
Singularity Container Documentation
Release 2.5.1

Admin Docs

Jun 25, 2018

Contents

1 Administration QuickStart 1
1.1 Installation . 1

1.1.1 Downloading the source . 1
1.1.2 Source Installation . 2
1.1.3 Prefix in special places (–localstatedir) . 2
1.1.4 Building an RPM directly from the source . 3

2 Security 5
2.1 Container security paradigms . 5
2.2 Untrusted users running untrusted containers! . 5

2.2.1 Privilege escalation is necessary for containerization! . 5
2.2.2 How does Singularity do it? . 6

2.3 Where are the Singularity priviledged components . 6
2.4 Can I install Singularity as a user? . 7
2.5 Container permissions and usage strategy . 8

2.5.1 controlling what kind of containers are allowed . 8
2.5.2 limiting usage to specific container file owners . 8
2.5.3 limiting usage to specific paths . 9

2.6 Logging . 9
2.6.1 A peek into the SetUID program flow . 10
2.6.2 A peek into the “rootless” program flow . 12

2.7 Summary . 14

3 The Singularity Config File 15
3.1 Parameters . 15

3.1.1 ALLOW SETUID (boolean, default=’yes’) . 15
3.1.2 ALLOW PID NS (boolean, default=’yes’) . 15
3.1.3 ENABLE OVERLAY (boolean, default=’no’) . 16
3.1.4 CONFIG PASSWD, GROUP, RESOLV_CONF (boolean, default=’yes’) 16
3.1.5 MOUNT PROC,SYS,DEV,HOME,TMP (boolean, default=’yes’) 16
3.1.6 MOUNT HOSTFS (boolean, default=’no’) . 16
3.1.7 BIND PATH (string) . 16
3.1.8 USER BIND CONTROL (boolean, default=’yes’) . 16
3.1.9 AUTOFS BUG PATH (string) . 16

3.2 Logging . 17
3.3 Loop Devices . 17

i

4 Container Checks 19
4.1 What is a check? . 19

4.1.1 Adding a Check . 20
4.2 How to tell users? . 21

5 Troubleshooting 23
5.1 Not installed correctly, or installed to a non-compatible location . 23

6 Installation Environments 25
6.1 Singularity on HPC . 25

6.1.1 Workflows . 25
6.1.1.1 Integration with MPI . 25
6.1.1.2 Tutorials . 26
6.1.1.3 MPI Development Example . 26
6.1.1.4 Code Example using Open MPI 2.1.0 Stable . 26
6.1.1.5 Code Example using Open MPI git master . 27

6.2 Image Environment . 29
6.2.1 Directory access . 29

6.2.1.1 Current Working Directory . 30
6.2.2 Standard IO and pipes . 31
6.2.3 Containing the container . 31

6.3 License . 31
6.3.1 In layman terms. 33

7 Appendix 35
7.1 Using Host libraries: GPU drivers and OpenMPI BTLs . 35

7.1.1 What We will learn today . 35
7.1.2 Environment . 35
7.1.3 Creating your image . 36
7.1.4 Executing your image . 40

7.2 Building an Ubuntu image on a RHEL host . 40
7.2.1 Preparation . 40

7.2.1.1 Creating the Definition File . 41
7.2.1.2 Creating your image . 42
7.2.1.3 Use here documents with RunCmd . 44
7.2.1.4 Use InstallPkgs with multiple packages . 44

ii

CHAPTER 1

Administration QuickStart

This document will cover installation and administration points of Singularity for multi-tenant HPC resources and will
not cover usage of the command line tools, container usage, or example use cases.

1.1 Installation

There are two common ways to install Singularity, from source code and via binary packages. This document will
explain the process of installation from source, and it will depend on your build host to have the appropriate develop-
ment tools and packages installed. For Red Hat and derivatives, you should install the following yum group to ensure
you have an appropriately setup build server:

$ sudo yum groupinstall "Development Tools"

1.1.1 Downloading the source

You can download the source code either from the latest stable tarball release or via the GitHub master repository.
Here is an example downloading and preparing the latest development code from GitHub:

$ mkdir ~/git

$ cd ~/git

$ git clone https://github.com/singularityware/singularity.git

$ cd singularity

$./autogen.sh

Once you have downloaded the source, the following installation procedures will assume you are running from the
root of the source directory.

1

Singularity Container Documentation, Release 2.5.1

1.1.2 Source Installation

The following example demonstrates how to install Singularity into /usr/local. You can install Singularity into
any directory of your choosing, but you must ensure that the location you select supports programs running as SUID.
It is common for people to disable SUID with the mount option nosuid for various network mounted file systems.
To ensure proper support, it is easiest to make sure you install Singularity to a local file system.

Assuming that /usr/local is a local file system:

$./configure --prefix=/usr/local --sysconfdir=/etc

$ make

$ sudo make install

Note: The make install above must be run as root to have Singularity properly installed. Failure to install
as root will cause Singularity to not function properly or have limited functionality when run by a non-root
user.

Also note that when you configure, squashfs-tools is not required, however it is required for full functionality.
You will see this message after the configuration:

mksquashfs from squash-tools is required for full functionality

If you choose not to install squashfs-tools, you will hit an error when your users try a pull from Docker Hub,
for example.

1.1.3 Prefix in special places (–localstatedir)

As with most autotools-based build scripts, you are able to supply the --prefix argument to the configure script
to change where Singularity will be installed. Care must be taken when this path is not a local filesystem or has
atypical permissions. The local state directories used by Singularity at runtime will also be placed under the supplied
--prefix and this will cause malfunction if the tree is read-only. You may also experience issues if this directory is
shared between several hosts/nodes that might run Singularity simultaneously.

In such cases, you should specify the --localstatedir variable in addition to --prefix. This will override the
prefix, instead placing the local state directories within the path explicitly provided. Ideally this should be within the
local filesystem, specific to only a single host or node. For example, the Makefile contains this variable by default:

CONTAINER_OVERLAY = ${prefix}/var/singularity/mnt/overlay

By supplying the configure argument --localstatedir=/some/other/place Singularity will instead be
built with the following. Note that ${prefix}/var that has been replaced by the supplied value:

CONTAINER_OVERLAY = /some/other/place/singularity/mnt/overlay

In the case of cluster nodes, you will need to ensure the following directories are created on all nodes, with
root:root ownership and 0755 permissions:

${localstatedir}/singularity/mnt

${localstatedir}/singularity/mnt/container

${localstatedir}/singularity/mnt/final

(continues on next page)

2 Chapter 1. Administration QuickStart

Singularity Container Documentation, Release 2.5.1

(continued from previous page)

${localstatedir}/singularity/mnt/overlay

${localstatedir}/singularity/mnt/session

Singularity will fail to execute without these directories. They are normally created by the install make target; when
using a local directory for --localstatedir these will only be created on the node make is run on.

1.1.4 Building an RPM directly from the source

Singularity includes all of the necessary bits to properly create an RPM package directly from the source tree, and you
can create an RPM by doing the following:

$./configure

$ make dist

$ rpmbuild -ta singularity-*.tar.gz

Near the bottom of the build output you will see several lines like:

...
Wrote: /home/gmk/rpmbuild/SRPMS/singularity-2.3.el7.centos.src.rpm

Wrote: /home/gmk/rpmbuild/RPMS/x86_64/singularity-2.3.el7.centos.x86_64.rpm

Wrote: /home/gmk/rpmbuild/RPMS/x86_64/singularity-devel-2.3.el7.centos.x86_64.rpm

Wrote: /home/gmk/rpmbuild/RPMS/x86_64/singularity-debuginfo-2.3.el7.centos.x86_64.rpm

...

You will want to identify the appropriate path to the binary RPM that you wish to install, in the above example the
package we want to install is singularity-2.3.el7.centos.x86_64.rpm , and you should install it with
the following command:

$ sudo yum install /home/gmk/rpmbuild/RPMS/x86_64/singularity-2.3.el7.centos.x86_64.
→˓rpm

Note: If you want to have the binary RPM install the files to an alternative location, you should define the environment
variable ‘PREFIX’ (below) to suit your needs, and use the following command to build:

$ PREFIX=/opt/singularity

$ rpmbuild -ta --define="_prefix $PREFIX" --define "_sysconfdir $PREFIX/etc" --define
→˓"_defaultdocdir $PREFIX/share" singularity-*.tar.gz

We recommend you look at our security admin guide to get further information about container privileges and mount-
ing.

