
SciKit-Learn Laboratory
Documentation

Release 5.0.1

Educational Testing Service

Mar 08, 2024

CONTENTS

1 Documentation 3
1.1 Installation . 3
1.2 License . 3
1.3 Tutorial . 3

1.3.1 Workflow . 3
1.3.2 Titanic Example . 4
1.3.3 IRIS Example on Binder . 10

1.4 Running Experiments . 10
1.4.1 General Workflow . 10
1.4.2 Feature files . 12
1.4.3 Configuration file fields . 14
1.4.4 Using run_experiment . 39
1.4.5 Output files . 41
1.4.6 Integration with Weights & Biases . 44

1.5 Using Custom Metrics . 45
1.5.1 Writing Custom Metric Functions . 45
1.5.2 Using in Configuration Files . 46
1.5.3 Using via the API . 47

1.6 Utility Scripts . 48
1.6.1 compute_eval_from_predictions . 49
1.6.2 filter_features . 49
1.6.3 generate_predictions . 51
1.6.4 join_features . 52
1.6.5 plot_learning_curves . 52
1.6.6 print_model_weights . 53
1.6.7 skll_convert . 54
1.6.8 summarize_results . 55

1.7 API Documentation . 55
1.7.1 Quickstart . 55
1.7.2 config Package . 56
1.7.3 data Package . 57
1.7.4 experiments Package . 74

i

1.7.5 learner Package . 74
1.7.6 metrics Module . 91
1.7.7 utils Package . 94
1.7.8 types Module . 95

1.8 Contributing . 98
1.8.1 Guidelines . 98
1.8.2 SKLL Code Overview . 98

1.9 Internal Documentation . 100
1.9.1 Release Process . 100

2 Indices and tables 103

Python Module Index 105

Index 107

ii

SciKit-Learn Laboratory Documentation, Release 5.0.1

SKLL (pronounced “skull”) provides a number of utilities to make it simpler to run common scikit-
learn experiments with pre-generated features.

There are two primary means of using SKLL: the run_experiment script and the Python API .

CONTENTS 1

SciKit-Learn Laboratory Documentation, Release 5.0.1

2 CONTENTS

CHAPTER

ONE

DOCUMENTATION

1.1 Installation

SKLL can be installed via pip:

pip install skll

or via conda:

conda install -c conda-forge -c ets skll

It can also be downloaded directly from GitHub.

1.2 License

SKLL is distributed under the 3-clause BSD License.

1.3 Tutorial

Before doing anything below, you’ll want to install SKLL.

1.3.1 Workflow

In general, there are four steps to using SKLL:

1. Get some data in a SKLL-compatible format.

2. Create a small configuration file describing the machine learning experiment you would like
to run.

3

https://conda.io/projects/conda/en/latest/user-guide/install/index.html
https://github.com/EducationalTestingService/skll

SciKit-Learn Laboratory Documentation, Release 5.0.1

3. Run that configuration file with run_experiment.

4. Examine the results of the experiment.

1.3.2 Titanic Example

Let’s see how we can apply the basic workflow above to a simple example using the Titanic: Ma-
chine Learning from Disaster data from Kaggle.

Create virtual environment with SKLL

Before we proceed further, we need to install SKLL. The easiest way to do this is in a virtual
environment. For this tutorial, we will use conda for creating our virtual environment as follows:

conda create -n skllenv -c conda-forge -c ets python=3.11 skll

This will create a new virtual environment named skllenv with the latest release of SKLL which
you can then activate by running conda activate skllenv. Make sure to create and activate this
environment before proceeding further. Once you are done with the tutorial, you may deactivate
the virtual environment by running conda deactivate.

Get your data into the correct format

The first step is to get the Titanic data. We have already downloaded the data files from Kaggle and
included them in the SKLL repository. Next, we need to get the files and process them to get them
in the right shape.

The provided script, make_titanic_example_data.py, will split the train and test data files from
Kaggle up into groups of related features and store them in dev, test, train, and train+dev
subdirectories. The development set that gets created by the script is 20% of the data that was in
the original training set, and train contains the other 80%.

Create a configuration file for the experiment

For this tutorial, we will refer to an “experiment” as having a single data set split into training and
testing portions. As part of each experiment, we can train and test several models, either simulta-
neously or sequentially, depending whether we’re using GridMap or not. This will be described in
more detail later on, when we are ready to run our experiment.

You can consult the full list of learners currently available in SKLL to get an idea for the things
you can do. As part of this tutorial, we will use the following classifiers:

• Decision Tree

4 Chapter 1. Documentation

https://www.kaggle.com/c/titanic/
https://www.kaggle.com/c/titanic/
https://www.kaggle.com
https://conda.io/projects/conda/en/latest/user-guide/install/index.html
https://github.com/EducationalTestingService/skll/tree/main/examples/titanic
https://pypi.org/project/gridmap/

SciKit-Learn Laboratory Documentation, Release 5.0.1

• Multinomial Naïve Bayes

• Random Forest

• Support Vector Machine

[General]
experiment_name = Titanic_Evaluate_Tuned
task = evaluate

[Input]
this could also be an absolute path instead (and must be if you're not
running things in local mode)
train_directory = train
test_directory = dev
featuresets = [["family.csv", "misc.csv", "socioeconomic.csv", "vitals.csv
→˓"]]
learners = ["RandomForestClassifier", "DecisionTreeClassifier", "SVC",
→˓"MultinomialNB"]
label_col = Survived
id_col = PassengerId

[Tuning]
grid_search = true
grid_search_folds = 3
objectives = ['accuracy']

[Output]
again, these can be absolute paths
metrics = ['roc_auc']
probability = true
logs = output
results = output
predictions = output
models = output

Let’s take a look at the options specified in titanic/evaluate_tuned.cfg. Here, we are only
going to train a model and evaluate its performance on the development set, because in the General
section, task is set to evaluate. We will explore the other options for task later.

In the Input section, we have specified relative paths to the training and testing directories via the
train_directory and test_directory settings respectively. featuresets indicates the name of both the
training and testing files. learners must always be specified in between [] brackets, even if you
only want to use one learner. This is similar to the featuresets option, which requires two sets of
brackets, since multiple sets of different-yet-related features can be provided. We will keep our
examples simple, however, and only use one set of features per experiment. The label_col and

1.3. Tutorial 5

SciKit-Learn Laboratory Documentation, Release 5.0.1

id_col settings specify the columns in the CSV files that specify the class labels and instances IDs
for each example.

The Tuning section defines how we want our model to be tuned. Setting grid_search to True here
employs scikit-learn’s GridSearchCV class, which is an implementation of the standard, brute-force
approach to hyperparameter optimization.

objectives refers to the desired objective functions; here, accuracy will optimize for overall accu-
racy. You can see a list of all the available objective functions here.

In the Output section, we first define the additional evaluation metrics we want to compute in ad-
dition to the tuning objective via the metrics option. The other options are directories where you’d
like all of the relevant output from your experiment to go. results refers to the results of the ex-
periment in both human-readable and JSON forms. logs specifies where to put log files containing
any status, warning, or error messages generated during model training and evaluation. predictions
refers to where to store the individual predictions generated for the test set. models is for specifying
a directory to serialize the trained models.

Running your configuration file through run_experiment

Getting your experiment running is the simplest part of using SKLL, you just need to type the
following into a terminal:

$ run_experiment titanic/evaluate_tuned.cfg

Make sure you have the skllenv environment activated before you run this command which should
produce output like:

2020-03-10 14:25:23,596 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO - Task:␣
→˓evaluate
2020-03-10 14:25:23,596 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO -␣
→˓Training on train, Test on dev, feature set ['family.csv', 'misc.csv',
→˓'socioeconomic.csv', 'vitals.csv'] ...
Loading /Users/nmadnani/work/skll/examples/titanic/train/family.csv... ␣
→˓ done
Loading /Users/nmadnani/work/skll/examples/titanic/train/misc.csv... ␣
→˓ done
Loading /Users/nmadnani/work/skll/examples/titanic/train/socioeconomic.
→˓csv... done
Loading /Users/nmadnani/work/skll/examples/titanic/train/vitals.csv... ␣
→˓ done
Loading /Users/nmadnani/work/skll/examples/titanic/dev/family.csv... ␣
→˓ done

(continues on next page)

6 Chapter 1. Documentation

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://en.wikipedia.org/wiki/Hyperparameter_optimization#Grid_search
https://en.wikipedia.org/wiki/Hyperparameter_optimization#Grid_search

SciKit-Learn Laboratory Documentation, Release 5.0.1

(continued from previous page)
Loading /Users/nmadnani/work/skll/examples/titanic/dev/misc.csv... ␣
→˓ done
Loading /Users/nmadnani/work/skll/examples/titanic/dev/socioeconomic.csv..
→˓. done
Loading /Users/nmadnani/work/skll/examples/titanic/dev/vitals.csv... ␣
→˓ done
2020-03-10 14:25:23,662 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO -␣
→˓Featurizing and training new RandomForestClassifier model
2020-03-10 14:25:23,663 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - WARNING -␣
→˓Training data will be shuffled to randomize grid search folds. ␣
→˓Shuffling may yield different results compared to scikit-learn.
2020-03-10 14:25:28,129 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO - Best␣
→˓accuracy grid search score: 0.798
2020-03-10 14:25:28,130 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO -␣
→˓Hyperparameters: bootstrap: True, ccp_alpha: 0.0, class_weight: None,␣
→˓criterion: gini, max_depth: 5, max_features: auto, max_leaf_nodes: None,
→˓ max_samples: None, min_impurity_decrease: 0.0, min_impurity_split:␣
→˓None, min_samples_leaf: 1, min_samples_split: 2, min_weight_fraction_
→˓leaf: 0.0, n_estimators: 500, n_jobs: None, oob_score: False, random_
→˓state: 123456789, verbose: 0, warm_start: False
2020-03-10 14:25:28,130 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO -␣
→˓Evaluating predictions
2020-03-10 14:25:28,172 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO - using␣
→˓probabilities for the positive class to compute "roc_auc" for␣
→˓evaluation.
2020-03-10 14:25:28,178 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_DecisionTreeClassifier - INFO - Task:␣
→˓evaluate
2020-03-10 14:25:28,178 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_DecisionTreeClassifier - INFO -␣
→˓Training on train, Test on dev, feature set ['family.csv', 'misc.csv',
→˓'socioeconomic.csv', 'vitals.csv'] ...
Loading /Users/nmadnani/work/skll/examples/titanic/train/family.csv... ␣
→˓ done
Loading /Users/nmadnani/work/skll/examples/titanic/train/misc.csv... ␣
→˓ done
Loading /Users/nmadnani/work/skll/examples/titanic/train/socioeconomic.

(continues on next page)

1.3. Tutorial 7

SciKit-Learn Laboratory Documentation, Release 5.0.1

(continued from previous page)
→˓csv... done
Loading /Users/nmadnani/work/skll/examples/titanic/train/vitals.csv... ␣
→˓ done
Loading /Users/nmadnani/work/skll/examples/titanic/dev/family.csv... ␣
→˓ done
Loading /Users/nmadnani/work/skll/examples/titanic/dev/misc.csv... ␣
→˓ done
Loading /Users/nmadnani/work/skll/examples/titanic/dev/socioeconomic.csv..
→˓. done
Loading /Users/nmadnani/work/skll/examples/titanic/dev/vitals.csv... ␣
→˓ done
2020-03-10 14:25:28,226 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_DecisionTreeClassifier - INFO -␣
→˓Featurizing and training new DecisionTreeClassifier model
2020-03-10 14:25:28,226 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_DecisionTreeClassifier - WARNING -␣
→˓Training data will be shuffled to randomize grid search folds. ␣
→˓Shuffling may yield different results compared to scikit-learn.
2020-03-10 14:25:28,269 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_DecisionTreeClassifier - INFO - Best␣
→˓accuracy grid search score: 0.754
2020-03-10 14:25:28,269 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_DecisionTreeClassifier - INFO -␣
→˓Hyperparameters: ccp_alpha: 0.0, class_weight: None, criterion: gini,␣
→˓max_depth: None, max_features: None, max_leaf_nodes: None, min_impurity_
→˓decrease: 0.0, min_impurity_split: None, min_samples_leaf: 1, min_
→˓samples_split: 2, min_weight_fraction_leaf: 0.0, presort: deprecated,␣
→˓random_state: 123456789, splitter: best
2020-03-10 14:25:28,269 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_DecisionTreeClassifier - INFO -␣
→˓Evaluating predictions
2020-03-10 14:25:28,272 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_DecisionTreeClassifier - INFO - using␣
→˓probabilities for the positive class to compute "roc_auc" for␣
→˓evaluation.

We could squelch the warnings about shuffling by setting shuffle to True in the Input section.

The reason we see the loading messages repeated is that we are running the different learners se-
quentially, whereas SKLL is designed to take advantage of a cluster to execute everything in parallel
via GridMap.

8 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 5.0.1

Examine the results

As a result of running our experiment, there will be a whole host of files in our results directory.
They can be broken down into three types of files:

1. .results files, which contain a human-readable summary of the experiment, complete with
confusion matrix.

2. .results.json files, which contain all of the same information as the .results files, but
in a format more well-suited to automated processing.

3. A summary .tsv file, which contains all of the information in all of the .results.json
files with one line per file. This is very nice if you’re trying many different learners and want
to compare their performance. If you do additional experiments later (with a different config
file), but would like one giant summary file, you can use the summarize_results command.

An example of a human-readable results file for our Titanic experiment is:

Experiment Name: Titanic_Evaluate_Tuned
SKLL Version: 2.1
Training Set: train
Training Set Size: 569
Test Set: dev
Test Set Size: 143
Shuffle: False
Feature Set: ["family.csv", "misc.csv", "socioeconomic.csv", "vitals.csv"]
Learner: RandomForestClassifier
Task: evaluate
Feature Scaling: none
Grid Search: True
Grid Search Folds: 3
Grid Objective Function: accuracy
Additional Evaluation Metrics: ['roc_auc']
Scikit-learn Version: 0.22.2.post1
Start Timestamp: 10 Mar 2020 14:25:23.595787
End Timestamp: 10 Mar 2020 14:25:28.175375
Total Time: 0:00:04.579588

Fold:
Model Parameters: {"bootstrap": true, "ccp_alpha": 0.0, "class_weight":␣
→˓null, "criterion": "gini", "max_depth": 5, "max_features": "auto", "max_
→˓leaf_nodes": null, "max_samples": null, "min_impurity_decrease": 0.0,
→˓"min_impurity_split": null, "min_samples_leaf": 1, "min_samples_split":␣
→˓2, "min_weight_fraction_leaf": 0.0, "n_estimators": 500, "n_jobs": null,
→˓ "oob_score": false, "random_state": 123456789, "verbose": 0, "warm_

(continues on next page)

1.3. Tutorial 9

SciKit-Learn Laboratory Documentation, Release 5.0.1

(continued from previous page)
→˓start": false}
Grid Objective Score (Train) = 0.797874315418175
+----+------+------+-------------+----------+-------------+
| | 0 | 1 | Precision | Recall | F-measure |
+====+======+======+=============+==========+=============+
| 0 | [79] | 8 | 0.849 | 0.908 | 0.878 |
+----+------+------+-------------+----------+-------------+
| 1 | 14 | [42] | 0.840 | 0.750 | 0.792 |
+----+------+------+-------------+----------+-------------+
(row = reference; column = predicted)
Accuracy = 0.8461538461538461
Objective Function Score (Test) = 0.8461538461538461

Additional Evaluation Metrics (Test):
roc_auc = 0.9224137931034483

1.3.3 IRIS Example on Binder

If you prefer using an interactive Jupyter notebook to learn about SKLL, you can do so by clicking
the launch button below.

1.4 Running Experiments

1.4.1 General Workflow

To run your own SKLL experiments via the command line, the following general workflow is rec-
ommended.

Get your data into the correct format

SKLL can work with several common data formats, all of which are described here.

If you need to convert between any of the supported formats, because, for example, you would like
to create a single data file that will work both with SKLL and Weka (or some other external tool),
the skll_convert script can help you out. It is as easy as:

$ skll_convert examples/titanic/train/family.csv examples/titanic/train/
→˓family.arff

Create sparse feature files, if necessary

10 Chapter 1. Documentation

https://mybinder.org/v2/gh/EducationalTestingService/skll/main?filepath=examples%2FTutorial.ipynb

SciKit-Learn Laboratory Documentation, Release 5.0.1

skll_convert can also create sparse data files in .jsonlines, .libsvm, or .ndj formats. This is very
useful for saving disk space and memory when you have a large data set with mostly zero-valued
features.

Set up training and testing directories/files

At a minimum, you will probably want to work with a training set and a testing set. If you have
multiple feature files that you would like SKLL to join together for you automatically, you will need
to create feature files with the exact same names and store them in training and testing directories.
You can specifiy these directories in your config file using train_directory and test_directory. The
list of files is specified using the featuresets setting.

If you’re conducting a simpler experiment, where you have a single training file with all of your
features and a similar single testing file, you should use the train_file and test_file settings in your
config file.

Note: If you would like to split an existing file up into a training set and a testing set, you can
employ the filter_features utility script to select instances you would like to include in each file.

Create an experiment configuration file

You saw a basic configuration file in the tutorial. For your own experiment, you will need to refer
to the Configuration file fields section.

Run configuration file through run_experiment

There are a few meta-options for experiments that are specified directly to the run_experiment
command rather than in a configuration file. For example, if you would like to run an ablation
experiment, which conducts repeated experiments using different combinations of the features in
your config, you should use the run_experiment --ablation option. A complete list of options
is available here.

Next, we describe the numerous file formats that SKLL supports for reading in features.

1.4. Running Experiments 11

SciKit-Learn Laboratory Documentation, Release 5.0.1

1.4.2 Feature files

SKLL supports the following feature file formats:

arff

The same file format used by Weka with the following added restrictions:

• Only simple numeric, string, and nomimal values are supported.

• Nominal values are converted to strings.

• If the data has instance IDs, there should be an attribute with the name specified by id_col
in the Input section of the configuration file you create for your experiment. This defaults to
id. If there is no such attribute, IDs will be generated automatically.

• If the data is labelled, there must be an attribute with the name specified by label_col in the
Input section of the configuartion file you create for your experiment. This defaults to y. This
must also be the final attribute listed (like in Weka).

csv/tsv

A simple comma or tab-delimited format. SKLL underlyingly uses pandas to read these files which
is extremely fast but at the cost of some extra memory consumption.

When using this file format, the following restrictions apply:

• If the data is labelled, there must be a column with the name specified by label_col in the
Input section of the configuration file you create for your experiment. This defaults to y.

• If the data has instance IDs, there should be a column with the name specified by id_col in
the Input section of the configuration file you create for your experiment. This defaults to id.
If there is no such column, IDs will be generated automatically.

• All other columns contain feature values, and every feature value must be specified (making
this a poor choice for sparse data).

Warning:

1. SKLL will raise an error if there are blank values in any of the columns. You must either
drop all rows with blank values in any column or replace the blanks with a value you spec-
ify. To drop or replace via the command line, use the filter_features script. You can also
drop/replace via the SKLL Reader API, specifically skll.data.readers.CSVReader
and skll.data.readers.TSVReader.

2. Dropping blanks will drop all rows with blanks in any of the columns. If you care only
about some of the columns in the file and do not want to rows to be dropped due to blanks

12 Chapter 1. Documentation

https://www.cs.waikato.ac.nz/ml/weka/
https://pandas.pydata.org

SciKit-Learn Laboratory Documentation, Release 5.0.1

in the other columns, you should remove the columns you do not care about before drop-
ping the blanks. For example, consider a hypothetical file in.csv that contains feature
columns named A through G with the IDs stored in a column named ID and the labels
stored in a column named CLASS. You only care about columns A, C, and F and want to
drop all rows in the file that have blanks in any of these 3 columns but do not want to lose
data due to there being blanks in any of the other columns. On the command line, you
can run the following two commands:

$ filter_features -f A C F --id_col ID --label_col class␣
→˓in.csv temp.csv
$ filter_features --id_col ID --label_col CLASS --drop_
→˓blanks temp.csv out.csv

If you are using the SKLL Reader API, you can accomplish the same in a single step
by also passing using the keyword argument pandas_kwargs when instantiating either
a skll.data.readers.CSVReader or a skll.data.readers.TSVReader. For our
example:

r = CSVReader.for_path('/path/to/in.csv',
label_col='CLASS',
id_col='ID',
drop_blanks=True,
pandas_kwargs={'usecols': ['A', 'C

→˓', 'F', 'ID', 'CLASS']})
fs = r.read()

Make sure to include the ID and label columns in the usecols list otherwise pandas will
drop them too.

jsonlines/ndj (Recommended)

A twist on the JSON format where every line is a either JSON dictionary (the entire contents of a
normal JSON file), or a comment line starting with //. Each dictionary is expected to contain the
following keys:

• y: The class label.

• x: A dictionary of feature values.

• id: An optional instance ID.

This is the preferred file format for SKLL, as it is sparse and can be slightly faster to load than other
formats.

1.4. Running Experiments 13

http://www.json.org/

SciKit-Learn Laboratory Documentation, Release 5.0.1

libsvm

While we can process the standard input file format supported by LibSVM, LibLinear, and SVM-
Light, we also support specifying extra metadata usually missing from the format in comments at
the of each line. The comments are not mandatory, but without them, your labels and features will
not have names. The comment is structured as follows:

ID | 1=ClassX | 1=FeatureA 2=FeatureB

The entire format would like this:

2 1:2.0 3:8.1 # Example1 | 2=ClassY | 1=FeatureA 3=FeatureC
1 5:7.0 6:19.1 # Example2 | 1=ClassX | 5=FeatureE 6=FeatureF

Note: IDs, labels, and feature names cannot contain the following characters: | # =

1.4.3 Configuration file fields

The experiment configuration files that run_experiment accepts are standard Python configura-
tion files that are similar in format to Windows INI files.1 There are four expected sections in a
configuration file: General, Input, Tuning, and Output. A detailed description of each field in each
section is provided below, but to summarize:

• If you want to do cross-validation, specify a path to training feature files, and set task to
cross_validate. Please note that the cross-validation currently uses StratifiedKFold. You
also can optionally use predetermined folds with the folds_file setting.

Note: When using classifiers, SKLL will automatically reduce the number of cross-
validation folds to be the same as the minimum number of examples for any of the classes in
the training data.

• If you want to train a model and evaluate it on some data, specify a training location, a test
location, and a directory to store results, and set task to evaluate.

• If you want to just train a model and generate predictions, specify a training location, a
test location, and set task to predict.

• If you want to just train a model, specify a training location, and set task to train.
1 We are considering adding support for YAML configuration files in the future, but we have not added this func-

tionality yet.

