Contents

1 Introduction .. 3

2 Credits ... 5

3 Installation .. 7
 3.1 C++ ... 7
 3.2 Python .. 7

4 Testing ... 9
 4.1 C++ ... 9
 4.2 Python .. 9

5 Examples ... 11
 5.1 C++ ... 11
 5.2 Python .. 12

6 Design and Implementation of the C++ Skip List 15
 6.1 Design of the C++ Skip List 15
 6.2 Implementation Notes 18
 6.3 Code Layout ... 18
 6.4 Code Idioms ... 19
 6.5 Worst Case Behaviour 20
 6.6 Roads not Travelled 20

7 Skip List Performance 23
 7.1 C++ Performance Tests 23
 7.2 Time Performance 23
 7.3 Space Complexity 24
 7.4 Effect of a Biased Coin 25
 7.5 Multi-threaded C++ Performance 26
 7.6 Detailed Performance 28
 7.7 Python Performance Tests 30

8 Computing a Rolling Median 31
 8.1 Even Window Length 32

9 Visualising a Skip List 33
 9.1 Simple Example ... 33
A SkipList behaves as a sorted list with, typically, $O(\log(n))$ cost for insertion, look-up and removal. This makes it ideal for such operations as computing the rolling median of a large dataset.

A SkipList is implemented as a singly linked list of ordered nodes where each node participates in a subset of, sparser, linked lists. These additional ‘sparse’ linked lists provide rapid indexing and mutation of the underlying linked list. It is a probabilistic data structure using a random function to determine how many ‘sparse’ linked lists any particular node participates in. As such SkipList is an alternative to binary tree, Wikipedia has a introductory page on SkipLists.

An advantage claimed for SkipLists are that the insert and remove logic is simpler (however I do not subscribe to this). The drawbacks of a SkipList include its larger space requirements and its $O(\log(N))$ lookup behaviour compared to other, more restricted and specialised, data structures that may have either faster runtime behaviour or lower space requirements or both.

This project contains a SkipList implementation in C++ with Python bindings with:

- No capacity restrictions apart from available memory.
- Works with any C++ type <T> that has meaningful comparison operators.
- The underlying C++ SkipList is thread safe and has exhaustive internal integrity checks.
- The Python SkipLists can be long/float/bytes/object types, the latter can have user defined comparison functions.
- This implementation is extensively performance tested in C++ and Python, see Skip List Performance.

There are some novel features to this implementation:

- A SkipList is a probabilistic data structure but we have deterministic tests that work for any (sane) random number generator, see: Testing a Probabilistic Structure.
- This SkipList can dynamically generate visualisations of its current internal state, see: Visualising a Skip List.
CHAPTER 2

Credits

Originally written by Paul Ross with credits to: Wilfred Hughes (AHL), Luke Sewell (AHL) and Terry Tsantagoeds (AHL).
CHAPTER 3

Installation

C++

This SkipList requires:

- A C++11 compiler.
- `-I<skiplist>/src/cpp` as an include path.
- `<skiplist>/src/cpp/SkipList.cpp` to be compiled/linked.
- The macro `SKIPLIST_THREAD_SUPPORT` set if you want a thread safe SkipList

Python

This SkipList supports Python 2.7 and 3.6 (and, probably, some earlier Python 3 versions).

```
$ cd <skiplist>
$ python setup.py install
```
Testing

This SkipList has extensive tests for correctness and performance.

C++

To run all the C++ functional and performance tests:

```
$ cd <skiplist>/src/cpp
$ make release
$ ./SkipList_R.exe
```

To run the C++ functional tests with aggressive internal integrity checks but excluding the performance checks:

```
$ cd <skiplist>/src/cpp
$ make debug
$ ./SkipList_D.exe
```

To run all the C++ functional and performance tests for a thread safe SkipList:

```
$ cd <skiplist>/src/cpp
$ make release CXXFLAGS=-DSKIPLIST_THREAD_SUPPORT
$ ./SkipList_R.exe
```

Python

Testing requires pytest and hypothesis:

To run all the C++ functional and performance tests:

```
$ cd <skiplist>
$ py.test -vs tests/
```
Examples

Here are some examples of using a SkipList in your code:

C++

```cpp
#include "SkipList.h"

// Declare with any type that has sane comparison.
OrderedStructs::SkipList::HeadNode<double> sl;

sl.insert(42.0);
sl.insert(21.0);
sl.insert(84.0);

sl.has(42.0) // true
sl.size() // 3
sl.at(1) // 42.0, throws OrderedStructs::SkipList::IndexError if index out of range

sl.remove(21.0); // throws OrderedStructs::SkipList::ValueError if value not present

sl.size() // 2
sl.at(1) // 84.0
```

The C++ SkipList is thread safe when compiled with the macro SKIPLIST_THREAD_SUPPORT, then a SkipList can then be shared across threads:

```cpp
#include <thread>
#include <vector>

#include "SkipList.h"

void do_something(OrderedStructs::SkipList::HeadNode<double> *pSkipList) {
```
// Insert/remove items into *pSkipList
// Read items inserted by other threads.
}

OrderedStructs::SkipList::HeadNode<
 double
> sl;
std::vector<std::thread> threads;

for (size_t i = 0; i < thread_count; ++i) {
 threads.push_back(std::thread(do_something, &sl));
}
for (auto &t : threads) {
 t.join();
}
// The SkipList now contains the totality of the thread actions.

Python

An example of using a SkipList of always ordered floats:

```python
import cSkipList

# Declare with a type. Supported types are long/float/bytes/object.
sl = cSkipList.PySkipList(float)

sl.insert(42.0)
sl.insert(21.0)
sl.insert(84.0)

sl.has(42.0)  # True
sl.size()    # 3
sl.at(1)     # 42.0

sl.has(42.0)  # True
sl.size()    # 3
sl.at(1)     # 42.0, raises IndexError if index out of range

sl.remove(21.0);  # raises ValueError if value not present

sl.size()    # 2
sl.at(1)     # 84.0
```

The Python SkipList can be used with user defined objects with a user defined sort order. In this example the last name of the person takes precedence over the first name:

```python
import functools

@functools.total_ordering
class Person:
    """Simple example of ordering based on last name/first name."""
    def __init__(self, first_name, last_name):
        self.first_name = first_name
        self.last_name = last_name

    def __eq__(self, other):
        try:
            return self.last_name == other.last_name
        except AttributeError:
            return False
```

Chapter 5. Examples
```python
    return self.last_name == other.last_name and self.first_name == other.first_name
except AttributeError:
    return NotImplemented

def __lt__(self, other):
    try:
        return self.last_name < other.last_name or self.first_name < other.first_name
    except AttributeError:
        return NotImplemented

def __str__(self):
    return '{}, {}'.format(self.last_name, self.first_name)

import cSkipList

sl = cSkipList.PySkipList(object)
sl.insert(Person('Peter', 'Pan'))
sl.insert(Person('Alan', 'Pan'))
assert sl.size() == 2
assert str(sl.at(0)) == 'Pan, Alan'
assert str(sl.at(1)) == 'Pan, Peter'
```
Design and Implementation of the C++ Skip List

Design of the C++ Skip List

A skip list is a singly linked list with additional, coarser, linked lists. These additional lists allow rapid location, insertion and removal of nodes. Values in a skip list are maintained in order at all times.

