
Slicer Package Manager
Documentation

Release 0.1.0

Pierre Assemat

May 11, 2023

Contents

1 Overview 3

2 Concepts 5

3 Commands shell (CLI) 7

4 FAQ 15

5 Server Installation 19

6 Developer Guide 21

7 Credits 33

8 Making a release 35

9 Release Notes 39

10 Indices and tables 45

Python Module Index 47

Index 49

i

ii

Slicer Package Manager Documentation, Release 0.1.0

The Slicer Package Manager includes a REST API service and CLI built on Girder for downloading, uploading and
organizing application and extension packages for both 3D Slicer and 3D Slicer-based applications.

Contents 1

https://github.com/girder/girder
https://slicer.org
https://github.com/KitwareMedical/SlicerCustomAppTemplate

Slicer Package Manager Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Overview

The Slicer Package Manager includes a REST API service and CLI built on Girder for downloading, uploading and
organizing application and extension packages for both 3D Slicer and 3D Slicer-based applications.

This software is licensed under the terms of the Apache Licence Version 2.0 and the source code is available at
https://github.com/girder/slicer_package_manager.

In a nutshell:

• Data model specific to this project is implemented by organizing data using standard Girder constructs (collec-
tion, folder and item) and by associating metadata.

• By default, a top-level collection named Applications is created with a packages folder organizing the
different application.

• Each application folder contain a draft folder where unreleased packages are uploaded and one or multiple
release folders (e.g 1.0, 2.0, . . .).

• Each release folder contain application packages (installers for the different platforms), and an extensions
folder containing a flat list of extension packages.

• Each extension packages is associated with metadata like application revision, extension revision, operating
system and architecture. . .

The diagram below represents the organization:

Applications
|--- packages
| |----- Slicer
| | |----- 1.0
| | | |---- Slicer-linux.tar.gz
| | | |---- Slicer-macos.dmg
| | | |---- Slicer-win.exe
| | | |---- extensions
| | | | |---- Extension1
| | | | |---- Extension2
| | | | |---- Extension3
| | | | |---- Extension4

(continues on next page)

3

https://github.com/girder/girder
https://slicer.org
https://github.com/KitwareMedical/SlicerCustomAppTemplate
https://github.com/girder/slicer_package_manager/blob/main/LICENSE
https://github.com/girder/slicer_package_manager
https://girder.readthedocs.io/en/latest/user-guide.html#concepts

Slicer Package Manager Documentation, Release 0.1.0

(continued from previous page)

.

. . .
| | |----- 2.0
. . . |
. . .
| | |----- draft
| | | |--- r100
| | | | |---- Slicer-linux.tar.gz
| | | | |---- Slicer-macos.dmg
| | | | |---- Slicer-win.exe
| | | | |---- extensions
| | | | | |---- Extension1
.
. . . .
| | | |--- r101
. . . . |
. .
| |
| |------SlicerCustom

where

• Slicer and SlicerCustom are Girder items representing Application

• 1.0 and 2.0 are Girder folders representing Release

• Slicer-linux.tar.gz and Slicer-macos.dmg are Girder items representing Package (application
package)

• Extension1 and Extension2 are Girder items representing Extension (extension package)

4 Chapter 1. Overview

CHAPTER 2

Concepts

• Application:

Applications are simple Girder Folder. They represent top-level folders which contain all the differ-
ent releases, application and extensions packages of your application. By default when you create a
new application, it will automatically be created within the default Girder collection ‘Applications’
(see Girder concept to learn more about Girder collections and Folder).

Applications contain metadata that organize the application and extension packages following a same
name:

– applicationPackageNameTemplate (set as {baseName}_{os}_{arch}_{revision}
by default).

– extensionPackageNameTemplate (set as {app_revision}_{baseName}_{arch}_{os}_{revision}
by default).

These template names correspond to the given name of all the uploaded application or extensions
packages. Which means that all the packages (application or extension) will have a name that follow
these templates depending on their given metadata during the upload.

These templates can be changed at anytime using the Girder UI on the application view.

• Release:

Release are also simple Girder Folder. They are part of an application and correspond to a specific
revision of this application. They meant to contain application or extension packages which corre-
spond to this specific application revision. It’s why each release has the application revision as
metadata.

• Draft:

Draft is a simple Girder Folder which contain a flat list of Release named as the corresponding
application revision by default. When a new application is created, the draft folder is also created.
This draft folder is used as default release when the upload of an application or an extension package
occurs and which its own application revision doesn’t correspond to any release of the application
(by checking the correspondence between the revision metadata stored on the release and the
app_revision stored on the packages).

5

https://girder.readthedocs.io/en/latest/user-guide.html#concepts

Slicer Package Manager Documentation, Release 0.1.0

However the draft folder does not contain any metadata. Only the release that’s contained into it got
a revision metadata (corresponding to the application revision they are made for).

• Package:

Package (application package) are Girder Item which contains only one binary file (the real appli-
cation package). They are part of an application, and can only be found in a release folder. They
are named following the applicationPackageNameTemplate set on the application they are
made for.

Each application package contain a bunch of metadata that give us information on which environment
the package is made for like : Operating System: os, architecture: arch, application revision:
revision, repository url. . . (see the list of parameters of Package on the server API to have an
exhausted list of all the metadata).

When uploading an application package, some of these metadata are required, the revision meta-
data is used to determine in which release to upload the application package. The release which
have the same revision metadata will see the application package uploaded into it. If any release
within the application has a matching revision, the application package will be uploaded into the cor-
responding draft release (by default). By searching for an existing draft release (with the matching
revision) or if it doesn’t already exist, by creating a new one.

The package file (binary file) during the upload will be kept as it within Girder. So when the ex-
tension will be downloaded, the downloaded file will keep the same extension (.bin, .zip, . . .). For
instance, if the uploaded package is named ‘pkg.tar.gz’, then each time this application package will
be downloaded, the downloaded file will keep the same ‘.tar.gz’ extension.

• Extension:

As an application package, an Extension package is also a Girder Item, and has the same behavior
than an application package. It contain a single binary file. The name of all uploaded extension
follow the extensionPackageNameTemplate metadata stored in the Application.

See the list of parameters of Extension on the server API to have an exhausted list of all the metadata.

6 Chapter 2. Concepts

https://slicer-package-manager.readthedocs.io/en/latest/slicer_package_manager.api.html#slicer_package_manager.api.app.App.createOrUpdatePackage
https://slicer-package-manager.readthedocs.io/en/latest/server.api.html#server.api.app.App.createOrUpdateExtension

CHAPTER 3

Commands shell (CLI)

3.1 Overview

The command slicer_package_manager_client allows to to interact with a Slicer Package Manager server.

There are 5 different subcommands that can be used to manage data:

• app command to create, list and delete applications.

• release command to create, list and delete releases.

• draft command to list and delete draft releases.

• package command to upload, download or just list application packages.

