

Welcome to SLUGS

The Simple, Lightweight User Group Services (SLUGS) library provides a simple
web service that serves user/group membership data over a basic REST interface.

>>> import requests
>>> requests.get('http://127.0.0.1:8080/slugs').json()
{u'users': [u'Jane', u'John'], u'groups': [u'Male', u'Female', u'Human']}
>>> requests.get('http://127.0.0.1:8080/slugs/users').json()
{u'users': [u'Jane', u'John']}
>>> requests.get('http://127.0.0.1:8080/slugs/users/John').status_code
200
>>> requests.get('http://127.0.0.1:8080/slugs/users/John/groups').json()
{u'groups': [u'Male', u'Human']}
>>> requests.get('http://127.0.0.1:8080/slugs/users/John/groups/Male').status_code
200

For more information on the SLUGS REST API, see API.

SLUGS is built using CherryPy [http://cherrypy.org], a well established object-oriented web
framework for Python. To run SLUGS, simply install the library and then:

$ slugs -c /path/to/config/file

For more information on configuring SLUGS, see
Configuration.

Installation

You can install SLUGS via pip:

$ pip install slugs

See Installation for more information.

Layout

	API
	GET

	Changelog
	1.1.0 - September 25, 2019

	1.0.0 - March 15, 2018

	Configuration
	Global Settings

	Application Settings

	Data Management

	Development
	Getting Started

	Writing Code

	Writing Documentation

	Commit Messages

	Bug Fixes

	Running Tests

	Installation
	Supported platforms

	Building SLUGS on Linux

API

The SLUGS REST API allows clients to query for membership information about
a many-to-many relationship between a set of users and a set of groups.
Queries can be made from a user-centric or group-centric point-of-view.

All REST queries are rooted under /slugs. If the base URL is
http://127.0.0.1:8080, then the full service URL is
http://127.0.0.1:8080/slugs. For example, to retrieve the list of
recognized users, GET /users, the full API call would be:
http://127.0.0.1:8080/slugs/users.

GET

/

List all users and groups recognized by the service.

Response

	Response

	Response Code

	Details

	Normal

	200

	User and group lists returned.

	Name

	Type

	Description

	users

	array

	A list of strings, representing users recognized by the
service.

	groups

	array

	A list of strings, representing groups recognized by the
service.

A response example would look like:

{
 "users": [
 "John",
 "Jane"
],
 "groups": [
 "Human",
 "Male",
 "Female"
]
}

/users

List all users recognized by the service.

Response

	Response

	Response Code

	Details

	Normal

	200

	User list returned.

	Name

	Type

	Description

	users

	array

	A list of strings, representing users recognized by the
service.

A response example would look like:

{
 "users": [
 "John",
 "Jane"
]
}

/groups

List all groups recognized by the service.

Response

	Response

	Response Code

	Details

	Normal

	200

	Group list returned.

	Name

	Type

	Description

	groups

	array

	A list of strings, representing groups recognized by the
service.

A response example would look like:

{
 "groups": [
 "Human",
 "Male",
 "Female"
]
}

/users/{user}

Query if {user} is a user recognized by the service.

Response

	Response

	Response Code

	Details

	Normal

	200

	{user} is a user recognized by the service.

	Error

	404

	{user} is not a user recognized by the service.

/groups/{group}

Query if {group} is a group recognized by the service.

Response

	Response

	Response Code

	Details

	Normal

	200

	{group} is a group recognized by the service.

	Error

	404

	{group} is not a group recognized by the service.

/users/{user}/groups

List all groups associated with user {user}.

Response

	Response

	Response Code

	Details

	Normal

	200

	Group list returned.

	Error

	404

	{user} is not a user recognized by the service.

	Name

	Type

	Description

	groups

	array

	A list of strings, representing groups associated with user
{user}.

A response example would look like:

{
 "groups": [
 "Human",
 "Male"
]
}

/groups/{group}/users

List all users associated with group {group}.

Response

	Response

	Response Code

	Details

	Normal

	200

	User list returned.