14 Chapter 1. Documentation

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.cs.cornell.edu/people/tj/svm_light/
https://www.cs.cornell.edu/people/tj/svm_light/
https://docs.python.org/3/library/configparser.html
https://docs.python.org/3/library/configparser.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html

SciKit-Learn Laboratory Documentation, Release 5.0.1

• If you want to generate learning curves for your data, specify a training location and set task
to learning_curve. The learning curves are generated using essentially the same under-
lying process as in scikit-learn except that the SKLL feature pre-processing pipeline is used
while training the various models and computing the scores.

Note:

1. Ideally, one would first do cross-validation experiments with grid search and/or ablation
and get a well-performing set of features and hyper-parameters for a set of learners.
Then, one would explicitly specify those features (via featuresets) and hyper-parameters
(via fixed_parameters) in the config file for the learning curve and explore the impact
of the size of the training data.

2. To ensure reliable results, SKLL expects a minimum of 500 examples in the training set
when generating learning curves.

3. If you set probability to True, the probabilities will be converted to the most likely label
via an argmax before computing the curve.

• A list of classifiers/regressors to try on your feature files is required.

Example configuration files are available here under the california, iris, and titanic sub-
directories.

General

Both fields in the General section are required.

experiment_name

A string used to identify this particular experiment configuration. When generating result summary
files, this name helps prevent overwriting previous summaries.

task

What types of experiment we’re trying to run. Valid options are: cross_validate, evaluate, predict,
train, learning_curve.

1.4. Running Experiments 15

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html#sklearn.model_selection.learning_curve
https://github.com/EducationalTestingService/skll/tree/main/examples/

SciKit-Learn Laboratory Documentation, Release 5.0.1

Input

The Input section must specify the machine learners to use via the learners field as well as the data
and features to be used when training the model. This can be done by specifying either (a) train_file
in which case all of the features in the file will be used, or (b) train_directory along with featuresets.

learners

List of scikit-learnmodels to be used in the experiment. Acceptable values are described below.
Custom learners can also be specified. See custom_learner_path.

Classifiers:

• AdaBoostClassifier: AdaBoost Classification. Note that the default base estimator is a
DecisionTreeClassifier. A different base estimator can be used by specifying an
estimator fixed parameter in the fixed_parameters list. The following additional base
estimators are supported: MultinomialNB, SGDClassifier, and SVC. Note that the last
two base estimators require setting an additional algorithm fixed parameter with the value
'SAMME'.

• BaggingClassifier: Bagging Classification. Note that the default base estimator is a
DecisionTreeClassifier. A different base estimator can be used by specifying an
estimator fixed parameter in the fixed_parameters list. The following additional base es-
timators are supported: MultinomialNB, SGDClassifier, and SVC. Note that when using
SVC base estimators, you may encounter errors if you have rare classes in your data.

• DummyClassifier: Simple rule-based Classification

• DecisionTreeClassifier: Decision Tree Classification

• GradientBoostingClassifier: Gradient Boosting Classification

• HistGradientBoostingClassifier: Histogram-based Gradient Boosting Classifier. Requires
dense feature array; sparse features will be automatically converted to dense when using this
learner.

• KNeighborsClassifier: K-Nearest Neighbors Classification

• LinearSVC: Support Vector Classification using LibLinear

• LogisticRegression: Logistic Regression Classification using LibLinear

• MLPClassifier: Multi-layer Perceptron Classification

• MultinomialNB: Multinomial Naive Bayes Classification

• RandomForestClassifier: Random Forest Classification

• RidgeClassifier: Classification using Ridge Regression

• SGDClassifier: Stochastic Gradient Descent Classification

16 Chapter 1. Documentation

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html#sklearn.ensemble.BaggingClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html#sklearn.dummy.DummyClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#sklearn.ensemble.GradientBoostingClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html#sklearn.ensemble.HistGradientBoostingClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.MLPClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html#sklearn.naive_bayes.MultinomialNB
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html#sklearn.linear_model.RidgeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

SciKit-Learn Laboratory Documentation, Release 5.0.1

• SVC: Support Vector Classification using LibSVM

• VotingClassifier: Soft Voting/Majority Rule classifier for unfitted estimators. Using this
learner requires specifying the underlying estimators using the estimator_names fixed pa-
rameter in the fixed_parameters list. By default, this learner uses “hard” voting, i.e., majority
rule. To use “soft” voting, i.e., based on the argmax of the sums of the probabilities from the
underlying classifiers, specify the voting_type fixed_parameter and set it to “soft”. The
following additional fixed parameters can also be supplied in the fixed_parameters list:

– estimator_fixed_parameters which takes a list of dictionaries to fix any parame-
ters in the underlying learners to desired values,

– estimator_param_gridswhich takes a list of dictionaries specifying the possible list
of parameters to search for every underlying learner,

– estimator_sampler_list which can be used to specify any feature sampling algo-
rithms for the underlying learners, and

– estimator_sampler_parameters which can be used to specify any additional pa-
rameters for any specified samplers.

Refer to this example voting configuration file to see how these parameters are used.

Regressors:

• AdaBoostRegressor: AdaBoost Regression. Note that the default base estimator
is a DecisionTreeRegressor. A different base estimator can be used by speci-
fying an estimator fixed parameter in the fixed_parameters list. The following
additional base estimators are supported: LinearRegression, SGDRegressor,
and SVR.

• BaggingRegressor: Bagging Regression. Note that the default base estimator is
a DecisionTreeRegressor. A different base estimator can be used by speci-
fying an estimator fixed parameter in the fixed_parameters list. The following
additional base estimators are supported: LinearRegression, SGDRegressor,
and SVR.

• BayesianRidge: Bayesian Ridge Regression. Requires dense feature array;
sparse features will be automatically converted to dense when using this learner.

• DecisionTreeRegressor: Decision Tree Regressor

• DummyRegressor: Simple Rule-based Regression

• ElasticNet: ElasticNet Regression

• GradientBoostingRegressor: Gradient Boosting Regressor

• HistGradientBoostingRegressor: Histogram-based Gradient Boosting Regres-
sor. Requires dense feature array; sparse features will be automatically converted
to dense when using this learner.

• HuberRegressor: Huber Regression

1.4. Running Experiments 17

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
https://github.com/EducationalTestingService/skll/blob/main/examples/iris/voting.cfg
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html#sklearn.ensemble.AdaBoostRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html#sklearn.ensemble.BaggingRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html#sklearn.linear_model.BayesianRidge
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionTreeRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyRegressor.html#sklearn.dummy.DummyRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html#sklearn.linear_model.ElasticNet
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html#sklearn.ensemble.HistGradientBoostingRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html#sklearn.ensemble.HistGradientBoostingRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.HuberRegressor.html#sklearn.linear_model.HuberRegressor

SciKit-Learn Laboratory Documentation, Release 5.0.1

• KNeighborsRegressor: K-Nearest Neighbors Regression

• Lars: Least Angle Regression. Requires dense feature array; sparse features will
be automatically converted to dense when using this learner.

• Lasso: Lasso Regression

• LinearRegression: Linear Regression

• LinearSVR: Support Vector Regression using LibLinear

• MLPRegressor: Multi-layer Perceptron Regression

• RandomForestRegressor: Random Forest Regression

• RANSACRegressor: RANdom SAmple Consensus Regression. Note that the
default base estimator is a LinearRegression. A different base regressor can
be used by specifying a estimator fixed parameter in the fixed_parameters list.
The following additional base estimators are supported: LinearRegression,
SGDRegressor, and SVR.

• Ridge: Ridge Regression

• SGDRegressor: Stochastic Gradient Descent Regression

• SVR: Support Vector Regression using LibSVM

• TheilSenRegressor: Theil-Sen Regression. Requires dense feature array; sparse
features will be automatically converted to dense when using this learner.

• VotingRegressor: Prediction voting regressor for unfitted estimators. Us-
ing this learner requires specifying the underlying estimators using the
estimator_names fixed parameter in the fixed_parameters list. The following
additional fixed parameters can also be supplied in this list:

– estimator_fixed_parameterswhich takes a list of dictionaries to fix any
parameters in the underlying learners to desired values,

– estimator_param_grids which takes a list of dictionaries specifying the
possible list of parameters to search for every underlying learner,

– estimator_sampler_list which can be used to specify any feature sam-
pling algorithms for the underlying learners, and

– estimator_sampler_parameters which can be used to specify any addi-
tional parameters for any specified samplers.

Refer to this example voting configuration file to see how these parameters are
used.

For all regressors except VotingRegressor, you can also prepend Rescaled to the
beginning of the full name (e.g., RescaledSVR) to get a version of the regressor where

18 Chapter 1. Documentation

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html#sklearn.neighbors.KNeighborsRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lars.html#sklearn.linear_model.Lars
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html#sklearn.linear_model.Lasso
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html#sklearn.svm.LinearSVR
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RANSACRegressor.html#sklearn.linear_model.RANSACRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.TheilSenRegressor.html#sklearn.linear_model.TheilSenRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
https://github.com/EducationalTestingService/skll/blob/main/examples/california/voting.cfg

SciKit-Learn Laboratory Documentation, Release 5.0.1

predictions are rescaled and constrained to better match the training set. Rescaled re-
gressors can, however, be used as underlying estimators for VotingRegressor learn-
ers.

featuresets

List of lists of prefixes for the files containing the features you would like to train/test on. Each list
will end up being a job. IDs are required to be the same in all of the feature files, and a ValueError
will be raised if this is not the case. Cannot be used in combination with train_file or test_file.

Note: If specifying train_directory or test_directory, featuresets is required.

train_file

Path to a file containing the features to train on. Cannot be used in combination with featuresets,
train_directory, or test_directory.

Note: If train_file is not specified, train_directory must be.

train_directory

Path to directory containing training data files. There must be a file for each featureset. Cannot be
used in combination with train_file or test_file.

Note: If train_directory is not specified, train_file must be.

The following is a list of the other optional fields in this section in alphabetical order.

class_map (Optional)

If you would like to collapse several labels into one, or otherwise modify your labels (without
modifying your original feature files), you can specify a dictionary mapping from new class labels
to lists of original class labels. For example, if you wanted to collapse the labels beagle and
dachsund into a dog class, you would specify the following for class_map:

{'dog': ['beagle', 'dachsund']}

1.4. Running Experiments 19

https://docs.python.org/3/library/exceptions.html#ValueError

SciKit-Learn Laboratory Documentation, Release 5.0.1

Any labels not included in the dictionary will be left untouched.

One other use case for class_map is to deal with classification labels that would be converted to
float improperly. All Reader sub-classes use the skll.data.readers.safe_float function
internally to read labels. This function tries to convert a single label first to int, then to float.
If neither conversion is possible, the label remains a str. Thus, care must be taken to ensure that
labels do not get converted in unexpected ways. For example, consider the situation where there
are classification labels that are a mixture of int-converting and float-converting labels:

import numpy as np
from skll.data.readers import safe_float
np.array([safe_float(x) for x in ["2", "2.2", "2.21"]]) # array([2. , 2.
→˓2 , 2.21])

The labels will all be converted to floats and any classification model generated with this data will
predict labels such as 2.0, 2.2, etc., not str values that exactly match the input labels, as might
be expected. class_map could be used to map the original labels to new values that do not have
the same characteristics.

custom_learner_path (Optional)

Path to a .py file that defines a custom learner. This file will be imported dynamically. This is only
required if a custom learner is specified in the list of learners.

All Custom learners must implement the fit and predict methods. Custom classifiers
must either (a) inherit from an existing scikit-learn classifier, or (b) inherit from both
sklearn.base.BaseEstimator. and from sklearn.base.ClassifierMixin.

Similarly, Custom regressors must either (a) inherit from an existing scikit-learn regressor, or
(b) inherit from both sklearn.base.BaseEstimator. and from sklearn.base.RegressorMixin.

Learners that require dense matrices should implement a method requires_dense that returns
True.

custom_metric_path (Optional)

Path to a .py file that defines a custom metric function. This file will be imported dynamically.
This is only required if a custom metric is specified as a tuning objective, an output metric, or both.

20 Chapter 1. Documentation

https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html
https://scikit-learn.org/stable/modules/generated/sklearn.base.ClassifierMixin.html
https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html
https://scikit-learn.org/stable/modules/generated/sklearn.base.RegressorMixin.html

SciKit-Learn Laboratory Documentation, Release 5.0.1

cv_seed (Optional)

The seed to use during the creation of the folds for the cross_validate task. This option may be
useful for running the same cross validation experiment multiple times (with the same number of
differently constituted folds) to get a sense of the variance across replicates.

Note that this seed is only used for shuffling the data before splitting it into folds. The shuffling
happens automatically when doing grid search or if shuffle is explicitly set to True. Defaults to
123456789.

feature_hasher (Optional)

If True, this enables a high-speed, low-memory vectorizer that uses feature hashing for converting
feature dictionaries into NumPy arrays instead of using a DictVectorizer. This flag will drastically
reduce memory consumption for data sets with a large number of features. If enabled, the user
should also specify the number of features in the hasher_features field. For additional information
see the scikit-learn documentation.

Warning: Due to the way SKLL experiments are architected, if the features for an experiment
are spread across multiple files on disk, feature hashing will be applied to each file separately.
For example, if you have F feature files and you choose H as the number of hashed features
(via hasher_features), you will end up with F x H features in the end. If this is not the desired
behavior, use the join_features utility script to combine all feature files into a single file before
running the experiment.

feature_scaling (Optional)

Whether to scale features by their mean and/or their standard deviation. If you scale by mean, your
data will automatically be converted to dense, so use caution when you have a very large dataset.
Valid options are:

none
Perform no feature scaling at all.

with_std
Scale feature values by their standard deviation.

with_mean
Center features by subtracting their mean.

both
Perform both centering and scaling.

Defaults to none.

1.4. Running Experiments 21

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html
https://scikit-learn.org/stable/modules/feature_extraction.html#feature-hashing

SciKit-Learn Laboratory Documentation, Release 5.0.1

featureset_names (Optional)

Optional list of names for the feature sets. If omitted, then the prefixes will be munged together to
make names.

folds_file (Optional)

Path to a csv file specifying the mapping of instances in the training data to folds. This can be
specified when the task is either train or cross_validate. For the train task, if grid_search
is True, this file, if specified, will be used to define the cross-validation used for the grid search
(leave one fold ID out at a time). Otherwise, it will be ignored.

For the cross_validate task, this file will be used to define the outer cross-validation loop and, if
grid_search is True, also for the inner grid-search cross-validation loop. If the goal of specifiying
the folds file is to ensure that the model does not learn to differentiate based on a confound: e.g.
the data from the same person is always in the same fold, it makes sense to keep the same folds for
both the outer and the inner cross-validation loops.

However, sometimes the goal of specifying the folds file is simply for the purpose of compari-
son to another existing experiment or another context in which maintaining the constitution of
the folds in the inner grid-search loop is not required. In this case, users may set the param-
eter use_folds_file_for_grid_search to False which will then direct the inner grid-search cross-
validation loop to simply use the number specified via grid_search_folds instead of using the folds
file. This will likely lead to shorter execution times as well depending on how many folds are in the
folds file and the value of grid_search_folds.

The format of this file must be as follows: the first row must be a header. This header row is ignored,
so it doesn’t matter what the header row contains, but it must be there. If there is no header row,
whatever row is in its place will be ignored. The first column should consist of training set IDs and
the second should be a string for the fold ID (e.g., 1 through 5, A through D, etc.). If specified, the
CV and grid search will leave one fold ID out at a time.2

fixed_parameters (Optional)

List of dictionaries containing parameters you want to have fixed for each learner in the learners list.
Empty dictionaries will be ignored and the defaults will be used for these learners. If grid_search
is True, there is a potential for conflict with specified/default parameter grids and fixed parameters.

Note: Tuples are not supported in the config file, and will lead to parsing errors. Make sure to
replace tuples with lists when specifying fixed parameters. As an example, consider the following
parameter that’s usually defined as a tuple in scikit-learn:

2 K-1 folds will be used for grid search within CV, so there should be at least 3 fold IDs.

22 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 5.0.1

{'hidden_layer_sizes': (28, 28)}

To specify it in fixed_parameters, use a list instead:

{'hidden_layer_sizes': [28, 28]}

The default fixed parameters (beyond those that scikit-learn sets) are:

AdaBoostClassifier and AdaBoostRegressor

{'n_estimators': 500, 'random_state': 123456789}

BaggingClassifier and BaggingRegressor

{'n_estimators': 500, 'random_state': 123456789}

DecisionTreeClassifier and DecisionTreeRegressor

{'random_state': 123456789}

DummyClassifier

{'random_state': 123456789}

ElasticNet

{'random_state': 123456789}

GradientBoostingClassifier and GradientBoostingRegressor

{'n_estimators': 500, 'random_state': 123456789}

HistGradientBoostingClassifier and HistGradientBoostingRegressor

{'random_state': 123456789}

Lasso:

{'random_state': 123456789}

LinearSVC and LinearSVR

{'random_state': 123456789}

LogisticRegression

1.4. Running Experiments 23

SciKit-Learn Laboratory Documentation, Release 5.0.1

{'max_iter': 1000, 'multi_class': 'auto', 'random_state': 123456789,
→˓'solver': 'liblinear'}

Note: The regularization penalty used by default is "l2". However, "l1",
"elasticnet", and "none" (no regularization) are also available. There is a dependency
between the penalty and the solver. For example, the "elasticnet" penalty can only
be used in conjunction with the "saga" solver. See more information in the scikit-learn
documentation here.

MLPClassifier and MLPRegressor:

{'learning_rate': 'invscaling', 'max_iter': 500}

RandomForestClassifier and RandomForestRegressor

{'n_estimators': 500, 'random_state': 123456789}

RANSACRegressor

{'loss': 'squared_error', 'random_state': 123456789}

Ridge and RidgeClassifier

{'random_state': 123456789}

SVC and SVR

{'cache_size': 1000, 'gamma': 'scale'}

SGDClassifier

{'loss': 'log', 'max_iter': 1000, 'random_state': 123456789, 'tol':␣
→˓1e-3}

SGDRegressor

{'max_iter': 1000, 'random_state': 123456789, 'tol': 1e-3}

TheilSenRegressor

{'random_state': 123456789}

Note:

24 Chapter 1. Documentation

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

SciKit-Learn Laboratory Documentation, Release 5.0.1

The fixed_parameters field offers us a way to deal with imbalanced data
sets by using the parameter class_weight for the following classi-
fiers: DecisionTreeClassifier, LogisticRegression, LinearSVC,
RandomForestClassifier, RidgeClassifier, SGDClassifier, and SVC.

Two possible options are available. The first one is balanced, which automatically adjusts weights
inversely proportional to class frequencies, as shown in the following code:

{'class_weight': 'balanced'}

The second option allows you to assign a specific weight per each class. The default weight per
class is 1. For example:

{'class_weight': {1: 10}}

Additional examples and information can be seen here.

hasher_features (Optional)

The number of features used by the FeatureHasher if the feature_hasher flag is enabled.

Note: To avoid collisions, you should always use the power of two larger than the number of
features in the data set for this setting. For example, if you had 17 features, you would want to set
the flag to 32.

id_col (Optional)

If you’re using ARFF, CSV , or TSV files, the IDs for each instance are assumed to be in a column
with this name. If no column with this name is found, the IDs are generated automatically. Defaults
to id.

ids_to_floats (Optional)

If you have a dataset with lots of examples, and your input files have IDs that look like numbers
(can be converted by float()), then setting this to True will save you some memory by storing IDs
as floats. Note that this will cause IDs to be printed as floats in prediction files (e.g., 4.0 instead of
4 or 0004 or 4.000).

1.4. Running Experiments 25

https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_weighted_samples.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html

SciKit-Learn Laboratory Documentation, Release 5.0.1

label_col (Optional)

If you’re using ARFF, CSV , or TSV files, the class labels for each instance are assumed to be in a
column with this name. If no column with this name is found, the data is assumed to be unlabelled.
Defaults to y. For ARFF files only, this must also be the final column to count as the label (for
compatibility with Weka).

learning_curve_cv_folds_list (Optional)

List of integers specifying the number of folds to use for cross-validation at each
point of the learning curve (training size), one per learner. For example, speci-
fying ["SVC", "LogisticRegression"] for learners and specifying [10, 100] for
learning_curve_cv_folds_list will tell SKLL to use 10 cross-validation folds at each point
of the SVC curve and 100 cross-validation folds at each point of the logistic regression curve. Al-
though more folds will generally yield more reliable results, smaller number of folds may be better
for learners that are slow to train. Defaults to 10 for each learner.

learning_curve_train_sizes (Optional)

List of floats or integers representing relative or absolute numbers of training examples that will be
used to generate the learning curve of training examples that will be used to generate the learning
curve respectively. If the type is float, it is regarded as a fraction of the maximum size of the training
set (that is determined by the selected validation method), i.e. it has to be within (0, 1]. Otherwise
it is interpreted as absolute sizes of the training sets. Note that for classification the number of
samples usually has to be big enough to contain at least one sample from each class. Defaults to
[0.1, 0.325, 0.55, 0.775, 1.0].

num_cv_folds (Optional)

The number of folds to use for cross validation. Defaults to 10.

random_folds (Optional)

Whether to use random folds for cross-validation. Defaults to False.

26 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 5.0.1

sampler (Optional)

Whether to use a feature sampler that performs non-linear transformations of the input, which can
serve as a basis for linear classification or other algorithms. Valid options are: Nystroem, RBFSam-
pler, SkewedChi2Sampler, and AdditiveChi2Sampler. For additional information see the scikit-
learn documentation.

Note: Using a feature sampler with the MultinomialNB learner is not allowed since it cannot
handle negative feature values.

sampler_parameters (Optional)

dict containing parameters you want to have fixed for the sampler. Any empty ones will be ignored
(and the defaults will be used).

The default fixed parameters (beyond those that scikit-learn sets) are:

Nystroem

{'random_state': 123456789}

RBFSampler

{'random_state': 123456789}

SkewedChi2Sampler

{'random_state': 123456789}

shuffle (Optional)

If True, shuffle the examples in the training data before using them for learning. This happens
automatically when doing a grid search but it might be useful in other scenarios as well, e.g., online
learning. Defaults to False.

1.4. Running Experiments 27

https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.Nystroem.html#sklearn.kernel_approximation.Nystroem
https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.RBFSampler.html#sklearn.kernel_approximation.RBFSampler
https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.RBFSampler.html#sklearn.kernel_approximation.RBFSampler
https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.SkewedChi2Sampler.html#sklearn.kernel_approximation.SkewedChi2Sampler
https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.AdditiveChi2Sampler.html#sklearn.kernel_approximation.AdditiveChi2Sampler
https://scikit-learn.org/stable/modules/kernel_approximation.html
https://scikit-learn.org/stable/modules/kernel_approximation.html

SciKit-Learn Laboratory Documentation, Release 5.0.1

suffix (Optional)

The file format the training/test files are in. Valid option are .arff , .csv, .jsonlines, .libsvm, .ndj, and
.tsv.