• extension command to upload, download or just list extensions packages.

Warning: To run command requiring higher privileges, you will have to authenticate.

3.2 Installation

Install with:

$ pip install slicer-package-manager-client

or:

$ git clone https://github.com/girder/slicer_package_manager.git
$ cd slicer_package_manager/python_client
$ pip install -e .

for development.

7

Slicer Package Manager Documentation, Release 0.1.0

3.3 Configuration

3.3.1 Authentication

There are few solutions to authenticate on your Girder instance when using the client:

• Using your login and your password:

$ slicer_package_manager_client --username admin --password adminadmin

• Generating an API-KEY see the documentation for more details:

$ slicer_package_manager_client --api-key EKTb15LjqD4Q7jJuAVPuUSuW8N7s3dmuAekpRGLD

or by using the GIRDER_API_KEY environment variable:

$ export GIRDER_API_KEY=EKTb15LjqD4Q7jJuAVPuUSuW8N7s3dmuAekpRGLD

Warning: The API-KEY is given as an example, follow the documentation on api-key to create your own.

Note: If you want to use the client to an external Slicer package manager instance, you will need to provide the API
url by adding the option:

--api-url http://192.168.100.110/api/v1

(The IP is given as an example)

Then you can start using the API that allow you to easily create applications, manage releases, upload and download
packages, see Commands shell (CLI) documentation for more details.

3.3.2 Bash completion

To use the Bash completion feature you just have to run the following command each time you use a new terminal:

$ eval "$(_SLICER_PACKAGE_MANAGER_CLIENT_COMPLETE=source slicer_package_manager_
→˓client)"

Or you can add it on your .bashrc file to always have this feature available.

3.3.3 Custom application collection

In each command, the optional parameter coll_id allow to use the Slicer Package Manager Client within an existing
collection and not in the default Applications collection.

When this is the case, to avoid repeating this parameter in each command it’s also possible to set an environment
variable named COLLECTION_ID.

8 Chapter 3. Commands shell (CLI)

https://girder.readthedocs.io/en/latest/user-guide.html#api-keys
https://girder.readthedocs.io/en/latest/user-guide.html#api-keys

Slicer Package Manager Documentation, Release 0.1.0

3.4 Subcommands

3.4.1 Application

Use slicer_package_manager_client app to create, list and delete applications.

Create & Initialized a new application

You can either choose an existing collection by providing coll_id or create a specific one by providing
coll_name. If none of this optional parameters are provided, the default collection Application will be got or
created if it doesn’t exist yet. This function will also create a top level folder named packages organizing the different
application in the collection.

slicer_package_manager_client app create NAME [OPTIONS]

Arguments:

• NAME - The name of the new application

Options:

• --desc - The description of the new application

• --coll_id - ID of an existing collection

• --coll_name - The name of the new collection

• --coll_desc - The description of the new collection

• --public - Whether the collection should be publicly visible

List all the application within a collection

By providing coll_id, you are able to list all the applications from a specific collection. By default it will list the
applications within the collection Applications.

slicer_package_manager_client app list

Delete an application

slicer_package_manager_client app delete NAME

Arguments:

• NAME - The name of the application which will be deleted

• --coll_id - ID of an existing collection

3.4.2 Release

Use slicer_package_manager_client release to create, list and delete releases.

3.4. Subcommands 9

Slicer Package Manager Documentation, Release 0.1.0

Create a new release

slicer_package_manager_client release create APP_NAME NAME REVISION [OPTIONS]

Arguments:

• APP_NAME - The name of the application

• NAME - The name of the new release

• REVISION - The revision of the application corresponding to this release

Options:

• --coll_id - ID of an existing collection

• --desc - The description of the new application

List all the release from an application

slicer_package_manager_client release list APP_NAME

Arguments:

• APP_NAME - The name of the application

Options:

• --coll_id - ID of an existing collection

Delete a release

slicer_package_manager_client release delete APP_NAME NAME

Arguments:

• APP_NAME - The name of the application

• NAME - The name of the release which will be deleted

Options:

• --coll_id - ID of an existing collection

3.4.3 Draft

Use slicer_package_manager_client draft to list and delete draft releases.

List all the draft release within an application

Provide revision will list only one draft release corresponding to the revision store as metadata. The --offset
option allow to list only the older draft release.

slicer_package_manager_client draft list APP_NAME [OPTIONS]

Arguments:

• APP_NAME - The name of the application

10 Chapter 3. Commands shell (CLI)

Slicer Package Manager Documentation, Release 0.1.0

Options:

• --revision - The revision of a draft release

• --offset - The offset to list only the older draft release

• --coll_id - ID of an existing collection

Delete a specific draft release

slicer_package_manager_client draft delete APP_NAME REVISION [OPTIONS]

Arguments:

• APP_NAME - The name of the application

• REVISION - The revision of the draft release

Options:

• --coll_id - ID of an existing collection

3.4.4 Package

Use slicer_package_manager_client package to upload, download or just list application packages.

Upload a new application package

Give the FILE_PATH argument to be able to upload an application package. The application package will automati-
cally be added to the release which has the same revision than the --revision value. If any release correspond to
the given revision, the application package will be uploaded in the draft release, by default.

The final name of the application package will depend of the applicationPackageNameTemplate set as meta-
data on the application folder. The default name is {baseName}_{arch}_{os}_{revision}. It can be change
at any time on the application setting page.

The --pre_release option is used to specify if the uploaded package is ready for distribution or if it needs extra
steps before that. In some cases, the package needs to be signed and then re-uploaded on the server.

slicer_package_manager_client package upload APP_NAME FILE_PATH [OPTIONS]

Arguments:

• APP_NAME - The name of the application

• FILE_PATH - The path to the application package file to upload

Options:

• --os - The target operating system of the package

• --arch - Architecture that is supported by the application package

• --name - The basename of the new application package

• --repo_type - The repository type of the application package

• --repo_url - The repository URL of the application package

• --revision - The revision of the application package

3.4. Subcommands 11

Slicer Package Manager Documentation, Release 0.1.0

• --coll_id - ID of an existing collection

• --pre_release - Boolean to specify if the package is ready to be distributed

• --desc - The description of the new application

List application packages

Use options to filter the listed application packages. By default, the command will list all the application packages
from the ‘draft’ release. It is possible to use the --release option to list the application package from a particular
release.

slicer_package_manager_client package list APP_NAME [OPTIONS]

Arguments:

• APP_NAME - The name of the application

Options:

• --os - The target operating system of the package

• --arch - Architecture that is supported by the application package

• --revision - The revision of the application

• --release - The release within list all the application package

• --name - Basename of an application package

• --limit - Limit on the number of listed application package

• --coll_id - ID of an existing collection

Download an application package

By default the package will be store in the current folder

slicer_package_manager_client package download APP_NAME ID_OR_NAME [OPTIONS]

Arguments:

• APP_NAME - The name of the application

• ID_OR_NAME - The ID or name of the application package which will be downloaded

Options:

• --dir_path - Path where will be save the application package after the download

• --coll_id - ID of an existing collection

Delete an application package

Provide either the ID or the name of the application package to delete it.

slicer_package_manager_client package delete APP_NAME ID_OR_NAME

Arguments:

• APP_NAME - The name of the application

12 Chapter 3. Commands shell (CLI)

Slicer Package Manager Documentation, Release 0.1.0

• ID_OR_NAME - The ID or name of the application package which will be deleted

Options:

• --coll_id - ID of an existing collection

3.4.5 Extension

Use slicer_package_manager_client extension to upload, download or just list extension packages.