Skip lists are alternatives to balanced trees for operations such as a rolling median. The disadvantages of skip lists are:

- Less space efficient than balanced trees, see: Space Complexity.
- Performance is similar to balanced trees except finding the mid-point which is $O(\log(N))$ for a skip list compared with $O(1)$ for a balanced tree.

The advantages claimed for skip lists are:

- The insert() and remove() logic is simpler (I do not subscribe to this).

This skip list design has the coarser lists implemented as optional additional links between the nodes themselves. The illustration below shows a well formed skip list with a head node (HED) linked to the ordered nodes A to H:

```
| 5 E |------------------------------------| 4 0 |----------------------------> |                |
  NULL   |                                   |                |
| 1 A |->| 2 C |----------------->| 2 E |---------------->| 2 G |----------------->| 2 0 |----------------> |
  NULL   |                                   |                |
| 1 A |->| 1 B |->| 1 C |->| 1 D |->| 1 E |->| 1 F |->| 1 G |->| 1 H |->| 1 0 |-> |                |
  NULL   |                                   |                |
| HED | | A | | B | | C | | D | | E | | F | | G | | H |
```

Each node has a stack of values that consist of a ‘width’ and a reference to another node (or NULL). At the lowest level is a singly linked list and all widths are 1. They are shown in the diagram as a number for the width and the node name for the reference (0 for NULL). The ‘widths’ at each node/level specify how many level 0 nodes the node reference skips over. These widths are used to rapidly index into the skip list starting from the highest level and working down.

At level 1 the links are (ideally) to every other node, at level 2 the links are (ideally) to every fourth node and at level 3 the links are (ideally) to every eighth node and so on.
Search Algorithms

Presence

This search returns true/false as to whether a value is present. The search is recursive starting at the coarsest list dropping down a level when the search overshoots.

Take, for example, searching for the presence of D.

- The search starts as \textit{HED}[2] this leads to \textit{E}[2] and \textit{E} > \textit{D} so that search is rejected.
- The search then evolves to: \textit{HED}[2] \rightarrow \textit{HED}[1] which leads to \textit{A}[1] \rightarrow \textit{C}[1] \rightarrow \textit{E}[1], again that search is rejected as \textit{E} > \textit{D}.
- The search finally succeeds following the path \textit{HED}[2] \rightarrow \textit{HED}[1] \rightarrow \textit{A}[1] \rightarrow \textit{C}[1] \rightarrow \textit{C}[0] \rightarrow \textit{D}[0] so returns true.

It is not necessary for the search to reach level 0 if it can be terminated earlier. For example the search for C would be achieved by \textit{HED}[2] \rightarrow \textit{HED}[1] \rightarrow \textit{A}[1] \rightarrow \textit{C}[1].

Index

Searching for a particular index value is accomplished in a similar way using the widths to calculate the position in the list. For example to find the 6th node (F):

- The search starts at \textit{HED}[2] and moves to \textit{E}[2]. Any further move to the right is not possible because \(5 + 4 > 6\).
- Dropping down to \textit{E}[1] no further progress can be made to the right as \(5 + 2 > 6\).
- Dropping down to \textit{E}[0] finds node \textit{F} as \(5 + 1 = 6\).

It is not necessary for the search to reach level 0 if it can be terminated earlier. For example the search for the fifth member would be achieved by \textit{HED}[2] \rightarrow \textit{E}[2].

Insertion Algorithm

To understand how the skip list is maintained, consider insertion. Before inserting node \textit{E} the skip list would look like this:

<table>
<thead>
<tr>
<th>HED</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td>-></td>
<td>2 C</td>
<td>---------></td>
<td>3 G</td>
<td>----------------> 2 0</td>
<td>-----------> NULL</td>
<td></td>
</tr>
<tr>
<td>1 A</td>
<td>-></td>
<td>1 B</td>
<td>-></td>
<td>1 C</td>
<td>-></td>
<td>1 D</td>
<td>-></td>
</tr>
</tbody>
</table>

Inserting \textit{E} means:

- Finding where \textit{E} should be inserted (after \textit{D}).
- Creating node \textit{E} with a random height (tossing a coin gives heads/heads/tails so 3 high).
- Updating \textit{D} to refer to \textit{E} at level 0.
- Updating \textit{C} to refer to \textit{E} at level 1 and decreasing \textit{C}’s width to 2, increasing \textit{E} width at level 1 to 2.
- Expanding \textit{HED} to level 2 with a reference to \textit{E} and a width of 5.
- Updating \textit{E} with a reference to NULL and a width of 4.

After inserting node \textit{E} the skip list looks like this:
Insertion Position

The first two operations are done by a recursive search. This creates the call chain that passes through these nodes:

\[\text{HED}[1] \rightarrow \text{A}[1] \rightarrow \text{C}[1] \rightarrow \text{C}[0] \rightarrow \text{D}[0]. \]

Thus E will be created at level 0 and inserted after D. All node creation is done from level 0 so that when the recursive search unwinds only the appropriate nodes and levels will be updated.

Node Creation

Node E is created with a stack containing a single pointer to the next node F. Then a virtual coin is tossed, for each ‘head’ a pair of values \{this, 1\} is added to this stack. These values will be swapped with other nodes when the recursive calls unwind. If a ‘tail’ is thrown the stack is complete. In the example above when creating E we have encountered tosses of ‘head’, ‘head’, ‘tail’.

Recursive Unwinding

The remaining operations are done as recursion unwinds. D[0] and C[0] update E[1] with their cumulative width (2). C[1] adds 1 to width (a new node is inserted) then subtracts E[1]. Then C[1]/E[1] are swapped so that the pointers and widths are correct. And so on until HED is reached, in this case a new level is added and HED[2] swapped with E[2].

There are some visualisations of this behaviour here: Visualising a Skip List

Removal Algorithm

This is essentially the insertion algorithm in reverse. Before removing node E the skip list looks like this:

\[
\begin{vmatrix}
| 5 E |--------------------------| 4 0 |--------------------------| \ni
\rightarrow\text{NULL} |
| 1 A |->| 2 C |----------| 2 E |----------| 2 G |----------| 2 0 |----------| \ni
\rightarrow\text{NULL} |
| 1 A |->| 1 B |->| 1 C |->| 1 D |->| 1 E |->| 1 F |->| 1 G |->| 1 H |->| 1 0 |->| \ni
\rightarrow\text{NULL} |
| \text{HED} | | A | | B | | C | | D | | E | | F | | G | | H |
\end{vmatrix}
\]

After removing E the skip list looks like this:

\[
\begin{vmatrix}
| 1 A |->| 2 C |----------| 3 G |----------| 2 0 |----------| \ni
\rightarrow\text{NULL} |
| 1 A |->| 1 B |->| 1 C |->| 1 D |->| 1 F |->| 1 G |->| 1 H |->| 1 0 |->| \ni
\rightarrow\text{NULL} |
| \text{HED} | | A | | B | | C | | D | | F | | G | | H |
\end{vmatrix}
\]

To remove E a recursive search for E[0] is made. Starting at the top (level = 2) of the head node HED[2] then E[2] is found immediately however the level is not 0 so the search is discarded. A search through HED[2] -> HED[1]
follows the path \texttt{HED[2] \rightarrow HED[1] \rightarrow A[1] \rightarrow C[1]} to \texttt{E[1]}, again this search is discarded as the level is not 0.

