
simuPOP

February 08, 2019

Contents

1 Front Matter 1

2 Introduction 3
2.1 What is simuPOP? . 3
2.2 An overview of simuPOP concepts . 4
2.3 Features . 6
2.4 License, Distribution and Installation . 7
2.5 How to read this user’s guide . 8
2.6 Other help sources . 9

3 Loading and running simuPOP 11
3.1 Pythonic issues . 11
3.2 Loading simuPOP modules . 16
3.3 Online help system . 18
3.4 Debug-related functions and operators * . 19
3.5 Random number generator * . 21

4 Individuals and Populations 23
4.1 Genotypic structure . 23
4.2 Individual . 29
4.3 Population . 32

5 simuPOP Operators 51
5.1 Introduction to operators . 51
5.2 Initialization . 59
5.3 Expressions and statements . 63
5.4 Demographic changes . 67
5.5 Genotype transmitters . 78
5.6 Mutation . 83
5.7 Penetrance . 98
5.8 Quantitative trait . 103
5.9 Natural Selection . 104
5.10 Tagging operators . 117
5.11 Statistics calculation (operator Stat) . 124
5.12 Conditional operators . 145
5.13 Miscellaneous operators . 148
5.14 Hybrid and Python operators . 152

i

6 Evolving populations 157
6.1 Mating Schemes . 157
6.2 Simulator . 178
6.3 Non-random and customized mating schemes * . 183
6.4 Age structured populations with overlapping generations ** . 193
6.5 Tracing allelic lineage * . 196
6.6 Pedigrees . 198
6.7 Evolve a population following a specified pedigree structure ** . 204
6.8 Simulation of mitochondrial DNAs (mtDNAs) * . 208

7 Utility Modules 211
7.1 Module simuOpt (function simuOpt.setOptions) . 211
7.2 Module simuPOP.utils . 211
7.3 Module simuPOP.demography . 223
7.4 Module simuPOP.sampling . 240
7.5 Module simuPOP.gsl . 245

8 A real world example 247
8.1 Simulation scenario . 247
8.2 Demographic model . 247
8.3 Mutation and selection models . 249
8.4 Output statistics . 249
8.5 Initialize and evolve the population . 251
8.6 Option handling . 252

9 Front Matter 259

10 simuPOP Components 261
10.1 Individual, Population, pedigree and Simulator . 261
10.2 Virtual splitters . 276
10.3 Mating Schemes . 280
10.4 Pre-defined mating schemes . 286
10.5 Utility Classes . 289
10.6 Global functions . 291

11 Operator References 295
11.1 Base class for all operators . 295
11.2 Initialization . 296
11.3 Expression and Statements . 298
11.4 Demographic models . 300
11.5 Genotype transmitters . 303
11.6 Mutation . 307
11.7 Penetrance . 311
11.8 Quantitative Trait . 314
11.9 Natural selection . 315
11.10 Tagging operators . 318
11.11 Statistics Calculation . 321
11.12 Conditional operators . 329
11.13 The Python operator . 330
11.14 Miscellaneous operators . 331
11.15 Function form of operators . 333

12 Utility Modules 337
12.1 Module simuOpt . 337
12.2 Module simuPOP.utils . 338

ii

12.3 Module simuPOP.demography . 347
12.4 Module simuPOP.sampling . 354
12.5 Module simuPOP.gsl . 360

Python Module Index 363

iii

iv

CHAPTER 1

Front Matter

Abstract

simuPOP is a general-purpose individual-based forward-time population genetics simulation environment. Unlike
coalescent-based programs, simuPOP evolves populations forward in time, subject to arbitrary number of genetic
and environmental forces such as mutation, recombination, migration and Population/subpopulation size changes.
In contrast to competing applications that use command-line options or configuration files to direct the execution
of a limited number of predefined evolutionary scenarios, users of simuPOP’s scripting interface could make use
of many of its unique features, such as customized chromosome types, arbitrary nonrandom mating schemes, vir-
tual subpopulations, information fields and Python operators, to construct and study almost arbitrarily complex
evolutionary scenarios.

simuPOP is provided as a number of Python modules, which consist of a large number of Python objects and
functions, including population, mating schemes, operators (objects that manipulate populations) and simulators to
coordinate the evolutionary processes. It is the users’ responsibility to write a Python script to glue these pieces
together and form a simulation. At a more user-friendly level, an increasing number of functions and scripts
contributed by simuPOP users is available in the online simuPOP cookbook. They provide useful functions for
different applications (e.g. load and manipulate HapMap samples, import and export files from another application)
and allow users who are unfamiliar with simuPOP to perform a large number of simulations ranging from basic
population genetics models to generating datasets under complex evolutionary scenarios.

This user’s guide shows you how to install and use simuPOP using a large number of examples. It describes all
important concepts and features of simuPOP and demonstrates how to use them in a simuPOP script. Although
the new Python 3.x releases are incompatible with Python 2.x, examples in this book are written in a style that is
compatible with both versions of Python. For a complete and detailed description about all simuPOP functions and
classes, please refer to the simuPOP Reference Manual. All resources, including a pdf version of this guide and a
mailing list can be found at the simuPOP homepage http://simupop.sourceforge.net.

How to cite simuPOP:

Bo Peng and Marek Kimmal (2005) simuPOP: a forward-time population genetics simulation environ-
ment. bioinformatics, 21 (18): 3686-3687

1

simuPOP

Bo Peng and Christopher Amos (2008) Forward-time simulations of nonrandom mating populations
using simuPOP. bioinformatics, 24 (11) 1408-1409.

2 Chapter 1. Front Matter

CHAPTER 2

Introduction

2.1 What is simuPOP?

simuPOP is a general-purpose individual-based forward-time population genetics simulation environment based
on Python, a dynamic object-oriented programming language that has been widely used in biological studies. More
specifically,

• simuPOP is a population genetics simulator that simulates the evolution of populations. It uses a discrete
generation model although overlapping generations could be simulated using nonrandom mating schemes.

• simuPOP explicitly models populations with individuals who have their own genotype, sex, and auxiliary
information such as age. The evolution of a population is modeled by populating an offspring population from
parents in the parental population.

• Unlike coalescent-based programs, simuPOP evolves populations forward in time, subject to arbitrary number
of genetic and environmental forces such as mutation, recombination, migration and Population/subpopulation
size changes.

• simuPOP is a general-purpose simulator that is designed to simulate arbitrary evolutionary processes. In con-
trast to competing applications that use command-line options or configuration files to direct the execution of
a limited number of predefined evolutionary scenarios, users of simuPOP’s scripting interface could make use
of many of its unique features, such as customized chromosome types, arbitrary nonrandom mating schemes,
virtual subpopulations, information fields and Python operators, to construct and study almost arbitrarily com-
plex evolutionary scenarios. In addition, because simuPOP provides a large number of functions to manipulate
populations, it can be used as an data manipulatation and analysis tool.

simuPOP is provided as a number of Python modules, which consist of a large number of Python objects and functions,
including Population, mating schemes, operators (objects that manipulate populations) and simulators to coordinate
the evolutionary processes. It is the users’ responsibility to write a Python script to glue these pieces together and form
a simulation. At a more user-friendly level, an increasing number of functions and scripts contributed by simuPOP
users is available in the online simuPOP cookbook (http://simupop.sourceforge.net/cookbook). They
provide useful functions for different applications (e.g. load and manipulate HapMap samples, import and export files
from another application) and allow users who are unfamiliar with simuPOP to perform a large number of simulations
ranging from basic population genetics models to generating datasets under complex evolutionary scenarios.

3

simuPOP

2.2 An overview of simuPOP concepts

A simuPOP population consists of individuals of the same genotype structure, which includes properties such as
number of homologous sets of chromosomes (ploidy), number of chromosomes, and names and locations of markers
on each chromosome. In addition to basic information such as genotypes and sex, individuals can have arbitray
auxillary values as information fields. Individuals in a population can be divided into subpopulations that can
be further grouped into virtual subpopulations according to individual properties such as sex, affection status, or
arbitrary auxiliary information such as age. Whereas subpopulations define boundaries of individuals that restrict the
flow of individuals and their genotypes (mating happens within subpopulations), virtual subpopulations are groups of
individuals who share the same properties, with membership of individuals change easily with change of individual
properties.

Figure: A life cycle of an evolutionary process

Illustration of the discrete-generation evolutionary model used by simuPOP.

Operators are Python objects that act on a population. They can be applied to a population before or after mating
during a life cycle of an evolutionary process (Figure fig_life_cycle), or to parents and offspring during the production
of each offspring. Arbitrary numbers of operators can be applied to an evolving population.

A simuPOP mating scheme is responsible for choosing parent or parents from a parental (virtual) subpopulation
and for populating an offspring subpopulation. simuPOP provides a number of pre-defined homogeneous mating
schemes, such as random, monogamous or polygamous mating, selfing, and haplodiploid mating in hymenoptera.
More complicated nonrandom mating schemes such as mating in age- structured populations can be constructed using
heterogeneous mating schemes, which applies multiple homogeneous mating schemes to different (virtual) subpop-
ulations.

simuPOP evolves a population generation by generation, following the evolutionary cycle depicted in Figure
fig_life_cycle. Briefly speaking, a number of operators such as a KAlleleMutator are applied to a population
before a mating scheme repeatedly chooses a parent or parents to produce offspring. During-mating operators such
as Recombinator can be applied by a mating scheme to transmit parental genotype to offspring. After an offspring
population is populated, other operators can be applied, for example, to calculate and output population statistics.
The offspring population will then become the parental population of the next evolutionary cycle. Many simuPOP
operators can be applied in different stages so the type of an operator is determined by the stage at which it is applied.
Several populations, or replicates of a single population, could form a simulator and evolve together.

