
jira-python Documentation
Release 0.48

Atlassian Pty Ltd.

May 31, 2015





Contents

1 Quickstart 1
1.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Examples 5

3 jirashell 9

4 Advanced 11
4.1 Resource Objects and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 API Documentation 13

6 Installation 29
6.1 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Contributing 31
7.1 Discussion and support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Indices and tables 33

Python Module Index 35

i



ii



CHAPTER 1

Quickstart

1.1 Initialization

Everything goes through the JIRA object, so make one:

from jira import JIRA

jira = JIRA()

This connects to a JIRA started on your local machine at http://localhost:2990/jira, which not coincidentally is the
default address for a JIRA instance started from the Atlassian Plugin SDK.

You can manually set the JIRA server to use:

jac = JIRA('https://jira.atlassian.com')

1.2 Authentication

At initialization time, jira-python can optionally create an HTTP BASIC or use OAuth 1.0a access tokens for user
authentication. These sessions will apply to all subsequent calls to the JIRA object.

The library is able to load the credentials from inside the ~/.netrc file, so put them there instead of keeping them in
your source code.

1.2.1 HTTP BASIC

Pass a tuple of (username, password) to the basic_auth constructor argument:

authed_jira = JIRA(basic_auth=('username', 'password'))

1.2.2 OAuth

Pass a dict of OAuth properties to the oauth constructor argument:

# all values are samples and won't work in your code!
key_cert_data = None
with open(key_cert, 'r') as key_cert_file:

key_cert_data = key_cert_file.read()

1

http://localhost:2990/jira


jira-python Documentation, Release 0.48

oauth_dict = {
'access_token': 'd87f3hajglkjh89a97f8',
'access_token_secret': 'a9f8ag0ehaljkhgeds90',
'consumer_key': 'jira-oauth-consumer',
'key_cert': key_cert_data

}
authed_jira = JIRA(oauth=oauth_dict)

Note: The OAuth access tokens must be obtained and authorized ahead of time through the standard OAuth dance.
For interactive use, jirashell can perform the dance with you if you don’t already have valid tokens.

Note: OAuth in Jira uses RSA-SHA1 which requires the PyCrypto library. PyCrypto is not installed automatically
when installing jira-python. See also the Dependencies_. section above.

• The access token and token secret uniquely identify the user.

• The consumer key must match the OAuth provider configured on the JIRA server.

• The key cert data must be the private key that matches the public key configured on the JIRA server’s OAuth
provider.

See https://confluence.atlassian.com/display/JIRA/Configuring+OAuth+Authentication+for+an+Application+Link
for details on configuring an OAuth provider for JIRA.

1.3 Issues

Issues are objects. You get hold of them through the JIRA object:

issue = jira.issue('JRA-1330')

Issue JSON is marshaled automatically and used to augment the returned Issue object, so you can get direct access to
fields:

summary = issue.fields.summary # 'Field level security permissions'
votes = issue.fields.votes.votes # 440 (at least)

If you only want a few specific fields, save time by asking for them explicitly:

issue = jira.issue('JRA-1330', fields='summary,comment')

Reassign an issue:

# requires issue assign permission, which is different from issue editing permission!
jira.assign_issue(issue, 'newassignee')

Creating issues is easy:

new_issue = jira.create_issue(project='PROJ_key_or_id', summary='New issue from jira-python',
description='Look into this one', issuetype={'name': 'Bug'})

Or you can use a dict:

issue_dict = {
'project': {'id': 123},
'summary': 'New issue from jira-python',
'description': 'Look into this one',

2 Chapter 1. Quickstart

https://confluence.atlassian.com/display/JIRA/Configuring+OAuth+Authentication+for+an+Application+Link


jira-python Documentation, Release 0.48

'issuetype': {'name': 'Bug'},
}
new_issue = jira.create_issue(fields=issue_dict)

Note: Project, summary, description and issue type are always required when creating issues. Your JIRA may require
additional fields for creating issues; see the jira.createmeta method for getting access to that information.

You can also update an issue’s fields with keyword arguments:

issue.update(summary='new summary', description='A new summary was added')
issue.update(assignee={'name': 'new_user'}) # reassigning in update requires issue edit permission

or with a dict of new field values:

issue.update(fields={'summary': 'new summary', 'description': 'A new summary was added'})

and when you’re done with an issue, you can send it to the great hard drive in the sky:

issue.delete()

Updating components:

existingComponents = []
for component in issue.fields.components:

existingComponents.append({"name" : component.name})
issue.update(fields={"components": existingComponents})

issue.fields.worklogs # list of Worklog objects issue.fields.worklogs[0].author is-
sue.fields.worklogs[0].comment issue.fields.worklogs[0].created issue.fields.worklogs[0].id is-
sue.fields.worklogs[0].self issue.fields.worklogs[0].started issue.fields.worklogs[0].timeSpent is-
sue.fields.worklogs[0].timeSpentSeconds issue.fields.worklogs[0].updateAuthor # dictionary is-
sue.fields.worklogs[0].updated

issue.fields.timetracking.remainingEstimate # may be NULL or string (“0m”, “2h”...)
issue.fields.timetracking.remainingEstimateSeconds # may be NULL or integer is-
sue.fields.timetracking.timeSpent # may be NULL or string issue.fields.timetracking.timeSpentSeconds
# may be NULL or integer

1.3.1 Searching

Leverage the power of JQL to quickly find the issues you want:

issues_in_proj = jira.search_issues('project=PROJ')
all_proj_issues_but_mine = jira.search_issues('project=PROJ and assignee != currentUser()')

# my top 5 issues due by the end of the week, ordered by priority
oh_crap = jira.search_issues('assignee = currentUser() and due < endOfWeek() order by priority desc', maxResults=5)

# Summaries of my last 3 reported issues
print [issue.fields.summary for issue in jira.search_issues('reporter = currentUser() order by created desc', maxResults=3)]

1.3.2 Comments

Comments, like issues, are objects. Get at issue comments through the parent Issue object or the JIRA object’s
dedicated method:

1.3. Issues 3

https://confluence.atlassian.com/display/JIRA/Advanced+Searching


jira-python Documentation, Release 0.48

comments_a = issue.fields.comments.comments
comments_b = jira.comments(issue) # comments_b == comments_a

Get an individual comment if you know its ID:

comment = jira.comment('JRA-1330', '10234')

Adding, editing and deleting comments is similarly straightforward:

comment = jira.add_comment('JRA-1330', 'new comment') # no Issue object required
comment = jira.add_comment(issue, 'new comment', visibility={'type': 'role', 'value': 'Administrators'}) # for admins only

comment.update(body = 'updated comment body')
comment.delete()

1.3.3 Transitions

Learn what transitions are available on an issue:

issue = jira.issue('PROJ-1')
transitions = jira.transitions(issue)
[(t['id'], t['name']) for t in transitions] # [(u'5', u'Resolve Issue'), (u'2', u'Close Issue')]

Note: Only the transitions available to the currently authenticated user will be returned!