Upload a new extension

Give the FILE_PATH argument to be able to upload an extension. The extension will then automatically be added
to the release which has the same revision than the --app_revision value. By default, if any release corresponds
to the given revision, the extension will be uploaded in the draft folder within the ‘draft’ release which has the given
revision as metadata, or create it if it doesn’t exist yet.

The final name of the extension will depend of the extensionPackageNameTemplate set as metadata on the
application folder. The default name is {app_revision}_{baseName}_{os}_{arch}_{revision}. It
can be change at any time on the application setting page.

slicer_package_manager_client extension upload APP_NAME FILE_PATH [OPTIONS]

Arguments:

• APP_NAME - The name of the application

• FILE_PATH - The path to the extension file to upload

Options:

• --os - The target operating system of the package

• --arch - Architecture that is supported by the extension

• --name - The basename of the new extension

• --repo_type - The repository type of the extension

• --repo_url - The repository URL of the extension

• --revision - The revision of the extension

• --app_revision - The revision of the application corresponding to this release

• --coll_id - ID of an existing collection

• --desc - The description of the new application

List extensions

Use options to filter the listed extensions. By default, the command will list all the extension from the ‘draft’ release. It
is possible to use the --release option to list the extension from a particular release. Or use the flag --all to list
all the extension present in the application. It is also possible to get only one extension by providing the --fullname
option of an extension.

slicer_package_manager_client extension list APP_NAME [OPTIONS]

Arguments:

3.4. Subcommands 13

Slicer Package Manager Documentation, Release 0.1.0

• APP_NAME - The name of the application

Options:

• --os - The target operating system of the package

• --arch - Architecture that is supported by the extension

• --app_revision - The revision of the application

• --release - The release within list all the extension

• --limit - Limit on the number of listed extension

• --all - Flag to list all the extension from all the release

• --fullname - Fullname of an extension

• --coll_id - ID of an existing collection

Download an extension

slicer_package_manager_client extension download APP_NAME ID_OR_NAME [OPTIONS]

Arguments:

• APP_NAME - The name of the application

• ID_OR_NAME - The ID or name of the extension which will be downloaded

Options:

• --dir_path - Path where will be save the extension after the download

• --coll_id - ID of an existing collection

Delete an extension

Provide either the ID or the name of the extension to delete it.

slicer_package_manager_client extension delete APP_NAME ID_OR_NAME

Arguments:

• APP_NAME - The name of the application

• ID_OR_NAME - The ID or name of the extension which will be deleted

Options:

• --coll_id - ID of an existing collection

14 Chapter 3. Commands shell (CLI)

CHAPTER 4

FAQ

Frequently Asked Questions

4.1 What is Girder?

Girder is a free and open source web-based data management platform developed by Kitware. What does that mean?
Girder is both a standalone application and a platform for building new web services. To know more about Girder let’s
take a look at the documentation.

4.2 What is a Slicer package?

A slicer package is just an installer package for a specific release of Slicer. There is a specific Slicer package for each
different platform (Windows, MACOSX, Linux).

4.3 What is a Slicer Extension?

An extension could be seen as a delivery package bundling together one or more Slicer modules. After installing an
extension, the associated modules will be presented to the user as built-in ones.

To know more about Slicer extension, see the Extensions Manager documentation.

4.4 Does the server collect download statistics ?

Each time an extension is downloaded (using the Client or the UI), a metadata is incremented on the release folder.
This allow to referenced all downloaded extension even after their deletion.

The download count is stored in the metadata following this rule:

15

https://www.kitware.com
https://girder.readthedocs.io
https://slicer.readthedocs.io/en/latest/user_guide/extensions_manager.html

Slicer Package Manager Documentation, Release 0.1.0

$ {
'downloadExtensions': {

baseName: {
os: {

arch: downloadCount
}

}
}

4.5 How to interface with the Slicer Package Manager server ?

There are 3 different ways to use the Slicer Package Manager server:

• By using the Commands shell (CLI):

This is the more easy way to use the basic feature of the Slicer Package Manager. These commands
allow you to easily create, list, or delete applications and releases, and also list, upload, download or
delete application or extension packages.

• By using the Python Client API within Python script:

Using the Python Client API allow you to write scripts for create application, new release and auto-
matically upload or download application or extensions packages.

• By using the User Interface:

The default girder user interface allows to browse through the Application, Release and Draft Girder
folders and their associated Package and Extension Girder items.

4.6 How to create a new release with existing uploaded packages?

Follow this few steps to be able to update a draft release into a stable release:

• Open the Girder UI, go under your application folder (Slicer here). By default it should be inside the
Applications collection, that you can find under the Collections item in the main menu.

Applications
|--- packages
| |----- Slicer

• Look for the specific application revision folder under the draft folder within the application. All the packages
which are contained in this folder will be part of the futur new stable release.

• Select all the element contained in this folder by using the Pick all checked resources for Copy
or Move action

• Go to the new release folder, that you can create both by using the CLI or the Girder UI. In
the case of the Girder UI you will need to give a specific metadata on the folder: revision:
<revision-of-the-application> corresponding the this release.

• Once you created the new release folder, enter inside it, then use the Copy picked resources here

• You will just need to delete the draft sub-folder used to make the new stable release

16 Chapter 4. FAQ

Slicer Package Manager Documentation, Release 0.1.0

4.7 How to clean up the Draft release folder?

Since a large number of draft packages may be uploaded on a regular basis. Older draft packages may be removed
applying this process:

The command slicer_package_manager_client draft list <APP_NAME> --offset <N> al-
lows to list the oldest draft subfolders related to old application revision. Using this command, you will be able
to get a list of revision and then use the command slicer_package_manager_client draft delete
<APP_NAME> <REVISION> in a loop to delete them all.

Note: The draft packages associated with the https://slicer-packages.kitware.com instance are automatically cleared
using the clean-nightly-slicer-package-manager.sh script.

4.7. How to clean up the Draft release folder? 17

https://slicer-packages.kitware.com
https://github.com/Slicer/DashboardScripts/blob/main/maintenance/metroplex/clean-nightly-slicer-package-manager.sh

Slicer Package Manager Documentation, Release 0.1.0

18 Chapter 4. FAQ

CHAPTER 5

Server Installation

The section below describes a convenient way to setup a server for evaluation purpose.