Example: A simple example

>>> import simuPOP as sim
>>> pop = sim.Population(size=1000, loci=2)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[1, 2, 2, 1])
...],
... matingScheme=sim.RandomMating(ops=sim.Recombinator(rates=0.01)),
... postOps=[
... sim.Stat(LD=[0, 1], step=10),
... sim.PyEval(r"'%.2f\n' % LD[0][1]", step=10),
...],
... gen=100
...)
0.25
0.23
0.20
0.20
0.18

(continues on next page)

4 Chapter 2. Introduction

simuPOP

Users/bpeng1/simuPOP/simuPOP/doc/figures/evolve.png

2.2. An overview of simuPOP concepts 5

simuPOP

(continued from previous page)

0.15
0.12
0.10
0.10
0.11
100

now exiting runScriptInteractively...

Download simpleExample.py

Some of these concepts are demonstrated in Example simple_example, where a standard diploid Wright-Fisher model
with recombination is simulated. The first line imports the standard simuPOP module. The second line creates a
diploid population with 1000 individuals, each having one chromosome with two loci. The evolve() function
evolves the population using a random mating scheme and four operators.

Operators InitSex and InitGenotype are applied at the beginning of the evolutionary process. Operator
InitSex initializes individual sex randomly and InitGenotype initializes all individuals with the same geno-
type 12/21. The populations are then evolved for 100 generations. A random mating scheme is used to generate
offspring. Instead of using the default Mendelian genotype transmitter, a Recombinator (during-mating operator)
is used to recombine parental chromosomes with the given recombination rate 0.01 during the generation of off-
spring. The other operators are applied to the offspring generation (post-mating) at every 10 generations (parameter
step). Operator Stat calculates linkage disequilibrium between the first and second loci. The results of this operator
are stored in a local variable space of the Population. The last operator PyEval outputs calculated linkage disequi-
librium values with a trailing new line. The result represents the decay of linkage disequilibrium of this population at
10 generation intervals. The return value of the evolve function, which is the number of evolved generations, is also
printed.

2.3 Features

simuPOP offers a long list of features, many of which are unique among all forward-time population genetics simula-
tion programs. The most distinguishing features include:

1. simuPOP provides three types of modules that use 1, 8 or 32/64 bits to store an allele. The binary module (1
bit) is suitable for simulating a large number of SNP markers, and the long module (32 or 64 bits depending on
platform) is suitable for simulating some population genetics models such as the infinite allele mutation model.

2. [NEW in simuPOP 1.0.7] simuPOP provides modules to store a large number of rare variants in a compressed
manner (the mutant module), and to store origin of each allele so that it is easy to track allelic lineage during
evolution.

3. The core of simuPOP is implemented in C++ which is heavily optimized for large-scale simulations. simuPOP
can be executed in multiple threads with boosted performance on modern multi-core CPUs.

4. In addition to autosomes and sex chromosomes, simuPOP supports arbitrary types of chromosomes through
customizable genotype transmitters. Random maternal transmission of mitochondrial DNAs is supported as a
special case of this feature.

5. An arbitrary number of float numbers, called information fields, can be attached to individuals of a population.
For example, information field father_idx and mother_idx can be used to track an individual’s parents,
and pack_year can be used to simulate an environmental factor associated with smoking.

6. simuPOP does not impose a limit on the number of homologous sets of chromosomes, the size of the genome
or populations. The size of your simulation is only limited by the physical memory of your computer.

6 Chapter 2. Introduction

simpleExample.py

simuPOP

7. During an evolutionary process, a population can hold more than one most- recent generation. Pedigrees can be
sampled from such multi-generation populations.

8. An operator can be native (implemented in C++) or hybrid (Python-assisted). A hybrid operator calls a user-
provided Python function to implement arbitrary genetic effects. For example, a hybrid mutator passes to-be-
mutated alleles to a function and mutates these alleles according to the returned values.

9. simuPOP provides more than 60 operators that cover all important aspects of genetic studies. These include mu-
tation (e.g. k-allele, stepwise, generalized stepwise and context-sensitive mutation models), migration (arbitrary,
can create new subpopulation), recombination and gene conversion (uniform or nonuniform), selection (single-
locus, additive, multiplicative or hybrid multi- locus models, support selection of both parents and offspring),
penetrance (single, multi-locus or hybrid), ascertainment (casecontrol, affected sibpairs, random, nuclear and
large Pedigrees), statistics calculation (including but not limited to allele, genotype, haplotype, heterozygote
number and frequency; linkage disequilibrium measures, Hardy-Weinberg test), pedigree tracing, visualization
(using R or other Python modules) and load/save in simuPOP’s native format and many external formats such
as Linkage.

10. Mating schemes can work on virtual subpopulations of a subpopulation. For example, positive assortative
mating can be implemented by mating individuals with similar properties such as ancestry and overlapping
generations could be simulated by copying individuals acorss generations. The number of offspring per mating
event can be fixed or can follow a statistical distribution.

A number of forward-time simulation programs are available. If we exclude early forward-time simulation applications
developed primarily for teaching purposes, notable forward-time simulation programs include easyPOP, FPG, Nemo
and quantiNemo, genoSIM and genomeSIMLA, FreGene, GenomePop, ForwSim, and ForSim. These programs are
designed with specific applications and specific evolutionary scenarios in mind, and excel in what they are designed
for. For some applications, these programs may be easier to use than simuPOP. For example, using a special look-
ahead algorithm, ForwSim is among the fastest programs to simulate a standard Wright-Fisher process, and should
be used if such a simulation is needed. However, these programs are not flexible enough to be applied to problems
outside of their designed application area. For example, none of these programs can be used to study the evolution of
a disease predisposing mutant, a process that is of great importance in statistical genetics and genetic epidemiology.
Compared to such programs, simuPOP has the following advantages:

• The scripting interface gives simuPOP the flexibility to create arbitrarily complex evolutionary scenarios. For
example, it is easy to use simuPOP to explicitly introduce a disease predisposing mutant to an evolving popula-
tion, trace the allele frequency of them, and restart the simulation if they got lost due to genetic drift.

• The Python interface allows users to define customized genetic effects in Python. In contrast, other programs
either do not allow customized effects or force users to modify code at a lower (e.g. C++) level.

• simuPOP is the only application that embodies the concept of virtual subpopulation that allows evolutions at a
finer scale. This is required for realistic simulations of complex evolutionary scenarios.

• simuPOP allows users to examine an evolutionary process very closely because all simuPOP objects are Python
objects that can be assessed using their member functions. For example, users can keep track of genotype at
particular loci during evolution. In contrast, other programs work more or less like a black box where only
limited types of statistics can be outputted.

2.4 License, Distribution and Installation

simuPOP is distributed under a GPL license and is hosted athttp://simupop.sourceforge.net, the world’s
largest development and download repository of Open Source code and applications. simuPOP is available on any
platform where Python is available, and is currently tested under both 32 and 64 bit versions of Windows (Windows
2000 and later), Linux (Redhat and Ubuntu), MacOS X and Sun Solaris systems. Different C++ compilers such
as Microsoft Visual C++, gcc and Intel icc are supported under different operating systems. Standard installation
packages are provided for Windows, Linux, and MacOS X systems.

2.4. License, Distribution and Installation 7

simuPOP

If a binary distribution is unavailable for a specific platform, it is usually easy to compile simuPOP from source, fol-
lowing the standard ``python setup.py install'' procedure. Please refer to the installation section
of the simupop website for instructions for specific platforms and compilers.

simuPOP is available for Python 2.4 and later, including the new Python 3.x releases. Although Python 3 is incompat-
ible with Python 2 in many ways, examples in this guide are written in a style that is compatible with both versions of
Python. Some non-classic usages include the use of a//b instead of a/b for floored division and list(range(3))
instead of range(3) for sequece [0,1,2] In particular, we use

print("Population size is %d" % size)

instead of

print "Population size is %d" % size

to output strings because the former is valid in Python 2.x (print a tuple with one element) and will generate the same
output in Python 3.x. Of course, users of simuPOP can choose to use other styles.

Thanks to the ‘glue language’ nature of Python, it is easy to inter-operate with other applications within a simuPOP
script. For example, users can call any R function from Python/simuPOP for the purposes of visualization and statis-
tical analysis, using R and a Python module RPy. Because simuPOP utility modules such as simuPOP.plotter
and simuPOP.sampling makes use of R and rpy (not rpy2) to plot figures, it is hihgly recommended that you
install R and RPy with simuPOP. In addition, although simuPOP uses the standard Tkinter GUI toolkit when a
graphical user interface is needed, it can make use of a wxPython toolkit if it is available.

2.5 How to read this user’s guide

This user’s guide describes all simuPOP features using a lot of examples. The first few chapters describes all classes
in the simuPOP core. Chapter cha_simuPOP_Operators describes almost all simuPOP operators, divided largely by
genetic models. Features listed in these two chapters are generally implemented at the C++ level and are provided
through the simuPOPmodule. Chapter cha_Utility_Modules describes features that are provided by various simuPOP
utility modules. These modules provide extensions to the simuPOP core that improves the usability and userfriend-
liness of simuPOP. The next chapter (Chapter cha_A_real_example) demonstrates how to write a script to solve a
real-world simulation problem. Because some sections describe advanced features that are only used in the construc-
tion of highly complex simulations, or implementation details that concern only advanced users, new simuPOP users
can safely skip these sections. Sections that describe advanced topics are marked by one or two asterisks (*) after
the section titles.

simuPOP is a comprehensive forward-time population genetics simulation environment with many unique features. If
you are new to simuPOP, you can go through this guide quickly and understand what simuPOP is and what features it
provides. Then, you can read Chapter cha_A_real_example and learn how to apply simuPOP in real-world problems.
After you play with simuPOP for a while and start to write simple scripts, you can study relevant sections in details.
The simuPOP reference manual will become more and more useful when the complexity of your scripts grows.

Before we dive into the details of simuPOP, it is helpful to know a few name conventions that simuPOP tries to follow.
Generally speaking,

• All class names use the CapWords convention (e.g. Population(), InitSex()) .

