on-ubuntu-16-04

6.2. WFS and WMS Services

WMS and WFS are provided by GeoServer. These services are realized on top of the
PostGIS tables/VIEWs resulting from the Refiner ETL process for timeseries (history) based
layers and the “Last” table/VIEWs for Layers showing current values.

The OGC standard WMS-Dimension facility is used to provide WMS layers for timeseries (history).

6.3. SOS Services

“The OGC Sensor Observation Service aggregates readings from live, in-situ and remote sensors.
The service provides an interface to make sensors and sensor data archives accessible via an
interoperable web based interface.”

The chapter on server administration describes how the SOS is deployed. This is
called here the ‘SOS Server’.

The SOS server is provided using the 52North SOS web application (v4.3.7).

6.3.1. Docker for 52North SOS

Deployment of this SOS via Docker required some specific Docker features in order
to deal with the 52North SOS configuration files.

During Docker build some specific configuration files are
copied permanently into the Docker image
as it is not possible to map these via symlinks from host. These files
are maintained in
GitHub https://github.com/smartemission/smartemission/tree/master/docker/sos52n/resources/config:

	datasource.properties

	logback.xml

	timeseries-api_v1_beans.xml (just for Service Identification)

The third config file that the SOS needs is WEB-INF/configuration.db.
In the Docker image this file is a symlink of /opt/sosconfig/configuration.db.
A default version is provided. However, to be able to maintain
this file over reruns of the Docker image a Docker volume mount should be
done within the service invokation. This is done lazily within the Docker
run file for the 52North SOS:
https://github.com/smartemission/smartemission/blob/master/services/sos52n/run.sh
On the first run the /opt/sosconfig is mapped locally (plus the SOS log dir).
From then on configuration.db is maintained on the host.

At runtime the sos52n Docker instance is linked to the postgis Docker instance.

6.3.2. Implementation

	Docker image: https://github.com/smartemission/smartemission/tree/master/docker/sos52n

	Running: https://github.com/smartemission/smartemission/tree/master/services/sos52n

6.4. SensorThings API

From https://wiki.tum.de/display/sddi/SensorThings+API :

“The OGC SensorThings API provides an open, geospatial-enabled and unified way to interconnect the Internet of Things (IoT)
devices, data, and applications over the Web. The OGC SensorThings API is an open standard, and
that means it is non-proprietary, platform-independent, and perpetual royalty-free.
Although it is a new standard, it builds on a rich set of proven-working and widely-adopted open standards,
such as the Web protocols and the OGC Sensor Web Enablement (SWE) standards, including the ISO/OGC
Observation and Measurement (O&M) data model.

The main difference between the SensorThings API and the OGC Sensor Observation Service (SOS) is that the
SensorThings API is designed specifically for the resource-constrained IoT devices and the Web developer community.
As a result, the SensorThings API is lightweight and follows the REST principles,
the use of an efficient JSON encoding, the use of MQTT protocol, the use of the flexible OASIS OData protocol and URL conventions.”

For the SensorThings API the Geodan GOST [https://www.gostserver.xyz/] STA implementation is used.

The GOST server is available at http://data.smartemission.nl/gost/v1.0.
The GOST Dashboard is available at http://data.smartemission.nl/adm/gostdashboard/ (admin access only).

NB all modifying HTTP methods (POST, PUT, DELETE, PATCH) and the GOST Dashboard
are password-protected.

6.4.1. Implementation

Using two Docker Images: one for the GOST Server and one for the GOST Dashboard. The
database is served from the SE PostGIS Docker Container.

	Docker image GOST Server: https://hub.docker.com/r/geodan/gost/

	Docker image GOST Dashboard v2: https://hub.docker.com/r/geodan/gost-dashboard-v2/

	Running: https://github.com/smartemission/smartemission/tree/master/services/gost

	Running: https://github.com/smartemission/smartemission/tree/master/services/gostdashboard

NB The Dashboard is not yet fully running via the SE web proxy pending this issue [https://github.com/gost/dashboard-v2/issues/2].

6.5. MQTT - Mosquitto

For the SensorThings API (GOST) MQTT is used. MQTT is a generic IoT protocol
that can be used in other contexts besides STA. NB MQTT is not currently in use within SE.

The MQTT server is available at http://data.smartemission.nl:1883
and http://data.smartemission.nl:9001

See also the GOST Dashboard at http://data.smartemission.nl/adm/gostdashboard/ (admin only).

6.5.1. Implementation

	Docker image: https://hub.docker.com/r/toke/mosquitto/

	Running: https://github.com/smartemission/smartemission/tree/master/services/mosquitto

6.6. InfluxDB

InfluxDB has been added later in the project to support the Calibration process.
For now this service is used internally to collect both raw Sensor data and
calibrated RIVM data.

At a later stage InfluxDB may get a more central role in the platform.

6.6.1. Implementation

	Docker image: https://hub.docker.com/_/influxdb/

	Running: https://github.com/smartemission/smartemission/tree/master/services/influxdb

6.7. Grafana

Grafana has been added later in the project to support InfluxDB visualization.

At a later stage Grafana may get a more central role in the platform.

6.7.1. Implementation

	Docker image: https://github.com/grafana/grafana-docker

	Running: https://github.com/smartemission/smartemission/tree/master/services/grafana

7. Dataflow and APIs

This chapter focuses on dataflow and (external) protocol access to
the SE Platform via so called Application Programming Interfaces (APIs).

See the Architecture and Data Management chapters for the overall design and data
processing of the SE Platform.

7.1. Overview

This section sketches the global dataflow and introduces the main APIs.

[image: _images/dataflow-apis.jpg]
Figure 1 - Global Dataflow and APIs

Figure 1 above emphasizes the datastreams (red arrows) through the SE platform.

Data eventually always originates from sensors, mostly within stations like Intemo Josene or EU JRC AirSensEUR.
Sensors are shown at the bottom of figure 1. One of the first observations
is that sensors do not send their data directly to the SE Platform, but push measurements to
so called Data Collectors (drawn as squares). The SE Platform follows a pull model: data is
continuously fetched from Data Collectors using Harvesters.

Further following the flow of data, the ETL processes (as described in Data Management) will eventually
push the refined (validated, optionally aggregated, converted and/or calibrated) data to various
API services that provide (mostly standard OGC) Web APIs from which clients (e.g. Web Viewer Apps), even
in theory another SE Harvester, can consume the data.

There are two groups of APIs: Inbound (producer) APIs (in orange) and Outbound (consumer) APIs (in blue).
In some cases the reason for an API-existence is historic: in the initial phase of the
project, experience needed to be gained with multiple APIs. A short overview follows.

7.1.1. Inbound APIs

These are the APIs through which Harvesters pull (mainly raw) data into the platform.

7.1.1.1. Whale API a.k.a. Raw Sensor API

Via this API the SE Harvesters pull in data from Data Collectors.
This custom Web API was developed (by Robert Kieboom and Just van den Broecke)
specifically for the project. As
CityGIS already had developed a data collection server, but without
data refinement and OGC services, a way was needed to transfer data to the SE Platform.
A Pull/Harvesting model and API was chosen as it had advantages over a push-model:

	the SE Platform can pull-in data at its own pace

	resilient from restarts

	easier to deploy in an OTAP environment: e.g. both Test and Production servers can use the same Data Collectors

The specification [https://github.com/smartemission/smartemission/blob/master/docs/specs/rawsensor-api/rawsensor-api.txt]
and examples can be found in GitHub:
https://github.com/smartemission/smartemission/tree/master/docs/specs/rawsensor-api.

The Whale API has two main services:

	fetch timeseries (history) data

	fetch latest data of any device

Devices in this case are Josene Sensors that contain multiple sensors, which together
provide over 40 indicators. The main classes are: gasses (for AQ), meteo (temperature etc),
sound pressure (noise), GPS and misc data like light intensity.

7.1.1.2. InfluxDB

Mainly used for AirSensEUR (ASE). Each ASE (mostly hourly) pushes its data to a remote InfluxDB.
Per ASE station a single InfluxDB Measurement (equivalent of a regular DB Table) is used.

Just like the Whale API, InfluxDB also provides an HTTP API
to query Measurements and thus pull (harvest) timeseries data.

An InfluxDB instance can be remote or within the same server as the rest of the SE Platform.
This also provides a means to couple a push-based model to a pull-based model.

7.1.1.3. Sensor Observation Service (SOS)

Data can be pulled from a remote SOS. For the SE platform this is used to pull in reference data
from RIVM for the ANN Calibration learning process. See also the Calibration chapter.

7.1.2. Outbound APIs

These are the APIs from which clients pull (mainly refined/aggregated) data from the platform.

7.1.2.1. Web Map Service (WMS)

A WMS with plain image and time-dimension support is provided. This allows
clients to fetch images through history (e.g. with a timeslider in a web-viewer).
The WMS OGC Standard provide Dimension-support, in this case time as dimension.

Endpoint: http://data.smartemission.nl/geoserver/wms?service=WMS&request=GetCapabilities

7.1.2.2. Web Feature Service (WFS)

This allows downloading of timeseries data with geospatial filter-support.

Endpoint: http://data.smartemission.nl/geoserver/wfs?service=WFS&request=GetCapabilities

7.1.2.3. Sensor Observation Service (SOS)

This provides a standard OGC SOS service: both the standard OGC versions 1 and 2, but
also the 52North-specific SOS REST service.

Endpoint: http://data.smartemission.nl/sos52n/service?service=SOS&request=GetCapabilities

7.1.2.4. SensorThings API (STA)

This provides the SensorThings API, with requirements as SOS, but implemented much
more lightweight. In a nutshell: within STA an E/R-ike model of Entities (Things, Sensors, Datastreams, Observations etc)
are managed via HTTP verbs (like GET, PUT, PATCH etc).

NB the OGC STA standard also uses and integrates the IoT protocol MQTT. MQTT may be
used in future SE Platform versions.

Endpoint: http://data.smartemission.nl/gost/v1.0

7.1.2.5. SOSEmu API

SOSEmu (SOS Emulator) has been developed early in the SE project, when SOS was
not yet available, and a way was needed to quickly gain access to (Josene) sensor data.
This API provides quick access to the latest (refined) data (no history support
of Josene devices and has no support for other sensor device types) of sensors.

The main/only user is the SmartApp. SOSEmu is intended to be phased out.

Endpoint: http://data.smartemission.nl/sosemu

8. API and Code

Below is the API documention for the SE Platform Python code.

8.1. ETL Processes

Python classes involved in ETL.
Code and config for all ETL can be found in the SE GitHub [https://github.com/smartemission/docker-se-stetl].
All Python ETL code is under the
SE smartem Python Package [https://github.com/smartemission/docker-se-stetl/tree/master/smartem].

9. Installation

This chapter describes the installation steps for the Smart Emission Data Platform in a regular Docker environment.
Note that installation and maintenance on Kubernetes is described in the :ref:`kubernetes`_ (K8s) chapter.

Currently http://test.smartemission.nl runs in this regular Docker environment, while the SE production http://data.smartemission.nl runs on K8s.

9.1. Principles

These are requirements and principles to understand and install an instance of the SE platform.
It is required to have an understanding of Docker [https://www.docker.com], as that is the main environment
in which the SE Platform is run.

	Required OS: Ubuntu Linux 14.04 or later (tested on 14.04 and 16.04)

	all components are Docker Images run as Docker Containers (with exception cAdvisor on Ubuntu 14.04)

	all required code comes from GitHub: https://github.com/smartemission/smartemission

	all dynamic data: settings, databases, logfiles, website, ETL scripts is maintained on the host system (via Docker container Volume-mapping)

	Docker images are connected and networked via Docker Link (--link) mapping

	all access to application services containers (GeoServer, SOS, Grafana etc) is proxied via the Apache2 web Docker container

	settings per-system, like passwords and other settings, are kept in per-host etl/options/<yourhostname>.args (see below)

	dynamic data (databases, logs, backups) is maintained under /var/smartem.

	a single bootstrap.sh script will install Docker plus other required packages (optional, see below)

	all ETL/calibration processes run as scheduled cron jobs

	all ETL Processes use a single Docker Image that embeds the Stetl ETL Tool [http://stetl.org]

	maintain ETL functionality in GitHub and just refresh/pull GitHub dir on server (no need for rebuilding Docker)

	backups for all configuration and databases is scheduled each midnight

9.2. Security

Dependent on local requirements and context (e.g. firewall already in place) install basic security tools.

Basics: https://www.thefanclub.co.za/how-to/how-secure-ubuntu-1604-lts-server-part-1-basics

9.2.1. UFW Uncomplicated Firewall

https://help.ubuntu.com/16.04/serverguide/firewall.html
Install UFW and enable, open a terminal window and enter :

 apt-get install ufw
 ufw allow ssh
 ufw allow http
 ufw allow https

 # Enable the firewall.
 ufw enable
shutdown -r now

 # Check the status of the firewall.
 ufw status verbose

 Status: active
 Logging: on (low)
 Default: deny (incoming), allow (outgoing), disabled (routed)
 New profiles: skip

 To Action From
 -- ------ ----
 22 ALLOW IN Anywhere
 80 ALLOW IN Anywhere
 443 ALLOW IN Anywhere
 1883 ALLOW IN Anywhere
 8086 ALLOW IN Anywhere
 22 (v6) ALLOW IN Anywhere (v6)
 80 (v6) ALLOW IN Anywhere (v6)
 443 (v6) ALLOW IN Anywhere (v6)
 1883 (v6) ALLOW IN Anywhere (v6)
 8086 (v6) ALLOW IN Anywhere (v6)

9.2.2. fail2ban

See https://www.digitalocean.com/community/tutorials/how-to-install-and-use-fail2ban-on-ubuntu-14-04.
And: https://www.thefanclub.co.za/how-to/how-secure-ubuntu-1604-lts-server-part-1-basics

 apt-get install -y fail2ban

cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local

Maak config in /etc/fail2ban/jail.local

EXAMPLE
 # See jail.conf(5) man page for more information
 [sshd]

 enabled = true
 port = ssh
 filter = sshd
 logpath = /var/log/auth.log
 maxretry = 3

 [DEFAULT]

 # "bantime" is the number of seconds that a host is banned.
 # bantime = 600
 bantime = 604800

 # A host is banned if it has generated "maxretry" during the last "findtime"
 # seconds.
 # findtime = 600
 findtime = 900

 # "maxretry" is the number of failures before a host get banned.
 maxretry = 5

9.3. Installation

There are just a few commands to install and initialize the entire SE Platform.
To install the entire platform on a bare Ubuntu Linux on an empty Virtual Machine (VM),
make all databases ready and run/schedule (cron) all processes can be done within 15-30 minutes.

On an empty Ubuntu Linux system perform all the steps below in that order as user root.

9.3.1. Get Bootstrap Script

Get the SE Platform bootstrap.sh [https://github.com/smartemission/smartemission/platform/bootstrap.sh] script:

In e.g. home dir
$ apt-get install curl
$ curl -O https://raw.githubusercontent.com/smartemission/smartemission/master/platform/bootstrap.sh

Get the SE Platform bootstrap-nodocker.sh [https://github.com/smartemission/smartemission/platform/bootstrap-nodocker.sh] script:

In e.g. home dir
$ apt-get install curl
$ curl -O https://raw.githubusercontent.com/smartemission/smartemission/master/platform/bootstrap.sh

9.3.2. Install and Build

Within this dir do the following steps to install packages and
SE-code (from GitHub) and build Docker images:

become root if not already
$ sudo su -

OPTIONAL
Install Docker and required packages
plus checkout (Git) all SE code from GitHub
Confirm interactive choices: postfix "Local".
$./bootstrap.sh

go platform home dir:
$ cd /opt/geonovum/smartem/git/platform

Tip: make dynamic link to quickly access GitHub code dir from ~/git
cd
ln -s /opt/geonovum/smartem/git git

build all Docker images (be patient)
$./build.sh

9.3.3. Configure

Next configure and install databases and ETL-options. First make your own host-dependent
configuration file as a copy
from example.args [https://github.com/smartemission/smartemission/etl/options/example.args]:

Go to config options dir
$ cd /opt/geonovum/smartem/git/etl/options

Note your machine's hostname, symbolically "yourhostname"
$ hostname
yourhostname

Make copy of the example config file
NB never put this file in GitHub or public dir!!
$ cp example.args yourhostname.args

Change the config values for your local situation
$ vi yourhostname.args

Create a HTTP admin password file named 'htpasswd' See README.TXT there.
cd /opt/geonovum/smartem/git/services/web/config/admin
htpasswd htpasswd <username>

9.3.4. Create Databases

Now create and initialize all databases (PostGIS and InfluxDb):

Creates and initializes all databases
NB WILL DESTROY ANY EXISTING DATA!!
./init-databases.sh

9.3.5. Load Calibration Data

Mainly ANN models stored in PostGIS. For example get latest data from production:

scp root@test.smartemission.nl:/var/smartem/backup/gis-smartem_calibrated.dmp /var/smartem/backup/
cd /opt/geonovum/smartem/git/platform
./restore-db.sh /var/smartem/backup/gis-smartem_calibrated.dmp

9.3.6. Install System Service

The entire platform (all Docker Images and cron jobs) can be started/stopped with single
system service command smartem [https://github.com/smartemission/smartemission/platform/smartem.initd.sh] :

Installs Linux system service "smartem" in /etc/init.d
./install.sh

Test (see Running below)
service smartem status

in browser: go to http://<yourdomain>/geoserver and
change GeoServer default password (admin, geoserver)

9.4. Running

The entire SE-platform (all Docker Images and cron jobs) can be
started/stopped/inspected via Linux “service smartem” commands:

service smartem status
service smarted stop
service smartem start

etc or even /etc/init.d/smartem start|stop|status will work.

The link http://data.smartemission.nl/adm gives access to admin pages.

Checking status:

$ service smartem status
* Checking status of Smart Emission Data Platform smartem CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
938924fff0a3 geonovum/stetl:latest "/usr/local/bin/st..." 20 seconds ago Up 19 seconds stetl_sospublish
dd598dbd1e0f geonovum/apache2 "/usr/bin/supervisord" 3 weeks ago Up 3 weeks 22/tcp, 0.0.0.0:80->80/tcp web
2dcd2b91a7a1 grafana/grafana:4.1.1 "/run.sh" 3 weeks ago Up 3 weeks 0.0.0.0:3000->3000/tcp grafana
573c839c7bab geonovum/sos52n:4.3.7 "catalina.sh run" 3 weeks ago Up 3 weeks 8080/tcp sos52n
aa16f2e456f6 geonovum/geoserver:2.9.0 "catalina.sh run" 3 weeks ago Up 3 weeks 8080/tcp geoserver
f915fc5d1d2b influxdb:1.1.1 "/entrypoint.sh -c..." 3 weeks ago Up 2 weeks 0.0.0.0:8083->8083/tcp, 0.0.0.0:8086->8086/tcp influxdb
08b5decd0123 geonovum/postgis:9.4-2.1 "/bin/sh -c /start..." 3 weeks ago Up 3 weeks 5432/tcp postgis

List cronjobs
$ crontab -l

9.4.1. Handy Commands

Some handy Docker commands:

cleanup non-running images
$ sudo docker rm -v $(sudo docker ps -a -q -f status=exited)
$ sudo docker rmi $(sudo docker images -f "dangling=true" -q)

go into docker image named apache2 to bash prompt
sudo docker exec -it apache2 bash

Find local Docker Bridge address of running container
docker inspect --format '{{ .NetworkSettings.Networks.se_back.IPAddress }}' postgis
Example: psql to local postgis container
psql -h `docker inspect --format '{{ .NetworkSettings.Networks.se_back.IPAddress }}' postgis` -U docker -W gis

9.5. Docker Containers

Below the Docker Containers:
how their generic Docker Images are built/acquired and how they are run using local mappings, data and configs.