For production deployment, read more details in the Administrator Documentation section at https://girder.
readthedocs.io.

5.1 Run via Docker

First, install Docker and Docker compose follow the instruction on the official website. The community edition (CE)
is sufficient for using this plugin. See https://docs.docker.com/install/ and https://docs.docker.com/compose/install/.

Then, assuming the sources are available in slicer_package_manager folder, you may run the server running
the following commands:

$ cd slicer_package_manager
$ docker-compose up -d

Note: The -d option is running the container in daemon mode. Remove it to display the logs on the running
containers.

To rebuild the container after changing the source code use the --build option when you run the command.

Warning: Run the containers can take few moments, the application will not be ready instantly.

The Girder application should then be running at http://localhost:8080/ and be already setup:

• Creation of an Admin User (username: admin, password: adminadmin)

• Creation of a local Assetstore (in ~/slicer_package_manager/assetstore), let’s read the Filesystem documenta-
tion for more detail about it

19

https://girder.readthedocs.io
https://girder.readthedocs.io
https://docs.docker.com/install/
https://docs.docker.com/compose/install/
http://localhost:8080/
https://girder.readthedocs.io/en/latest/user-guide.html#assetstores

Slicer Package Manager Documentation, Release 0.1.0

Note: You will have the possibility to create more users and/or change the password of the Admin User via the
Girder UI.

20 Chapter 5. Server Installation

CHAPTER 6

Developer Guide

6.1 Overview

Since Slicer Package Manager is part of Girder plugins, it’s also split in 2 different parts:

• Back-end/server side (a CherryPy-based Python module)

• Front-end/client side (a vue.js-based UI)

To have a better idea of how contributing on a plugin within the Girder community, let’s read the Plugin Development
documentation.

6.2 Installation

You can either install the Slicer Package Manager natively on your machine or inside it’s own virtual environment.

6.2.1 Virtual environment

While not strictly required, it is recommended to install the Slicer Package Manager and Girder within its own virtual
environment to isolate its dependencies from other python packages. To generate a new virtual environment, first
install/update the virtualenv and pip packages:

$ sudo pip install -U virtualenv pip

Now create a virtual environment using the virtualenv command. You can place the virtual environment directory
wherever you want, but it should not be moved. The following command will generate a new directory called
slicer_package_manager_env in your home directory:

$ virtualenv ~/slicer_package_manager_env

Then to enter in the virtual environment, use the command:

21

https://girder.readthedocs.io/en/latest/plugin-development.html
https://girder.readthedocs.io/en/latest/plugin-development.html
https://docs.python-guide.org/en/latest/dev/virtualenvs/
https://virtualenv.readthedocs.io/en/latest/user_guide.html

Slicer Package Manager Documentation, Release 0.1.0

$. ~/slicer_package_manager_env/bin/activate

Note: The (slicer_package_manager_env) prepended to your prompt indicates you have entered the virtual
environment.

6.2.2 Install from Git

To easily develop the Slicer Package Manager, you will need to use some of Girder commands. So let’s start by
installing Girder:

$ git clone https://github.com/girder/girder.git
$ cd girder
$ pip install -e .

Then, let’s install the Slicer Package Manager server plugin:

$ git clone https://github.com/girder/slicer_package_manager
$ cd slicer_package_manager
$ pip install -e .[test]

This will provide you all the package needed to run the development environment. Then install the front-end web
client development dependencies:

$ girder build --dev

6.2.3 Run

To run the server, first make sure the Mongo daemon is running. To manually start it, run:

$ mongod &

Then to run Girder itself, just use the following command:

$ girder-server --dev

The application should be accessible on http://localhost:8080/ in your web browser.

6.3 During development

Once Girder is started via girder-server, the server will reload itself whenever a server source file is modified.
If you are doing front-end development, it’s much faster to use a watch process to perform automatic fast rebuilds of
your code whenever you make changes to source files.

If you are front-end development of Slicer package manager plugin, use:

$ girder build --watch-plugin slicer_package_manager

22 Chapter 6. Developer Guide

http://localhost:8080/

Slicer Package Manager Documentation, Release 0.1.0

6.4 Server side development

See the Server Development documentation to know more about the good development practise in Girder

6.5 Client side development

See the Client Development documentation to know more about the good development practise in Girder

6.6 Python client development

The development of the Slicer Package Manager Client is in Python, and it uses ruff for code style validation.

The python client use click, a command line library for Python.

6.7 Testing

Tests are the base of software development, they meant to check if what you’ve expected is really happening and find
issues you didn’t even think about. There are few thing you should know about test within the Slicer Package Manager.

6.7.1 Server Side Testing

As part of Girder, server test are done using pytest. Let’s read the server test documentation to know more about Girder
testing.

6.7.2 Python Client Testing

The Python Client use pytest to test its API. It also uses a tool named pytest-vcr to record the server responses and be
able to test the client within CircleCI.

Note: Each time the client will change, or the tests, you will have to record the server an other time by running the
tests manually. But first, you will have to delete the old records. All the server records should be saved as .yml file
into the cassettes folder next to your tests. Delete this folder, and then run the tests again, it should create new
records automatically.

To run manually these test run the following command:

$ pytest --tb=long plugin_tests/python_client_tests/test_python_client.py

The CLI is also briefly tested using a shell script. To see an example let’s take a look at the Source Code

This test is also used within CircleCi.

To run locally this test, from the slicer_package_manager folder run:

$ cd plugin_tests/python_client_tests
$./slicer_extension_manager_client_test.sh

6.4. Server side development 23

https://girder.readthedocs.io/en/latest/development.html#server-development
https://girder.readthedocs.io/en/latest/development.html#client-development
https://beta.ruff.rs/docs/
https://click.pocoo.org
https://docs.pytest.org/en/latest/
https://girder.readthedocs.io/en/latest/development.html#server-side-testing
https://docs.pytest.org/en/latest/
https://pytest-vcr.readthedocs.io/en/latest/
https://github.com/girder/slicer_package_manager/blob/main/plugin_tests/python_client_tests/slicer_package_manager_client_test.sh

Slicer Package Manager Documentation, Release 0.1.0

It will run some of the commands available with the slicer_package_manager_client, check if the upload
and the download works and then delete everything.

This script could be take as a good example of using the Commands shell (CLI).

6.7.3 CircleCI tests

In the CircleCI configuration file, there are several test going on:

• Server Side Testing

It will occurs each time a commit will be pushed on the repository.

• Python Client Testing

Both the python client API and the CLI are tested

• Docker containers testing

Test the build and the deploy of the different Docker containers.

6.8 Regenerate Documentation Locally

When developing new feature it’s very important to add some documentation to explain the community what is it and
how to use it. The Slicer Package Manager Documentation is build thanks to Sphinx, an open source documentation
generator.