Then perform a transition on an issue:

# Resolve the issue and assign it to 'pm_user' in one step
jira.transition_issue(issue, '5', assignee={'name': 'pm_user'}, resolution={'id': '3'})

# The above line is equivalent to:
jira.transition_issue(issue, '5', fields: {'assignee':{'name': 'pm_user'}, 'resolution':{'id': '3'}})

1.4 Projects

Projects are objects, just like issues:

projects = jira.projects()

Also, just like issue objects, project objects are augmented with their fields:

jra = jira.project('JRA')
print jra.name # 'JIRA'
print jira.lead.displayName # 'Paul Slade [Atlassian]'

It’s no trouble to get the components, versions or roles either (assuming you have permission):

components = jira.project_components(jra)
[c.name for c in components] # 'Accessibility', 'Activity Stream', 'Administration', etc.

jira.project_roles(jra) # 'Administrators', 'Developers', etc.

versions = jira.project_versions(jra)
[v.name for v in reversed(versions)] # '5.1.1', '5.1', '5.0.7', '5.0.6', etc.

4 Chapter 1. Quickstart



CHAPTER 2

Examples

Here’s a quick usage example:

# This script shows how to use the client in anonymous mode
# against jira.atlassian.com.

from jira import JIRA

# By default, the client will connect to a JIRA instance started from the Atlassian Plugin SDK
# (see https://developer.atlassian.com/display/DOCS/Installing+the+Atlassian+Plugin+SDK for details).
# Override this with the options parameter.
options = {

'server': 'https://jira.atlassian.com'
}
jira = JIRA(options)

# Get all projects viewable by anonymous users.
projects = jira.projects()

# Sort available project keys, then return the second, third, and fourth keys.
keys = sorted([project.key for project in projects])[2:5]

# Get an issue.
issue = jira.issue('JRA-1330')

# Find all comments made by Atlassians on this issue.
import re
atl_comments = [comment for comment in issue.fields.comment.comments

if re.search(r'@atlassian.com$', comment.author.emailAddress)]

# Add a comment to the issue.
jira.add_comment(issue, 'Comment text')

# Change the issue's summary and description.
issue.update(

summary="I'm different!", description='Changed the summary to be different.')

# You can update the entire labels field like this
issue.update(labels=['AAA', 'BBB'])

# Or modify the List of existing labels. The new label is unicode with no
# spaces
issue.fields.labels.append(u'new_text')
issue.update(fields={"labels": issue.fields.labels})

5



jira-python Documentation, Release 0.48

# Send the issue away for good.
issue.delete()

# Linking a remote jira issue (needs applinks to be configured to work)
issue = jira.issue('JRA-1330')
issue2 = jira2.issue('XX-23')
jira.add_remote_link(issue, issue2)

Another example shows how to authenticate with your JIRA username and password:

# This script shows how to connect to a JIRA instance with a
# username and password over HTTP BASIC authentication.

from jira import JIRA

# By default, the client will connect to a JIRA instance started from the Atlassian Plugin SDK.
# See
# https://developer.atlassian.com/display/DOCS/Installing+the+Atlassian+Plugin+SDK
# for details.
jira = JIRA(basic_auth=('admin', 'admin')) # a username/password tuple

# Get the mutable application properties for this server (requires
# jira-system-administrators permission)
props = jira.application_properties()

# Find all issues reported by the admin
issues = jira.search_issues('assignee=admin')

# Find the top three projects containing issues reported by admin
from collections import Counter
top_three = Counter(

[issue.fields.project.key for issue in issues]).most_common(3)

This example shows how to work with GreenHopper:

# This script shows how to use the client in anonymous mode
# against jira.atlassian.com.
from six import print_ as print

from jira.client import GreenHopper

# By default, the client will connect to a JIRA instance started from the Atlassian Plugin SDK
# (see https://developer.atlassian.com/display/DOCS/Installing+the+Atlassian+Plugin+SDK for details).
# Override this with the options parameter.
# GreenHopper is a plugin in a JIRA instance
options = {

'server': 'https://jira.atlassian.com'
}
gh = GreenHopper(options)

# Get all boards viewable by anonymous users.
boards = gh.boards()

# Get the sprints in a specific board
board_id = 441
print("GreenHopper board: %s (%s)" % (boards[0].name, board_id))
sprints = gh.sprints(board_id)

6 Chapter 2. Examples



jira-python Documentation, Release 0.48

# List the incomplete issues in each sprint
for sprint in sprints:

sprint_id = sprint.id
print("Sprint: %s" % sprint.name)
incompleted_issues = gh.incompleted_issues(board_id, sprint_id)
print("Incomplete issues: %s" %

', '.join(issue.key for issue in incompleted_issues))

7



jira-python Documentation, Release 0.48

8 Chapter 2. Examples



CHAPTER 3

jirashell

There is no substitute for play. The only way to really know a service, an API or a package is to explore it, poke
at it, and bang your elbows – trial and error. A REST design is especially well-suited to active exploration, and the
jirashell script (installed automatically when you use pip) is designed to help you do exactly that.

Run it from the command line:

$ jirashell -s http://jira.atlassian.com
<JIRA Shell (http://jira.atlassian.com)>

*** JIRA shell active; client is in 'jira'. Press Ctrl-D to exit.

In [1]:

This is a specialized Python interpreter (built on IPython) that lets you explore JIRA as a service. Any legal Python
code is acceptable input. The shell builds a JIRA client object for you (based on the launch parameters) and stores it
in the jira object.

Try getting an issue:

In [1]: issue = jira.issue('JRA-1330')

issue now contains a reference to an issue Resource. To see the available properties and methods, hit the TAB
key:

In [2]: issue.
issue.delete issue.fields issue.id issue.raw issue.update
issue.expand issue.find issue.key issue.self

In [2]: issue.fields.
issue.fields.aggregateprogress issue.fields.customfield_11531
issue.fields.aggregatetimeestimate issue.fields.customfield_11631
issue.fields.aggregatetimeoriginalestimate issue.fields.customfield_11930
issue.fields.aggregatetimespent issue.fields.customfield_12130
issue.fields.assignee issue.fields.customfield_12131
issue.fields.attachment issue.fields.description
issue.fields.comment issue.fields.environment
issue.fields.components issue.fields.fixVersions
issue.fields.created issue.fields.issuelinks
issue.fields.customfield_10150 issue.fields.issuetype
issue.fields.customfield_10160 issue.fields.labels
issue.fields.customfield_10161 issue.fields.mro
issue.fields.customfield_10180 issue.fields.progress
issue.fields.customfield_10230 issue.fields.project
issue.fields.customfield_10575 issue.fields.reporter

9



jira-python Documentation, Release 0.48

issue.fields.customfield_10610 issue.fields.resolution
issue.fields.customfield_10650 issue.fields.resolutiondate
issue.fields.customfield_10651 issue.fields.status
issue.fields.customfield_10680 issue.fields.subtasks
issue.fields.customfield_10723 issue.fields.summary
issue.fields.customfield_11130 issue.fields.timeestimate
issue.fields.customfield_11230 issue.fields.timeoriginalestimate
issue.fields.customfield_11431 issue.fields.timespent
issue.fields.customfield_11433 issue.fields.updated
issue.fields.customfield_11434 issue.fields.versions
issue.fields.customfield_11435 issue.fields.votes
issue.fields.customfield_11436 issue.fields.watches
issue.fields.customfield_11437 issue.fields.workratio

Since the Resource class maps the server’s JSON response directly into a Python object with attribute access, you can
see exactly what’s in your resources.