	Error

	404

	{group} is not a group recognized by the service.

	Name

	Type

	Description

	users

	array

	A list of strings, representing users associated with group
{group}.

A response example would look like:

{
 "users": [
 "Jane",
 "John"
]
}

/users/{user}/groups/{group}

Query if {group} is a group associated with user {user}.

Response

	Response

	Response Code

	Details

	Normal

	200

	{group} is a group associated with user
{user}.

	Error

	404

	{user} is not a user recognized by the service,
or
{group} is not a group associated with user
{user}.

/groups/{group}/users/{user}

Query if {user} is a user associated with group {group}.

Response

	Response

	Response Code

	Details

	Normal

	200

	{user} is a user associated with group
{group}.

	Error

	404

	{group} is not a group recognized by the service,
or
{user} is not a user associated with group
{group}.

Changelog

1.1.0 - September 25, 2019

	Add TLS support to the SLUGS API endpoints

	Add Python 3.7 support

	Add Ubuntu 16.04 LTS testing support

	Update dependencies to minimize upstream build errors

1.0.0 - March 15, 2018

	Initial release

Configuration

SLUGS uses the CherryPy configuration system to manage both global and
application level configuration settings.

By default, SLUGS will look for a slugs.conf configuration file in
/etc/slugs/ when first starting up. This file path can be changed
using the -c option:

$ python slugs/app.py -c /path/to/config/file

The same flag can be used with the slugs entry point:

$ slugs -c /path/to/config/file

The following is an example slugs.conf file, which can be found under
the examples/ directory in the SLUGS repository.

[global]
environment = 'production'
server.socket_host = '127.0.0.1'
server.socket_port = 8080
log.access_file = '/var/log/cherrypy/slugs/access.log'
log.error_file = '/var/log/cherrypy/slugs/error.log'

[data]
user_group_mapping = '/etc/slugs/user_group_mapping.csv'

[/slugs]
tools.trailing_slash.on = True

Global Settings

The [global] configuration block contains site-wide configuration settings
that will apply to every application mounted via CherryPy. The SLUGS setup
assumes that SLUGS will be the only CherryPy application running on the host
machine.

The different configuration options are defined below. For more information on
these CherryPy settings, see CherryPy Configuration [http://docs.cherrypy.org/en/latest/config.html].

	
	environment

	A string indicating the type of environment hosting the application. Tells
CherryPy to load in additional preset configuration settings appropriate
for the environment. Should be set to 'production' when running SLUGS
in production or commented out when in development. For more information,
see CherryPy Environments [http://docs.cherrypy.org/en/latest/config.html#environments].

	
	server.socket_host

	The IP address of the host machine running the application.

	
	server.socket_port

	The port number on which to host the application.

Note

SLUGS must have permission to bind to the specified port, specifically
if the port is a privileged port.

	
	log.access_file

	The path to the access log file. This log contains entries for all external
accesses to the application (e.g., all GET requests).

Note

The log directory must exist before SLUGS is run; the service will not
create the log directory for you. SLUGS must also have permission to
access the log directory.

	
	log.error_file

	The path to the error log file. This log contains entries pertaining to the
startup, maintenance, and shutdown of the application, including any errors
that may occur during the lifetime of the application.

Note

The log directory must exist before SLUGS is run; the service will not
create the log directory for you. SLUGS must also have permission to
access the log directory.

Application Settings

The SLUGS application is configured with two different configuration blocks:
[data] and [/slugs]. The [data] block contains custom configuration
settings that define the data sources SLUGS should use to serve user/group
information.

	
	user_group_mapping

	The path to the CSV file containing user/group data in user,group
format. See Data Management for more information.

Note

The CSV file must exist before SLUGS is run; the service will not
create the CSV file for you. SLUGS must also have permission to
access the directory containing the CSV file.

The [/slugs] block is an application-level block that contains additional
CherryPy settings for the SLUGS application.

	
	tools.trailing_slash.on

	A boolean flag that allows CherryPy to redirect incoming requests to a URL
without a trailing / to the same URL with a trailing /. A 301
redirect message will be logged in log.access_file when this redirect
occurs.