Each Docker image build is found under /docker in GitHub. Docker Containers
are run via subdirs under services.

9.5.1. postgis - PostGIS Database

Uses PostGIS Docker image from Kartoza (Tim Sutton, QGIS lead),
see https://hub.docker.com/r/kartoza/postgis/ and https://github.com/kartoza/docker-postgis .

This shorthand script run.sh [https://github.com/smartemission/smartemission/services/postgis/run.sh] will (re)run the postgis container.

#!/bin/bash
#
Run the Postgresql server with PostGIS and default database "gis".
#

Stop and remove possibly old containers
docker-compose stop
docker-compose rm -f

Finally run
docker-compose up -d

TIP to connect from host to postgis container
psql -h `sudo docker inspect --format '{{ .NetworkSettings.Networks.se_back.IPAddress }}' postgis` -U docker -W gis

To connect with psql from host using PG client package on host:

sudo apt-get install postgresql-client-9.3
psql -h `docker inspect --format '{{ .NetworkSettings.Networks.se_back.IPAddress }}' postgis` -U docker -W -l

Password for user docker:
 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access privileges
------------------+----------+-----------+---------+-------+-----------------------
 gis | docker | UTF8 | C | C |
 postgres | postgres | SQL_ASCII | C | C |
 template0 | postgres | SQL_ASCII | C | C | =c/postgres +
 | | | | | postgres=CTc/postgres
 template1 | postgres | SQL_ASCII | C | C | =c/postgres +
 | | | | | postgres=CTc/postgres
 template_postgis | postgres | UTF8 | C | C |
(5 rows)

9.5.2. stetl - ETL for Measurements

Uses the geonovum/stetl image with Stetl config from GitHub for all ETL processes.

build stetl image
cd ~/git/docker/stetl
sudo docker build -t smartemission/stetl .

run last measurements ETL, linking to postgis image
cd ~/git/etl
./last.sh

before first run do ./db-init.sh to create DB schema and tables

The last.sh script is a wrapper to run the generic Docker geonovum/stetl with our
local ETL-config and PostGIS:

#!/bin/bash
#
ETL to harvest and refine last values of sensor data from Data Collectors.
#

./run.sh last

9.5.3. webapps - Web Containers

Each webapp has its own Docker image and is started via docker-compose.

version: "3"

services:

 home:

 image: smartemission/se-home:1.0.1

 container_name: home

 restart: unless-stopped

 labels:
 - "traefik.backend=home"
 - "traefik.enable=true"
 - "traefik.frontend.priority=5"
 - "traefik.frontend.rule=PathPrefixStrip:/"
 - "traefik.docker.network=se_back"

 networks:
 - se_back

ports:
- 80:80

networks:
 se_back:
 external: true

9.5.4. geoserver - GeoServer

GeoServer is run from a Docker image based on Kartoza’s GeoServer Dockerfile:
https://github.com/kartoza/docker-geoserver/blob/master/Dockerfile.
This Dockerfile is very versatile, as it allows to tune Tomcat parameters
and add GeoServer plugins.

Some local modifications were required, thus a customized Docker image geonovum/geoserver
has been developed. See https://github.com/smartemission/smartemission/tree/master/docker/geoserver.

GeoServer can then be run with the bash-script:
https://github.com/smartemission/smartemission/blob/master/services/geoserver/run.sh

This script maps the local directory /var/smartem/data/geoserver as the GeoServer data-dir, thus
keeping it outside the Docker container. Also the mapping is provided to the PostGIS Docker container
postgis, thus PostGIS Stores within the GeoServer config can be accessed using the CNAME Host postgis.

GeoServer is accessed via the web container via the AJP Apache2 proxy (port 8009).

9.5.5. sos - 52North SOS

Similar to GeoServer: Tomcat with .war file and keeping config outside Docker container
and mapping DB to postgis container.
See https://github.com/smartemission/smartemission/tree/master/docker/sos52n.

This service configures and runs
an OGC SOS [http://www.opengeospatial.org/standards/sos] server using
a Docker Image that embeds the 52North SOS Server [https://github.com/52North/SOS].

9.5.5.1. Setup (Once)

	Setup PG database schema once using config/sos-clear.sh.

	SOS (server): config/settings.json.

	jsclient (viewer): config/jsclient/settings.json.

A sqlite DB contains all settings that can be managed via the GUI
and is best copied from a previous configured SOS
instance in /var/smartem/data/sos52n/configuration.db.
On the first start this dir will be created and linked using Docker volume mapping.

9.5.6. gost - Geodan STA

This runs the Geodan GOST SensorThings API server.
See the README there. Be sure to first create the PostGIS DB schema for GOST.

See the bash-script how to run (no Docker-compose used!):
https://github.com/smartemission/smartemission/blob/master/services/gost/run.sh .

9.5.7. influxdb - InfluxDB

This runs the InfluxDB service as a Docker container. See https://www.influxdata.com:

InfluxDB is an open source database written in Go specifically to handle time
series data with high availability and high performance requirements.
InfluxDB installs in minutes without external dependencies, yet is
flexible and scalable enough for complex deployments.

The Docker image comes from https://hub.docker.com/_/influxdb/

See https://github.com/smartemission/smartemission/tree/master/services/influxdb.

To be supplied further.

9.5.8. chronograf - Chronograf

This runs the Chronograf service as a Docker container.
Chronograf is a visual admin tool for a.o. InfluxDB. See https://www.influxdata.com:

Chronograf is a visualization tool for time series data in InfluxDB.

The Docker image comes from https://hub.docker.com/_/chronograf/

See https://github.com/smartemission/smartemission/tree/master/services/chronograf.

Only accessible via SE Admin web UI. To be supplied further.

9.5.9. grafana - Grafana

From http://grafana.org

“Grafana is an open source metric analytics and visualization suite.
It is most commonly used for visualizing time series data for infrastructure and
application analytics but many use it in other domains including industrial sensors,
home automation, weather, and process control.”

Watch the demo and be amazed: http://play.grafana.org
Documentation: http://docs.grafana.org

See https://github.com/smartemission/smartemission/tree/master/services/grafana.

To be supplied further.

9.5.10. monitoring - Monitoring

Monitoring is based around Prometheus [https://prometheus.io] and a dedicated (for monitoring) Grafana
instance. A complete monitoring stack is deployed via docker-compose based on the
Docker Monitoring Project [https://github.com/vegasbrianc/prometheus/tree/version-2].

“Prometheus is an open-source systems monitoring and alerting toolkit originally built at SoundCloud.
Since its inception in 2012, many companies and organizations have adopted Prometheus, and the project
has a very active developer and user community. It is now a standalone open source project and maintained
independently of any company. To emphasize this, and to clarify the project’s governance structure,
Prometheus joined the Cloud Native Computing Foundation in 2016 as the second hosted project, after Kubernetes.”

Documentation: https://prometheus.io/docs/ . Howto:
https://medium.com/@soumyadipde/monitoring-in-docker-stacks-its-that-easy-with-prometheus-5d71c1042443

See https://github.com/smartemission/smartemission/tree/master/services/monitoring.

The compose file is as follows:

Adapted from Brian Christner's: https://github.com/vegasbrianc/prometheus
and later: https://github.com/vegasbrianc/docker-pulls/blob/master/docker-compose.yml
All credits there!
Taken version-2 branch on dec 18, 2017.
#
Changes by Just van den Broecke:
- removed Docker Swarm stuff (why needed?)
- removed port mappings (prevent outside access)
- run on local bridge network (network_mode: bridge, as to be proxied from Apache web container)

version: '3.1'

volumes:
 prometheus_data: {}
 grafana_data: {}

services:

 node-exporter:
 # See https://github.com/vegasbrianc/docker-pulls/blob/master/docker-compose.yml
 image: prom/node-exporter
 container_name: node-exporter
 volumes:
 - /proc:/host/proc:ro
 - /sys:/host/sys:ro
 - /:/rootfs:ro
 command:
 - '--path.procfs=/host/proc'
 - '--path.sysfs=/host/sys'
 - --collector.filesystem.ignored-mount-points
 - "^/(sys|proc|dev|host|etc|rootfs/var/lib/docker/containers|rootfs/var/lib/docker/overlay2|rootfs/run/docker/netns|rootfs/var/lib/docker/aufs)($$|/)"
- '--collector.textfile.directory /etc/node-exporter/'
ports:
- 9100:9100
 networks:
 - se_back
 restart: unless-stopped

 cadvisor:
 # image: google/cadvisor
 image: smartemission/se-cadvisor:v0.28.3
 container_name: cadvisor
 volumes:
 - /:/rootfs:ro
 - /var/run:/var/run:rw
 - /sys:/sys:ro
 - /var/lib/docker/:/var/lib/docker:ro
 # ports:
 # - 8080:8080
 command:
 - '--port=8081'
 networks:
 - se_back
 restart: unless-stopped

 prometheus:
 # image: prom/prometheus:v2.0.0
 image: prom/prometheus:v2.2.1
 container_name: prometheus
 depends_on:
 - cadvisor
 - node-exporter
 labels:
 - "traefik.backend=prometheus"
 - "traefik.enable=true"
 - "traefik.frontend.priority=600"
 - "traefik.frontend.rule=Method:GET"
 - "traefik.frontend.rule=PathPrefix:/adm/prometheus"
 # - "traefik.frontend.auth.basic=sadmin:$$apr1$$gVo/HcPx$$2AudzGfyX7Xxg7aD/b1zf."
 - "traefik.docker.network=se_back"
 volumes:
 - ./prometheus/:/etc/prometheus/
 - prometheus_data:/prometheus
 command:
 - '--config.file=/etc/prometheus/prometheus-gen.yml'
 - '--storage.tsdb.path=/prometheus'
 - '--web.console.libraries=/usr/share/prometheus/console_libraries'
 - '--web.console.templates=/usr/share/prometheus/consoles'
 - "--web.external-url=http://${se_host}${se_port}/adm/prometheus"

 # - '--storage.tsdb.retention=200h'
 # - '--web.route-prefix=/prometheus'

ports:
- 9090:9090
links:
- cadvisor:cadvisor
- node-exporter:node-exporter
- alertmanager:alertmanager

 networks:
 # Visible in SE backend and frontend Docker network
 - se_back
 restart: unless-stopped

 grafana:
 image: grafana/grafana:5.1.3
 container_name: grafanamon
 depends_on:
 - prometheus
 environment:
 - GF_SERVER_ROOT_URL=%(protocol)s://%(domain)s:%(http_port)s/adm/grafanamon
 - GF_AUTH_ANONYMOUS_ENABLED=true
 labels:
 - "traefik.backend=grafanamon"
 - "traefik.enable=true"
 - "traefik.frontend.priority=600"
 - "traefik.frontend.rule=Method:GET"
 - "traefik.frontend.rule=PathPrefixStrip:/adm/grafanamon"
 # - "traefik.frontend.auth.basic=sadmin:$$apr1$$gVo/HcPx$$2AudzGfyX7Xxg7aD/b1zf."
 - "traefik.docker.network=se_back"

links:
- prometheus:prometheus
ports:
- 3000:3000

 volumes:
 - ./grafana/provisioning:/etc/grafana/provisioning:ro
 # - grafana_data:/var/lib/grafana
 env_file:
 - grafana/grafana.conf
 networks:
 # Visible in SE backend and frontend Docker network
 - se_back

 alertmanager:
 image: prom/alertmanager
 container_name: alertmanager
ports:
- 9093:9093
 volumes:
 - ./alertmanager/:/etc/alertmanager/
 networks:
 # Visible in SE backend and frontend Docker network
 - se_back
 restart: unless-stopped
 command:
 - '--config.file=/etc/alertmanager/config-gen.yml'
 - '--storage.path=/alertmanager'

networks:
 se_back:
 external: true

This compose file is attached to the default Docker bridge network.
The following Docker images are deployed via the compose file:

9.5.10.1. Prometheus

Using Prometheus 2.0+. Configuration in prometheus.yml :

my global config
global:
 scrape_interval: 15s # By default, scrape targets every 15 seconds.
 evaluation_interval: 15s # By default, scrape targets every 15 seconds.
 # scrape_timeout is set to the global default (10s).

 # Attach these labels to any time series or alerts when communicating with
 # external systems (federation, remote storage, Alertmanager).
 external_labels:
 monitor: 'smart-emission'

Load and evaluate rules in this file every 'evaluation_interval' seconds.
rule_files:
 - 'alert.rules'
 # - "first.rules"
 # - "second.rules"

alert
alerting:
 alertmanagers:
 - scheme: http
 static_configs:
 - targets:
 - "alertmanager:9093"

A scrape configuration containing exactly one endpoint to scrape:
Here it's Prometheus itself.
scrape_configs:
 # The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
 - job_name: 'prometheus'
 scrape_interval: 5s
 honor_labels: true
 metrics_path: '/adm/prometheus/metrics'
 static_configs:
 - targets: ['localhost:9090']

 - job_name: 'node'

 # Override the global default and scrape targets from this job every 5 seconds.
 scrape_interval: 5s

 # metrics_path defaults to '/metrics'
 # scheme defaults to 'http'.

 static_configs:
 - targets: ['$CADVISOR_HOST:8081','$NODE_EXPORTER_HOST:9100']

Secure and pass via Apache proxy:

<Location /adm/prometheus>
 ProxyPreserveHost On
 ProxyPass http://monitoring_prometheus_1:9090/adm/prometheus
 ProxyPassReverse http://monitoring_prometheus_1:9090/adm/prometheus
 RequestHeader unset Authorization
</Location>

9.5.10.2. Grafana

Installed via docker-compose.

Secure and pass via Apache proxy:

<Location /adm/grafanamon>
 ProxyPreserveHost On
 ProxyPass http://monitoring_grafana_1:3000
 ProxyPassReverse http://monitoring_grafana_1:3000
 RequestHeader unset Authorization
</Location>

Add Prometheus with url http://prometheus:9090/adm/prometheus as DataSource
with access proxy.

Import Dashboard 1860: https://grafana.com/dashboards/1860 to view Node Exporter stats.
and 179: https://grafana.com/dashboards/179 to view Docker stats. Locally adapted versions of these are available
under the /dashboards dir. Use the <name>-SE.json versions.

Alternative: https://github.com/stefanprodan/dockprom

9.5.10.3. cAdvisor

Used for getting metrics in Prometheus from Docker components. See https://github.com/google/cadvisor :

“cAdvisor (Container Advisor) provides container users an understanding of the resource usage and performance characteristics
of their running containers. It is a running daemon that collects, aggregates, processes, and exports information
about running containers. Specifically, for each container it keeps resource isolation parameters, historical resource usage,
histograms of complete historical resource usage and network statistics. This data is exported by container and machine-wide.”

NB for now cAdvisor needs to be built because of this bug [https://github.com/google/cadvisor/issues/1802].
Once that is resolved we can use official Docker Image.

NB cAdvisor via Docker on Ubuntu 14.04 has a serious issue (like Node_exporter) [https://github.com/smartemission/smartemission/issues/73]
and this issue [https://github.com/google/cadvisor/issues/771],
so needs to be installed on host.

On Ubuntu 16.04 we can use cAdvisor in Docker again. Steps:

Step 1: Install latest go-lang (go-lang package version on 14.04 too old!)
See https://github.com/golang/go/wiki/Ubuntu
$ add-apt-repository ppa:gophers/archive
$ apt update
$ apt-get install golang-1.9-go
$ ls /usr/lib/go-1.9/bin
$ go gofmt
$ export GOROOT=/usr/lib/go-1.9
$ export PATH=$GOROOT/bin:$PATH

Step 2 cAdvisor build
See https://github.com/google/cadvisor/blob/master/docs/development/build.md
$ mkdir /opt/cadvisor
$ cd /opt/cadvisor
$ export GOPATH=/opt/cadvisor
$ go get -d github.com/google/cadvisor
$ cd /opt/cadvisor/src/github.com/google/cadvisor
$ make build
$ make test (fails somehow)
$./cadvisor -version
 cAdvisor version v0.28.3.2+9ffa37396f19cb (9ffa373)
$./cadvisor
surf to host:8080

Step 3: install supervisord
$ apt-get install supervisor
$ service supervisor status
 is running

Step 4: cAdvisor as supervisrod process (conf)
See https://github.com/google/cadvisor/issues/771#issuecomment-322725681

Put in /etc/supervisor/conf.d/cadvisor.conf
[program:cadvisor]
directory=/opt/geonovum/smartem/git/services/monitoring/cadvisor
command=/opt/geonovum/smartem/git/services/monitoring/cadvisor/run.sh
autostart=true
autorestart=unexpected
redirect_stderr=true

with /opt/geonovum/smartem/git/services/monitoring/cadvisor/run.sh
NB ENV setting via supervisord did not work on this version, need supervisor 3.2
#!/bin/bash
#
export PARENT_HOST=`ip route show | grep docker0 | awk '{print \$9}'`
export GOROOT="/usr/lib/go-1.9"
export GOPATH="/opt/cadvisor/src/github.com/google/cadvisor"
export PATH="${GOPATH}:${GOROOT}/bin:${PATH}"

cd ${GOPATH}
./cadvisor -listen_ip ${PARENT_HOST} -port 8080

run
$ service supervisor stop
$ service supervisor start
Check via host port 8080 and:
$ ps -elf | grep cadvisor
 4 S.... 00:00:01 /opt/cadvisor/src/github.com/google/cadvisor/cadvisor -port 8080

9.5.10.4. Node Exporter

In Grafana import Dashboard 1860: https://grafana.com/dashboards/1860 to view Node Exporter stats.

Node Exporter can be installed on the host to gather Linux/Ubuntu metrics.