1.1. Installation 3

Singularity Container Documentation, Release 2.5.1

4 Chapter 1. Administration QuickStart

CHAPTER 2

Security

2.1 Container security paradigms

First some background. Most container platforms operate on the premise, trusted users running trusted containers.
This means that the primary UNIX account controlling the container platform is either “root” or user(s) that root has
deputized (either via sudo or given access to a control socket of a root owned daemon process). Singularity on the
other hand, operates on a different premise because it was developed for HPC type infrastructures where you have
users, none of which are considered trusted. This means the paradigm is considerably different as we must support
untrusted users running untrusted containers.

2.2 Untrusted users running untrusted containers!

This simple phrase describes the security perspective Singularity is designed with. And if you additionally consider the
fact that running containers at all typically requires some level of privilege escalation, means that attention to security
is of the utmost importance.

2.2.1 Privilege escalation is necessary for containerization!

As mentioned, there are several containerization system calls and functions which are considered “privileged” in that
they must be executed with a certain level of capability/privilege. To do this, all container systems must employ one
of the following mechanisms:

1. Limit usage to root: Only allow the root user (or users granted sudo) to run containers. This has the obvious
limitation of not allowing arbitrary users the ability to run containers, nor does it allow users to run containers
as themselves. Access to data, security data, and securing systems becomes difficult and perhaps impossible.

2. Root owned daemon process: Some container systems use a root owned daemon background process which
manages the containers and spawns the jobs within the container. Implementations of this typically have an IPC
control socket for communicating with this root owned daemon process and if you wish to allow trusted users
to control the daemon, you must give them access to the control socket. This is the Docker model.

5

Singularity Container Documentation, Release 2.5.1

3. SetUID: Set UID is the “old school” UNIX method for running a particular program with escalated permission.
While it is widely used due to it’s legacy and POSIX requirement, it lacks the ability to manage fine grained
control of what a process can and can not do; a SetUID root program runs as root with all capabilities that comes
with root. For this reason, SetUID programs are traditional targets for hackers.

4. User Namespace: The Linux kernel’s user namespace may allow a user to virtually become another user and
run a limited set privileged system functions. Here the privilege escalation is managed via the Linux kernel
which takes the onus off of the program. This is a new kernel feature and thus requires new kernels and not all
distributions have equally adopted this technology.

5. Capability Sets: Linux handles permissions, access, and roles via capability sets. The root user has these
capabilities automatically activated while non-privileged users typically do not have these capabilities enabled.
You can enable and disable capabilities on a per process and per file basis (if allowed to do so).

2.2.2 How does Singularity do it?

Singularity must allow users to run containers as themselves which rules out options 1 and 2 from the above list.
Singularity supports the rest of the options to following degrees of functionally:

• User Namespace: Singularity supports the user namespace natively and can run completely unprivileged (“root-
less”) since version 2.2 (October 2016) but features are severely limited. You will not be able to use container
“images” and will be forced to only work with directory (sandbox) based containers. Additionally, as men-
tioned, the user namespace is not equally supported on all distribution kernels so don’t count on legacy system
support and usability may vary.

• SetUID: This is the default usage model for Singularity because it gives the most flexibility in terms of supported
features and legacy compliance. It is also the most risky from a security perspective. For that reason, Singularity
has been developed with transparency in mind. The code is written with attention to simplicity and readability
and Singularity increases the effective permission set only when it is necessary, and drops it immediately (as can
be seen with the -debug run flag). There have been several independent audits of the source code, and while
they are not definitive, it is a good assurance.

• Capability Sets: This is where Singularity is headed as an alternative to SetUID because it allows for much finer
grained capability control and will support all of Singularity’s features. The downside is that it is not supported
equally on shared file systems.

2.3 Where are the Singularity priviledged components

When you install Singularity as root, it will automatically setup the necessary files as SetUID (as of version 2.4, this
is the default run mode). The location of these files is dependent on how Singularity was installed and the options
passed to the configure script. Assuming a default ./configure run which installs files into --prefix of
/usr/local you can find the SetUID programs as follows:

$ find /usr/local/libexec/singularity/ -perm -4000

/usr/local/libexec/singularity/bin/start-suid

/usr/local/libexec/singularity/bin/action-suid

/usr/local/libexec/singularity/bin/mount-suid

Each of the binaries is named accordingly to the action that it is suited for, and generally, each handles the required
privilege escalation necessary for Singularity to operate. What specifically requires escalated privileges?

1. Mounting (and looping) the Singularity container image

6 Chapter 2. Security

Singularity Container Documentation, Release 2.5.1

2. Creation of the necessary namespaces in the kernel

3. Binding host paths into the container

Removing any of these SUID binaries or changing the permissions on them would cause Singularity to utilize the
non-SUID workflows. Each file with *-suid also has a non-suid equivalent:

/usr/local/libexec/singularity/bin/start

/usr/local/libexec/singularity/bin/action

/usr/local/libexec/singularity/bin/mount

While most of these workflows will not properly function without the SUID components, we have provided these fall
back executables for sites that wish to limit the SETUID capabilities to the bare essentials/minimum. To disable the
SetUID portions of Singularity, you can either remove the above *-suid files, or you can edit the setting for allow
suid at the top of the singularity.conf file, which is typically located in $PREFIX/etc/singularity/
singularity.conf.

ALLOW SETUID: [BOOL]

DEFAULT: yes

Should we allow users to utilize the setuid program flow within Singularity?

note1: This is the default mode, and to utilize all features, this option

will need to be enabled.

note2: If this option is disabled, it will rely on the user namespace

exclusively which has not been integrated equally between the different

Linux distributions.

allow setuid = yes

You can also install Singularity as root without any of the SetUID components with the configure option
--disable-suid as follows:

$./configure --disable-suid --prefix=/usr/local

$ make

$ sudo make install

2.4 Can I install Singularity as a user?

Yes, but don’t expect all of the functions to work. If the SetUID components are not present, Singularity will attempt
to use the “user namespace”. Even if the kernel you are using supports this namespace fully, you will still not be able
to access all of the Singularity features.

2.4. Can I install Singularity as a user? 7

Singularity Container Documentation, Release 2.5.1

2.5 Container permissions and usage strategy

As a system admin, you want to set up a configuration that is customized for your cluster or shared resource. In the
following paragraphs, we will elaborate on this container permissions strategy, giving detail about which users are
allowed to run containers, along with image curation and ownership.

These settings can all be found in the Singularity configuration file which is installed to $PREFIX/etc/
singularity/singularity.conf. When running in a privileged mode, the configuration file MUST be owned
by root and thus the system administrator always has the final control.

2.5.1 controlling what kind of containers are allowed

Singularity supports several different container formats:

• squashfs: Compressed immutable (read only) container images (default in version 2.4)

• extfs: Raw file system writable container images

• dir: Sandbox containers (chroot style directories)

Using the Singularity configuration file, you can control what types of containers Singularity will support:

ALLOW CONTAINER ${TYPE}: [BOOL]

DEFAULT: yes

This feature limits what kind of containers that Singularity will allow

users to use (note this does not apply for root).

allow container squashfs = yes

allow container extfs = yes

allow container dir = yes

2.5.2 limiting usage to specific container file owners

One benefit of using container images is that they exist on the filesystem as any other file would. This means that
POSIX permissions are mandatory. Here you can configure Singularity to only “trust” containers that are owned by a
particular set of users.

LIMIT CONTAINER OWNERS: [STRING]

DEFAULT: NULL

Only allow containers to be used that are owned by a given user. If this

configuration is undefined (commented or set to NULL), all containers are

allowed to be used. This feature only applies when Singularity is running in

SUID mode and the user is non-root.

#limit container owners = gmk, singularity, nobody

8 Chapter 2. Security

Singularity Container Documentation, Release 2.5.1

Note: If you are in a high risk security environment, you may want to enable this feature. Trusting container images
to users could allow a malicious user to modify an image either before or while being used and cause unexpected
behavior from the kernel (e.g. a DOS attack). For more information, please see: https://lwn.net/Articles/652468/

2.5.3 limiting usage to specific paths

The configuration file also gives you the ability to limit containers to specific paths. This is very useful to ensure that
only trusted or blessed container’s are being used (it is also beneficial to ensure that containers are only being used on
performant file systems).

LIMIT CONTAINER PATHS: [STRING]

DEFAULT: NULL

Only allow containers to be used that are located within an allowed path

prefix. If this configuration is undefined (commented or set to NULL),

containers will be allowed to run from anywhere on the file system. This

feature only applies when Singularity is running in SUID mode and the user is

non-root.

#limit container paths = /scratch, /tmp, /global

2.6 Logging

Singularity offers a very comprehensive auditing mechanism via the system log. For each command that is issued, it
prints the UID, PID, and location of the command. For example, let’s see what happens if we shell into an image:

$ singularity exec ubuntu true

$ singularity shell --home $HOME:/ ubuntu

Singularity: Invoking an interactive shell within container...