Here is some tools very useful to rapidly see what is result of your documentation.

In the slicer_package_manager/docs directory, just run:

$ make docs

This will automatically create the API documentation for you and open a web browser tab to visualize the documen-
tation. If you don’t want to open a new tab and just rebuild the documentation run:

$ make docs-only

6.9 Docker containers

Docker containers allow an easy use and setup of the Slicer Package Manager. There are 3 different containers that
communique between themselves.

• The application container

It contains both the Girder application with the Slicer Package Manager plugin enabled.

• The database container

This one contains the MongoDB instance that allow the Girder and the Slicer Package Manager to
store all the data as Applications, Releases, Application or Extension packages.

• The provisioning container

This container is special, it is only used once both the Girder server and the Mongo server are running
and connected to each other. It is meant to handle the server configuration and make the use of the
Slicer Package Manager much easier. By doing that it enables the Slicer Package Manager plugin

24 Chapter 6. Developer Guide

https://github.com/girder/slicer_package_manager/blob/main/.circleci/config.yml
https://www.sphinx-doc.org/

Slicer Package Manager Documentation, Release 0.1.0

within Girder, create the first admin user, and set up the assetstore used to store the binary files (In
fact the DB only store reference to these files, the real data are stored on your own machine in this
assetstore).

6.10 Server API

6.10.1 Subpackages

slicer_package_manager.api package

Submodules

slicer_package_manager.api.app module

slicer_package_manager.models package

Submodules

slicer_package_manager.models.extension module

slicer_package_manager.models.package module

6.10.2 Submodules

6.10.3 slicer_package_manager.constants module

6.10.4 slicer_package_manager.utilities module

6.11 Python Client API

6.11.1 slicer_package_manager_client package

class slicer_package_manager_client.Constant
Bases: object

A bunch of utilities constant, as to handle Error or set default parameters.

CURRENT_FOLDER = '/home/docs/checkouts/readthedocs.org/user_builds/slicer-package-manager/checkouts/latest/docs'

DEFAULT_LIMIT = 50

DRAFT_RELEASE_NAME = 'draft'

EXTENSION_AREADY_UP_TO_DATE = 32

EXTENSION_NOW_UP_TO_DATE = 33

PACKAGE_NOW_UP_TO_DATE = 31

WIDTH = 25

6.10. Server API 25

Slicer Package Manager Documentation, Release 0.1.0

class slicer_package_manager_client.SlicerPackageClient(host=None, port=None,
apiRoot=None,
scheme=None, api-
Url=None, progressRe-
porterCls=None)

Bases: girder_client.GirderClient

The SlicerPackageClient allows to use the slicer_package_manager plugin of Girder, which allows you to man-
age the following top-level entities:

• Application

• Release

• Draft

• Package

• Extension

You may also choose the collection in which to create the application. It’s also possible to provide a collection
ID to use as the parent collection for creating the application.

In this case, you must provide the coll_id argument to use all the commands on these applications. By
default, all commands look for applications that are under a collection named Applications.

createApp(name, desc=None, coll_id=None, coll_name=None, coll_desc=None, public=None)
Create a new application in the collection which correspond to coll_id, by default it will create the
application in the collection named Applications. The application will contain a draft folder. Two
templates names will be set as a metadata of this new application. One for determine each future uploaded
application package and the other to determine each future uploaded extension. It’s also possible to create
a new collection by specifying “coll_name”. If this collection already exist it will use it.

Parameters

• name – name of the new application

• desc – Optional description of the application

• coll_id – Id of an existing collection

• coll_name – Name of the collection

• coll_desc – Optional description of the new collection

• public – Whether the collection should be publicly visible

Returns The new application

createRelease(app_name, name, revision, coll_id=None, desc=None)
Create a new release within the application corresponding to app_name.

Parameters

• app_name – Name of the application

• name – Name of the release

• revision – Revision of the application

• coll_id – Collection ID

• desc – Description of the release

Returns The new release

26 Chapter 6. Developer Guide

Slicer Package Manager Documentation, Release 0.1.0

deleteApp(name, coll_id=None)
Delete the application by ID.

Parameters

• name – application name

• coll_id – Collection ID

Returns The deleted application

deleteApplicationPackage(app_name, id_or_name, coll_id=None)
Delete an application package within an application.

Parameters

• app_name – Name of the application

• id_or_name – Package ID or name

• coll_id – Collection ID

Returns The deleted application package

deleteDraftRelease(app_name, revision, coll_id=None)
Delete a specific revision within the Draft release.

Parameters

• app_name – Name of the application

• revision – Revision of the release

• coll_id – Collection ID

Returns The deleted release

deleteExtension(app_name, id_or_name, coll_id=None)
Delete an extension within an application.

Parameters

• app_name – Name of the application

• id_or_name – Extension ID or name

• coll_id – Collection ID

Returns The deleted extension

deleteRelease(app_name, name, coll_id=None)
Delete a release within an application.

Parameters

• app_name – Name of the application

• name – Name of the release

• coll_id – Collection ID

Returns The deleted release

downloadApplicationPackage(app_name, id_or_name, coll_id=None,
dir_path=’/home/docs/checkouts/readthedocs.org/user_builds/slicer-
package-manager/checkouts/latest/docs’)

Download an application package by ID and store it in the given option dir_path. When we use the
package id in id_or_name, the parameter app_name is ignored.

6.11. Python Client API 27

Slicer Package Manager Documentation, Release 0.1.0

Parameters

• app_name – Name of the application

• id_or_name – ID or name of the package

• coll_id – Collection ID

• dir_path – Path of the directory where the application package has to be downloaded

Returns The downloaded package

downloadExtension(app_name, id_or_name, coll_id=None, dir_path=’/home/docs/checkouts/readthedocs.org/user_builds/slicer-
package-manager/checkouts/latest/docs’)

Download an extension by ID and store it in the given option dir_path. When we use the extension id
in id_or_name, the parameter app_name is ignored.

Parameters

• app_name – Name of the application

• id_or_name – ID or name of the extension

• coll_id – Collection ID

• dir_path – Path of the directory where the extension has to be downloaded

Returns The downloaded extension

listApp(name=None, coll_id=None)
List all the applications within a specific collection by providing the option coll_id. By default it will
list within the collection Applications. It can also lead to get the application by name.

Parameters

• name – application mame

• coll_id – Collection ID

Returns A list of applications

listApplicationPackage(app_name, coll_id=None, name=None, pkg_os=None, arch=None, re-
vision=None, version=None, release=None, limit=50)

List the application packages filtered by some optional parameters (os, arch, . . .).

By default only the first N application packages are listed. Setting the limit parameter to 0 removes this
restriction.

It’s also possible to specify the --release option to list all the package from a specific release.