Steps to install in /usr/bin/node_exporter:

mkdir -p /var/smartem/prometheus/archive
cd /var/smartem/prometheus/archive
wget https://github.com/prometheus/node_exporter/releases/download/v0.15.2/node_exporter-0.15.2.linux-amd64.tar.gz
cd /var/smartem/prometheus
tar -xvzf archive/node_exporter-0.15.2.linux-amd64.tar.gz
ln -s /var/smartem/prometheus/node_exporter-0.15.2.linux-amd64/node_exporter /usr/bin

Run as service via /etc/init/node_exporter.conf and listen on IP-address docker0 (so metrics not exposed to world):

Run node_exporter - place in /etc/init/node_exporter.conf

start on startup

script
 /usr/bin/node_exporter --web.listen-address="`ip route show | grep docker0 | awk '{print \$9}'`:9100"
end script

Start/stop etc

service node_exporter start
service node_exporter status

Challenge is to access Node Exporter on host from within Prometheus Docker container.
See http://phillbarber.blogspot.nl/2015/02/connect-docker-to-service-on-parent-host.html
In run.sh for Apache2:

PARENT_HOST=`ip route show | grep docker0 | awk '{print \$9}'`
$ docker run -d --restart=always --add-host=parent-host:${PARENT_HOST} etc

Extend Apache2 config:

<Location /prom-node-metrics>
 ProxyPass http://parent-host:9100/metrics
 ProxyPassReverse http://parent-host:9100/metrics
</Location>

Add node config in prometheus.yml:

 - job_name: 'node'
scrape_interval: 15s
honor_labels: true
metrics_path: '/prom-node-metrics'
scheme: http
static_configs:
 - targets: ['test.smartemission.nl', 'data.smartemission.nl']

In Grafana import Dashboard 1860: https://grafana.com/dashboards/1860 to view Node Exporter stats.

NB Node Exporter via Docker is NOT used to gather Linux/Ubuntu metrics from the local host as this
gave too many locking issues: https://github.com/smartemission/smartemission/issues/73

9.5.10.5. AlertManager

For emitting Prometheus alerts. Two configs required:

Alert rules in Prometheus alert.rules config:

groups:
- name: example
 rules:

 # Alert for any instance that is unreachable for >5 minutes.
 - alert: service_down
 expr: up == 0
 for: 2m
 labels:
 severity: page
 annotations:
 summary: "Instance {{ $labels.instance }} down"
 description: "{{ $labels.instance }} of job {{ $labels.job }} has been down for more than 2 minutes."

 - alert: high_load
 expr: node_load1 > 0.5
 for: 2m
 labels:
 severity: page
 annotations:
 summary: "Instance {{ $labels.instance }} under high load"
 description: "{{ $labels.instance }} of job {{ $labels.job }} is under high load."

And notification routing in AlertManager config.yml:

See https://www.robustperception.io/sending-email-with-the-alertmanager-via-gmail/
route:
 group_by: [Alertname]
 # Send all notifications to me.
 receiver: email-me

receivers:
- name: email-me
 email_configs:
 - to: $GMAIL_ACCOUNT
 from: $GMAIL_ACCOUNT
 smarthost: smtp.gmail.com:587
 auth_username: "$GMAIL_ACCOUNT"
 auth_identity: "$GMAIL_ACCOUNT"
 auth_password: "$GMAIL_AUTH_TOKEN"

#route:
receiver: 'slack'
#
#receivers:
- name: 'slack'
slack_configs:
- send_resolved: true
username: '<username>'
channel: '#<channel-name>'
api_url: '<incomming-webhook-url>'

See also: https://www.robustperception.io/sending-email-with-the-alertmanager-via-gmail/

9.6. Local Install

You can also install the SE platform on your local system, preferably using VirtualBox and
Vagrant [https://www.vagrantup.com/].
This is very handy for development and testing.

Docker can be run in various ways. On Linux it can be installed directly (see next). On Mac and Windows
Docker needs to be run within a VM itself. On these
platforms Docker Toolbox [https://docs.docker.com/engine/installation/mac/] needs to be installed. This
basically installs a small (Linux) VM (with a boot2docker iso) that runs in VirtualBox.
Within this Linux VM the actual Docker Engine runs. A sort
of Matroska construction. Via local commandline tools like docker-machine and docker, Docker images
can be managed.

However, the above setup creates some hard-to-solve issues when combining Docker images and especially when
trying to use local storage and networking. Also the setup will be different than the actual deployment
on the Fiware platform. For these reasons we will run a local standard Ubuntu VM via VirtualBox. On this VM
we will install Docker, run our Docker images etc. To facilitate working with VirtualBox VMs we will
use Vagrant [https://www.vagrantup.com/]. Via Vagrant it is very easy to setup a “Ubuntu Box” and integrate this
with the local environment. A further plus is that within the Ubuntu Box, the installation steps
will (mostly) be identical to those on the Fiware platform.

9.6.1. Docker with Vagrant

The following steps are performed after having VirtualBox [https://www.virtualbox.org]
and Vagrant [https://www.vagrantup.com/] installed.

Create a UbuntuBox
$ vagrant init ubuntu/trusty64
A `Vagrantfile` has been placed in this directory. You are now
ready to `vagrant up` your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
`vagrantup.com` for more information on using Vagrant.

This creates a default Vagrantfile within the directory of execution, here with some mods for port mapping:

-*- mode: ruby -*-
vi: set ft=ruby :

All Vagrant configuration is done below. The "2" in Vagrant.configure
configures the configuration version (we support older styles for
backwards compatibility). Please don't change it unless you know what
you're doing.
Vagrant.configure(2) do |config|
 # The most common configuration options are documented and commented below.
 # For a complete reference, please see the online documentation at
 # https://docs.vagrantup.com.

 # Every Vagrant development environment requires a box. You can search for
 # boxes at https://atlas.hashicorp.com/search.
 config.vm.box = "ubuntu/trusty64"

 # Disable automatic box update checking. If you disable this, then
 # boxes will only be checked for updates when the user runs
 # `vagrant box outdated`. This is not recommended.
 # config.vm.box_check_update = false

 # Create a forwarded port mapping which allows access to a specific port
 # within the machine from a port on the host machine. In the example below,
 # accessing "localhost:8081" will access port 80 on the guest machine.
 config.vm.network "forwarded_port", guest: 80, host: 8081

 # Create a private network, which allows host-only access to the machine
 # using a specific IP.
 # config.vm.network "private_network", ip: "192.168.33.10"

 # Create a public network, which generally matched to bridged network.
 # Bridged networks make the machine appear as another physical device on
 # your network.
 # config.vm.network "public_network"

 # Share an additional folder to the guest VM. The first argument is
 # the path on the host to the actual folder. The second argument is
 # the path on the guest to mount the folder. And the optional third
 # argument is a set of non-required options.
 # config.vm.synced_folder "../data", "/vagrant_data"

 # Provider-specific configuration so you can fine-tune various
 # backing providers for Vagrant. These expose provider-specific options.
 # Example for VirtualBox:
 #
 # config.vm.provider "virtualbox" do |vb|
 # # Display the VirtualBox GUI when booting the machine
 # vb.gui = true
 #
 # # Customize the amount of memory on the VM:
 # vb.memory = "1024"
 # end
 #
 # View the documentation for the provider you are using for more
 # information on available options.

 # Define a Vagrant Push strategy for pushing to Atlas. Other push strategies
 # such as FTP and Heroku are also available. See the documentation at
 # https://docs.vagrantup.com/v2/push/atlas.html for more information.
 # config.push.define "atlas" do |push|
 # push.app = "YOUR_ATLAS_USERNAME/YOUR_APPLICATION_NAME"
 # end

 # Enable provisioning with a shell script. Additional provisioners such as
 # Puppet, Chef, Ansible, Salt, and Docker are also available. Please see the
 # documentation for more information about their specific syntax and use.
 # config.vm.provision "shell", inline: <<-SHELL
 # sudo apt-get update
 # sudo apt-get install -y apache2
 # SHELL
end

Later we can modify Vagrantfile further, in particular to integrate with the local host (Mac/Windows)
environment, in particular with our directories (e.g. Dockerfiles from GitHub) and local ports (to test
web services). Next, we start up the Ubuntu Box (UB) with vagrant up:

$ vagrant up

Bringing machine 'default' up with 'virtualbox' provider...
==> default: Checking if box 'ubuntu/trusty64' is up to date...
==> default: Clearing any previously set forwarded ports...
==> default: Clearing any previously set network interfaces...
==> default: Preparing network interfaces based on configuration...
 default: Adapter 1: nat
==> default: Forwarding ports...
 default: 22 (guest) => 2222 (host) (adapter 1)
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...
 default: SSH address: 127.0.0.1:2222
 default: SSH username: vagrant
 default: SSH auth method: private key
 default: Warning: Remote connection disconnect. Retrying...
 default: Warning: Remote connection disconnect. Retrying...
==> default: Machine booted and ready!

We see that SSH port 22 is mapped to localhost:2222. Login to the box:

ssh -p 2222 vagrant@localhost # password vagrant

but easier is to use vagrant
vagrant ssh

Our local directory is also automatically mounted in the UB so we can have access to our development files (in GitHub):

vagrant@vagrant-ubuntu-trusty-64:~$ ls /vagrant/
contrib data doc git Vagrantfile

and our Dockerfiles within GitHub
vagrant@vagrant-ubuntu-trusty-64:~$ ls /vagrant/git/docker
apache2 boot2docker-fw.sh postgis stetl

Within the UB we are on a standard Ubuntu commandline, running a general Ubuntu upgrade first:

$ sudo apt-get update
$ sudo apt-get -y upgrade

The next steps are standard Docker install (see next section below). After the setup is tested by building and running one of
our Docker files. Getting access to our Dockerfiles is easy, for example:

sudo ln -s /vagrant/git ~/git
cd ~/git/docker/apache2
sudo docker build -t geonovum/apache2 .

Run and test:

sudo docker run -p 2222:22 -p 80:80 -t -i geonovum/apache2

Then access Apache from local system via localhost:8081.

[image: _images/docker-vagrant-apache.jpg]
Access Apache running with Docker externally

Same for Stetl, build and test:

$ cd ~/git/docker/stetl
$ sudo docker build -t smartemission/stetl .
$ cd test/1_copystd
$ sudo docker run -v `pwd`:`pwd` -w `pwd` -t -i geonovum/stetl -c etl.cfg

2016-04-22 19:09:29,705 util INFO Found cStringIO, good!
2016-04-22 19:09:29,774 util INFO Found lxml.etree, native XML parsing, fabulous!
2016-04-22 19:09:29,926 util INFO Found GDAL/OGR Python bindings, super!!
2016-04-22 19:09:29,952 main INFO Stetl version = 1.0.9rc3
2016-04-22 19:09:29,961 ETL INFO INIT - Stetl version is 1.0.9rc3
2016-04-22 19:09:29,965 ETL INFO Config/working dir = /home/vagrant/git/docker/stetl/test/1_copystd
2016-04-22 19:09:29,966 ETL INFO Reading config_file = etl.cfg
2016-04-22 19:09:29,968 ETL INFO START
2016-04-22 19:09:29,968 util INFO Timer start: total ETL
2016-04-22 19:09:29,969 chain INFO Assembling Chain: input_xml_file|output_std...
2016-04-22 19:09:29,987 input INFO cfg = {'class': 'inputs.fileinput.XmlFileInput', 'file_path': 'input/cities.xml'}
2016-04-22 19:09:29,993 fileinput INFO file_list=['input/cities.xml']
2016-04-22 19:09:29,995 output INFO cfg = {'class': 'outputs.standardoutput.StandardXmlOutput'}
2016-04-22 19:09:29,996 chain INFO Running Chain: input_xml_file|output_std
2016-04-22 19:09:29,996 fileinput INFO Read/parse for start for file=input/cities.xml....
2016-04-22 19:09:30,008 fileinput INFO Read/parse ok for file=input/cities.xml
2016-04-22 19:09:30,014 fileinput INFO all files done
<?xml version='1.0' encoding='utf-8'?>
<cities>
 <city>
 <name>Amsterdam</name>
 <lat>52.4</lat>
 <lon>4.9</lon>
 </city>
 <city>
 <name>Bonn</name>
 <lat>50.7</lat>
 <lon>7.1</lon>
 </city>
 <city>
 <name>Rome</name>
 <lat>41.9</lat>
 <lon>12.5</lon>
 </city>
</cities>

2016-04-22 19:09:30,024 chain INFO DONE - 1 rounds - chain=input_xml_file|output_std
2016-04-22 19:09:30,024 util INFO Timer end: total ETL time=0.0 sec
2016-04-22 19:09:30,026 ETL INFO ALL DONE

9.6.2. Running within 15 mins

Same steps as Installation above.

10. Kubernetes

This chapter describes the installation and maintenance for the Smart Emission Data Platform in a
Kubernetes (K8s) [https://kubernetes.io/] environment.
Note that installation and maintenance in a Docker environment is described in
the Installation chapter. SE was initially (2016-2018) deployed as Containers on a single “bare Docker” machine.
Later with the use of docker-compose and Docker Hub but still “bare Docker”. In spring 2018 migration within Kadaster-PDOK
to K8s started, deploying in the K8s environment on Azure.

10.1. Principles

These are requirements and principles to understand and install an instance of the SE platform.
It is required to have an understanding of Docker [https://www.docker.com] a
nd Kubernetes (K8s) [https://kubernetes.io/]
as that is the main environment in which the SE Platform is run.

Most Smart Emission services are deployed as follows in K8s:

	deployment.yml - specifies (Pods for) a K8s Deployment

	service.yml - describes a K8s Service (internal network proxy access) for the Pods in the Deployment

	ingress.yml - rules how to route outside requests to Service (only if the Service requires outside access)

Only for InfluxDB instances, as it requires local
storage a StatefulSet is deployed i.s.o. a regular Deployment.

Postgres/PostGIS is not deployed within K8s but accessed as an external
Azure Database for PostgreSQL server service from MS Azure.

10.2. Install

Install clients.

10.2.1. Ubuntu

As follows:

 #
 # 1) Install AZ CLI
 #
 # https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-apt?view=azure-cli-latest
 $ AZ_REPO=$(lsb_release -cs)
 $ echo "deb [arch=amd64] https://packages.microsoft.com/repos/azure-cli/ $AZ_REPO main" | \
 sudo tee /etc/apt/sources.list.d/azure-cli.list

 # Check
 $ more /etc/apt/sources.list.d/azure-cli.list
 deb [arch=amd64] https://packages.microsoft.com/repos/azure-cli/ xenial main

 # Get signing key
 $ curl -L https://packages.microsoft.com/keys/microsoft.asc | sudo apt-key add -

 # Install
 $ apt-get update
 # Problem: https://github.com/Microsoft/WSL/issues/2775
 $ apt-get install python-dev build-essential libffi-dev libssl-dev
 $ apt-get install apt-transport-https azure-cli

 #
 # 2) Install kubectl
 #
 $ az aks install-cli
$ which kubectl
/usr/local/bin/kubectl

 #
 # 3) Get cluster creds
 #
 $ az aks get-credentials --resource-group <rsc group name> --name <cluster name>
 # View config
$ kubectl config view

 #
 # 4) Open k8s dashboard in browser
 #
 $ az aks browse --resource-group <rsc group name> --name <cluster name>

10.3. Links

Links to the main artefacts related to Kubernetes deployment:

	K8s deployment specs and Readme: https://github.com/smartemission/kubernetes-se (NB not used anymore, repo is in GitLab: https://gitlab.com/smartemission/sensor-cloud-k8s)

	GitHub repositories for all SE Docker Images: https://github.com/smartemission (all docker-se-* repos)

	Docker Images repo: https://hub.docker.com/r/smartemission

10.4. Setup

Setting up local environment to interact with K8s cluster on Azure.

10.4.1. Mac OSX

Using Homebrew. Need to install kubernetes-cli and az-cli:

 $ brew install azure-cli

$ brew install kubernetes-cli

10.5. Updating

For Deployments, CronJobs, StatefulSets, the current sequence of actions to roll out
new updates for code or config changes in Docker Images, is as follows (pre-CI/CD):

	make code changes in related GH repo, e.g docker-se-stetl [https://github.com/smartemission/docker-se-stetl] for ETL changes

	increase the GH tag number: git tag to list current tags, then: git tag <new version nr> and git push –tags

	add a new build with the tag just added for this component in SmartEmission Organisation in DockerHub, e.g. smartemission/se-stetl [https://hub.docker.com/r/smartemission/se-stetl/~/settings/automated-builds/]

	trigger the build there in DockerHub, wait until build finished and succesful

	increase version number in the Deployment YAML, e.g. the GeoServer deployment.yml [https://github.com/smartemission/kubernetes-se/blob/master/smartemission/services/geoserver/deployment.yml]

	upgrade current Deployment (or Cronjob StatefulSet) to the Cluster kubectl -n smartemission replace -f deployment.yml

	follow in K8s Dashboard or with kubectl for any errors

(TODO: automate this via Jenkins or some CI/CD tooling).

10.6. Namespaces

The main two operational K8s Namespaces are:

	smartemission - the main SE service stack and ETL

	collectors - Data Collector services and Dashboards (see global Architecture Chapter)

Additional, supporting, Namespaces are:

	monitoring - Monitoring related

	cert-manager - (Let’s Encrypt) SSL certificate management

	ingress-nginx - Ingress services based on nginx-proxying (external/public access)

	kube-system - mainly K8s Dashboard related

10.7. Namespace smartemission

Below are the main K8s artefacts related under the smartemission operational Namespace.

10.7.1. InfluxDB

InfluxDB holds data for:

	Calibration Learning Process: RIVM reference Data and SE raw data for learning

	Refined Data: calibrated hour-values from refiner ETL process for comparing with ref data

10.7.1.1. Links

	K8s deployment specs and backup/restore scripts: https://github.com/smartemission/kubernetes-se/tree/master/smartemission/services/influxdb

	GitHub repo/var specs: https://github.com/smartemission/docker-se-influxdb

10.7.1.2. Creation

Create two volumes via PersistentVolumeClaim (pvc.yml) , one for storage, one for backup/restore:

Run this once to make volumes
apiVersion: apps/v1beta2
kind: PersistentVolumeClaim
metadata:
 name: influxdb-backup
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: default
 resources:
 requests:
 storage: 2Gi

apiVersion: apps/v1beta2
kind: PersistentVolumeClaim
metadata:
 name: influxdb-storage
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: default
 resources:
 requests:
 storage: 5Gi

Use these in StatefulSet deployment:

apiVersion: apps/v1beta2
kind: StatefulSet
metadata:
 name: influxdb
 namespace: smartemission
spec:
 selector:
 matchLabels:
 app: influxdb
 serviceName: "influxdb"
 replicas: 1
 template:
 metadata:
 labels:
 app: influxdb
 spec:
 terminationGracePeriodSeconds: 10
 containers:
 - name: influxdb
 image: influxdb:1.6.1
 env:
 - name: INFLUXDB_DB
 value: smartemission
 - name: INFLUXDB_ADMIN_USER
 valueFrom:
 secretKeyRef:
 name: influxdb
 key: username
 .
 .
 .