• All standalone functions (e.g. loadPopulation() and initSex), member functions (e.g. Population.
mergeSubPops()) and parameter names use the mixedCases style.

• Constants are written in all capital characters with underscores separating words (e.g. CHROMOSOME_X,
UNIFORM_DISTRIBUTION). Their names instead of their actual values should be used because those val-
ues can change without notice.

• simuPOP uses the abbreviated form of the following words in function and parameter names:

8 Chapter 2. Introduction

simuPOP

pop (population), pops (populations), pos (position), info (information), migr (migration),
subPop (subpopulation and virtual subpopulation), subPops (subpopulations and virtual subpop-
ulations), rep (replicates), gen (generation), ops (operators), expr (expression), stmts (state-
ments).

• simuPOP uses both singular and plural forms of parameters, according to the following rules:

• If a parameter only accept a single input, singular names such as field, locus, value, and name are
used.

• If a parameter accepts a list of values, plural names such as fields, loci, values and names are
used. Such parameters usually accept single inputs. For example, loci=1 can be used as a short-
cut for loci=[1] and infoFields='x' can be used as a shortcut for infoFields=['x'].

The same rules also hold for function names. For example, Population.addInfoFields() accept a list
of information fields but pop.addInfoFields('field') is also acceptable.

2.6 Other help sources

If you are new to Python, it is recommended that you borrow a Python book, or at least go through the following online
Python tutorials:

1. The Python tutorial (http://docs.python.org/tut/tut.html)

2. Other online tutorials listed at http://www.python.org/doc/

If you are new to simuPOP, please read this guide before you dive into the simuPOP reference manual, which describes
all the details of simuPOP but does not show you how to use them. Both documents are available online at http://
simupop.sourceforge.net in both searchable HTML format and PDF format.

A simuPOP online cookbook (http://simupop.sourceforge.net/cookbook) is a wiki-based website
where you can browse and download examples, functions and scripts for various simulation scenarios, and upload
your own code snippets for the benefit of all simuPOP users. Please consider contributing to this cookbook if you have
written some scripts that might be useful to others.

If you cannot find the answer you need, or if you believe that you have encountered a bug, or if you would like to
request a feature, please subscribe to the simuPOP mailinglist (simupop-list@lists.sourceforge.net)
and send your questions there.

2.6. Other help sources 9

simuPOP

10 Chapter 2. Introduction

CHAPTER 3

Loading and running simuPOP

3.1 Pythonic issues

3.1.1 from simuPOP import * v.s. import simuPOP

Generally speaking, it is recommended to use import simuPOP rather than from simuPOP import * to
import a simuPOP module. That is to say, instead of using

from simuPOP import *
pop = Population(size=100, loci=[5])
simu = Simulator(pop, RandomMating())

it is recommended that you use simuPOP like

import simuPOP
pop = simuPOP.Population(size=100, loci=[5])
simu = simuPOP.Simulator(pop, simuPOP.RandomMating())

The major problem with from simuPOP import * is that it imports all simuPOP symbols to the global names-
pace and increases the likelihood of name clashes. For example, if you import a module myModule after simuPOP,
which happens to have a variable named MALE, the following code might lead to a TypeError indicating your input
for parameter sex is wrong.

from simuPOP import *
from myModule import *
pop = Population(size=100, loci=[5])
initSex(pop, sex=[MALE, FEMALE])

It can be even worse if the definition of MALE is changed to a different value of the same type (e.g. to FEMALE) and
your simulation might produce erroranous result without a hint.

For the sake of brevity, all examples in this user’s guide use import simuPOP as sim as an alternative form of
the import simuPOP style. This saves some keystrokes by referring simuPOP functions as sim.Population()

11

simuPOP

instead of simuPOP.Population(). Note that simuPOP has a number of submodules, which are not imported by
default. The recommended syntax to load these modules is:

import and use submodule simuPOP.utils
from simuPOP import utils
utils.simulateBackwardTrajectory(N=1000, endGen=100, endFreq=0.1)

3.1.2 References and the clone()member function

Assignment in Python only creates a new reference to an existing object. For example,

pop = Population()
pop1 = pop

creates a reference pop1 to population pop. Modifying pop1 will modify pop as well and the removal of pop will
invalidate pop1. For example, a reference to the first Population in a simulator is returned from function func()
in Example lst_Reference_to_Population. The subsequent use of this pop object may crash simuPOP because the
simulator simu is destroyed, along with all its internal populations, after func() is finished, leaving pop referring
to an invalid object.

Example: Reference to a population in a simulator

def func():
simu = Simulator(Population(10), RandomMating(), rep=5)
return a reference to the first Population in the simulator
return simu.population(0)

pop = func()
simuPOP will crash because pop refers to an invalid Population.
pop.popSize()

If you would like to have an independent copy of a population, you can use the clone() member function. Example
lst_Reference_to_Population would behave properly if the return statement is replaced by

return simu.population(0).clone()

although in this specific case, extracting the first population from the simulator using the extract function

return simu.extract(0)

would be more efficient.

The clone() function exists for all simuPOP classes (objects) such as simulator, mating schemes and operators.
simuPOP also supports the standard Python shallow and deep copy operations so you can also make a cloned copy of
pop using the deepcopy function defined in the Python copy module

import copy
pop1 = copy.deepcopy(pop)

3.1.3 Zero-based indexes, absolute and relative indexes

All arrays in simuPOP start at index 0. This conforms to Python and C++ indexes. To avoid confusion, I will refer
the first locus as locus zero, the second locus as locus one; the first individual in a population as Individual zero, and
so on.

12 Chapter 3. Loading and running simuPOP

simuPOP

Another two important concepts are the absolute index and relative index of a locus. The former index ignores
chromosome structure. For example, if there are 5 and 7 loci on the first two chromosomes, the absolute indexes
of the two chromosomes are (0, 1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11) and the relative indexes are (0, 1, 2, 3, 4), (0, 1, 2,
3, 4, 5, 6). Absolute indexes are more frequently used because they avoid the trouble of having to use two numbers
(chrom, index) to refer to a locus. Two functions chromLocusPair(idx) and absLocusIndex(chrom,
index) are provided to convert between these two kinds of indexes. An individual can also be referred by its
absolute index and relative index where relative index is the index in its subpopulation. Related member functions are
subPopIndPair(idx) and absIndIndex(idx, subPop). Example absIndex demonstrates the use of these
functions.

Example: Conversion between absolute and relative indexes

>>> import simuPOP as sim
>>> pop = sim.Population(size=[10, 20], loci=[5, 7])
>>> print(pop.chromLocusPair(7))
(1, 2)
>>> print(pop.absLocusIndex(1, 1))
6
>>> print(pop.absIndIndex(2, 1))
12
>>> print(pop.subPopIndPair(25))
(1, 15)

now exiting runScriptInteractively...

Download absIndex.py

3.1.4 Ranges and iterators

Ranges in simuPOP also conform to Python ranges. That is to say, a range has the form of [a,b)where abelongs to
the range, and bdoes not. For example, pop.chromBegin(1)refers to the index of the first locus on chromosome 1
(actually exists), and pop.chromEnd(1)refers to the index of the last locus on chromosome 1 plus 1, which might
or might not be a valid index.

A number of simuPOP functions return Python iterators that can be used to iterate through an internal array of objects.
For example, Population.Individuals([subPop]) returns an iterator iterates through all individuals, or all
individuals in a (virtual) subpoulation. Simulator.populations() can be used to iterate through all populations
in a simulator. Example iterator demonstrates the use of ranges and iterators in simuPOP.

Example: Ranges and iterators

>>> import simuPOP as sim
>>> pop = sim.Population(size=2, loci=[5, 6])
>>> sim.initGenotype(pop, freq=[0.2, 0.3, 0.5])
>>> for ind in pop.individuals():
... for loc in range(pop.chromBegin(1), pop.chromEnd(1)):
... print(ind.allele(loc))
...
0
2
2
1
1
1
1
2

(continues on next page)

3.1. Pythonic issues 13

absIndex.py

simuPOP

(continued from previous page)

2
2
1
2

now exiting runScriptInteractively...

Download iterator.py

3.1.5 Empty, ALL_AVAIL and dynamic values for parameters loci, reps, ancGen
and subPops

Parameters loci, reps and subPops are widely used in simuPOP to specify which loci, replicates, ancestral
generations, or (virtual) subpulations a function or operator is applied to. These parameter accepts a list of indexes such
as [1, 2], names such as ['a', 'b'], and take single form inputs (e.g. loci=1 is equivalent to loci=[1]).
For example,

• Recombinator(loci=[]) recombine at no locus, and

• Recombinator(loci=1) recombine at locus 1

• Recombinator(loci=[1,2,4]) recombine at loci 1, 2, and 4

• Recombinator(loci=[('1', 20), ('1', 25)]) recombine at loci with position 20 and25 on chro-
mosome 1. This usage is only available for parameter loci.

• Recombinator(loci=['a2', 'a4']) recombine at loci 'a2' and 'a4'.

The last method is easier to understand in some cases. Moreover, when you use loci names instead of indexes in an
operator, this operator can be applied to populations with loci at different locations. For example

MaSelector(loci='a2', fitness=[1,1.01,1.02])

will be applied to locus a2 regardless the actual location of this locus in the population to which this operator is
applied.

However, in the majority of the cases, these parameters take a default value ALL_AVAIL which applies the
function or operator to all available loci, replicates or subpopulations. That is to say, Recombinator() or
Recombinator(loci=ALL_AVAIL) will recombine at all applicable loci, which will vary from population to
population. Value UNSPECIFIED is sometimes used as default parameter of these parameters, indicating that no
value has been specified. Similarly, subPops=[0, 'Male'] can be used to refer a virtual subpopulation with
name 'Male', regardless its virtual subpopulation index.