If you omit this field, it is assumed that the “prefixes” listed in featuresets are actually complete
filenames. This can be useful if you have feature files that are all in different formats that you would
like to combine.

test_file (Optional)

Path to a file containing the features to test on. Cannot be used in combination with featuresets,
train_directory, or test_directory

test_directory (Optional)

Path to directory containing test data files. There must be a file for each featureset. Cannot be used
in combination with train_file or test_file.

Tuning

Generally, in this section, you would specify fields that pertain to the hyperparameter tuning for
each learner. The most common required field is objectives although it may also be optional in
certain circumstances.

objectives

A list of one or more metrics to use as objective functions for tuning the learner hyperparameters
via grid search. Note that objectives is required by default in most cases unless (a) grid_search
is explicitly set to False or (b) the task is learning_curve. For (a), any specified objectives are
ignored. For (b), specifying objectives will raise an exception.

SKLL provides the following metrics but you can also write your own custom metrics.

Classification: The following objectives can be used for classification problems al-
though some are restricted by problem type (binary/multiclass), types of labels (inte-
gers/floats/strings), and whether they are contiguous (if integers). Please read carefully.

Note: When doing classification, SKLL internally sorts and maps all the class labels
in the data and maps them to integers which can be thought of class indices. This
happens irrespective of the data type of the original labels. For example, if your data
has the labels ['A', 'B', 'C'], SKLL will map them to the indices [0, 1, 2]

28 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 5.0.1

respectively. It will do the same if you have integer labels ([1, 2, 3]) or floating
point ones ([1.0, 1.1, 1.2]). All of the tuning objectives are computed using these
integer indices rather than the original class labels. This is why some metrics only
make sense in certain scenarios. For example, SKLL only allows using weighted kappa
metrics as tuning objectives if the original class labels are contiguous integers, e.g.,
[1, 2, 3] or [4, 5, 6] – or even integer-like floats (e,g., [1.0, 2.0, 3.0], but
not [1.0, 1.1, 1.2]).

• accuracy: Overall accuracy

• average_precision: Area under PR curve . To use this metric, probability must
be set to True. (Binary classification only).

• balanced_accuracy: A version of accuracy specifically designed for imbalanced
binary and multi-class scenarios.

• f1: The default scikit-learn F1 score (F1 of the positive class for binary clas-
sification, or the weighted average F1 for multiclass classification)

• f1_score_macro: Macro-averaged F1 score

• f1_score_micro: Micro-averaged F1 score

• f1_score_weighted: Weighted average F1 score

• f1_score_least_frequent: F1 score of the least frequent class. The least frequent
class may vary from fold to fold for certain data distributions.

• f05: The default scikit-learn F=0.5 score (F=0.5 of the positive class for binary
classification, or the weighted average F=0.5 for multiclass classification)

• f05_score_macro: Macro-averaged F=0.5 score

• f05_score_micro: Micro-averaged F=0.5 score

• f05_score_weighted: Weighted average F=0.5 score

• jaccard: The default Jaccard similarity coefficient from scikit-learn for bi-
nary classification.

• jaccard_macro: Macro-averaged Jaccard similarity coefficient

• jaccard_micro: Micro-averaged Jaccard similarity coefficient

• jaccard_weighted: Weighted average Jaccard similarity coefficient

• kendall_tau: Kendall’s tau . For binary classification and with probability set to
True, the probabilities for the positive class will be used to compute the correla-
tion values. In all other cases, the labels are used. (Integer labels only).

• linear_weighted_kappa: Linear weighted kappa. (Contiguous integer labels
only).

1.4. Running Experiments 29

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html#sklearn.metrics.balanced_accuracy_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html
https://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient
http://www.vassarstats.net/kappaexp.html

SciKit-Learn Laboratory Documentation, Release 5.0.1

• lwk_off_by_one: Same as linear_weighted_kappa, but all ranking differ-
ences are discounted by one. (Contiguous integer labels only).

• neg_log_loss: The negative of the classification log loss . Since scikit-learn
recommends using negated loss functions as scorer functions, SKLL does the
same for the sake of consistency. To use this metric, probability must be set to
True.

• pearson: Pearson correlation . For binary classification and with probability
set to True, the probabilities for the positive class will be used to compute the
correlation values. In all other cases, the labels are used. (Integer labels only).

• precision: Precision for binary classification

• precision_macro: Macro-averaged Precision

• precision_micro: Micro-averaged Precision

• precision_weighted: Weighted average Precision

• quadratic_weighted_kappa: Quadratic weighted kappa. (Contiguous integer
labels only). If you wish to compute quadratic weighted kappa for continuous
values, you may want to use the implementation provided by RSMTool. To do
so, install the RSMTool Python package and create a custom metric that wraps
rsmtool.utils.quadratic_weighted_kappa.

• qwk_off_by_one: Same as quadratic_weighted_kappa, but all ranking dif-
ferences are discounted by one. (Contiguous integer labels only).

• recall: Recall for binary classification

• recall_macro: Macro-averaged Recall

• recall_micro: Micro-averaged Recall

• recall_weighted: Weighted average Recall

• roc_auc: Area under ROC curve .To use this metric, probability must be set to
True. (Binary classification only).

• spearman: Spearman rank-correlation. For binary classification and with prob-
ability set to True, the probabilities for the positive class will be used to compute
the correlation values. In all other cases, the labels are used. (Integer labels only).

• unweighted_kappa: Unweighted Cohen’s kappa.

• uwk_off_by_one: Same as unweighted_kappa, but all ranking differences are
discounted by one. In other words, a ranking of 1 and a ranking of 2 would be
considered equal.

Regression: The following objectives can be used for regression problems.

• explained_variance: A score indicating how much of the variance in the given
data can be by the model.

30 Chapter 1. Documentation

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html
https://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
http://www.vassarstats.net/kappaexp.html
https://rsmtool.readthedocs.io/en/main/evaluation.html#quadratic-weighted-kappa-qwk
https://rsmtool.readthedocs.io/en/main/getting_started.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Cohen's_kappa
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.explained_variance_score.html#sklearn.metrics.explained_variance_score

SciKit-Learn Laboratory Documentation, Release 5.0.1

• kendall_tau: Kendall’s tau

• linear_weighted_kappa: Linear weighted kappa (any floating point values are
rounded to ints)

• lwk_off_by_one: Same as linear_weighted_kappa, but all ranking differ-
ences are discounted by one.

• max_error: The maximum residual error.

• neg_mean_absolute_error: The negative of the mean absolute error regression
loss. Since scikit-learn recommends using negated loss functions as scorer
functions, SKLL does the same for the sake of consistency.

• neg_mean_squared_error: The negative of the mean squared error regression
loss. Since scikit-learn recommends using negated loss functions as scorer
functions, SKLL does the same for the sake of consistency.

• neg_root_mean_squared_error: The negative of the mean squared error regres-
sion loss, with squared set to False. Since scikit-learn recommends using
negated loss functions as scorer functions, SKLL does the same for the sake of
consistency.

• pearson: Pearson correlation

• quadratic_weighted_kappa: Quadratic weighted kappa (any floating point val-
ues are rounded to ints)

• qwk_off_by_one: Same as quadratic_weighted_kappa, but all ranking dif-
ferences are discounted by one.

• r2: R2

• spearman: Spearman rank-correlation

• unweighted_kappa: Unweighted Cohen’s kappa (any floating point values are
rounded to ints)

• uwk_off_by_one: Same as unweighted_kappa, but all ranking differences are
discounted by one. In other words, a ranking of 1 and a ranking of 2 would be
considered equal.

The following is a list of the other optional fields in this section in alphabetical order.

1.4. Running Experiments 31

https://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.max_error.html#sklearn.metrics.max_error
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error
https://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
https://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
https://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
https://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Cohen's_kappa

SciKit-Learn Laboratory Documentation, Release 5.0.1

grid_search (Optional)

Whether or not to perform grid search to find optimal parameters for the learner. Defaults to True
since optimizing model hyperparameters almost always leads to better performance. Note that for
the learning_curve task, grid search is not allowed and setting it to True will generate a warning
and be ignored.

Note:

1. In versions of SKLL before v2.0, this option was set to False by default but that was changed
since the benefits of hyperparameter tuning significantly outweigh the cost in terms of model
fitting time. Instead, SKLL users must explicitly opt out of hyperparameter tuning if they so
desire.

2. Although SKLL only uses the combination of hyperparameters in the grid that maximizes
the grid search objective, the results for all other points on the grid that were tried are also
available. See the grid_search_cv_results attribute in the .results.json file.

grid_search_folds (Optional)

The number of folds to use for grid search. Defaults to 5.

grid_search_jobs (Optional)

Number of folds to run in parallel when using grid search. Defaults to number of grid search folds.

min_feature_count (Optional)

The minimum number of examples for which the value of a feature must be nonzero to be included
in the model. Defaults to 1.

param_grids (Optional)

List of parameter grid dictionaries, one for each learner. Each parameter grid is a dictionary map-
ping from strings to list of parameter values. When you specify an empty dictionary for a learner,
the default parameter grid for that learner will be searched.

The default parameter grids for each learner are:

AdaBoostClassifier and AdaBoostRegressor

32 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 5.0.1

{'learning_rate': [0.01, 0.1, 1.0, 10.0, 100.0]}

BaggingClassifier and BaggingRegressor

{'max_samples': [0.1, 0.25, 0.5, 1.0],
'max_features': [0.1, 0.25, 0.5, 1.0]}

BayesianRidge

{'alpha_1': [1e-6, 1e-4, 1e-2, 1, 10],
'alpha_2': [1e-6, 1e-4, 1e-2, 1, 10],
'lambda_1': [1e-6, 1e-4, 1e-2, 1, 10],
'lambda_2': [1e-6, 1e-4, 1e-2, 1, 10]}

DecisionTreeClassifier and DecisionTreeRegressor

{'max_features': ["sqrt", None]}

ElasticNet

{'alpha': [0.01, 0.1, 1.0, 10.0, 100.0]}

GradientBoostingClassifier and GradientBoostingRegressor

{'max_depth': [1, 3, 5]}

HistGradientBoostingClassifier

{'learning_rate': [0.01, 0.1, 1.0],
'min_samples_leaf': [10, 20, 40]}

HistGradientBoostingRegressor

{'loss': ['squared_error', 'absolute_error', 'poisson'],
'learning_rate': [0.01, 0.1, 1.0],
'min_samples_leaf': [10, 20, 40]}

HuberRegressor

{'epsilon': [1.05, 1.35, 1.5, 2.0, 2.5, 5.0],
'alpha': [1e-4, 1e-3, 1e-3, 1e-1, 1, 10, 100, 1000]}

KNeighborsClassifier and KNeighborsRegressor

{'n_neighbors': [1, 5, 10, 100],
'weights': ['uniform', 'distance']}

1.4. Running Experiments 33

SciKit-Learn Laboratory Documentation, Release 5.0.1

Lasso

{'alpha': [0.01, 0.1, 1.0, 10.0, 100.0]}

LinearSVC

{'C': [0.01, 0.1, 1.0, 10.0, 100.0]}

LogisticRegression

{'C': [0.01, 0.1, 1.0, 10.0, 100.0]}

MLPClassifier and MLPRegressor:

{'activation': ['logistic', 'tanh', 'relu'],
'alpha': [1e-4, 1e-3, 1e-3, 1e-1, 1],
'learning_rate_init': [0.001, 0.01, 0.1]},

MultinomialNB

{'alpha': [0.1, 0.25, 0.5, 0.75, 1.0]}

RandomForestClassifier and RandomForestRegressor

{'max_depth': [1, 5, 10, None]}

Ridge and RidgeClassifier

{'alpha': [0.01, 0.1, 1.0, 10.0, 100.0]}

SGDClassifier and SGDRegressor

{'alpha': [0.000001, 0.00001, 0.0001, 0.001, 0.01],
'penalty': ['l1', 'l2', 'elasticnet']}

SVC

{'C': [0.01, 0.1, 1.0, 10.0, 100.0],
'gamma': ['auto', 0.01, 0.1, 1.0, 10.0, 100.0]}

SVR

{'C': [0.01, 0.1, 1.0, 10.0, 100.0]}

Note:

34 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 5.0.1

1. Learners not listed here do not have any default parameter grids in SKLL either because
there are no hyper-parameters to tune or decisions about which parameters to tune (and how)
depend on the data being used for the experiment and are best left up to the user.

2. Tuples are not supported in the config file, and will lead to parsing errors. Make sure to
replace tuples with lists when specifying fixed parameters. As an example, consider the
following parameter that’s usually defined as a tuple in scikit-learn:

{'hidden_layer_sizes': (28, 28)}

To specify it in param_grids, use a list instead:

{'hidden_layer_sizes': [28, 28]}

pos_label (Optional)

A string denoting the label of the class to be treated as the positive class in a binary classification
setting. If unspecified, the class represented by the label that appears second when sorted is chosen
as the positive class. For example, if the two labels in data are “A” and “B” and pos_label is not
specified, “B” will be chosen as the positive class.

use_folds_file_for_grid_search (Optional)

Whether to use the specified folds_file for the inner grid-search cross-validation loop when task is
set to cross_validate. Defaults to True.

Note: This flag is ignored for all other tasks, including the train task where a specified folds_file
is always used for the grid search.

Output

The fields in this section generally pertain to the output files produced by the experiment. The most
common fields are logs, models, predictions, and results. These fields are mostly optional
although they may be required in certain cases. A common option is to use the same directory for
all of these fields.

1.4. Running Experiments 35

SciKit-Learn Laboratory Documentation, Release 5.0.1

logs (Optional)

Directory to store SKLL log files in. If omitted, the current working directory is used.

models (Optional)

Directory in which to store trained models. Can be omitted to not store models except when using
the train task, where this path must be specified. On the other hand, this path must not be specified
for the learning_curve task.

metrics (Optional)

For the evaluate and cross_validate tasks, this is an optional list of additional metrics that
will be computed in addition to the tuning objectives and added to the results files. However, for
the learning_curve task, this list is required. Possible values are all of the same functions as those
available for the tuning objectives (with the same caveats).

As with objectives, You can also use your own custom metric functions.

Note: If the list of metrics overlaps with the grid search tuning objectives, then, for each job,
the objective that overlaps is not computed again as a metric. Recall that each SKLL job can
only contain a single tuning objective. Therefore, if, say, the objectives list is ['accuracy',
'roc_auc'] and the metrics list is ['roc_auc', 'average_precision'], then in the second
job, roc_auc is used as the objective but not computed as an additional metric.

pipeline (Optional)

Whether or not the final learner object should contain a pipeline attribute that contains a
scikit-learn Pipeline object composed of copies of each of the following steps of training the
learner:

• feature vectorization (vectorizer)

• feature selection (selector)

• feature sampling (sampler)

• feature scaling (scaler)

• main estimator (estimator)

The strings in the parentheses represent the name given to each step in the pipeline.

36 Chapter 1. Documentation

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

SciKit-Learn Laboratory Documentation, Release 5.0.1

The goal of this attribute is to allow better interoperability between SKLL learner objects and
scikit-learn. The user can train the model in SKLL and then further tweak or analyze the
pipeline in scikit-learn, if needed. Each component of the pipeline is a (deep) copy of the
component that was fit as part of the SKLL model training process. We use copies since we do not
want the original SKLL model to be affected if the user modifies the components of the pipeline in
scikit-learn space.

Here’s an example of how to use this attribute.

from sklearn.preprocessing import LabelEncoder

from skll.data import Reader
from skll.learner import Learner

train a classifier and a regressor using the SKLL API
fs1 = Reader.for_path('examples/iris/train/example_iris_features.jsonlines
→˓').read()
learner1 = Learner('LogisticRegression', pipeline=True)
_ = learner1.train(fs1, grid_search=True, grid_objective='f1_score_macro')

fs2 = Reader.for_path('examples/california/train/example_california_
→˓features.jsonlines').read()
learner2 = Learner('RescaledSVR', feature_scaling='both', pipeline=True)
_ = learner2.train(fs2, grid_search=True, grid_objective='pearson')

now, we can explore the stored pipelines in sklearn space
enc = LabelEncoder().fit(fs1.labels)

first, the classifier
D1 = {"f0": 6.1, "f1": 2.8, "f2": 4.7, "f3": 1.2}
pipeline1 = learner1.pipeline
enc.inverse_transform(pipeline1.predict(D1))

then, the regressor
D2 = {"f0": 4.1344, "f1": 36.0, "f2": 4.1, "f3": 0.98, "f4": 1245.0, "f5
→˓": 3.0, "f6": 33.9, "f7": -118.32}
pipeline2 = learner2.pipeline
pipeline2.predict(D2)

note that without the `pipeline` attribute, one would have to
do the following for D1, which is much less readable
enc.inverse_transform(learner1.model.predict(learner1.scaler.
→˓transform(learner1.feat_selector.transform(learner1.feat_vectorizer.
→˓transform(D1)))))

1.4. Running Experiments 37

SciKit-Learn Laboratory Documentation, Release 5.0.1

Note:

1. When using a DictVectorizer in SKLL along with feature_scaling set to either with_mean or
both, the sparse attribute of the vectorizer stage in the pipeline is set to False since centering
requires dense arrays.

2. When feature hashing is used (via a FeatureHasher) in SKLL along with feature_scaling
set to either with_mean or both , a custom pipeline stage (skll.learner.Densifier) is
inserted in the pipeline between the feature vectorization (here, hashing) stage and the feature
scaling stage. This is necessary since a FeatureHasher does not have a sparse attribute to
turn off – it only returns sparse vectors.

3. A Densifier is also inserted in the pipeline when using a SkewedChi2Sampler for feature
sampling since this sampler requires dense input and cannot be made to work with sparse
arrays.

predictions (Optional)

Directory in which to store prediction files. Must not be specified for the learning_curve and train
tasks. If omitted, the current working directory is used.

probability (Optional)

Whether or not to output probabilities for each class instead of the most probable class for each
instance. Only really makes a difference when storing predictions. Defaults to False. Note that
this also applies to the tuning objective.

results (Optional)

Directory in which to store result files. If omitted, the current working directory is used.

save_cv_folds (Optional)

Whether to save the folds file containing the folds for a cross-validation experiment. Defaults to
True.

38 Chapter 1. Documentation

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html
https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.SkewedChi2Sampler.html

SciKit-Learn Laboratory Documentation, Release 5.0.1

save_cv_models (Optional)

Whether to save each of the K model files trained during each step of a K-fold cross-validation
experiment. Defaults to False.

save_votes (Optional)

Whether to save the predictions from the individual estimators underlying a VotingClassifer or
VotingRegressor. Note that for this to work, predictions must be set. Defaults to False.

wandb_credentials (Optional)

To enable logging metrics and artifacts to Weights & Biases, specify a dictionary as follows:

{'wandb_entity': 'your_entity_name', 'wandb_project': 'your_project_name'}

wandb_entity can be a user name or the name of a team or organization. wandb_project is the
name of the project to which this experiment will be logged. If a project by this name does not
already exist, it will be created. For more details on what will be logged, and an example report,
see Integration with Weights & Biases.

Important:

1. Both wandb_entity and wandb_project must be specified. If any of them is missing, logging
to W&B will not be enabled.

2. Before using Weights & Biases for the first time, users should log in and provide their API
key as described in W&B Quickstart guidelines.

3. Note that when using W&B logging, a SKLL run may take significantly longer due to the
network traffic being sent to W&B.

1.4.4 Using run_experiment

Once you have created the configuration file for your experiment, you can usually just get your
experiment started by running run_experiment CONFIGFILE.3 That said, there are a few options
that are specified via command-line arguments instead of in the configuration file:

3 If you installed SKLL via pip on macOS, you might get an error when using run_experiment to generate learning
curves. To get around this, add MPLBACKEND=Agg before the run_experiment command and re-run.

1.4. Running Experiments 39

https://wandb.ai/
https://docs.wandb.ai/quickstart#2-log-in-to-wb

SciKit-Learn Laboratory Documentation, Release 5.0.1

-a <num_features>, --ablation <num_features>

Runs an ablation study where repeated experiments are conducted with the specified number
of feature files in each featureset in the configuration file held out. For example, if you have
three feature files (A, B, and C) in your featureset and you specifiy --ablation 1, there will
be three experiments conducted with the following featuresets: [[A, B], [B, C], [A,
C]]. Additionally, since every ablation experiment includes a run with all the features as a
baseline, the following featureset will also be run: [[A, B, C]].

If you would like to try all possible combinations of feature files, you can use the
run_experiment --ablation_all option instead.

Warning: Ablation will not work if you specify a train_file and test_file since no fea-
turesets are defined in that scenario.

-A, --ablation_all

Runs an ablation study where repeated experiments are conducted with all combinations of
feature files in each featureset.

Warning: This can create a huge number of jobs, so please use with caution.

-k, --keep-models

If trained models already exist for any of the learner/featureset combinations in your config-
uration file, just load those models and do not retrain/overwrite them.

-r, --resume

If result files already exist for an experiment, do not overwrite them. This is very useful when
doing a large ablation experiment and part of it crashes.

-v, --verbose

Print more status information. For every additional time this flag is specified, output gets
more verbose.

--version

Show program’s version number and exit.

GridMap options

If you have GridMap installed, run_experiment will automatically schedule jobs on your
DRMAA- compatible cluster. You can use the following options to customize this behavior.

-l, --local

Run jobs locally instead of using the cluster.4

4 This will happen automatically if GridMap cannot be imported.

40 Chapter 1. Documentation

https://pypi.org/project/gridmap/

SciKit-Learn Laboratory Documentation, Release 5.0.1

-q <queue>, --queue <queue>

Use this queue for GridMap. (default: all.q)

-m <machines>, --machines <machines>

Comma-separated list of machines to add to GridMap’s whitelist. If not specified, all avail-
able machines are used.

Note: Full names must be specified, (e.g., nlp.research.ets.org).

1.4.5 Output files

For most of the SKLL tasks the various output files generated by run_experiment share the au-
tomatically generated prefix <EXPERIMENT>_<FEATURESET>_<LEARNER>_<OBJECTIVE>, where
the following definitions hold:

<EXPERIMENT>
The value of the experiment_name field in the configuration file.

<FEATURESET>
The components of the feature set that was used for training, joined with “+”.

<LEARNER>
The learner that was used to generate the current results/model/etc.

<OBJECTIVE>
The objective function that was used to generate the current results/model/etc.

Note: In SKLL terminology, a specific combination of featuresets, learners, and objectives speci-
fied in the configuration file is called a job. Therefore, an experiment (represented by a configura-
tion file) can contain multiple jobs.

However, if the objectives field in the configuration file contains only a single value, the job can be
disambiguated using only the featuresets and the learners since the objective is fixed. Therefore,
the output files will have the prefix <EXPERIMENT>_<FEATURESET>_<LEARNER>. Similarly, if a
task has a single feature set, the output files prefix will not include the <FEATURESET> component.

The following types of output files can be generated after running an experiment configuration file
through run_experiment. Note that some file types may or may not be generated depending on the
values of the fields specified in the Output section of the configuration file.