Parameters

• app_name – Name of the application

• coll_id – Collection ID

• name – Base name of the application package

• pkg_os – The target operating system of the package

• arch – The os chip architecture

• revision – Revision of the application

• version – Version of the application

• release – Name or ID of the release

• limit – Limit of the number of applications listed (see Constant.DEFAULT_LIMIT)

28 Chapter 6. Developer Guide

Slicer Package Manager Documentation, Release 0.1.0

Returns A list of application package filtered by optional parameters

listDraftRelease(app_name, coll_id=None, revision=None, limit=50, offset=0)
List the draft releases with an offset option to list only the older ones.

By default only the first N releases are listed. Setting limit parameter to 0 removes this restriction.

It’s also possible to list one release within the Draft release by providing its specific revision.

Parameters

• app_name – Name of the application

• coll_id – Collection ID

• revision – Revision of the release

• limit – Limit of the number of draft releases listed (see Constant.
DEFAULT_LIMIT)

• offset – offset to list only older revisions

Returns The list of draft release

listExtension(app_name, coll_id=None, name=None, ext_os=None, arch=None,
app_revision=None, release=’draft’, query=None, limit=50, all=False)

List the extensions of a specific application app_name.

By default only the first N extensions within the draft release are listed. Setting limit parameter to 0
removes this restriction.

Specifying optional parameters like ext_os or arch allows to return the corresponding subset.

Passing all=True option allow to list all the extensions from all the releases of an application.

Parameters

• app_name – Name of the application

• coll_id – Collection ID

• name – Base name of the extension

• ext_os – The target operating system of the package

• arch – The os chip architecture

• app_revision – Revision of the application

• release – Name of the release

• query – Text expected to be found in the extension name or description

• limit – Limit of the number of extensions listed (see Constant.DEFAULT_LIMIT)

• all – Boolean that allow to list extensions from all the release

Returns A list of extensions filtered by optional parameters

listRelease(app_name, name=None, coll_id=None)
List all the release within an application. It’s also able to get one specific release by name.

Parameters

• app_name – Name of the application

• name – Name of the release

• coll_id – Collection ID

6.11. Python Client API 29

Slicer Package Manager Documentation, Release 0.1.0

Returns A list of all the release within the application

uploadApplicationPackage(filepath, app_name, pkg_os, arch, name, repo_type, repo_url,
revision, version, build_date=None, coll_id=None, desc=”,
pre_release=False)

Upload an application package by providing a path to the file. It can also be used to update an existing
one.

Parameters

• filepath – The path to the file

• app_name – The name of the application

• pkg_os – The target operating system of the package

• arch – The os chip architecture

• name – The baseName of the package

• repo_type – Type of the repository

• repo_url – Url of the repository

• revision – The revision of the application

• version – The version of the application

• build_date – The build timestamp specified as a datetime string. Default set to current
date and time.

• coll_id – Collection ID

• desc – The description of the application package

• pre_release – Boolean to specify if the package is ready to be distributed

Returns The uploaded application package

uploadExtension(filepath, app_name, ext_os, arch, name, repo_type, repo_url, revi-
sion, app_revision, desc=”, icon_url=”, category=None, homepage=”,
screenshots=None, contributors=None, dependency=None, coll_id=None,
force=False)

Upload an extension by providing a path to the file. It can also be used to update an existing one, in this
case the upload is done only if the extension has a different revision than the old one.

Parameters

• filepath – The path to the file

• app_name – The name of the application

• ext_os – The target operating system of the package

• arch – The os chip architecture

• name – The baseName of the extension

• repo_type – Type of the repository

• repo_url – Url of the repository

• revision – The revision of the extension

• app_revision – The revision of the application supported by the extension

• desc – The description of the extension

• icon_url – Url of the extension’s logo

30 Chapter 6. Developer Guide

Slicer Package Manager Documentation, Release 0.1.0

• category – Category of the extension

• homepage – Url of the extension’s homepage

• screenshots – Space-separate list of URLs of screenshots for the extension.

• contributors – List of contributors of the extension.

• dependency – List of the required extensions to use this one.

• coll_id – Collection ID

• force – To force update the binary file

Returns The uploaded extension

exception slicer_package_manager_client.SlicerPackageManagerError
Bases: Exception

Submodules

slicer_package_manager_client.cli module

6.11. Python Client API 31

Slicer Package Manager Documentation, Release 0.1.0

32 Chapter 6. Developer Guide

CHAPTER 7

Credits

Please see the GitHub project page contributors.

33

https://github.com/girder/slicer_package_manager/graphs/contributors

Slicer Package Manager Documentation, Release 0.1.0

34 Chapter 7. Credits

CHAPTER 8

Making a release

A core developer should use the following steps to create a release X.Y.Z of slicer-package-manager and slicer-
package-manager-client on PyPI.

8.1 Prerequisites

• All CI tests are passing on CircleCI.

• You have a GPG signing key.

8.2 Documentation conventions

The commands reported below should be evaluated in the same terminal session.

Commands to evaluate starts with a dollar sign. For example:

$ echo "Hello"
Hello

means that echo "Hello" should be copied and evaluated in the terminal.

8.3 Setting up environment

1. First, register for an account on PyPI.

2. If not already the case, ask to be added as a Package Index Maintainer.

3. Create a ~/.pypirc file with your login credentials:

35

https://pypi.org/project/slicer-package-manager
https://app.circleci.com/pipelines/github/girder/slicer_package_manager
https://help.github.com/articles/generating-a-new-gpg-key/
https://pypi.org

Slicer Package Manager Documentation, Release 0.1.0

[distutils]
index-servers =
pypi
pypitest

[pypi]
username=__token__
password=<your-token>

[pypitest]
repository=https://test.pypi.org/legacy/
username=__token__
password=<your-token>

where <your-token> correspond to the API token associated with your PyPI account.

8.4 PyPI: Step-by-step

1. Make sure that all CI tests are passing on CircleCI.

2. Download the latest sources

$ cd /tmp && \
git clone git@github.com:girder/slicer_package_manager && \
cd slicer_package_manager

3. List all tags sorted by version

$ git fetch --tags && \
git tag -l | sort -V

4. Choose the next release version number

$ release=X.Y.Z

Warning: To ensure the packages are uploaded on PyPI, tags must match this regular expression:
^[0-9]+(\.[0-9]+)*(\.post[0-9]+)?$.

5. In CHANGES.rst replace Next Release section header with X.Y.Z, in python_client/
slicer_package_manager_client/__init__.py update version with X.Y.Z and commit the
changes.

$ git add CHANGES.rst && \
git add python_client/slicer_package_manager_client/__init__.py && \
git commit -m "slicer-package-manager[-client] ${release}"

6. Tag the release

$ git tag --sign -m "slicer-package-manager[-client] ${release}" ${release}
→˓main

36 Chapter 8. Making a release

https://app.circleci.com/pipelines/github/girder/slicer_package_manager
https://pypi.org/project/slicer-package-manager

Slicer Package Manager Documentation, Release 0.1.0

Warning: We recommend using a GPG signing key to sign the tag.