 - name: INFLUXDB_DATA_INDEX_VERSION
 value: tsi1
 - name: INFLUXDB_HTTP_AUTH_ENABLED
 value: "true"
 resources:
 limits:
 cpu: "500m"
 memory: "10.0Gi"
 requests:
 cpu: "500m"
 memory: "1.0Gi"
 ports:
 - containerPort: 8086
 volumeMounts:
 - mountPath: /var/lib/influxdb
 name: influxdb-storage
 - mountPath: /backup
 name: influxdb-backup
 volumeClaimTemplates:
 - metadata:
 name: influxdb-storage
 spec:
 accessModes: ["ReadWriteOnce"]
 storageClassName: default
 resources:
 requests:
 storage: 5Gi
 - metadata:
 name: influxdb-backup
 spec:
 accessModes: ["ReadWriteOnce"]
 storageClassName: default
 resources:
 requests:
 storage: 2Gi

10.7.1.3. Backup and Restore

Backup and restore based on
InfluxDB documentation [https://docs.influxdata.com/influxdb/v1.6/administration/backup_and_restore]

Using the “modern” (v1.5+) InfluxDB backup/restore on live servers with the portable backup format.

Before:

	login on maintenance vm

	working kubectl with cluster

	git clone https://github.com/smartemission/kubernetes-se

	cd kubernetes-se/smartemission/services/influxdb

Example backup/restore

Test initial
./test.sh

Backup
./backup.sh influxdb-smartemission_181123.tar.gz

Restore
./restore.sh influxdb-smartemission_181123.tar.gz

Test the restore
./test.sh

10.7.2. CronJobs

K8s Cronjobs are applied for all SE ETL.
CronJobs run jobs on a time-based schedule. These automated jobs run like Cron tasks on a Linux or UNIX system.

10.7.2.1. Links

	GitHub repository: https://github.com/smartemission/docker-se-stetl

	Docker Image: https://hub.docker.com/r/smartemission/se-stetl

	K8s CronJobs: https://github.com/smartemission/kubernetes-se/tree/master/smartemission/cronjobs

10.7.2.2. Implementation

All ETL is based on the Stetl ETL framework [http://stetl.org].
A single Docker Image based on the official Stetl Docker Image
contains all ETL processes. A start-up parameter determines the specific ETL process to run.
Design of the ETL is described in the Data Management chapter.

11. Sensors

Originally the SE Platform was developed for a single sensor device (station), the Intemo Jose(ne).
As time moved on additional sensor devices from various sensor projects were integrated,
or are in progress. To allow for multiple sensor stations/devices, each with multiple
internal sensors from multiple projects, internals for mainly the ETL processes (cron jobs) were generalized while still keeping the
core principles of the overall architecture
and multi-step ETL processing: raw data harvesting (pull), refinement (validation, calibration), service-publication.

Based on device/sensor-types different ETL algorithms
need to be applied. For example, some devices already emit calibrated sensor-values (Luftdaten, Osiris), others require ANN calibration (Jose), others
even per-sensor linear or polynominal equations, sometimes per-sensor (AirSensEUR AlphaSense).

The advantage of the current approach is that once measurements are ‘in’, they
become automatically available through all external APIs without any additional action. Only on the ‘input’ (harvesting)-side
and refinement ETL are specific formatting steps required.

11.1. Principles

To integrate a new sensor station type, two main items need to be resolved:

	APIs from which sensor-data can be harvested (‘getting the raw or sometimes calibrated data in’)

	amount/complexity of calibration and validation needed

In addition, a sensor station type is usually related to a Project. In an early stage
every device was given a unique id, where the first 4 digits is the project id, followed by additional
digits, denoting the station id within that project. Sometimes a mapping is required.
The original station id is always kept in metadata columns.

11.1.1. APIs

Data from sensors is never sent directly to the SE platform.
It is sent to what are called Data Collectors. These are usually not maintained by SE but
by the specific projects like Smart City Living Lab, Luftdaten and/or companies like Intemo etc.
The only requirement is that these
Data Collectors provide APIs for pulling data into (Harvesting) the SE Platform.

Currently, harvesting from three Data Collector APIs has been realized:

	Raw Sensor (a.k.a. Whale) API from now mainly Intemo (Jose stations) servers

	InfluxDB Data Collector API, now mainly for AirSensEUR [https://airsenseur.org] stations

	Luftdaten API [https://github.com/opendata-stuttgart/meta/wiki/APIs], for Luftdaten.info [https://luftdaten.info/en/home-en/] kits

Ad 2) this InfluxDB API is maintained by the SE Project itself and may be used in later projects to publish (push) data from additional sensors.

11.1.2. Calibration

Currently, the following calibration algorithms are implemented:

	Jose stations: ANN Calibration

	AirSensEUR [https://airsenseur.org] per-sensor linear or polynominal equations

	Luftdaten.info [https://luftdaten.info/en/home-en/] : no calibration required

These algorithms are reusable, mainly the parameters for each need to be set.

So how is this realized internally? Basic principles:

	while harvesting as much metadata as possible is extracted or configured

	the programming concept of an abstract Device [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/devices/device.py] and Device registry [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/devices/devicereg.py]

Each station-type (Jose, ASE, Luftdaten) is mapped to a Device Type. From there, specific processing, configuration and
algorithms are invoked. A special Device Type is the Vanilla Device [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/devices/vanilla.py].
The Vanilla Device Type can be used when no specific calibration is required. This is the easiest way to attach stations
and was introduced when attaching kits from the Luftdaten Project [https://luftdaten.info/en/home-en/] .

Each Device has one to three additional items/files:

	Device Definitions (“device devs”), these map component indicators like no2, temperature etc to their raw inputs and provides pointers to the functions that perform converting (e.g. via calibration) the raw inputs, plus min/max values for validation

	Device Functions: functions that provide all conversions/calibrations

	Device Params (AirSensEUR-AlphaSense sensors only): per-device calibration params

The Refiner mainly invokes these as abstract items without specific knowledge of the Device or sensor type.

Examples:

	Jose Stations:

	Device [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/devices/josene.py]

	Device Definitions [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/devices/josenedefs.py]

	Device Functions [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/devices/josenefuncs.py] (invoke ANN)

	AirSensEUR Stations:

	Device [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/devices/airsenseur.py]

	Device Definitions [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/devices/airsenseurdefs.py]

	Device Functions [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/devices/airsenseurfuncs.py]

	Per-sensor params [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/devices/airsenseurparms.py] (provided by M. Gerboles, EU JRC)

	Luftdaten Kits (using Vanilla Device):

	Vanilla Device [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/devices/vanilla.py]

	Vanilla Device Definitions [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/devices/vanilladefs.py] generic defs, no specific implementation required

11.2. Additional Info

Some specifics per station type and projects.

11.2.1. Luftdaten Kits

With the introduction of the Vanilla Device [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/devices/vanilla.py] only specific
Harvesting classes needed to be developed:

	Last Values harvesting - using the “last 5 minute values” API

	General harvesting - using the “last hour average values” API

As to not strain the Luftdaten server intrastructure and to start lightly, only data in specified Bounding Boxes
within the ETL Stetl config, is harvested. In first instance the area of Nijmegen, [51.7,5.6,51.9,6.0], but this can be extended later.

Only three classes are required integrating Luftdaten measurements, the first is a common base-class for all:

	LuftdatenInput [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/harvester/luftdateninput.py] - a generic Stetl HttpInput-derived class

	HarvesterLastLuftdatenInput [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/harvester/harvestlastluftdaten.py] - Harvester for last values (near real-time values)

	HarvesterLuftdatenInput [https://github.com/smartemission/docker-se-stetl/blob/master/smartem/harvester/harvestluftdaten.py] - Harvester for last-hour average values (history timeseries)

These classes mainly process incoming JSON-data to required database record formats for generic Stetl PostgresInsert output classes.

The Stetl configurations as run in the ETL cronjobs are:

	Last Values Stetl Config [https://github.com/smartemission/docker-se-stetl/blob/master/config/last.cfg] - Common Harvester for all last values (near real-time values)

	Harvester Stetl Config [https://github.com/smartemission/docker-se-stetl/blob/master/config/harvester_luftdaten.cfg] - Harvester for last-hour average values (history timeseries)

Device id’s consist of a fixed project id, 4931 (German and Dutch country codes) followed by 4-5 digits Luftdaten Location id. Although
each LTD sensor has its own unique id, the Location Id (and related lat/lon) binds multiple sensors together and can be considered as a “kit” or “station”.

No specific code is required for any of the other SE ETL processes, like Refiner and SOS and STA Publishers. For example all Luftdaten STA Things can be queried
by the project id 4931: https://data.smartemission.nl/gost/v1.0/Things?$filter=properties/project_id%20eq%20%274931%27

11.2.2. AirSensEUR

To Be Supplied.

Project id is 1182.

Via STA:
https://data.smartemission.nl/gost/v1.0/Things?$filter=properties/project_id%20eq%20%271182%27

11.2.3. Josene

To Be Supplied.

Several projects including Smart City Living Lab, Waalkade. The original Nijmegen SE project has project id ‘0000’, others usually start with ‘2’.

12. Administration

This chapter describes the daily operation and maintenance aspects for the Smart Emission platform (regular Docker environment). For example:

	how to start stop servers

	backup and restore

	managing the ETL

	where to find logfiles

	troubleshooting

	monitoring

12.1. Backup

Backup is automated: see Platform cronfile.txt and the backup.sh script.

Only dynamic data is backed-up as all
code is in GitHub and the entire platform can be rebuild in minutes.

The last 7 days of data are backed-up by weekday (1 is monday), and then the last day of
each year-month. Backups can be accessed via sftp :

$ sftp vps68271@backup
Connected to backup.
sftp> dir
SETEST-2016-06 SETEST-weekday-4
sftp> ls -l */*
-rw-r--r-- 0 1120 1122 199611 Jun 1 20:52 SETEST-weekday-4/geoserver_data_init.tar.gz
-rw-r--r-- 0 1120 1122 16345 Jun 2 00:00 SETEST-weekday-4/backup.log
-rw-r--r-- 0 1120 1122 262846 Jun 2 16:39 SETEST-weekday-4/geoserver_data.tar.gz
-rw-r--r-- 0 1120 1122 542 Jun 2 16:39 SETEST-weekday-4/postgres.sql.bz2
-rw-r--r-- 0 1120 1122 308 Jun 2 16:39 SETEST-weekday-4/backup_db.log
-rw-r--r-- 0 1120 1122 13570 Jun 2 16:39 SETEST-weekday-4/gis.sql.bz2
-rw-r--r-- 0 1120 1122 199611 Jun 1 20:52 SETEST-2016-06/geoserver_data_init.tar.gz
-rw-r--r-- 0 1120 1122 16345 Jun 2 00:00 SETEST-2016-06/backup.log
-rw-r--r-- 0 1120 1122 262846 Jun 2 16:39 SETEST-2016-06/geoserver_data.tar.gz
-rw-r--r-- 0 1120 1122 542 Jun 2 16:39 SETEST-2016-06/postgres.sql.bz2
-rw-r--r-- 0 1120 1122 308 Jun 2 16:39 SETEST-2016-06/backup_db.log
-rw-r--r-- 0 1120 1122 13570 Jun 2 16:39 SETEST-2016-06/gis.sql.bz2

Show quota with command: ssh vps68271@backup quota.

12.2. Restoring

To restore, when e.g. the /var/smartem dir is inadvertently deleted (as has happened once), the
entire data and services can be restored in minutes. Only all logging info cannot be restored.
Also handy when moving data to another server.

Latest nightly backups should be under /var/smartem/backup, in worser cases under the vps backup
(see above).

12.2.1. Stop the Platform

Be sure to have no ETL nor services running.

service smartem stop

12.2.2. Restore Databases

PostGIS and InfluxDB can be restored as follows.

 # Be sure to have no dangling data (dangerous!)
 /bin/rm -rf /var/smartem/data/postgresql # contains all PG data

 # Restart PostGIS: this recreates /var/smartem/data/postgresql
 ~/git/services/postgis/run.sh

 # creeer database schema's globale vars etc
 cd ~/git/platform
 ./init-databases.sh

 # Restore PostGIS data for each PG DB schema
~/git/platform/restore-db.sh /var/smartem/backup/gis-smartem_rt.dmp
~/git/platform/restore-db.sh /var/smartem/backup/gis-smartem_refined.dmp
~/git/platform/restore-db.sh /var/smartem/backup/gis-smartem_calibrated.dmp
~/git/platform/restore-db.sh /var/smartem/backup/gis-smartem_extract.dmp
~/git/platform/restore-db.sh /var/smartem/backup/gis-smartem_harvest-rivm.dmp
~/git/platform/restore-db.sh /var/smartem/backup/gis-sos52n1.dmp
~/git/platform/restore-db.sh /var/smartem/backup/gis-smartem_raw.dmp # big one

 # Restore InfluxDB data
cd /var/smartem/data
tar xzvf ../backup/influxdb_data.tar.gz

12.2.3. Restore Services

Services are restored as follows:

Restore GeoServer data/config
cd /var/smartem/data
tar xzvf ../backup/geoserver_data.tar.gz

Restore SOS 52North config
cd /var/smartem/data
tar xzvf ../backup/sos52n_data.tar.gz

Restore Grafana NOT REQUIRED (config from GitHub)
cd /var/smartem/config
tar xzvf ../backup/grafana_config.tar.gz

 # Grafana restore (tricky)
 rm -rf /var/smartem/config/grafana
 rm -rf /var/smartem/data/grafana
 rm -rf /var/smartem/log/grafana

 # run once
 cd ~/git/service/grafana
 ./run.sh

 # creates all grafana dirs

 # Stop and copy Grafana db (users, dashboards etc.)
 docker stop grafana
 docker rm grafana
 cp /var/smartem/backup/grafana.db /var/smartem/data/grafana
 ./run.sh

 # Check restores via the viewers: smartApp, Heron and SOS Viewer

12.2.4. Restore Calibration Images

Calibration Images can be restored as follows.

cd /opt/geonovum/smartem/git/etl
tar xzvf /var/smartem/backup/calibration_images.tar.gz

12.3. ETL and Data Management

12.3.1. Republish Data to SOS and STA

In cases where for example calibration has changed, we need to republish all (refined)
data to the SOS and STA. This is not required for data in GeoServer since it directly
uses the Refined DB tables. SOS and STA keep their own (PostGIS) databases, hence these must be refilled.

Below the steps to republish to SOS and STA, many are common. This should be performed on SE TEST Server:

 # stop entire platform: services and cronjobs
service smartem stop

Start PostGIS
cd ~/git/services/postgis
./run.sh

Next do STA and/or SOS specific initializations.

12.3.1.1. SensorUp STA Specific

This is specific to STA server from SensorUp.

 # use screen as processes may take long
 screen -S sta

STA clear data
cd ~/git/database
./staclear.sh

if this does not work re-init on server
login at sta.smartemission.nl
service tomcat8 stop
su - postgres
cat db-sensorthings-init.sql | psql sensorthings
service tomcat8 start
logout

 # STA Publisher: restart
 ./sta-publisher-init.sh

 # STA Test if publishing works again
 cd ~/git/etl
 ./stapublisher.sh

 # If ok, reconfigure stapublisher such that it runs forever
 # until no more refined data avail
 # edit stapublisher.cfg such that 'read_once' is False
 # [input_refined_ts_db]
 # class = smartemdb.RefinedDbInput
 # .
 # .
 # read_once = False

 # Now run stapublisher again (will take many hours...)
 ./stapublisher.sh

 # Detach screen
 control-A D

12.3.1.2. 52North SOS Specific

This is specific to SOS server from 52North.

Start SOS
cd ~/git/services/sos52n
./run.sh

SOS clear DB and other data
cd ~/git/services/sos52n/config
./sos-clear.sh

 # SOS Publisher: restart
cd ~/git/database/util
 ./sos-publisher-init.sh

 # SOS Test if publishing works again
 cd ~/git/etl
 ./sospublisher.sh

 # If ok, reconfigure sospublisher such that it runs forever
 # until no more refined data avail
 # edit sospublisher.cfg such that 'read_once' is False
 # [input_refined_ts_db]
 # class = smartemdb.RefinedDbInput
 # .
 # .
 # read_once = False

 # use screen as processes may take long
 screen -S sos

 # Now run sospublisher again (will take many hours...)
 ./sospublisher.sh

 # Detach screen
 control-A D

All dynamic data can be found under /var/smartem/data.

12.3.2. Calibration Model

This needs to be intalled from time to time on the production server.
Two parts are incolved: database schema (the model) and images (the results/stats).

All can be restored as follows, assuming we have the data in some backup.

 ~/git/platform/restore-db.sh gis-smartem_calibrated.dmp
cd /opt/geonovum/smartem/git/etl
tar xzvf calibration_images.tar.gz

12.4. Admin UI

There is a simple password-protected admin UI for several tasks and inpections. The Admin URL can be found
via the “Links” entry SE Platform website (<data|test>.smartemission.nl).

Via a main screen admin tasks and inpections are selected.

[image: _images/admin1.jpg]
Figure - SE Admin Page Main Screen

12.4.1. Database Management

Management of Postgres/PostGIS DB data is provided via phppgadmin.

[image: _images/phppgadmin1.jpg]
Figure - Postgres DB Management via phppgadmin

Management of InfluxDB data is provided via Chronograf.

[image: _images/chronograf1.jpg]
Figure - InfluxDB Management via Chronograf

Also possibility to develop dashboards.

[image: _images/chronograf2.jpg]
Figure - InfluxDB Management Dashboards in Chronograf

12.4.2. Services Management

Most of the application servers provide their own management web UI. These can
be invoked from the admin page as well, for example:

	GeoServer Admin

	SOS 52North Admin

	Grafana Admin

	SensorThings API (via GOST) Dashboard

12.4.3. Log Inspection

All log files for the ETL and for the application services can be accessed via the admin screen.

12.5. Monitoring

Local monitoring tools are invoked from the admin screen (see above).

12.5.1. Services Uptime

All SE API services (WMS, WFS, SOS, STA etc)
and external APIs (Whale Server, Intemo Harvester) are monitored via UptimeRobot.com. Notification of downtime os
via email or SMS.

12.5.2. Systems Monitoring

All systems (Ubuntu OS, Docker etc) are monitored using Prometheus [https://prometheus.io]
with Exporters [https://prometheus.io/docs/instrumenting/exporters/]
and Grafana [https://grafana.com/].

Prometheus collects and stores data as timeseries by pulling metrics from Exporters. An Exporter collects local
metric data and exposes these via a uniform HTTP API through which Prometheus pulls.
Each Exporter is resource-specific: e.g. a Node Exporter [https://github.com/prometheus/node_exporter]
collects metrics from a Linux OS. Google cAdvisor [https://github.com/google/cadvisor] will be used
to collect and expose Docker metrics.