ERROR : Failed to execv() /.singularity.d/actions/shell, continuing to /bin/sh: No
→˓such file or directory

ERROR : What are you doing gmk, this is highly irregular!

ABORT : Retval = 255

We can then peek into the system log to see what was recorded:

Oct 5 08:51:12 localhost Singularity: action-suid (U=1000,P=32320)> USER=gmk, IMAGE=
→˓'ubuntu', COMMAND='exec'

Oct 5 08:53:13 localhost Singularity: action-suid (U=1000,P=32311)> USER=gmk, IMAGE=
→˓'ubuntu', COMMAND='shell'

(continues on next page)

2.6. Logging 9

https://en.wikipedia.org/wiki/Denial-of-service_attack
https://lwn.net/Articles/652468/

Singularity Container Documentation, Release 2.5.1

(continued from previous page)

Oct 5 08:53:13 localhost Singularity: action-suid (U=1000,P=32311)> Failed to
→˓execv() /.singularity.d/actions/shell, continuing to /bin/sh: No such file or
→˓directory

Oct 5 08:53:13 localhost Singularity: action-suid (U=1000,P=32311)> What are you
→˓doing gmk, this is highly irregular!

Oct 5 08:53:13 localhost Singularity: action-suid (U=1000,P=32311)> Retval = 255

2.6.1 A peek into the SetUID program flow

We can also add the --debug argument to any command itself at runtime to see everything that Singularity is doing.
In this case we can run Singularity in debug mode and request use of the PID namespace so we can see what Singularity
is doing there:

$ singularity --debug shell --pid ubuntu

Enabling debugging

Ending argument loop

Singularity version: 2.3.9-development.gc35b753

Exec'ing: /usr/local/libexec/singularity/cli/shell.exec

Evaluating args: '--pid ubuntu'

(snipped to PID namespace implementation)

DEBUG [U=1000,P=30961] singularity_runtime_ns_pid() Using PID
→˓namespace: CLONE_NEWPID

DEBUG [U=1000,P=30961] singularity_runtime_ns_pid() Virtualizing PID
→˓namespace

DEBUG [U=1000,P=30961] singularity_registry_get() Returning NULL
→˓on 'DAEMON_START'

DEBUG [U=1000,P=30961] prepare_fork() Creating parent/
→˓child coordination pipes.

VERBOSE [U=1000,P=30961] singularity_fork() Forking child
→˓process

DEBUG [U=1000,P=30961] singularity_priv_escalate() Temporarily
→˓escalating privileges (U=1000)

DEBUG [U=0,P=30961] singularity_priv_escalate() Clearing
→˓supplementary GIDs.

DEBUG [U=0,P=30961] singularity_priv_drop() Dropping
→˓privileges to UID=1000, GID=1000 (8 supplementary GIDs)

DEBUG [U=0,P=30961] singularity_priv_drop() Restoring
→˓supplementary groups (continues on next page)

10 Chapter 2. Security

Singularity Container Documentation, Release 2.5.1

(continued from previous page)

DEBUG [U=1000,P=30961] singularity_priv_drop() Confirming we
→˓have correct UID/GID

VERBOSE [U=1000,P=30961] singularity_fork() Hello from
→˓parent process

DEBUG [U=1000,P=30961] install_generic_signal_handle() Assigning
→˓generic sigaction()s

DEBUG [U=1000,P=30961] install_generic_signal_handle() Creating generic
→˓signal pipes

DEBUG [U=1000,P=30961] install_sigchld_signal_handle() Assigning
→˓SIGCHLD sigaction()

DEBUG [U=1000,P=30961] install_sigchld_signal_handle() Creating sigchld
→˓signal pipes

DEBUG [U=1000,P=30961] singularity_fork() Dropping
→˓permissions

DEBUG [U=0,P=30961] singularity_priv_drop() Dropping
→˓privileges to UID=1000, GID=1000 (8 supplementary GIDs)

DEBUG [U=0,P=30961] singularity_priv_drop() Restoring
→˓supplementary groups

DEBUG [U=1000,P=30961] singularity_priv_drop() Confirming we
→˓have correct UID/GID

DEBUG [U=1000,P=30961] singularity_signal_go_ahead() Sending go-ahead
→˓signal: 0

DEBUG [U=1000,P=30961] wait_child() Parent process
→˓is waiting on child process

DEBUG [U=0,P=1] singularity_priv_drop() Dropping
→˓privileges to UID=1000, GID=1000 (8 supplementary GIDs)

DEBUG [U=0,P=1] singularity_priv_drop() Restoring
→˓supplementary groups

DEBUG [U=1000,P=1] singularity_priv_drop() Confirming we
→˓have correct UID/GID

VERBOSE [U=1000,P=1] singularity_fork() Hello from child
→˓process

DEBUG [U=1000,P=1] singularity_wait_for_go_ahead() Waiting for go-
→˓ahead signal

DEBUG [U=1000,P=1] singularity_wait_for_go_ahead() Received go-
→˓ahead signal: 0

VERBOSE [U=1000,P=1] singularity_registry_set() Adding value to
→˓registry: 'PIDNS_ENABLED' = '1'

2.6. Logging 11

Singularity Container Documentation, Release 2.5.1

(snipped to end)

DEBUG [U=1000,P=1] envar_set() Unsetting
→˓environment variable: SINGULARITY_APPNAME

DEBUG [U=1000,P=1] singularity_registry_get() Returning value
→˓from registry: 'COMMAND' = 'shell'

LOG [U=1000,P=1] main() USER=gmk, IMAGE=
→˓'ubuntu', COMMAND='shell'

INFO [U=1000,P=1] action_shell() Singularity:
→˓Invoking an interactive shell within container...

DEBUG [U=1000,P=1] action_shell() Exec'ing /.
→˓singularity.d/actions/shell

Singularity ubuntu:~>

Not only do I see all of the configuration options that I (probably forgot about) previously set, I can trace the entire flow
of Singularity from the first execution of an action (shell) to the final shell into the container. Each line also describes
what is the effective UID running the command, what is the PID, and what is the function emitting the debug message.

2.6.2 A peek into the “rootless” program flow

The above snippet was using the default SetUID program flow with a container image file named “ubuntu”. For
comparison, if we also use the --userns flag, and snip in the same places, you can see how the effective UID is
never escalated, but we have the same outcome using a sandbox directory (chroot) style container.

$ singularity -d shell --pid --userns ubuntu.dir/

Enabling debugging

Ending argument loop

Singularity version: 2.3.9-development.gc35b753

Exec'ing: /usr/local/libexec/singularity/cli/shell.exec

Evaluating args: '--pid --userns ubuntu.dir/'

(snipped to PID namespace implementation, same place as above)

DEBUG [U=1000,P=32081] singularity_runtime_ns_pid() Using PID
→˓namespace: CLONE_NEWPID

DEBUG [U=1000,P=32081] singularity_runtime_ns_pid() Virtualizing PID
→˓namespace

DEBUG [U=1000,P=32081] singularity_registry_get() Returning NULL
→˓on 'DAEMON_START'

DEBUG [U=1000,P=32081] prepare_fork() Creating parent/
→˓child coordination pipes.

(continues on next page)

12 Chapter 2. Security

Singularity Container Documentation, Release 2.5.1

(continued from previous page)

VERBOSE [U=1000,P=32081] singularity_fork() Forking child
→˓process

DEBUG [U=1000,P=32081] singularity_priv_escalate() Not escalating
→˓privileges, user namespace enabled

DEBUG [U=1000,P=32081] singularity_priv_drop() Not dropping
→˓privileges, user namespace enabled

VERBOSE [U=1000,P=32081] singularity_fork() Hello from
→˓parent process

DEBUG [U=1000,P=32081] install_generic_signal_handle() Assigning
→˓generic sigaction()s

DEBUG [U=1000,P=32081] install_generic_signal_handle() Creating generic
→˓signal pipes

DEBUG [U=1000,P=32081] install_sigchld_signal_handle() Assigning
→˓SIGCHLD sigaction()

DEBUG [U=1000,P=32081] install_sigchld_signal_handle() Creating sigchld
→˓signal pipes

DEBUG [U=1000,P=32081] singularity_signal_go_ahead() Sending go-ahead
→˓signal: 0

DEBUG [U=1000,P=32081] wait_child() Parent process
→˓is waiting on child process

DEBUG [U=1000,P=1] singularity_priv_drop() Not dropping
→˓privileges, user namespace enabled