Besides subPops=ALL_AVAIL, which means subPops=[0,1,2,3] for a population with 4 subpopulations,
ALL_AVAIL could also be used as subPops=[(ALL_AVAIL, 1)] to specify a specific virtual subpopulation for
all subpopulations, or subPops=[(1, ALL_AVAIL)] or even subPops=[(ALL_AVAIL, ALL_AVAIL)] to
specify all virtual subpopulations in specified or all subpopulations. This becomes handy when you, for example,
would like to list all male individuals in a population, regardless of number of subpopulations.

3.1.6 User-defined functions and class WithArgs *

Some simuPOP objects call user-defined functions to perform customized operations. For example, a penetrance
operator can call a user-defined function with genotype at specified loci and use its return value to determine the
affection status of an individual.

14 Chapter 3. Loading and running simuPOP

iterator.py

simuPOP

simuPOP uses parameter names to determine which information should be passed to such a function. For example, a
PyOperator will pass a reference to each offspring to a function defined with parameter off (e.g. func(off))
and references to offspring and his/her parents to a function defined with parameters off, dad, and mom (e.g.
func(off, dad, mom)). For example, Example userFunc defines a function func(geno, smoking) us-
ing parameters geno and smoking so operator PyPenetrance will pass genotype at specified loci and value at
information field smoking to this function.

Example: Use of user-defined Python function in simuPOP

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(1000, loci=1, infoFields='smoking')
>>> sim.initInfo(pop, lambda:random.randint(0,1), infoFields='smoking')
>>> sim.initGenotype(pop, freq=[0.3, 0.7])
>>>
>>> # a penetrance function that depends on smoking
>>> def func(geno, smoking):
... if smoking:
... return (geno[0]+geno[1])*0.4
... else:
... return (geno[0]+geno[1])*0.1
...
>>> sim.pyPenetrance(pop, loci=0, func=func)
>>> sim.stat(pop, numOfAffected=True)
>>> print(pop.dvars().numOfAffected)
352
>>>

now exiting runScriptInteractively...

Download userFunc.py

However, there are circumstances that you do not know the number or names of parameters in advance so it is dif-
ficult to define such a function. For example, your function may use an information field with programmed name
‘off’+str(numOffspring) where numOffspring is a parameter. In this case, you can create a wrapper
function object using WithArgs(func, args) and list passed arguments in args (e.g. WithArgs(func,
args=['geno', 'off' + str(numOffspring)]). As long as simuPOP knows which arguments to pass,
your function can be defined in any format you want (e.g. use *args parameters). Example WithArgs provides such an
example.

Example: Specify arguments of user-provided function using function WithArgs

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(1000, loci=1, infoFields=('x', 'y'))
>>> sim.initInfo(pop, lambda:random.randint(0,1), infoFields=('x', 'y'))
>>> sim.initGenotype(pop, freq=[0.3, 0.7])
>>>
>>> # a penetrance function that depends on unknown information fields
>>> def func(*fields):
... return 0.4*sum(fields)
...
>>> # function WithArgs tells PyPenetrance that func accepts fields x, y so that
>>> # it will pass values at fields x and y to func.
>>> sim.pyPenetrance(pop, loci=0, func=sim.WithArgs(func, pop.infoFields()))
>>> sim.stat(pop, numOfAffected=True)
>>> print(pop.dvars().numOfAffected)
427

(continues on next page)

3.1. Pythonic issues 15

userFunc.py

simuPOP

(continued from previous page)

now exiting runScriptInteractively...

Download WithArgs.py

3.1.7 Exception handling *

As shown in Examples lst_Use_of_standard_module and lst_Use_of_optimized_module, optimized modules raise less
exceptions than standard modules. More specifically, the standard modules check for invalid inputs frequently and
raise exceptions (e.g. out of bound loci indexes). In constrast, the optimized modules only raise exceptions where
proper values could not be pre-determined (e.g. looking for an individual in a population with an ID). Only exceptions
that are raised in both types of modules are documented in the simuPOP reference manual.

Generally speaking, you should avoid using exceptions to direct the logic of your script (e.g. use a try ...
except ... statement around a function to find a valid input value). Because the optimized modules might not
raise these exceptions, such a script may crash or yield invalid results when an optimized module is used. If you
have to use such a structure, please check the reference manual and see whether or not an exception will be raised in
optimized modules.

3.2 Loading simuPOP modules

3.2.1 Short, long, binary, mutant and lineage modules and their optimized versions

There are ten flavors of the core simuPOP module: short, long, binary, mutant, and lineage allele modules, and their
optimized versions.

• The short allele modules use 8 bits to store each allele which limits the possible allele states to 256. This is
enough most of the times so this is the default module of simuPOP.

• If you need to a large number of allele states to simulate, for example the infinite allele model, you should use
the long allele version of the modules, which use 32 or 64 bits for each allele and can have or possible allele
states depending on your platform.

• If you would like to simulate a large number of binary (SNP) markers, binary libraries can save you a lot of
RAM because they use 1 bit for each allele.

• If you are simulating long sequence regions with rare variants, you can use the mutant module. This module
uses compression technology that ignores wildtype alleles and is not efficient if you need to traverse all alleles
frequently. The maximum allele state is 255 for this module. Because this module stores location and value of
each allele, it uses at least 64 + 8 bits for each allele on a 64 bit system. The complexity of the storage also
prevents simultaneous write access to genotypes so this module does not benefit much from running in multi-
thread mode.

• If you are interested in tracing the lineage of each allele (e.g. the ID of individuals to whom the allele was
introduced), you can use the lineage module for which each allele is attached with information about its origin.
The maximum allele state is 255 for this module, and the cost of storing each allele is 8 (value) + 32 (lineage)
bits.

Despite of differences in internal memory layout, all these modules have the same interface, although some functions
behave differently in terms of functionality and performance.

Standard libraries have detailed debug and run-time validation mechanism to make sure a simulation executes correctly.
Whenever something unusual is detected, simuPOP would terminate with detailed error messages. The cost of such
run-time validation varies from case to case but can be high under some extreme circumstances. Because of this,

16 Chapter 3. Loading and running simuPOP

WithArgs.py

simuPOP

optimized versions for all modules are provided. They bypass most parameter checking and run-time validations and
will simply crash if things go wrong. It is recommended that you use standard libraries whenever possible and only use
the optimized version when performance is needed and you are confident that your simulation is running as expected.

Examples lst_Use_of_standard_module and lst_Use_of_optimized_module demonstrate the differences between stan-
dard and optimized modules, by executing two invalid commands. A standard module checks all input values and
raises exceptions when invalid inputs are detected. An interactive Python session would catch these exceptions and
print proper error messages. In constrast, an optimized module returns erroneous results and or simply crashes when
such inputs are given.

Example: Use of standard simuPOP modules

>>> import simuPOP as sim
>>> pop = sim.Population(10, loci=2)
>>> pop.locusPos(10)
Traceback (most recent call last):

File "/var/folders/ys/gnzk0qbx5wbdgm531v82xxljv5yqy8/T/tmp6boewtoh", line 1, in
→˓<module>

#begin_file log/standard.py
IndexError: genoStru.h: 557 absolute locus index (10) out of range of 0 ~ 1
>>> pop.individual(20).setAllele(1, 0)
Traceback (most recent call last):

File "/var/folders/ys/gnzk0qbx5wbdgm531v82xxljv5yqy8/T/tmp6boewtoh", line 1, in
→˓<module>

#begin_file log/standard.py
IndexError: population.h: 566 individual index (20) out of range of 0 ~ 9

now exiting runScriptInteractively...

Download standard.py

Example lst_Use_of_optimized_module also demonstrates how to use the setOptions function in the simuOpt
module to control the choice of one of the six simuPOP modules. By specifying one of the values short, long
or binaryfor option alleleType, and settingoptimized to True or False, the right flavor of module will
be chosen when simuPOP is loaded. In addition, option quiet can be used suppress the banner message when
simuPOP is loaded. An alternative method is to set environmental variable SIMUALLELETYPE to short, long
or binary to use the standard short, long or binary module, and variable SIMUOPTIMIZED to use the optimized
modules. Command line options --optimized can also be used.

Example: Use of optimized simuPOP modules

% python
>>> from simuOpt import setOptions
>>> setOptions(optimized=True, alleleType='long', quiet=True)
>>> import simuPOP as sim
>>> pop = sim.Population(10, loci=[2])
>>> pop.locusPos(10)
1.2731974748756028e-313
>>> pop.individual(20).setAllele(1, 0)
Segmentation fault

3.2.2 Execution in multiple threads

simuPOP is capable of executing in multiple threads but it by default only makes use of one thread. If you have
a multi-core CPU, it is often beneficial to set the number of threads to 2 or more to take advantage of this feature.
The recommended number of threads is usually the number of cores of your CPU but you might want to set it to a

3.2. Loading simuPOP modules 17

standard.py

simuPOP

lower number to leave room for the execution of other applications. The number of threads used in simuPOP can be
controlled in the following ways:

• If an environmental variable OMP_NUM_THREADS is set to a positive number, simuPOP will be started with
specified number of threads.

• Before simuPOP is imported, you can set the number of threads using function simuOpt.
setOptions(numThreads=x) where x can be a positive number (number of threads) or 0, which is in-
tepreted as the number of cores available for your computer.

The number of threads a simuPOP session is used will be displayed in the banner message when simuPOP is imported,
and can be retrieved through moduleInfo['threads'].

Although simuPOP can usually benefit from the use of multiple cores, certain features of your script might prevent the
execution of simuPOP in multiple threads. For example, if your script uses a sex mode of GLOBAL_SEX_SEQUENCE
to set the sex of offspring according to the global sequence of sexes (e.g. male, male, female), simuPOP will only use
on thread to generate offspring because it is not feasible to assign individual sex from a single source of list across
multiple threads.