10 Chapter 3. jirashell



CHAPTER 4

Advanced

4.1 Resource Objects and Properties

The library distinguishes between two kinds of data in the JIRA REST API: resources and properties.

A resource is a REST entity that represents the current state of something that the server owns; for example, the
issue called “ABC-123” is a concept managed by JIRA which can be viewed as a resource obtainable at the URL
http://jira-server/rest/api/2/issue/ABC-123. All resources have a self link: a root-level property called self which
contains the URL the resource originated from. In jira-python, resources are instances of the Resource object (or one
of its subclasses) and can only be obtained from the server using the find() method. Resources may be connected
to other resources: the issue Resource is connected to a user Resource through the assignee and reporter fields,
while the project Resource is connected to a project lead through another user Resource.

Important: A resource is connected to other resources, and the client preserves this connection. In the above
example, the object inside the issue object at issue.fields.assignee is not just a dict – it is a full-fledged
user Resource object. Whenever a resource contains other resources, the client will attempt to convert them to the
proper subclass of Resource.

A properties object is a collection of values returned by JIRA in response to some query from the REST API. Their
structure is freeform and modeled as a Python dict. Client methods return this structure for calls that do not produce
resources. For example, the properties returned from the URL http://jira-server/rest/api/2/issue/createmeta are de-
signed to inform users what fields (and what values for those fields) are required to successfully create issues in the
server’s projects. Since these properties are determined by JIRA’s configuration, they are not resources.

The JIRA client’s methods document whether they will return a Resource or a properties object.

11



jira-python Documentation, Release 0.48

12 Chapter 4. Advanced



CHAPTER 5

API Documentation

class jira.JIRA(server=None, options=None, basic_auth=None, oauth=None, validate=None,
async=False, logging=True, max_retries=3)

Bases: object

User interface to JIRA.

Clients interact with JIRA by constructing an instance of this object and calling its methods. For addressable
resources in JIRA – those with “self” links – an appropriate subclass of Resource will be returned with
customized update() and delete() methods, along with attribute access to fields. This means that calls
of the form issue.fields.summary will be resolved into the proper lookups to return the JSON value at
that mapping. Methods that do not return resources will return a dict constructed from the JSON response or a
scalar value; see each method’s documentation for details on what that method returns.

AGILE_BASE_URL = u’{server}/rest/greenhopper/1.0/{path}’

DEFAULT_OPTIONS = {u’check_update’: True, u’headers’: {u’Content-Type’: u’application/json’, u’X-Atlassian-Token’: u’no-check’, u’Cache-Control’: u’no-cache’}, u’rest_api_version’: u‘2’, u’rest_path’: u’api’, u’async’: False, u’resilient’: True, u’verify’: True, u’client_cert’: None, u’server’: u’http://localhost:2990/jira’}

JIRA_BASE_URL = u’{server}/rest/api/{rest_api_version}/{path}’

add_attachment(*args, **kwargs)
Attach an attachment to an issue and returns a Resource for it.

The client will not attempt to open or validate the attachment; it expects a file-like object to be ready for
its use. The user is still responsible for tidying up (e.g., closing the file, killing the socket, etc.)

Parameters

• issue – the issue to attach the attachment to

• attachment – file-like object to attach to the issue, also works if it is a string with the
filename.

• filename – optional name for the attached file. If omitted, the file object’s name at-
tribute is used. If you aquired the file-like object by any other method than open(),
make sure that a name is specified in one way or the other.

Return type an Attachment Resource

add_comment(*args, **kwargs)
Add a comment from the current authenticated user on the specified issue and return a Resource for it. The
issue identifier and comment body are required.

Parameters

• issue – ID or key of the issue to add the comment to

• body – Text of the comment to add

13



jira-python Documentation, Release 0.48

• visibility – a dict containing two entries: “type” and “value”. “type” is ‘role’ (or
‘group’ if the JIRA server has configured comment visibility for groups) and ‘value’ is the
name of the role (or group) to which viewing of this comment will be restricted.

add_group(groupname)
Creates a new group in JIRA. :param groupname: The name of the group you wish to create. :return:
Boolean - True if succesfull.

add_issues_to_epic(epic_id, issue_keys, ignore_epics=True)
Add the issues in issue_keys to the epic_id.

Parameters

• epic_id – the epic to add issues to

• issue_keys – the issues to add to the epic

• ignore_epics – ignore any issues listed in issue_keys that are epics

add_issues_to_sprint(sprint_id, issue_keys)
Add the issues in issue_keys to the sprint_id. The sprint must be started but not completed.

If a sprint was completed, then have to also edit the history of the issue so that it was added to the sprint
before it was completed, preferably before it started. A completed sprint’s issues also all have a resolution
set before the completion date.

If a sprint was not started, then have to edit the marker and copy the rank of each issue too.

Parameters

• sprint_id – the sprint to add issues to

• issue_keys – the issues to add to the sprint

add_remote_link(issue, destination, globalId=None, application=None, relationship=None)
Add a remote link from an issue to an external application and returns a remote link Resource for it.
object should be a dict containing at least url to the linked external URL and title to display for the
link inside JIRA.

For definitions of the allowable fields for object and the key-
word arguments globalId, application and relationship, see
https://developer.atlassian.com/display/JIRADEV/JIRA+REST+API+for+Remote+Issue+Links.

Parameters

• issue – the issue to add the remote link to

• destination – the link details to add (see the above link for details)

• globalId – unique ID for the link (see the above link for details)

• application – application information for the link (see the above link for details)

• relationship – relationship description for the link (see the above link for details)

add_user(username, email, directoryId=1, password=None, fullname=None, sendEmail=False, ac-
tive=True)

add_user_to_group(username, group)
Adds a user to an existing group. :param username: Username that will be added to specified group.
:param group: Group that the user will be added to. :return: Boolean, True for success, false for failure.

add_vote(*args, **kwargs)
Register a vote for the current authenticated user on an issue.

Parameters issue – ID or key of the issue to vote on

14 Chapter 5. API Documentation

https://developer.atlassian.com/display/JIRADEV/JIRA+REST+API+for+Remote+Issue+Links


jira-python Documentation, Release 0.48

add_watcher(*args, **kwargs)
Add a user to an issue’s watchers list.