Grafana uses Prometheus as a Data source, providing various standard Dashboards for visualization. Also Alerting
can be configured via Prometheus, using the AlertManager [https://prometheus.io/docs/alerting/alertmanager/]
to send to various alerting destinations (email, SMS, webhook etc).

A complete setup for the above can be found at https://github.com/vegasbrianc/prometheus. This is used as a base for
SE monitoring. Grafana monitoring Dashboards can be accessed via the SE Admin UI.

[image: _images/grafana-prometheus2.jpg]
Figure - Docker Monitoring in SE

12.5.2.1. Links

Tutorials

	https://www.digitalocean.com/community/tutorials/how-to-install-prometheus-using-docker-on-ubuntu-14-04

	https://www.digitalocean.com/community/tutorials/how-to-use-prometheus-to-monitor-your-ubuntu-14-04-server

Specifics

	http://phillbarber.blogspot.nl/2015/02/connect-docker-to-service-on-parent-host.html

	https://grafana.com/dashboards/1860

	https://github.com/google/cadvisor

12.6. Troubleshooting

Various issues found and their solutions.

12.6.1. Docker won’t start

This may happen after a Ubuntu (kernel) upgrade.
In syslog “[graphdriver] prior storage driver “aufs” failed: driver not supported”.

	Solution: https://github.com/docker/docker/issues/14026 : Remove dir /var/lib/docker/aufs.

13. Dissemination

This chapter collects various presentations and documents related to
dissemination events like workshops and presentations.
All “raw” documents can be found in the project GitHub repository
at https://github.com/smartemission/smartemission/tree/master/docs/platform/_static/dissemination.

13.1. Workshop 17 dec 2015

In the context of the Smart Emission project [http://www.ru.nl/gpm/onderzoek/research-projects/smart-emission]
a workshop was held at Geonovum on Dec 17, 2015. The main subjects were:

	presenting OGC standards in general (WMS, WFS, CSW) and in particular Sensor-related (SWE, SOS)

	hands-on demo’s for several clients and visualisations (QGIS, ArcGIS and Heron)

13.1.1. Slides

The agenda and presentation slides, all in PDF, can be found here:

	Workshop Agenda

	OGC Standards+INSPIRE - Thijs Brentjens

	OGC SWE/SOS - Just van den Broecke

	Visualisation in ArcGIS of LML data - Graduation Presentation - Freek Thuis

	QGIS - Matthijs Kastelijns

	Heron Viewer - Just van den Broecke

13.1.2. Links

More detailed tutorials on OGC standards at the OGC School [https://github.com/opengeospatial/ogc_school] in particular
the entire PDF document (18MB!) [https://github.com/opengeospatial/ogc_school/raw/master/build/ogc-tutorial.pdf].

Some interactive visualisation examples “via Google” were also shown like made with D3JS [http://d3js.org/]:

	Visualization of Beijing Air Pollution: http://vis.pku.edu.cn/course/Visualization_2012F/assignment2/Chengye

	More can be found here http://vis.pku.edu.cn/wiki/public_course/visclass_f12/assignment/a02/websites/start (click “Alive Version” for each)

13.2. Citizen Meetup 26 may 2016

Meeting held in Nijmegen, on May 26 2016.

13.2.1. Slides

The agenda and presentation slides, all in PDF, can be found here:

	Agenda

	Data, Viewers, Standards - 10 min talk

13.3. Project Meeting 12 july 2016

Meeting held in Nijmegen, on July 12 2016.

	Gas Calibration - Pieter Marsman

13.4. Geospatial World Forum 24 may 2016

Smart Emission was presented at the Geospatial World Forum (GWF) in Rotterdam on may 24, 2016.
The presentation from Smart Emission is here:

	Smart Emission

13.5. Sensor Webs Conference 30 aug 2016

Smart Emission was presented at the Geospatial Sensor Webs conference organized by 52°North in Münster Germany.

“Under the motto “Geospatial Sensor Webs”, the 52°North Open Innovation Network aims to provide a forum
in which sensor web researchers and practitioners can present and discuss their ideas, use cases and solutions. …
The 2016 Workshop and Conference continues the series of 52°North workshops on Sensor Web technologies, which started in 2013.”

13.5.1. Slides

All presentations can be found online at
http://52north.org/about/other-activities/geospatial-sensor-webs-conference/program/tuesday

The presentation from Smart Emission is here:

	Smart Emission, building a spatial data infrastructure for an environmental citizen sensor network

13.5.2. Papers

For this conference the SE project submitted a paper for the proceedings.
The proceedings named “Proceedings of the Geospatial Sensor Webs Conference 2016”, Münster, Germany, August 29 - 31, 2016 by
Simon Jirka, Christoph Stasch, Ann Hitchcock (Eds) can be found online at
http://ceur-ws.org/Vol-1762/

The SE-paper “Smart Emission - Building a Spatial Data Infrastructure for an Environmental Citizen Sensor Network”
by Michel Grothe et al is here as PDF:

	Smart Emission - Building a Spatial Data Infrastructure for an Environmental Citizen Sensor Network

13.5.3. Links

	Conference web site [http://52north.org/about/other-activities/geospatial-sensor-webs-conference]

13.6. Evaluation Meeting 21 sep 2016

An internal and external evalution meeting was held on sept 21, 2016
in “Wijkcentrum De Biezantijn”, Nijmegen.

13.6.1. Slides

The presentation from Smart Emission is here:

	Status update Data Platform (Just van den Broecke)

	SE Data Platform Overview (Just van den Broecke)

13.7. Presentation 28 nov 2016

An internal presentation on Smart Emission, AirSensEUR and SensorThings API was held on nov 28, 2016
at the “Springplank” lunch meetup at Geonovum.

13.7.1. Slides

The presentation slides are here:

	Smart Emission and more (Just van den Broecke)

13.8. Symposium RIVM “Samen meten aan Luchtkwaliteit”

Op 7 december 2016 organiseerde het RIVM centrum Milieukwaliteit het
symposium “Samen meten aan luchtkwaliteit: innovatie, sensoren en citizen science”.
Tijdens het symposium kwamen partijen bijeen die de lokale luchtmetingen naar een hoger plan tillen.

SE held a workshop on “Data”. Links below:

	Agenda Symposium [http://www.rivm.nl/Documenten_en_publicaties/Algemeen_Actueel/Agenda_Items/Agenda_2016/Symposium_Samen_meten_aan_luchtkwaliteit_innovatie_sensoren_en_citizen_science]

	Aankondiging [http://rivm.nl/media/SamenMetenAanLuchtkwaliteit/SaveTheDate/index.html]

13.8.1. Slides

The presentation slides (PDF and PPT)
from the Smart Emission Data workshop (Verdonk, Nouwens, van den Broecke, Geurts) are here:

	Smart Emission Workshop on Data (PDF)

	Smart Emission Workshop on Data (Powerpoint)

13.9. Presentatie bij RIVM - 17 jan 2017

Presentatie door Just van den Broecke in kader mogelijke overdracht/samenwerking met RIVM
voor het SE Platform.

13.9.1. Slides

The presentation slides (PDF) are here:

	Smart Emission Platform (PDF)

13.10. Emit Blog Posts - 2018+

Emit #1+ – series of blog posts on SE Platform [https://justobjects.nl/category/smartemission/]
by Just van den Broecke on justobjects.nl [https://justobjects.nl]

13.11. INSPIRE Conference 2018 - Antwerp

Presented by Linda Carton at INSPIRE Conference in Antwerp on sept 20, 2018:

	Title: Development of a national Spatial Data Infrastructure for Open Sensor Data based on citizen science initiatives

	Authors: Linda Carton, Paul Geurts, Just van den Broecke, Janus Hoeks, Michel Grothe, Robert Kieboom, Hester Volten, Jene van der Heide, Marga Jacobs and Piet Biemans

	Abstract [https://inspire.ec.europa.eu/events/conferences/inspire_2018/submissions/363.html]

	Presentation Slides (PDF)

13.12. Geo Gebruikersfestival 2018 - Amersfoort

Presented by Just van den Broecke at Geo Gebruikersfestival/SDI.Next 2018 [https://www.geonovum.nl/over-geonovum/agenda/geo-gebruikersfestival-2018-en-sdinext] in Amersfoort on okt 31, 2018.

Abstract:

"Eind september heeft PDOK het beheer van het Smart
Emissions Platform op zich genomen. Daarmee is de
Sensordata Stack op PDOK live gegaan. Het PDOK ITteam
heeft veel kennis kunnen opdoen over sensordatastromen,
onder andere door de inzet van de OGC
SensorThingsAPI. Just van den Broecke was zowel bij de
opzet van het Smart Emissions Platform zelf betrokken
als bij de landing hiervan in PDOK. Hij vertelt over de
gekozen architectuur en standaarden en werpt alvast
een blik in de toekomst."

	Title: SensorSDI op PDOK met het Smart Emission Data Platform

	Author: Just van den Broecke

	Presentation Slides (PDF)

14. Cookbook

This chapter contains sections to aid developers to interact with the SE platform.
This is split into the following areas:

	developing (web) clients that use the OGC web services (WFS, WMS, SOS, STA)

	developing new sensor types

	deploying subsets of the SE platform

14.1. Developing Web Clients

The SE platform supports various standard OGC web APIs:

	WMS with Time Dimensions

	WFS

	Sensor Observation Service (SOS)

	SensorThings API (STA)

The use of STA is favoured over SOS.

14.2. SensorThings API

The easiest way to get data out of the SE Platform is via the SensorThings API [http://docs.opengeospatial.org/is/15-078r6/15-078r6.html].
As this API is REST-based one can already navigate through its entities via a web browser.
For example the URL http://data.smartemission.nl/gost/v1.0 will show all Entities. Each can be clicked
to navigate through the model.

14.2.1. Resources

Some STA documentation, inparticular API usage.

	SensorThings API OGC Standard [http://docs.opengeospatial.org/is/15-078r6/15-078r6.html]

	http://ogc-iot.github.io/ogc-iot-api/datamodel.html - datamodel explanation

	http://developers.sensorup.com/docs/ - developer-friendly API docs, including JavaScript/cURL examples

	https://gost1.docs.apiary.io - STA GOST-provided API docs

	https://sensorup.atlassian.net/wiki/spaces/SPS - some more examples

The mapping of the STA entities to SE objects is as follows:

	Thing: corresponds to single SE Device (Station)

	Location: holds single/last geographical Point location of Thing, thus SE Device

	Datastream: corresponds to single indicator (e.g. Temperature or NO2) of single/specific SE Device

	Observation: corresponds to single measurement (e.g. Temperature or NO2) of single/specific Datastream

	Sensor and ObservedProperty provide metadata for a single/specific SE device indicator (mostly a sensor) thus Datastream

So a single Thing has multiple Datastreams, each Datastream provides multiple
Observations for a single Sensor and single ObservedProperty.
This corresponds to a single SE Device containing multiple indicators (mostly sensors) where each
indicator provides multiple measurements. Thus Thing, Datastream and Observation will be the three Entities mostly
used when interacting with STA.

In addition, for a Thing in SE the following conventions apply:

	name attribute corresponds to SE Device id

	properties is a free-form key/value list field using

	device_meta: device type and version e.g. jose-1

	id: device type and version e.g. jose-1

	last_update: last date/time update was received from device

	project_id: project identifier within SE (first 4 numbers of SE Device id)

Example properties:

"properties": {
 "device_meta": "jose-1",
 "id": "20060009",
 "last_update": "2018-02-01T15:00:00+01:00",
 "project_id": 2006
},

One caveat: as the STA GOST server holds over 5 million Entities (mainly Observations), most STA REST calls will
automatically provide Paging with a maximum of N (top or nested) Entities per page.
For example, getting all Things via http://data.smartemission.nl/gost/v1.0/Things gives:

{
 "@iot.count": 182,
 "@iot.nextLink": "http://data.smartemission.nl/gost/v1.0/Things?$top=100&$skip=100",
 "value": [
 {
 "@iot.id": 182,
 "@iot.selfLink": "http://data.smartemission.nl/gost/v1.0/Things(182)",
 "name": "20060009",
 "description": "Smart Emission station 20060009",
 "properties": {
 "device_meta": "jose-1",
 "id": "20060009",
 "last_update": "2018-02-01T15:00:00+01:00",
 "project_id": 2006
 },
 "Locations@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Things(182)/Locations",
 "Datastreams@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Things(182)/Datastreams",
 "HistoricalLocations@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Things(182)/HistoricalLocations"
 },
 {
 "@iot.id": 181,
 "@iot.selfLink": "http://data.smartemission.nl/gost/v1.0/Things(181)",
 "name": "20060005",
 "description": "Smart Emission station 20060005",
 "properties": {
 "device_meta": "jose-1",
 "id": "20060005",
 "last_update": "2018-02-01T15:00:00+01:00",
 "project_id": 2006
 },
 "Locations@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Things(181)/Locations",
 "Datastreams@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Things(181)/Datastreams",
 "HistoricalLocations@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Things(181)/HistoricalLocations"
 },
 .
 .
 {
 "@iot.id": 83,
 "@iot.selfLink": "http://data.smartemission.nl/gost/v1.0/Things(83)",
 "name": "88",
 "description": "Smart Emission station 88",
 "properties": {
 "device_meta": "jose-1",
 "id": "88",
 "last_update": "2018-01-25T07:00:00+01:00",
 "project_id": 0
 },
 "Locations@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Things(83)/Locations",
 "Datastreams@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Things(83)/Datastreams",
 "HistoricalLocations@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Things(83)/HistoricalLocations"
 }
]
}

where “@iot.count”: 182 denotes that there are 182 Things (SE Sensor Stations/Devices).

Paging: http://data.smartemission.nl/gost/v1.0/Things?$top=100&$skip=100 links to the next Page with $top=100&$skip=100 indicating
show at most 100 Entities ($top=100) and skip the first 100 ($skip=100). The number 100 is a limit set in in the GOST
config file: maxEntityResponse: 100. One should always be aware of Paging.

14.2.2. Useful Queries

Reminder: Paging will apply to the total number of Entities returned: so when e.g. $expand-ing Things,
the count will apply to the expanded Entities!

Getting a specific Thing by station id using $filter.:

http://data.smartemission.nl/gost/v1.0/Things?$filter=name eq ‘20010001’ [http://data.smartemission.nl/gost/v1.0/Things?$filter=name%20eq%20%2720010001%27]

or URL-encoded:

http://data.smartemission.nl/gost/v1.0/Things?$filter=name%20eq%20%2720010001%27

Getting Things expanding Locations, useful to plot e.g. SE Devices with (last) locations on a map:

http://data.smartemission.nl/gost/v1.0/Things?$expand=Locations

Same, but requesting a more compact response (less attributes) using the $select option:

http://data.smartemission.nl/gost/v1.0/Things?$expand=Locations($select=location)&$select=id,name

Result:

{
 "@iot.count": 182,
 "@iot.nextLink": "http://data.smartemission.nl/gost/v1.0/Things?$expand=Locations($select=location)&$top=100&$skip=100",
 "value": [
 {
 "@iot.id": 182,
 "name": "20060009",
 "Locations": [
 {
 "location": {
 "coordinates": [
 -2.048575,
 -2.048575
],
 "type": "Point"
 }
 }
]
 },
 {
 "@iot.id": 181,
 "name": "20060005",
 "Locations": [
 {
 "location": {
 "coordinates": [
 5.671203,
 51.47254
],
 "type": "Point"
 }
 }
]
 },
 .
 .
 {
 "@iot.id": 83,
 "name": "88",
 "Locations": [
 {
 "location": {
 "coordinates": [
 5.865303,
 51.846375
],
 "type": "Point"
 }
 }
]
 }
]
}

Getting all Things with Locations with specific property, for example all Devices for SE project 2001 (city of Zoetermeer):

http://data.smartemission.nl/gost/v1.0/Things?$filter=properties/project_id eq ‘2001’&$expand=Locations [http://data.smartemission.nl/gost/v1.0/Things?$filter=properties/project_id%20eq%20%272001%27&$expand=Locations]

or all SE Nijmegen project (0) Devices:

http://data.smartemission.nl/gost/v1.0/Things?$filter=properties/project_id% eq ‘0’&$expand=Locations [http://data.smartemission.nl/gost/v1.0/Things?$filter=properties/project_id%20eq%20%270%27&$expand=Locations]

Getting Things expanding Locations and Datastreams is often useful to plot e.g. Station icons on a map, also
providing info on all Indicators (Datastreams):

http://data.smartemission.nl/gost/v1.0/Things?$expand=Locations,Datastreams

Result:

{
 "@iot.count": 182,
 "@iot.nextLink": "http://data.smartemission.nl/gost/v1.0/Things?$expand=Locations,Datastreams&$top=100&$skip=100",
 "value": [
 {
 "@iot.id": 182,
 "@iot.selfLink": "http://data.smartemission.nl/gost/v1.0/Things(182)",
 "name": "20060009",
 "description": "Smart Emission station 20060009",
 "properties": {
 "device_meta": "jose-1",
 "id": "20060009",
 "last_update": "2018-02-01T15:00:00+01:00",
 "project_id": 2006
 },
 "HistoricalLocations@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Things(182)/HistoricalLocations",
 "Locations": [
 {
 "@iot.id": 182,
 "@iot.selfLink": "http://data.smartemission.nl/gost/v1.0/Locations(182)",
 "name": "20060009",
 "description": "Location of Station 20060009",
 "encodingType": "application/vnd.geo+json",
 "location": {
 "coordinates": [
 -2.048575,
 -2.048575
],
 "type": "Point"
 },
 "Things@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Locations(182)/Things",
 "HistoricalLocations@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Locations(182)/HistoricalLocations"
 }
],
 "Datastreams": [
 {
 "@iot.id": 1690,
 "@iot.selfLink": "http://data.smartemission.nl/gost/v1.0/Datastreams(1690)",
 "name": "pm2_5",
 "description": "PM 2.5 for Station 20060009",
 "unitOfMeasurement": {
 "definition": "http://unitsofmeasure.org/ucum.html#para-30",
 "name": "PM 2.5",
 "symbol": "ug/m3"
 },
 "observationType": "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement",
 "Thing@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Datastreams(1690)/Thing",
 "Sensor@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Datastreams(1690)/Sensor",
 "Observations@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Datastreams(1690)/Observations",
 "ObservedProperty@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Datastreams(1690)/ObservedProperty"
 },
 {
 "@iot.id": 1689,
 "@iot.selfLink": "http://data.smartemission.nl/gost/v1.0/Datastreams(1689)",
 "name": "pm10",
 "description": "PM 10 for Station 20060009",
 "unitOfMeasurement": {
 "definition": "http://unitsofmeasure.org/ucum.html#para-30",
 "name": "PM 10",
 "symbol": "ug/m3"
 },
 "observationType": "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement",
 "Thing@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Datastreams(1689)/Thing",
 "Sensor@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Datastreams(1689)/Sensor",
 "Observations@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Datastreams(1689)/Observations",
 "ObservedProperty@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Datastreams(1689)/ObservedProperty"
 },