3.2.3 Graphical user interface

A complete graphical user interface (GUI) for users to interactively construct evolutionary processes is still in the
planning stage. However, some simuPOP classes and functions can make use of a GUI to improve user interaction.
For example, a parameter input dialog can be constructed automatically from a parameter specification list, and be
used to accept user input if class simuOpt.Params is used to handle parameters. Other examples include a progress
bar simuPOP.utils.ProgressBar and a dialog used by function simuPOP.utils.viewVars to display a
large number of variables. The most notable feature of the use of GUI in simuPOP is that all functionalities can be
achieved without a GUI. For examples, simuOpt.getParam will use a terminal to accept user input interactively
and simuPOP.utils.ProgressBar will turn to a text-based progress bar in the non-GUI mode.

The use of GUI can be controlled either globally or Individually. First, a global GUI parameter could be set by
environmental variable SIMUGUI, function simuOpt.setOptions(gui) or a command line option --gui of a
simuPOP scripts. Allowed values include

• True: This is the system default value. A GUI is used whenever possible. All GUI-capable functions support
wxPython so a wxPython dialog will be used if wxPython is available. Otherwise, tkInter based dialogs
or text- mode will be used.

• False: no GUI will be used. All functions will use text-based implementation. Note that --gui=False is
commonly used to run scripts in batch mode.

• wxPython: Force the use of wxPython GUI toolkit.

• Tkinter: Force the use of Tkinter GUI toolkit.

Individual classes and functions that could make use a GUI usually have their own gui parameters, which can be
set to override global GUI settings. For example, you could force the use of a text-based progress bar by using
ProgressBar(gui=False).

3.3 Online help system

Most of the help information contained in this document and the simuPOP reference manual is available from com-
mand line. For example, after you install and import the simuPOP module, you can use help(Population.
addInfoField)to view the help information of member function addInfoField of class Population.

Example: Getting help using the texttt{help()} function

18 Chapter 3. Loading and running simuPOP

simuPOP

>>> import simuPOP as sim
>>> help(sim.Population.addInfoFields)
Help on built-in function Population_addInfoFields in module simuPOP._simuPOP_std:

Population_addInfoFields(...)
Usage:

x.addInfoFields(fields, init=0)

Details:

Add a list of information fields fields to a population and
initialize their values to init. If an information field alreay
exists, it will be re-initialized.

now exiting runScriptInteractively...

Download help.py

It is important that you understand that

• The constructor of a class is named __init__ in Python. That is to say, you should use the following command
to display the help information of the constructor of class Population:

>>> help(Population.__init__)

• Some classes are derived from other classes and have access to member functions of their base classes. For
example, class Population and Individual are both derived from class GenoStruTrait. Therefore,
you can use all GenoStruTrait member functions from these classes.

In addition, the constructor of a derived class also calls the constructor of its base class so you may have to refer
to the base class for some parameter definitions. For example, parameters begin, end, step, atetc are
shared by all operators, and are explained in details only in class BaseOperator.

3.4 Debug-related functions and operators *

Debug information can be useful when something looks suspicious. By turnning on certain debug code, simuPOP
will print out some internal information before and during evolution. Functions turnOnDebug(code) and
turnOffDebug(code) could be used to turn on and off some debug information.

For example, the following code might crash simuPOP:

>>> Population(1, loci=[100]).individual(0).genotype()

It is unclear why this simple command causes us trouble, instead of outputting the genotype of the only Individual of
this population. However, the reason is clear if you turn on debug information:

Example: Turn on/off debug information

>>> turnOnDebug(DBG_POPULATION)
>>> Population(1, loci=100).individual(0).genotype()
Constructor of population is called
Destructor of population is called
Segmentation fault (core dumped)

3.4. Debug-related functions and operators * 19

help.py

simuPOP

Population(1, loci=[100]) creates a temporary object that is destroyed right after the execution of the com-
mand. When Python tries to display the genotype, it will refer to an invalid location. The correct method to print the
genotype is to create a persistent population object:

>>> pop = Population(1, loci=[100])
>>> pop.individual(0).genotype()

Another useful debug code is DBG_WARNING. When this code is set, it will output warning messages for some com-
mon misuse of simuPOP. For example, it will warn you that population object returned by function Simulator.
population() is a temporary object that will become invalid once a simulator is changed. If you are new to
simuPOP, it is recommended that you use

import simuOpt
simuOpt.setOptions(optimized=False, debug='DBG_WARNING')

when you develop your script.

Besides functions turnOnDebug(code)and turnOffDebug(code), you can set environmental variable
SIMUDEBUG=code where code is a comma separated debug codes.``A list of valid debug code
could be found in function :func:`moduleInfo[‘debug’]‘. Note that debug information is only
available in standard (non-optimized) modules.

The amount of output can be overwhelming in some cases which makes it necessary to limit the debug information
to certain generations, or triggered by certain conditions. In addition, debugging information may interfere with your
regular output so you may want to direct such output to another destination, such as a dedicated file.

Example debug demonstrates how to turn on debug information conditionally and turn it off afterwards, using operator
PyOperator. It also demonstrates how to redirect debug output to a file but redefining system standard error output.
Note that “is None” is used to make sure the lamdba functions return True so that the evolutionary process can
continue after the python operator.

Example: Turn on and off debug information during evolution.

>>> import simuPOP as sim
>>> # redirect system stderr
>>> import sys
>>> debugOutput = open('debug.txt', 'w')
>>> old_stderr = sys.stderr
>>> sys.stderr = debugOutput
>>> # start simulation
>>> simu = sim.Simulator(sim.Population(100, loci=1), rep=5)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.1, 0.9])
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.IfElse('alleleNum[0][0] == 0',
... ifOps=[
... # the is None part makes the function return True
... sim.PyOperator(lambda : sim.turnOnDebug("DBG_MUTATOR") is None),
... sim.PointMutator(loci=0, allele=0, inds=0),
...],
... elseOps=sim.PyOperator(lambda : sim.turnOffDebug("DBG_MUTATOR") is
→˓None)),
...],

(continues on next page)

20 Chapter 3. Loading and running simuPOP

simuPOP

(continued from previous page)

... gen = 100

...)
(100, 100, 100, 100, 100)
>>> # replace standard stdandard error
>>> sys.stderr = old_stderr
>>> debugOutput.close()
>>> print(''.join(open('debug.txt').readlines()[:5]))
Mutate locus 0 at ploidy 0 to allele 0 at generation 12
Mutate locus 0 at ploidy 0 to allele 0 at generation 13
Mutate locus 0 at ploidy 0 to allele 0 at generation 15
Mutate locus 0 at ploidy 0 to allele 0 at generation 16
Mutate locus 0 at ploidy 0 to allele 0 at generation 21

now exiting runScriptInteractively...

Download debug.py

3.5 Random number generator *

When simuPOP is loaded, it creates a default random number generator (RNG) of type mt19937 for each thread. It
uses a random seed for the first RNG and uses seeds derived from the first seed to initialize RNGs for other threads.
The seed is drawn from a system random number generator that guarantees random seeds for all instances of simuPOP
even if they are initialized at the same time. After simuPOP is loaded, you can reset this system RNG with a differ-
ent random number generator (c.f. moduleInfo['availableRNGs']) or use a specified seed using function ,
setRNG(name, seed).

getRNG.seed() returns the seed of the simuPOP random number generator. It can be used to replay your simulation
if getRNG() is your only source of random number generator. If you also use the Python random module, it is a good
practise to set its seed using random.seed(getRNG().seed()). Example randomSeed demonstrates how to
use these functions to replay an evolutionary process. simuPOP uses a single seed to initialize multiple random number
generators used for different threads (seeds for other threads are determined from the first seed) so you only need to
save the head seed (getRNG.seed())

Example: Use saved random seed to replay an evolutionary process

>>> import simuPOP as sim
>>> import random
>>> def simulate():
... pop = sim.Population(1000, loci=10, infoFields='age')
... pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
... sim.InitInfo(lambda: random.randint(0, 10), infoFields='age')
...],
... matingScheme=sim.RandomMating(),
... finalOps=sim.Stat(alleleFreq=0),
... gen=100
...)
... return pop.dvars().alleleFreq[0][0]
...
>>> seed = sim.getRNG().seed()
>>> random.seed(seed)

(continues on next page)

3.5. Random number generator * 21

debug.py

simuPOP

(continued from previous page)

>>> print('%.4f' % simulate())
0.5780
>>> # will yield different result
>>> print('%.4f' % simulate())
0.6355
>>> sim.setRNG(seed=seed)
>>> random.seed(seed)
>>> # will yield identical result because the same seeds are used
>>> print('%.4f' % simulate())
0.5780

now exiting runScriptInteractively...

Download randomSeed.py

22 Chapter 3. Loading and running simuPOP

randomSeed.py

CHAPTER 4

Individuals and Populations

4.1 Genotypic structure

Genotypic structure refers to structural information shared by all individuals in a population, including num-
ber of homologous copies of chromosomes (c.f. ploidy(), ploidyName()), chromosome types and
names (c.f. numChrom(), chromType(), chromName()), position and name of each locus (c.f.
numLoci(ch), locusPos(loc), locusName(loc)), and axillary information attached to each individual
(c.f. infoField(idx), infoFields()). In addition to property access functions, a number of utility functions
are provided to, for example, look up the index of a locus by its name (c.f. locusByName(), chromBegin(),
chromLocusPair()).

In simuPOP, locus is a (named) position and alleles are just different numbers at that position. A locus can be a gene,
a nucleotide, or even a deletion, depending on how you define alleles and mutations. For example,

• A codon can be simulated as a locus with 64 allelic states, or three locus each with 4 allelic states. Alleles in
the first case would be codons such as AAC and a mutation event would mutate one codon to another (e.g. AAC
-> ACC). Alleles in the second case would be A, C, T or G, and a mutation event would mutate one nucleotide to
another (e.g. A -> G).