Parameters

• issue – ID or key of the issue affected

• watcher – username of the user to add to the watchers list

add_worklog(*args, **kwargs)
Add a new worklog entry on an issue and return a Resource for it.

Parameters

• issue – the issue to add the worklog to

• timeSpent – a worklog entry with this amount of time spent, e.g. “2d”

• adjustEstimate – (optional) allows the user to provide specific instructions to update
the remaining time estimate of the issue. The value can either be new, leave, manual
or auto (default).

• newEstimate – the new value for the remaining estimate field. e.g. “2d”

• reduceBy – the amount to reduce the remaining estimate by e.g. “2d”

• started – Moment when the work is logged, if not specified will default to now

• comment – optional worklog comment

application_properties(key=None)
Return the mutable server application properties.

Parameters key – the single property to return a value for

applicationlinks(cached=True)
List of application links :return: json

assign_issue(*args, **kwargs)
Assign an issue to a user. None will set it to unassigned. -1 will set it to Automatic.

Parameters

• issue – the issue to assign

• assignee – the user to assign the issue to

async_do(size=10)
This will execute all async jobs and wait for them to finish. By default it will run on 10 threads.

size: number of threads to run on. :return:

attachment(id)
Get an attachment Resource from the server for the specified ID.

attachment_meta()
Get the attachment metadata.

backup(filename=u’backup.zip’)
Will call jira export to backup as zipped xml. Returning with success does not mean that the backup
process finished.

boards(*args, **kwargs)
Get a list of board GreenHopperResources.

checked_version = False

15



jira-python Documentation, Release 0.48

client_info()
Get the server this client is connected to.

comment(*args, **kwargs)
Get a comment Resource from the server for the specified ID.

Parameters

• issue – ID or key of the issue to get the comment from

• comment – ID of the comment to get

comments(*args, **kwargs)
Get a list of comment Resources.

Parameters issue – the issue to get comments from

completedIssuesEstimateSum(board_id, sprint_id)
Return the total completed points this sprint.

completed_issues(board_id, sprint_id)
Return the completed issues for board_id and sprint_id.

Parameters

• board_id – the board retrieving issues from

• sprint_id – the sprint retieving issues from

component(id)
Get a component Resource from the server.

Parameters id – ID of the component to get

component_count_related_issues(id)
Get the count of related issues for a component.

Parameters id (integer) – ID of the component to use

confirm_project_avatar(*args, **kwargs)
Confirm the temporary avatar image previously uploaded with the specified cropping.

After a successful registry with create_temp_project_avatar(), use this method to confirm the
avatar for use. The final avatar can be a subarea of the uploaded image, which is customized with the
cropping_properties: the return value of create_temp_project_avatar() should be used
for this argument.

Parameters

• project – ID or key of the project to confirm the avatar in

• cropping_properties – a dict of cropping properties from
create_temp_project_avatar()

confirm_user_avatar(user, cropping_properties)
Confirm the temporary avatar image previously uploaded with the specified cropping.

After a successful registry with create_temp_user_avatar(), use this method to confirm the
avatar for use. The final avatar can be a subarea of the uploaded image, which is customized with the
cropping_properties: the return value of create_temp_user_avatar() should be used for
this argument.

Parameters

• user – the user to confirm the avatar for

16 Chapter 5. API Documentation



jira-python Documentation, Release 0.48

• cropping_properties – a dict of cropping properties from
create_temp_user_avatar()

create_board(name, project_ids, preset=u’scrum’)
Create a new board for the project_ids.

Parameters

• name – name of the board

• project_ids – the projects to create the board in

• preset (‘kanban’, ‘scrum’, ‘diy’) – what preset to use for this board

create_component(*args, **kwargs)
Create a component inside a project and return a Resource for it.

Parameters

• name – name of the component

• project – key of the project to create the component in

• description – a description of the component

• leadUserName – the username of the user responsible for this component

• assigneeType – see the ComponentBean.AssigneeType class for valid values

• isAssigneeTypeValid – boolean specifying whether the assignee type is acceptable

create_filter(name=None, description=None, jql=None, favourite=None)
Create a new filter and return a filter Resource for it.

Keyword arguments: name – name of the new filter description – useful human readable description of the
new filter jql – query string that defines the filter favourite – whether to add this filter to the current user’s
favorites

create_issue(fields=None, prefetch=True, **fieldargs)
Create a new issue and return an issue Resource for it.

Each keyword argument (other than the predefined ones) is treated as a field name and the argument’s value
is treated as the intended value for that field – if the fields argument is used, all other keyword arguments
will be ignored.

By default, the client will immediately reload the issue Resource created by this method in order to return
a complete Issue object to the caller; this behavior can be controlled through the ‘prefetch’ argument.

JIRA projects may contain many different issue types. Some issue screens have different requirements
for fields in a new issue. This information is available through the ‘createmeta’ method. Further exam-
ples are available here: https://developer.atlassian.com/display/JIRADEV/JIRA+REST+API+Example+-
+Create+Issue

Parameters

• fields – a dict containing field names and the values to use. If present, all other keyword
arguments will be ignored

• prefetch – whether to reload the created issue Resource so that all of its data is present
in the value returned from this method

create_issue_link(*args, **kwargs)
Create a link between two issues.

Parameters

17

https://developer.atlassian.com/display/JIRADEV/JIRA+REST+API+Example+-+Create+Issue
https://developer.atlassian.com/display/JIRADEV/JIRA+REST+API+Example+-+Create+Issue


jira-python Documentation, Release 0.48

• type – the type of link to create

• inwardIssue – the issue to link from

• outwardIssue – the issue to link to

• comment – a comment to add to the issues with the link. Should be a dict containing
body and visibility fields: body being the text of the comment and visibility
being a dict containing two entries: type and value. type is role (or group if the
JIRA server has configured comment visibility for groups) and value is the name of the
role (or group) to which viewing of this comment will be restricted.

create_project(key, name=None, assignee=None)
Key is mandatory and has to match JIRA project key requirements, usually only 2-10 uppercase characters.
If name is not specified it will use the key value. If assignee is not specified it will use current user. The
returned value should evaluate to False if it fails otherwise it will be the new project id.

create_sprint(name, board_id, startDate=None, endDate=None)
Create a new sprint for the board_id.

Parameters

• name – name of the sprint

• board_id – the board to add the sprint to

create_temp_project_avatar(*args, **kwargs)
Register an image file as a project avatar. The avatar created is temporary and must be confirmed before it
can be used.

Avatar images are specified by a filename, size, and file object. By default, the client will attempt to
autodetect the picture’s content type: this mechanism relies on libmagic and will not work out of the box
on Windows systems (see http://filemagic.readthedocs.org/en/latest/guide.html for details on how to install
support). The contentType argument can be used to explicitly set the value (note that JIRA will reject
any type other than the well-known ones for images, e.g. image/jpg, image/png, etc.)