The final search succeeds by setting up the call chain \texttt{HED[2] \rightarrow HED[1] \rightarrow A[1] \rightarrow C[1] \rightarrow C[0] \rightarrow D[0] \rightarrow E[0]}.

As the recursion unwinds node that data at each level of \texttt{E} is used to swap node pointers and adjust the widths of node \texttt{C}. Finally \texttt{HED} can drop one level before deleting \texttt{E}.

A more detailed description of the algorithm used for each method is in the \textit{C++ API}

\section*{Implementation Notes}

This skip list is implemented in C++ with templates so works for any type \texttt{<T>} that can be compared deterministically.

Node membership of the additional lists is done in a probabilistic manner. This is achieved at node creation time by tossing a virtual coin. These lists are not explicit, they are implied by the references between Nodes at a particular level.

`Level` is an \texttt{size_t} type that specifies the linked list, level 0 is the linked list to every node. The list at level 1 links (ideally) to every other node. The list at level 2 links (ideally) to every fourth node and so on. In general the list at level \texttt{n} links (ideally) to every \texttt{2**n} node.

\section*{Memory Management}

Memory management is pretty simple in a skip list. Essentially it is no more complicated than a singly linked list as every node is created and deleted at level 0. The duplicate pointers at higher levels can be ignored.

\section*{Thread Safety}

The C++ SkipList can be compiled with the macro \texttt{SKILIST_THREAD_SUPPORT} set and this will introduce a mutex on the \texttt{HeadNode} that makes the SkipList thread safe. There are illustrations of the use of this in \texttt{skiplist/src/cpp/test/test_concurrent.cpp}

The Python SkipList is thread safe. There are tests in \texttt{skiplist/tests/unit/test_SkipList_PyObject_threaded.py} that illustrate this.

\section*{Code Layout}

There are three template classes defined in their own \texttt{.h} files and these are all included into the \texttt{SkipList.h} file.

The classes are:
Skip List Documentation, Release 0.1.0

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SwappableNodeRefStack<T></td>
<td>A simple bookkeeping class that has a vector of {{skip_width, Node<T>*}, ...}. This vector can be expanded or contracted at will. Both HeadNode and Node classes have one of these to manage their references. This is defined in NodeRefs.h</td>
</tr>
<tr>
<td>Node<T></td>
<td>This represents a single value in the skip list. The height of a Node is determined at construction by tossing a virtual coin, this determines how many coarser lists this node participates in. A Node has a SwappableNodeRefStack object and a value of type T. This is defined in Node.h</td>
</tr>
<tr>
<td>HeadNode<T></td>
<td>There is one of these per skip list and this provides the API to the entire skip list. The height of the HeadNode expands and contracts as required when Nodes are inserted or removed (it is the height of the highest Node). A HeadNode has a SwappableNodeRefStack object and an independently maintained count of the number of Node objects in the skip list. This is defined in HeadNode.h</td>
</tr>
</tbody>
</table>

A Node and HeadNode have specialised methods such as has(), at(), insert(), remove() that traverse the skip list recursively. These are described in the C++ API

Other Files of Significance

SkipList.cpp exposes the random number generator (rand()) and seeder (srand()) so that they can be accessed by CPython and others for deterministic testing.

IntegrityEnums.h has definitions of error codes that can be created by the skip list integrity checking functions.

cSkipList.h, cSkipList.cpp contains a CPython module with a SkipList implementation for a number of builtin Python types. This has the usual setup.py and setup.cfg files.

Code Idioms

Prevent Copying

Copying operations are (mostly) prohibited for performance reasons. The only class that allows copying is struct NodeRef that contains fundamental types (int and pointer). All other classes declare their copying operation private and unimplemented (rather than using C++11 delete) for compatibility with older compilers.

Reverse Loop of unsigned int

In a lot of the code we have to count down from some value to 0 with a size_t (an unsigned int type), the idiom used is this:

```c
for (size_t l = height(); l-- > 0;) {
```

The l-- > 0 will test l against 0 then decrement it. l will thus start at the value height() - 1 down to 0 then exit the loop.

Note: If l is declared before the loop it will have the maximum value of a size_t on exit from this loop unless a break statement is encountered.
Worst Case Behaviour

It is possible that the skip list can get mal-formed with an unfortunate set of coin tosses (or a knowledgeable and adversarial user). In which case the search time complexity can become $O(n)$ rather than $O(\log(n))$. Here is a well-formed skip list:

```
| 5 E |----------------------------->| 4 0 |----------------------------->|
  NULL |
| 1 A |--| 2 C |----------------->| 2 E |----------------->| 2 G |----------------->| 2 0 |----------------->|
  NULL |
| 1 A |--| 1 B |--| 1 C |--| 1 D |--| 1 E |--| 1 F |--| 1 G |--| 1 H |--| 1 0 |--|
  NULL |
| HED | | A | | B | | C | | D | | E | | F | | G | | H |
```

The same frequency of coin tosses but in worst case order might produce this:

```
| 5 E |--| 8 0 |----------------->| 4 0 |----------------->|
  NULL |
| 1 A |--| 1 B |--| 1 C |--| 1 D |--| 1 E |--| 1 F |--| 1 G |--| 1 H |--| 1 0 |--|
  NULL |
| HED | | A | | B | | C | | D | | E | | F | | G | | H |
```

Any search on the latter skip list rapidly degrades into a simple linear search.

There is no particular protection against this in this implementation of a skip list.

Roads not Travelled

Certain design and implementations were not explored, here they are and why.

Key/Value Implementation

Skip lists are commonly used for key/value dictionaries. Given things like `std::map` or `std::unordered_map` etc. in C++ I see no reason why a SkipList should be used as an alternative.

Adversarial Users

If the user knows the behaviour of the random number generator it is possible that they can change the order of insertion to create a poor distribution of nodes which will make operations tend to $O(N)$ rather than $O(\log(N))$.

Optimisation: Re-index Nodes on Complete Traversal

To correct the worst case behaviour above it would be possible to re-index the skip list from time to time, for example when a full traversal is made. This is not included in this implementation.

Optimisation: Reuse removed nodes

If node construction is expensive then a `remove()` + `insert()` operation could re-use the removed node rather than deleting and creating a new one. This is not included in this implementation.
Reference Counting

Some time (and particularly space) improvement could be obtained by reference counting nodes so that duplicate values could be eliminated at some additional code/space cost. Since the primary use case for this skip list is for computing the rolling median of doubles the chances of duplicates are slim and no advantage would be gained. For int, long and string there is a higher probability of sameness so reference counting might be implemented in the future if these types become commonly used.

Use an Array of \{skip_width, Node<T>*\} rather than a vector

Less space would be used for each Node if the SwappableNodeRefStack used a dynamically allocated array of \[[\{skip_width, Node<T>*\}, \ldots\]] rather than a vector.
C++ Performance Tests

The time performance tests are run as follows:

```bash
$ cd src/cpp
$ make release
$ ./SkipList_R.exe

test_very_simple_insert(): PASS
... test_roll_med_even_mean(): PASS
perf_single_insert_remove(): 451.554 (ms) rate x.xe+06 /s
... perf_roll_med_odd_index_wins(): vectors length: 1000000 window width: 524288 time: x.x (ms)
-> 524288 time: x.x (ms) perf_size_of(): size_of(1): 216 bytes ratio: ...
-> 216 /sizeof(T): x
... Final result: PASS
Exec time: x.x (s)
Bye, bye!
```

The output is a combination of test results, performance results and dot visualisations.