Getting specific Datastreams for single Indicator, for example getting all NO2 Datastreams.

http://data.smartemission.nl/gost/v1.0/Datastreams?$filter=name eq ‘no2’ [http://data.smartemission.nl/gost/v1.0/Datastreams?$filter=name%20eq%20%27no2%27]

Getting Observations

Getting last Observations since date/time:

http://data.smartemission.nl/gost/v1.0/Observations?$filter=phenomenonTime gt ‘2018-02-06T08:00:00.000Z’ [http://data.smartemission.nl/gost/v1.0/Observations?$filter=phenomenonTime%20gt%20%272018-02-06T08:00:00.000Z%27]

Result:

{
 "@iot.count": 921,
 "@iot.nextLink": "http://data.smartemission.nl/gost/v1.0/Observations?$filter=phenomenonTime gt '2018-02-06T08:00:00.000Z'&$top=100&$skip=100",
 "value": [
 {
 "@iot.id": 5131983,
 "@iot.selfLink": "http://data.smartemission.nl/gost/v1.0/Observations(5131983)",
 "phenomenonTime": "2018-02-06T10:00:00.000Z",
 "result": 1,
 "parameters": {
 "device_meta": "jose-1",
 "gid": 5132008,
 "name": "noiselevelavg",
 "raw_gid": 492353,
 "sensor_meta": "au-V30_V3F",
 "station": 20000001
 },
 "Datastream@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Observations(5131983)/Datastream",
 "FeatureOfInterest@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Observations(5131983)/FeatureOfInterest",
 "resultTime": "2018-02-06T11:00:00+01:00"
 },
 {
 "@iot.id": 5131982,
 "@iot.selfLink": "http://data.smartemission.nl/gost/v1.0/Observations(5131982)",
 "phenomenonTime": "2018-02-06T10:00:00.000Z",
 "result": 1017,
 "parameters": {
 "device_meta": "jose-1",
 "gid": 5132007,
 "name": "pressure",
 "raw_gid": 492353,
 "sensor_meta": "press-S16",
 "station": 20000001
 },
 "Datastream@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Observations(5131982)/Datastream",
 "FeatureOfInterest@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Observations(5131982)/FeatureOfInterest",
 "resultTime": "2018-02-06T11:00:00+01:00"
 },

In the parameters some SE-specific data is encapsulated:

	“device_meta”: “jose-1” - the Device type and -version

	“gid”: 5132007 - the original key from the smartem_refined.timeseries DB schema/table

	“name”: “pressure” - the friendly name of the Indicator

	“raw_gid”: 492353 - the original key from the smartem_raw.timeseries DB schema/table

	“sensor_meta”: “press-S16” - sensor type within the Device

	“station”: 20000001 - the Device id

Getting last Observations for a specific Device (Thing) is a common scenario.
Think of a web viewer:

	on opening the viewer all Devices are shown as icons on map

	clicking on an icon shows all last measurements (Observations) for all Datastreams of the Thing

One can first all Datastreams for a Thing, and
then for each Datastream get the last Observation using $top=1. Example for Device 20010001:

	Get the Thing for example by Device id, expanding Datastreams:

http://data.smartemission.nl/gost/v1.0/Things?$filter=name eq ‘20010001’&$expand=Datastreams [http://data.smartemission.nl/gost/v1.0/Things?$filter=name%20eq%20%2720010001%27&$expand=Datastreams]

	Now get the last Observation for each Datastream

PM10: http://data.smartemission.nl/gost/v1.0/Datastreams(1255)/Observations?$top=1

PM2_5: http://data.smartemission.nl/gost/v1.0/Datastreams(1254)/Observations?$top=1

A more direct way to get the last Observation for each Datastream from a Thing queried by device_id in a single GET:

http://data.smartemission.nl/gost/v1.0/Things?$filter=name eq ‘20010001’&$expand=Datastreams/Observations($top=1) [http://data.smartemission.nl/gost/v1.0/Things?$filter=name%20eq%20%2720010001%27&$expand=Datastreams/Observations($top=1)]

Or when the Thing id (131 here) is known, simpler:

http://data.smartemission.nl/gost/v1.0/Things(131)?$expand=Datastreams/Observations($top=1)

Using $select, to receive less data attributes. Here query for Device id 20010001 last Observations showing only id and name of each Datastream:

http://data.smartemission.nl/gost/v1.0/Things?$filter=name eq ‘20010001’&$select=id,name&$expand=Datastreams($select=id,name),Datastreams/Observations($top=1) [http://data.smartemission.nl/gost/v1.0/Things?$filter=name%20eq%20%2720010001%27&$select=id,name&$expand=Datastreams($select=id,name),Datastreams/Observations($top=1)]

Result:

{
 "@iot.count": 1,
 "value": [
 {
 "@iot.id": 131,
 "name": "20010001",
 "Datastreams": [
 {
 "@iot.id": 1255,
 "name": "pm10",
 "Observations": [
 {
 "@iot.id": 5145885,
 "phenomenonTime": "2018-02-07T11:00:00.000Z",
 "result": 137,
 "parameters": {
 "device_meta": "jose-1",
 "gid": 5145910,
 "name": "pm10",
 "raw_gid": 493875,
 "sensor_meta": "pm10-S29",
 "station": 20010001
 },
 "resultTime": "2018-02-07T12:00:00+01:00"
 }
]
 },
 {
 "@iot.id": 1254,
 "name": "pm2_5",
 "Observations": [
 {
 "@iot.id": 5145881,
 "phenomenonTime": "2018-02-07T11:00:00.000Z",
 "result": 122,
 "parameters": {
 "device_meta": "jose-1",
 "gid": 5145906,
 "name": "pm2_5",
 "raw_gid": 493875,
 "sensor_meta": "pm2_5-S2A",
 "station": 20010001
 },
 "resultTime": "2018-02-07T12:00:00+01:00"
 }
]
 },
 .
 .
 {
 "@iot.id": 1248,
 "name": "noiseavg",
 "Observations": [
 {
 "@iot.id": 5145882,
 "phenomenonTime": "2018-02-07T11:00:00.000Z",
 "result": 47,
 "parameters": {
 "device_meta": "jose-1",
 "gid": 5145907,
 "name": "noiseavg",
 "raw_gid": 493875,
 "sensor_meta": "au-V30_V3F",
 "station": 20010001
 },
 "resultTime": "2018-02-07T12:00:00+01:00"
 }
]
 }
]
 }
]
}

Last 100 Observations from any Indicators from any Devices:

http://data.smartemission.nl/gost/v1.0/Observations?$top=100

Result:

{
 "@iot.count": 5131983,
 "@iot.nextLink": "http://data.smartemission.nl/gost/v1.0/Observations?$top=100&$skip=100",
 "value": [
 {
 "@iot.id": 5131983,
 "@iot.selfLink": "http://data.smartemission.nl/gost/v1.0/Observations(5131983)",
 "phenomenonTime": "2018-02-06T10:00:00.000Z",
 "result": 1,
 "parameters": {
 "device_meta": "jose-1",
 "gid": 5132008,
 "name": "noiselevelavg",
 "raw_gid": 492353,
 "sensor_meta": "au-V30_V3F",
 "station": 20000001
 },
 "Datastream@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Observations(5131983)/Datastream",
 "FeatureOfInterest@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Observations(5131983)/FeatureOfInterest",
 "resultTime": "2018-02-06T11:00:00+01:00"
 },
 {
 "@iot.id": 5131982,
 "@iot.selfLink": "http://data.smartemission.nl/gost/v1.0/Observations(5131982)",
 "phenomenonTime": "2018-02-06T10:00:00.000Z",
 "result": 1017,
 "parameters": {
 "device_meta": "jose-1",
 "gid": 5132007,
 "name": "pressure",
 "raw_gid": 492353,
 "sensor_meta": "press-S16",
 "station": 20000001
 },
 "Datastream@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Observations(5131982)/Datastream",
 "FeatureOfInterest@iot.navigationLink": "http://data.smartemission.nl/gost/v1.0/Observations(5131982)/FeatureOfInterest",
 "resultTime": "2018-02-06T11:00:00+01:00"
 },

Get all Things with Locations and Latest Observation

Uses multiple inline-options separated with semi-colon:

http://data.smartemission.nl/gost/v1.0/Things?$expand=Locations($select=location),Datastreams($select=id,name),Datastreams/Observations($select=id,phenomenonTime,result;$top=1)&$select=id,name,properties

Get Observations using date/time

The field phenomenonTime of Observation denotes the date/time of the original Observation.

As the Observations in the SE GOST server always denote hourly averages the phenomenonTime applies to the
previous hour of the phenomenonTime. Best, in terms of response times, is to use explicit intervals with the
ge, gt and le, lt operators. At this time using ISO 8601 intervals results in long response times.

To get all Observations of a specific hour let’s say between 11:00 and 12:00 on January 29, 2018:

http://data.smartemission.nl/gost/v1.0/Observations?$filter=phenomenonTime gt ‘2018-01-29T11:00:00.000Z’ and phenomenonTime le ‘2018-01-29T12:00:00.000Z’&$select=result,phenomenonTime,parameters [http://data.smartemission.nl/gost/v1.0/Observations?$filter=phenomenonTime%20gt%20%272018-01-29T11:00:00.000Z%27%20and%20%20phenomenonTime%20le%20%272018-01-29T12:00:00.000Z%27&$select=result,phenomenonTime,parameters]

This can also be used to get the latest Observations.

15. Evolution

By: Just van den Broecke - v1 - March 2, 2018 - written @Kadaster/PDOK.

This is a chapter from the full Smart Emission platform documentation found at
http://smartplatform.readthedocs.io

This chapter focuses on possible future evolution scenarios for the Smart Emission platform.

See the Architecture, Data Management, Components and Dataflow and APIs chapters for the overall design and data
processing, APIs and dataflow of the SE Platform.

15.1. Introduction

Within the world of SensorWeb and IoT, many platforms are developed and offered.
Some with Open Source, others with proprietary source. Data may be Open, partially Open or completely closed.
Same goes for standards and APIs used for (web) services. Some platforms are
“end-to-end complete”: they include data acquisition from sensors, data management/storage,
services and viewers, often in the form of a “Portal” and “Dashboards”. Most of these portals
are built with proprietary source, use custom APIs and usually provide
subscription models (“Cloud Services”) for end users. Also data is usually hosted
at major providers like Amazon and Google, most often not within The Netherlands.
Licensing models may change at will. But the convenience is great, often
plug-and-play integrations (like with ThingsNetwork).
Examples are numerous, we mention just MyDevices Cayenne [https://cayenne.mydevices.com] and
OpenSensors [https://opensensors.com/].

This chapter is not to list and review all major sensor/IoT platforms, but puts focus on a a very high level
functional architecture applied to sensor network initiatives within The Netherlands.

15.2. Components

This section sketches a global and distributed component architecture.
From several sensor network projects, including Smart Emission, and discussions
a high-level, global architecture emerged of functional building blocks connected via APIs (Standards).
This is sketched in Figure 1 below.

[image: _images/evolve-components.jpg]
Figure 1 - Global Component Architecture

Figure 1 above uses three drawing elements:

	the green rectangles denote functional blocks

	the red arrows denote the flow of sensor data

	the oval elements called “API” denote standardized interaction between functional blocks

Furthermore:

	functional blocks may be distributed over servers (or in same server)

	relations between these blocks may be multiple (many-to-many)

	functional blocks may be provided and maintained by different organizations/companies

The image sketches an architecture on the basis of minimal Coupling and maximum Cohesion: blocks have
minimal (API) couplings and are maximally cohesive, i.e. perform only specific tasks.

What follows is a short description of the functions of each block and its relations to other blocks, starting
at the bottom, following the flow of (sensor) data.

15.2.1. Data Collection

This block in practice provides one or more Data Collectors. Sensors need to
send their data to “somewhere”. Often it is good practice to have a “buffer”, here called a Data Collector
that initially receives and stores the data from sensors and makes
it available via an API.

Examples: within the SE Platform, raw data from Josene sensors is sent using low-level protocols (MQTT)
to Data Collectors provided by Intemo and CityGIS. These provide storage and the “Whale API” from
which any other platform SE or RIVM can obtain, i.e. harvest that raw sensor-data.

Another Data Collector within the SE platform is an InfluxDB timeseries database to which for example
the EU JRC AirSensEUR stations send their raw sensor data.

The big advantage of this approach is that:

	sensors only need to know a single destination (address) for their data

	there may be multiple raw data consumers (e.g. SE, RIVM) or OTAP streets

	history function: data may be collected and stored for longer periods

The result of this block is that raw sensor-data (timeseries) is stored and made available
to multiple consumers. But the data is still “raw”, not yet suitable for applications.

NB in addition it is convenient that a Data Collector API always provides a “current/last” dataset from
all sensors to data consumers, to allow near-realtime datastreams.

15.2.2. Data Processing

Sensor data provided by Data Collectors is consumed, usually via harvesting by Data Processors.
These provide in general the following refinement steps on the raw sensor data:

	validation: removing “outliers”, bad data in general

	conversion: convert units, e.g. from Kelvin to Celsius for temperature

	calibration: provide calibration, e.g. via linear methods, Artificial Neural Networks (ANN)

	aggregation: make averages like hour or 5 minute-values, data reduction

Not all Data Processors will provide all these functions, and implementations may greatly differ.

In the end each Data Processor will make its “refined” data available for the next step: Data Services.

15.2.3. Data Services

A Data Service in general provides usually a Web API through which consumers, mainly
Applications can utilize the refined sensor-data by the Data Processors.

In this block Web Service APIs are found: when standardized these are often OGC-based like
the Sensor Observation Service, the SensorThings API (STA), but also WMS and WFS.

For example the SE platform provides currently (feb 2018) five APIs: WMS (Time), WFS, SOS, STA and a properietary
REST API for current sensor-values. For SOS and STA Data Publishers are defined
that push data from Data Processors to these respective services (via SOS-T and STA REST PUT).

15.2.4. Apps

Apps are web-based, desktop or mobile applications that consume refined sensor-data provided via
the (standardized) APIs of the Data Services.

For example within the SE project several “Viewers” were developed. Some internal within
the project like the heron and SmartApp, some external like viewers from Imagem and TNO.

15.2.5. Registry

This building block is global to all the other building blocks discussed above.
Its functions may be distributed over several actual components and may include:

	sensor registration: location, owner etc

	sensor metadata, the properties of the sensor

	user registration: sensor ownership, access constraints

	service registration: available services, service URLs etc

	apps registration: as for services:

This block mainly deals with data and APIs “other than the sensor-data (and APIs)”.
Often this is refered to as Metadata (MD) and MD APIs.

This block is often overlooked in projects. At least within the SE Platform it has not been
explicitly defined as initially there was just one sensor/device type and no users
registered. But like in other geospatial architectures this aspect should be taken into account.

15.3. APIs and Standards

The success of the above architecture has a prominent role for APIs.
Especially when building blocks are developed and deployed in a distributed fashion
by different organizations.

A few recommendations based on experience within the SE project.

15.3.1. SensorThings API (STA)

The SensorThings API is a relatively new OGC standard.
It provides similar functions as SOS, but
more “modern” and lightweight.

In a nutshell: within STA an E/R-ike model of Entities (Things, Sensors, Datastreams, Observations etc)
are managed via HTTP verbs (like GET, PUT, PATCH etc).

The OGC STA standard also uses and integrates the IoT protocol MQTT.

Usage: STA could be applied for several APIs within the above architecture:

	Sensors to Data Collectors (using MQTT)

	Data Services to Apps

15.3.2. Whale API a.k.a. Raw Sensor API

Via this API the SE Harvesters pulled in data from Data Collectors.
This custom Web API was developed (by Robert Kieboom and Just van den Broecke)
specifically for the SE project. It proved very convenient to
harvest bulk timeseries raw sensor-data.

The Whale API has two main services:

	fetch timeseries (history) data

	fetch latest data of any device (“last” values)

The specification [https://github.com/smartemission/smartemission/blob/master/docs/specs/rawsensor-api/rawsensor-api.txt]
and examples can be found in GitHub:
https://github.com/smartemission/smartemission/tree/master/docs/specs/rawsensor-api.

15.3.3. Sensor Observation Service (SOS)

After several years of experience, we don’t recommend using SOS:

	bulky data (XML)

	hard to understand by developers

	hard to manage via SOS-T (e.g. moving sensors)

	only two mature Open Source implementation

	interworking problems (see QGIS SOS plugins)

Though some providers have developed a “SOS-REST” API with JSON data formats these are
product-specific and thus proprietary.

Though SensorThings API is very recent and implementations may need to mature, for
the future STA seems a better option.

15.3.4. Web Map Service (WMS)

A WMS with plain image and time-dimension support. This allows
clients to fetch images through history (e.g. with a timeslider in a web-viewer).
The WMS OGC Standard provide Dimension-support, in this case time as dimension.

15.3.5. Web Feature Service (WFS)

This allows downloading of timeseries data with geospatial filter-support.

Though WFS could be replaced functionally by SensorThings API.

All in all: what is important is to:

	recognize which APIs are required

	which existing APIs (standards) to choose

	filling in options in these standards (profiling)

	provide Open Source examples/implementations

15.4. Federated Architecture

The above architecure could be implemented by multiple organizations. For example
on the (Dutch) national level scenarios can be envisioned where local and governmental
organizations and parties “from the market” each fill-in functional blocks based on their specialization.
This could result in what could be called a Federated Architecture, i.e. no single party
provides/controls all building blocks. In theory any party could join (via the APIs and Registry).

A good example of such a federated architecture brought
to practice is The ThingsNetwork (TTN) [https://www.thethingsnetwork.org/], a community-driven
LoRaWAN network based on well-defined components and APIs. Setup for different purpose and domain but
working very well in practice because of well-defined building blocks and APIs, making
it extensible as any party can join and add a building block.
A Forum with community managers and a central website
with documentation, info and portal functions also has a great role in TTN.

Back to Smart Emission evolution and expanding the architecture from Figure 1.
For example, roles for blocks (and thus API providers) could be divided as follows:

	Intemo, EU JRC: Data Collection

	RIVM: Data Processing

	Kadaster: Data Services (via PDOK), Registry

But this division does not need to be that strict. For example RIVM
may also host Data Collectors and/or provide Data Services. The point is again: a federated architecture
composed by well-defined building blocks and APIs.

“The market”, or any other organization would provide the Apps, sensors
and Data Collectors.

Again, for this to work, agreements on APIs have to be made and favourably
components would be developed and reused with Open Source.