• You can use 0 and 1 (and the binary module of simuPOP) to simulate SNP (single-nucleotide polymorphism)
markers and ignore the exact meaning of 0 and 1, or use 0, 1, 2, 3 to simulate different nucleotide (A, C, T, or
G) in these markers. The mutation model in the second case would be more complex.

• For microsatellite markers, alleles are usually interpreted as the number of tandem repeats. It would be difficult
(though doable) to simulate the expansion and contraction of genome caused by the mutation of microsatellite
markers.

• The infinite site and infinite allele mutation models could be simulated using either a continuous sequence of
nucleotides with a simple 2-allele mutation model, or a locus with a large number of possible allelic states. It is
also possible to simulate an empty region (without any locus) with loci introduced by mutation events.

• If you consider deletion as a special allelic state, you can simulate gene deletions without shrinking a chromo-
some. For example, a deletion mutation event can set the allelic state of one or more loci to 0, which can no
longer be mutated.

23

simuPOP

• Alleles in different individuals could be interpretted differently. For example, if you would like to simulate
major chromosomal mutations such as inversion, you could use a super set of markers for different types of
chromosomes and use an indicator (information field) to mark the type of chromosome and which markers are
valid. Using virtual subpopulations, these individuals could be handled differently during mating.

• In an implementation of an infinite-sites model, Individual loci are used to store mutation events. In this
example (Example infiniteSites), 100 loci are allocated for each individual and they are used to store mutation
events (location of a mutation) that happens in a 10Mb region. Whenever a mutation event happens, its location
is stored as an allele of an individual. At the end of the evolution, each individual has a list of mutation events
which can be readily translated to real alleles. Similar ideas could be used to simulate the accumulation of
recombination events.

In summary, the exact meaning of loci and their alleles are user defined. With appropriate mutation model and mating
scheme, it is even possible to simulate phenotypic traits using this mechanism, although it is more natual to use
information fields for quatitative traits.

A genotypic structure can be retrieved from Individual and Population objects. Because a population consists of
individuals of the same type, genotypic information can only be changed for all individuals at the population
level. populations in a simulator usually have the same genotypic structure because they are created by as replicates,
but their structure may change during evolution. Example genostructure demonstrates how to access genotypic struc-
ture functions at the population and individual levels. Note that lociPos determines the order at which loci are
arranged on a chromosome. Loci positions and names will be rearranged if given lociPos is unordered.

Example: Genotypic structure functions

>>> import simuPOP as sim
>>> pop = sim.Population(size=[2, 3], ploidy=2, loci=[5, 10],
... lociPos=list(range(0, 5)) + list(range(0, 20, 2)), chromNames=['Chr1', 'Chr2
→˓'],
... alleleNames=['A', 'C', 'T', 'G'])
>>> # access genotypic information from the sim.Population
>>> pop.ploidy()
2
>>> pop.ploidyName()
'diploid'
>>> pop.numChrom()
2
>>> pop.locusPos(2)
2.0
>>> pop.alleleName(1)
'C'
>>> # access from an individual
>>> ind = pop.individual(2)
>>> ind.numLoci(1)
10
>>> ind.chromName(0)
'Chr1'
>>> ind.locusName(1)
''
>>> # utility functions
>>> ind.chromBegin(1)
5
>>> ind.chromByName('Chr2')
1
>>> # loci pos can be unordered within each chromosome
>>> pop = sim.Population(loci=[2, 3], lociPos=[3, 1, 1, 3, 2],
... lociNames=['loc%d' % x for x in range(5)])
>>> pop.lociPos()

(continues on next page)

24 Chapter 4. Individuals and Populations

simuPOP

(continued from previous page)

(1.0, 3.0, 1.0, 2.0, 3.0)
>>> pop.lociNames()
('loc1', 'loc0', 'loc2', 'loc4', 'loc3')

now exiting runScriptInteractively...

Download genoStru.py

Note: simuPOP does not assume any unit for loci positions. Depending on your application, it can be basepair
(bp), kilo-basepair (kb), mega base pair (mb) or even using genetic-map distance such as centiMorgan. It is your
responsibility to interpret and use loci positions properly. For example, recombination rate between two adjacent
markers can be specified as the product between their physical distance and a recombination intensity. The scale of
this intensity will vary by the unit assumed.

Note: Names of loci, alleles and subpopulations are optional. Empty names will be used if they are not specified.
Whereas locusName, subPopName and alleleName always return a value (empty string or specified value)
for any locus, subpopulation or allele, respectively, lociNames, subPopNames and alleleNames only return
specified values, which can be empty lists.

4.1.1 Haploid, diploid and haplodiploid populations

simuPOP is most widely used to study human (diploid) populations. A large number of mating schemes, operators
and population statistics are designed around the evolution of such a population. simuPOP also supports haploid and
haplodiploid populations although there are fewer choices of mating schemes and operators. simuPOP can also support
other types of populations such as triploid and tetraploid populations, but these features are largely untested due to
their limited usage. It is expected that supports for these populations would be enhanced over time with additional
dedicated operators and functions.

For efficiency considerations, simuPOP saves the same numbers of homologous sets of chromosomes even if some
individuals have different numbers of homologous sets in a population. For example, in a haplodiploid population,
because male individuals have only one set of chromosomes, their second homologous set of chromosomes are unused,
which are labeled as '_', as shown in Example haplodiploid.

Example: An example of haplodiploid population

>>> import simuPOP as sim
>>> pop = sim.Population(size=[2,5], ploidy=sim.HAPLODIPLOID, loci=[3, 5])
>>> sim.initGenotype(pop, freq=[0.3, 0.7])
>>> sim.dump(pop)
Ploidy: 2 (haplodiploid)
Chromosomes:
1: (AUTOSOME, 3 loci)

(1), (2), (3)
2: (AUTOSOME, 5 loci)

(1), (2), (3), (4), (5)
population size: 7 (2 subpopulations with 2, 5 Individuals)
Number of ancestral populations: 0

SubPopulation 0 (), 2 Individuals:
0: MU 111 00001 | ___ _____
1: MU 111 01110 | ___ _____

(continues on next page)

4.1. Genotypic structure 25

genoStru.py

simuPOP

(continued from previous page)

SubPopulation 1 (), 5 Individuals:
2: MU 111 11110 | ___ _____
3: MU 101 11111 | ___ _____
4: MU 110 11111 | ___ _____
5: MU 101 11101 | ___ _____
6: MU 110 11001 | ___ _____

now exiting runScriptInteractively...

Download haplodiploid.py

4.1.2 Autosomes, sex chromosomes, mitochondrial, and other types of chromo-
somes *

The default chromosome type is autosome, which is the normal chromosomes in diploid, and in haploid populations.
simuPOP supports four other types of chromosomes, namely chromosome X, chromosome Y, mitochondrial, and*
customized* chromosome types. Sex chromosomes are only valid in haploid populations where chromosomes X and
Y are used to determine the sex of an offspring. Mitochondrial DNAs can exists in haploid or diploid populations, and
are inherited maternally. Customized chromosomes rely on user defined functions and operators to be passed from
parents to offspring.

Example subPopName shows how to specify different chromosome types, and how genotypes of these special chro-
mosomes are arranged.

Example: Different chromosome types

>>> import simuPOP as sim
>>> pop = sim.Population(size=6, ploidy=2, loci=[3, 3, 3, 2, 2, 4, 4],
... chromTypes=[sim.AUTOSOME]*2 + [sim.CHROMOSOME_X, sim.CHROMOSOME_Y, sim.
→˓MITOCHONDRIAL]
... + [sim.CUSTOMIZED]*2)
>>> sim.initGenotype(pop, freq=[0.3, 0.7])
>>> sim.dump(pop, structure=False) # does not display genotypic structure information
SubPopulation 0 (), 6 Individuals:

0: MU 111 000 011 __ 11 1111 1101 | 110 000 ___ 11 __ 1111 1011
1: MU 111 111 101 __ 11 1110 1011 | 111 011 ___ 11 __ 1110 1011
2: MU 110 101 011 __ 11 1011 0011 | 110 100 ___ 11 __ 1010 1111
3: MU 010 011 111 __ 11 1111 1111 | 110 010 ___ 11 __ 1111 0111
4: MU 101 000 111 __ 01 0111 0100 | 110 111 ___ 00 __ 0111 0001
5: MU 111 010 111 __ 10 0111 1011 | 111 111 ___ 11 __ 0111 1011

now exiting runScriptInteractively...

Download chromType.py

The evolution of sex chromosomes follow the following rules

• There can be only one X chromosome and one Y chromosome. It is not allowed to have only one kind of sex
chromosome.

• The Y chromosome of female individuals are ignored. The second homologous copy of the X chromosome and
the first copy of the Y chromosome are ignored for male individuals.

• During mating, female parent pass one of her X chromosome to her offspring, male parent pass chromosome X
or Y to his offspring. Recombination is allowed for the X chromosomes of females, but not allowed for males.

26 Chapter 4. Individuals and Populations

haplodiploid.py
chromType.py

simuPOP

• The sex of offspring is determined by the types of sex chromosomes he/she inherits, XX for female, and XY for
male.

The evolution of mitochonrial DNAs follow the following rules

• There can be only one copy of mitochondrial DNA, exists for both males and females.

• In a non-haploid population where all chromosomes have multiple homologous copies, only the first copy is
used for mitochondrial DNA.

• mtDNAs are inherited maternally

Customized chromosomes are used to model more complex types of chromosomes. They rely on customized op-
erators for inheritence. For example, if you would like to model multiple copies of mitochondrial DNAs (cytohets
with multiple organellar chromosomes) in a cell, and the process of genetic drift of somatic cytoplasmic segre-
gation of mtDNAs, you can use multiple customized chromosomes to model multiple cytohets (see section sub-
sec_Pre_defined_genotype_transmitters for an Example). Figure fig_chromTypes depicts the possible chromosome
structure of two diploid parents, and how offspring chromosomes are formed. It uses two customized chromosomes to
model multiple copies of mitochondrial chromosomes that are passed randomly from mother to offspring. The second
homologous copy of customized chromosomes are unused in this example.