If multi-threaded support is enabled (see Multi-threaded C++ Performance below) the execution time including the multi-threaded tests takes about three minutes. With single threaded support the tests take around two minutes. If the debug version is built the performance tests are omitted as the cost of integrity checking at every step is very high which would make the performance test data irrelevant.

Time Performance

The performance test mostly work on a SkipList of type `double` that has 1 million values. Test on a couple of modern 64 bit OS’s [Linux, Mac OS X] show that the cost of SkipList operations is typically as follows.
Mutating operations: insert(), remove()

These operations depend on the size of the SkipList. For one containing 1 million doubles each operation is typically 450 ns (2.2 million operations per second).

Here is a graph showing the cost of the combined insert() plus remove() of a value in the middle of the list, both as time in (ns) and rate per second. The test function is `perf_single_ins_rem_middle_vary_length()`.

This shows good O(log(n)) behaviour where n is the SkipList size.

Indexing operations: at(), has() index()

These operations on a SkipList containing 1 million doubles is typically 220 ns (4.6 million operations per second).

vs Location

Here is plot of the time taken to execute `at()` or `has()` on a SkipList of 1 million doubles where the X-axis is the position in the SkipList of the found double. The test functions are respectively `perf_at_in_one_million()` and `perf_has_in_one_million()`.

This shows fairly decent O(log(n))’ish type behaviour.

The `index(value)` method has similar behaviour:

Rolling Median

Here is a plot of the time taken to compute a rolling median on one million values using different window sizes. The number of results is 1e6 - window size. This needs to `insert(new_value)` then `at(middle)` then `remove(old_value)`. A window size of 1000 and 1m values (the size of the SkipList) takes around 1 second or 1000 ns /value.

The test function is `perf_roll_med_odd_index_wins()`.

Space Complexity

Space usage is a weakness of SkipLists. There is a large amount of bookkeeping involved with multiple node pointers plus the width values for each node for an indexed SkipList.

Theoretical Memory Usage for double

The space requirements for a SkipList of doubles can be estimated as follows.

\[t = \text{sizeof}(T) \sim \text{typ.} \ 8 \text{ bytes for a double.} \]
\[v = \text{sizeof}(ext{std::vector<struct NodeRef<T>>}) \sim \text{typ.} \ 32 \text{ bytes.} \]
\[p = \text{sizeof}(\text{Node<T>*}) \sim \text{typ.} \ 8 \text{ bytes.} \]
\[e = \text{sizeof}(ext{struct NodeRef<T>}) \sim \text{typ.} \ 8 + p = 16 \text{ bytes.} \]

Then each node: is \(t + v \) bytes.
Linked list at level 0 is \(e \) bytes per node and at level 1 is, typically, \(e / 2 \) bytes per node (given \(p() \) as a fair coin) and so on. So the totality of linked lists is about \(2 + e \) bytes per node.

Then the total is \(N (t + v + 2e) \) which for \(T \) as a double is typically 72 bytes per item.

Memory usage can be gauged by any of the following methods:

- Theoretical calculation such as above which gives ~72 bytes per node for doubles.
- Observing a process that creates a SkipList using OS tools, this typically gives ~86 bytes per node for doubles.
- Calling the `size_of()` method that can make use of its knowledge of the internal structure of a SkipList to estimate memory usage. For `double` this is shown to be about 76 bytes per node. Any `size_of()` estimate will be an underestimate if the SkipList \(<T>\) uses dynamic memory allocation such as `std::string`.

Estimate Memory Usage With `size_of()`

This implementation of a SkipList has a `size_of()` function that estimates the current memory usage of the SkipList. This function uses `sizeof(T)` which will not account for any dynamically allocated content, for example if \(T \) was a `std::string`.

Total memory allocation is a function of a number of factors:

- Alignment issues with the members of class `Node` which has members `T _value;` and `SwappableNodeRefStack<T> _nodeRefs;`. If \(T \) was a `char` type then alignment issues on 64 bit machines may mean the `char` takes eight bytes, not one.
- The size of the SkipLists; very small SkipLists carry the overhead of the `HeadNode`.
- The coin probability \(p() \). Unfair coins can change the overhead of the additional coarser linked lists. More about this later.

The following graph shows the `size_of()` a SkipList of doubles of varying lengths with a fair coin. The Y axis is the `size_of()` divided by the length of the SkipList in bytes per node. Fairly quickly this settles down to around 80 bytes a node or around 10 times the size of a single double. The test name is `perf_size_of()`.

Height Distribution

This graph shows the height growth of the SkipList where the height is the number of additional coarse linked lists. It should grow in a \(\log(n) \) fashion and it does. It is not monotonic as this SkipList is a probabilistic data structure.

Effect of a Biased Coin

The default compilation of the SkipList uses a fair coin. The coin toss is determined by `tossCoin()` in `SkipList.cpp` which has the following implementation:

```cpp
bool tossCoin() {
    return rand() < RAND_MAX / 2;
}
```

The following biases can be introduced with these return statements:
Skip List Documentation, Release 0.1.0

<table>
<thead>
<tr>
<th>p((p))</th>
<th>Return statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.25%</td>
<td>return rand() < RAND_MAX / 16;</td>
</tr>
<tr>
<td>12.5%</td>
<td>return rand() < RAND_MAX / 8;</td>
</tr>
<tr>
<td>25%</td>
<td>return rand() < RAND_MAX / 4;</td>
</tr>
<tr>
<td>50%</td>
<td>return rand() < RAND_MAX / 2;</td>
</tr>
<tr>
<td>75%</td>
<td>return rand() < RAND_MAX - RAND_MAX / 4;</td>
</tr>
<tr>
<td>87.5%</td>
<td>return rand() < RAND_MAX - RAND_MAX / 8;</td>
</tr>
</tbody>
</table>

For visualising what a SkipList looks like with a biased coin see Biased Coin Skip List Visualisations

Time Performance

The following graph plots the time cost of `at(middle)`, `has(middle_value)`, `insert()`, `at()`, `remove()` and the rolling median (window size 101) all on a 1 million long SkipList of doubles against `p()` the probability of the coin toss being heads. The time cost is normalised to `p(0.5)`.

Reducing `p()` reduces the number of coarser linked lists that help speed up the search so it is expected that the performance would deteriorate. If `p()` was zero the SkipList would be, effectively, a singly linked list with O(n) search performance. I do not understand why the rolling median performance appears to improve slightly when the rolling median is really just an `insert()`, `at()`, `remove()` operation.

Increasing `p()` increases the number of coarser linked lists that might be expected to speed up the search. This does not do so in practice, possible explanations are:

- The increased cost of creating a node
- The increased memory usage (see next section)
- Poor locality of reference of the nodes.

Space Performance

Different values of `p()` greatly influences the space used as it directly affects the number of coarser linked lists created. In practice a reduction of `p()` provides some small space improvement.

