

Index

 A
 | E
 | M
 | P
 | S

A

 	
 	ARCHFLAGS

E

 	
 	
 environment variable

 	ARCHFLAGS

 	MACOSX_DEPLOYMENT_TARGET

 	PETSC_ARCH, [1]

 	PETSC_DIR, [1]

 	SDKROOT

 	SLEPC_DIR

 	SLEPC_DIR`

M

 	
 	MACOSX_DEPLOYMENT_TARGET

P

 	
 	PETSC_ARCH, [1]

 	
 	PETSC_DIR, [1]

S

 	
 	SDKROOT

 	
 	SLEPC_DIR

 	SLEPC_DIR`

Citations

If SLEPc for Python been significant to a project that leads to an
academic publication, please acknowledge that fact by citing the
project.

	L. Dalcin, P. Kler, R. Paz, and A. Cosimo,
Parallel Distributed Computing using Python,
Advances in Water Resources, 34(9):1124-1139, 2011.
http://dx.doi.org/10.1016/j.advwatres.2011.04.013

	V. Hernandez, J.E. Roman, and V. Vidal,
SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems,
ACM Transactions on Mathematical Software, 31(3):351-362, 2005.
http://dx.doi.org/10.1145/1089014.1089019

SLEPc for Python

	Authors

	Lisandro Dalcin, Jose E. Roman

	Contact

	dalcinl@gmail.com, jroman@dsic.upv.es

	Web Site

	https://gitlab.com/slepc/slepc

	Date

	May 15, 2023

Abstract

This document describes slepc4py [https://gitlab.com/slepc/slepc], a Python [https://www.python.org] port to the SLEPc [https://slepc.upv.es]
libraries.

SLEPc [https://slepc.upv.es] is a software package for the parallel solution of
large-scale eigenvalue problems. It can be used for computing
eigenvalues and eigenvectors of large, sparse matrices, or matrix
pairs, and also for computing singular values and vectors of a
rectangular matrix.

SLEPc [https://slepc.upv.es] relies on PETSc [https://petsc.org] for basic functionality such as the
representation of matrices and vectors, and the solution of linear
systems of equations. Thus, slepc4py [https://gitlab.com/slepc/slepc] must be used together with
its companion petsc4py [https://gitlab.com/petsc/petsc].

Contents

	Overview
	Features

	Components

	Tutorial
	Commented source of a simple example

	Example of command-line usage

	Installation
	Using pip or easy_install

	Using distutils

	Citations

Installation

Using pip or easy_install

You can use pip to install slepc4py and its
dependencies (mpi4py is optional but highly recommended):

$ pip install [--user] numpy mpi4py
$ pip install [--user] petsc petsc4py
$ pip install [--user] slepc slepc4py

Alternatively, you can use easy_install (deprecated):

$ easy_install [--user] slepc4py

If you already have working PETSc and SLEPc installs, set environment
variables SLEPC_DIR and PETSC_DIR (and perhaps
PETSC_ARCH for non-prefix installs) to appropriate values
and next use pip:

$ export SLEPC_DIR=/path/to/slepc
$ export PETSC_DIR=/path/to/petsc
$ export PETSC_ARCH=arch-linux2-c-opt
$ pip install [--user] petsc4py slepc4py

Using distutils

Requirements

You need to have the following software properly installed in order to
build SLEPc for Python:

	Any MPI [https://www.mpi-forum.org] implementation 1 (e.g., MPICH [https://www.mpich.org] or Open MPI [https://www.open-mpi.org]),
built with shared libraries.

	A matching version of PETSc [https://petsc.org] built with shared libraries.

	A matching version of SLEPc [https://slepc.upv.es] built with shared libraries.

	NumPy [https://www.numpy.org] package.

	petsc4py [https://gitlab.com/petsc/petsc] package.

	1

	Unless you have appropriately configured and built SLEPc and
PETSc without MPI (configure option --with-mpi=0).

	2

	You may need to use a parallelized version of the Python
interpreter with some MPI-1 implementations (e.g. MPICH1).

Downloading

The SLEPc for Python package is available for download at the
Python Package Index. You can use
curl or wget to get a release tarball.