1.4. Running Experiments 41

https://pypi.org/project/gridmap/

SciKit-Learn Laboratory Documentation, Release 5.0.1

Log files

SKLL produces two types of log files – one for each job in the experiment and a single, top level
log file for the entire experiment. Each of the job log files have the usual job prefix as described
above whereas the experiment log file is simply named <EXPERIMENT>.log.

While the job-level log files contain messages that pertain to the specific characteristics of the job
(e.g., warnings from scikit-learn pertaining to the specific learner), the experiment-level log
file will contain logging messages that pertain to the overall experiment and configuration file (e.g.,
an incorrect option specified in the configuration file). The messages in all SKLL log files are in
the following format:

<TIMESTAMP> - <LEVEL> - <MSG>

where <TIMESTAMP> refers to the exact time when the message was logged, <LEVEL> refers to
the level of the logging message (e.g., INFO, WARNING, etc.), and <MSG> is the actual content of
the message. All of the messages are also printed to the console in addition to being saved in the
job-level log files and the experiment-level log file.

Model files

Model files end in .model and are serialized skll.learner.Learner instances. run_experiment
will re-use existing model files if they exist, unless it is explicitly told not to. These model files can
also be loaded programmatically via the SKLL API, specifically the skll.learner.Learner.
from_file() method.

Results files

SKLL generates two types of result files:

1. Files ending in .results which contain a human-readable summary of the job, complete
with confusion matrix, objective function score on the test set, and values of any additional
metrics specified via the metrics configuration file option.

2. Files ending in .results.json, which contain all of the same information as the .results
files, but in a format more well-suited to automated processing. In some cases, .results.
json files may contain more information than their .results file counterparts. For example,
when doing grid search for tuning model hyperparameters, these files contain an additional
attribute grid_search_cv_results containing detailed results from the grid search pro-
cess.

42 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 5.0.1

Prediction files

Predictions files are TSV files that contain either the predicted values (for regression) OR predicted
labels/class probabiltiies (for classification) for each instance in the test feature set. The value of
the probability option decides whether SKLL outputs the labels or the probabilities.

When the predictions are labels or values, there are only two columns in the file: one containing
the ID for the instance and the other containing the prediction. The headers for the two columns in
this case are “id” and “prediction”.

When the predictions are class probabilities, there are N+1 columns in these files, where N is the
number of classes in the training data. The header for the column containing IDs is still “id” and the
labels themselves are the headers for the columns containing their respective probabilities. In the
special case of binary classification, the positive class probabilities are always in the last column.

Summary file

For every experiment you run, there will also be an experiment summary file generated that
is a tab-delimited file summarizing the results for each job in the experiment. It is named
<EXPERIMENT>_summary.tsv. For learning_curve experiments, this summary file will contain
training set sizes and the averaged scores for all combinations of featuresets, learners, and objec-
tives.

Folds file

For the cross_validate task, SKLL can also output the actual folds and instance IDs used in
the cross-validation process, if the save_cv_folds option is enabled. In this case, a file called
<EXPERIMENT>_skll_fold_ids.csv is saved to disk.

Learning curve plots

When running a learning_curve experiment, actual learning curves are also generated as .png files.
Two curves are generated for each feature set specified in the configuration file.

The first .png file is named EXPERIMENT_FEATURESET.png and contains a double-faceted learn-
ing curve plot for the featureset with the specified output metrics along the rows and the learners
along the columns. Each sub-plot has the number of training examples on the x-axis and the metric
score on the y-axis. Here’s an example of such a plot.

1.4. Running Experiments 43

SciKit-Learn Laboratory Documentation, Release 5.0.1

The second .png file is named EXPERIMENT_FEATURESET_times.png and contains a column-
faceted learning curve plot for the featureset with a single row and the specified learners along the
columns. Each sub-plot has the number of training examples on the x-axis and the model fit times
on the y-axis. Here’s an example of this plot.

You can also generate the plots from the learning curve summary file using the plot_learning_curves
utility script.

1.4.6 Integration with Weights & Biases

The output of any SKLL experiment can be automatically logged to Weights & Biases. Once the
logging is enabled, a new run will be created under the specified W&B project. The following is
logged for all tasks:

• The SKLL configuration file, including default values for fields that were left unspecified

• The learner, feature set, and size of training and testing sets for each job in the experiment

There are additional items logged depending on the task type:

• train: The full path to the generated model file is logged in the project summary.

• predict: The predictions file is logged as a table, separately for each job in the experi-
ment.

44 Chapter 1. Documentation

https://wandb.ai

SciKit-Learn Laboratory Documentation, Release 5.0.1

• evaluate: The task summary file is logged as a table. For classification experiments, the
confusion matrix as well as a table that shows per-label precision, recall and f-measure
are logged for each job.

• cross_validate: Similar output logged as the evaluate task, with a separate job per CV
fold.

• learning_curve The summary file is logged as a table, and all learning curve plots are
logged as media artifacts.

The above information logged to Weights & Biases can then be used to create informative reports
for your SKLL experiments. As an example, here is a report created on Weights & Biases, based
on the data logged while running the titanic tutorial. The report contains three sections, one per
SKLL task, with a subset of the output tables and metrics that were logged for each of the tasks.

To view the full output and create your own reports, turn on logging to Weights and Biases in the
configuration Output section.

1.5 Using Custom Metrics

Although SKLL comes with a huge number of built-in metrics for both classification and regression,
there might be occasions when you want to use a custom metric function for hyper-parameter tuning
or for evaluation. This section shows you how to do that.

1.5.1 Writing Custom Metric Functions

First, let’s look at how to write valid custom metric functions. A valid custom metric function must
take two array-like positional arguments: the first being the true labels or scores, and the second
being the predicted labels or scores. This function can also take two optional keyword arguments:

1. greater_is_better: a boolean keyword argument that indicates whether a higher value of
the metric indicates better performance (True) or vice versa (False). The default value is
True.

2. response_method : a string keyword argument that specifies the response method to use to
get predictions from an estimator. Possible values are:

• "predict" : uses estimator’s predict() method to get class labels

• "predict_proba" : uses estimator’s predict_proba() method to get class probabilities

• "decision_function" : uses estimator’s decision_function() method to get continu-
ous decision function values

• If the value is a list or tuple of the above strings, it indicates that the scorer should use
the first method in the list which is implemented by the estimator.

• If the value is None, it is the same as "predict".

1.5. Using Custom Metrics 45

https://wandb.ai/etslabs/skll_titanic_example/reports/Titanic-Example-Report--Vmlldzo2ODAzNDY1?accessToken=jd3tssj6hs8rniby0rqgeahsm9oexppjgkjj3gdiisag49a0tkx1wnak806k4xjd
https://scikit-learn.org/stable/glossary.html#term-predict
https://scikit-learn.org/stable/glossary.html#term-predict_proba
https://scikit-learn.org/stable/glossary.html#term-decision_function

SciKit-Learn Laboratory Documentation, Release 5.0.1

The default value for response_method is None.

Note that these keyword arguments are identical to the keyword arguments for the
sklearn.metrics.make_scorer() function and serve the same purpose.

Important: Previous versions of SKLL offered the needs_proba and needs_threshold key-
word arguments for custom metrics but these are now deprecated in scikit-learn and replaced by
the response_method keyword argument. To replicate the behavior of needs_proba=True, use
response_method="predict_proba" instead and to replicate needs_threshold=True, use
response_method=("decision_function", "predict_proba") instead.

In short, custom metric functions take two required positional arguments (order matters) and two
optional keyword arguments. Here’s a simple example of a custom metric function: F with =0.75
defined in a file called custom.py.

Listing 1: custom.py

from sklearn.metrics import fbeta_score

def f075(y_true, y_pred):
return fbeta_score(y_true, y_pred, beta=0.75)

Obviously, you may write much more complex functions that aren’t directly available in scikit-learn.
Once you have written your metric function, the next step is to use it in your SKLL experiment.

1.5.2 Using in Configuration Files

The first way of using custom metric functions is via your SKLL experiment configuration file if
you are running SKLL via the command line. To do so:

1. Add a field called custom_metric_path in the Input section of your configuration file and set
its value to be the path to the .py file containing your custom metric function.

2. Add the name of your custom metric function to either the objectives field in the Tuning
section (if you wish to use it to tune the model hyper-parameters) or to the metrics field in
the Output section if you wish to only use it for evaluation. You can also add it to both.

Here’s an example configuration file using data from the SKLL Titanic example that illustrates this.
This file assumes that the file custom.py above is located in the same directory.

[General]
experiment_name = titanic
task = evaluate

[Input]
(continues on next page)

46 Chapter 1. Documentation

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html#sklearn.metrics.make_scorer

SciKit-Learn Laboratory Documentation, Release 5.0.1

(continued from previous page)
train_directory = train
test_directory = dev
featuresets = [["family.csv", "misc.csv", "socioeconomic.csv", "vitals.csv
→˓"]]
learners = ["RandomForestClassifier", "DecisionTreeClassifier", "SVC",
→˓"MultinomialNB"]
label_col = Survived
id_col = PassengerId
custom_metric_path = custom.py

[Tuning]
grid_search = true
objectives = ['f075']

[Output]
metrics = ['roc_auc']
probability = true
logs = output
results = output
predictions = output
models = output

And that’s it! SKLL will dynamically load and use your custom metric function when you run
your experiment. Custom metric functions can be used for both hyper-parameter tuning and for
evaluation.

1.5.3 Using via the API

To use a custom metric function via the SKLL API, you first need to register the custom metric
function using the register_custom_metric() function and then just use the metric name either
as a grid search objective, an output metric, or both.

Here’s a short example that shows how to use the f075() custom metric function we defined above
via the SKLL API. Again, we assume that custom.py is located in the current directory.

from skll.data import CSVReader
from skll.learner import Learner
from skll.metrics import register_custom_metric

register the custom function with SKLL
_ = register_custom_metric("custom.py", "f075")

(continues on next page)

1.5. Using Custom Metrics 47

SciKit-Learn Laboratory Documentation, Release 5.0.1

(continued from previous page)
let's assume the training data lives in a file called "train.csv"
we load that into a SKLL FeatureSet
fs = CSVReader.for_path("train.csv").read()

instantiate a learner and tune its parameters using the custom metric
learner = Learner('LogisticRegression')
learner.train(fs, grid_objective="f075")

...

As with configuration files, custom metric functions can be used for both training as well as evalu-
ation with the API.

Important:

1. When using the API, if you have multiple metric functions defined in a Python source file,
you must register each one individually using register_custom_metric().

2. When using the API, if you try to re-register the same metric in the same Python session,
it will raise a NameError. Therefore, if you edit your custom metric, you must start a new
Python session to be able to see the changes.

3. When using the API, if the names of any of your custom metric functions conflict with names
of metrics that already exist in either SKLL or scikit-learn, it will raise a NameError. You
should rename the metric function in that case.

4. When using a configuration file, if your custom metric name conflicts with names of metrics
that already exist in either SKLL or scikit-learn, it will be silently ignored in favor of the
already existing metric.

5. Unlike for the built-in metrics, SKLL does not check whether your custom metric function is
appropriate for classification or regression. You must make that decision for yourself.

1.6 Utility Scripts

In addition to the main script, run_experiment, SKLL comes with a number of helpful utility scripts
that can be used to prepare feature files and perform other routine tasks. Each is described briefly
below.

48 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 5.0.1

1.6.1 compute_eval_from_predictions

Compute evaluation metrics from prediction files after you have run an experiment.

Positional Arguments

examples_file

SKLL input file with labeled examples

predictions_file

file with predictions from SKLL

metric_names

metrics to compute

Optional Arguments

--version

Show program’s version number and exit.

1.6.2 filter_features

Filter feature file to remove (or keep) any instances with the specified IDs or labels. Can also be
used to remove/keep feature columns.

Warning: Starting with v2.5 of SKLL, the arguments for filter_features have changed
and are no longer backwards compatible with older versions of SKLL. Specifically:

1. The input and output files must now be specified with -i and -o respectively.

2. --inverse must now be used to invert the filtering command since -i is used to specify
the input file.

1.6. Utility Scripts 49

SciKit-Learn Laboratory Documentation, Release 5.0.1

Required Arguments

-i, --input

Input feature file (ends in .arff, .csv, .jsonlines, .ndj, or .tsv)

-o, --output

Output feature file (must have same extension as input file)

Optional Arguments

-f <feature <feature ...>>, --feature <feature <feature ...>>

A feature in the feature file you would like to keep. If unspecified, no features are removed.

-I <id <id ...>>, --id <id <id ...>>

An instance ID in the feature file you would like to keep. If unspecified, no instances are
removed based on their IDs.

--inverse

Instead of keeping features and/or examples in lists, remove them.

--id_col <id_col>

Name of the column which contains the instance IDs in ARFF, CSV, or TSV files. (default:
id)

-L <label <label ...>>, --label <label <label ...>>

A label in the feature file you would like to keep. If unspecified, no instances are removed
based on their labels.

-l <label_col>, --label_col <label_col>

Name of the column which contains the class labels in ARFF, CSV, or TSV files. For ARFF
files, this must be the final column to count as the label. (default: y)

-db, --drop-blanks

Drop all lines/rows that have any blank values. (default: False)

-rb <replacement>, --replace-blanks-with <replacement>

Specifies a new value with which to replace blank values in all columns in the file. To replace
blanks differently in each column, use the SKLL Reader API directly. (default: None)

-q, --quiet

Suppress printing of "Loading..." messages.

--version

Show program’s version number and exit.

50 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 5.0.1

1.6.3 generate_predictions

Loads a trained model and outputs predictions based on input feature files. Useful if you want to
reuse a trained model as part of a larger system without creating configuration files. Offers the
following modes of operation:

• For non-probabilistic classification and regression, generate the predictions.

• For probabilistic classification, generate either the most likely labels or the probabilities for
each class label.

• For binary probablistic classification, generate the positive class label only if its probability
exceeds the given threshold. The positive class label is either read from the model file or
inferred the same way as a SKLL learner would.

Positional Arguments

model_file

Model file to load and use for generating predictions.

input_file(s)

One or more feature file(s) (ending in .arff, .csv, .jsonlines, .libsvm, .ndj, or .tsv)
(with or without the label column), with the appropriate suffix.

Optional Arguments

-i <id_col>, --id_col <id_col>

Name of the column which contains the instance IDs in ARFF, CSV, or TSV files. (default:
id)

-l <label_col>, --label_col <label_col>

Name of the column which contains the labels in ARFF, CSV, or TSV files. For ARFF files,
this must be the final column to count as the label. (default: y)

-o <path>, --output_file <path>

Path to output TSV file. If not specified, predictions will be printed to stdout. For probabilistic
binary classification, the probability of the positive class will always be in the last column.

-p, --predict_labels

If the model does probabilistic classification, output the class label with the highest proba-
bility instead of the class probabilities.

-q, --quiet

Suppress printing of "Loading..." messages.

1.6. Utility Scripts 51

SciKit-Learn Laboratory Documentation, Release 5.0.1

-t <threshold>, --threshold <threshold>

If the model does binary probabilistic classification, return the positive class label only if it
meets/exceeds the given threshold and the other class label otherwise.

--version

Show program’s version number and exit.

1.6.4 join_features

Combine multiple feature files into one larger file.

Positional Arguments

infile ...

Input feature files (ends in .arff, .csv, .jsonlines, .ndj, or .tsv)

outfile

Output feature file (must have same extension as input file)

Optional Arguments

-l <label_col>, --label_col <label_col>

Name of the column which contains the labels in ARFF, CSV, or TSV files. For ARFF files,
this must be the final column to count as the label. (default: y)

-q, --quiet

Suppress printing of "Loading..." messages.

--version

Show program’s version number and exit.

1.6.5 plot_learning_curves

Generate learning curve plots from a learning curve output TSV file.

52 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 5.0.1

Positional Arguments

tsv_file

Input learning Curve TSV output file.

output_dir

Output directory to store the learning curve plots.

1.6.6 print_model_weights

Prints out the weights of a given trained model. If the model was trained using feature hashing,
feature names of the form hashed_feature_XX will be used since the original feature names no
longer apply.

Positional Arguments

model_file

Model file to load.

Optional Arguments

--k <k>

Number of top features to print (0 for all) (default: 50)

--sign {positive,negative,all}

Show only positive, only negative, or all weights (default: all)

--sort_by_labels

Order the features by classes (default: False). Mutually exclusive with the --k option.

--version

Show program’s version number and exit.

1.6. Utility Scripts 53

SciKit-Learn Laboratory Documentation, Release 5.0.1

1.6.7 skll_convert

Convert between .arff, .csv., .jsonlines, .libsvm, and .tsv formats.

Positional Arguments

infile

Input feature file (ends in .arff, .csv, .jsonlines, .libsvm, .ndj, or .tsv)

outfile

Output feature file (ends in .arff, .csv, .jsonlines, .libsvm, .ndj, or .tsv)

Optional Arguments

-l <label_col>, --label_col <label_col>

Name of the column which contains the labels in ARFF, CSV, or TSV files. For ARFF files,
this must be the final column to count as the label. (default: y)

-q, --quiet

Suppress printing of "Loading..." messages.

--arff_regression

Create ARFF files for regression, not classification.

--arff_relation ARFF_RELATION

Relation name to use for ARFF file. (default: skll_relation)

--no_labels

Used to indicate that the input data has no labels.

--reuse_libsvm_map REUSE_LIBSVM_MAP

If you want to output multiple files that use the same mapping from labels and features to
numbers when writing libsvm files, you can specify an existing .libsvm file to reuse the map-
ping from.

--version

Show program’s version number and exit.

54 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 5.0.1

1.6.8 summarize_results

Creates an experiment summary TSV file from a list of JSON files generated by run_experiment.

Positional Arguments

summary_file

TSV file to store summary of results.

json_file

JSON results file generated by run_experiment.

Optional Arguments

-a, --ablation

The results files are from an ablation run.

--version

Show program’s version number and exit.

1.7 API Documentation

1.7.1 Quickstart

Here is a quick run-down of how you accomplish common tasks.

Load a FeatureSet from a file:

from skll.data import Reader

example_reader = Reader.for_path('myexamples.csv')
train_examples = example_reader.read()

Or, work with an existing pandas DataFrame:

from skll.data import FeatureSet

assuming the data labels are in a column called "y"
train_examples = FeatureSet.from_data_frame(my_data_frame,

"A Name for My Data",
labels_column="y")

1.7. API Documentation 55

SciKit-Learn Laboratory Documentation, Release 5.0.1

Train a linear svm (using the already loaded train_examples):

from skll.learner import Learner

learner = Learner('LinearSVC')
learner.train(train_examples)

Evaluate a trained model:

test_examples = Reader.for_path('test.tsv').read()
conf_matrix, accuracy, prf_dict, model_params, obj_score = learner.
→˓evaluate(test_examples)

Perform ten-fold cross-validation with a radial SVM:

learner = Learner('SVC')
fold_result_list, grid_search_scores = learner.cross-validate(train_
→˓examples)

fold_result_list in this case is a list of the results returned by learner.evaluate for each
fold, and grid_search_scores is the highest objective function value achieved when tuning the
model.

Generate predictions from a trained model:

predictions = learner.predict(test_examples)

1.7.2 config Package

skll.config.fix_json(json_string)
Fix incorrectly formatted quotes and capitalized booleans in JSON string.

Parameters
json_string (str) – A JSON-style string.

Returns
The normalized JSON string.

Return type
str

skll.config.load_cv_folds(folds_file, ids_to_floats=False)
Load cross-validation folds from a CSV file.

The CSV file must contain two columns: example ID and fold ID (and a header).

Parameters

56 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SciKit-Learn Laboratory Documentation, Release 5.0.1

• folds_file (skll.types.PathOrStr) – The path to a folds file to
read.

• ids_to_floats (bool, default=False) – Whether to convert IDs to
floats.

Returns
Dictionary with example IDs as the keys and fold IDs as the values. If
ids_to_floats is set to True, the example IDs are floats but otherwise they are
strings.

Return type
skll.types.FoldMapping

Raises
ValueError – If example IDs cannot be converted to floats and ids_to_floats
is True.

skll.config.locate_file(file_path, config_dir)
Locate a file, given a file path and configuration directory.

Parameters

• file_path (skll.types.PathOrStr) – The file to locate. Path may
be absolute or relative.

• config_dir (skll.types.PathOrStr) – The path to the configuration
file directory.

Returns
path_to_check – The normalized absolute path, if it exists.

Return type
str

Raises
FileNotFoundError – If the file does not exist.

1.7.3 data Package

data.featureset Module

Classes related to storing/merging feature sets.

author
Dan Blanchard (dblanchard@ets.org)

author
Nitin Madnani (nmadnani@ets.org)

1.7. API Documentation 57

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
mailto:dblanchard@ets.org
mailto:nmadnani@ets.org

SciKit-Learn Laboratory Documentation, Release 5.0.1

author
Jeremy Biggs (jbiggs@ets.org)

organization
ETS

class skll.data.featureset.FeatureSet(name, ids, labels=None, features=None,
vectorizer=None)

Bases: object

Encapsulate features, labels, and metadata for a given dataset.

Parameters

• name (str) – The name of this feature set.

• ids (Union[List[str], numpy.ndarray]) – Example IDs for this
set.

• labels (Optional[Union[List[str], numpy.ndarray],
default=None) – Labels for this set.

• features (Optional[Union[skll.types.FeatureDictList, numpy.
ndarray]], default=None) – The features for each instance represented
as either a list of dictionaries or a numpy array (if vectorizer is also
specified).

• vectorizer (Optional[Union[sklearn.feature_extraction.
DictVectorizer, sklearn.feature_extraction.
FeatureHasher], default=None) – Vectorizer which will be used
to generate the feature matrix.

Warning: FeatureSets can only be equal if the order of the instances is identical be-
cause these are stored as lists/arrays. Since scikit-learn’s DictVectorizer automati-
cally sorts the underlying feature matrix if it is sparse, we do not do any sorting before
checking for equality. This is not a problem because we _always_ use sparse matrices
with DictVectorizer when creating FeatureSets.

Notes

If ids, labels, and/or features are not None, the number of rows in each array must be equal.

filter(ids=None, labels=None, features=None, inverse=False)
Remove or keep features and/or examples from the given feature set.

Filtering is done in-place.

Parameters

58 Chapter 1. Documentation

mailto:jbiggs@ets.org
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html#sklearn.feature_extraction.DictVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html#sklearn.feature_extraction.DictVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html#sklearn.feature_extraction.FeatureHasher
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html#sklearn.feature_extraction.FeatureHasher

SciKit-Learn Laboratory Documentation, Release 5.0.1

• ids (Optional[List[skll.types.IdType]], default=None) – Exam-
ples to keep in the FeatureSet. If None, no ID filtering takes place.

• labels (Optional[List[skll.types.LabelType]], default=None) –
Labels that we want to retain examples for. If None, no label filtering
takes place.