VERBOSE [U=1000,P=1] singularity_fork() Hello from child
→˓process

DEBUG [U=1000,P=1] singularity_wait_for_go_ahead() Waiting for go-
→˓ahead signal

DEBUG [U=1000,P=1] singularity_wait_for_go_ahead() Received go-
→˓ahead signal: 0

VERBOSE [U=1000,P=1] singularity_registry_set() Adding value to
→˓registry: 'PIDNS_ENABLED' = '1'

(snipped to end)

DEBUG [U=1000,P=1] envar_set() Unsetting
→˓environment variable: SINGULARITY_APPNAME

DEBUG [U=1000,P=1] singularity_registry_get() Returning value
→˓from registry: 'COMMAND' = 'shell'

LOG [U=1000,P=1] main() USER=gmk, IMAGE=
→˓'ubuntu.dir', COMMAND='shell'

INFO [U=1000,P=1] action_shell() Singularity:
→˓Invoking an interactive shell within container... (continues on next page)

2.6. Logging 13

Singularity Container Documentation, Release 2.5.1

(continued from previous page)

DEBUG [U=1000,P=1] action_shell() Exec'ing /.
→˓singularity.d/actions/shell

Singularity ubuntu.dir:~> whoami

gmk

Singularity ubuntu.dir:~>

Here you can see that the output and functionality is very similar, but we never increased any privilege and none of
the *-suid program flow was utilized. We had to use a chroot style directory container (as images are not supported
with the user namespace, but you can clearly see that the effective UID never had to change to run this container.

Note: Singularity can natively create and manage chroot style containers just like images! The above image was
created using the command: singularity build ubuntu.dir docker://ubuntu:latest

2.7 Summary

Singularity supports multiple modes of operation to meet your security needs. For most HPC centers, and general
usage scenarios, the default run mode is most effective and featurefull. For the security critical implementations, the
user namespace workflow maybe a better option. It becomes a balance security and functionality (the most secure
systems do nothing).

14 Chapter 2. Security

CHAPTER 3

The Singularity Config File

When Singularity is running via the SUID pathway, the configuration must be owned by the root user otherwise
Singularity will error out. This ensures that the system administrators have direct say as to what functions the users
can utilize when running as root. If Singularity is installed as a non-root user, the SUID components are not installed,
and the configuration file can be owned by the user (but again, this will limit functionality). The Configuration file can
be found at $SYSCONFDIR/singularity/singularity.conf. The template in the repository is located at
etc/singularity.conf. It is generally self documenting but there are several things to pay special attention to:

3.1 Parameters

3.1.1 ALLOW SETUID (boolean, default=’yes’)

This parameter toggles the global ability to execute the SETUID (SUID) portion of the code if it exists. As mentioned
earlier, if the SUID features are disabled, various Singularity features will not function (e.g. mounting of the Singu-
larity image file format). You can however disable SUID support iff (if and only if) you do not need to use the default
Singularity image file format and if your kernel supports user namespaces and you choose to use user namespaces.

Note: As of the time of this writing, the user namespace is rather buggy

3.1.2 ALLOW PID NS (boolean, default=’yes’)

While the PID namespace is a neat feature, it does not have much practical usage in an HPC context so it is recom-
mended to disable this if you are running on an HPC system where a resource manager is involved as it has been
known to cause confusion on some kernels with enforcement of user limits. Even if the PID namespace is enabled by
the system administrator here, it is not implemented by default when running containers. The user will have to specify
they wish to implement un-sharing of the PID namespace as it must fork a child process.

15

Singularity Container Documentation, Release 2.5.1

3.1.3 ENABLE OVERLAY (boolean, default=’no’)

The overlay file system creates a writable substrate to create bind points if necessary. This feature is very useful when
implementing bind points within containers where the bind point may not already exist so it helps with portability of
containers. Enabling this option has been known to cause some kernels to panic as this feature maybe present within
a kernel, but has not proved to be stable as of the time of this writing (e.g. the Red Hat 7.2 kernel).

3.1.4 CONFIG PASSWD, GROUP, RESOLV_CONF (boolean, default=’yes’)

All of these options essentially do the same thing for different files within the container. This feature updates the
described file (/etc/passwd, /etc/group , and /etc/resolv.conf respectively) to be updated dynamically
as the container is executed. It uses binds and modifies temporary files such that the original files are not manipulated.

3.1.5 MOUNT PROC,SYS,DEV,HOME,TMP (boolean, default=’yes’)

These configuration options control the mounting of these file systems within the container and of course can be
overridden by the system administrator (e.g. the system admin decides not to include the /dev tree inside the container).
In most useful cases, these are all best to leave enabled.

3.1.6 MOUNT HOSTFS (boolean, default=’no’)

This feature will parse the host’s mounted file systems and attempt to replicate all mount points within the container.
This maybe a desirable feature for the lazy, but it is generally better to statically define what bind points you wish to
encapsulate within the container by hand (using the below “bind path” feature).

3.1.7 BIND PATH (string)

With this configuration directive, you can specify any number of bind points that you want to extend from the host
system into the container. Bind points on the host file system must be either real files or directories (no special files
supported at this time). If the overlayFS is not supported on your host, or if enable overlay = no in this
configuration file, a bind point must exist for the file or directory within the container. The syntax for this consists of
a bind path source and an optional bind path destination separated by a colon. If no bind path destination is specified,
the bind path source is used also as the destination.

3.1.8 USER BIND CONTROL (boolean, default=’yes’)

In addition to the system bind points as specified within this configuration file, you may also allow users to define
their own bind points inside the container. This feature is used via multiple command line arguments (e.g. --bind,
--scratch , and --home) so disabling user bind control will also disable those command line options. Singularity
will automatically disable this feature if the host does not support the prctl option PR_SET_NO_NEW_PRIVS. In
addition, enable overlay must be set to yes and the host system must support overlayFS (generally kernel
versions 3.18 and later) for users to bind host directories to bind points that do not already exist in the container.

3.1.9 AUTOFS BUG PATH (string)

With some versions of autofs, Singularity will fail to run with a “Too many levels of symbolic links” error. This error
happens by way of a user requested bind (done with -B/–bind) or one specified via the configuration file. To handle
this, you will want to specify those paths using this directive. For example:

16 Chapter 3. The Singularity Config File

Singularity Container Documentation, Release 2.5.1

autofs bug path = /share/PI

3.2 Logging

In order to facilitate monitoring and auditing, Singularity will syslog() every action and error that takes place to the
LOCAL0 syslog facility. You can define what to do with those logs in your syslog configuration.

3.3 Loop Devices

Singularity images have ext3 file systems embedded within them, and thus to mount them, we need to convert the
raw file system image (with variable offset) to a block device. To do this, Singularity utilizes the /dev/loop*
block devices on the host system and manages the devices programmatically within Singularity itself. Singularity also
uses the LO_FLAGS_AUTOCLEAR loop device ioctl() flag which tells the kernel to automatically free the loop
device when there are no more open file descriptors to the device itself. Earlier versions of Singularity managed the
loop devices via a background watchdog process, but since version 2.2 we leverage the LO_FLAGS_AUTOCLEAR
functionality and we forego the watchdog process. Unfortunately, this means that some older Linux distributions
are no longer supported (e.g. RHEL <= 5). Given that loop devices are consumable (there are a limited number of
them on a system), Singularity attempts to be smart in how loop devices are allocated. For example, if a given user
executes a specific container it will bind that image to the next available loop device automatically. If that same user
executes another command on the same container, it will use the loop device that has already been allocated instead
of binding to another loop device. Most Linux distributions only support 8 loop devices by default, so if you find that
you have a lot of different users running Singularity containers, you may need to increase the number of loop devices
that your system supports by doing the following: Edit or create the file /etc/modprobe.d/loop.conf and add
the following line:

options loop max_loop=128

After making this change, you should be able to reboot your system or unload/reload the loop device as root using the
following commands:

modprobe -r loop

modprobe loop

3.2. Logging 17

Singularity Container Documentation, Release 2.5.1

18 Chapter 3. The Singularity Config File

CHAPTER 4

Container Checks

New to Singularity 2.4 is the ability to, on demand, run container “checks,” which can be anything from a filter for
sensitive information, to an analysis of content on the filesystem. Checks are installed with Singularity, managed by
the administrator, and available to the user.

4.1 What is a check?

Broadly, a check is a script that is run over a mounted filesystem, primary with the purpose of checking for some
security issue. This process is tightly controlled, meaning that the script names in the checks folder are hard coded
into the script check.sh. The flow of checks is the following:

• the user calls singularity check container.img to invoke check.exec

• specification of ‘‘–low‘‘(3), ‘‘–med‘‘(2), or ‘‘–high‘‘(1) sets the level to perform. The level is a filter, meaning
that a level of 3 will include 3,2,1, and a level of 1 (high) will only call checks of high priority.