	Using curl:

$ curl -LO https://pypi.io/packages/source/s/slepc4py/slepc4py-X.Y.Z.tar.gz

	Using wget:

$ wget https://pypi.io/packages/source/s/slepc4py/slepc4py-X.Y.Z.tar.gz

Building

After unpacking the release tarball:

$ tar -zxf slepc4py-X.Y.tar.gz
$ cd slepc4py-X.Y

the distribution is ready for building.

Note

Mac OS X users employing a Python distribution built
with universal binaries may need to set the environment
variables MACOSX_DEPLOYMENT_TARGET, SDKROOT,
and ARCHFLAGS to appropriate values. As an example,
assume your Mac is running Snow Leopard on a 64-bit Intel
processor and you want to override the hard-wired cross-development
SDK in Python configuration, your environment should be modified
like this:

$ export MACOSX_DEPLOYMENT_TARGET=10.6
$ export SDKROOT=/
$ export ARCHFLAGS='-arch x86_64'

Some environment configuration is needed to inform the location of
PETSc and SLEPc. You can set (using setenv,
export or what applies to you shell or system) the
environment variables SLEPC_DIR`, PETSC_DIR, and
PETSC_ARCH indicating where you have built/installed SLEPc
and PETSc:

$ export SLEPC_DIR=/usr/local/slepc
$ export PETSC_DIR=/usr/local/petsc
$ export PETSC_ARCH=arch-linux2-c-opt

Alternatively, you can edit the file setup.cfg and provide the
required information below the [config] section:

[config]
slepc_dir = /usr/local/slepc
petsc_dir = /usr/local/petsc
petsc_arch = arch-linux2-c-opt
...

Finally, you can build the distribution by typing:

$ python setup.py build

Installing

After building, the distribution is ready for installation.

If you have root privileges (either by log-in as the root user of by
using sudo) and you want to install SLEPc for Python in
your system for all users, just do:

$ python setup.py install

The previous steps will install the slepc4py package at standard
location prefix/lib/pythonX.X/site-packages.

If you do not have root privileges or you want to install SLEPc for
Python for your private use, just do:

$ python setup.py install --user

SLEPc for Python

Abstract

This document describes slepc4py [https://gitlab.com/slepc/slepc], a Python [https://www.python.org] port to the SLEPc [https://slepc.upv.es]
libraries.

SLEPc [https://slepc.upv.es] is a software package for the parallel solution of
large-scale eigenvalue problems. It can be used for computing
eigenvalues and eigenvectors of large, sparse matrices, or matrix
pairs, and also for computing singular values and vectors of a
rectangular matrix.

SLEPc [https://slepc.upv.es] relies on PETSc [https://petsc.org] for basic functionality such as the
representation of matrices and vectors, and the solution of linear
systems of equations. Thus, slepc4py [https://gitlab.com/slepc/slepc] must be used together with
its companion petsc4py [https://gitlab.com/petsc/petsc].

	Overview
	Features

	Components

	Tutorial
	Commented source of a simple example

	Example of command-line usage

	Installation
	Using pip or easy_install

	Using distutils

	Citations

Overview

SLEPc for Python (slepc4py) is a Python package that provides
convenient access to the functionality of SLEPc.

SLEPc 1, 2 implements algorithms and tools for the numerical
solution of large, sparse eigenvalue problems on parallel
computers. It can be used for linear eigenvalue problems in either
standard or generalized form, with real or complex arithmetic.
It can also be used for computing a partial SVD of a large, sparse,
rectangular matrix, and to solve nonlinear eigenvalue problems
(polynomial or general). Additionally, SLEPc provides solvers for
the computation of the action of a matrix function on a vector.

SLEPc is intended for computing a subset of the spectrum of a matrix
(or matrix pair). One can for instance approximate the largest
magnitude eigenvalues, or the smallest ones, or even those eigenvalues
located near a given region of the complex plane. Interior eigenvalues
are harder to compute, so SLEPc provides different methodologies. One
such method is to use a spectral transformation. Cheaper alternatives
are also available.