This method returns a dict of properties that can be used to crop a subarea of a larger image for use.
This dict should be saved and passed to confirm_project_avatar() to finish the avatar creation
process. If you want to cut out the middleman and confirm the avatar with JIRA’s default cropping, pass
the ‘auto_confirm’ argument with a truthy value and confirm_project_avatar() will be called for
you before this method returns.

Parameters

• project – ID or key of the project to create the avatar in

• filename – name of the avatar file

• size – size of the avatar file

• avatar_img – file-like object holding the avatar

• contentType – explicit specification for the avatar image’s content-type

• auto_confirm (boolean) – whether to automatically confirm the temporary avatar by
calling confirm_project_avatar() with the return value of this method.

create_temp_user_avatar(user, filename, size, avatar_img, contentType=None,
auto_confirm=False)

Register an image file as a user avatar. The avatar created is temporary and must be confirmed before it
can be used.

Avatar images are specified by a filename, size, and file object. By default, the client will attempt to
autodetect the picture’s content type: this mechanism relies on libmagic and will not work out of the

18 Chapter 5. API Documentation

http://filemagic.readthedocs.org/en/latest/guide.html


jira-python Documentation, Release 0.48

box on Windows systems (see http://filemagic.readthedocs.org/en/latest/guide.html for details on how to
install support). The contentType argument can be used to explicitly set the value (note that JIRA will
reject any type other than the well-known ones for images, e.g. image/jpg, image/png, etc.)

This method returns a dict of properties that can be used to crop a subarea of a larger image for use.
This dict should be saved and passed to confirm_user_avatar() to finish the avatar creation pro-
cess. If you want to cut out the middleman and confirm the avatar with JIRA’s default cropping, pass the
auto_confirm argument with a truthy value and confirm_user_avatar() will be called for you
before this method returns.

Parameters

• user – user to register the avatar for

• filename – name of the avatar file

• size – size of the avatar file

• avatar_img – file-like object containing the avatar

• contentType – explicit specification for the avatar image’s content-type

• auto_confirm – whether to automatically confirm the temporary avatar by calling
confirm_user_avatar() with the return value of this method.

create_version(*args, **kwargs)
Create a version in a project and return a Resource for it.

Parameters

• name – name of the version to create

• project – key of the project to create the version in

• description – a description of the version

• releaseDate – the release date assigned to the version

• startDate – The start date for the version

createmeta(projectKeys=None, projectIds=[], issuetypeIds=None, issuetypeNames=None, ex-
pand=None)

Gets the metadata required to create issues, optionally filtered by projects and issue types.

Parameters

• projectKeys – keys of the projects to filter the results with. Can be a single value or a
comma-delimited string. May be combined with projectIds.

• projectIds – IDs of the projects to filter the results with. Can be a single value or a
comma-delimited string. May be combined with projectKeys.

• issuetypeIds – IDs of the issue types to filter the results with. Can be a single value
or a comma-delimited string. May be combined with issuetypeNames.

• issuetypeNames – Names of the issue types to filter the results with. Can be a single
value or a comma-delimited string. May be combined with issuetypeIds.

• expand – extra information to fetch inside each resource.

current_user()

custom_field_option(id)
Get a custom field option Resource from the server.

Parameters id – ID of the custom field to use

19

http://filemagic.readthedocs.org/en/latest/guide.html


jira-python Documentation, Release 0.48

dashboard(id)
Get a dashboard Resource from the server.

Parameters id – ID of the dashboard to get.

dashboards(filter=None, startAt=0, maxResults=20)
Return a ResultList of Dashboard resources and a total count.

Parameters

• filter – either “favourite” or “my”, the type of dashboards to return

• startAt – index of the first dashboard to return

• maxResults – maximum number of dashboards to return. The total number of results
is always available in the total attribute of the returned ResultList.

delete_board(id)
Deletes an agile board.

Parameters id –

Returns

delete_project(pid)
Project can be id, project key or project name. It will return False if it fails.

delete_project_avatar(*args, **kwargs)
Delete a project’s avatar.

Parameters

• project – ID or key of the project to delete the avatar from

• avatar – ID of the avater to delete

delete_user(username)

delete_user_avatar(username, avatar)
Delete a user’s avatar.

Parameters

• username – the user to delete the avatar from

• avatar – ID of the avatar to remove

editmeta(*args, **kwargs)
Get the edit metadata for an issue.

Parameters issue – the issue to get metadata for

email_user(user, body, title=u’JIRA Notification’)
TBD:

favourite_filters()
Get a list of filter Resources which are the favourites of the currently authenticated user.

fields()
Return a list of all issue fields.

filter(id)
Get a filter Resource from the server.

Parameters id – ID of the filter to get.

20 Chapter 5. API Documentation



jira-python Documentation, Release 0.48

find(resource_format, ids=None)
Get a Resource object for any addressable resource on the server.

This method is a universal resource locator for any RESTful resource in JIRA. The argument
resource_format is a string of the form resource, resource/{0}, resource/{0}/sub,
resource/{0}/sub/{1}, etc. The format placeholders will be populated from the ids argument if
present. The existing authentication session will be used.

The return value is an untyped Resource object, which will not support specialized
Resource.update() or Resource.delete() behavior. Moreover, it will not know to re-
turn an issue Resource if the client uses the resource issue path. For this reason, it is intended to support
resources that are not included in the standard Atlassian REST API.

Parameters

• resource_format – the subpath to the resource string

• ids (tuple or None) – values to substitute in the resource_format string

find_transitionid_by_name(issue, transition_name)
Get a transitionid available on the specified issue to the current user. Look at
https://developer.atlassian.com/static/rest/jira/6.1.html#d2e1074 for json reference

Parameters

• issue – ID or key of the issue to get the transitions from

• trans_name – iname of transition we are looking for

get_igrid(issueid, customfield, schemeid)

group_members(group)
Return a hash or users with their information. Requires JIRA 6.0 or will raise NotImplemented.

groups(query=None, exclude=None, maxResults=None)
Return a list of groups matching the specified criteria.

Keyword arguments: query – filter groups by name with this string exclude – filter out groups
by name with this string maxResults – maximum results to return. defaults to system property
jira.ajax.autocomplete.limit (20)

incompleted_issues(board_id, sprint_id)
Return the completed issues for the sprint

issue(id, fields=None, expand=None)
Get an issue Resource from the server.

Parameters

• id – ID or key of the issue to get

• fields – comma-separated string of issue fields to include in the results

• expand – extra information to fetch inside each resource

issue_link(id)
Get an issue link Resource from the server.

Parameters id – ID of the issue link to get

issue_link_type(id)
Get an issue link type Resource from the server.

Parameters id – ID of the issue link type to get

21

https://developer.atlassian.com/static/rest/jira/6.1.html#d2e1074


jira-python Documentation, Release 0.48

issue_link_types()
Get a list of issue link type Resources from the server.

issue_type(id)
Get an issue type Resource from the server.