Figure: Inheritance of different types of chromosomes in a diploid population

individuals in this population have five chromosomes, one autosome (A), one X chromosome (X), one Y chromosome
(Y) and two customized chromosomes (C). The customized chromosomes model multiple copies of mitochondrial
chromosomes that are passed randomly from mother to offspring. Y chromosomes for the female parent, the second
copy of chromosome X and the first copy of chromosome Y for the male parent, and the second copy of customized
chromosomes are unused (gray chromosome regions). A male offspring inherits one copy of autosome from his mother
(with recombination), one copy of autosome from his father (with recombination), an X chromosome from his mother
(with recombination), a Y chromosome from his father (without recombination), and two copies of the first customized
chromosome.

4.1.3 Information fields

Different kinds of simulations require different kinds of individuals. individuals with only genotype information are
sufficient to simulate the basic Wright-Fisher model. Sex is needed to simulate such a model in diploid populations
with sex. individual fitness may be needed if selection is induced, and age may be needed if the population is age-
structured. In addition, different types of quantitative traits or affection status may be needed to study the impact of
genotype on Individual phenotype. Because it is infeasible to provide all such information to an individual, simuPOP
keeps genotype, sex (MALE or FEMALE) and affection status as built-in properties of an individual, and all others as
optional information fields (float numbers) attached to each individual.

Information fields can be specified when a population is created, or added later using population member functions.
They are essential for proper operation of many simuPOP operators. For example, all selection operators require in-
formation field fitness to store evaluated fitness values for each individual. Operator Migrator uses information
field migrate_to to store the ID of subpopulation an individual will migrate to. An error will be raised if these
operators are applied to a population without needed information fields.

Example: Basic usage of information fields

>>> import simuPOP as sim
>>> pop = sim.Population(10, loci=[20], ancGen=1,
... infoFields=['father_idx', 'mother_idx'])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[0]*20+[1]*20)
...],

(continues on next page)

4.1. Genotypic structure 27

simuPOP

Users/bpeng1/simuPOP/simuPOP/doc/figures/chromType.png

28 Chapter 4. Individuals and Populations

simuPOP

(continued from previous page)

... matingScheme=sim.RandomMating(

... ops=[

... sim.Recombinator(rates=0.01),

... sim.ParentsTagger()

...]

...),

... gen = 1

...)
1
>>> pop.indInfo('mother_idx') # mother of all offspring
(9.0, 8.0, 8.0, 0.0, 8.0, 9.0, 8.0, 7.0, 7.0, 9.0)
>>> ind = pop.individual(0)
>>> mom = pop.ancestor(ind.mother_idx, 1)
>>> print(ind.genotype(0))
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> print(mom.genotype(0))
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> print(mom.genotype(1))
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

now exiting runScriptInteractively...

Download infoField.py

Example basicInfoFields demonstrates the basic usage of information fields. In this example, a population with two
information fields mother_idx and father_idx are created. Besides the present generation, this population keeps
one ancestral generations (ancGen=1, see Section subsec_Ancestral_populations for details). After initializing each
individual with two chromosomes with all zero and all one alleles respectively, the population evolves one generation,
subject to recombination at rate 0.01. Parents of each individual are recorded, by operator ParentsTagger, to
information fields mother_idx and father_idx of each offspring.

After evolution, the population is extracted from the simulator, and the values of information field mother_idx of
all individuals are printed. The next several statements get the first Individual from the population, and his mother
from the parental generation using the indexes stored in this individual’s information fields. Genotypes at the first
homologous copy of this individual’s chromosome is printed, along with two parental chromosomes.

Information fields can only be added or removed at the population level because all individuals need to have
the same set of fields. Values of information fields could be accessed at Individual or population levels, using
functions such as Individual.info, Individual.setInfo, population.indInfo, Population.
setIndInfo. These functions will be introduced in their respective classes.

Note: Information fields can be located both by names and by indexes**,** the former provides better readability at
a slight cost of performance because these names have to be translated into indexes each time. However, use of names
are recommended in most cases for readability considerations.

4.2 Individual

individuals are building blocks of a population. An individual object cannot be created independently, but references
to inidividuals can be retrieved using member functions of a population object.

4.2. Individual 29

infoField.py

simuPOP

4.2.1 Access individual genotype

From a user’s point of view, genotypes of an individual are stored sequentially and can be accessed locus by locus,
or in batch. The alleles are arranged by position, chromosome and ploidy. That is to say, the first allele on the
first chromosome of the first homologous set is followed by alleles at other loci on the same chromosome, then
markers on the second and later chromosomes, followed by alleles on the second homologous set of the chromosomes
for a diploid individual. A consequence of this memory layout is that alleles at the same locus of a non-haploid
individual are separated by Individual.totNumLoci() loci. The memory layout of a diploid individual with
two chromosomes is illustrated in Figure fig_genotype_layout.

Figure: Memory layout of individual genotype

simuPOP provides several functions to read/write individual genotype. For example, Individual.allele() and
Individual.setAllele() can be used to read and write single alleles. You could also access alleles in batch
mode using functions Individual.genotype() and Individual.setGenotype(). It is worth noting that,
instead of copying genotypes of an individual to a Python tuple or list, the return value of function genotype([p,
[ch]]) is a special python carray object that reflects the underlying genotypes. This object behaves like a reg-
ular Python list except that the underlying genotype will be changed if elements of this object are changed. Only
count(x) andindex(x, [start, [stop]]) member functions can be used, but all comparison, assignment
and slice operations are allowed. If you would like to copy the content of this carray to a Python list, use the list
function. Example individualGenotype demonstrates the use of these functions.

Example: Access individual genotype

>>> import simuPOP as sim
>>> pop = sim.Population([2, 1], loci=[2, 5])
>>> for ind in pop.individuals(1):
... for marker in range(pop.totNumLoci()):
... ind.setAllele(marker % 2, marker, 0)
... ind.setAllele(marker % 2, marker, 1)
... print('%d %d ' % (ind.allele(marker, 0), ind.allele(marker, 1)))
...
0 0
1 1
0 0
1 1
0 0
1 1
0 0
>>> ind = pop.individual(1)
>>> geno = ind.genotype(1) # the second homologous copy
>>> geno
[0, 0, 0, 0, 0, 0, 0]
>>> geno[2] = 3
>>> ind.genotype(1)
[0, 0, 3, 0, 0, 0, 0]
>>> geno[2:4] = [3, 4] # direct modification of the underlying genotype
>>> ind.genotype(1)
[0, 0, 3, 4, 0, 0, 0]
>>> # set genotype (genotype, ploidy, chrom)
>>> ind.setGenotype([2, 1], 1, 1)
>>> geno
[0, 0, 2, 1, 2, 1, 2]
>>> #
>>> geno.count(1) # count
2
>>> geno.index(2) # index
2

(continues on next page)

30 Chapter 4. Individuals and Populations

simuPOP

Users/bpeng1/simuPOP/simuPOP/doc/figures/genotype.png

4.2. Individual 31

simuPOP

(continued from previous page)

>>> ind.setAllele(5, 3) # change underlying genotype using setAllele
>>> print(geno) # geno is change
[0, 0, 2, 1, 2, 1, 2]
>>> print(geno) # but not geno
[0, 0, 2, 1, 2, 1, 2]
>>> geno[2:5] = 4 # can use regular Python slice operation
>>> print(ind.genotype())
[0, 0, 0, 5, 0, 0, 0, 0, 0, 4, 4, 4, 1, 2]

now exiting runScriptInteractively...

Download individualGenotype.py

The same object will also be returned by function Population.genotype().

4.2.2 individual sex, affection status and information fields

In addition to structural information shared by all individuals in a population, the individual class provides member
functions to get and set genotype, sex, affection status and information fields of an individual. Example individuals
demonstrates how to access and modify individual sex, affection status and information fields. Note that information
fields can be accessed as attributes of individuals. For example, ind.info('father_idx') is equivalent to
ind.father_idx and ind.setInfo(35, 'age') is equivalent to ind.age = 35.

Example: Access Individual properties

>>> import simuPOP as sim
>>> pop = sim.Population([5, 4], loci=[2, 5], infoFields='x')
>>> # get an individual
>>> ind = pop.individual(3)
>>> ind.ploidy() # access to genotypic structure
2
>>> ind.numChrom()
2
>>> ind.affected()
False
>>> ind.setAffected(True) # access affection sim.status,
>>> ind.sex() # sex,
1
>>> ind.setInfo(4, 'x') # and information fields
>>> ind.x = 5 # the same as ind.setInfo(4, 'x')
>>> ind.info('x') # get information field x
5.0
>>> ind.x # the same as ind.info('x')
5.0

now exiting runScriptInteractively...

Download individual.py

4.3 Population

The Population object is the most important object of simuPOP. It consists of one or more generations of individ-
uals, grouped by subpopulations, and a local Python dictionary to hold arbitrary population information. This class

32 Chapter 4. Individuals and Populations

individualGenotype.py
individual.py

simuPOP

provides a large number of functions to access and modify population structure, individuals and their genotypes and
information fields. The following sections explain these features in detail.

4.3.1 Access and change individual genotype

From a user’s point of view, genotypes of all individuals in a population are arranged sequentially. Similar to functions
Individual.genotype() and Individual.setGenotype(), genotypes of a population can be accessed in
batch using functions Population.genotype() and Population.setGenotype(). However, because it is
error prone to locate an allele of a particular individual in this long array, these functions are usually used to perform
population-level genotype operations such as clearing all alleles (e.g. pop.setGenotype(0)) or counting the
number of a particular allele across all individuals (e.g. pop.genotype().count(1)).

