Research Notes

Shailesh Kumar

Jun 21, 2019

Contents:

1	Introduction	1
2	Image Processing	3
3	Machine Learning	5
4	Computer Vision	7
5	Deep Learning5.1General Overview5.2Image Classification5.3Object Detection5.4Video Classification, Action Classification, Recognition, Detection5.5Audio Events	9 9 10 10 10 14
6	Sparse Representations	15
7	Dictionary Learning	17
8	Epilogue	19
9	Indices and tables	21
Bi	bliography	23

Introduction

The articles in this collection are my notes from reading various papers and books during the course of my research work.

Image Processing

CHAPTER $\mathbf{3}$

Machine Learning

Computer Vision

Deep Learning

5.1 General Overview

5.1.1 Applications

Convolutional Networks

- Image Classification
- Object Detection
- Object Localization
- Human Pose Estimation
- Action Classification
- Action Recognition
- Video Classification
- Image Feature Learning
- Medical Image Segmentation

5.2 Image Classification

5.3 Object Detection

5.4 Video Classification, Action Classification, Recognition, Detection

5.4.1 Large-scale video classification with convolutional neural networks

5.4.2 Youtube-8m: A large-scale video classification benchmark

5.4.3 Learning spatiotemporal features with 3d convolutional networks

In this note, we discuss [TBF+15].

Summary

An approach for learning spatiotemporal features using deep 3D convolutional networks is presented. The network is trained on large supervised dataset.

Claims

- 3D convolutional networks are more suitable for spatiotemporal feature learning.
- A homogeneous architecture with $3 \times 3 \times 3$ kernels in all layers performs quite well.
- The learned C3D (convolutional 3D) features with a simple linear classifier outperform state of the art methods on many benchmarks.

Further:

- Features are compact.
- Features are efficient to compute.
- Features are conceptually simple and easy to train.

Prior work

- Spatio-temporal interest points (STIP)
- SIFT-3D for action recognition
- HOG-3D for action recognition
- · Cuboids features for behavior recognition
- Improved Dense Trajectories (iDT)
- Two stream networks
- Human detector and head tracking
- Deep Video [KTS+14]

Remarks on prior work

- Image based deep features are not directly suitable for video due to lack of motion modeling.
- iDT has good performance but it is computationally intensive and intractable on large scale datasets.

Major results

Benchmarks used

- Sports1M for action recognition
- UCF101 for action recognition
- ASLAN for action similarity labeling
- YUPENN for scene classification
- UMD for scene classification
- Object for object recognition

Proposals

Requirements of effective video descriptors:

- Generic: Can represent different types of videos well while being discriminative.
- **Compact**: Should be small in size to build databases of millions of videos. Storage and retrieval tasks should be scalable.
- Efficient to compute: Need to process thousands of videos every minute
- Simple to implement: Avoid complicated feature encoding methods and classifiers.

Examples of different types of videos: Landscapes, Natural scenes, Sports, TV shows, Movies, Pets, Food

Proposed 3D convnets

- $3 \times 3 \times 3$ convolution kernels for all layers work best.
- Encapsulate information related to objects, scenes and actions in a video.
- No need to fine-tune the model for specific task.
- Model appearance and motion simultaneously.
- Outperform existing results on 4 different tasks and 6 different benchmarks.
- Are compact and efficient to compute.
- No preprocessing on the video. Full video frames as input.
- 3D pooling
- Gradual pooling of space and time information.
- In 3D nets, the input as well as output is an image volume.

Comparison with 2D ConvNets

- 2D convolutional networks lose temporal information of input signal right after every convolution operation.
- Similarly, 3D pooling retains temporal information while 2D pooling loses it.
- 2D convolutional networks when applied on multiple images by treating them as different channels also result in an image only.
- Slow fusion model [KTS+14] uses 3D convolutions and average pooling in first 3 layers. Loses all the temporal information after this. The use of 3D convolutions in initial layers is probably the reason for its better performance compared to other models.