Parameters id – ID of the issue type to get

issue_types()
Get a list of issue type Resources from the server.

kill_session()
Destroy the session of the current authenticated user.

kill_websudo()
Destroy the user’s current WebSudo session.

move_version(id, after=None, position=None)
Move a version within a project’s ordered version list and return a new version Resource for it. One, but
not both, of after and position must be specified.

Parameters

• id – ID of the version to move

• after – the self attribute of a version to place the specified version after (that is, higher
in the list)

• position – the absolute position to move this version to: must be one of First, Last,
Earlier, or Later

my_permissions(projectKey=None, projectId=None, issueKey=None, issueId=None)
Get a dict of all available permissions on the server.

Parameters

• projectKey – limit returned permissions to the specified project

• projectId – limit returned permissions to the specified project

• issueKey – limit returned permissions to the specified issue

• issueId – limit returned permissions to the specified issue

priorities()
Get a list of priority Resources from the server.

priority(id)
Get a priority Resource from the server.

Parameters id – ID of the priority to get

project(id)
Get a project Resource from the server.

Parameters id – ID or key of the project to get

project_avatars(*args, **kwargs)
Get a dict of all avatars for a project visible to the current authenticated user.

Parameters project – ID or key of the project to get avatars for

project_components(*args, **kwargs)
Get a list of component Resources present on a project.

Parameters project – ID or key of the project to get components from

22 Chapter 5. API Documentation



jira-python Documentation, Release 0.48

project_role(*args, **kwargs)
Get a role Resource.

Parameters

• project – ID or key of the project to get the role from

• id – ID of the role to get

project_roles(*args, **kwargs)
Get a dict of role names to resource locations for a project.

Parameters project – ID or key of the project to get roles from

project_versions(*args, **kwargs)
Get a list of version Resources present on a project.

Parameters project – ID or key of the project to get versions from

projects()
Get a list of project Resources from the server visible to the current authenticated user.

rank(issue, next_issue)
Rank an issue before another using the default Ranking field, the one named ‘Rank’.

Parameters

• issue – issue key of the issue to be ranked before the second one.

• next_issue – issue key of the second issue.

reindex(force=False, background=True)
Start jira re-indexing. Returns True if reindexing is in progress or not needed, or False.

If you call reindex() without any parameters it will perform a backfround reindex only if JIRA thinks it
should do it.

Parameters

• force – reindex even if JIRA doesn’tt say this is needed, False by default.

• background – reindex inde background, slower but does not impact the users, defaults
to True.

remote_link(*args, **kwargs)
Get a remote link Resource from the server.

Parameters

• issue – the issue holding the remote link

• id – ID of the remote link

remote_links(*args, **kwargs)
Get a list of remote link Resources from an issue.

Parameters issue – the issue to get remote links from

remove_group(groupname)
Deletes a group from the JIRA instance. :param groupname: The group to be deleted from the JIRA
instance. :return: Boolean. Returns True on success.

remove_user_from_group(username, groupname)
Removes a user from a group. :param username: The user to remove from the group. :param groupname:
The group that the user will be removed from. :return:

23



jira-python Documentation, Release 0.48

remove_vote(*args, **kwargs)
Remove the current authenticated user’s vote from an issue.

Parameters issue – ID or key of the issue to unvote on

remove_watcher(*args, **kwargs)
Remove a user from an issue’s watch list.

Parameters

• issue – ID or key of the issue affected

• watcher – username of the user to remove from the watchers list

rename_user(old_user, new_user)
Rename a JIRA user. Current implementation relies on third party plugin but in the future it may use
embedded JIRA functionality.

Parameters

• old_user – string with username login

• new_user – string with username login

resolution(id)
Get a resolution Resource from the server.

Parameters id – ID of the resolution to get

resolutions()
Get a list of resolution Resources from the server.

search_allowed_users_for_issue(user, issueKey=None, projectKey=None, startAt=0,
maxResults=50)

Get a list of user Resources that match a username string and have browse permission for the issue or
project.

Parameters

• user – a string to match usernames against

• issueKey – find users with browse permission for this issue

• projectKey – find users with browse permission for this project

• startAt – index of the first user to return

• maxResults – maximum number of users to return

search_assignable_users_for_issues(username, project=None, issueKey=None, ex-
pand=None, startAt=0, maxResults=50)

Get a list of user Resources that match the search string for assigning or creating issues.

This method is intended to find users that are eligible to create issues in a project or be assigned to an ex-
isting issue. When searching for eligible creators, specify a project. When searching for eligible assignees,
specify an issue key.

Parameters

• username – a string to match usernames against

• project – filter returned users by permission in this project (expected if a result will be
used to create an issue)

• issueKey – filter returned users by this issue (expected if a result will be used to edit
this issue)

24 Chapter 5. API Documentation



jira-python Documentation, Release 0.48

• expand – extra information to fetch inside each resource

• startAt – index of the first user to return

• maxResults – maximum number of users to return

search_assignable_users_for_projects(username, projectKeys, startAt=0, maxRe-
sults=50)

Get a list of user Resources that match the search string and can be assigned issues for projects.

Parameters

• username – a string to match usernames against

• projectKeys – comma-separated list of project keys to check for issue assignment
permissions

• startAt – index of the first user to return

• maxResults – maximum number of users to return

search_issues(jql_str, startAt=0, maxResults=50, validate_query=True, fields=None, ex-
pand=None, json_result=None)

Get a ResultList of issue Resources matching a JQL search string.

Parameters

• jql_str – the JQL search string to use

• startAt – index of the first issue to return

• maxResults – maximum number of issues to return. Total number of results is available
in the total attribute of the returned ResultList. If maxResults evaluates as False, it will
try to get all issues in batches of 50.

• fields – comma-separated string of issue fields to include in the results

• expand – extra information to fetch inside each resource

search_users(user, startAt=0, maxResults=50, includeActive=True, includeInactive=False)
Get a list of user Resources that match the specified search string.

Parameters

• user – a string to match usernames, name or email against

• startAt – index of the first user to return

• maxResults – maximum number of users to return

security_level(id)
Get a security level Resource.

Parameters id – ID of the security level to get

server_info()
Get a dict of server information for this JIRA instance.

session()
Get a dict of the current authenticated user’s session information.

set_application_property(key, value)
Set the application property.

Parameters

• key – key of the property to set

25



jira-python Documentation, Release 0.48

• value – value to assign to the property

set_project_avatar(*args, **kwargs)
Set a project’s avatar.

Parameters

• project – ID or key of the project to set the avatar on

• avatar – ID of the avatar to set

set_user_avatar(username, avatar)
Set a user’s avatar.

Parameters

• username – the user to set the avatar for

• avatar – ID of the avatar to set

sprint_info(board_id, sprint_id)
Return the information about a sprint.