If the SkipList was highly optimised for rolling median operations it might be worth experimenting with `p(0.25)` or even `p(0.125)` and evaluate the time/space requirements but otherwise there seems no reason, in the general case, to use anything but `p(0.5)`.

Multi-threaded C++ Performance

The C++ code is capable of multi-threading support where a single SkipList can be mutated by multiple threads. The code must be compiled with the macro `SKIPLIST_THREAD_SUPPORT` defined.

Test C++ execution code can be run by invoking the the makefile thus:

```bash
$ cd src/cpp
$ make release CXXFLAGS=-DSKIPLIST_THREAD_SUPPORT
$ ./SkipList_R.exe
...  
test_single_thread_insert(): PASS  
test_two_thread_insert_has_remove(): PASS
```
test_two_thread_insert_multi_count(): PASS

test_perf_multi_threads_vary_length(): threads: 1 SkiplistSize: 131072
→time: 180145 (us) rate 727592 /s
...

test_perf_single_thread_fixed_length(): PASS

Final result: PASS
Exec time: x.x (s)
Bye, bye!

Note: If you omit CXXFLAGS=-DSKIPLIST_THREAD_SUPPORT then the threaded tests will be omitted:

$ make release
$./SkipList_R.exe
...
 test_single_thread_insert(): N/A
 test_two_thread_insert_has_remove(): N/A
 test_two_thread_insert_multi_count(): N/A

Effect of SKIPLIST_THREAD_SUPPORT

Here are several performance measurements when SKIPLIST_THREAD_SUPPORT is defined:

• A SkipList in a single threaded environment.
• A SkipList in a multi threaded environment where threads vie for the same SkipList.

To explore this we create a task that is to insert a unique double into an empty SkipList 2^{14} (16384) times and then remove that number one by one to empty the SkipList. This task typically takes 18 ms (around 1 us per insert+remove).

This task will be repeated 1, 2, 4, ... 64 times using single and multiple threads. The single threaded version is sequential, the multithreaded version creates simultaneous operations on the same SkipList.

The code for these tests is in test/test_concurrent.cpp.

A Single Threaded Environment

The sheer act of using -DSKIPLIST_THREAD_SUPPORT will introduce a mutex into the head node. This will increase the time of any operation on the SkipList even when run in the single thread as there is a cost of acquiring the mutex even in the absence of contention. The test function is test_perf_single_thread_fixed_length().

In the graph below the X axis is the number of times the task is repeated (sequentially). The left Y axis is the total execution time with the SkipList in the main thread. The right Y axis is the ratio: time with -DSKIPLIST_THREAD_SUPPORT / time without -DSKIPLIST_THREAD_SUPPORT

The overhead of using -DSKIPLIST_THREAD_SUPPORT is about 0% to 15%.

A Multi Threaded Environment

The SkipList is compiled with -DSKIPLIST_THREAD_SUPPORT and we repeat the task in 1, 2, 4, ... 64 new threads simultaneously where they share the same SkipList and observe both how the total execution time grows
and how it compares with the same task repeated sequentially in a single (main) thread. The test function is test_perf_multi_threads_fixed_length()

In the graph below the red line is the time for the sequential result, this is the same as the red line in the graph above. The green line is time taken to repeat the task n times using n threads sharing the same SkipList inserting and removing values simultaneously. The blue line is the ratio of the: threaded solution / sequential solution.

The execution time of the threaded solution is near linear with the amount of threads each solving the same task.

Running the task once in a single thread only takes a little longer than the sequential solution (as seen above). As soon as contention is introduced by having two threads sharing the same SkipList then the execution time goes up by around 6 fold (the blue line above). So once there is contention the performance does deteriorate significantly, this is only to be expected.

However increasing the number of threads up to 64 does not hugely affect this ratio. 64 simultaneous threads each doing the same task on a shared SkipList takes about 9.5x the time of doing the same work by repeating the task sequentially 64 times. So the performance does not deteriorate despite the huge increase in contention, this is rather unexpected.

Detailed Performance

The performance test function names all start with perf... and are as follows. The SkipList type is <double>. In the table below 1M means mega, i.e. 2**20 or 1024*1024 or 1048576:
Skip List Documentation, Release 0.1.0

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Measure</th>
<th>Time/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>perf_single_insert_remove()</td>
<td>With an empty SkipList add one item and remove it.</td>
<td>240 ns</td>
</tr>
<tr>
<td>perf_large_skiplist_ins_only()</td>
<td>Starting with an empty SkipList append 1 million values.</td>
<td>740 ns</td>
</tr>
<tr>
<td>perf_large_skiplist_ins_rem()</td>
<td>Starting with an empty SkipList append 1 million values then remove the first (lowest) value until the SkipList is empty.</td>
<td>900 ns</td>
</tr>
<tr>
<td>perf_single_ins_middle()</td>
<td>With a SkipList of 1 million values insert the middle value (i.e. 500,000.0) and remove it.</td>
<td>1200 ns</td>
</tr>
<tr>
<td>perf_single_at_middle()</td>
<td>With a SkipList of 1 million values find the middle value.</td>
<td>220 ns</td>
</tr>
<tr>
<td>perf_single_has_middle()</td>
<td>With a SkipList of 1 million values test for the middle value.</td>
<td>210 ns</td>
</tr>
<tr>
<td>perf_single_ins_remove()</td>
<td>With a SkipList of 1 million values call insert(v), at(500000) and remove(v) where v corresponds to the middle value. This simulates the actions of a rolling median.</td>
<td>1400 ns</td>
</tr>
<tr>
<td>perf_median_sliding_window()</td>
<td>Simulate a rolling median of 100 values. Create an initially empty SkipList. For each of 10,000 random values insert the value into the SkipList. For indices > 100 extract the middle value from the SkipList as the median then remove the i-100 value from the SkipList.</td>
<td>800 ns</td>
</tr>
<tr>
<td>perf_lm_median_values()</td>
<td>Simulate a rolling median of 101 values. Similar to perf_median_sliding_window() but uses 1 million values.</td>
<td>720 ns</td>
</tr>
<tr>
<td>perf_lm_medians_1000_vectors()</td>
<td>Simulate a rolling median of 101 values. Similar to perf_lm_median_values() but uses 1000 values repeated 1000 times.</td>
<td>690 ns</td>
</tr>
<tr>
<td>perf_simulate_8000x8000_vectors()</td>
<td>Simulate a rolling median of 200 values. Similar to perf_lm_medians_1000_vectors() but uses 8000 values repeated 8000 times i.e. the rolling median of 8000x8000 array.</td>
<td>760 ns</td>
</tr>
<tr>
<td>perf_roll_med_odd_index()</td>
<td>Tests the time cost of OrderedStructs::RollingMedian::odd_index for 1 million values and a window size of 101.</td>
<td>830 ns</td>
</tr>
<tr>
<td>perf_index()</td>
<td>Tests the time cost of index() half way through 1m doubles.</td>
<td>200 ns</td>
</tr>
</tbody>
</table>

Time Complexity

There are a number of tests that check the execution time of operations with varying sizes of SkipLists. The expectation is that the time complexity is O(log(n)).