• specification of -t/--tag will allow the user (or execution script) to specify a kind of check. This is primarily
to allow for extending the checks to do other types of things. For example, for this initial batch, these are all
considered default checks. The check.help displays examples of how the user specifies a tag:

Perform all default checks, these are the same

$ singularity check ubuntu.img

$ singularity check --tag default ubuntu.img

Perform checks with tag "clean"

$ singularity check --tag clean ubuntu.img

19

https://singularity-userdoc.readthedocs.io/en/latest/container_checks.html
https://github.com/singularityware/singularity/tree/development/libexec/helpers/checks
https://github.com/singularityware/singularity/blob/development/libexec/helpers/check.sh
https://github.com/singularityware/singularity/blob/development/libexec/cli/check.exec
https://github.com/singularityware/singularity/blob/development/libexec/cli/check.help

Singularity Container Documentation, Release 2.5.1

4.1.1 Adding a Check

A check should be a bash (or other) script that will perform some action. The following is required: Relative to SIN-
GULARITY_ROOTFS The script must perform check actions relative to SINGULARITY_ROOTFS. For example,
in python you might change directory to this location:

import os

base = os.environ["SINGULARITY_ROOTFS"]

os.chdir(base)

or do the same in bash:

cd $SINGULARITY_ROOTFS

ls $SINGULARITY_ROOTFS/var

Since we are doing a mount, all checks must be static relative to this base, otherwise you are likely checking the host
system.

Verbose The script should indicate any warning/message to the user if the check is found to have failed. If pass, the
check’s name and status will be printed, with any relevant information. For more thorough checking, you might want
to give more verbose output.

Return Code The script return code of “success” is defined in check.sh, and other return codes are considered not
success. When a non success return code is found, the rest of the checks continue running, and no action is taken. We
might want to give some admin an ability to specify a check, a level, and prevent continuation of the build/bootstrap
given a fail. Check.sh The script level, path, and tags should be added to check.sh in the following

format:

##

CHECK SCRIPTS

##

[SUCCESS] [LEVEL] [SCRIPT]
→˓ [TAGS]

execute_check 0 HIGH "bash $SINGULARITY_libexecdir/singularity/helpers/checks/
→˓1-hello-world.sh" security

execute_check 0 LOW "python $SINGULARITY_libexecdir/singularity/helpers/
→˓checks/2-cache-content.py" clean

execute_check 0 HIGH "python $SINGULARITY_libexecdir/singularity/helpers/
→˓checks/3-cve.py" security

The function execute_check will compare the level ([LEVEL]) with the user specified (or default)
SINGULARITY_CHECKLEVEL and execute the check only given it is under the specified threshold, and (not yet
implemented) has the relevant tag. The success code is also set here with [SUCCESS]. Currently, we aren’t doing
anything with [TAGS] and thus perform all checks.

20 Chapter 4. Container Checks

https://github.com/singularityware/singularity/blob/development/libexec/helpers/check.sh
https://github.com/singularityware/singularity/blob/development/libexec/helpers/check.sh

Singularity Container Documentation, Release 2.5.1

4.2 How to tell users?

If you add a custom check that you want for your users to use, you should tell them about it. Better yet, tell us about
it so it can be integrated into the Singularity software for others to use.

4.2. How to tell users? 21

https://github.com/singularityware/singularity/issues

Singularity Container Documentation, Release 2.5.1

22 Chapter 4. Container Checks

CHAPTER 5

Troubleshooting

This section will help you debug (from the system administrator’s perspective) Singularity.

5.1 Not installed correctly, or installed to a non-compatible location

Singularity must be installed by root into a location that allows for SUID programs to be executed (as described above
in the installation section of this manual). If you fail to do that, you may have user’s reporting one of the following
error conditions:

ERROR : Singularity must be executed in privileged mode to use images

ABORT : Retval = 255

ERROR : User namespace not supported, and program not running privileged.

ABORT : Retval = 255

ABORT : This program must be SUID root

ABORT : Retval = 255

If one of these errors is reported, it is best to check the installation of Singularity and ensure that it was properly
installed by the root user onto a local file system.

23

Singularity Container Documentation, Release 2.5.1

24 Chapter 5. Troubleshooting

CHAPTER 6

Installation Environments

6.1 Singularity on HPC

One of the architecturally defined features in Singularity is that it can execute containers like they are native programs
or scripts on a host computer. As a result, integration with schedulers is simple and runs exactly as you would expect.
All standard input, output, error, pipes, IPC, and other communication pathways that locally running programs employ
are synchronized with the applications running locally within the container. Additionally, because Singularity is not
emulating a full hardware level virtualization paradigm, there is no need to separate out any sandboxed networks or
file systems because there is no concept of user-escalation within a container. Users can run Singularity containers just
as they run any other program on the HPC resource.

6.1.1 Workflows

We are in the process of developing Singularity Hub, which will allow for generation of workflows using Singularity
containers in an online interface, and easy deployment on standard research clusters (e.g., SLURM, SGE). Currently,
the Singularity core software is installed on the following research clusters, meaning you can run Singularity containers
as part of your jobs:

• The Sherlock cluster at Stanford University

• SDSC Comet and Gordon (XSEDE)

• MASSIVE M1 M2 and M3 (Monash University and Australian National Merit Allocation Scheme)

6.1.1.1 Integration with MPI

Another result of the Singularity architecture is the ability to properly integrate with the Message Passing Interface
(MPI). Work has already been done for out of the box compatibility with Open MPI (both in Open MPI v2.1.x as well
as part of Singularity). The Open MPI/Singularity workflow works as follows:

1. mpirun is called by the resource manager or the user directly from a shell

2. Open MPI then calls the process management daemon (ORTED)

25

http://sherlock.stanford.edu/
https://srcc.stanford.edu/
https://www.xsede.org/news/-/news/item/7624
http://docs.massive.org.au/index.html

Singularity Container Documentation, Release 2.5.1

3. The ORTED process launches the Singularity container requested by the mpirun command

4. Singularity builds the container and namespace environment

5. Singularity then launches the MPI application within the container

6. The MPI application launches and loads the Open MPI libraries

7. The Open MPI libraries connect back to the ORTED process via the Process Management Interface (PMI)

8. At this point the processes within the container run as they would normally directly on the host.

This entire process happens behind the scenes, and from the user’s perspective running via MPI is as simple as just
calling mpirun on the host as they would normally. Below are example snippets of building and installing OpenMPI
into a container and then running an example MPI program through Singularity.

6.1.1.2 Tutorials

Using Host libraries: GPU drivers and OpenMPI BTLs

6.1.1.3 MPI Development Example

What are supported Open MPI Version(s)? To achieve proper container’ized Open MPI support, you should use
Open MPI version 2.1. There are however three caveats:

1. Open MPI 1.10.x may work but we expect you will need exactly matching version of PMI and Open MPI on
both host and container (the 2.1 series should relax this requirement)

2. Open MPI 2.1.0 has a bug affecting compilation of libraries for some interfaces (particularly Mellanox interfaces
using libmxm are known to fail). If your in this situation you should use the master branch of Open MPI rather
than the release.

3. Using Open MPI 2.1 does not magically allow your container to connect to networking fabric libraries in the
host. If your cluster has, for example, an infiniband network you still need to install OFED libraries into the
container. Alternatively you could bind mount both Open MPI and networking libraries into the container, but
this could run afoul of glib compatibility issues (its generally OK if the container glibc is more recent than the
host, but not the other way around)

6.1.1.4 Code Example using Open MPI 2.1.0 Stable

$ # Include the appropriate development tools into the container (notice we are
→˓calling

$ # singularity as root and the container is writable)

$ sudo singularity exec -w /tmp/Centos-7.img yum groupinstall "Development Tools"

$

$ # Obtain the development version of Open MPI

$ wget https://www.open-mpi.org/software/ompi/v2.1/downloads/openmpi-2.1.0.tar.bz2

$ tar jtf openmpi-2.1.0.tar.bz2

$ cd openmpi-2.1.0

(continues on next page)

26 Chapter 6. Installation Environments

Singularity Container Documentation, Release 2.5.1

(continued from previous page)

$

$ singularity exec /tmp/Centos-7.img ./configure --prefix=/usr/local

$ singularity exec /tmp/Centos-7.img make

$

$ # Install OpenMPI into the container (notice now running as root and container is
→˓writable)