• features (Optional[List[str]], default=None) – Features to
keep in the FeatureSet. To help with filtering string-valued features that
were converted to sequences of boolean features when read in, any fea-
tures in the FeatureSet that contain a = will be split on the first occur-
rence and the prefix will be checked to see if it is in features. If None,
no feature filtering takes place. Cannot be used if FeatureSet uses a Fea-
tureHasher for vectorization.

• inverse (bool, default=False) – Instead of keeping features
and/or examples in lists, remove them.

Raises
ValueError – If attempting to use features to filter a FeatureSet that
uses a FeatureHasher vectorizer.

Return type
None

filtered_iter(ids=None, labels=None, features=None, inverse=False)
Retain only the specified features and/or examples from the output.

Parameters

• ids (Optional[List[skll.types.IdType]], default=None) – Exam-
ples to keep in the FeatureSet. If None, no ID filtering takes place.

• labels (Optional[List[skll.types.LabelType]], default=None) –
Labels that we want to retain examples for. If None, no label filtering
takes place.

• features (Optional[Collection[str]], default=None) –
Features to keep in the FeatureSet. To help with filtering string-
valued features that were converted to sequences of boolean features
when read in, any features in the FeatureSet that contain a = will be
split on the first occurrence and the prefix will be checked to see if it is
in features. If None, no feature filtering takes place. Cannot be used
if FeatureSet uses a FeatureHasher for vectorization.

• inverse (bool, default=False) – Instead of keeping features
and/or examples in lists, remove them.

Returns

A generator that yields 3-tuples containing:

1.7. API Documentation 59

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

SciKit-Learn Laboratory Documentation, Release 5.0.1

• skll.types.IdType - The ID of the example.

• skll.types.LabelType - The label of the example.

• skll.types.FeatureDict - The feature dictionary, with feature
name as the key and example value as the value.

Return type
skll.types.FeatGenerator

Raises

• ValueError – If the vectorizer is not a DictVectorizer.

• ValueError – If any of the “labels”, “features”, or “vectorizer” at-
tribute is None.

static from_data_frame(df , name, labels_column=None, vectorizer=None)
Create a FeatureSet instance from a pandas data frame.

Will raise an Exception if pandas is not installed in your environment. The ids in the
FeatureSet will be the index from the given frame.

Parameters

• df (pandas.DataFrame) – The pandas.DataFrame object to use as a
FeatureSet.

• name (str) – The name of the output FeatureSet instance.

• labels_column (Optional[str], default=None) – The name of
the column containing the labels (data to predict).

• vectorizer (Optional[Union[sklearn.feature_extraction.
DictVectorizer, sklearn.feature_extraction.
FeatureHasher]], default=None) – Vectorizer which will be used to
generate the feature matrix.

Returns
A FeatureSet instance generated from from the given data frame.

Return type
skll.data.featureset.FeatureSet

property has_labels

Check if FeatureSet has finite labels.

Returns
has_labels – Whether or not this FeatureSet has any finite labels.

Return type
bool

60 Chapter 1. Documentation

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html#sklearn.feature_extraction.DictVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html#sklearn.feature_extraction.DictVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html#sklearn.feature_extraction.FeatureHasher
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html#sklearn.feature_extraction.FeatureHasher
https://docs.python.org/3/library/functions.html#bool

SciKit-Learn Laboratory Documentation, Release 5.0.1

static split(fs, ids_for_split1, ids_for_split2=None)
Split FeatureSet into two new FeatureSet instances.

The splitting is done based on the given indices for the two splits.

Parameters

• fs (skll.data.featureset.FeatureSet) – The FeatureSet in-
stance to split.

• ids_for_split1 (List[int]) – A list of example indices which will
be split out into the first FeatureSet instance. Note that the FeatureSet
instance will respect the order of the specified indices.

• ids_for_split2 (Optional[List[int]], default=None) – An
optional list of example indices which will be split out into the second
FeatureSet instance. Note that the FeatureSet instance will respect
the order of the specified indices. If this is not specified, then the second
FeatureSet instance will contain the complement of the first set of
indices sorted in ascending order.

Returns
A tuple containing the two featureset instances.

Return type
Tuple[skll.data.featureset.FeatureSet, skll.data.
featureset.FeatureSet]

data.readers Module

class skll.data.readers.Reader(path_or_list, quiet=True, ids_to_floats=False,
label_col='y', id_col='id', class_map=None,
sparse=True, feature_hasher=False,
num_features=None, logger=None)

Bases: object

Load FeatureSets from files on disk.

This is the base class used to create featureset readers for different file types.

Parameters

• path_or_list (Union[skll.types.PathOrStr, List[Dict[str, Any]])
– Path or a list of example dictionaries.

• quiet (bool, default=True) – Do not print “Loading. . . ” status mes-
sage to stderr.

• ids_to_floats (bool, default=False) – Convert IDs to float to
save memory. Will raise error if we encounter an a non-numeric ID.

1.7. API Documentation 61

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

SciKit-Learn Laboratory Documentation, Release 5.0.1

• label_col (Optional[str], default='y') – Name of the column
which contains the class labels for ARFF/CSV/TSV files. If no column
with that name exists, or None is specified, the data is considered to be
unlabelled.

• id_col (str, default='id') – Name of the column which contains the
instance IDs. If no column with that name exists, or None is specified,
example IDs will be automatically generated.

• class_map (Optional[skll.types.ClassMap], default=None) – Map-
ping from original class labels to new ones. This is mainly used for col-
lapsing multiple labels into a single class. Anything not in the mapping
will be kept the same. The keys are the new labels and the list of values
for each key is the labels to be collapsed to said new label.

• sparse (bool, default=True) – Whether or not to store the features
in a numpy CSR matrix when using a DictVectorizer to vectorize the
features.

• feature_hasher (bool, default=False) – Whether or not a Fea-
tureHasher should be used to vectorize the features.

• num_features (Optional[int], default=None) – If using a Fea-
tureHasher, how many features should the resulting matrix have? You
should set this to a power of 2 greater than the actual number of features
to avoid collisions.

• logger (Optional[logging.Logger], default=None) – A logger
instance to use to log messages instead of creating a new one by default.

classmethod for_path(path_or_list, **kwargs)
Instantiate Reader sub-class based on the file extension.

If the input is a list of dictionaries instead of a path, use a dictionary reader instead.

Parameters

• path_or_list (Union[skll.types.PathOrStr, skll.types.
FeatureDictList]) – A path or list of example dictionaries.

• kwargs (Optional[Dict[str, Any]]) – The arguments to the
Reader object being instantiated.

Returns
reader – A new instance of the Reader sub-class that is appropriate for the
given path.

Return type
skll.data.readers.Reader

62 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#str

SciKit-Learn Laboratory Documentation, Release 5.0.1

Raises
ValueError – If file does not have a valid extension.

read()

Load examples from various file formats.

The following formats are supported: .arff, .csv, .jsonlines, .libsvm, .ndj, or
.tsv formats.

Returns
A FeatureSet instance representing the input file.

Return type
skll.data.featureset.FeatureSet

Raises

• ValueError – If ids_to_floats is True, but IDs cannot be con-
verted.

• ValueError – If no features are found.

• ValueError – If the example IDs are not unique.

class skll.data.readers.CSVReader(path_or_list, replace_blanks_with=None,
drop_blanks=False, pandas_kwargs=None,
**kwargs)

Bases: Reader

Create a FeatureSet instance from a CSV file.

If example/instance IDs are included in the files, they must be specified in the id column.
Also, there must be a column with the name specified by label_col if the data is labeled.

Parameters

• path_or_list (Union[skll.types.PathOrStr, List[Dict[str,
Any]]]) – The path to a comma-delimited file.

• replace_blanks_with (Optional[Union[Number, Dict[str,
Number]]], default=None) – Specifies a new value with which to
replace blank values. Options are:

– Number : A (numeric) value with which to replace blank values.

– dict : A dictionary specifying the replacement value for each column.

– None : Blank values will be left as blanks, and not replaced.

The replacement occurs after the data set is read into a pd.DataFrame.

• drop_blanks (bool, default=False) – If True, remove lines/rows
that have any blank values. These lines/rows are removed after the the
data set is read into a pd.DataFrame.

1.7. API Documentation 63

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

SciKit-Learn Laboratory Documentation, Release 5.0.1

• pandas_kwargs (Optional[Dict[str, Any]], default=None) –
Arguments that will be passed directly to the pandas I/O reader.

• kwargs (Optional[Dict[str, Any]]) – Other arguments to the
Reader object.

class skll.data.readers.TSVReader(path_or_list, replace_blanks_with=None,
drop_blanks=False, pandas_kwargs=None,
**kwargs)

Bases: CSVReader

Create a FeatureSet instance from a TSV file.

If example/instance IDs are included in the files, they must be specified in the id column.
Also there must be a column with the name specified by label_col if the data is labeled.

Parameters

• path_or_list (str) – The path to a comma-delimited file.

• replace_blanks_with (Optional[Union[Number, Dict[str,
Number]]], default=None) – Specifies a new value with which to
replace blank values. Options are:

– Number : A (numeric) value with which to replace blank values.

– dict : A dictionary specifying the replacement value for each column.

– None : Blank values will be left as blanks, and not replaced.

The replacement occurs after the data set is read into a pd.DataFrame.

• drop_blanks (bool, default=False) – If True, remove lines/rows
that have any blank values. These lines/rows are removed after the the
data set is read into a pd.DataFrame.

• pandas_kwargs (Optional[Dict[str, Any]], default=None) –
Arguments that will be passed directly to the pandas I/O reader.

• kwargs (Optional[Dict[str, Any]]) – Other arguments to the
Reader object.

class skll.data.readers.NDJReader(path_or_list, quiet=True, ids_to_floats=False,
label_col='y', id_col='id', class_map=None,
sparse=True, feature_hasher=False,
num_features=None, logger=None)

Bases: Reader

Create a FeatureSet instance from a JSONlines/NDJ file.

If example/instance IDs are included in the files, they must be specified as the “id” key in
each JSON dictionary.

64 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SciKit-Learn Laboratory Documentation, Release 5.0.1

Parameters

• path_or_list (Union[skll.types.PathOrStr, List[Dict[str, Any]])
– Path or a list of example dictionaries.

• quiet (bool, default=True) – Do not print “Loading. . . ” status mes-
sage to stderr.

• ids_to_floats (bool, default=False) – Convert IDs to float to
save memory. Will raise error if we encounter an a non-numeric ID.

• label_col (Optional[str], default='y') – Name of the column
which contains the class labels for ARFF/CSV/TSV files. If no column
with that name exists, or None is specified, the data is considered to be
unlabelled.

• id_col (str, default='id') – Name of the column which contains the
instance IDs. If no column with that name exists, or None is specified,
example IDs will be automatically generated.

• class_map (Optional[skll.types.ClassMap], default=None) – Map-
ping from original class labels to new ones. This is mainly used for col-
lapsing multiple labels into a single class. Anything not in the mapping
will be kept the same. The keys are the new labels and the list of values
for each key is the labels to be collapsed to said new label.

• sparse (bool, default=True) – Whether or not to store the features
in a numpy CSR matrix when using a DictVectorizer to vectorize the
features.

• feature_hasher (bool, default=False) – Whether or not a Fea-
tureHasher should be used to vectorize the features.

• num_features (Optional[int], default=None) – If using a Fea-
tureHasher, how many features should the resulting matrix have? You
should set this to a power of 2 greater than the actual number of features
to avoid collisions.

• logger (Optional[logging.Logger], default=None) – A logger
instance to use to log messages instead of creating a new one by default.

class skll.data.readers.DictListReader(path_or_list, quiet=True, ids_to_floats=False,
label_col='y', id_col='id', class_map=None,
sparse=True, feature_hasher=False,
num_features=None, logger=None)

Bases: Reader

Facilitate programmatic use of methods that take FeatureSet as input.

Support Learner.predict() and other methods that take FeatureSet objects as input. It
iterates over examples in the same way as other Reader classes, but uses a list of example

1.7. API Documentation 65

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/logging.html#logging.Logger

SciKit-Learn Laboratory Documentation, Release 5.0.1

dictionaries instead of a path to a file.

Parameters

• path_or_list (Union[skll.types.PathOrStr, List[Dict[str, Any]])
– Path or a list of example dictionaries.

• quiet (bool, default=True) – Do not print “Loading. . . ” status mes-
sage to stderr.

• ids_to_floats (bool, default=False) – Convert IDs to float to
save memory. Will raise error if we encounter an a non-numeric ID.

• label_col (Optional[str], default='y') – Name of the column
which contains the class labels for ARFF/CSV/TSV files. If no column
with that name exists, or None is specified, the data is considered to be
unlabelled.

• id_col (str, default='id') – Name of the column which contains the
instance IDs. If no column with that name exists, or None is specified,
example IDs will be automatically generated.

• class_map (Optional[skll.types.ClassMap], default=None) – Map-
ping from original class labels to new ones. This is mainly used for col-
lapsing multiple labels into a single class. Anything not in the mapping
will be kept the same. The keys are the new labels and the list of values
for each key is the labels to be collapsed to said new label.

• sparse (bool, default=True) – Whether or not to store the features
in a numpy CSR matrix when using a DictVectorizer to vectorize the
features.

• feature_hasher (bool, default=False) – Whether or not a Fea-
tureHasher should be used to vectorize the features.

• num_features (Optional[int], default=None) – If using a Fea-
tureHasher, how many features should the resulting matrix have? You
should set this to a power of 2 greater than the actual number of features
to avoid collisions.

• logger (Optional[logging.Logger], default=None) – A logger
instance to use to log messages instead of creating a new one by default.

read()

Read examples from list of dictionaries.

Returns
A FeatureSet representing the list of dictionaries we read in.

Return type
skll.data.FeatureSet

66 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/logging.html#logging.Logger

SciKit-Learn Laboratory Documentation, Release 5.0.1

class skll.data.readers.ARFFReader(path_or_list, **kwargs)
Bases: Reader

Create a FeatureSet instance from an ARFF file.

If example/instance IDs are included in the files, they must be specified in the id column.
Also, there must be a column with the name specified by label_col if the data is labeled,
and this column must be the final one (as it is in Weka).

Parameters

• path_or_list (Union[skll.types.PathOrStr, List[Dict[str,
Any]]]) – The path to the ARFF file.

• kwargs (Optional[Dict[str, Any]]) – Other arguments to the
Reader object.

static split_with_quotes(string, delimiter=' ', quote_char="'", escape_char='\\')
Split strings but not on split delimiters enclosed in quotes.

Parameters

• string (str) – The string with quotes to split

• delimiter (str, default=' ') – The delimiter to split on.

• quote_char (str, default="'") – The quote character to ignore.

• escape_char (str, default='\') – The escape character.

Return type
List[str]

class skll.data.readers.LibSVMReader(path_or_list, quiet=True, ids_to_floats=False,
label_col='y', id_col='id', class_map=None,
sparse=True, feature_hasher=False,
num_features=None, logger=None)

Bases: Reader

Create a FeatureSet instance from a LibSVM/LibLinear/SVMLight file.

We use a specially formatted comment for storing example IDs, class names, and feature
names, which are normally not supported by the format. The comment is not mandatory,
but without it, your labels and features will not have names. The comment is structured as
follows:

ExampleID | 1=FirstClass | 1=FirstFeature 2=SecondFeature

Parameters

• path_or_list (Union[skll.types.PathOrStr, List[Dict[str, Any]])
– Path or a list of example dictionaries.

1.7. API Documentation 67

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

SciKit-Learn Laboratory Documentation, Release 5.0.1

• quiet (bool, default=True) – Do not print “Loading. . . ” status mes-
sage to stderr.

• ids_to_floats (bool, default=False) – Convert IDs to float to
save memory. Will raise error if we encounter an a non-numeric ID.

• label_col (Optional[str], default='y') – Name of the column
which contains the class labels for ARFF/CSV/TSV files. If no column
with that name exists, or None is specified, the data is considered to be
unlabelled.

• id_col (str, default='id') – Name of the column which contains the
instance IDs. If no column with that name exists, or None is specified,
example IDs will be automatically generated.

• class_map (Optional[skll.types.ClassMap], default=None) – Map-
ping from original class labels to new ones. This is mainly used for col-
lapsing multiple labels into a single class. Anything not in the mapping
will be kept the same. The keys are the new labels and the list of values
for each key is the labels to be collapsed to said new label.

• sparse (bool, default=True) – Whether or not to store the features
in a numpy CSR matrix when using a DictVectorizer to vectorize the
features.

• feature_hasher (bool, default=False) – Whether or not a Fea-
tureHasher should be used to vectorize the features.

• num_features (Optional[int], default=None) – If using a Fea-
tureHasher, how many features should the resulting matrix have? You
should set this to a power of 2 greater than the actual number of features
to avoid collisions.

• logger (Optional[logging.Logger], default=None) – A logger
instance to use to log messages instead of creating a new one by default.

data.writers Module

class skll.data.writers.Writer(path, feature_set, quiet=True, subsets=None,
logger=None)

Bases: object

Write out FeatureSets to files on disk.

This is the base class used to create featureset writers for different file types.

Parameters

68 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#object

SciKit-Learn Laboratory Documentation, Release 5.0.1

• path (skll.types.PathOrStr) – A path to the feature file we would
like to create. The suffix to this filename must be .arff, .csv, .
jsonlines, .libsvm, .ndj, or .tsv. If subsets is not None, when
calling the write() method, path is assumed to be a string containing
the path to the directory to write the feature files with an additional file
extension specifying the file type. For example /foo/.csv.

• feature_set (skll.data.featureset.FeatureSet) – The
FeatureSet instance to dump to the file.

• quiet (bool, default=True) – Do not print “Writing. . . ” status mes-
sage to stderr.

• subsets (Optional[Dict[str, List[str]]], default=None) –
A mapping from subset names to lists of feature names that are included in
those sets. If given, a feature file will be written for every subset (with the
name containing the subset name as suffix to path). Note, since string-
valued features are automatically converted into boolean features with
names of the form FEATURE_NAME=STRING_VALUE, when doing the fil-
tering, the portion before the = is all that’s used for matching. Therefore,
you do not need to enumerate all of these boolean feature names in your
mapping.

• logger (Optional[logging.Logger], default=None) – A logger
instance to use to log messages instead of creating a new one by default.

classmethod for_path(path, feature_set, **kwargs)
Retrieve object of Writer sub-class appropriate for given path.

Parameters

• path (skll.types.PathOrStr) – A path to the feature file we would
like to create. The suffix to this filename must be .arff, .csv, .
jsonlines, .libsvm, .ndj, or .tsv. If subsets is not None, when
calling the write() method, path is assumed to be a string containing
the path to the directory to write the feature files with an additional file
extension specifying the file type. For example /foo/.csv.

• feature_set (skll.data.featureset.FeatureSet) – The
FeatureSet instance to dump to the output file.

• kwargs (Optional[Dict[str, Any]]) – The keyword arguments
for for_path are the same as the initializer for the desired Writer
subclass.

Returns
writer – New instance of the Writer sub-class that is appropriate for the
given path.

1.7. API Documentation 69

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#str

SciKit-Learn Laboratory Documentation, Release 5.0.1

Return type
skll.data.Writer

write()

Write out this Writer’s FeatureSet to a file in its format.

Return type
None

class skll.data.writers.CSVWriter(path, feature_set, quiet=True, subsets=None,
logger=None, label_col='y', id_col='id',
pandas_kwargs=None)

Bases: Writer

Writer for writing out FeatureSet instances as CSV files.

Parameters

• path (skll.types.PathOrStr) – A path to the feature file we would
like to create. If subsets is not None, this is assumed to be a string con-
taining the path to the directory to write the feature files with an additional
file extension specifying the file type. For example /foo/.csv.

• feature_set (skll.data.featureset.FeatureSet) – The
FeatureSet instance to dump to the output file.

• quiet (bool, default=True) – Do not print “Writing. . . ” status mes-
sage to stderr.

• subsets (Optional[Dict[str, List[str]]], default=None) –
A mapping from subset names to lists of feature names that are included in
those sets. If given, a feature file will be written for every subset (with the
name containing the subset name as suffix to path). Note, since string-
valued features are automatically converted into boolean features with
names of the form FEATURE_NAME=STRING_VALUE, when doing the fil-
tering, the portion before the = is all that’s used for matching. Therefore,
you do not need to enumerate all of these boolean feature names in your
mapping.

• logger (Optional[logging.Logger], default=None) – A logger
instance to use to log messages instead of creating a new one by default.

• label_col (str, default="y") – The column name containing the
label.

• id_col (str, default="id") – The column name containing the ID.

• pandas_kwargs (Optional[Dict[str], Any], default=None) –
Arguments that will be passed directly to the pandas I/O reader.

70 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SciKit-Learn Laboratory Documentation, Release 5.0.1

class skll.data.writers.TSVWriter(path, feature_set, quiet=True, subsets=None,
logger=None, label_col='y', id_col='id',
pandas_kwargs=None)

Bases: CSVWriter

Writer for writing out FeatureSets as TSV files.

Parameters

• path (skll.types.PathOrStr) – A path to the feature file we would
like to create. If subsets is not None, this is assumed to be a string con-
taining the path to the directory to write the feature files with an additional
file extension specifying the file type. For example /foo/.tsv.

• feature_set (skll.data.featureset.FeatureSet) – The
FeatureSet instance to dump to the output file.

• quiet (bool, default=True) – Do not print “Writing. . . ” status mes-
sage to stderr.

• subsets (Optional[Dict[str, List[str]]], default=None) –
A mapping from subset names to lists of feature names that are included in
those sets. If given, a feature file will be written for every subset (with the
name containing the subset name as suffix to path). Note, since string-
valued features are automatically converted into boolean features with
names of the form FEATURE_NAME=STRING_VALUE, when doing the fil-
tering, the portion before the = is all that’s used for matching. Therefore,
you do not need to enumerate all of these boolean feature names in your
mapping.

• logger (Optional[logging.Logger], default=None) – A logger
instance to use to log messages instead of creating a new one by default.

• label_col (str, default="y") – The column name containing the
label.

• id_col (str, default="id") – The column name containing the ID.

• pandas_kwargs (Optional[Dict[str, Any]], default=None) –
Arguments that will be passed directly to the pandas I/O reader.

class skll.data.writers.NDJWriter(path, feature_set, quiet=True, subsets=None,
logger=None)

Bases: Writer

Writer for writing out FeatureSets as .jsonlines/.ndj files.

Parameters

• path (skll.types.PathOrStr) – A path to the feature file we would
like to create. If subsets is not None, this is assumed to be a string con-

1.7. API Documentation 71

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SciKit-Learn Laboratory Documentation, Release 5.0.1

taining the path to the directory to write the feature files with an additional
file extension specifying the file type. For example /foo/.ndj.

• feature_set (skll.data.featureset.FeatureSet) – The
FeatureSet instance to dump to the output file.

• quiet (bool, default=True) – Do not print “Writing. . . ” status mes-
sage to stderr.