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>perf_at_in_one_million()</td>
<td>For 1M values call at(i) where i ranges from 21 to 219. This explores the time complexity of at().</td>
</tr>
<tr>
<td>perf_has_in_one_million()</td>
<td>For 1M values call has(i) where i ranges from 21 to 219. This explores the time complexity of has().</td>
</tr>
<tr>
<td>perf_roll_med_odd_index()</td>
<td>As perf_roll_med_odd_index() but explores various window sizes from 1 to 524288.</td>
</tr>
<tr>
<td>perf_index_vary_length()</td>
<td>For 1M values call index(value) where value ranges from 21 to 219. This explores the time complexity of index().</td>
</tr>
</tbody>
</table>
Python Performance Tests

Some informal testing of the Python wrapper around the C++ SkipList was done using `timeit` in `tests/perf/test_perf_cSkipList.py`. The SkipList has 1m items. The performance is comparable to the C++ tests.

<table>
<thead>
<tr>
<th>Test</th>
<th>Time per operation (ns)</th>
<th>Factor over C++ time</th>
</tr>
</thead>
<tbody>
<tr>
<td>test_at_integer()</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>test_at_float()</td>
<td>242</td>
<td>x2.7</td>
</tr>
<tr>
<td>test_has_integer()</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>test_has_float()</td>
<td>238</td>
<td>x1.4</td>
</tr>
<tr>
<td>test_insert_remove_mid_integer()</td>
<td>1312</td>
<td></td>
</tr>
<tr>
<td>test_insert_remove_mid_float()</td>
<td>1497</td>
<td>x1.4</td>
</tr>
<tr>
<td>test_index_mid_int()</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>test_index_mid_float()</td>
<td>356</td>
<td>x1.9</td>
</tr>
</tbody>
</table>

It is rather surprising, and satisfying, that the Python overhead is so small considering the boxing/unboxing that is going on. The test methodology is different in the Python/C++ cases which might skew the figures.
Computing a Rolling Median

A powerful use case for a skip list is in the computation of a rolling fraction, for example a rolling median. Here is a reasonable C++ attempt at doing that with the arguments:

- **data** - A vector of data of type T.
- **win_length** - a 'window' size. The median is computed over this number of values.
- **result** - a destination vector for the result. This will end up with \(\text{count} - \text{win_length} \) values.

Rolling median code using a skip list might look like this, error checking is omitted:

```cpp
#include "SkipList.h"

template <typename T> void rolling_median(const std::vector<T> data, size_t win_length, std::vector<T> &result) {
    OrderedStructs::SkipList::HeadNode<T> sl;
    result.clear();
    for (size_t i = 0; i < data.size(); ++i) {
        sl.insert(data[i]);
        if (i >= win_length) {
            result.push_back(sl.at(win_length / 2));
            sl.remove(data[i - win_length]);
        }
    }
}
```

If you are working with C arrays (such as Numpy arrays) then this C-ish approach might be better, again error checking omitted:

```cpp
#include "SkipList.h"

template <typename T>
```
```c
void rolling_median(const T *src, size_t count, size_t win_length, T *dest) {
    OrderedStructs::SkipList::HeadNode<T> sl;
    const T *tail = src;

    for (size_t i = 0; i < count; ++i) {
        sl.insert(*src);
        if (i + 1 >= win_length) {
            *dest = sl.at(win_length / 2);
            ++dest;
            sl.remove(*tail);
            ++tail;
        }
        ++src;
    }
}
```

Multidimensional Numpy arrays have a stride value which is omitted in the above code but is simple to add. See `RollingMedian.h` and `test/test_rolling_median.cpp` for further examples.

Rolling percentiles require a argument that says what fraction of the window the required value lies. Again, this is easy to add.

Even Window Length

The above code assumes that if the window length is even that the median is at \(\frac{\text{window length} - 1}{2} \). A more plausible median for even sized window lengths is the mean of \(\frac{\text{window length} - 1}{2} \) and \(\frac{\text{window length}}{2} \). This requires that the mean of two types is meaningful which it will not be for strings.
CHAPTER 9

Visualising a Skip List

If the skip list is compiled with INCLUDE_METHODS_THAT_USE_STREAMS defined both the HeadNode and Node gain the methods dotFile and dotFileFinalise. These can be used to write out the current state of the skip list to stdout in DOT (GraphViz) format. These can be converted to SVG or PNG using dot.

Multiple snapshots of the same skiplist can be taken and plotted in the same graph. Each snapshot is denoted by a number.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dotFile()</td>
<td>Arguments are: an output stream.</td>
</tr>
<tr>
<td>dotFileFinalise()</td>
<td>Arguments are: an output stream.</td>
</tr>
</tbody>
</table>

Simple Example

This takes a single snapshot of the skip list. Create a skip list and insert 5 values into it. Then call dotFile() to write out the state of the skip list stdout and dotFileFinalise() to complete the graph.

```c++
#include "SkipList.h"

void doc_insert_simple() {
    OrderedStructs::SkipList::HeadNode<int> sl;
    sl.insert(42);
    sl.insert(84);
    sl.insert(21);
    sl.insert(100);
    sl.insert(12);
    sl.dotFile(std::cout);
    sl.dotFileFinalise(std::cout);
}
```

Saving stdout to a text file, say doc_simple.dot then running this on the command line:
Inserting the Values 0 to 7

Multiple snapshots can also be created showing how the skiplist grows and shrinks. This diagram was created with the following C++ code:

```cpp
#include "SkipList.h"

void doc_insert() {
    OrderedStructs::SkipList::HeadNode<int> sl;

    // Write out the empty head node
    sl.dotFile(std::cout);
    // Now insert a value and add the current representation to the DOT file
    for (int i = 0; i < 8; ++i) {
        sl.insert(i);
        sl.dotFile(std::cout);
    }
    // Finalise the dot file with the number of snapshots, this updates internal references
    sl.dotFileFinalise(std::cout);
}
```

Saving this output to a text file, say `doc_insert.dot` then running this on the command line:

```
dot -odoc_insert.svg -Tsvg doc_insert.dot
```

Will produce this `doc_insert.svg`:

Inserting the Values 0 to 3 and Removing them Multiple Times

This visualisation is produced by this code:

```cpp
#include "SkipList.h"

void doc_insert_remove_repeat() {
    int NUM = 4;
    int REPEAT_COUNT = 4;

    OrderedStructs::SkipList::HeadNode<int> sl;

    sl.dotFile(std::cout);
    for (int c = 0; c < REPEAT_COUNT; ++c) {
        for (int i = 0; i < NUM; ++i) {
            sl.insert(i);
            sl.dotFile(std::cout);
        }
    }
}
```
for (int i = 0; i < NUM; ++i) {
 sl.remove(i);
 sl.dotFile(std::cout);
}

sl.dotFileFinalise(std::cout);

Produces this image, note how the shape of the skip list nodes changes with repeated inserts.
Fair coin, $p(0.5)$

This is the default implementation of the skip list. Each coarser linked list (should) have half the references.

1:8, $p(0.125)$

There are very few coarser linked lists here. This is getting closer to a normal linked list with $O(n)$ search behaviour.

1:4, $p(0.25)$

3:4, $p(0.75)$

Each node now participates in many more linked lists. This may/may not improve search performance but it will certainly increase size requirements.

For the effect of a biased coin on time/space performance see Effect of a Biased Coin
Test Code

There are several areas of test code:

• C++ functional tests.
• C++ performance tests.
• Python functional tests.

C++ Functional Tests.

