Smart Pipe Documentation
Release 0.1

Max Lapan

November 28, 2016

Contents

Overview

Architecture of SmartPipe
Tutorial

Tools

API Docs

Indices and tables

11

13

Smart Pipe Documentation, Release 0.1

Small and fast storage container for key-value entries, optimized for sequential data access, but allowing fast individual
entry lookup.

Contents:

Contents 1

Smart Pipe Documentation, Release 0.1

2 Contents

CHAPTER 1

Overview

Quite frequently it is required to save large amount of objects for later sequential process. For example: list of
downloaded files, entries queried from DB, log entries, etc.

Such storage can be organized in various ways, like:
1. dump all entries in one file,
2. create tar archive,
3. save in sqlite db, etc.

Unfortunately, if your access to data is expected to be sequential, those options are not exactly what is required for fast
access and efficient on-disk storage.

1.1 Quick example

But let’s look at small example.

import smart_pipe as sp

save some data

writer = sp.SmartPipeWriter ("my_data", compress=True)
writer.checkpoint (b'block-1")

writer.append(b'info', b'value')
writer.append(b'other—-info', b'value2')
writer.checkpoint (b'block-2")

writer.append(b'info', b'value for block 2")
writer.append(b'error', b'failed, dude')
writer.close()

read data back
reader = sp.SmartPipeReader ("my_data")
while True:
block_key = reader.get_next_block_key ()
if block_key is None:

break
print ("Processing block: " % (str(block_key)))
for key, value in reader.pull_block():
print (" key: , value len " % (str(key), len(value)))

reader.close ()

Result of this code will be two files my_data.datz with actual data and my_data.idx with block index. Code output:

Smart Pipe Documentation, Release 0.1

Processing block: block-1

key: info, value len 5

key: other-info, wvalue len 6
Processing block: block-2

key: info, value len 17

key: error, value len 12

Chapter 1. Overview

CHAPTER 2

Architecture of SmartPipe

It’s very simple and straightforward. There are two angles architecture can be described: logical and physical.
* Logical is more about what you can store and do with this storage class,

* physical is about how data is stored and what to expect from it.

2.1 Logical model

2.1.1 Blocks

Logically, smart pipe is a sequence of blocks. Every block block has key, which has to be uniq byte sequence. Like
this:

Key: this Key: is Key: a Key: key

We don’t require keys to be numbers or strings of some form or ordered, etc. They just need to be uniq, that’s it.

We remember position of every block in separate index, so, every individual block can be accessed by it’s key. Or you
can read all blocks sequentially, like file.

Every block should have reasonable size — during reading, all it’s contents are read into memory, so, several megabytes
will be fine, but couple of gigabytes can be too much. But library never keeps several blocks in memory at the same
time, so, with modern memory prices it’s not too strict (otherwise, why are you using Python?).

2.1.2 Block structure: key-values

Inside every block can contain any amount of key-value pairs which both are just byte sequences.

Smart Pipe Documentation, Release 0.1

Key: this Key is Key: a Key key
Key 1 Key: 10
Value: str1 Value: str10

Key and values have even less limitations than block keys — they can be uniq, empty, etc. So, technically, only one
limitation: they have to fit in your memory.

Access pattern is simple: you need to iterate all key-value pairs of the block to go to next block’s data. You can’t
efficiently seek inside the block, so, keep this in mind designing your app.

2.1.3 Usage example
This library was designed to efficiently save and re-process results obtained from the web, but can be applied to other
areas. Our particular example is:

1. Every block is a site we’ve processed, addressed by our uniq internal id (or url)

2. Inside the block we can have various key-value pairs:

1. raw html result from site (with ‘raw’ key),

2. server’s response text (‘response’ key),

3. processing results in json form (‘result’ key)

4. log information from processing (‘log’ key)

After data was downloaded and processed, smart pipe file are almost immutable (in theory, it won’t be too hard
to append but currently it’s not implemented), but can be efficiently read sequentially or you can efficiently read
individual blocks, which is mostly useful for debugging specific problematic cases.

2.2 Physical model

There are two files per smart pipe:
1. with data blocks, can have extension .dat (for uncompressed smart pipes) or .datz (for compressed)
2. with index, containing index of every blocks’ key and offset withing data file.