Data Management

The user/group information served by SLUGS is stored in a backing CSV file that
is configured on application startup (see user_group_mapping above). The
following is an example CSV file, which can be found under the examples/
directory in the SLUGS repository.

John,Human
Jane,Human
John,Male
Jane,Female

In this example, there are two users John and Jane. Each belongs to
two different groups, both belonging to the Human group, but each belonging
to the Male and Female groups respectively.

User and group names can contain additional characters, like whitespaces and
symbols. The following example is still a valid CSV file.

John Doe,Blood Type: AB-
Jane Doe,Blood Type: O+

The only user/group naming restriction is that neither can contain the
delimiting character ,. Blank lines can be included throughout the file;
they are simply ignored. Lines starting with a # are considered comments
and are also ignored. Extra whitespace at the beginning or ending of a user
or group name is treated similarly:

John, Male
 Jane,Female

The users in the above example are still John and Jane, not John
and ___Jane. The groups are still Male and Female, not ____Male
and Female.

Finally, the backing CSV file can be edited and updated while SLUGS is running.
The application will automatically detect the change and reload the data file.
A log message acknowledging this data update will be logged in
log.error_file when the reload occurs.

[timestamp] ENGINE Monitored file (<path/here>) updated. Reloading data.

If an error occurs during data reload, SLUGS will stop processing the new data
and will retain the prior data set it was serving. This allows data updates to
be made to SLUGS without potentially breaking the application. A log message
acknowledging this data update error will be logged in log.error_file when
the error is detected.

[timestamp] ENGINE Error parsing monitored file (<path/here>). Halting
data reload.

Development

Development for SLUGS is open to all contributors. Use the information
provided here to inform your contributions and help the project maintainers
review and accept your work.

Getting Started

File a new issue on the project issue tracker [https://github.com/OpenKMIP/SLUGS/issues] on GitHub describing the
work you intend on doing. Provide as much information on your feature
request as possible.

The issue number for your new issue should be included at the end of the
commit message of each patch related to that issue.

If you simply want to request a new feature but do not intend on working on
it, file your issue as normal and the project maintainers will triage it for
future work.

Writing Code

New code should be written in its own Git branch, ideally branched from
HEAD on master. If other commits are merged into master after your
branch was created, be sure to rebase your work on the current state of
master before submitting a pull request to GitHub.

New code should generally follow PEP 8 style guidelines, though there are
exceptions that will be allowed in special cases. Run the flake8 tests to
check your code before submitting a pull request (see Running Tests).

To prepare your local Python environment for SLUGS development, install the
project requirements:

$ pip install -r requirements.txt

Writing Documentation

Like new code, new documentation should be written in its own Git branch.
All SLUGS documentation is written in RST [http://docutils.sourceforge.net/rst.html] format and managed using
sphinx. It can be found under docs/source.

If you are interested in contributing to the project documentation, install
the project documentation requirements:

$ pip install -r doc-requirements.txt

To build the documentation, navigate into the docs directory and run:

$ make html

This will build the SLUGS documentation as HTML and place it under the new
docs/build/html directory. View it using your preferred web browser.

Commit Messages

Commit messages should include a single line title (75 characters max) followed
by a blank line and a description of the change, including feature details,
testing and documentation updates, feature limitations, known issues, etc.

The issue number for the issue associated with the commit should be included
at the end of the commit message, if it exists. If the commit is the final one
for a specific issue, use Closes #XXX or Fixes #XXX to link the issue
and close it simultaneously.

Bug Fixes

If you have found a bug in SLUGS, file a new issue and use the title format
Bug: <brief description here>. In the body of the issue please provide as
much information as you can, including Python version, SLUGS version,
operating system version, and any stacktraces or logging information produced
by SLUGS related to the bug. See What to put in your bug report [http://www.contribution-guide.org/#what-to-put-in-your-bug-report] for a
breakdown of bug reporting best practices.