	1

	J. E. Roman, C. Campos, L. Dalcin, E. Romero, A. Tomas.
SLEPc Users Manual. DSIC-II/24/02 - Revision 3.19
D. Sistemas Informaticos y Computacion, Universitat Politecnica de
Valencia. 2023.

	2

	Vicente Hernandez, Jose E. Roman and Vicente Vidal.
SLEPc: A Scalable and Flexible Toolkit for the Solution of
Eigenvalue Problems, ACM Trans. Math. Softw. 31(3), pp. 351-362,
2005.

Features

Currently, the following types of eigenproblems can be addressed:

	Standard eigenvalue problem, Ax=kx, either for Hermitian or
non-Hermitian matrices.

	Generalized eigenvalue problem, Ax=kBx, either Hermitian
positive-definite or not.

	Partial singular value decomposition of a rectangular matrix,
Au=sv.

	Polynomial eigenvalue problem, P(k)x=0.

	Nonlinear eigenvalue problem, T(k)x=0.

	Computing the action of a matrix function on a vector, w=f(alpha A)v.

For the linear eigenvalue problem, the following methods are available:

	Krylov eigensolvers, particularly Krylov-Schur, Arnoldi, and
Lanczos.

	Davidson-type eigensolvers, including Generalized Davidson and
Jacobi-Davidson.

	Subspace iteration and single vector iterations (inverse iteration,
RQI).

	Conjugate gradient for the minimization of the Rayleigh quotient.

	A contour integral solver.

For singular value computations, the following alternatives can be
used:

	Use an eigensolver via the cross-product matrix A’A or the cyclic
matrix [0 A; A’ 0].

	Explicitly restarted Lanczos bidiagonalization.

	Implicitly restarted Lanczos bidiagonalization (thick-restart
Lanczos).

For polynomial eigenvalue problems, the following methods are available:

	Use an eigensolver to solve the generalized eigenvalue problem
obtained after linearization.

	TOAR and Q-Arnoldi, memory efficient variants of Arnoldi for polynomial
eigenproblems.

For general nonlinear eigenvalue problems, the following methods can be used:

	Solve a polynomial eigenproblem obtained via polynomial interpolation.

	Rational interpolation and linearization (NLEIGS).

	Newton-type methods such as SLP or RII.

Computation of interior eigenvalues is supported by means of the
following methodologies:

	Spectral transformations, such as shift-and-invert. This technique
implicitly uses the inverse of the shifted matrix (A-tI) in order
to compute eigenvalues closest to a given target value, t.

	Harmonic extraction, a cheap alternative to shift-and-invert that
also tries to approximate eigenvalues closest to a target, t, but
without requiring a matrix inversion.

Other remarkable features include:

	High computational efficiency, by using NumPy and SLEPc under the
hood.

	Data-structure neutral implementation, by using efficient sparse
matrix storage provided by PETSc. Implicit matrix representation is
also available by providing basic operations such as matrix-vector
products as user-defined Python functions.

	Run-time flexibility, by specifying numerous setting at the command
line.

	Ability to do the computation in parallel.

Components

SLEPc provides the following components, which are mirrored by slepc4py
for its use from Python. The first five components are solvers for
different classes of problems, while the rest can be considered
auxiliary object.

	EPS

	The Eigenvalue Problem Solver is the component that provides all
the functionality necessary to define and solve an
eigenproblem. It provides mechanisms for completely specifying
the problem: the problem type (e.g. standard symmetric), number
of eigenvalues to compute, part of the spectrum of
interest. Once the problem has been defined, a collection of
solvers can be used to compute the required solutions. The
behaviour of the solvers can be tuned by means of a few
parameters, such as the maximum dimension of the subspace to be
used during the computation.

	SVD

	This component is the analog of EPS for the case of Singular
Value Decompositions. The user provides a rectangular matrix and
specifies how many singular values and vectors are to be
computed, whether the largest or smallest ones, as well as some
other parameters for fine tuning the computation. Different
solvers are available, as in the case of EPS.

	PEP

	This component is the analog of EPS for the case of Polynomial
Eigenvalue Problems. The user provides the coefficient matrices of
the polynomial. Several parameters can be specified, as in
the case of EPS. It is also possible to indicate whether the
problem belongs to a special type, e.g., symmetric or gyroscopic.