Index is just binary file with raw keys of blocks and offsets and this file is read completely into memory on smart pipe
reader creation. So, please, don’t try to store trillions of blocks inside single pipe!

Data blocks have slightly more complicated structure, but also simple: every block has keys and values in serialized
form, and whole block’s data is optionally compressed by zlib library.

6 Chapter 2. Architecture of SmartPipe

CHAPTER 3

Tutorial

TODO

Smart Pipe Documentation, Release 0.1

8 Chapter 3. Tutorial

CHAPTER 4

Tools

There are special command-line tools, which can help access smart pipe data files, look inside them, analize their
performance etc.

All of them are inside single python program called sp.py, which is added to path automatically on installation of
package (if you’re installing smart_pipe package inside VE, you need to activate VE first).

There are four tools available at the moment:
1. Is — list block indices and block’s contents
2. cat —retrieve individual block’s key/value pair
3. cat_all — list all entries with optional regexp applied to key
4. check — check smart pipe consistency and performance by reading data sequentially and randomly

All tools are available as sp.py subcommand, for example:

$ sp.py ls ~/work/data/2016_11_17_231501/visual_annotations/ve
1

:room_container_Tab2_ after _click 266937
:room_container_Tab3_before_click 158908
:whole_page 1157479

:room_container_Tabl before_click 304945
:room_container_Tab0_before_click 125256
:room_container_Tab2_after_reprocess 254864
:room_container_Tab0O_after_reprocess 125723
:room_container_Tab2_before_click 253828
:room_container_Tab3_after click 167145
:room_container_Tabl_after_click 318049
:room_container_TabO_after_click 131816
:shop_summary 75227
:room_container_Tab3_after_reprocess 159497
:room_container_Tabl_after_ reprocess 305962

N e e e e e e e

N

:whole_page 262741

:room_container_before_click 16203
2:shop_summary 6724

—-—— output truncated ---

N

Smart Pipe Documentation, Release 0.1

10 Chapter 4. Tools

CHAPTER 5

API Docs

class smart_pipe.SmartPipeWriter (path_prefix, compress=False)
Class which can create smart pipe file

__init__ (path_prefix, compress=False)
Constructs smart pipe writer

Parameters

* path_prefix — path prefix to be used. Extension for data and index files will be ap-
pended to this prefix

* compress — boolean flag (False by default) indicating compression of data chunks

append (key, value)
Appends given key-value pair to current chunk

Parameters
* key - byte string with key
e value - byte string with value

checkpoint (key)
Flushes current chunk on disk and starts new with the given key

Parameters key — byte string with binary key

close ()
Closes smart pipe writer and flushes data to disk

class smart_pipe.SmartPipeReader (path_prefix)
Reader for smart pipe data

__init__ (path_prefix)
Constructs smart pipe reader

Parameters path_prefix — path prefix for smart pipe data and index files

close ()
Closes smart pipe reader

get_next_block_key ()
Return index key for the next block

Returns key of the next block or None if we reached end of pipe

pull_block (index_key=None)
Get list of key,value pairs from next block

11

Smart Pipe Documentation, Release 0.1

Parameters index_key — optional key of block to seek

Returns yield block records

12 Chapter 5. API Docs

CHAPTER 6

Indices and tables

¢ genindex
* modindex

e search

13

Smart Pipe Documentation, Release 0.1

14 Chapter 6. Indices and tables

Index

Symbols

__init__() (smart_pipe.SmartPipeReader method), 11
__init__() (smart_pipe.SmartPipeWriter method), 11

A

append() (smart_pipe.SmartPipeWriter method), 11

C

checkpoint() (smart_pipe.SmartPipeWriter method), 11
close() (smart_pipe.SmartPipeReader method), 11
close() (smart_pipe.SmartPipeWriter method), 11

G

get_next_block_key() (smart_pipe.SmartPipeReader
method), 11

P

pull_block() (smart_pipe.SmartPipeReader method), 11

S

SmartPipeReader (class in smart_pipe), 11
SmartPipeWriter (class in smart_pipe), 11

15

	Overview
	Architecture of SmartPipe
	Tutorial
	Tools
	API Docs
	Indices and tables