$ sudo singularity exec -w -B /home /tmp/Centos-7.img make install

$

$ # Build the OpenMPI ring example and place the binary in this directory

$ singularity exec /tmp/Centos-7.img mpicc examples/ring_c.c -o ring

$

$ # Install the MPI binary into the container at /usr/bin/ring

$ sudo singularity copy /tmp/Centos-7.img ./ring /usr/bin/

$

$ # Run the MPI program within the container by calling the MPIRUN on the host

$ mpirun -np 20 singularity exec /tmp/Centos-7.img /usr/bin/ring

6.1.1.5 Code Example using Open MPI git master

The previous example (using the Open MPI 2.1.0 stable release) should work fine on most hardware but if you have
an issue, try running the example below (using the Open MPI Master branch):

$ # Include the appropriate development tools into the container (notice we are
→˓calling

$ # singularity as root and the container is writable)

$ sudo singularity exec -w /tmp/Centos-7.img yum groupinstall "Development Tools"

$

$ # Clone the OpenMPI GitHub master branch in current directory (on host)

$ git clone https://github.com/open-mpi/ompi.git

$ cd ompi

$

$ # Build OpenMPI in the working directory, using the tool chain within the container

(continues on next page)

6.1. Singularity on HPC 27

Singularity Container Documentation, Release 2.5.1

(continued from previous page)

$ singularity exec /tmp/Centos-7.img ./autogen.pl

$ singularity exec /tmp/Centos-7.img ./configure --prefix=/usr/local

$ singularity exec /tmp/Centos-7.img make

$

$ # Install OpenMPI into the container (notice now running as root and container is
→˓writable)

$ sudo singularity exec -w -B /home /tmp/Centos-7.img make install

$

$ # Build the OpenMPI ring example and place the binary in this directory

$ singularity exec /tmp/Centos-7.img mpicc examples/ring_c.c -o ring

$

$ # Install the MPI binary into the container at /usr/bin/ring

$ sudo singularity copy /tmp/Centos-7.img ./ring /usr/bin/

$

$ # Run the MPI program within the container by calling the MPIRUN on the host

$ mpirun -np 20 singularity exec /tmp/Centos-7.img /usr/bin/ring

Process 0 sending 10 to 1, tag 201 (20 processes in ring)

Process 0 sent to 1

Process 0 decremented value: 9

Process 0 decremented value: 8

Process 0 decremented value: 7

Process 0 decremented value: 6

Process 0 decremented value: 5

Process 0 decremented value: 4

Process 0 decremented value: 3

Process 0 decremented value: 2

Process 0 decremented value: 1

Process 0 decremented value: 0

(continues on next page)

28 Chapter 6. Installation Environments

Singularity Container Documentation, Release 2.5.1

(continued from previous page)

Process 0 exiting

Process 1 exiting

Process 2 exiting

Process 3 exiting

Process 4 exiting

Process 5 exiting

Process 6 exiting

Process 7 exiting

Process 8 exiting

Process 9 exiting

Process 10 exiting

Process 11 exiting

Process 12 exiting

Process 13 exiting

Process 14 exiting

Process 15 exiting

Process 16 exiting

Process 17 exiting

Process 18 exiting

Process 19 exiting

6.2 Image Environment

6.2.1 Directory access

By default Singularity tries to create a seamless user experience between the host and the container. To do this,
Singularity makes various locations accessible within the container automatically. For example, the user’s home
directory is always bound into the container as is /tmp and /var/tmp. Additionally your current working directory
(cwd/pwd) is also bound into the container iff it is not an operating system directory or already accessible via another
mount. For almost all cases, this will work flawlessly as follows:

$ pwd

/home/gmk/demo

(continues on next page)

6.2. Image Environment 29

Singularity Container Documentation, Release 2.5.1

(continued from previous page)

$ singularity shell container.img

Singularity/container.img> pwd

/home/gmk/demo

Singularity/container.img> ls -l debian.def

-rw-rw-r--. 1 gmk gmk 125 May 28 10:35 debian.def

Singularity/container.img> exit

$

For directory binds to function properly, there must be an existing target endpoint within the container (just like a mount
point). This means that if your home directory exists in a non-standard base directory like “/foobar/username” then
the base directory “/foobar” must already exist within the container. Singularity will not create these base directories!
You must enter the container with the option --writable being set, and create the directory manually.

6.2.1.1 Current Working Directory

Singularity will try to replicate your current working directory within the container. Sometimes this is straight forward
and possible, other times it is not (e.g. if the base dir of your current working directory does not exist). In that case,
Singularity will retain the file descriptor to your current directory and change you back to it. If you do a ‘pwd’ within
the container, you may see some weird things. For example:

$ pwd

/foobar

$ ls -l

total 0

-rw-r--r--. 1 root root 0 Jun 1 11:32 mooooo

$ singularity shell ~/demo/container.img

WARNING: CWD bind directory not present: /foobar

Singularity/container.img> pwd

(unreachable)/foobar

Singularity/container.img> ls -l

total 0

-rw-r--r--. 1 root root 0 Jun 1 18:32 mooooo

Singularity/container.img> exit

$

But notice how even though the directory location is not resolvable, the directory contents are available.

30 Chapter 6. Installation Environments

Singularity Container Documentation, Release 2.5.1

6.2.2 Standard IO and pipes

Singularity automatically sends and receives all standard IO from the host to the applications within the container to
facilitate expected behavior from the interaction between the host and the container. For example:

$ cat debian.def | singularity exec container.img grep 'MirrorURL'

MirrorURL "http://ftp.us.debian.org/debian/"

$

Making changes to the container (writable)

By default, containers are accessed as read only. This is both to enable parallel
→˓container execution (e.g. MPI). To enter a container using exec, run, or shell you
→˓must pass the --writable flag in order to open the image as read/writable.

6.2.3 Containing the container

By providing the argument --contain to exec, run or shell you will find that shared directories are no longer
shared. For example, the user’s home directory is writable, but it is non-persistent between non-overlapping runs.

6.3 License

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

(3) Neither the name of the University of California, Lawrence Berkeley

National Laboratory, U.S. Dept. of Energy nor the names of its contributors

may be used to endorse or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

(continues on next page)

6.3. License 31

Singularity Container Documentation, Release 2.5.1

(continued from previous page)

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or

upgrades to the features, functionality or performance of the source code

("Enhancements") to anyone; however, if you choose to make your Enhancements

available either publicly, or directly to Lawrence Berkeley National

Laboratory, without imposing a separate written license agreement for such

Enhancements, then you hereby grant the following license: a non-exclusive,

royalty-free perpetual license to install, use, modify, prepare derivative

works, incorporate into other computer software, distribute, and sublicense

such enhancements or derivative works thereof, in binary and source code form.

If you have questions about your rights to use or distribute this software,

please contact Berkeley Lab's Innovation & Partnerships Office at

IPO@lbl.gov.

NOTICE. This Software was developed under funding from the U.S. Department of

Energy and the U.S. Government consequently retains certain rights. As such,

the U.S. Government has been granted for itself and others acting on its

behalf a paid-up, nonexclusive, irrevocable, worldwide license in the Software

to reproduce, distribute copies to the public, prepare derivative works, and

perform publicly and display publicly, and to permit other to do so.

32 Chapter 6. Installation Environments

Singularity Container Documentation, Release 2.5.1

6.3.1 In layman terms. . .

In addition to the (already widely used and very free open source) standard BSD 3 clause license, there is also wording
specific to contributors which ensures that we have permission to release, distribute and include a particular contribu-
tion, enhancement, or fix as part of Singularity proper. For example any contributions submitted will have the standard
BSD 3 clause terms (unless specifically and otherwise stated) and that the contribution is comprised of original new
code that the contributor has authority to contribute.

6.3. License 33

Singularity Container Documentation, Release 2.5.1

34 Chapter 6. Installation Environments

CHAPTER 7

Appendix

7.1 Using Host libraries: GPU drivers and OpenMPI BTLs

Note: Much of the GPU portion of this tutorial is deprecated by the --nv option that automatically binds host
system driver libraries into your container at runtime. See the exec command for an example.

Singularity does a fantastic job of isolating you from the host so you don’t have to muck about with
LD_LIBRARY_PATH, you just get exactly the library versions you want. However, in some situations you need
to use library versions that match host exactly. Two common ones are NVIDIA gpu driver user-space libraries, and
OpenMPI transport drivers for high performance networking. There are many ways to solve these problems. Some
people build a container and copy the version of the libs (installed on the host) into the container.

7.1.1 What We will learn today

This document describes how to use a bind mount, symlinks and ldconfig so that when the host libraries are updated
the container does not need to be rebuilt.