	NEP

	This component covers the case of general nonlinear eigenproblems,
T(lambda)x=0. The user provides the parameter-dependent matrix T
via the split form or by means of callback functions.

	MFN

	This component provides the functionality for computing the action
of a matrix function on a vector. Given a matrix A and a vector b,
the call MFNSolve(mfn,b,x) computes x=f(A)b, where f is a function
such as the exponential.

	ST

	The Spectral Transformation is a component that provides
convenient implementations of common spectral
transformations. These are simple transformations that map
eigenvalues to different positions, in such a way that
convergence to wanted eigenvalues is enhanced. The most common
spectral transformation is shift-and-invert, that allows for the
computation of eigenvalues closest to a given target value.

	BV

	This component encapsulates the concept of a set of Basis Vectors
spanning a vector space. This component provides convenient access
to common operations such as orthogonalization of vectors. The
BV component is usually not required by end-users.

	DS

	The Dense System (or Direct Solver) component, used internally to
solve dense eigenproblems of small size that appear in the course
of iterative eigensolvers.

	FN

	A component used to define mathematical functions. This is required
by the end-user for instance to define function T(.) when solving
nonlinear eigenproblems with NEP in split form.

Tutorial

This tutorial is intended for basic use of slepc4py. For more advanced
use, the reader is referred to SLEPc tutorials as well as to slepc4py
reference documentation.

Commented source of a simple example

In this section, we include the source code of example demo/ex1.py
available in the slepc4py distribution, with comments inserted inline.

The first thing to do is initialize the libraries. This is normally
not required, as it is done automatically at import time. However, if
you want to gain access to the facilities for accessing command-line
options, the following lines must be executed by the main script prior
to any petsc4py or slepc4py calls:

import sys, slepc4py
slepc4py.init(sys.argv)

Next, we have to import the relevant modules. Normally, both PETSc and
SLEPc modules have to be imported in all slepc4py programs. It may be
useful to import NumPy as well:

from petsc4py import PETSc
from slepc4py import SLEPc
import numpy

At this point, we can use any petsc4py and slepc4py operations. For
instance, the following lines allow the user to specify an integer
command-line argument n with a default value of 30 (see the next
section for example usage of command-line options):

opts = PETSc.Options()
n = opts.getInt('n', 30)

It is necessary to build a matrix to define an eigenproblem (or two in
the case of generalized eigenproblems). The following fragment of code
creates the matrix object and then fills the non-zero elements one by
one. The matrix of this particular example is tridiagonal, with value
2 in the diagonal, and -1 in off-diagonal positions. See petsc4py
documentation for details about matrix objects:

A = PETSc.Mat().create()
A.setSizes([n, n])
A.setFromOptions()
A.setUp()

rstart, rend = A.getOwnershipRange()

first row
if rstart == 0:
 A[0, :2] = [2, -1]
 rstart += 1
last row
if rend == n:
 A[n-1, -2:] = [-1, 2]
 rend -= 1
other rows
for i in range(rstart, rend):
 A[i, i-1:i+2] = [-1, 2, -1]

A.assemble()

The solver object is created in a similar way as other objects in
petsc4py:

E = SLEPc.EPS(); E.create()

Once the object is created, the eigenvalue problem must be
specified. At least one matrix must be provided. The problem type must
be indicated as well, in this case it is HEP (Hermitian eigenvalue
problem). Apart from these, other settings could be provided here (for
instance, the tolerance for the computation). After all options have
been set, the user should call the setFromOptions() operation, so
that any options specified at run time in the command line are passed
to the solver object:

E.setOperators(A)
E.setProblemType(SLEPc.EPS.ProblemType.HEP)
E.setFromOptions()

After that, the solve() method will run the selected eigensolver,
keeping the solution stored internally:

E.solve()

Once the computation has finished, we are ready to print the results.
First, some informative data can be retrieved from the solver object:

Print = PETSc.Sys.Print

Print()
Print("******************************")
Print("*** SLEPc Solution Results ***")
Print("******************************")
Print()

its = E.getIterationNumber()
Print("Number of iterations of the method: %d" % its)

eps_type = E.getType()
Print("Solution method: %s" % eps_type)

nev, ncv, mpd = E.getDimensions()
Print("Number of requested eigenvalues: %d" % nev)

tol, maxit = E.getTolerances()
Print("Stopping condition: tol=%.4g, maxit=%d" % (tol, maxit))

For retrieving the solution, it is necessary to find out how many
eigenpairs have converged to the requested precision:

nconv = E.getConverged()
Print("Number of converged eigenpairs %d" % nconv)

For each of the nconv eigenpairs, we can retrieve the eigenvalue
k, and the eigenvector, which is represented by means of two
petsc4py vectors vr and vi (the real and imaginary part of the
eigenvector, since for real matrices the eigenvalue and eigenvector
may be complex). We also compute the corresponding relative errors in
order to make sure that the computed solution is indeed correct:

if nconv > 0:
 # Create the results vectors
 vr, wr = A.getVecs()
 vi, wi = A.getVecs()
 #
 Print()
 Print(" k ||Ax-kx||/||kx|| ")
 Print("----------------- ------------------")
 for i in range(nconv):
 k = E.getEigenpair(i, vr, vi)
 error = E.computeError(i)
 if k.imag != 0.0:
 Print(" %9f%+9f j %12g" % (k.real, k.imag, error))
 else:
 Print(" %12f %12g" % (k.real, error))
 Print()

Example of command-line usage

Now we illustrate how to specify command-line options in order to
extract the full potential of slepc4py.

A simple execution of the demo/ex1.py script will result in the
following output:

$ python demo/ex1.py

*** SLEPc Solution Results ***

Number of iterations of the method: 4
Solution method: krylovschur
Number of requested eigenvalues: 1
Stopping condition: tol=1e-07, maxit=100
Number of converged eigenpairs 4

 k ||Ax-kx||/||kx||
----------------- ------------------
 3.989739 5.76012e-09
 3.959060 1.41957e-08
 3.908279 6.74118e-08
 3.837916 8.34269e-08

For specifying different setting for the solver parameters, we can use
SLEPc command-line options with the -eps prefix. For instance, to
change the number of requested eigenvalues and the tolerance:

$ python demo/ex1.py -eps_nev 10 -eps_tol 1e-11

The method used by the solver object can also be set at run time:

$ python demo/ex1.py -eps_type subspace

All the above settings can also be changed within the source code by
making use of the appropriate slepc4py method. Since options can be
set from within the code and the command-line, it is often useful to
view the particular settings that are currently being used:

$ python demo/ex1.py -eps_view

EPS Object: 1 MPI process
 type: krylovschur
 50% of basis vectors kept after restart
 using the locking variant
 problem type: symmetric eigenvalue problem
 selected portion of the spectrum: largest eigenvalues in magnitude
 number of eigenvalues (nev): 1
 number of column vectors (ncv): 16
 maximum dimension of projected problem (mpd): 16
 maximum number of iterations: 100
 tolerance: 1e-08
 convergence test: relative to the eigenvalue
BV Object: 1 MPI process
 type: svec
 17 columns of global length 30
 orthogonalization method: classical Gram-Schmidt
 orthogonalization refinement: if needed (eta: 0.7071)
 block orthogonalization method: GS
 doing matmult as a single matrix-matrix product
DS Object: 1 MPI process
 type: hep
 solving the problem with: Implicit QR method (_steqr)
ST Object: 1 MPI process
 type: shift
 shift: 0
 number of matrices: 1

Note that for computing eigenvalues of smallest magnitude we can use
the option -eps_smallest_magnitude, but for interior eigenvalues
things are not so straightforward. One possibility is to try with
harmonic extraction, for instance to get the eigenvalues closest to
0.6:

$ python demo/ex1.py -eps_harmonic -eps_target 0.6

Depending on the problem, harmonic extraction may fail to converge. In
those cases, it is necessary to specify a spectral transformation
other than the default. In the command-line, this is indicated with
the -st_ prefix. For example, shift-and-invert with a value of the
shift equal to 0.6 would be:

$ python demo/ex1.py -st_type sinvert -eps_target 0.6

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 <no title>

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