• subsets (Optional[Dict[str, List[str]]], default=None) –
A mapping from subset names to lists of feature names that are included in
those sets. If given, a feature file will be written for every subset (with the
name containing the subset name as suffix to path). Note, since string-
valued features are automatically converted into boolean features with
names of the form FEATURE_NAME=STRING_VALUE, when doing the fil-
tering, the portion before the = is all that’s used for matching. Therefore,
you do not need to enumerate all of these boolean feature names in your
mapping.

• logger (Optional[logging.Logger], default=None) – A logger
instance to use to log messages instead of creating a new one by default.

class skll.data.writers.ARFFWriter(path, feature_set, quiet=True, subsets=None,
logger=None, relation='skll_relation',
regression=False, dialect='excel-tab',
label_col='y', id_col='id')

Bases: Writer

Writer for writing out FeatureSets as ARFF files.

Parameters

• path (skll.types.PathOrStr) – A path to the feature file we would
like to create. If subsets is not None, this is assumed to be a string con-
taining the path to the directory to write the feature files with an additional
file extension specifying the file type. For example /foo/.arff.

• feature_set (skll.data.featureset.FeatureSet) – The
FeatureSet instance to dump to the output file.

• quiet (bool, default=True) – Do not print “Writing. . . ” status mes-
sage to stderr.

• subsets (Optional[Dict[str, List[str]]], default=None) –
A mapping from subset names to lists of feature names that are included in
those sets. If given, a feature file will be written for every subset (with the
name containing the subset name as suffix to path). Note, since string-
valued features are automatically converted into boolean features with
names of the form FEATURE_NAME=STRING_VALUE, when doing the fil-
tering, the portion before the = is all that’s used for matching. Therefore,

72 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SciKit-Learn Laboratory Documentation, Release 5.0.1

you do not need to enumerate all of these boolean feature names in your
mapping.

• logger (Optional[logging.Logger], default=None) – A logger
instance to use to log messages instead of creating a new one by default.

• relation (str, default='skll_relation') – The name of the rela-
tion in the ARFF file.

• regression (bool, default=False) – Is this an ARFF file to be used
for regression?

• kwargs (Optional[Dict[str, Any]]) – The arguments to the
Writer object being instantiated.

class skll.data.writers.LibSVMWriter(path, feature_set, quiet=True, subsets=None,
logger=None, label_map=None)

Bases: Writer

Writer for writing out FeatureSets as LibSVM/SVMLight files.

Parameters

• path (skll.types.PathOrStr) – A path to the feature file we would
like to create. If subsets is not None, this is assumed to be a string con-
taining the path to the directory to write the feature files with an additional
file extension specifying the file type. For example /foo/.libsvm.

• feature_set (skll.data.featureset.FeatureSet) – The
FeatureSet instance to dump to the output file.

• quiet (bool, default=True) – Do not print “Writing. . . ” status mes-
sage to stderr.

• subsets (Optional[Dict[str, List[str]]], default=None) –
A mapping from subset names to lists of feature names that are included in
those sets. If given, a feature file will be written for every subset (with the
name containing the subset name as suffix to path). Note, since string-
valued features are automatically converted into boolean features with
names of the form FEATURE_NAME=STRING_VALUE, when doing the fil-
tering, the portion before the = is all that’s used for matching. Therefore,
you do not need to enumerate all of these boolean feature names in your
mapping.

• logger (Optional[logging.Logger], default=None) – A logger
instance to use to log messages instead of creating a new one by default.

• label_map (Optional[Dict[str, int]], default=None) – A
mapping from label strings to integers.

1.7. API Documentation 73

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

SciKit-Learn Laboratory Documentation, Release 5.0.1

1.7.4 experiments Package

1.7.5 learner Package

Learner Class

An easy-to-use class that wraps scikit-learn estimators.

author
Nitin Madnani (nmadnani@ets.org)

author
Michael Heilman (mheilman@ets.org)

author
Dan Blanchard (dblanchard@ets.org)

author
Aoife Cahill (acahill@ets.org)

organization
ETS

class skll.learner.Learner(model_type, probability=False, pipeline=False,
feature_scaling='none', model_kwargs=None,
pos_label=None, min_feature_count=1, sampler=None,
sampler_kwargs=None, custom_learner_path=None,
logger=None)

Bases: object

A simpler interface around scikit-learn classification and regression estimators.

Parameters

• model_type (str) – Name of estimator to create (e.g.,
'LogisticRegression'). See the skll package documentation
for valid options.

• probability (bool, default=False) – Should learner return prob-
abilities of all labels (instead of just label with highest probability)?

• pipeline (bool, default=False) – Should learner contain a pipeline
attribute that contains a scikit-learn Pipeline object composed of all steps
including the vectorizer, the feature selector, the sampler, the feature
scaler, and the actual estimator. Note that this will increase the size of
the learner object in memory and also when it is saved to disk.

• feature_scaling (str, default="none") – How to scale the fea-
tures, if at all. Options are - ‘with_std’: scale features using the standard

74 Chapter 1. Documentation

mailto:nmadnani@ets.org
mailto:mheilman@ets.org
mailto:dblanchard@ets.org
mailto:acahill@ets.org
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

SciKit-Learn Laboratory Documentation, Release 5.0.1

deviation - ‘with_mean’: center features using the mean - ‘both’: do both
scaling as well as centering - ‘none’: do neither scaling nor centering

• model_kwargs (Optional[Dict[str, Any]], default=None) –
A dictionary of keyword arguments to pass to the initializer for the spec-
ified model.

• pos_label (Optional[skll.types.LabelType], default=None) – An
integer or string denoting the label of the class to be treated as the positive
class in a binary classification setting. If None, the class represented by
the label that appears second when sorted is chosen as the positive class.
For example, if the two labels in data are “A” and “B” and pos_label is
not specified, “B” will be chosen as the positive class.

• min_feature_count (int, default=1) – The minimum number of
examples a feature must have a nonzero value in to be included.

• sampler (Optional[str], default=None) – The sampler to use
for kernel approximation, if desired. Valid values are - ‘Addi-
tiveChi2Sampler’ - ‘Nystroem’ - ‘RBFSampler’ - ‘SkewedChi2Sampler’

• sampler_kwargs (Optional[Dict[str, Any]], default=None)
– A dictionary of keyword arguments to pass to the initializer for the spec-
ified sampler.

• custom_learner_path (Optional[str], default=None) – Path to
module where a custom classifier is defined.

• logger (Optional[logging.Logger], default=None) – A logging
object. If None is passed, get logger from __name__.

cross_validate(examples, stratified=True, cv_folds=10, cv_seed=123456789,
grid_search=True, grid_search_folds=5, grid_jobs=None,
grid_objective=None, output_metrics=[], prediction_prefix=None,
param_grid=None, shuffle=False, save_cv_folds=True,
save_cv_models=False, use_custom_folds_for_grid_search=True)

Cross-validate the learner on the given training examples.

Parameters

• examples (skll.data.featureset.FeatureSet) – The
FeatureSet instance to cross-validate learner performance on.

• stratified (bool, default=True) – Should we stratify the folds to
ensure an even distribution of labels for each fold?

• cv_folds (Union[int, skll.types.FoldMapping], default=10) –
The number of folds to use for cross-validation, or a mapping from ex-
ample IDs to folds.

1.7. API Documentation 75

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#bool

SciKit-Learn Laboratory Documentation, Release 5.0.1

• cv_seed (int, default=123456789) – The value for seeding the
random number generator used to create the random folds. Note that
this seed is only used if either grid_search or shuffle are set to
True.

• grid_search (bool, default=True) – Should we do grid search
when training each fold? Note: This will make this take much longer.

• grid_search_folds (Union[int, skll.types.FoldMapping], de-
fault=5) – The number of folds to use when doing the grid search, or
a mapping from example IDs to folds.

• grid_jobs (Optional[int], default=None) – The number of
jobs to run in parallel when doing the grid search. If None or 0, the
number of grid search folds will be used.

• grid_objective (Optional[str], default=None) – The name of
the objective function to use when doing the grid search. Must be spec-
ified if grid_search is True.

• output_metrics (List[str], default = []) – List of additional
metric names to compute in addition to the metric used for grid search.

• prediction_prefix (Optional[str], default=None) – If sav-
ing the predictions, this is the prefix that will be used for the filename.
It will be followed by "_predictions.tsv"

• param_grid (Optional[Dict[str, Any]], default=None) –
The parameter grid to search.

• shuffle (bool, default=False) – Shuffle examples before splitting
into folds for CV.

• save_cv_folds (bool, default=True) – Whether to save the cv
fold ids or not?

• save_cv_models (bool, default=False) – Whether to save the cv
models or not?

• use_custom_folds_for_grid_search (bool, default=True) –
If cv_folds is a custom dictionary, but grid_search_folds is not,
perhaps due to user oversight, should the same custom dictionary auto-
matically be used for the inner grid-search cross-validation?

Returns

A 5-tuple containing the following:

List[skll.types.EvaluateTaskResults]: the confusion matrix,
overall accuracy, per-label PRFs, model parameters, objective func-
tion score, and evaluation metrics (if any) for each fold.

76 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

SciKit-Learn Laboratory Documentation, Release 5.0.1

List[float]: the grid search scores for each fold.

List[Dict[str, Any]]: list of dictionaries of grid search CV results, one
per fold, with keys such as “params”, “mean_test_score”, etc, that
are mapped to lists of values associated with each hyperparameter
set combination.

Optional[skll.types.FoldMapping]: dictionary containing the
test-fold number for each id if save_cv_folds is True, otherwise
None.

Optional[List[skll.learner.Learner]]: list of learners, one for
each fold if save_cv_models is True, otherwise None.

Return type
skll.types.CrossValidateTaskResults

Raises

• ValueError – If classification labels are not properly encoded as
strings.

• ValueError – If grid_search is True but grid_objective is None.

evaluate(examples, prediction_prefix=None, append=False, grid_objective=None,
output_metrics=[])

Evaluate the learner on a given dev or test FeatureSet.

Parameters

• examples (skll.data.featureset.FeatureSet) – The
FeatureSet instance to evaluate the performance of the model
on.

• prediction_prefix (Optional[str], default=None) – If not
None, predictions will also be written out to a file with the name
<prediction_prefix>_predictions.tsv. Note that the prefix can
also contain a path.

• append (bool, default=False) – Should we append the current pre-
dictions to the file if it exists?

• grid_objective (Optional[str], default=None) – The objec-
tive function that was used when doing the grid search.

• output_metrics (List[str], default=[]) – List of additional
metric names to compute in addition to grid objective.

Returns
A 6-tuple containing the confusion matrix, the overall accuracy, the per-
label PRFs, the model parameters, the grid search objective function score,

1.7. API Documentation 77

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SciKit-Learn Laboratory Documentation, Release 5.0.1

and the additional evaluation metrics, if any. For regressors, the first two
elements in the tuple are None.

Return type
skll.types.EvaluateTaskResults

classmethod from_file(learner_path, logger=None)
Load a saved Learner instance from a file path.

Parameters

• learner_path (skll.types.PathOrStr) – The path to a saved
Learner instance file.

• logger (Optional[logging.Logger], default=None) – A log-
ging object. If None is passed, get logger from __name__.

Returns
The Learner instance loaded from the file.

Return type
skll.learner.Learner

get_feature_names_out()

Return the names of the actual features used by the estimator.

It is possible for some features to get filtered out by the feature selector which means
that the vectorizer is no longer the correct source for the feature names. This method
takes into account the feature selector and returns the names of the features that were
actually selected to be used by the estimator.

Returns
names – Names of features actually used by the estimator.

Return type
numpy.ndarray of shape (num_features,)

Raises
ValueError – If self.feat_vectorizer is either None or a sklearn.
feature_extraction.FeatureHasher.

learning_curve(examples, metric, cv_folds=10, train_sizes=array([0.1, 0.325, 0.55,
0.775, 1.]), override_minimum=False)

Generate learning curves for the learner using the examples.

The learning curves are generated on the training examples via cross-
validation. Adapted from the scikit-learn code for learning curve generation
(cf.``sklearn.model_selection.learning_curve``).

Parameters

78 Chapter 1. Documentation

https://docs.python.org/3/library/logging.html#logging.Logger
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html#sklearn.feature_extraction.FeatureHasher
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html#sklearn.feature_extraction.FeatureHasher

SciKit-Learn Laboratory Documentation, Release 5.0.1

• examples (skll.data.featureset.FeatureSet) – The
FeatureSet instance to generate the learning curve on.

• cv_folds (Union[int, skll.types.FoldMapping], default=10) –
The number of folds to use for cross-validation, or a mapping from ex-
ample IDs to folds.

• metric (str) – The name of the metric function to use when computing
the train and test scores for the learning curve.

• train_sizes (skll.types.LearningCurveSizes, default=
numpy.linspace() with start=0.1, stop=1.0, num=5) – Relative or
absolute numbers of training examples that will be used to generate
the learning curve. If the type is float, it is regarded as a fraction
of the maximum size of the training set (that is determined by the
selected validation method), i.e. it has to be within (0, 1]. Otherwise
it is interpreted as absolute sizes of the training sets. Note that for
classification the number of samples usually have to be big enough to
contain at least one sample from each class.

• override_minimum (bool, default=False) – Learning curves can
be unreliable for very small sizes esp. for > 2 labels. If this option is
set to True, the learning curve would be generated even if the number
of example is less 500 along with a warning. If False, the curve is not
generated and an exception is raised instead.

Returns

• train_scores (List[float]) – The scores for the training set.

• test_scores (List[float]) – The scores on the test set.

• fit_times (List[float]) – The average times taken to fit each model.

• num_examples (List[int]) – The numbers of training examples used to
generate the curve.

Raises
ValueError – If the number of examples is less than 500.

Return type
Tuple[List[float], List[float], List[float], List[int]]

load(learner_path)
Replace the current learner instance with a saved learner.

Parameters
learner_path (skll.types.PathOrStr) – The path to a saved learner
object file to load.

1.7. API Documentation 79

https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

SciKit-Learn Laboratory Documentation, Release 5.0.1

Return type
None

property model

Return the underlying scikit-learn model.

property model_kwargs: Dict[str, Any]

Return a dictionary of the underlying scikit-learn model’s keyword arguments.

property model_params: Tuple[Dict[str, Any], Dict[str, Any]]

Return model parameters (i.e., weights).

Return the weights for a LinearModel (e.g., Ridge), regression, and liblinear mod-
els. If the model was trained using feature hashing, then names of the form
hashed_feature_XX are used instead.

Returns

• res (Dict[str, Any]) – A dictionary of labeled weights.

• intercept (Dict[str, Any]) – A dictionary of intercept(s).

Raises
ValueError – If the instance does not support model parameters.

property model_type

Return the model type (i.e., the class).

predict(examples, prediction_prefix=None, append=False, class_labels=True)
Generate predictions for the given examples using the learner model.

Return, and optionally, write out predictions on a given FeatureSet to a file. For re-
gressors, the returned and written-out predictions are identical. However, for classifiers:

• if class_labels is True, class labels are returned as well as written out.

• if class_labels is False and the classifier is probabilistic (i.e., self..
probability is True), class probabilities are returned as well as written out.

• if class_labels is False and the classifier is non-probabilistic (i.e., self..
probability is False), class indices are returned and class labels are written
out.

TL;DR: for regressors, just ignore class_labels. For classfiers, set it to True to get
class labels and False to get class probabilities.

Parameters

• examples (skll.data.featureset.FeatureSet) – The
FeatureSet instance to predict labels for.

• prediction_prefix (Optional[str], default=None) – If not
None, predictions will also be written out to a file with the name

80 Chapter 1. Documentation

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

SciKit-Learn Laboratory Documentation, Release 5.0.1

<prediction_prefix>_predictions.tsv. For classifiers, the pre-
dictions written out are class labels unless the learner is probabilistic
AND class_labels is set to False. Note that this prefix can also
contain a path.

• append (bool, default=False) – Should we append the current pre-
dictions to the file if it exists?

• class_labels (bool, default=True) – If False, return either the
class probabilities (probabilistic classifiers) or the class indices (non-
probabilistic ones). If True, return the class labels no matter what.
Ignored for regressors.

Returns
The predictions returned by the Learner instance.

Return type
numpy.ndarray

Raises

• AssertionError – If invalid predictions are being returned or written
out.

• MemoryError – If process runs out of memory when converting to
dense.

• RuntimeError – If there is a mismatch between the learner vectorizer
and the test set vectorizer.

property probability: bool

Return the value of the probability flag.

The flag indicages whether the learner return probabilities of all labels (instead of just
label with highest probability)?

save(learner_path)
Save the Learner instance to a file.

Parameters
learner_path (skll.types.PathOrStr) – The path to save the
Learner instance to.

Return type
None

train(examples, param_grid=None, grid_search_folds=5, grid_search=True,
grid_objective=None, grid_jobs=None, shuffle=False)

Train model underlying the learner.

Return the grid search score and a dictionary of grid search results.

1.7. API Documentation 81

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/exceptions.html#MemoryError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#bool

SciKit-Learn Laboratory Documentation, Release 5.0.1

Parameters

• examples (skll.data.featureset.FeatureSet) – The
FeatureSet instance to use for training.

• param_grid (Optional[Dict[str, Any]], default=None) –
The parameter grid to search through for grid search. If None, a default
parameter grid will be used.

• grid_search_folds (Union[int, skll.types.FoldMapping], de-
fault=5) – The number of folds to use when doing the grid search, or
a mapping from example IDs to folds.

• grid_search (bool, default=True) – Should we do grid search?

• grid_objective (Optional[str], default=None) – The name of
the objective function to use when doing the grid search. Must be spec-
ified if grid_search is True.

• grid_jobs (Optional[int], default=None) – The number of
jobs to run in parallel when doing the grid search. If None or 0, the
number of grid search folds will be used.

• shuffle (bool, default=False) – Shuffle examples (e.g., for grid
search CV.)

Returns

• float – The best grid search objective function score, or 0 if we’re not
doing grid search

• Dict[str, Any] – Dictionary of grid search CV results with keys such
as “params”, “mean_test_score”, etc, that are mapped to lists of values
associated with each hyperparameter set combination, or None if not
doing grid search.

Raises

• ValueError – If grid_objective is not a valid grid objective or if one
is not specified when necessary.

• MemoryError – If process runs out of memory converting training data
to dense.

• ValueError – If FeatureHasher is used with MultinomialNB.

Return type
Tuple[float, Dict[str, Any]]

skll.learner.load_custom_learner(custom_learner_path, custom_learner_name)
Import and load the custom learner object from the given path.

Parameters

82 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#MemoryError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

SciKit-Learn Laboratory Documentation, Release 5.0.1

• custom_learner_path (skll.types.PathOrStr) – The path to a
custom learner.

• custom_learner_name (str) – The name of a custom learner.

Returns
The SKLL learner object loaded from the given path.

Return type
skll.learner.Learner

Raises
ValueError – If the custom learner path does not end in ‘.py’.

VotingLearner Class

A meta-learner class that wraps scikit-learn’s VotingClassifier and VotingRegressor.

author
Nitin Madnani (nmadnani@ets.org)

organization
ETS

class skll.learner.voting.VotingLearner(learner_names, voting='hard',
custom_learner_path=None,
feature_scaling='none', pos_label=None,
min_feature_count=1,
model_kwargs_list=None,
sampler_list=None,
sampler_kwargs_list=None, logger=None)

Bases: object

Wrap VotingClassifier and VotingRegressor from scikit-learn.

Note that this class does not inherit from the Learner class but rather uses different Learner
instances underlyingly.

Parameters

• learner_names (List[str]) – List of the learner names that will par-
ticipate in the voting process.

• voting (Optional[str], default="hard") – One of “hard” or
“soft”. If “hard”, the predicted class labels are used for majority rule
voting. If “soft”, the predicted class label is based on the argmax of the
sums of the predicted probabilities from each of the underlying learnrs.
This parameter is only relevant for classification.

1.7. API Documentation 83

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
mailto:nmadnani@ets.org
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SciKit-Learn Laboratory Documentation, Release 5.0.1

• custom_learner_path (Optional[skll.types.PathOrStr], de-
fault=None) – Path to a Python file containing the definitions of any
custom learners. Any and all custom learners in estimator_names
must be defined in this file. If the custom learner does not inherit
from an already existing scikit-learn estimator, it must explicitly define
an _estimator_type attribute indicating whether it’s a “classifier” or a
“regressor”.

• feature_scaling (str, default="none") – How to scale the fea-
tures, if at all for each estimator. Options are - “with_std”: scale features
using the standard deviation - “with_mean”: center features using the
mean - “both”: do both scaling as well as centering - “none”: do neither
scaling nor centering

• pos_label (Optional[skll.types.LabelType], default=None) – A
string denoting the label of the class to be treated as the positive class
in a binary classification setting, for each estimator. If None, the class
represented by the label that appears second when sorted is chosen as the
positive class. For example, if the two labels in data are “A” and “B” and
pos_label is not specified, “B” will be chosen as the positive class.

• min_feature_count (int, default=1) – The minimum number of
examples a feature must have a nonzero value in to be included, for each
estimator.

• model_kwargs_list (Optional[List[Dict[str, Any]]],
default=None) – A list of dictionaries of keyword arguments to pass to
the initializer for each of the estimators. There’s a one-to-one correspon-
dence between the order of this list and the order of the learner_names
list.

• sampler_list (Optional[List[str]], default=None) – The
samplers to use for kernel approximation, if desired, for each estimator.
Valid values are: - “AdditiveChi2Sampler” - “Nystroem” - “RBFSam-
pler” - “SkewedChi2Sampler” There’s a one-to-one correspondence be-
tween the order of this list and the order of the learner_names list.

• sampler_kwargs_list (Optional[List[Dict[str, Any]]],
default=None) – A list of dictionaries of keyword arguments to pass
to the initializer for the specified sampler, one per estimator. There’s a
one-to-one correspondence between the order of this list and the order of
the learner_names list.

• logger (Optional[logging.Logger], default=None) – A logging
object. If None is passed, get logger from __name__.

84 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger

SciKit-Learn Laboratory Documentation, Release 5.0.1

cross_validate(examples, stratified=True, cv_folds=10, cv_seed=123456789,
grid_search=True, grid_search_folds=5, grid_jobs=None,
grid_objective=None, output_metrics=[], prediction_prefix=None,
param_grid_list=None, shuffle=False, save_cv_folds=True,
save_cv_models=False, individual_predictions=False,
use_custom_folds_for_grid_search=True)

Cross-validate the meta-estimator on the given examples.

We follow essentially the same methodology as in Learner.cross_validate() -
split the examples into training and testing folds, and then call self.train() on the
training folds and then self.evaluate() on the test fold. Note that this means that
underlying estimators with different hyperparameters may be used for each fold, as is
the case with Learner.cross_validate().

Parameters

• examples (skll.data.featureset.FeatureSet) – The
FeatureSet instance to cross-validate learner performance on.