[image: _images/evolve-example.jpg]
Figure 2 - Federated Architecture Example

An (fictional!) example is provided in the Figure above.
The roles are not fixed but just for the example.
The actual APIs need to be worked out. For the latter we foresee
a role for Geonovum, selecting and profiling standards from mainly OGC and W3C.

16. Contact

The website www.smartemission.nl [http://www.smartemission.nl] is the main entry point for this project.

The SE Data Platform has its own domain: data.smartemission.nl [http://data.smartemission.nl].

All development is done via GitHub: see https://github.com/smartemission/smartemission.

Developers for the SE Data Platform are Just van den Broecke [http://justobjects.nl] (lead, document editor), Pieter Marsman (calibration), Thijs Brentjens

Contact Just van den Broecke at email at just AT justobjects.nl

17. Links

Below links relevant to the project.

17.1. Smart Emission

	Smart Emission Platform (PDF)

	Smart Emission - Building a Spatial Data Infrastructure for an Environmental Citizen Sensor Network

	Making sense of standards An evaluation and harmonisation of standards in the sensor web - M.C. Kastelijns (PDF) [http://www.gdmc.nl/publications/2016/Making_Sense_of_Standards_Sensor_Web.pdf]

	Emit #1+ – series of blog posts on SE Platform [https://justobjects.nl/category/smartemission/] by Just van den Broecke on justobjects.nl [https://justobjects.nl]

17.2. Sensors

	Luchtkwaliteit meten met sensoren - Joost Wesseling, Annemarie van Alphen, Hester Volten, Edith van Putten - RIVM, Statusoverzicht januari 2016 [http://www.rivm.nl/dsresource?objectid=420a3851-7bae-4a1b-8c57-587422cb21b4&type=org&disposition=inline]

	https://www.samenmetenaanluchtkwaliteit.nl/apparaten-en-kits

	“Meetspecialisten praten elkaar bij over luchtsensoren” [https://www.samenmetenaanluchtkwaliteit.nl/nieuws/meetspecialisten-praten-elkaar-bij-over-luchtsensoren] Presentaties op symposium Samen Meten 2017, o.a. Jan Vonk, Joost Wesseling (RIVM)

17.3. Calibration

	Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide [https://www.sciencedirect.com/science/article/pii/S092540051500355X] - Laurent Spinelle, Michel Gerboles, Maria Gabriella Villani, Manuel Aleixandre, Fausto Bonavitacola

	Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2 [https://www.sciencedirect.com/science/article/pii/S092540051631070X] - Laurent Spinelle, Michel Gerboles, Maria Gabriella Villani, Manuel Aleixandre, Fausto Bonavitacola

17.4. Education

	Geonovum Course Sensor_Web_Enablement (SWE) - http://geostandards.geonovum.nl/index.php?title=5_Sensor_Web_Enablement

	OGC SWE Architecture: http://docs.opengeospatial.org/wp/07-165r1/

	Wikipedia Sensor Web http://en.wikipedia.org/wiki/Sensor_web

	SensorThings: Geodan GOST presentatie FOSS4GUK : http://slides.com/bertt/gost_foss4guk#/

17.5. Data

	Landelijk Meetnet Luchtkwaliteit http://www.lml.rivm.nl/

	Ruwe LML XML data RIVM: http://geluid.rivm.nl/sos

	Download XML in IPR format: http://www.regione.piemonte.it/ambiente/aria/rilev/ariaday-test/xmlexport/read?startDate=&endDate=&action=selection

17.6. Europe

	European Environment Agency (EEA) http://www.eea.europa.eu/themes/air

	Eionet AQ Portal: http://www.eionet.europa.eu/aqportal/

	Directives 2004/107/EC and 2008/50/EC Implementing Decision - http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:335:0086:0106:EN:PDF

	AirQualityReporting.xsd - http://dd.eionet.europa.eu/schema/id2011850eu-1.0/AirQualityReporting.xsd/view

17.7. Tools and Libs

	GDAL/OGR, http://gdal.org

	Stetl, Open Source ETL in Python, http://www.stetl.org

	Python Beautiful Soup : om HTML docs (bijv index.html Apache) uit te parsen: http://www.crummy.com/software/BeautifulSoup

	lxml, http://lxml.de

	deegree, http://www.deegree.org

	INSPIRE, http://inspire.ec.europa.eu/

	INSPIRE FOSS project, http://inspire-foss.org

	PostGIS/PostgreSQL, http://postgis.org

18. Notes

This chapter various notes that were taken during the course of the project. Mostly these
are related to design/implemenation iterations, where a particular design or component was not
used further in the project, but we did not want to loose various details, as we may revisit
these technologies in another phase or project.

18.1. Calibration

Within the SE project a separate activity is performed for gas-calibration based on Big Data Analysis
statistical methods. Values coming from SE sensors were compared to actual RIVM values. By matching predicted
values with RIVM-values, a formula for each gas-component is established and refined. The initial approach
was to use linear analysis methods. However, further along in the project the use
of Artificial Neural Networks (ANN) [https://en.wikipedia.org/wiki/Artificial_neural_network]
appeared to be the most promising.

Below are notes from the (discarded) Linear Analysis approach for historic/future ref.
This was implemented and described in this GitHub repo:
https://github.com/pietermarsman/smartemission_calibration .
By using the R-language, reports in PDF are generated.

18.1.1. O3 Calibration

O3 seemed to be the most linear. See the resulting O3 PDF report.

From the linear model comes the following formula for the conversion from resistance (kOhm) to ug/m3 (at 20C and 1013 hPa)

O3 = 89.1177
+ 0.03420626 * s.coresistance * log(s.o3resistance)
- 0.008836714 * s.light.sensor.bottom
- 0.02934928 s.coresistance * s.temperature.ambient
- 1.439367 * s.temperature.ambient * log(s.coresistance)
+ 1.26521 * log(s.coresistance) * sqrt(s.coresistance)
- 0.000343098 * s.coresistance * s.no2resistance
+ 0.02761877 * s.no2resistance * log(s.o3resistance)
- 0.0002260495 * s.barometer * s.coresistance
+ 0.0699428 * s.humidity
+ 0.008435412 * s.temperature.unit * sqrt(s.no2resistance)

18.2. SOS Services

We tested istSOS at an early stage.

18.2.1. istSOS - Install Test

Notes from raw install as Python WSGI app, see also http://istsos.org/en/latest/doc/installation.html:

as root
$ mkdir /opt/istsos
$ cd /opt/istsos
NB 2.3.0 gave problems, see https://sourceforge.net/p/istsos/tickets/41/
$ wget https://sourceforge.net/projects/istsos/files/istsos-2.3.0.tar.gz
$ tar xzvf istsos-2.3.0.tar.gz
$ mv istsos 2.3.0
$ ln -s 2.3.0 latest

$ chmod 755 -R /opt/istsos/latest
$ chown -R www-data:www-data /opt/istsos/latest/services
$ chown -R www-data:www-data /opt/istsos/latest/logs
$ mkdir /opt/istsos/latest/wns # not present, need to create, no is for web notification service
$ chown -R www-data:www-data /opt/istsos/latest/wns # not present, gives error (?)

Add WSGI app to Apache conf.

Setup the PostGIS database.

 $ sudo su - postgres
$ createdb -E UTF8 -O sensors istsos
Password:
$ psql -d istsos -c 'CREATE EXTENSION postgis'
Password:
CREATE EXTENSION

Restart and test:

 $ service apache2 restart

 # in browser
 http://api.smartemission.nl/istsos/admin/

 # Database: fill in user/password

 # create service (creates DB schema) "sound"

test requests
http://api.smartemission.nl/istsos/modules/requests/

REST
http://api.smartemission.nl/istsos/wa/istsos/services/sound

18.3. Fiware

Initially it was planned to run the SE platform on Fiware, but due to technical problems
this was postponed and is still on hold. Below some notes on installation.

The Fiware Lab NL [http://fiware-lab.nl/] provides a cloud-based computing infrastructure in particular
for “Smart City” applications. Based on the adopted “Docker-Strategy” for the
Smart Emission Data Platform as described within the Architecture chapter,
this chapter will describe the actual “hands-on” installation steps.

In order to start installing Docker images and other tooling we need to “bootstrap” the system
within the Fiware environment.

18.3.1. Fiware Lab NL

Creating a (Ubuntu) VM in the Fiware Lab NL goes as follows.

	login at http://login.fiware-lab.nl/

	create an SSL keypair via http://login.fiware-lab.nl/dashboard/project/access_and_security/

	create a VM-instance via http://login.fiware-lab.nl/dashboard/project/instances/ Launch Instance button

[image: _images/launch-instance.jpg]
Creating a Ubuntu VM instance in Fiware Lab NL

See the popup image above, do the following selections in the various tabs:

	Launch Instance tab: select boot from image, select base_ubuntu_14.04

	Access&Security tab: select keypair just created and enable all security groups

	Networking tab: assign both floating-IP and shared-net to selected networks

	other tabs: leave as is

	login via ssh -i <privkey_from_keypair>.pem ubuntu@<IP_address>

Index

 _static/plus.png

_static/lki-rivm.jpg
Onderstaande tabel geeft de verschillende luchtkwaliteitskiassen weer bij concentraties
luchtverontreiniging in microgram per kubieke meter lucht

Stikstofdioxide
wurgemiddelde

0-30
31-75

76-125

Slecht 125-200

Zeerslecht >200

ozon
wurgemiddelde

0-40

41-100
101-180
180-240

>240

Fijnstof (PM,)
wrgemiddelde

0-30
31-75
76-125

125-200

>200

Finstof (PM,)
daggemiddelde

Fin stof (PM,)
wurgemiddelde

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/se-partners.jpg
A IA Intemo

GEONOVUM ™oVATVE TechnoLosy i worion

&) CityGIS

PUBLIC SAFETY.

_static/slimste-stad-prijs.jpg
o -

WINNAAR
Slimste Binnenstad
van Nederland 2016

suvsre ISR - SLIMSTE PROJECT.
* ’ L Tgpt
rkiezing Slims eae Rk L2 ART EMISSION
innenstad va - SN P ;

Nederland

_static/arch/arch-big-picture.jpg
A I

GEONOVUM
SE Platform ‘
The Bi ure ro
Q Client [

Apps/Viewers

_static/arch/dataflow-apis.jpg

_static/arch/evolve-components.jpg
Dataflow

Smart Emission NL pubicke
Denerening
Big Picture PDOK e

Data
Services

t

Registry
- users
- sensors
- apps
- services

_images/admin1.jpg
Smart Emission - Administration

Below links to admin functions.

Databases

+ Postgres Database Admin
« InfluxDB Admin: via Chronograph

Services

+ GeoServer Admin
+ SOS 52North Admin
+ Grafana Admin

+ GOST Dashboard

Logs
+ AlLogs in Logairs
© ETL- Last Values
« ETL - Harvester - lastiog
© ETL- Refer - lastog
+ ETL- Bxractor- lastog
+ ETL- Harvestertvn - lstiog
+ ETL- Galbrator - lstog
+ ETL- 508 Pubisher- lastog
© ETL- STA Pubisher-lasiog
+ Last Backup Log
+ Last Backup DB Log

Calibration

+ calibration resut images

Monitoring

+ Grafana Monitoring - Docker Stats
+ Grafana Monitoring - Ubuntu Stats
+ Prometheus metrics collection

« cAdvisor Docker stats

Backups
For download
+ ABackups

_static/arch/evolve-example.jpg
ApPPL vucev oo || (App2 % = = = |AppN TNO
Dataflow &
—> “A kmml

Data
L4l 0 Registry

e A
Services PDOK
BROKESS

APIs

Data

Processor

/'

Data Data 1
Collector 1 = = = * |collector N

4 4 3

- = [

nav.xhtml

 Table of Contents

 		
 Smart Emission Data Platform

 		
 Intro

 		
 History

 		
 Smart Emission Nijmegen

 		
 SE Nijmegen Project Partners

 		
 Documentation Technology

 		
 Architecture

 		
 Global Architecture

 		
 Data Platform Architecture

 		
 Deployment

 		
 Docker Strategy

 		
 Test and Production

 		
 Monitoring

 		
 Components

 		
 Overview

 		
 Data Management

 		
 General

 		
 Stetl Framework

 		
 ETL Scheduling

 		
 Sync-tracking

 		
 Why Multistep?

 		
 Harvesters

 		
 Database

 		
 Whale Harvester

 		
 InfluxDB Harvester

 		
 Last Values

 		
 Refiners

 		
 Calibration (Josene Sensors)

 		
 Gas Calibration with ANN (Josene)

 		
 GPS Data (Josene)

 		
 Meteo Data (Josene)

 		
 Audio Data (Josene)

 		
 Publishers

 		
 General

 		
 Sensor Observation Service (SOS)

 		
 Sensor Things API (STA)

 		
 Entity Mapping

 		
 Calibration

 		
 Data

 		
 Pre-processing

 		
 Neural Networks

 		
 Training a Neural Network

 		
 Performance evaluation

 		
 Parameter optimization

 		
 Choosing the best model

 		
 Online predictions

 		
 Results

 		
 Implementation

 		
 Data Harvesting

 		
 Calibrator

 		
 Refiner

 		
 Web Services

 		
 Web Frontend

 		
 Implementation

 		
 Links Traefik

 		
 WFS and WMS Services

 		
 SOS Services

 		
 Docker for 52North SOS

 		
 Implementation

 		
 SensorThings API

 		
 Implementation

 		
 MQTT - Mosquitto

 		
 Implementation

 		
 InfluxDB

 		
 Implementation

 		
 Grafana

 		
 Implementation

 		
 Dataflow and APIs

 		
 Overview

 		
 Inbound APIs

 		
 Outbound APIs

 		
 API and Code

 		
 ETL Processes

 		
 Installation

 		
 Principles

 		
 Security

 		
 UFW Uncomplicated Firewall

 		
 fail2ban

 		
 Installation

 		
 Get Bootstrap Script

 		
 Install and Build

 		
 Configure

 		
 Create Databases

 		
 Load Calibration Data

 		
 Install System Service

 		
 Running

 		
 Handy Commands

 		
 Docker Containers

 		
 postgis - PostGIS Database

 		
 stetl - ETL for Measurements

 		
 webapps - Web Containers

 		
 geoserver - GeoServer

 		
 sos - 52North SOS

 		
 gost - Geodan STA

 		
 influxdb - InfluxDB

 		
 chronograf - Chronograf

 		
 grafana - Grafana

 		
 monitoring - Monitoring

 		
 Local Install

 		
 Docker with Vagrant

 		
 Running within 15 mins

 		
 Kubernetes

 		
 Principles

 		
 Install

 		
 Ubuntu

 		
 Links

 		
 Setup

 		
 Mac OSX

 		
 Updating

 		
 Namespaces

 		
 Namespace smartemission

 		
 InfluxDB

 		
 CronJobs

 		
 Sensors

 		
 Principles

 		
 APIs

 		
 Calibration

 		
 Additional Info

 		
 Luftdaten Kits

 		
 AirSensEUR

 		
 Josene

 		
 Administration

 		
 Backup

 		
 Restoring

 		
 Stop the Platform

 		
 Restore Databases

 		
 Restore Services

 		
 Restore Calibration Images

 		
 ETL and Data Management

 		
 Republish Data to SOS and STA

 		
 Calibration Model

 		
 Admin UI

 		
 Database Management

 		
 Services Management

 		
 Log Inspection

 		
 Monitoring

 		
 Services Uptime

 		
 Systems Monitoring

 		
 Troubleshooting

 		
 Docker wonâ��t start

 		
 Dissemination

 		
 Workshop 17 dec 2015

 		
 Slides

 		
 Links

 		
 Citizen Meetup 26 may 2016

 		
 Slides

 		
 Project Meeting 12 july 2016

 		
 Geospatial World Forum 24 may 2016

 		
 Sensor Webs Conference 30 aug 2016

 		
 Slides

 		
 Papers

 		
 Links

 		
 Evaluation Meeting 21 sep 2016

 		
 Slides

 		
 Presentation 28 nov 2016

 		
 Slides

 		
 Symposium RIVM â��Samen meten aan Luchtkwaliteitâ��

 		
 Slides

 		
 Presentatie bij RIVM - 17 jan 2017

 		
 Slides

 		
 Emit Blog Posts - 2018+

 		
 INSPIRE Conference 2018 - Antwerp

 		
 Geo Gebruikersfestival 2018 - Amersfoort

 		
 Cookbook

 		
 Developing Web Clients

 		
 SensorThings API

 		
 Resources

 		
 Useful Queries

 		
 Evolution

 		
 Introduction

 		
 Components

 		
 Data Collection

 		
 Data Processing

 		
 Data Services

 		
 Apps

 		
 Registry

 		
 APIs and Standards

 		
 SensorThings API (STA)

 		
 Whale API a.k.a. Raw Sensor API

 		
 Sensor Observation Service (SOS)

 		
 Web Map Service (WMS)

 		
 Web Feature Service (WFS)

 		
 Federated Architecture

 		
 Contact

 		
 Links

 		
 Smart Emission

 		
 Sensors

 		
 Calibration

 		
 Education

 		
 Data

 		
 Europe

 		
 Tools and Libs

 		
 Notes

 		
 Calibration

 		
 O3 Calibration

 		
 SOS Services

 		
 istSOS - Install Test

 		
 Fiware

 		
 Fiware Lab NL

_static/arch/etl-detail.jpg
sostsosnzs‘r ?S‘"‘Z'JI“'"QS f ws

52N Sensor GeoServer Custom i
SOS Server Things Server sovies |

Step 3
- publication

| &M Data

Step 2
- validation
- calibration

Step 1
- harvesting

Raw Sensor AP

CityGls
Server

_static/arch/etl-global.jpg
?sos/sos—REsT T WMS/WFSIWCS f Other APIs

Other Services
- e-Reporting/IPR
- FIWARE

- SensorThings

SOS Server

52N, IstSOS GeoServer

f

T Raw O&M APIS

Raw Source APls:
- RIVM LML Files

- Smart Emission Raw API
- MQTT/UltraLight

_images/chronograf2.jpg
e WMWWWMWMWW

|

o

w } M

QPN "N"H\V{ “\N‘--u.unuw\,!,«di‘-..‘w

_static/calibration/grafana1.jpg
< o > Ok eI 7R

G M. o o

[re———

Nt Ny s g

P R —

_images/dataflow-apis.jpg

_static/calibration/grafana2.jpg
o

[P —

gwm/\,f\u\/\[/\\/\/bﬂ\/\ R mr /M/” : =

IEEWNKN\WW " by see

e

_images/arch-big-picture.jpg
A I

GEONOVUM
SE Platform ‘
The Bi ure ro
Q Client [

Apps/Viewers

_static/arch/praatplaat.jpg

_images/chronograf1.jpg
Jwieosta OBy iSsaconds v Opasthow v

SELECT mean("value") AS “mean.value" FRON smartemission’."autogen”."riva® WHERE tine > non() = Th D "ctation’"nijaegen.graafeeveg! WD “component”'nitrogen dioxide__air_' GROUP
B cineerval® FELL(rald)

« successt Qv Tompiaes =
0B RetentionPolicy Measurements &Tags < e Fidds Groupby: autow Compare: monew Fil: mal v

e ot ovobash
[E—— [—— o ke (ormin
smartanisionautogen < e .
E—— —

[p———

. Data Explorer o
<]
<+
=
A
w
&

» geohash—4
» geohash.tag—3
 staion—4 Groun By staton

b Table e

s
w
s
B

2 v

2

1200 1800 mium 0600 1200 1800 G2d.n 0600 1200 1800 03am 0600 1200 1800 O4den 0600 1200

_static/calibration/datastream-calibration.jpg
IA

NOVUM
OGC Datastroom Calibratie
STA WMs WFS SOs InfluxDB API
PostGIS
Data InfluxDB.
Processing
Platform T

RIVM 52N SOS (REST) Jose Intemo Data

_images/docker-vagrant-apache.jpg
) [+ @ ocahosesost B ceace I3

Apache2 Ubuntu Default Page

%_

“This is the default welcome page used to test the correct operation of the Apache2 server after
nstallation on Ubuntu systems. It is based on the equivalent page on Debian, from which the Ubuntu
Apache packaging is derived. If you can read this page, it means that the Apache HTTP server
Installed at this site is working properly. You snould replace this file (located at

/vax/sesa nenl/indox. henl) before continuing to operate your HTTP server.