7. Create the source distribution and wheel for slicer-package-manager

$ pipx run build

Note: pipx allows to directly run the build frontend without having to explicitly install it.

To install pipx:

$ python3 -m pip install --user pipx

8. Create the source distribution and wheel for slicer-package-manager-client

$ pipx run build ./python_client

8. Publish the both release tag and the main branch

$ git push origin ${release} && \
git push origin main

9. Upload the distributions on PyPI

$ pipx run twine upload dist/*
$ pipx run twine upload python_client/dist/*

Note: To first upload on TestPyPI , do the following:

$ pipx run twine upload -r pypitest dist/*
$ pipx run twine upload -r pypitest python_client/dist/*

10. Create a clean testing environment to test the installation

$ pushd $(mktemp -d) && \
mkvirtualenv slicer-package-manager-${release}-install-test && \
pip install slicer-package-manager==${release}

$ pushd $(mktemp -d) && \
mkvirtualenv slicer-package-manager-client-${release}-install-test && \
pip install slicer-package-manager-client==${release} && \
slicer_package_manager_client --version

Note: If the mkvirtualenv command is not available, this means you do not have virtualenvwrapper
installed, in that case, you could either install it or directly use virtualenv or venv.

To install from TestPyPI, do the following:

$ pip install -i https://test.pypi.org/simple slicer-package-manager==$
→˓{release}

12. Cleanup

8.4. PyPI: Step-by-step 37

https://help.github.com/articles/generating-a-new-gpg-key/
https://pypa.github.io/pipx/
https://pypa-build.readthedocs.io
https://pypi.org/project/slicer-package-manager
https://test.pypi.org/project/slicer-package-manager
https://virtualenvwrapper.readthedocs.io/
http://virtualenv.readthedocs.io
https://docs.python.org/3/library/venv.html
https://test.pypi.org/project/slicer-package-manager

Slicer Package Manager Documentation, Release 0.1.0

$ popd && \
deactivate && \
rm -rf dist/* && \
rmvirtualenv slicer-package-manager-${release}-install-test && \
rm -rf python_client/dist/* && \
rmvirtualenv slicer-package-manager-client-${release}-install-test

13. Add a Next Release section back in CHANGES.rst, commit and push local changes.

$ git add CHANGES.rst && \
git commit -m "CHANGES.rst: Add \"Next Release\" section [ci skip]" && \
git push origin main

38 Chapter 8. Making a release

CHAPTER 9

Release Notes

This is the list of Slicer Package Manager changes between each release. For full details, see the commit logs at
https://github.com/girder/slicer_package_manager

9.1 Next Release

9.2 0.8.0

9.2.1 New Features

Server

• Associate application & extension package item with checksum.

– After uploading an application or extension package, the item metadata will include sha512 metadata
entry.

– After uploading additional files, the item metadata remains unchanged.

– After removing the second to last files, the sha512 item metadata is updated to match the checksum of the
last file.

– After removing all the files, the sha512 item metadata is set to an empty string.

9.2.2 Documentation

• Remove obsolete cleanNightly.sh script and update faq.

• Update developer installation instructions to use Girder 3.x commands.

39

https://github.com/girder/slicer_package_manager

Slicer Package Manager Documentation, Release 0.1.0

9.2.3 Bug fixes

Python Client

• Fix python client test requirements adding “pytest” and “pytest-girder”.

• Attempting to install the python client using Python < 3.7 will now report an error message.

Server

• Update extension & package delete endpoints

– Explicitly check that user can access the associated application folder.

– Return a confirmation message.

9.2.4 Internal

• Require Python >= 3.6 for the server. This is consistent with the version associated with the Girder test
Docker image girder/girder_test:latest built from girder/.circleci/Dockerfile.

• The required version previously set to “3.7” in version “0.7.0” for both client and server but it was not en-
forced due to an incorrect setup parameter. It should have been specified as python_requires instead of
python_require (as defined in PEP 440).

• Re-factor and simplify code based on the newly introduced pre-commit hooks and ruff checks (codespell,
pyupgrade and ruff).

• Add type annotations to python client CLI.

9.2.5 Tests

• Add GitHub Actions workflow to run pre-commit hooks.

– Add “codespell” pre-commit hook and fix typos.

– Add pyupgrade pre-commit hook specifying “–py36-plus” and updates codes accordingly.

– Add ruff pre-commit hook enabling the following checks:

"A", # flake8-builtins
"ARG", # flake8-unused-arguments
"B", # flake8-bugbear
"BLE", # flake8-blind-except
"C4", # flake8-comprehensions
"COM", # flake8-commas
"D", # pydocstyle (aka flake8-docstrings)
"E", "F", "W", # flake8
"EXE", # flake8-executable
"EM", # flake8-errmsg
"G", # flake8-logging-format
"ICN", # flake8-import-conventions
"ISC", # flake8-implicit-str-concat
"N", # pep8-naming
"PIE", # flake8-pie
"PGH", # pygrep-hooks
"PL", # pylint

(continues on next page)

40 Chapter 9. Release Notes

https://hub.docker.com/r/girder/girder_test/tags
https://github.com/girder/girder/blob/d994d93a00257a17eeeab7e0b6fa4a54f5658550/.circleci/Dockerfile
https://github.com/pre-commit/pre-commit-hooks#hooks-available
https://github.com/asottile/pyupgrade
https://beta.ruff.rs/docs/usage/#pre-commit

Slicer Package Manager Documentation, Release 0.1.0

(continued from previous page)

"PT", # flake8-pytest-style
"Q", # flake8-quotes
"RSE", # flake8-raise
"RUF", # Ruff-specific
"S", # flake8-bandit
"SIM", # flake8-simplify
"SLF", # flake8-self
"YTT", # flake8-2020

9.3 0.7.1

9.3.1 Bug fixes

Python Client

• Fix wheel ensuring _vendor.bson package is distributed.

9.4 0.7.0

9.4.1 Documentation

• Re-organize and simplify documentation.

9.4.2 Internal

• Require Python >= 3.7 for both python client and server.

• Update development status to Production/Stable.

• Vendorize bson.objectid from PyMongo to support installing the client alongside the server and
workaround incompatibilities between standalone bson package and the one provided by PyMongo.

Python Client

• Support publishing python client sdist and wheel named slicer-package-manager-client.

9.5 0.6.0

9.5.1 New Features

• Support listing extension with a query parameter specifying the text expected to be found in the extension
name or description.

9.3. 0.7.1 41

Slicer Package Manager Documentation, Release 0.1.0

9.5.2 Bug fixes

Server

• Fix creation of extension in private application.

• Ensure user or administrator errors associated with API endpoints are displayed and associated with HTTP error
code 400 by raising a RestException instead of a generic Exception.

• Update API endpoint GET /app/{app_id}/extension to always check user credentials.