• stratified (bool, default=True) – Should we stratify the folds to
ensure an even distribution of labels for each fold?

• cv_folds (Union[int, skll.types.FoldMapping], default=10) –
The number of folds to use for cross-validation, or a mapping from ex-
ample IDs to folds.

• cv_seed (int, default=123456789) – The value for seeding the
random number generator used to create the random folds. Note that
this seed is only used if either grid_search or shuffle are set to
True.

• grid_search (bool, default=True) – Should we do grid search
when training each fold? Note: This will make this take much longer.

• grid_search_folds (Union[int, skll.types.FoldMapping], de-
fault=5) – The number of folds to use when doing the grid search, or
a mapping from example IDs to folds.

• grid_jobs (Optional[int], default=None) – The number of
jobs to run in parallel when doing the grid search. If None or 0, the
number of grid search folds will be used.

• grid_objective (Optional[str], default=None) – The name of
the objective function to use when doing the grid search. Must be spec-
ified if grid_search is True.

• output_metrics (Optional[List[str]], default=[]) – List of
additional metric names to compute in addition to the metric used for
grid search.

1.7. API Documentation 85

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SciKit-Learn Laboratory Documentation, Release 5.0.1

• prediction_prefix (Optional[str], default=None) – If sav-
ing the predictions, this is the prefix that will be used for the filename.
It will be followed by "_predictions.tsv"

• param_grid_list (Optional[List[Dict[str, Any]]],
default=None) – The list of parameters grid to search through
for grid search, one for each underlying learner. The order of the dic-
tionaries should correspond to the order If None, the default parameter
grids will be used for the underlying estimators.

• shuffle (bool, default=False) – Shuffle examples before splitting
into folds for CV.

• save_cv_folds (bool, default=True) – Whether to save the cv
fold ids or not?

• save_cv_models (bool, default=False) – Whether to save the cv
models or not?

• individual_predictions (bool, default=False) – Write out
the cross-validated predictions from each underlying learner as well.

• use_custom_folds_for_grid_search (bool, default=True) –
If cv_folds is a custom dictionary, but grid_search_folds is not,
perhaps due to user oversight, should the same custom dictionary auto-
matically be used for the inner grid-search cross-validation?

Returns

A 3-tuple containing the following:

List[skll.types.EvaluateTaskResults]: the confusion matrix,
overall accuracy, per-label PRFs, model parameters, objective func-
tion score, and evaluation metrics (if any) for each fold.

Optional[skll.types.FoldMapping]: dictionary containing the
test-fold number for each id if save_cv_folds is True, otherwise
None.

Optional[List[skll.learner.voting.VotingLearner]]: list of
voting learners, one for each fold if save_cv_models is True, oth-
erwise None.

Return type
skll.types.CrossValidateTaskResults

Raises

• ValueError – If classification labels are not properly encoded as
strings.

• ValueError – If grid_search is True but grid_objective is None.

86 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

SciKit-Learn Laboratory Documentation, Release 5.0.1

evaluate(examples, prediction_prefix=None, append=False, grid_objective=None,
individual_predictions=False, output_metrics=[])

Evaluate the meta-estimator on a given FeatureSet.

Parameters

• examples (skll.data.featureset.FeatureSet) – The
FeatureSet instance to evaluate the performance of the model
on.

• prediction_prefix (Optional[str], default=None) – If sav-
ing the predictions, this is the prefix that will be used for the filename.
It will be followed by "_predictions.tsv"

• append (bool, default=False) – Should we append the current pre-
dictions to the file if it exists?

• grid_objective (Optional[str], default=None) – The objec-
tive function used when doing the grid search.

• individual_predictions (bool, default=False) – Optionally,
write out the predictions from each underlying learner.

• output_metrics (List[str], default=[]) – List of additional
metric names to compute in addition to grid objective.

Returns
The confusion matrix, the overall accuracy, the per-label PRFs, the model
parameters, the grid search objective function score, and the additional
evaluation metrics, if any.

Return type
skll.types.EvaluateTaskResults

classmethod from_file(learner_path, logger=None)
Load a saved VotingLearner instance from a file.

Parameters

• learner_path (skll.types.PathOrStr) – The path to a saved
VotingLearner instance file.

• logger (Optional[logging.Logger], default=None) – A log-
ging object. If None is passed, get logger from __name__.

Returns
learner – The VotingLearner instance loaded from the file.

Return type
skll.learner.voting.VotingLearner

1.7. API Documentation 87

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger

SciKit-Learn Laboratory Documentation, Release 5.0.1

property learners: List[Learner]

Return the underlying list of learners.

learning_curve(examples, metric, cv_folds=10, train_sizes=array([0.1, 0.325, 0.55,
0.775, 1.]), override_minimum=False)

Generate learning curves for the meta-estimator.

Generate learning curves for the voting meta-estimator on the training examples via
cross-validation. Adapted from the scikit-learn code for learning curve generation
(cf.``sklearn.model_selection.learning_curve``).

Parameters

• examples (skll.data.featureset.FeatureSet) – The
FeatureSet instance to generate the learning curve on.

• metric (str) – The name of the metric function to use when computing
the train and test scores for the learning curve.

• cv_folds (Union[int, skll.types.FoldMapping], default=10) –
The number of folds to use for cross-validation, or a mapping from ex-
ample IDs to folds.

• train_sizes (skll.types.LearningCurveSizes, default=
numpy.linspace() with start=0.1, stop=1.0, num=5) – Relative or
absolute numbers of training examples that will be used to generate
the learning curve. If the type is float, it is regarded as a fraction
of the maximum size of the training set (that is determined by the
selected validation method), i.e. it has to be within (0, 1]. Otherwise
it is interpreted as absolute sizes of the training sets. Note that for
classification the number of samples usually have to be big enough to
contain at least one sample from each class.

• override_minimum (bool, default=False) – Learning curves can
be unreliable for very small sizes esp. for > 2 labels. If this option is
set to True, the learning curve would be generated even if the number
of example is less 500 along with a warning. If False, the curve is not
generated and an exception is raised instead.

Returns

• train_scores (List[float]) – The scores for the training set.

• test_scores (List[float]) – The scores on the test set.

• fit_times (List[float]) – The average times taken to fit each model.

• num_examples (List[int]) – The numbers of training examples used to
generate the curve.

88 Chapter 1. Documentation

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace
https://docs.python.org/3/library/functions.html#bool

SciKit-Learn Laboratory Documentation, Release 5.0.1

Raises
ValueError – If the number of examples is less than 500.

Return type
Tuple[List[float], List[float], List[float], List[int]]

property model

Return underlying scikit-learn meta-estimator model.

property model_type

Return meta-estimator model type (i.e., the class).

predict(examples, prediction_prefix=None, append=False, class_labels=True,
individual_predictions=False)

Generate predictions with meta-estimator.

Compute the predictions from the meta-estimator and, optionally, the underlying
estimators on given FeatureSet. The predictions are also written to disk if
prediction_prefix is not None.

For regressors, the returned and written-out predictions are identical. However, for
classifiers:

• if class_labels is True, class labels are returned as well as written out.

• if class_labels is False and the classifier is probabilistic (i.e., self.
probability is True), class probabilities are returned as well as written out.

• if class_labels is False and the classifier is non-probabilistic (i.e., self..
probability is False), class indices are returned and class labels are written
out. This option is generally only meant for SKLL-internal use.

Parameters

• examples (skll.data.featureset.FeatureSet) – The
FeatureSet instance to predict labels for.

• prediction_prefix (Optional[str], default=None) – If sav-
ing the predictions, this is the prefix that will be used for the filename.
It will be followed by "_predictions.tsv"

• append (bool, default=False) – Should we append the current pre-
dictions to the file if it exists?

• class_labels (bool, default=True) – For classifier, should we
convert class indices to their (str) labels for the returned array? Note
that class labels are always written out to disk.

• individual_predictions (bool, default=False) – Return (and,
optionally, write out) the predictions from each underlying learner.

1.7. API Documentation 89

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

SciKit-Learn Laboratory Documentation, Release 5.0.1

Returns
The first element is the array of predictions returned by the meta-estimator
and the second is an optional dictionary with the name of each underlying
learner as the key and the array of its predictions as the value. The second
element is None if individual_predictions is set to False.

Return type
Tuple[numpy.ndarray, Optional[Dict[str, numpy.ndarray]]]

save(learner_path)
Save the VotingLearner instance to a file.

Parameters
learner_path (skll.types.PathOrStr) – The path to save the
VotingLearner instance to.

Return type
None

train(examples, param_grid_list=None, grid_search_folds=5, grid_search=True,
grid_objective=None, grid_jobs=None, shuffle=False)

Train the voting meta-estimator.

First, we train each of the underlying estimators (represented by a skll Learner), possi-
bly with grid search. Then, we instantiate a VotingClassifier or VotingRegressor
as appropriate with the scikit-learn Pipeline stored in the pipeline attribute of
each trained Learner instance as the estimator. Finally, we call fit() on the
VotingClassifier or VotingRegressor instance. We follow this process because
it allows us to use grid search to find good hyperparameter values for our underlying
learners before passing them to the meta-estimator AND because it allows us to use
SKLL featuresets and do all of the same pre-processing when doing inference.

The trained meta-estimator is saved in the _model attribute. Nothing is returned.

Parameters

• examples (skll.data.featureset.FeatureSet) – The
FeatureSet instance to use for training.

• param_grid_list (Optional[List[Dict[str, Any]]],
default=None) – The list of parameter grids to search through
for grid search, one for each underlying learner. The order of the
dictionaries should correspond to the order in which the underlying
estimators were specified when the VotingLearner was instantiated.
If None, the default parameter grids will be used for the underlying
estimators.

• grid_search_folds (Union[int, skll.types.FoldMapping], de-
fault=5) – The number of folds to use when doing the grid search for

90 Chapter 1. Documentation

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str

SciKit-Learn Laboratory Documentation, Release 5.0.1

each of the underlying learners, or a mapping from example IDs to folds.

• grid_search (bool, default=True) – Should we use grid search
when training each underlying learner?

• grid_objective (Optional[str], default=None) – The name of
the objective function to use when doing the grid search for each under-
lying learner. Must be specified if grid_search is True.

• grid_jobs (Optional[int], default=None) – The number of
jobs to run in parallel when doing the grid search for each underlying
learner. If None or 0, the number of grid search folds will be used.

• shuffle (bool, default=False) – Shuffle examples (e.g., for grid
search CV.)

Return type
None

1.7.6 metrics Module

Metrics that can be used to evaluate the performance of learners.

author
Nitin Madnani (nmadnani@ets.org)

author
Michael Heilman (mheilman@ets.org)

author
Dan Blanchard (dblanchard@ets.org)

organization
ETS

skll.metrics.correlation(y_true, y_pred, corr_type='pearson')
Calculate given correlation type between y_true and y_pred.

y_pred can be multi-dimensional. If y_pred is 1-dimensional, it may either contain prob-
abilities, most-likely classification labels, or regressor predictions. In that case, we simply
return the correlation between y_true and y_pred. If y_pred is multi-dimensional, it con-
tains probabilties for multiple classes in which case, we infer the most likely labels and then
compute the correlation between those and y_true.

Parameters

• y_true (numpy.ndarray) – The true/actual/gold labels for the data.

• y_pred (numpy.ndarray) – The predicted/observed labels for the data.

1.7. API Documentation 91

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
mailto:nmadnani@ets.org
mailto:mheilman@ets.org
mailto:dblanchard@ets.org
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

SciKit-Learn Laboratory Documentation, Release 5.0.1

• corr_type (str, default="pearson") – Which type of correla-
tion to compute. Possible choices are “pearson”, “spearman”, and
“kendall_tau”.

Returns
correlation value if well-defined, else 0.0

Return type
float

skll.metrics.f1_score_least_frequent(y_true, y_pred)
Calculate F1 score of the least frequent label/class.

Parameters

• y_true (numpy.ndarray) – The true/actual/gold labels for the data.

• y_pred (numpy.ndarray) – The predicted/observed labels for the data.

Returns
F1 score of the least frequent label.

Return type
float

skll.metrics.kappa(y_true, y_pred, weights=None, allow_off_by_one=False)
Calculate the kappa inter-rater agreement.

The agreement is calculated between the gold standard and the predicted ratings. Poten-
tial values range from -1 (representing complete disagreement) to 1 (representing complete
agreement). A kappa value of 0 is expected if all agreement is due to chance.

In the course of calculating kappa, all items in y_true and y_pred will first be converted to
floats and then rounded to integers.

It is assumed that y_true and y_pred contain the complete range of possible ratings.

This function contains a combination of code from yorchopolis’s kappa-stats and Ben Ham-
ner’s Metrics projects on Github.

Parameters

• y_true (numpy.ndarray) – The true/actual/gold labels for the data.

• y_pred (numpy.ndarray) – The predicted/observed labels for the data.

• weights (Optional[Union[str, numpy.ndarray]],
default=None) – Specifies the weight matrix for the calculation.
Possible values are: None (unweighted-kappa), "quadratic" (quadrat-
ically weighted kappa), "linear" (linearly weighted kappa), and a
two-dimensional numpy array (a custom matrix of weights). Each
weight in this array corresponds to the 𝑤𝑖𝑗 values in the Wikipedia
description of how to calculate weighted Cohen’s kappa.

92 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

SciKit-Learn Laboratory Documentation, Release 5.0.1

• allow_off_by_one (bool, default=False) – If true, ratings that are
off by one are counted as equal, and all other differences are reduced by
one. For example, 1 and 2 will be considered to be equal, whereas 1 and
3 will have a difference of 1 for when building the weights matrix.

Returns
The weighted or unweighted kappa score.

Return type
float

Raises

• AssertionError – If y_true != y_pred.

• ValueError – If labels cannot be converted to int.

• ValueError – If invalid weight scheme.

skll.metrics.register_custom_metric(custom_metric_path, custom_metric_name)
Import, load, and register the custom metric function from the given path.

Parameters

• custom_metric_path (skll.types.PathOrStr) – The path to a cus-
tom metric.

• custom_metric_name (str) – The name of the custom metric function
to load. This function must take only two array-like arguments: the true
labels and the predictions, in that order.

Raises

• ValueError – If the custom metric path does not end in ‘.py’.

• NameError – If the name of the custom metric file conflicts with an al-
ready existing attribute in skll.metrics or if the custom metric name
conflicts with a scikit-learn or SKLL metric.

skll.metrics.use_score_func(func_name, y_true, y_pred)
Call the given scoring function.

This takes care of handling keyword arguments that were pre-specified when creating the
scorer. This applies any sign-flipping that was specified by make_scorer() when the scorer
was created.

Parameters

• func_name (str) – The name of the objective function to use.

• y_true (numpy.ndarray) – The true/actual/gold labels for the data.

• y_pred (numpy.ndarray) – The predicted/observed labels for the data.

1.7. API Documentation 93

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#NameError
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

SciKit-Learn Laboratory Documentation, Release 5.0.1

Returns
The scored result from the given scorer.

Return type
float

1.7.7 utils Package

Various useful constants defining groups of evaluation metrics.

skll.utils.constants.CLASSIFICATION_ONLY_METRICS = {'accuracy',
'average_precision', 'balanced_accuracy', 'f05', 'f05_score_macro',
'f05_score_micro', 'f05_score_weighted', 'f1', 'f1_score_least_frequent',
'f1_score_macro', 'f1_score_micro', 'f1_score_weighted', 'jaccard',
'jaccard_macro', 'jaccard_micro', 'jaccard_weighted', 'neg_log_loss',
'precision', 'precision_macro', 'precision_micro', 'precision_weighted',
'recall', 'recall_macro', 'recall_micro', 'recall_weighted', 'roc_auc'}

Set of evaluation metrics only used for classification tasks

skll.utils.constants.CORRELATION_METRICS = {'kendall_tau', 'pearson',
'spearman'}

Set of evaluation metrics based on correlation

skll.utils.constants.PROBABILISTIC_METRICS =
frozenset({'average_precision', 'neg_log_loss', 'roc_auc'})

Set of evaluation metrics that can use prediction probabilities

skll.utils.constants.REGRESSION_ONLY_METRICS = {'explained_variance',
'max_error', 'neg_mean_absolute_error', 'neg_mean_squared_error',
'neg_root_mean_squared_error', 'r2'}

Set of evaluation metrics only used for regression tasks

skll.utils.constants.UNWEIGHTED_KAPPA_METRICS = {'unweighted_kappa',
'uwk_off_by_one'}

Set of unweighted kappa agreement metrics

skll.utils.constants.WEIGHTED_KAPPA_METRICS = {'linear_weighted_kappa',
'lwk_off_by_one', 'quadratic_weighted_kappa', 'qwk_off_by_one'}

Set of weighed kappa agreement metrics

A useful logging function for SKLL developers

skll.utils.logging.get_skll_logger(name, filepath=None, log_level=20)
Create and return logger instances appropriate for use in SKLL code.

These logger instances can log to both STDERR as well as a file. This function will try to
reuse any previously created logger based on the given name and filepath.

94 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#float

SciKit-Learn Laboratory Documentation, Release 5.0.1

Parameters

• name (str) – The name to be used for the logger.

• filepath (Optional[str], default=None) – The file to be used for
the logger via a FileHandler. Default: None in which case no file is at-
tached to the logger.

• log_level (int, default=logging.INFO) – The level for logging
messages

Returns
logger – A Logger instance.

Return type
logging.Logger

1.7.8 types Module

The skll.types module contains custom type aliases that are used throughout the SKLL code in
type hints and docstrings.

skll.types.ClassMap

alias of Dict[str, List[str]]

Class map that maps new labels (string) to list of old labels (list of string).

skll.types.ConfusionMatrix

alias of List[List[int]]

Confusion matrix represented by a list of list of integers.

skll.types.FeatureDict

alias of Dict[str, Any]

Feature dictionary that maps a string to other dictionaries or other objects.

skll.types.FeatureDictList

alias of List[Dict[str, Any]]

List of feature dictionaries.

skll.types.FeaturesetIterator

alias of Iterator[Tuple[skll.data.FeatureSet, skll.data.FeatureSet]]

An iterator over two FeatureSets, usually test and train.

skll.types.FoldMapping

alias of Dict[Union[float, str], str]

1.7. API Documentation 95

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

SciKit-Learn Laboratory Documentation, Release 5.0.1

Mapping from example ID to fold ID; the example ID may be a float or a string but the fold ID is
always a string.

skll.types.IdType

alias of Union[float, str]

A float or a string; this is useful or SKLL IDs that can be both.

skll.types.IndexIterator

alias of Generator[Tuple[ndarray, ndarray], None, None]

Generator over two numpy arrays containing indices - usually for train and test data.

skll.types.LabelType

alias of Union[float, int, str]

A float, integer, or a string; this is useful for SKLL labels that can be any of them.

skll.types.LearningCurveSizes

alias of Union[List[Union[float, int]], ndarray]

Learning curve sizes can either be a numpy array (or a list) containing floats or integers.

skll.types.FeatGenerator

alias of Generator[Tuple[Union[float, str], Optional[Union[float, int, str]],
Dict[str, Any]], None, None]

Generator that yields a 3-tuple containing:

1. An example ID (float or string).

2. A label (integer, float, or string).

3. A feature dictionary.

skll.types.PathOrStr

alias of Union[Path, str]

A string path or Path object.

skll.types.SparseFeatureMatrix

alias of csr_matrix

A scipy sparse matrix to hold SKLL features in FeatureSets.

skll.types.ComputeEvalMetricsResults

alias of Tuple[Optional[List[List[int]]], Optional[float], Dict[Union[float, int,
str], Any], Optional[float], Dict[str, Optional[float]]]

Learner evaluate task results 5-tuple containing:

1. The confusion matrix for a classifier, None for a regressor.

2. Accuracy for a classifier, None for a regressor.

96 Chapter 1. Documentation

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Generator
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float

SciKit-Learn Laboratory Documentation, Release 5.0.1

3. The dictionary of results.

4. Score for the grid objective, None if no grid search was performed.

5. The dictionary of scores for any additional metrics.

skll.types.EvaluateTaskResults

alias of Tuple[Optional[List[List[int]]], Optional[float], Dict[Union[float, int,
str], Any], Dict[str, Any], Optional[float], Dict[str, Optional[float]]]

Learner evaluate task results 6-tuple containing:

1. The confusion matrix for a classifier, None for a regressor.

2. Accuracy for a classifier, None for a regressor.

3. The dictionary of results.

4. The dictionary containing the model parameters.

5. Score for the grid objective, None if no grid search

6. The dictionary of score for any additional metrics.

skll.types.CrossValidateTaskResults

alias of Tuple[List[Tuple[Optional[List[List[int]]], Optional[float],
Dict[Union[float, int, str], Any], Dict[str, Any], Optional[float],
Dict[str, Optional[float]]]], List[float], List[Dict[str, Any]],
Optional[Dict[Union[float, str], str]], Optional[List[skll.learner.Learner]]]

Learner cross-validate task results 5-tuple containing:

1. The confusion matrix, overall accuracy, per-label precision/recall/F1, model parameters, ob-
jective function score, and evaluation metrics (if any) for each fold.

2. The grid search scores for each fold.

3. The list of dictionaries of grid search CV results, one per fold, with keys such as “params”,
“mean_test_score”, etc, that are mapped to lists of values associated with each combination
of hyper-parameters.

4. The dictionary containing the test-fold number for each, None if folds were not saved.

5. The list of learners, one for each fold, None if the models were not saved.

skll.types.VotingCrossValidateTaskResults

alias of Tuple[List[Tuple[Optional[List[List[int]]], Optional[float],
Dict[Union[float, int, str], Any], Dict[str, Any], Optional[float], Dict[str,
Optional[float]]]], Optional[Dict[Union[float, str], str]], Optional[List[skll.
learner.voting.VotingLearner]]]

Voting Learner cross-validate task results 3-tuple containing:

1.7. API Documentation 97

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List

SciKit-Learn Laboratory Documentation, Release 5.0.1

1. The confusion matrix, overall accuracy, per-label precision/recall/F1, model parameters, ob-
jective function score, and evaluation metrics (if any) for each fold.

2. The dictionary containing the test-fold number for each, None if folds were not saved.

3. The list of voting learners, one for each fold, None if the models were not saved.

1.8 Contributing

Thank you for your interest in contributing to SKLL! We welcome any and all contributions.

1.8.1 Guidelines

The SKLL contribution guidelines can be found in our Github repository here. We strongly en-
courage all SKLL contributions to follow these guidelines.

1.8.2 SKLL Code Overview

This section will help you get oriented with the SKLL codebase by describing how it is organized,
the various SKLL entry points into the code, and what the general code flow looks like for each
entry point.

Organization

The main Python code for the SKLL package lives inside the skll sub-directory of the repository.
It contains the following files and sub-directories:

• config/ : Code to parse SKLL experiment configuration files.

• experiments/ : Code that is related to creating and running SKLL experiments. It also con-
tains code that collects the various evaluation metrics and predictions for each SKLL exper-
iment and writes them out to disk.