The functional tests are run with a debug build of the C++ binary. In a debug build every operation on a skip list is checked before and afterwards with an integrity check. These integrity checks are thorough but expensive, see template <typename T> IntegrityCheck HeadNode<T>::lacksIntegrity() const in HeadNode.h for what checks are done.

Running these tests is as follows:

```
$ cd src/cpp
$ make debug
$ ./SkipList_D.exe
Running skip list tests...
    test_very_simple_insert(): PASS
    test_simple_insert(): PASS
    test_insert_and_remove_same(): PASS
    test_insert_remove_multiple(): PASS
    test_ins_rem_rand(): PASS
    test_insert_n_numbers_same(): PASS
    test_at(): PASS
...
    doc_insert_remove_repeat(): PASS
Final result: PASS
```
C++ Performance Tests.

Running the release version of the C++ code introduces some performance tests where the results are sent to stdout.

```
$ cd src/cpp
$ make release
$ ./SkipList_R.exe
Running skip list tests...
  test_very_simple_insert(): PASS
  test_simple_insert(): PASS
  test_insert_and_remove_same(): PASS
  test_insert_remove_multiple(): PASS
  test_ins_rem_rand(): PASS
  test_insert_n_numbers_same(): PASS
  test_at(): PASS
  perf_single_insert_remove(): 451.554 (ms) rate x.xe+06 /s
...
  perf_roll_med_odd_indexWins(): vectors length: 1000000 window width: 524288 time: x.x (ms)
  perf_size_of(): size_of(1): 216 bytes ratio: x
...
  doc_insert_remove_repeat(): PASS
Final result: PASS
Exec time: 127.5 (s)
Bye, bye!
```

This data is scraped from stdout to describe the Skip List Performance

Python Functional Tests.

There are some tests for the Python API in tests/. One of the reasons for creating a Python API was to use the most excellent Hypothesis to test the underlying C++ code.

Testing a Probabilistic Structure

One problem with probabilistic data structures like a skip list is deterministic testing. Along the way you discover particular corner cases that are worthy of testing the implementation against. Each case is completely prescribed by the order of insertion and the order of head/tail results generated by the virtual coin toss function. Whilst the former can be controlled by the test case the latter depends on the state of the pseudo random number generator and there lies the problem.

In this project this is solved in a novel way by seeding the random number generator with a value and seeing what head/tail sequence results. The random number generator is then brute forced with different seeds until every possible head/tail sequence of a certain length is obtained. A map is constructed that has \{sequence : seed, ...\} which can be use by any test to find the seed that will create the desired sequence. The random number generator is seeded with that value and the test is now deterministic.

The function that creates a dictionary is `find_seeds_for_sequences()` in tests/unit/seed_tree.py. It is tested in tests/unit/test_seed_tree.py. You can see it at work in tests/unit/test_cSkipList.py where SEED_DICT is created.
using the \texttt{rand()} function exposed through \texttt{cSkipList.seed_rand()} and \texttt{cSkipList.toss_coin()}.

There are various tests in there that specify a sequence of coin tosses and inject nodes that require that sequence.
CHAPTER 12

Skip List API

C++ API

This describes the C++ API to a skip list with some algorithmic details of their implementation. Here is a visualisation of a skip list:

```
| 5 E |------------------------------------->| 4 0 |---------------------------> |
| NULL |
| 1 A |->| 2 C |--------->| 2 E |--------->| 2 G |--------->| 2 0 |---------> |
| NULL |
| 1 A |->| 1 B |->| 1 C |->| 1 D |->| 1 E |->| 1 F |->| 1 G |->| 1 H |->| 1 0 |->|
| NULL |
| HED | | A | | B | | C | | D | | E | | F | | G | | H |
```

In these descriptions:

- ‘right’ and ‘left’ is used to mean move to a higher/lower ordinal node.
- ‘up’ and ‘down’ means to move to a coarser/finer grained list, ‘top’ is the highest, ‘bottom’ is the level 0.

Example in C++

```
#include "SkipList.h"

OrderedStructs::SkipList::HeadNode<double> sl;

sl.insert(42.0);
sl.insert(21.0);
sl.insert(84.0);

sl.has(42.0) // true
sl.size() // 3
sl.at(1) // 42.0, throws SkipList::IndexError if index out of range
```
sl.remove(21.0); // throws SkipList::ValueError if value not present
sl.size() // 2
sl.at(1) // 84.0

Constructors

There is only one constructor to a HeadNode and that takes no arguments.

HeadNode::insert(const T &val)

Declaration: void HeadNode::insert(const T &value);

Inserts a copy of value such that the previous value, if present, is \(\leq \) value and the next value, if present, is \(> \) value.

Algorithm

Finding the place to insert a node first follows the \(\text{has}(T \&val) \) algorithm to find the place in the skip list to create a new node. Inserts of duplicate values are made after any existing duplicate values. All nodes are inserted at level 0 even if the insertion point can be seen at a higher level. The search for an insertion location creates a recursion stack that, when unwound, updates the traversed nodes \((\text{width, Node<T>*)}\) data.

Once an insert position is found a Node is created whose height is determined by repeatedly tossing a virtual coin until ‘tails’ is found. This node initially has all node references to be to itself (this), and the widths set to 1 for level 0 and 0 for the remaining levels, they will be used to sum the widths at one level down. On recursion (‘left’) each node adds its width to the new node at the level above the current level. On moving up a level the current node swaps its width and node pointer with the new node at that new level.

HeadNode::remove(const T &val)

Declaration: void HeadNode::remove(const T &value);

Removes the value from the skip list. This will throw an ValueError if the value is not present.

If there are duplicate values the last one is removed first, this is for symmetry with \(\text{insert}() \). Essentially this is the same as \(\text{insert}() \) but once the node is found the \(\text{insert}() \) updating algorithm is reversed and the node deleted.

HeadNode::has(const T &val) const;

Declaration: bool HeadNode::has(const T &value) const;

This returns true or false if the skip list has the value val. This is \(O(\log(n)) \) for well formed skip lists.

Algorithm

Starting at the highest possible level search rightwards until a larger value is encountered, then drop down. At level 0 return true if the Node value is the supplied value.
HeadNode::at(size_t index) const;

Declaration: `const T& HeadNode::at(size_t index) const;`

This returns the value of type T at the given index. This will throw an `IndexError` if the index is >= size of the skip list. This is O(log(n)) for well formed skip lists.

Algorithm

The algorithm is similar to `has(T &val)` but the search moves rightwards if the width is less than the index and decrementing the index by the width. If progress can not be made to the right, drop down a level. If the index is 0 return the node value.

HeadNode::at(size_t index, size_t count, std::vector<T> &dest) const;

Declaration: `void HeadNode::at(size_t index, size_t count, std::vector<T> &dest) const;`

This loads a vector of type T with count values starting at the given index. This will throw an `IndexError` if the index + count is >= size of the skip list. This is O(count * log(n)) for well formed skip lists.

Algorithm

The initial location follows the algorithm of `at(size_t index) const;` then sequential nodes are included.

HeadNode::index(const T &value) const;

Declaration: `size_t HeadNode<T>::index(const T& value) const`

Returns the index of the first occurrence of the value. This will throw a `ValueError` if not found. This will throw a `FailedComparison` if the value is not comparable. This is O(log(n)) for well formed skip lists.

