

Welcome to slice-aggregator’s documentation!

It is a library for aggregating values assigned to indices by slices

>>> import slice_aggregator
>>> a = slice_aggregator.ixs_by_slices()
>>> a[-5] += 1
>>> a[10] -= 2.5
>>> a[-10:]
-1.5

and the other way around

>>> import slice_aggregator
>>> a = slice_aggregator.slices_by_ixs()
>>> a[:-5] += 1
>>> a[-10:10] -= 2.5
>>> a[-10]
-1.5

Installation

pip install slice-aggregator

Useful links

	Source code [https://github.com/bm371613/slice-aggregator]

	PyPI [https://pypi.org/project/slice-aggregator/]

Contents:

	API

	Advanced usage

	Time and memory complexity

	Underlying data structure
	by_slice

	by_ix

Indices and tables

	Index

API

	
slice_aggregator.slices_by_ixs(*, zero_factory: typing.Callable[[], V] = None, zero_test: typing.Callable[[V], bool] = None) → slice_aggregator.by_ixs.Aggregator[V]

	Returns an object that allows assigning values to slices and aggregating them by indices

	Parameters

	
	zero_factory – callable returning additive identity

	zero_test – test for equality to zero

	Returns

	a new instance of slice_aggregator.by_ixs.Aggregator

	
slice_aggregator.ixs_by_slices(*, zero_factory: typing.Callable[[], V] = None, zero_test: typing.Callable[[V], bool] = None) → slice_aggregator.by_slices.Aggregator[V]

	Returns an object that allows assigning values to indices and aggregating them by slices

	Parameters

	
	zero_factory – callable returning additive identity

	zero_test – test for equality to zero

	Returns

	a new instance of slice_aggregator.by_slices.Aggregator

	
class slice_aggregator.by_ixs.Aggregator(*, dual: slice_aggregator.by_slices.Aggregator, zero_factory: typing.Callable[[], V] = None)

	A data structure for assigning values to slices and aggregating them by indices

It provides a method-based interface and an alternative based on __getitem__ and slices.

Warning:
Only the method-based interface is suitable for custom values handling inplace operators.
Read the documentation on advances usage for more details.

	
get(ix: int) → V

	Get the aggregated value of all slices containing the specified index

	
inc(start: typing.Union[int, NoneType], stop: typing.Union[int, NoneType], value: V) → None

	Increment the value assigned to a slice

	
dec(start: typing.Union[int, NoneType], stop: typing.Union[int, NoneType], value: V) → None

	Decrement the value assigned to a slice

	
class slice_aggregator.by_slices.Aggregator

	A data structure for assigning values to indices and aggregating them by slices

It provides a method-based interface and an alternative based on __getitem__ and slices.

Warning
Only the method-based interface is suitable for custom values handling inplace operators.
Read the documentation on advances usage for more details.

	
get(start: typing.Union[int, NoneType], stop: typing.Union[int, NoneType]) → V

	Get the aggregated value of all indices contained by the specified slice

	
inc(ix: int, value: V) → None

	Increment the value assigned to an index

	
dec(ix: int, value: V) → None

	Decrement the value assigned to an index

	
set(ix: int, value: V) → None

	Set the value assigned to an index

Advanced usage

The library “just works” with value types that:

	implement addition-like binary operation via Python magic-methods
(__add__, __sub__, __sub__, __pos__)

	use 0 as the neutral element for their addition implementation

	implement __eq__ that allows testing for equality to zero

	do not implement inplace addition/subtraction (__iadd__, __isub__)

All Python’s numeric types (int, float, long, complex) fall into that category.

The first condition is a hard requirement for any type to be used for values,
but the others are not.
You can use another value as a neutral element by using the zero_factory parameter,
you don’t have to worry about __eq__ if you supply zero_test
and you can have __iadd__ and __isub__ if you use the method-based interface.

Example:

>>> import numpy as np
>>>
>>> def zero_factory():
... return np.zeros(3)
>>>
>>> zero = zero_factory()
>>>
>>> def zero_test(v):
... return np.array_equal(v, zero)
>>>
>>> import slice_aggregator
>>>
>>> a = slice_aggregator.ixs_by_slices(zero_factory=zero_factory, zero_test=zero_test)
>>> a.inc(-5, np.array([1, 0, 3.5]))
>>> a.dec(10, np.array([2.5, -1, 0]))
>>> tuple(a.get(-10, None)) # a[-10:]
(-1.5, 1.0, 3.5)

Time and memory complexity

After assigning values to n unique indices (we treat a slice as, up to two, indices)
that are all within a (-v, v) interval:

	Reading (aggregating) time

	O(log v)

	Writing (assigning) time

	O(log v + log n)

	Memory

	O(n log v)

	Assumptions:

	
	values and indices are constant-size and basic arithmetic operations on them are constant-time

	set item and get item on a dict are constant-time (which is true on average)

Underlying data structure

by_slice

The core concept is a data structure similar to a
Fenwick tree [https://en.wikipedia.org/wiki/Fenwick_tree] that allows assigning values
to nonnegative indices and efficiently computing suffix sums.
Where a Fenwick tree would store an aggregate for [a, b], it stores an aggregate for
[b, b + b - a].
With that change, while modifying the value for index ix it goes along decreasing indices, so it
doesn’t need to know the size of the internal table (maximum allowed value).
So all values above the biggest index modified by the user are zeroes.
That’s useful for computing suffix sums - moving along increasing indices, the biggest one the user
has set to a non-zero value is where one can stop.
A max heap with an index is used to efficiently track these upper bounds.

The unbounded variant is just a combination of two such left-bounded data structures.

by_ix

This a thin layer on top of the previous data structure.
Incrementing [a, b) translates to decrementing a - 1 and incrementing b - 1 of the underlying
by_slice aggregator, and aggregating slices translates to a suffix sum.

Index

 A
 | D
 | G
 | I
 | S

A

 	
 	Aggregator (class in slice_aggregator.by_ixs)

 	(class in slice_aggregator.by_slices)

D

 	
 	dec() (slice_aggregator.by_ixs.Aggregator method)

 	(slice_aggregator.by_slices.Aggregator method)

G

 	
 	get() (slice_aggregator.by_ixs.Aggregator method)

 	(slice_aggregator.by_slices.Aggregator method)

I

 	
 	inc() (slice_aggregator.by_ixs.Aggregator method)

 	(slice_aggregator.by_slices.Aggregator method)

 	
 	ixs_by_slices() (in module slice_aggregator)

S

 	
 	set() (slice_aggregator.by_slices.Aggregator method)

 	
 	slices_by_ixs() (in module slice_aggregator)

 nav.xhtml

 Table of Contents

 		
 Welcome to slice-aggregator’s documentation!

 		
 API

 		
 Advanced usage

 		
 Time and memory complexity

 		
 Underlying data structure

 		
 by_slice

 		
 by_ix

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