• learner/ : Code for the Learner and VotingLearner classes. The former is instantiated for all
learner names specified in the experiment configuration file except VotingClassifier and
VotingRegressor for which the latter is instantiated instead.

• metrics.py : Code for any custom metrics that are not in sklearn.metrics, e.g., kappa,
kendall_tau, spearman, etc. This module also contains the code that powers user-defined
custom metrics.

• data/

– __init__.py : Code used to initialize the skll.data Python package.

98 Chapter 1. Documentation

https://github.com/EducationalTestingService/skll/blob/main/CONTRIBUTING.md
https://github.com/EducationalTestingService/skll/tree/main/skll/config
https://github.com/EducationalTestingService/skll/tree/main/skll/experiments
https://github.com/EducationalTestingService/skll/tree/main/skll/learner
https://github.com/EducationalTestingService/skll/blob/main/skll/learner/__init__.py
https://github.com/EducationalTestingService/skll/blob/main/skll/learner/voting.py
https://github.com/EducationalTestingService/skll/blob/main/skll/metrics.py
https://github.com/EducationalTestingService/skll/tree/main/skll/data
https://github.com/EducationalTestingService/skll/blob/main/skll/data/__init__.py

SciKit-Learn Laboratory Documentation, Release 5.0.1

– featureset.py : Code for the FeatureSet class metadata for a given set of instances.

– readers.py : Code for classes that can read various file formats and create FeatureSet
objects from them.

– writers.py : Code for classes that can write FeatureSet objects to files on disk in
various formats.

– dict_vectorizer.py : Code for a DictVectorizer class that subclasses sklearn.
feature_extraction.DictVectorizer to add an __eq__() method that we need
for vectorizer equality.

• utils/ : Code for different utility scripts, functions, and classes used throughout SKLL. The
most important ones are the command line scripts in the utils.commandline submodule.

– compute_eval_from_predictions.py : See documentation.

– filter_features.py : See documentation.

– generate_predictions.py : See documentation.

– join_features.py : See documentation.

– plot_learning_curves.py : See documentation.

– print_model_weights.py : See documentation.

– run_experiment.py : See documentation.

– skll_convert.py : See documentation.

– summarize_results.py : See documentation.

• version.py : Code to define the SKLL version. Only changed for new releases.

• tests/ - test_*.py : These files contain the code for the unit tests and regression tests.

Entry Points & Workflow

There are three main entry points into the SKLL codebase:

1. Experiment configuration files. The primary way to interact with SKLL is by writing con-
figuration files and then passing it to the run_experiment script. When you run the command
run_experiment <config_file>, the following happens (at a high level):

• the configuration file is handed off to the run_configuration() function in
experiments.py.

• a SKLLConfigParser object is instantiated from config.py that parses all of the rele-
vant fields out of the given configuration file.

• the configuration fields are then passed to the _classify_featureset() function in
experiments.py which instantiates the learners (using code from learner.py), the

1.8. Contributing 99

https://github.com/EducationalTestingService/skll/blob/main/skll/data/featureset.py
https://github.com/EducationalTestingService/skll/blob/main/skll/data/readers.py
https://github.com/EducationalTestingService/skll/blob/main/skll/data/writers.py
https://github.com/EducationalTestingService/skll/blob/main/skll/data/dict_vectorizer.py
https://github.com/EducationalTestingService/skll/tree/main/skll/utils
https://github.com/EducationalTestingService/skll/blob/main/skll/utils/commandline/compute_eval_from_predictions.py
https://skll.readthedocs.io/en/latest/utilities.html#compute-eval-from-predictions
https://github.com/EducationalTestingService/skll/blob/main/skll/utils/commandline/filter_features.py
https://skll.readthedocs.io/en/latest/utilities.html#filter-features
https://github.com/EducationalTestingService/skll/blob/main/skll/utils/commandline/generate_predictions.py
https://skll.readthedocs.io/en/latest/utilities.html#generate-predictions
https://github.com/EducationalTestingService/skll/blob/main/skll/utils/commandline/join_features.py
https://skll.readthedocs.io/en/latest/utilities.html#join-features
https://github.com/EducationalTestingService/skll/blob/main/skll/utils/commandline/plot_learning_curves.py
https://skll.readthedocs.io/en/latest/utilities.html#plot-learning-curves
https://github.com/EducationalTestingService/skll/blob/main/skll/utils/commandline/print_model_weights.py
https://skll.readthedocs.io/en/latest/utilities.html#print-model-weights
https://github.com/EducationalTestingService/skll/blob/main/skll/utils/commandline/run_experiment.py
https://skll.readthedocs.io/en/latest/run_experiment.html#using-run-experiment
https://github.com/EducationalTestingService/skll/blob/main/skll/utils/commandline/skll_convert.py
https://skll.readthedocs.io/en/latest/utilities.html#skll-convert
https://github.com/EducationalTestingService/skll/blob/main/skll/utils/commandline/summarize_results.py
https://skll.readthedocs.io/en/latest/utilities.html#summarize-results
https://github.com/EducationalTestingService/skll/blob/main/skll/version.py
https://github.com/EducationalTestingService/skll/tree/main/tests
https://skll.readthedocs.io/en/latest/run_experiment.html#using-run-experiment
https://github.com/EducationalTestingService/skll/blob/main/skll/experiments/__init__.py#L613
https://github.com/EducationalTestingService/skll/blob/main/skll/config/__init__.py#L44
https://github.com/EducationalTestingService/skll/blob/main/skll/experiments/__init__.py#L65

SciKit-Learn Laboratory Documentation, Release 5.0.1

featuresets (using code from reader.py & featureset.py), and runs the experi-
ments, collects the results, and writes them out to disk.

2. SKLL API. Another way to interact with SKLL is via the SKLL API directly in your Python
code rather than using configuration files. For example, you could use the Learner.from_file()
or VotingLearner.from_file() methods to load saved models of those types from disk and make
predictions on new data. The documentation for the SKLL API can be found here.

3. Utility scripts. The scripts listed in the section above under utils are also entry points into
the SKLL code. These scripts are convenient wrappers that use the SKLL API for commonly
used tasks, e.g., generating predictions on new data from an already trained model.

1.9 Internal Documentation

1.9.1 Release Process

This document is only meant for the project administrators, not users and developers.

1. Create a release branch release/XX on GitHub.

2. In the release branch:

a. Update the version numbers in version.py.

b. Make sure that requirements.txt only has the actual dependencies that are needed to run
SKLL. Any dependencies needed only for development/testing (e.g., sphinx, nose2 etc.)
should be moved to requirements.dev. This means that requirements.txt must be a strict
subset of requirements.dev.

c. Make sure the versions in doc/requirements.txt are up to date with requirements.txt and
only contains the dependencies needed to build the documentation.

d. Make sure .readthedocs.yml is still accurate.

e. Update the conda recipe.

f. Update the documentation with any new features or details about changes.

g. Run make linkcheck on the documentation and fix any redirected/broken links.

h. Update the README and this release documentation, if necessary.

3. Build and upload the conda packages by following instructions in conda-recipe/README.
md.

4. Build the PyPI source distribution using python setup.py sdist build.

5. Upload the source distribution to TestPyPI using twine upload --repository
testpypi dist/*. You will need to have the twine package installed and set up
your $HOME/.pypirc correctly. See details here.

100 Chapter 1. Documentation

https://github.com/EducationalTestingService/skll/blob/main/skll/learner/__init__.py#L384
https://github.com/EducationalTestingService/skll/blob/main/skll/learner/voting.py#L243
https://skll.readthedocs.io/en/latest/api.html
https://packaging.python.org/en/latest/guides/using-testpypi/

SciKit-Learn Laboratory Documentation, Release 5.0.1

6. Test the conda package by creating a new environment on different platforms with this pack-
age installed and then running SKLL examples or tests from a SKLL working copy. If the
package works, then move on to the next step. If it doesn’t, figure out why and rebuild and
re-upload the package.

7. Test the TestPyPI package by installing it as follows:

pip install --index-url https://test.pypi.org/simple/ --extra-index-
→˓url https://pypi.org/simple skll

8. Then run some SKLL examples or tests from a SKLL working copy. If the TestPyPI package
works, then move on to the next step. If it doesn’t, figure out why and rebuild and re-upload
the package.

9. Create pull requests on the skll-conda-tester and skll-pip-tester repositories to test the conda
and TestPyPI packages on Linux and Windows.

10. Draft a release on GitHub while the Linux and Windows package tester builds are running.

11. Once both builds have passed, make a pull request with the release branch to be merged into
main and request code review.

12. Once the build for the PR passes and the reviewers approve, merge the release branch into
main.

13. Upload source and wheel packages to PyPI using python setup.py sdist upload and
python setup.py bdist_wheel upload

14. Make sure that the ReadTheDocs build for main passes.

15. Tag the latest commit in main with the appropriate release tag and publish the release on
GitHub.

16. Send an email around at ETS announcing the release and the changes.

17. Post release announcement on Twitter/LinkedIn.

1.9. Internal Documentation 101

https://github.com/EducationalTestingService/skll-conda-tester/
https://github.com/EducationalTestingService/skll-pip-tester/

SciKit-Learn Laboratory Documentation, Release 5.0.1

102 Chapter 1. Documentation

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

103

SciKit-Learn Laboratory Documentation, Release 5.0.1

104 Chapter 2. Indices and tables

PYTHON MODULE INDEX

s
skll.data.featureset, 57
skll.learner, 74
skll.learner.voting, 83
skll.metrics, 91

105

SciKit-Learn Laboratory Documentation, Release 5.0.1

106 Python Module Index

INDEX

Symbols
-A

run_experiment command line
option, 40

-I
filter_features command line

option, 50
-L

filter_features command line
option, 50

--ablation
run_experiment command line

option, 39
summarize_results command line

option, 55
--ablation_all

run_experiment command line
option, 40

--arff_regression
skll_convert command line option,

54
--arff_relation

skll_convert command line option,
54

--drop-blanks
filter_features command line

option, 50
--feature

filter_features command line
option, 50

--id
filter_features command line

option, 50
--id_col

filter_features command line
option, 50

generate_predictions command line
option, 51

--input
filter_features command line

option, 50
--inverse

filter_features command line
option, 50

--k
print_model_weights command line

option, 53
--keep-models

run_experiment command line
option, 40

--label
filter_features command line

option, 50
--label_col

filter_features command line
option, 50

generate_predictions command line
option, 51

join_features command line
option, 52

skll_convert command line option,
54

--local
run_experiment command line

option, 40
--machines

run_experiment command line
option, 41

--no_labels

107

SciKit-Learn Laboratory Documentation, Release 5.0.1

skll_convert command line option,
54

--output
filter_features command line

option, 50
--output_file

generate_predictions command line
option, 51

--predict_labels
generate_predictions command line

option, 51
--queue

run_experiment command line
option, 40

--quiet
filter_features command line

option, 50
generate_predictions command line

option, 51
join_features command line

option, 52
skll_convert command line option,

54
--replace-blanks-with

filter_features command line
option, 50

--resume
run_experiment command line

option, 40
--reuse_libsvm_map

skll_convert command line option,
54

--sign
print_model_weights command line

option, 53
--sort_by_labels

print_model_weights command line
option, 53

--threshold
generate_predictions command line

option, 51
--verbose

run_experiment command line
option, 40

--version

compute_eval_from_predictions
command line option, 49

filter_features command line
option, 50

generate_predictions command line
option, 52

join_features command line
option, 52

print_model_weights command line
option, 53

run_experiment command line
option, 40

skll_convert command line option,
54

summarize_results command line
option, 55

-a
run_experiment command line

option, 39
summarize_results command line

option, 55
-db

filter_features command line
option, 50

-f
filter_features command line

option, 50
-i

filter_features command line
option, 50

generate_predictions command line
option, 51

-k
run_experiment command line

option, 40
-l

filter_features command line
option, 50

generate_predictions command line
option, 51

join_features command line
option, 52

run_experiment command line
option, 40

skll_convert command line option,

108 Index

SciKit-Learn Laboratory Documentation, Release 5.0.1

54
-m

run_experiment command line
option, 41

-o
filter_features command line

option, 50
generate_predictions command line

option, 51
-p

generate_predictions command line
option, 51

-q
filter_features command line

option, 50
generate_predictions command line

option, 51
join_features command line

option, 52
run_experiment command line

option, 40
skll_convert command line option,

54
-r

run_experiment command line
option, 40

-rb
filter_features command line

option, 50
-t

generate_predictions command line
option, 51

-v
run_experiment command line

option, 40

A
ARFFReader (class in skll.data.readers), 66
ARFFWriter (class in skll.data.writers), 72

C
CLASSIFICATION_ONLY_METRICS (in module

skll.utils.constants), 94
ClassMap (in module skll.types), 95

compute_eval_from_predictions
command line option

--version, 49
examples_file, 49
metric_names, 49
predictions_file, 49

ComputeEvalMetricsResults (in module
skll.types), 96

ConfusionMatrix (in module skll.types), 95
correlation() (in module skll.metrics), 91
CORRELATION_METRICS (in module

skll.utils.constants), 94
cross_validate() (skll.learner.Learner

method), 75
cross_validate()

(skll.learner.voting.VotingLearner
method), 84

CrossValidateTaskResults (in module
skll.types), 97

CSVReader (class in skll.data.readers), 63
CSVWriter (class in skll.data.writers), 70

D
DictListReader (class in skll.data.readers),

65

E
evaluate() (skll.learner.Learner method), 77
evaluate() (skll.learner.voting.VotingLearner

method), 86
EvaluateTaskResults (in module skll.types),

97
examples_file

compute_eval_from_predictions
command line option, 49

F
f1_score_least_frequent() (in module

skll.metrics), 92
FeatGenerator (in module skll.types), 96
FeatureDict (in module skll.types), 95
FeatureDictList (in module skll.types), 95
FeatureSet (class in skll.data.featureset), 58
FeaturesetIterator (in module skll.types),

95

Index 109

SciKit-Learn Laboratory Documentation, Release 5.0.1

filter() (skll.data.featureset.FeatureSet
method), 58

filter_features command line option
-I, 50
-L, 50
--drop-blanks, 50
--feature, 50
--id, 50
--id_col, 50
--input, 50
--inverse, 50
--label, 50
--label_col, 50
--output, 50
--quiet, 50
--replace-blanks-with, 50
--version, 50
-db, 50
-f, 50
-i, 50
-l, 50
-o, 50
-q, 50
-rb, 50

filtered_iter()
(skll.data.featureset.FeatureSet
method), 59

fix_json() (in module skll.config), 56
FoldMapping (in module skll.types), 95
for_path() (skll.data.readers.Reader class

method), 62
for_path() (skll.data.writers.Writer class

method), 69
from_data_frame()

(skll.data.featureset.FeatureSet static
method), 60

from_file() (skll.learner.Learner class
method), 78

from_file() (skll.learner.voting.VotingLearner
class method), 87

G
generate_predictions command line

option
--id_col, 51

--label_col, 51
--output_file, 51
--predict_labels, 51
--quiet, 51
--threshold, 51
--version, 52
-i, 51
-l, 51
-o, 51
-p, 51
-q, 51
-t, 51
input_file(s), 51
model_file, 51

get_feature_names_out()
(skll.learner.Learner method), 78

get_skll_logger() (in module
skll.utils.logging), 94

H
has_labels (skll.data.featureset.FeatureSet

property), 60

I
IdType (in module skll.types), 96
IndexIterator (in module skll.types), 96
infile

join_features command line
option, 52

skll_convert command line option,
54

input_file(s)
generate_predictions command line

option, 51

J
join_features command line option

--label_col, 52
--quiet, 52
--version, 52
-l, 52
-q, 52
infile, 52
outfile, 52

json_file

110 Index

SciKit-Learn Laboratory Documentation, Release 5.0.1

summarize_results command line
option, 55

K
kappa() (in module skll.metrics), 92

L
LabelType (in module skll.types), 96
Learner (class in skll.learner), 74
learners (skll.learner.voting.VotingLearner

property), 87
learning_curve() (skll.learner.Learner

method), 78
learning_curve()

(skll.learner.voting.VotingLearner
method), 88

LearningCurveSizes (in module skll.types),
96

LibSVMReader (class in skll.data.readers), 67
LibSVMWriter (class in skll.data.writers), 73
load() (skll.learner.Learner method), 79
load_custom_learner() (in module

skll.learner), 82
load_cv_folds() (in module skll.config), 56
locate_file() (in module skll.config), 57

M
metric_names

compute_eval_from_predictions
command line option, 49

model (skll.learner.Learner property), 80
model (skll.learner.voting.VotingLearner prop-

erty), 89
model_file

generate_predictions command line
option, 51

print_model_weights command line
option, 53

model_kwargs (skll.learner.Learner property),
80

model_params (skll.learner.Learner property),
80

model_type (skll.learner.Learner property), 80
model_type (skll.learner.voting.VotingLearner

property), 89

module
skll.data.featureset, 57
skll.learner, 74
skll.learner.voting, 83
skll.metrics, 91

N
NDJReader (class in skll.data.readers), 64
NDJWriter (class in skll.data.writers), 71

O
outfile

join_features command line
option, 52

skll_convert command line option,
54

output_dir
plot_learning_curves command line

option, 53

P
PathOrStr (in module skll.types), 96
plot_learning_curves command line

option
output_dir, 53
tsv_file, 53

predict() (skll.learner.Learner method), 80
predict() (skll.learner.voting.VotingLearner

method), 89
predictions_file

compute_eval_from_predictions
command line option, 49

print_model_weights command line
option

--k, 53
--sign, 53
--sort_by_labels, 53
--version, 53
model_file, 53

PROBABILISTIC_METRICS (in module
skll.utils.constants), 94

probability (skll.learner.Learner property),
81

Index 111

SciKit-Learn Laboratory Documentation, Release 5.0.1

R
read() (skll.data.readers.DictListReader

method), 66
read() (skll.data.readers.Reader method), 63
Reader (class in skll.data.readers), 61
register_custom_metric() (in module

skll.metrics), 93
REGRESSION_ONLY_METRICS (in module

skll.utils.constants), 94
run_experiment command line option

-A, 40
--ablation, 39
--ablation_all, 40
--keep-models, 40
--local, 40
--machines, 41
--queue, 40
--resume, 40
--verbose, 40
--version, 40
-a, 39
-k, 40
-l, 40
-m, 41
-q, 40
-r, 40
-v, 40

S
save() (skll.learner.Learner method), 81
save() (skll.learner.voting.VotingLearner

method), 90
skll.data.featureset

module, 57
skll.learner

module, 74
skll.learner.voting

module, 83
skll.metrics

module, 91
skll_convert command line option

--arff_regression, 54
--arff_relation, 54
--label_col, 54
--no_labels, 54

--quiet, 54
--reuse_libsvm_map, 54
--version, 54
-l, 54
-q, 54
infile, 54
outfile, 54

SparseFeatureMatrix (in module skll.types),
96

split() (skll.data.featureset.FeatureSet static
method), 60

split_with_quotes()
(skll.data.readers.ARFFReader static
method), 67

summarize_results command line
option

--ablation, 55
--version, 55
-a, 55
json_file, 55
summary_file, 55

summary_file
summarize_results command line

option, 55

T
train() (skll.learner.Learner method), 81
train() (skll.learner.voting.VotingLearner

method), 90
tsv_file

plot_learning_curves command line
option, 53

TSVReader (class in skll.data.readers), 64
TSVWriter (class in skll.data.writers), 70

U
UNWEIGHTED_KAPPA_METRICS (in module

skll.utils.constants), 94
use_score_func() (in module skll.metrics),

93

V
VotingCrossValidateTaskResults (in

module skll.types), 97

112 Index

SciKit-Learn Laboratory Documentation, Release 5.0.1

VotingLearner (class in skll.learner.voting),
83

W
WEIGHTED_KAPPA_METRICS (in module

skll.utils.constants), 94
write() (skll.data.writers.Writer method), 70
Writer (class in skll.data.writers), 68

Index 113

	Documentation
	Installation
	License
	Tutorial
	Workflow
	Titanic Example
	Create virtual environment with SKLL
	Get your data into the correct format
	Create a configuration file for the experiment
	Running your configuration file through run_experiment
	Examine the results

	IRIS Example on Binder

	Running Experiments
	General Workflow
	Feature files
	arff
	csv/tsv
	jsonlines/ndj (Recommended)
	libsvm

	Configuration file fields
	General
	experiment_name
	task

	Input
	learners
	featuresets
	train_file
	train_directory
	class_map (Optional)
	custom_learner_path (Optional)
	custom_metric_path (Optional)
	cv_seed (Optional)
	feature_hasher (Optional)
	feature_scaling (Optional)
	featureset_names (Optional)
	folds_file (Optional)
	fixed_parameters (Optional)
	hasher_features (Optional)
	id_col (Optional)
	ids_to_floats (Optional)
	label_col (Optional)
	learning_curve_cv_folds_list (Optional)
	learning_curve_train_sizes (Optional)
	num_cv_folds (Optional)
	random_folds (Optional)
	sampler (Optional)
	sampler_parameters (Optional)
	shuffle (Optional)
	suffix (Optional)
	test_file (Optional)
	test_directory (Optional)

	Tuning
	objectives
	grid_search (Optional)
	grid_search_folds (Optional)
	grid_search_jobs (Optional)
	min_feature_count (Optional)
	param_grids (Optional)
	pos_label (Optional)
	use_folds_file_for_grid_search (Optional)

	Output
	logs (Optional)
	models (Optional)
	metrics (Optional)
	pipeline (Optional)
	predictions (Optional)
	probability (Optional)
	results (Optional)
	save_cv_folds (Optional)
	save_cv_models (Optional)
	save_votes (Optional)
	wandb_credentials (Optional)

	Using run_experiment
	Output files
	Log files
	Model files
	Results files
	Prediction files
	Summary file
	Folds file
	Learning curve plots

	Integration with Weights & Biases

	Using Custom Metrics
	Writing Custom Metric Functions
	Using in Configuration Files
	Using via the API

	Utility Scripts
	compute_eval_from_predictions
	Positional Arguments
	Optional Arguments

	filter_features
	Required Arguments
	Optional Arguments

	generate_predictions
	Positional Arguments
	Optional Arguments

	join_features
	Positional Arguments
	Optional Arguments

	plot_learning_curves
	Positional Arguments

	print_model_weights
	Positional Arguments
	Optional Arguments

	skll_convert
	Positional Arguments
	Optional Arguments

	summarize_results
	Positional Arguments
	Optional Arguments

	API Documentation
	Quickstart
	config Package
	data Package
	data.featureset Module
	data.readers Module
	data.writers Module

	experiments Package
	learner Package
	Learner Class
	VotingLearner Class

	metrics Module
	utils Package
	types Module

	Contributing
	Guidelines
	SKLL Code Overview
	Organization
	Entry Points & Workflow

	Internal Documentation
	Release Process

	Indices and tables
	Python Module Index
	Index