9.6 0.5.0

9.6.1 New Features

• Require version information to be specified when uploading application packages. See #97.

• Add application package build_date metadata. User may specify a custom value formatted as a datetime
string using the API endpoint or the python client. Default is set to current date and time.

Server

• Automatically update release metadata when packages are moved (or copied) between draft and release
folders.

• Add convenience functions slicer_package_manager.utilities.
isApplicationFolder(), slicer_package_manager.utilities.isReleaseFolder()
and slicer_package_manager.utilities.isDraftReleaseFolder().

• Add slicer_package_manager.utilities.getReleaseFolder() and simplify update of
downloadStats release metadata to use the new function.

9.6.2 Bug fixes

• Remove partially implemented codebase metadata.

• Remove support for unused packagetype metadata.

9.6.3 Tests

• ExternalData:

– Fix re-download of files if checksum does not match.

– Re-factor fixture introducing downloadExternals.

9.7 0.4.0

9.7.1 New Features

• Support querying application packages given a release name. See #96.

42 Chapter 9. Release Notes

https://github.com/girder/slicer_package_manager/issues/97
https://github.com/girder/slicer_package_manager/issues/96

Slicer Package Manager Documentation, Release 0.1.0

9.7.2 Bug fixes

Server

• Ensure permissions are consistently checked in API endpoints implementation. See #95.

• Fix support for unauthenticated use of public API endpoints. See #95.

9.8 0.3.0

9.8.1 Bug fixes

Server

• Update implementation of GET /app/:app_id/package endpoint to properly handle limit=0 parame-
ter. See #94.

9.8.2 Documentation

• Add documentation to slicer_package_manager.utilities.getOrCreateReleaseFolder().

9.9 0.2.0

9.9.1 Bug fixes

Server

• Update access level of API endpoints. See #89.

– Creating or updating packages now always require credentials.

– Retrieving list of applications, releases and packages are now public. Note that credentials are still required
to retrieve data associated with private applications.

Python Client

• Fix handling of --public, --all and --pre_release flags. See #85.

• Update draft list command to support --limit argument. See #82.

9.9.2 Documentation

• Add maintainer documentation along with Making a release section.

• Improve description of limit in slicer_package_manager_client.SlicerPackageClient.
listExtension() and slicer_package_manager_client.SlicerPackageClient.
listApplicationPackage(). See #84.

9.8. 0.3.0 43

https://github.com/girder/slicer_package_manager/issues/95
https://github.com/girder/slicer_package_manager/issues/95
https://github.com/girder/slicer_package_manager/issues/94
https://github.com/girder/slicer_package_manager/issues/89
https://github.com/girder/slicer_package_manager/issues/85
https://github.com/girder/slicer_package_manager/issues/82
https://github.com/girder/slicer_package_manager/issues/84

Slicer Package Manager Documentation, Release 0.1.0

9.9.3 Tests

• Simplify and refactor python client tests to facilitate maintenance. See #83 and #88.

9.10 0.1.0

9.10.1 New Features

• Transition server plugin from Girder 2.x to Girder 3.x. See #88.

9.11 Initial version

Developed by @Pierre-Assemat during his internship at Kitware in 2018.

9.11.1 Features

• Girder plugin implementing REST API endpoints.

• CLI slicer_package_manager_client

• Python client class SlicerPackageClient.

9.11.2 Documentation

• Administrator, user and developer documentation written in reStructuredText (RST), generated using sphinx
and published at https://slicer-package-manager.readthedocs.io

9.11.3 Tests

• Continuous integration (CI) configured to run on CircleCI.

• Girder plugin tests.

• CLI and Python client tests leveraging pytest-vcr.

9.11.4 Provisioning

• Dockerfile and docker-compose files for provisioning a demo server.

44 Chapter 9. Release Notes

https://github.com/girder/slicer_package_manager/issues/83
https://github.com/girder/slicer_package_manager/issues/88
https://github.com/girder/slicer_package_manager/issues/88
https://github.com/Pierre-Assemat
https://slicer-package-manager.readthedocs.io
https://pytest-vcr.readthedocs.io

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

45

Slicer Package Manager Documentation, Release 0.1.0

46 Chapter 10. Indices and tables

Python Module Index

s
slicer_package_manager_client, 25

47

Slicer Package Manager Documentation, Release 0.1.0

48 Python Module Index

Index

C
Constant (class in slicer_package_manager_client),

25
createApp() (slicer_package_manager_client.SlicerPackageClient

method), 26
createRelease() (slicer_package_manager_client.SlicerPackageClient

method), 26
CURRENT_FOLDER (slicer_package_manager_client.Constant

attribute), 25

D
DEFAULT_LIMIT (slicer_package_manager_client.Constant

attribute), 25
deleteApp() (slicer_package_manager_client.SlicerPackageClient

method), 26
deleteApplicationPackage()

(slicer_package_manager_client.SlicerPackageClient
method), 27

deleteDraftRelease()
(slicer_package_manager_client.SlicerPackageClient
method), 27

deleteExtension()
(slicer_package_manager_client.SlicerPackageClient
method), 27

deleteRelease() (slicer_package_manager_client.SlicerPackageClient
method), 27

downloadApplicationPackage()
(slicer_package_manager_client.SlicerPackageClient
method), 27

downloadExtension()
(slicer_package_manager_client.SlicerPackageClient
method), 28

DRAFT_RELEASE_NAME
(slicer_package_manager_client.Constant
attribute), 25

E
EXTENSION_AREADY_UP_TO_DATE

(slicer_package_manager_client.Constant

attribute), 25
EXTENSION_NOW_UP_TO_DATE

(slicer_package_manager_client.Constant
attribute), 25

L
listApp() (slicer_package_manager_client.SlicerPackageClient

method), 28
listApplicationPackage()

(slicer_package_manager_client.SlicerPackageClient
method), 28

listDraftRelease()
(slicer_package_manager_client.SlicerPackageClient
method), 29

listExtension() (slicer_package_manager_client.SlicerPackageClient
method), 29

listRelease() (slicer_package_manager_client.SlicerPackageClient
method), 29

P
PACKAGE_NOW_UP_TO_DATE

(slicer_package_manager_client.Constant
attribute), 25

S
slicer_package_manager_client (module), 25
SlicerPackageClient (class in

slicer_package_manager_client), 25
SlicerPackageManagerError, 31

U
uploadApplicationPackage()

(slicer_package_manager_client.SlicerPackageClient
method), 30

uploadExtension()
(slicer_package_manager_client.SlicerPackageClient
method), 30

49

Slicer Package Manager Documentation, Release 0.1.0

W
WIDTH (slicer_package_manager_client.Constant

attribute), 25

50 Index

	Overview
	Concepts
	Commands shell (CLI)
	FAQ
	Server Installation
	Developer Guide
	Credits
	Making a release
	Release Notes
	Indices and tables
	Python Module Index
	Index