Note this tutorial is tested with Singularity commit 945c6ee343a1e6101e22396a90dfdb5944f442b6, which is part of
the (current) development branch, and thus it should work with version 2.3 when that is released. The version of
OpenMPI used is 2.1.0 (versions above 2.1 should work).

7.1.2 Environment

In our environment we run CentOS 7 hosts with:

1. slurm located on /opt/slurm-<version> and the slurm user slurm

2. Mellanox network cards with drivers installed to /opt/mellanox (Specifically we run a RoCEv1 network
for Lustre and MPI communications)

3. NVIDIA GPUs with drivers installed to /lib64

35

https://github.com/singularityware/singularity/commit/945c6ee343a1e6101e22396a90dfdb5944f442b6

Singularity Container Documentation, Release 2.5.1

4. OpenMPI (by default) for MPI processes

7.1.3 Creating your image

Since we are building an ubuntu image, it may be easier to create an ubuntu VM to create the image. Alternatively
you can follow the recipe here.

Use the following def file to create the image.

Bootstrap: debootstrap

MirrorURL: http://us.archive.ubuntu.com/ubuntu/

OSVersion: xenial

Include: apt

%post

apt install -y software-properties-common

apt-add-repository -y universe

apt update

apt install -y wget

mkdir /usr/local/openmpi || echo "Directory exists"

mkdir /opt/mellanox || echo "Directory exists"

mkdir /all_hostlibs || echo "Directory exists"

mkdir /desired_hostlibs || echo "Directory exists"

mkdir /etc/libibverbs.d || echo "Directory exists"

echo "driver mlx4" > /etc/libibverbs.d/mlx4.driver

echo "driver mlx5" > /etc/libibverbs.d/mlx5.driver

adduser slurm || echo "User exists"

wget https://gist.githubusercontent.com/l1ll1/89b3f067d5b790ace6e6767be5ea2851/raw/
→˓422c8b5446c6479285cd29d1bf5be60f1b359b90/desired_hostlibs.txt -O /tmp/desired_
→˓hostlibs.txt

cat /tmp/desired_hostlibs.txt | xargs -I{} ln -s /all_hostlibs/{} /desired_hostlibs/{}

rm /tmp/desired_hostlibs.txt

The mysterious wget line gets a list of all the libraries that the CentOS host has in /lib64 that we think its safe to
use in the container. Specifically these are things like nvidia drivers.

36 Chapter 7. Appendix

https://singularity-admindoc.readthedocs.io/en/latest/appendix.html#building-an-ubuntu-image-on-a-rhel-host

Singularity Container Documentation, Release 2.5.1

libvdpau_nvidia.so

libnvidia-opencl.so.1

libnvidia-ml.so.1

libnvidia-ml.so

libnvidia-ifr.so.1

libnvidia-ifr.so

libnvidia-fbc.so.1

libnvidia-fbc.so

libnvidia-encode.so.1

libnvidia-encode.so

libnvidia-cfg.so.1

libnvidia-cfg.so

libicudata.so.50

libicudata.so

libcuda.so.1

libcuda.so

libGLX_nvidia.so.0

libGLESv2_nvidia.so.2

libGLESv1_CM_nvidia.so.1

libEGL_nvidia.so.0

libibcm.a

libibcm.so

libibcm.so.1

libibcm.so.1.0.0

libibdiag-2.1.1.so

libibdiag.a

libibdiag.la

libibdiag.so

libibdiagnet_plugins_ifc-2.1.1.so

(continues on next page)

7.1. Using Host libraries: GPU drivers and OpenMPI BTLs 37

Singularity Container Documentation, Release 2.5.1

(continued from previous page)

libibdiagnet_plugins_ifc.a

libibdiagnet_plugins_ifc.la

libibdiagnet_plugins_ifc.so

libibdmcom-2.1.1.so

libibdmcom.a

libibdmcom.la

libibdmcom.so

libiberty.a

libibis-2.1.1.so.3

libibis-2.1.1.so.3.0.3

libibis.a

libibis.la

libibis.so

libibmad.a

libibmad.so

libibmad.so.5

libibmad.so.5.5.0

libibnetdisc.a

libibnetdisc.so

libibnetdisc.so.5

libibnetdisc.so.5.3.0

libibsysapi-2.1.1.so

libibsysapi.a

libibsysapi.la

libibsysapi.so

libibumad.a

libibumad.so

libibumad.so.3

(continues on next page)

38 Chapter 7. Appendix

Singularity Container Documentation, Release 2.5.1

(continued from previous page)

libibumad.so.3.1.0

libibus-1.0.so.5

libibus-1.0.so.5.0.503

libibus-qt.so.1

libibus-qt.so.1.3.0

libibverbs.a

libibverbs.so

libibverbs.so.1

libibverbs.so.1.0.0

liblustreapi.so

libmlx4-rdmav2.so

libmlx4.a

libmlx5-rdmav2.so

libmlx5.a

libnl.so.1

libnuma.so.1

libosmcomp.a

libosmcomp.so

libosmcomp.so.3

libosmcomp.so.3.0.6

libosmvendor.a

libosmvendor.so

libosmvendor.so.3

libosmvendor.so.3.0.8

libpciaccess.so.0

librdmacm.so.1

libwrap.so.0

Also note:

1. in hostlibs.def we create a slurm user. Obviously if your SlurmUser is different you should change this
name.

7.1. Using Host libraries: GPU drivers and OpenMPI BTLs 39

Singularity Container Documentation, Release 2.5.1

2. We make directories for /opt and /usr/local/openmpi. We’re going to bindmount these from the host
so we get all the bits of OpenMPI and Mellanox and Slurm that we need.

7.1.4 Executing your image

On our system we do:

SINGULARITYENV_LD_LIBRARY_PATH=/usr/local/openmpi/2.1.0-gcc4/lib:/opt/munge-0.5.11/
→˓lib:/opt/slurm-16.05.4/lib:/opt/slurm-16.05.4/lib/slurm:/desired_hostlibs:/opt/
→˓mellanox/mxm/lib/

export SINGULARITYENV_LD_LIBRARY_PATH

then

srun singularity exec -B /usr/local/openmpi:/usr/local/openmpi -B /opt:/opt -B /
→˓lib64:/all_hostlibs hostlibs.img <path to binary>

7.2 Building an Ubuntu image on a RHEL host

This recipe describes how to build an Ubuntu image using Singularity on a RHEL compatible host.

Note: This tutorial is intended for Singularity release 2.1.2, and reflects standards for that version.

In order to do this, you will need to first install the ‘debootstrap’ package onto your host. Then, you will create
a definition file that will describe how to build your Ubuntu image. Finally, you will build the image using the
Singularity commands ‘create’ and bootstrap.

7.2.1 Preparation

This recipe assumes that you have already installed Singularity on your computer. If you have not, follow the instruc-
tions here to install. After Singularity is installed on your computer, you will need to install the ‘debootstrap’ package.
The ‘debootstrap’ package is a tool that will allow you to create Debian-based distributions such as Ubuntu. In order
to install ‘debootstrap’, you will also need to install ‘epel-release’. You will need to download the appropriate RPM
from the EPEL website. Make sure you download the correct version of the RPM for your release.

First, wget the appropriate RPM from the EPEL website (https://dl.fedoraproject.org/
→˓pub/epel/)

In this example we used RHEL 7, so we downloaded epel-release-latest-7.noarch.rpm

$ wget https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

Then, install your epel-release RPM

$ sudo yum install epel-release-latest-7.noarch.rpm

Finally, install debootstrap

(continues on next page)

40 Chapter 7. Appendix

Singularity Container Documentation, Release 2.5.1

(continued from previous page)

$ sudo yum install debootstrap

7.2.1.1 Creating the Definition File

You will need to create a definition file to describe how to build your Ubuntu image. Definition files are plain text files
that contain Singularity keywords. By using certain Singularity keywords, you can specify how you want your image
to be built. The extension ‘.def’ is recommended for user clarity. Below is a definition file for a minimal Ubuntu
image:

DistType "debian"

MirrorURL "http://us.archive.ubuntu.com/ubuntu/"

OSVersion "trusty"

Setup

Bootstrap

Cleanup

The following keywords were used in this definition file:

• DistType: DistType specifies the distribution type of your intended operating system. Because we are trying to
build an Ubuntu image, the type “debian” was chosen.

• MirrorURL: The MirrorURL specifies the download link for your intended operating system. The Ubuntu
archive website is a great mirror link to use if you are building an Ubuntu image.

• OSVersion: The OSVersion is used to specify which release of a Debian-based distribution you are using. In
this example we chose “trusty” to specify that we wanted to build an Ubuntu 14.04 (Trusty Tahr) image.