If you are a normal user of this web site and don't know what this page Is about, this probably means.

that the site is currently unavailable due to maintenance. If the problem persists, please contact the
site’s agministrator.

Configuration Overview

Ubuntu's Apache2 default configuration is different from the upstream default configuration, and split
Into several files optimized for interaction with Ubuntu tools. The configuration system is fully
documented in /usr/share/doc/apache2/README.Debian.gz. Refer to this for the full
documentation. Documentation for the web server itself can be found by accessing the manual if the
apache2-doe package was Installed on this server.

The configuration layout for an Apache2 web server Installation on Ubuntu systems is as follows:

/ote/apachez/
|- apachez.cont

I L portacont
J-- moda-onablod

I g

_images/etl-detail.jpg
sostsosnzs‘r ?S‘"‘Z'JI“'"QS f ws

52N Sensor GeoServer Custom i
SOS Server Things Server sovies |

Step 3
- publication

| &M Data

Step 2
- validation
- calibration

Step 1
- harvesting

Raw Sensor AP

CityGls
Server

_images/datastream-calibration.jpg
IA

NOVUM
OGC Datastroom Calibratie
STA WMs WFS SOs InfluxDB API
PostGIS
Data InfluxDB.
Processing
Platform T

RIVM 52N SOS (REST) Jose Intemo Data

_static/calibration/jose_measurements.png
Ruyterstraat s.o3resistance -

Ruyterstraat s.no2resistance -

Ruyterstraat s.coresistance -

Graafseweg s.o3resistance -

Graafseweg s.no2resistance -

Graafseweg s.coresistance -

Feb

Mar

_images/docker-deploy.jpg
Smart Emission

.& Docker Deployment .
kubernetes

Traefik or K8s In

LEGEND
Proxy
Web App
Services (OGC OWS)
Databases

Data Proc/ETL

— Docker Networking

_images/etl-global.jpg
?sos/sos—REsT T WMS/WFSIWCS f Other APIs

Other Services
- e-Reporting/IPR
- FIWARE

- SensorThings

SOS Server

52N, IstSOS GeoServer

f

T Raw O&M APIS

Raw Source APls:
- RIVM LML Files

- Smart Emission Raw API
- MQTT/UltraLight

_static/arch/docker-deploy.jpg
Smart Emission

.& Docker Deployment .
kubernetes

Traefik or K8s In

LEGEND
Proxy
Web App
Services (OGC OWS)
Databases

Data Proc/ETL

— Docker Networking

_images/evolve-components.jpg
Dataflow

Smart Emission NL pubicke
Denerening
Big Picture PDOK e

Data
Services

t

Registry
- users
- sensors
- apps
- services

_static/calibration/timezone-rivm-lml.jpg
<« C | ® inspire.rivm.nl/sos/eaq/#chart we 80

h Diagram * Favorites o £ Settings @ Map view

Nijmegen-Ruyterstraat: NO2

Time + Nitrogen dioxide (air) (ug.m-3) Legend
03.10.17 00:00 h 264 Nijmegen-Ruyterstraat: NO2 %
= Nitrogen dioxide (air) (ug.m-3)
SS10 1T 00N bend NLAIVM.AQ/SPP-NL_A_chemi API200E
03.10.17 02:00 h 718 - @& Q /S 0 %
03.10.17 03:00 h 861
03.10.47 04:00 h 931 < C | ® www.Iml.rivm.nl/s0s/2017100316-NO2.xm!
<MWAR_ETNDDATUMTIID>20171003160000</MWAR_ETNDDATUMTIID>
03.10.17 05:00 h 29 e =
v <rOWw>
03.10.17 06:00 h 1119 <OPST_OPDR_ORGA_CODESRIVM</OBST_OPDR_ORGA_CODE>
<STAT_NUMMER>742</STAT_NUMMER>
03.10.17 07:00 h 17.82 <STAT NAMM>Ni jmegen-Ruyterstraat</STAT NAM>
<HCLA_CODE>stad achtergr</NCLA_CODE>
03.10.17 08:00 h 2211 <MWAR_WAARDE>11.78</MVAL_WAARDE>
<MAAA_BECINDATUMTLID>20171003150000</MHAA_BEGINDATUNTIID>
03.10.17 09:00 h 38.05 <¥WAR_ETNDDATUMTIID>20171003160000</MiAA_EINDDATUNTIID>
</RoW>
03.10.17 10:00 h 3173
03.10.17 11:00 h 189
03.10.17 12:00 h 12.20
03.10.17 13: 12.52
03.10.17 14: 14.26
03.10.17 15:00 h 12.11
03.10.17 16:00 h 11.48
03.10.17 17:00 h 78
< C | @ inspire.rivm.nl/sos/eaq/api/v1 /timeseries/309
ia: "3097,
| label: "Nitrogen dioxide (air) NL.RIVM.AQ/SPP-NL A_chemi API200E, Nijmegen-Ruyterstrast: NO2',
eoe Untitled 3 -
| %
value: 11.78 1507042800000 H Timestamp to Human date | [batch convert timq

Assuming that this timestamp is in mi
GMT: Tuesday, October 3, 2017 3:00:00 PM
esday, October 3, 2017 5:

:00 PM GMT+02:00 DST

_images/evolve-example.jpg
ApPPL vucev oo || (App2 % = = = |AppN TNO
Dataflow &
—> “A kmml

Data
L4l 0 Registry

e A
Services PDOK
BROKESS

APIs

Data

Processor

/'

Data Data 1
Collector 1 = = = * |collector N

4 4 3

- = [

_static/installation/docker-vagrant-apache.jpg
) [+ @ ocahosesost B ceace I3

Apache2 Ubuntu Default Page

%_

“This is the default welcome page used to test the correct operation of the Apache2 server after
nstallation on Ubuntu systems. It is based on the equivalent page on Debian, from which the Ubuntu
Apache packaging is derived. If you can read this page, it means that the Apache HTTP server
Installed at this site is working properly. You snould replace this file (located at

/vax/sesa nenl/indox. henl) before continuing to operate your HTTP server.

If you are a normal user of this web site and don't know what this page Is about, this probably means.

that the site is currently unavailable due to maintenance. If the problem persists, please contact the
site’s agministrator.

Configuration Overview

Ubuntu's Apache2 default configuration is different from the upstream default configuration, and split
Into several files optimized for interaction with Ubuntu tools. The configuration system is fully
documented in /usr/share/doc/apache2/README.Debian.gz. Refer to this for the full
documentation. Documentation for the web server itself can be found by accessing the manual if the
apache2-doe package was Installed on this server.

The configuration layout for an Apache2 web server Installation on Ubuntu systems is as follows:

/ote/apachez/
|- apachez.cont

I L portacont
J-- moda-onablod

I g

_static/calibration/temperature_unit_prediction.png
100

450

5
o m
Oz 0
2
L1 @
1=
8
PN
S35
2
el
£
o g
=1
e
@
a
ok
2
o
I
)
2o
g
i
=3
8
8 2 =3 o =) =) =) o o
e @a & @3 & =w & R
T 8 /R & KR A4 =

(gw/bn) Jusuodwod seg

_static/calibration/timezone-rivm-lml-winter.jpg
® data.smartemission.ni/s0s52/s ent/index.html#tchart * e 3 Bt racilicy
Diagram * Favorites o £ Settings @ Map view
hart
Nijmegen-Ruyterstraat: NO2

Time + Nitrogen dioxide (air) (ug.m-3) L
04.01.18 00:00 h ‘ ® www.ml.rivm.nl/s0s/2018010415-NO2.xm
24.01.18 01:00 h N <HWAR_EINDDATUMTIID>20180104150000</HiAA_EINDDATUNTIID> NO

N </row g
04.01.18 02:00 h <ROW>

<OPST_OPDR_ORGA_CODE>RIVM</OPST_OPDR_ORGA_CODE>

04.01.18 03:00 h <STAT_NUMMER>742</STAT_NUMMER>

<STAT_NAAM>Ni jmegen-Ruyterstraat</STAT_NARM>
<MCLA_CODE>stad achtergr</MCLA_CODE>
<MAL_WAARDE>34 . 96</MWAA_WAARDE>
<MAN_BECINDATUMTIID>20180104140000</MAAA_BEGINDATUMTLID>
<M{AL_ETNDDATUNTLID>20180104150000</MHAA_EINDDATUMTLID>
</ROW>

04.01.18 04:00 h
04.01.18 05:00 h
04.01.18 06:00 h
04.01.18 07:00 h

NO2 Uurwaarden - Nijmegen - de Ruyterstraat - in mg/m3
04.01.18 08:00 h
04.01.18 09:00 h
04.01.18 10:00 h
04.01.18 11:00 h
04.01.18 12:00 h
04.01.18 13:00 h
04.01.18 14:00 h
04.01.18 15:00 h
04.01.18 16:00 h
04.01.18 17:00 h
04.01.18 18:00 h

04.01.18 18:00 h 200
1400 1410 1420 1430 1440 1450 1500 1510 1520 1530 1540 1550

— RIVM Station NL00742 Ruyterstraat_— SE Ruyterstraat Station 45 Callbrated

L) untited Convert milliseconds
1515074400000
P
f Headers Preview Response Cookies Timing to UTC time & date:
1/515063600000, 21011, (1515067200000, 21. 201, (1515070300000, 21 691, (1515074400000, 34.961, Thu Jan 04 2018 14:00:00 3

to local time & date:
Thu Jan 04 2018 15:00:00

_images/grafana2.jpg
o

[P —

gwm/\,f\u\/\[/\\/\/bﬂ\/\ R mr /M/” : =

IEEWNKN\WW " by see

e

_static/screenshots/chronograf1.jpg
Jwieosta OBy iSsaconds v Opasthow v

SELECT mean("value") AS “mean.value" FRON smartemission’."autogen”."riva® WHERE tine > non() = Th D "ctation’"nijaegen.graafeeveg! WD “component”'nitrogen dioxide__air_' GROUP
B cineerval® FELL(rald)

« successt Qv Tompiaes =
0B RetentionPolicy Measurements &Tags < e Fidds Groupby: autow Compare: monew Fil: mal v

e ot ovobash
[E—— [—— o ke (ormin
smartanisionautogen < e .
E—— —

[p———

. Data Explorer o
<]
<+
=
A
w
&

» geohash—4
» geohash.tag—3
 staion—4 Groun By staton

b Table e

s
w
s
B

2 v

2

1200 1800 mium 0600 1200 1800 G2d.n 0600 1200 1800 03am 0600 1200 1800 O4den 0600 1200

_images/jose_measurements.png
Ruyterstraat s.o3resistance -

Ruyterstraat s.no2resistance -

Ruyterstraat s.coresistance -

Graafseweg s.o3resistance -

Graafseweg s.no2resistance -

Graafseweg s.coresistance -

Feb

Mar

_static/screenshots/chronograf2.jpg
e WMWWWMWMWW

|

o

w } M

QPN "N"H\V{ “\N‘--u.unuw\,!,«di‘-..‘w

_images/grafana-prometheus2.jpg

_static/installation/launch-instance.jpg
Qe x| Qs x| Qo x| @rmpniis x| @it x| @sawom= i x I want x| @onc x| G132

€ > © (D loginware-ib/cashbourdprocnsances e 80006 =

Launch Instance

[,

Flavor Details

For 0. =
pre—

r——]

Projoct Limits
[r— Nomber ot e

_images/grafana1.jpg
< o > Ok eI 7R

G M. o o

[re———

Nt Ny s g

P R —

_static/screenshots/admin1.jpg
Smart Emission - Administration

Below links to admin functions.

Databases

+ Postgres Database Admin
« InfluxDB Admin: via Chronograph

Services

+ GeoServer Admin
+ SOS 52North Admin
+ Grafana Admin

+ GOST Dashboard

Logs
+ AlLogs in Logairs
© ETL- Last Values
« ETL - Harvester - lastiog
© ETL- Refer - lastog
+ ETL- Bxractor- lastog
+ ETL- Harvestertvn - lstiog
+ ETL- Galbrator - lstog
+ ETL- 508 Pubisher- lastog
© ETL- STA Pubisher-lasiog
+ Last Backup Log
+ Last Backup DB Log

Calibration

+ calibration resut images

Monitoring

+ Grafana Monitoring - Docker Stats
+ Grafana Monitoring - Ubuntu Stats
+ Prometheus metrics collection

« cAdvisor Docker stats

Backups
For download
+ ABackups

_images/phppgadmin1.jpg
Browse
Ao st umensa e
e e tor o tesar oot

e e o oy
e s om0
T e
s e ST
e e Toro s sae
S T e oo s it
ey Bore s
Lo gt i 510014 13531

e e S on e
i oo s
e e oo Sl
e Do et
i T e oo st
e Buoesame
e e mn ot

| e in s 220227 A
] o i om0 2227 kA0
T o o 2682 A
S o vy 26z v
| e e 220027 A
s on empemee 10161 i
| e o D 210014 e 1
] o e 0104 sz 08 T
o e 1002 ey M4 2208 T
ettt

e 6 o i~ P —
i e 15 0 T e

i
i
H

S i sesnen
o

il

gs

s mnak zsent
o medou e
o

R

S aaksean
T ez
PP ottt

bR
it
!

i

i

g
§;§§i§

1
i
i

T T I

ENEN

sa.nissnif

Bo.uz

LEaBx.n

[N PRSIy S ep——

_images/se-partners.jpg
A IA Intemo

GEONOVUM ™oVATVE TechnoLosy i worion

&) CityGIS

PUBLIC SAFETY.

_images/launch-instance.jpg
Qe x| Qs x| Qo x| @rmpniis x| @it x| @sawom= i x I want x| @onc x| G132

€ > © (D loginware-ib/cashbourdprocnsances e 80006 =

Launch Instance

[,

Flavor Details

For 0. =
pre—

r——]

Projoct Limits
[r— Nomber ot e

_images/neural_network.png
Hidden
Nodes

7

M0

o
0
R
()

%
A

\

\ /
Okl

a
V&Qv

_static/calibration/neural_network.png
Hidden
Nodes

7

M0

o
0
R
()

%
A

\

\ /
Okl

a
V&Qv

_static/calibration/temperature_ambient_prediction.png
Gas component (ug/m3)

2500

— co
— NO2
2000 — 03
1500
1000
500
0
-500
-60 -40 20 0 20 40 60 80 100

Temperature (celcius)

_static/comment-bright.png

_static/screenshots/phppgadmin1.jpg
Browse
Ao st umensa e
e e tor o tesar oot

e e o oy
e s om0
T e
s e ST
e e Toro s sae
S T e oo s it
ey Bore s
Lo gt i 510014 13531

e e S on e
i oo s
e e oo Sl
e Do et
i T e oo st
e Buoesame
e e mn ot

| e in s 220227 A
] o i om0 2227 kA0
T o o 2682 A
S o vy 26z v
| e e 220027 A
s on empemee 10161 i
| e o D 210014 e 1
] o e 0104 sz 08 T
o e 1002 ey M4 2208 T
ettt

e 6 o i~ P —
i e 15 0 T e

i
i
H

S i sesnen
o

il

gs

s mnak zsent
o medou e
o

R

S aaksean
T ez
PP ottt

bR
it
!

i

i

g
§;§§i§

1
i
i

T T I

ENEN

sa.nissnif

Bo.uz

LEaBx.n

[N PRSIy S ep——

_static/ajax-loader.gif

_static/services/geoserver-wms-dimension.jpg
GeoServer

About & Status
(2L Server Status.

=) Geoserver Logs
Contact Information
© About GeoServer

Edit Layer

Edit layer data and publishing

smartem:v_timeseries_temperature

Configure the resource and publishing information for the current layer

Data
Layes Pradeny Data | Publishing | Dimensions | Tile Caching |
= Workspaces
g Time
Layers
@ Layer Groups Enabled
D styles Atribute
(
Services .
& wrs End Attribute (Optional)
& wes [Choose One &
& wms Presentation
Settings [Interval and resolution ¢
(@ Global Resolution
[T 1mage Processing Years MonthsWeeks Days Hours MinutesSeconds
BT Raster Access o o o o h Jo Il
Tile Caching Default vlue
Tile Layers [Choose
@ Caching Defauits
B Gridsets Elevation
[B
Security

& settings

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/down.png

_static/screenshots/grafana-prometheus1.jpg
{5 - B UbinwHoststats- & @ B & < Zoomow > Olasti2hours Refresheveryim

Host dansmortemisionsi -

o CPUBusy. p Used SWAP T Used Root FS. ! cPU System Load (1m avg)
1 —— —oree— | — 3%
T, A0 L ol ST
1 CPU Cores. v Total SWAP p “Total Rootfs ' systemLoad (1m avg)
k) 7.69 GiB 4.00GiB 492 GIB 0.10

Memary Basic

_static/screenshots/grafana-prometheus2.jpg

_static/screenshots/docker-monitoring.jpg
13- 88DockerDashboard- % © B @ < momow > OTodaysofer T

Memory usage. cPuusage Filesystem usage

40% 2.42% _0.98%

0%
oo
soon
oo
0%
200
oom

™

3 w0 o0 os0) om0 200 a0 1600 oo o

Container Memory Usage.
e
3368
2008
L

2308
1568
1408
ssams

i — monkoring gafea_1 dsMB 1018M8
e — avonogat osum essms
= = — — mootwngsknmemgwt 6o7MB 6siMB
o8

om0 £))) om0 0 Tem0)] W

TR e