If you are working on a bug fix for a bug in master, follow the general
guidelines above for branching and code development (see Writing Code).

If you are working on a bug fix for an older version of SLUGS, your branch
should be based on the latest commit of the repository branch for the version
of SLUGS the bug applies to (e.g., branch release-1.0.0 for SLUGS 1.0).
The pull request for your bug fix should also target the version branch in
question. If applicable, it will be pulled forward to newer versions of SLUGS,
up to and including master.

Running Tests

SLUGS uses tox to manage testing across multiple Python versions. Test
infrastructure currently supports Python 2.7, 3.4, 3.5, and 3.6. Additional
test environments are provided for security, style, and documentation checks.

Note

All of the tox commands discussed in this section should be run from
the root of the SLUGS repository, in the same directory as the tox.ini
configuration file.

The style checks leverage flake8 and can be run like so:

$ tox -e pep8

The security checks use bandit and can be run like so:

$ tox -e bandit

The documentation checks leverage sphinx to build the HTML documentation
in a temporary directory, verifying that there are no errors. These checks
can be run like so:

$ tox -e docs

To run the above checks along with the entire unit test suite, simple run
tox without any arguments.

$ tox

Unit Tests

The unit test suite tests each individual component of the SLUGS code base,
verifying that each component works correctly in isolation. Ideal code
coverage would include the entire code base. To facilitate improving coverage,
test coverage results are included with each Python unit test environment.

To test against a specific Python version (e.g., Python 2.7), run:

$ tox -e py27

Integration Tests

The integration test suite tests the REST API provided by SLUGS, verifying
that the right response data and response status codes are returned for
specific queries. An instance of SLUGS must already be running and serving
the examples/user_group_mapping.csv data file for the integration test
cases to pass.

Code base coverage is not a goal of the integration test suite. Code coverage
statistics are therefore not included in the output of the integration tests.
For code coverage, run the unit tests above.

To run the integration test suite, the URL to the SLUGS instance must be
passed to the test suite using the --url configuration argument. Assuming
the SLUGS URL is http://127.0.0.1:8080/slugs, the following tox
command will set up and execute the integration tests:

$ tox -r -e integration -- --url http://127.0.0.1:8080/slugs

For more information on the testing tools used here, see the following
resources:

	bandit [https://pypi.python.org/pypi/bandit]

	flake8 [https://pypi.python.org/pypi/flake8]

	sphinx [http://www.sphinx-doc.org/en/stable/]

	tox [https://pypi.python.org/pypi/tox]

Installation

You can install SLUGS via pip:

$ pip install slugs

Supported platforms

SLUGS is tested on Python 2.7, 3.4, 3.5, and 3.6 on the following
operating systems:

	Ubuntu 12.04, 14.04, and 16.04

Building SLUGS on Linux

You can install SLUGS from source via git:

$ git clone https://github.com/openkmip/slugs.git
$ cd slugs
$ python setup.py install

If you are on a fresh Linux build, you may also need several additional system
dependencies, including headers for Python.

Ubuntu

Replace python-dev with python3-dev if you are using Python 3.0+.

$ sudo apt-get install python-dev

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to SLUGS

 		
 API

 		
 GET

 		
 /

 		
 /users

 		
 /groups

 		
 /users/{user}

 		
 /groups/{group}

 		
 /users/{user}/groups

 		
 /groups/{group}/users

 		
 /users/{user}/groups/{group}

 		
 /groups/{group}/users/{user}

 		
 Changelog

 		
 1.1.0 - September 25, 2019

 		
 1.0.0 - March 15, 2018

 		
 Configuration

 		
 Global Settings

 		
 Application Settings

 		
 Data Management

 		
 Development

 		
 Getting Started

 		
 Writing Code

 		
 Writing Documentation

 		
 Commit Messages

 		
 Bug Fixes

 		
 Running Tests

 		
 Unit Tests

 		
 Integration Tests

 		
 Installation

 		
 Supported platforms

 		
 Building SLUGS on Linux

 		
 Ubuntu

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