• Setup: Setup creates some of the base files and components for an OS and is highly recommended to be included
in your definition file.

• Bootstrap: Bootstrap will call apt-get to install the appropriate package to build your OS.

• Cleanup: Cleanup will remove temporary files from the installation.

While this definition file is enough to create a working Ubuntu image, you may want increased customization of your
image. There are several Singularity keywords that allow the user to do things such as install packages or files. Some
of these keywords are used in the example below:

DistType "debian"

MirrorURL "http://us.archive.ubuntu.com/ubuntu/"

OSVersion "trusty"

Setup

(continues on next page)

7.2. Building an Ubuntu image on a RHEL host 41

Singularity Container Documentation, Release 2.5.1

(continued from previous page)

Bootstrap

InstallPkgs python

InstallPkgs wget

RunCmd wget https://bootstrap.pypa.io/get-pip.py

RunCmd python get-pip.py

RunCmd ln -s /usr/local/bin/pip /usr/bin/pip

RunCmd pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/
→˓tensorflow-0.9.0-cp27-none-linux_x86_64.whl

Cleanup

Before going over exactly what image this definition file specifies, the remaining Singularity keywords should be
introduced.

• InstallPkgs: InstallPkgs allows you to install any packages that you want on your newly created image.

• InstallFile: InstallFile allows you to install files from your computer to the image.

• RunCmd: RunCmd allows you to run a command from within the new image during the installation.

• RunScript: RunScript adds a new line to the runscript invoked by the Singularity subcommand ‘run’. See the
run page for more information.

Now that you are familiar with all of the Singularity keywords, we can take a closer look at the example above. As with
the previous example, an Ubuntu image is created with the specified DistType, MirrorURL, and OSVersion. However,
after Setup and Bootstrap, we used the InstallPkgs keyword to install ‘python’ and ‘wget’. Then we used the RunCmd
keyword to first download the pip installation wheel, and then to install ‘pip’. Subsequently, we also used RunCmd
to pip install TensorFlow. Thus, we have created a definition file that will install ‘python’, ‘pip’, and ‘Tensorflow’
onto the new image.

7.2.1.2 Creating your image

Once you have created your definition file, you will be ready to actually create your image. You will do this by utilizing
the Singularity ‘create’ and ‘bootstrap’ subcommands. The process for doing this can be seen below:

Note: We have saved our definition file as “ubuntu.def”

First we will create an empty image container called ubuntu.img

$ sudo singularity create ubuntu.img

Creating a sparse image with a maximum size of 1024MiB...

INFO : Using given image size of 1024

Formatting image (/sbin/mkfs.ext3)
(continues on next page)

42 Chapter 7. Appendix

Singularity Container Documentation, Release 2.5.1

(continued from previous page)

Done. Image can be found at: ubuntu.img

Next we will bootstrap the image with the operating system specified in our
→˓definition file

$ sudo singularity bootstrap ubuntu.img ubuntu.def

W: Cannot check Release signature; keyring file not available /usr/share/keyrings/
→˓ubuntu-archive-keyring.gpg

I: Retrieving Release

I: Retrieving Packages

I: Validating Packages

I: Resolving dependencies of required packages...

I: Resolving dependencies of base packages...

I: Found additional base dependencies: gcc-4.8-base gnupg gpgv libapt-pkg4.12
→˓libreadline6 libstdc++6 libusb-0.1-4 readline-common ubuntu-keyring

I: Checking component main on http://us.archive.ubuntu.com/ubuntu...

I: Retrieving adduser 3.113+nmu3ubuntu3

I: Validating adduser 3.113+nmu3ubuntu3

I: Retrieving apt 1.0.1ubuntu2

I: Validating apt 1.0.1ubuntu2

snip...

Downloading pip-8.1.2-py2.py3-none-any.whl (1.2MB)

100% |################################| 1.2MB 1.1MB/s

Collecting setuptools

Downloading setuptools-24.0.2-py2.py3-none-any.whl (441kB)

100% |################################| 450kB 2.7MB/s

Collecting wheel

Downloading wheel-0.29.0-py2.py3-none-any.whl (66kB)

100% |################################| 71kB 9.9MB/s

Installing collected packages: pip, setuptools, wheel

Successfully installed pip-8.1.2 setuptools-24.0.2 wheel-0.29.0

(continues on next page)

7.2. Building an Ubuntu image on a RHEL host 43

Singularity Container Documentation, Release 2.5.1

(continued from previous page)

At this point, you have successfully created an Ubuntu image with 'python', 'pip',
→˓and 'TensorFlow' on your RHEL computer.

Tips and Tricks

Here are some tips and tricks that you can use to create more efficient definition
→˓files:

7.2.1.3 Use here documents with RunCmd

Using here documents with conjunction with RunCmd can be a great way to decrease the number of RunCmd key-
words that you need to include in your definition file. For example, we can substitute a here document into the previous
example:

DistType "debian"

MirrorURL "http://us.archive.ubuntu.com/ubuntu/"

OSVersion "trusty"

Setup

Bootstrap

InstallPkgs python

InstallPkgs wget

RunCmd /bin/sh <<EOF

wget https://bootstrap.pypa.io/get-pip.py

python get-pip.py

ln -s /usr/local/bin/pip /usr/bin/pip

pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-
→˓0.9.0-cp27-none-linux_x86_64.whl

EOF

Cleanup

As you can see, using a here document allowed us to decrease the number of RunCmd keywords from 4 to 1. This can
be useful when your definition file has a lot of RunCmd keywords and can also ease copying and pasting command
line recipes from other sources.

7.2.1.4 Use InstallPkgs with multiple packages

The InstallPkgs keyword is able to install multiple packages with a single keyword. Thus, another way you can
increase the efficiency of your code is to use a single InstallPkgs keyword to install multiple packages, as seen below:

44 Chapter 7. Appendix

Singularity Container Documentation, Release 2.5.1

DistType "debian"

MirrorURL "http://us.archive.ubuntu.com/ubuntu/"

OSVersion "trusty"

Setup

Bootstrap

InstallPkgs python wget

RunCmd /bin/sh <<EOF

wget https://bootstrap.pypa.io/get-pip.py

python get-pip.py

ln -s /usr/local/bin/pip /usr/bin/pip

pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-
→˓0.9.0-cp27-none-linux_x86_64.whl

EOF

Cleanup

Using a single InstallPkgs keyword to install both ‘python’ and ‘wget’ allowed to decrease the number of InstallPkgs
keywords we had to use in our definition file. This slimmed down our definition file and helped reduce clutter.

7.2. Building an Ubuntu image on a RHEL host 45

	Administration QuickStart
	Installation
	Downloading the source
	Source Installation
	Prefix in special places (–localstatedir)
	Building an RPM directly from the source

	Security
	Container security paradigms
	Untrusted users running untrusted containers!
	Privilege escalation is necessary for containerization!
	How does Singularity do it?

	Where are the Singularity priviledged components
	Can I install Singularity as a user?
	Container permissions and usage strategy
	controlling what kind of containers are allowed
	limiting usage to specific container file owners
	limiting usage to specific paths

	Logging
	A peek into the SetUID program flow
	A peek into the “rootless” program flow

	Summary

	The Singularity Config File
	Parameters
	ALLOW SETUID (boolean, default=’yes’)
	ALLOW PID NS (boolean, default=’yes’)
	ENABLE OVERLAY (boolean, default=’no’)
	CONFIG PASSWD, GROUP, RESOLV_CONF (boolean, default=’yes’)
	MOUNT PROC,SYS,DEV,HOME,TMP (boolean, default=’yes’)
	MOUNT HOSTFS (boolean, default=’no’)
	BIND PATH (string)
	USER BIND CONTROL (boolean, default=’yes’)
	AUTOFS BUG PATH (string)

	Logging
	Loop Devices

	Container Checks
	What is a check?
	Adding a Check

	How to tell users?

	Troubleshooting
	Not installed correctly, or installed to a non-compatible location

	Installation Environments
	Singularity on HPC
	Workflows
	Integration with MPI
	Tutorials
	MPI Development Example
	Code Example using Open MPI 2.1.0 Stable
	Code Example using Open MPI git master

	Image Environment
	Directory access
	Current Working Directory

	Standard IO and pipes
	Containing the container

	License
	In layman terms…

	Appendix
	Using Host libraries: GPU drivers and OpenMPI BTLs
	What We will learn today
	Environment
	Creating your image
	Executing your image

	Building an Ubuntu image on a RHEL host
	Preparation
	Creating the Definition File
	Creating your image
	Use here documents with RunCmd
	Use InstallPkgs with multiple packages