Notation

- c : number of channels in image
- *l* : number of frames in video clip
- h : height of frame
- w : width of frame
- $c \times l \times h \times w$: size of the video clip
- k : kernel spatial size
- d : kernel temporal depth
- $d \times k \times k$: size of convolutional kernel and pooling kernel

Basic study of 3D convolution and learning

Here our goal is to find out the right parameters for kernel temporal depth.

Network architecture

- Video frame size : 128×171 .
- Non overlapped 16 frame clips.
- Jittering using random crop for training clips size: $3 \times 16 \times 112 \times 112$.
- 5 convolutional layers, 5 pooling layers.
- 2 FC layers.
- Final softmax layer.
- Number of filters in each layer: 64, 128, 256, 256, 256.
- Kernel temporal depth is variable.
- Appropriate padding is used [both spatially and temporally].
- Stride = 1
- Same convolution used. No change in image volume size in convolution layers.
- First max pooling layer of size $1 \times 2 \times 2$.
- Remaining max pooling layers of size $2 \times 2 \times 2$.

- Clip length changes as follows from layer to layer: $16 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$.
- Two 2048 (output size) FC layers
- Mini batches of 30 clips.
- Initial learning rate 0.003.
- Learning rate divided by 4 after 10 epochs.
- Training stopped after 16 epochs.

Temporal depth of convolutional kernel

Following options

- Homogeneous temporal depth (same in each layer)
- Varying temporal depth (different in each layer)

Setups

- depth-d homogeneous networks.
- depth-1 network is same as using 2D net on each frame.
- Increasing depth nets: 3-3-5-5-7.
- Decreasing depth nets: 7-5-5-3-3.

Results

- Clip accuracy is the main metric on UCF 101 dataset.
- Depth 3 network performs best among homogeneous nets.
- Depth 1 (2D net) is significantly worse than others.
- Depth 3 performs better than varying depth networks (gap is not much).
- Increasing depth net performs slightly better than decreasing depth net.

Spatiotemporal feature learning

Network architecture

- Only $3 \times 3 \times 3$ nets are used.
- 8 convolution layers, 5 pooling layers, two FC layers and then softmax layer.

Training setup

- Sports 1M
- Five random clips each 2 second long from each video
- Frame size to 128×171 .
- Random cropping (both spatial and temporal) to $16 \times 112 \times 112$ size.

- Horizontal flipping with 0.5 probability.
- SGD with mini batch of 30 clips.
- Initial learning rate: 0.003.
- Divided by 2 every 150K iterations.
- Optimization stopped after 1.9M iterations (13 epochs).

Results

• Accuracy of 84.4% at top-5 accuracy.

C3D video descriptor

- Break video into 16 frame clips with overlap of 8 frames.
- Compute the output activation of final FC layer for each clip.
- Average these activations over all clips.
- L2-Normalize the resultant vector

What C3D learns?

- Focuses on appearance in first few frames of a clip.
- Tracks the salient motion in remaining frames.
- Selectively attends to both motion and appearance.

Action recognition

Bibliography

5.5 Audio Events

Sparse Representations

Dictionary Learning

Epilogue

Indices and tables

- genindex
- modindex
- search

Bibliography

- [KTS+14] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video classification with convolutional neural networks. In *Proceedings of the IEEE conference* on Computer Vision and Pattern Recognition, 1725–1732. 2014.
- [TBF+15] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spatiotemporal features with 3d convolutional networks. In *Proceedings of the IEEE international conference on computer* vision, 4489–4497. 2015.
- [KTS+14] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video classification with convolutional neural networks. In *Proceedings of the IEEE conference* on Computer Vision and Pattern Recognition, 1725–1732. 2014.
- [TBF+15] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spatiotemporal features with 3d convolutional networks. In *Proceedings of the IEEE international conference on computer vision*, 4489–4497. 2015.