Parameters

• board_id – the board retrieving issues from

• sprint_id – the sprint retieving issues from

sprints(*args, **kwargs)
Get a list of sprint GreenHopperResources.

Parameters

• id – the board to get sprints from

• extended – fetch additional information like startDate, endDate, completeDate, much
slower because it requires an additional requests for each sprint

Return type dict >>> { “id”: 893, >>> “name”: “iteration.5”, >>> “state”: “FUTURE”, >>>
“linkedPagesCount”: 0, >>> “startDate”: “None”, >>> “endDate”: “None”, >>> “complete-
Date”: “None”, >>> “remoteLinks”: [] >>> }

sprints_by_name(id, extended=False)

status(id)
Get a status Resource from the server.

Parameters id – ID of the status resource to get

statuses()
Get a list of status Resources from the server.

transition_issue(*args, **kwargs)
Perform a transition on an issue.

Each keyword argument (other than the predefined ones) is treated as a field name and the argument’s value
is treated as the intended value for that field – if the fields argument is used, all other keyword arguments
will be ignored. Field values will be set on the issue as part of the transition process.

Parameters

• issue – ID or key of the issue to perform the transition on

• transition – ID or name of the transition to perform

26 Chapter 5. API Documentation



jira-python Documentation, Release 0.48

• comment – Optional String to add as comment to the issue when performing the transi-
tion.

• fields – a dict containing field names and the values to use. If present, all other keyword
arguments will be ignored

transitions(*args, **kwargs)
Get a list of the transitions available on the specified issue to the current user.

Parameters

• issue – ID or key of the issue to get the transitions from

• id – if present, get only the transition matching this ID

• expand – extra information to fetch inside each transition

update_sprint(id, name=None, startDate=None, endDate=None)

user(id, expand=None)
Get a user Resource from the server.

Parameters

• id – ID of the user to get

• expand – extra information to fetch inside each resource

user_avatars(username)
Get a dict of avatars for the specified user.

Parameters username – the username to get avatars for

version(id, expand=None)
Get a version Resource.

Parameters

• id – ID of the version to get

• expand – extra information to fetch inside each resource

version_count_related_issues(id)
Get a dict of the counts of issues fixed and affected by a version.

Parameters id – the version to count issues for

version_count_unresolved_issues(id)
Get the number of unresolved issues for a version.

Parameters id – ID of the version to count issues for

votes(*args, **kwargs)
Get a votes Resource from the server.

Parameters issue – ID or key of the issue to get the votes for

watchers(*args, **kwargs)
Get a watchers Resource from the server for an issue.

Parameters issue – ID or key of the issue to get the watchers for

worklog(*args, **kwargs)
Get a specific worklog Resource from the server.

Parameters

• issue – ID or key of the issue to get the worklog from

27



jira-python Documentation, Release 0.48

• id – ID of the worklog to get

worklogs(*args, **kwargs)
Get a list of worklog Resources from the server for an issue.

Parameters issue – ID or key of the issue to get worklogs from

class jira.Priority(options, session, raw=None)
Bases: jira.resources.Resource

Priority that can be set on an issue.

class jira.Comment(options, session, raw=None)
Bases: jira.resources.Resource

An issue comment.

update(fields=None, async=None, jira=None, body=u’‘, visibility=None)

class jira.Worklog(options, session, raw=None)
Bases: jira.resources.Resource

Worklog on an issue.

delete(adjustEstimate=None, newEstimate=None, increaseBy=None)
Delete this worklog entry from its associated issue.

Parameters

• adjustEstimate – one of new, leave, manual or auto. auto is the default and
adjusts the estimate automatically. leave leaves the estimate unchanged by this deletion.

• newEstimate – combined with adjustEstimate=new, set the estimate to this value

• increaseBy – combined with adjustEstimate=manual, increase the remaining
estimate by this amount

class jira.Watchers(options, session, raw=None)
Bases: jira.resources.Resource

Watcher information on an issue.

delete(username)
Remove the specified user from the watchers list.

exception jira.JIRAError(status_code=None, text=None, url=None, request=None, response=None,
**kwargs)

Bases: exceptions.Exception

General error raised for all problems in operation of the client.

This documents the jira-python package (version 0.48), a Python library designed to ease the use of the JIRA
REST API. Some basic support for the GreenHopper REST API also exists.

The source is stored at https://github.com/pycontribs/jira.

28 Chapter 5. API Documentation

https://github.com/pycontribs/jira


CHAPTER 6

Installation

Examples

The easiest (and best) way to install jira-python is through pip:

$ pip install jira

This will handle the client itself as well as the requirements.

If you’re going to run the client standalone, we strongly recommend using a virtualenv, which pip can also set up for
you:

$ pip -E jira_python install jira
$ workon jira_python

Doing this creates a private Python “installation” that you can freely upgrade, degrade or break without putting the
critical components of your system at risk.

Source packages are also available at PyPI:

http://pypi.python.org/pypi/jira-python/

6.1 Dependencies

6.1.1 Python

Python 2.7 and Python 3.x are both supported.

6.1.2 Requests

Kenneth Reitz’s indispensable python-requests library handles the HTTP business. Usually, the latest version available
at time of release is the minimum version required; at this writing, that version is 1.2.0, but any version >= 1.0.0 should
work.

6.1.3 requests-oauthlib

Used to implement OAuth. The latest version as of this writing is 0.3.3.

29

http://www.pip-installer.org/
http://www.virtualenv.org/
http://pypi.python.org/pypi/jira-python/
http://docs.python-requests.org


jira-python Documentation, Release 0.48

6.1.4 IPython

The IPython enhanced Python interpreter provides the fancy chrome used by Issues. As with Requests, the latest
version available at release time is required; at this writing, that’s 0.13.

6.1.5 filemagic

This library handles content-type autodetection for things like image uploads. This will only work on a system that
provides libmagic; Mac and Unix will almost always have it preinstalled, but Windows users will have to use Cygwin
or compile it natively. If your system doesn’t have libmagic, you’ll have to manually specify the contentType
parameter on methods that take an image object, such as project and user avater creation.

6.1.6 tlslite

This is a TLS implementation that handles key signing. It’s used to help implement the OAuth handshaking.

6.1.7 PyCrypto

This is required for the RSA-SHA1 used by OAuth. Please note that it’s not installed automatically, since it’s a fairly
cumbersome process in Windows. On Linux and OS X, a pip install pycrypto should do it.

Installing through pip takes care of these dependencies for you.

30 Chapter 6. Installation

http://ipython.org


CHAPTER 7

Contributing

The client is an open source project under the BSD license. Contributions of any kind are welcome!

https://github.com/pycontribs/jira/

If you find a bug or have an idea for a useful feature, file it at that bitbucket project. Extra points for source code
patches – fork and send a pull request.

7.1 Discussion and support

We encourage all who wish to discuss by using https://answers.atlassian.com/questions/topics/754366/jira-python

Keep in mind to use the jira-python tag when you add a new question. This will assure that the project mantainers will
get notified about your question.

