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CHAPTER 1

Introduction

The articles in this collection are my notes from reading various papers and books during the course of my research
work.
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CHAPTER 2

Image Processing
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CHAPTER 3

Machine Learning
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Computer Vision
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CHAPTER 5

Deep Learning

5.1 General Overview

5.1.1 Applications

Convolutional Networks

• Image Classification

• Object Detection

• Object Localization

• Human Pose Estimation

• Action Classification

• Action Recognition

• Video Classification

• Image Feature Learning

• Medical Image Segmentation
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5.2 Image Classification

5.3 Object Detection

5.4 Video Classification, Action Classification, Recognition, Detec-
tion

5.4.1 Large-scale video classification with convolutional neural networks

5.4.2 Youtube-8m: A large-scale video classification benchmark

5.4.3 Learning spatiotemporal features with 3d convolutional networks

In this note, we discuss [TBF+15].

Summary

An approach for learning spatiotemporal features using deep 3D convolutional networks is presented. The network is
trained on large supervised dataset.

Claims

• 3D convolutional networks are more suitable for spatiotemporal feature learning.

• A homogeneous architecture with 3× 3× 3 kernels in all layers performs quite well.

• The learned C3D (convolutional 3D) features with a simple linear classifier outperform state of the art methods
on many benchmarks.

Further:

• Features are compact.

• Features are efficient to compute.

• Features are conceptually simple and easy to train.

Prior work

• Spatio-temporal interest points (STIP)

• SIFT-3D for action recognition

• HOG-3D for action recognition

• Cuboids features for behavior recognition

• Improved Dense Trajectories (iDT)

• Two stream networks

• Human detector and head tracking

• Deep Video [KTS+14]
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Remarks on prior work

• Image based deep features are not directly suitable for video due to lack of motion modeling.

• iDT has good performance but it is computationally intensive and intractable on large scale datasets.

Major results

Benchmarks used

• Sports1M for action recognition

• UCF101 for action recognition

• ASLAN for action similarity labeling

• YUPENN for scene classification

• UMD for scene classification

• Object for object recognition

Proposals

Requirements of effective video descriptors:

• Generic: Can represent different types of videos well while being discriminative.

• Compact: Should be small in size to build databases of millions of videos. Storage and retrieval tasks should
be scalable.

• Efficient to compute: Need to process thousands of videos every minute

• Simple to implement: Avoid complicated feature encoding methods and classifiers.

Examples of different types of videos: Landscapes, Natural scenes, Sports, TV shows, Movies, Pets, Food

Proposed 3D convnets

• 3× 3× 3 convolution kernels for all layers work best.

• Encapsulate information related to objects, scenes and actions in a video.

• No need to fine-tune the model for specific task.

• Model appearance and motion simultaneously.

• Outperform existing results on 4 different tasks and 6 different benchmarks.

• Are compact and efficient to compute.

• No preprocessing on the video. Full video frames as input.

• 3D pooling

• Gradual pooling of space and time information.

• In 3D nets, the input as well as output is an image volume.

5.4. Video Classification, Action Classification, Recognition, Detection 11
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Comparison with 2D ConvNets

• 2D convolutional networks lose temporal information of input signal right after every convolution operation.

• Similarly, 3D pooling retains temporal information while 2D pooling loses it.

• 2D convolutional networks when applied on multiple images by treating them as different channels also result
in an image only.

• Slow fusion model [KTS+14] uses 3D convolutions and average pooling in first 3 layers. Loses all the tem-
poral information after this. The use of 3D convolutions in initial layers is probably the reason for its better
performance compared to other models.

Notation

• 𝑐 : number of channels in image

• 𝑙 : number of frames in video clip

• ℎ : height of frame

• 𝑤 : width of frame

• 𝑐× 𝑙 × ℎ× 𝑤 : size of the video clip

• 𝑘 : kernel spatial size

• 𝑑 : kernel temporal depth

• 𝑑× 𝑘 × 𝑘 : size of convolutional kernel and pooling kernel

Basic study of 3D convolution and learning

Here our goal is to find out the right parameters for kernel temporal depth.

Network architecture

• Video frame size : 128× 171.

• Non overlapped 16 frame clips.

• Jittering using random crop for training clips size: 3× 16× 112× 112.

• 5 convolutional layers, 5 pooling layers.

• 2 FC layers.

• Final softmax layer.

• Number of filters in each layer: 64, 128, 256, 256, 256.

• Kernel temporal depth is variable.

• Appropriate padding is used [both spatially and temporally].

• Stride = 1

• Same convolution used. No change in image volume size in convolution layers.

• First max pooling layer of size 1× 2× 2.

• Remaining max pooling layers of size 2× 2× 2.
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• Clip length changes as follows from layer to layer: 16 → 16 → 8 → 4 → 2 → 1.

• Two 2048 (output size) FC layers

• Mini batches of 30 clips.

• Initial learning rate 0.003.

• Learning rate divided by 4 after 10 epochs.

• Training stopped after 16 epochs.

Temporal depth of convolutional kernel

Following options

• Homogeneous temporal depth (same in each layer)

• Varying temporal depth (different in each layer)

Setups

• depth-d homogeneous networks.

• depth-1 network is same as using 2D net on each frame.

• Increasing depth nets: 3-3-5-5-7.

• Decreasing depth nets: 7-5-5-3-3.

Results

• Clip accuracy is the main metric on UCF 101 dataset.

• Depth 3 network performs best among homogeneous nets.

• Depth 1 (2D net) is significantly worse than others.

• Depth 3 performs better than varying depth networks (gap is not much).

• Increasing depth net performs slightly better than decreasing depth net.

Spatiotemporal feature learning

Network architecture

• Only 3× 3× 3 nets are used.

• 8 convolution layers, 5 pooling layers, two FC layers and then softmax layer.

• C - P - C - P - C - C - P - C - C - P - C - C - P - FC - FC - SF.

Training setup

• Sports 1M

• Five random clips each 2 second long from each video

• Frame size to 128× 171.

• Random cropping (both spatial and temporal) to 16× 112× 112 size.

5.4. Video Classification, Action Classification, Recognition, Detection 13
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• Horizontal flipping with 0.5 probability.

• SGD with mini batch of 30 clips.

• Initial learning rate: 0.003.

• Divided by 2 every 150K iterations.

• Optimization stopped after 1.9M iterations (13 epochs).

Results

• Accuracy of 84.4% at top-5 accuracy.

C3D video descriptor

• Break video into 16 frame clips with overlap of 8 frames.

• Compute the output activation of final FC layer for each clip.

• Average these activations over all clips.

• L2-Normalize the resultant vector

What C3D learns?

• Focuses on appearance in first few frames of a clip.

• Tracks the salient motion in remaining frames.

• Selectively attends to both motion and appearance.

Action recognition

Bibliography

5.5 Audio Events

14 Chapter 5. Deep Learning



CHAPTER 6

Sparse Representations
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Dictionary Learning
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CHAPTER 8

Epilogue
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CHAPTER 9

Indices and tables

• genindex

• modindex

• search
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