`at(index(value))` is always true if value is in the skip list. If there are no duplicate values `index(at(i))` is true for all indices.

HeadNode::size() const

Declaration: `size_t HeadNode::size() const;`

Returns the number of items in the skip list.

Specialised APIs

HeadNode::height() const

Declaration: `size_t HeadNode::height() const;`

Returns the number of linked lists that make up the skip list (minimum 1).
HeadNode::height(size_t idx) const

Declaration:
```
size_t HeadNode::height(size_t idx) const;
```

Returns the number of linked lists that a particular node at index `idx` participates in. Will throw a `IndexError` if `idx` is `>=` size of the skip list (minimum 1).

HeadNode::width(size_t idx, size_t level) const

Declaration:
```
size_t HeadNode::width(size_t idx, size_t level) const;
```

Returns the number of nodes a node reference skips for the node at `idx` and the level at `level`. Will throw a `IndexError` if `idx` is `>=` size of the skip list or `level` `>=` the node height (minimum 1).

HeadNode::dotFile(std::ostream &os) const

Declaration:
```
void HeadNode::dotFile(std::ostream &os) const;
```

Writes a representation of the current state of the skip is as a fragment of a DOT file to the stream `os` as a subgraph. Internally the `HeadNode` keeps a count of how many times this has been called. The first time this function is called writes the preamble of DOT file as well as the subgraph.

Writing to `os` before or between `dotFile()` calls may produce undefined DOT format files.

Here is an example of using this method:

```cpp
#include "SkipList.h"

OrderedStructs::SkipList::HeadNode<
  double>
  sl;
sl.insert(42.0);
sl.insert(84.0);
sl.insert(21.0);
sl.insert(100.0);
sl.insert(12.0);
sl.dotFile(std::cout);
sl.dotFileFinalise(std::cout);
```

There are examples of code that performs this in `src/cpp/main.cpp`

There are examples of the result in *Visualising a Skip List*

This method requires the macro `INCLUDE_METHODS_THAT_USE_STREAMS` to be defined.

HeadNode::dotFileFinalise(std::ostream &os) const

Declaration:
```
void HeadNode::dotFileFinalise(std::ostream &os) const;
```

Writing to `os` after `dotFileFinalise()` produces may produce undefined DOT format files.

This method requires the macro `INCLUDE_METHODS_THAT_USE_STREAMS` to be defined.

HeadNode::lacksIntegrity() const

Declaration:
```
IntegrityCheck HeadNode::lacksIntegrity() const;
```

Returns non-zero if the integrity of this data structure is compromised. The return values are defined in `src/cpp/IntegrityEnums.h` This is a thorough but expensive check!
HeadNode::size_of() const

Declaration: `size_t HeadNode::size_of() const;`

Estimate of the number of bytes used by the skip list. This will not include any dynamically allocated memory such as used by `std::string`.

Python API

The Python API closely follows the C++ API.

Example in Python

```python
import cSkipList

sl = cSkipList.PySkipList(float)
sl.insert(42.0)
sl.insert(21.0)
sl.insert(84.0)

sl.has(42.0)  # True
sl.size()    # 3
sl.at(1)     # 42.0

sl.has(42.0)  # True
sl.size()    # 3
sl.at(1)     # 42.0, raises IndexError if index out of range

sl.remove(21.0);  # raises ValueError if value not present

sl.size()    # 2
sl.at(1)     # 84.0
```

Module cSkipList

The module contains the following attributes:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cSkipList.build_target</td>
<td>The Python version this module is built for. Example: '3.5.1'</td>
</tr>
<tr>
<td>cSkipList.build_time</td>
<td>The date and time the module was built. Example: 'Jul 14 2016 11:35:03'</td>
</tr>
<tr>
<td>cSkipList.build_type</td>
<td>The build type, either 'debug' or 'release'.</td>
</tr>
<tr>
<td>cSkipList.version</td>
<td>The version of the build. Example '0.1.0'.</td>
</tr>
</tbody>
</table>

The module contains the following module level functions:
Function	Description
toss_coin() | Returns the result of a virtual coin toss.
seed_rand(long) | Seeds the random number generator with a long integer.
min_long() | The minimum storable value of a PySkipList(long).
max_long() | The maximum storable value of a PySkipList(long).

Class cSkipList.PySkipList

Constructor

The constructor takes a Python type. The following are valid:

```python
import cSkipList

sl = cSkipList.PySkipList(int)  # Python 3, for Python 2 use PySkipList(long)
sl = cSkipList.PySkipList(float)
sl = cSkipList.PySkipList(bytes)  # In Python 2 PySkipList(str) also works
```

PySkipList.has(val)

This returns True or False if the skip list has the value val. Will raise a TypeError if val is not the same type as the skip list was constructed with. This is \(O(\log(n))\) for well formed skip lists.

PySkipList.at(index)

This returns the value at the given index which must be of type long. Negative values of the index are dealt with Pythonically. This will raise an IndexError if the index is >= size of the skip list. This is \(O(\log(n))\) for well formed skip lists.

PySkipList.at_seq(index, count)

This returns a tuple of count values starting at the given index which must be of type long. Negative values of the index are dealt with Pythonically. count must be positive. This tuple contains a copy of the data in the skip list. This will raise an IndexError if the index + count is >= size of the skip list. This is \(O(\text{count} \times \log(n))\) for well formed skip lists.

PySkipList.index(value)

Returns the index of the first occurrence of the value. This will throw a ValueError if not found or the value is not comparable. This is \(O(\log(n))\) for well formed skip lists.

PySkipList.size()

Returns the number of items in the skip list.
PySkipList.insert(value)

Inserts a copy of value such that the previous value, if present, is \leq value and the next value, if present, is $>\text{value}$. Will raise a TypeError if val is not the same type as the skip list was constructed with.

In the case of a PySkipList(long) if the value $<$ min_long() or $>$ max_long() an OverflowError will be raised.

PySkipList.remove(value)

Removes the value from the skip list. This will raise a ValueError if the value is not present. Will raise a TypeError if val is not the same type as the skip list was constructed with.

If there are duplicate values the last one is removed first, this is for symmetry with insert(). Essentially this is the same as insert() but once the node is found the insert() updating algorithm is reversed and the node deleted.

In the case of a PySkipList(long) if the value $<$ min_long() or $>$ max_long() an OverflowError will be raised.

Specialised APIs

PySkipList.height()

Returns the number of linked lists that make up the skip list (minimum 1).

PySkipList.node_height(index)

Returns the number of linked lists that a particular node at index index participates in (minimum 1). Will raise a IndexError if idx is \geq size of the skip list.

PySkipList.width(index, level)

Returns the number of nodes a node reference skips for the node at index and the level at level. Will raise an IndexError if index is \geq size of the skip list or level \geq the node height (minimum 1).

PySkipList.dot_file()

Returns a representation of the current state of the skip is as a bytes object that represents a DOT file. This method requires the macro INCLUDE_METHODS_THAT_USE_STREAMS to be defined.

There are examples of the result in Visualising a Skip List

PySkipList.lacks_integrity()

Returns non-zero if the integrity of this data structure is compromised. The return values are defined in src/cpp/IntegrityEnums.h This is a thorough but expensive check!
CHAPTER 13

Indices and tables

- genindex
- search