31

https://github.com/pycontribs/jira/
https://answers.atlassian.com/questions/topics/754366/jira-python


jira-python Documentation, Release 0.48

32 Chapter 7. Contributing



CHAPTER 8

Indices and tables

• genindex

• modindex

• search

33



jira-python Documentation, Release 0.48

34 Chapter 8. Indices and tables



Python Module Index

j
jira, 13

35



jira-python Documentation, Release 0.48

36 Python Module Index



Index

A
add_attachment() (jira.JIRA method), 13
add_comment() (jira.JIRA method), 13
add_group() (jira.JIRA method), 14
add_issues_to_epic() (jira.JIRA method), 14
add_issues_to_sprint() (jira.JIRA method), 14
add_remote_link() (jira.JIRA method), 14
add_user() (jira.JIRA method), 14
add_user_to_group() (jira.JIRA method), 14
add_vote() (jira.JIRA method), 14
add_watcher() (jira.JIRA method), 14
add_worklog() (jira.JIRA method), 15
AGILE_BASE_URL (jira.JIRA attribute), 13
application_properties() (jira.JIRA method), 15
applicationlinks() (jira.JIRA method), 15
assign_issue() (jira.JIRA method), 15
async_do() (jira.JIRA method), 15
attachment() (jira.JIRA method), 15
attachment_meta() (jira.JIRA method), 15

B
backup() (jira.JIRA method), 15
boards() (jira.JIRA method), 15

C
checked_version (jira.JIRA attribute), 15
client_info() (jira.JIRA method), 15
Comment (class in jira), 28
comment() (jira.JIRA method), 16
comments() (jira.JIRA method), 16
completed_issues() (jira.JIRA method), 16
completedIssuesEstimateSum() (jira.JIRA method), 16
component() (jira.JIRA method), 16
component_count_related_issues() (jira.JIRA method),

16
confirm_project_avatar() (jira.JIRA method), 16
confirm_user_avatar() (jira.JIRA method), 16
create_board() (jira.JIRA method), 17
create_component() (jira.JIRA method), 17
create_filter() (jira.JIRA method), 17

create_issue() (jira.JIRA method), 17
create_issue_link() (jira.JIRA method), 17
create_project() (jira.JIRA method), 18
create_sprint() (jira.JIRA method), 18
create_temp_project_avatar() (jira.JIRA method), 18
create_temp_user_avatar() (jira.JIRA method), 18
create_version() (jira.JIRA method), 19
createmeta() (jira.JIRA method), 19
current_user() (jira.JIRA method), 19
custom_field_option() (jira.JIRA method), 19

D
dashboard() (jira.JIRA method), 19
dashboards() (jira.JIRA method), 20
DEFAULT_OPTIONS (jira.JIRA attribute), 13
delete() (jira.Watchers method), 28
delete() (jira.Worklog method), 28
delete_board() (jira.JIRA method), 20
delete_project() (jira.JIRA method), 20
delete_project_avatar() (jira.JIRA method), 20
delete_user() (jira.JIRA method), 20
delete_user_avatar() (jira.JIRA method), 20

E
editmeta() (jira.JIRA method), 20
email_user() (jira.JIRA method), 20

F
favourite_filters() (jira.JIRA method), 20
fields() (jira.JIRA method), 20
filter() (jira.JIRA method), 20
find() (jira.JIRA method), 20
find_transitionid_by_name() (jira.JIRA method), 21

G
get_igrid() (jira.JIRA method), 21
group_members() (jira.JIRA method), 21
groups() (jira.JIRA method), 21

I
incompleted_issues() (jira.JIRA method), 21

37



jira-python Documentation, Release 0.48

issue() (jira.JIRA method), 21
issue_link() (jira.JIRA method), 21
issue_link_type() (jira.JIRA method), 21
issue_link_types() (jira.JIRA method), 21
issue_type() (jira.JIRA method), 22
issue_types() (jira.JIRA method), 22

J
JIRA (class in jira), 13
jira (module), 13
JIRA_BASE_URL (jira.JIRA attribute), 13
JIRAError, 28

K
kill_session() (jira.JIRA method), 22
kill_websudo() (jira.JIRA method), 22

M
move_version() (jira.JIRA method), 22
my_permissions() (jira.JIRA method), 22

P
priorities() (jira.JIRA method), 22
Priority (class in jira), 28
priority() (jira.JIRA method), 22
project() (jira.JIRA method), 22
project_avatars() (jira.JIRA method), 22
project_components() (jira.JIRA method), 22
project_role() (jira.JIRA method), 22
project_roles() (jira.JIRA method), 23
project_versions() (jira.JIRA method), 23
projects() (jira.JIRA method), 23

R
rank() (jira.JIRA method), 23
reindex() (jira.JIRA method), 23
remote_link() (jira.JIRA method), 23
remote_links() (jira.JIRA method), 23
remove_group() (jira.JIRA method), 23
remove_user_from_group() (jira.JIRA method), 23
remove_vote() (jira.JIRA method), 23
remove_watcher() (jira.JIRA method), 24
rename_user() (jira.JIRA method), 24
resolution() (jira.JIRA method), 24
resolutions() (jira.JIRA method), 24

S
search_allowed_users_for_issue() (jira.JIRA method), 24
search_assignable_users_for_issues() (jira.JIRA method),

24
search_assignable_users_for_projects() (jira.JIRA

method), 25
search_issues() (jira.JIRA method), 25

search_users() (jira.JIRA method), 25
security_level() (jira.JIRA method), 25
server_info() (jira.JIRA method), 25
session() (jira.JIRA method), 25
set_application_property() (jira.JIRA method), 25
set_project_avatar() (jira.JIRA method), 26
set_user_avatar() (jira.JIRA method), 26
sprint_info() (jira.JIRA method), 26
sprints() (jira.JIRA method), 26
sprints_by_name() (jira.JIRA method), 26
status() (jira.JIRA method), 26
statuses() (jira.JIRA method), 26

T
transition_issue() (jira.JIRA method), 26
transitions() (jira.JIRA method), 27

U
update() (jira.Comment method), 28
update_sprint() (jira.JIRA method), 27
user() (jira.JIRA method), 27
user_avatars() (jira.JIRA method), 27

V
version() (jira.JIRA method), 27
version_count_related_issues() (jira.JIRA method), 27
version_count_unresolved_issues() (jira.JIRA method),

27
votes() (jira.JIRA method), 27

W
Watchers (class in jira), 28
watchers() (jira.JIRA method), 27
Worklog (class in jira), 28
worklog() (jira.JIRA method), 27
worklogs() (jira.JIRA method), 28

38 Index


	Quickstart
	Initialization
	Authentication
	Issues
	Projects

	Examples
	jirashell
	Advanced
	Resource Objects and Properties

	API Documentation
	Installation
	Dependencies

	Contributing
	Discussion and support

	Indices and tables
	Python Module Index