Another way to change alleles across the whole population is to recode existing alleles to other numbers. This is
sometimes needed if you need to change allele states to conform with a particular mutation model, assumptions of
other software applications or genetic samples. For example, if your dataset uses 1, 2, 3, 4 for A, C, T, G alleles, and
you would like to use alleles 0, 1, 2 and 3 for A, C, G, T (a convention for simuPOP when nucleotide mutation models
are involved), you can use

pop.recodeAlleles([0, 0, 1, 3, 2], alleleNames=['A', 'C', 'G', 'T'])

to convert and rename the alleles (1 allele to 0, 2 allele to 1, etc). This operation will be applied to all subpopulations
for all ancestral generations, but can be restricted to selected loci.

4.3.2 Subpopulations

A simuPOP population consists of one or more subpopulations. If a population is not structured, it has one sub-
population that is the population itself. Subpopulations serve as barriers of individuals in the sense that mating only
happens between individuals in the same subpopulation. A number of functions are provided to merge, remove, resize
subpopulations, and move individuals between subpopulations (migration).

Example subPopName demonstrates how to use some of the subpopulation related functions.

Example: Manipulation of subpopulations

>>> import simuPOP as sim
>>> pop = sim.Population(size=[3, 4, 5], ploidy=1, loci=1, infoFields='x')
>>> # individual 0, 1, 2, ... will have an allele 0, 1, 2, ...
>>> pop.setGenotype(range(pop.popSize()))
>>> #
>>> pop.subPopSize(1)
4
>>> # merge subpopulations
>>> pop.mergeSubPops([1, 2])
1
>>> # split subpopulations
>>> pop.splitSubPop(1, [2, 7])
(1, 2)
>>> pop.subPopSizes()
(3, 2, 7)
>>> # remove subpopulations
>>> pop.removeSubPops(1)
>>> pop.subPopSizes()
(3, 7)

now exiting runScriptInteractively...

4.3. Population 33

simuPOP

Download subPop.py

Some population operations change the IDs of subpopulations. For example, if a population has three subpopulations
0, 1, and 2, and subpopulation 1 is split into two subpouplations, subpopulation 2 will become subpopulation 3. Track-
ing the ID of a subpopulation can be problematic, especially when conditional or random subpopulation operations
are involved. In this case, you can specify names to subpopulations. These names will follow their associated subpop-
ulations during population operations so you can identify the ID of a subpopulation by its name. Note that simuPOP
allows duplicate subpopulation names.

Example: Use of subpopulation names

>>> import simuPOP as sim
>>> pop = sim.Population(size=[3, 4, 5], subPopNames=['x', 'y', 'z'])
>>> pop.removeSubPops([1])
>>> pop.subPopNames()
('x', 'z')
>>> pop.subPopByName('z')
1
>>> pop.splitSubPop(1, [2, 3])
(1, 2)
>>> pop.subPopNames()
('x', 'z', 'z')
>>> pop.setSubPopName('z-1', 1)
>>> pop.subPopNames()
('x', 'z-1', 'z')
>>> pop.subPopByName('z')
2

now exiting runScriptInteractively...

Download subPopName.py

4.3.3 Virtual subpopulations and virtual splitters *

simuPOP subpopulations can be further divided into virtual subpopulations (VSP), which are groups of individuals
who share certain properties. For example, all male individuals, all unaffected individuals, all individuals with in-
formation field age > 20, all individuals with genotype 0, 0 at a given locus, can form VSPs. VSPs do not have to
add up to the whole subpopulation, nor do they have to be non-overlapping. Unlike subpopulations that have strict
boundaries, VSPs change easily with the changes of individual properties.

VSPs are defined by virtual splitters. It is a definition for groups of individuals in each subpopulation. A splitter
defines the same number of VSPs in all subpopulations, although sizes of these VSPs vary across subpopulations due
to subpopulation differences. For example, a SexSplitter() defines two VSPs, the first with all male individuals
and the second with all female individuals, and a InfoSplitter(field='x', values=[1, 2, 4]) defines
three VSPs whose members have values 1, 2 and 4 at information field x, respectively. This splitter also allows the
use of cutoff values and ranges to define VSPs. If different types of VSPs are needed, a combined splitter can be used
to combine VSPs defined by several splitters.

A VSP is represented by a [sp, vsp] pair where sp and vsp can be subpopulation indexes or names. Its name and
size can be obtained using functions subPopName() and subPopSize(). Example virtualSplitter demonstrates
how to apply virtual splitters to a population, and how to check VSP names and sizes.

Example: Define virtual subpopulations in a population

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=[200, 400], loci=[30], infoFields='x')

(continues on next page)

34 Chapter 4. Individuals and Populations

subPop.py
subPopName.py

simuPOP

(continued from previous page)

>>> # assign random information fields
>>> sim.initSex(pop)
>>> sim.initInfo(pop, lambda: random.randint(0, 3), infoFields='x')
>>> # define a virtual splitter by sex
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> pop.numVirtualSubPop() # Number of defined VSPs
2
>>> pop.subPopName([0, 0]) # Each VSP has a name
'Male'
>>> pop.subPopSize([0, 1]) # Size of VSP 1 in subpopulation 0
109
>>> pop.subPopSize([0, 'Female']) # Refer to vsp by its name
109
>>> # define a virtual splitter by information field 'x'
>>> pop.setVirtualSplitter(sim.InfoSplitter(field='x', values=[0, 1, 2, 3]))
>>> pop.numVirtualSubPop() # Number of defined VSPs
4
>>> pop.subPopName([0, 0]) # Each VSP has a name
'x = 0'
>>> pop.subPopSize([0, 0]) # Size of VSP 0 in subpopulation 0
46
>>> pop.subPopSize([1, 0]) # Size of VSP 0 in subpopulation 1
92

now exiting runScriptInteractively...

Download virtualSplitter.py

VSP provides an easy way to access groups of individuals in a subpopulation and allows finer control of an evolutionary
process. For example, mating schemes can be applied to VSPs which makes it possible to apply different mating
schemes to, for example, individuals with different ages. By applying migration, mutation etc to VSPs, it is easy to
implement advanced features such as sex-biased migrations, different mutation rates for individuals at different stages
of a disease. Example virtualSubPop demonstrates how to initialize genotype and information fields to individuals in
male and female VSPs.

Example: Applications of virtual subpopulations

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(10, loci=[2, 3], infoFields='Sex')
>>> sim.initSex(pop)
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> # initialize male and females with different genotypes.
>>> sim.initGenotype(pop, genotype=[0]*5, subPops=[(0, 0)])
>>> sim.initGenotype(pop, genotype=[1]*5, subPops=[(0, 1)])
>>> # set Sex information field to 0 for all males, and 1 for all females
>>> pop.setIndInfo([sim.MALE], 'Sex', [0, 0])
>>> pop.setIndInfo([sim.FEMALE], 'Sex', [0, 1])
>>> # Print individual genotypes, followed by values at information field Sex
>>> sim.dump(pop, structure=False)
SubPopulation 0 (), 10 Individuals:

0: FU 11 111 | 11 111 | 2
1: FU 11 111 | 11 111 | 2
2: MU 00 000 | 00 000 | 1
3: MU 00 000 | 00 000 | 1
4: MU 00 000 | 00 000 | 1
5: MU 00 000 | 00 000 | 1

(continues on next page)

4.3. Population 35

virtualSplitter.py

simuPOP

(continued from previous page)

6: MU 00 000 | 00 000 | 1
7: FU 11 111 | 11 111 | 2
8: FU 11 111 | 11 111 | 2
9: FU 11 111 | 11 111 | 2

now exiting runScriptInteractively...

Download virtualSubPop.py

4.3.4 Advanced virtual subpopulation splitters **

simuPOP provides a number of virtual splitters that can define VSPs using specified properties. For example,
InfoSplitter(field='a', values=[1,2,3]) defines three VSPs whose individuals have values 1, 2, and
3 at information field a, respectively; SexSplitter() defines two VSPs of male and female individuals, respec-
tively; and RangeSplitter(ranges=[[0, 2000], [2000, 5000]]) defines two VSPs using two blocks
of individuals.

A CombinedSplitter can be used if your simulation needs more than one sets of VSPs. For example, you may
want to split your subpopulations both by sex and by affection status. In this case, you can define a combined splitter
using

CombinedSplitter(splitters=[SexSplitter(), AffectionSplitter()])

This splitter simply stacks VSPs defined in AffectionSplitter() after SexSplitter() so that unaffected and
affected VSPs are now VSPs 2 and 3 (0 and 1 are used for male and female VSPs).

There are also scenarios when you would like to define finer VSPs with individuals belonging to more than one VSPs.
For example, you may want to have a look of frequencies of certain alleles in affected male vs affected females, or
count the number of males and females with certain value at an information field. In this case, a ProductSplitter
can be used to define VSPs using interactions of several VSPs. For example,

ProductSplitter(splitters=[SexSplitter(), AffectionSplitter()])

defines 4 subpopulations by splitting VSPs defined by SexSplitter() with affection status. These four VSPs will
then have unaffected male, affected male, unaffected female and affected female individuals, respectively.

If you consider ProductSplitter as an intersection splitter that defines new VSPs as intersections of existing
VSPs, you may wonder how to define unions of VSPs. For example, you can make a case where you want to
consider Individuals with information field a < 0 or a > 100 together. A regular InfoSplitter(field='a',
cutoff=[0, 100]) cannot do that because it defines three VSPs with , and , respectively. The trick here is to
use parameter vspMap of a CombinedSplitter. If this parameter is defined, multiple VSPs could be groups or
reordered to define a new set of VSPs. For example,

CombinedSplitter(splitters=[InfoSplitter(field='a', cutoff=[0, 100])], vspMap=[[0,2],
→˓1])

defines two VSPs using VSPs 0 and 2, and VSP 1 defined by the InfoSplitter so that the first VSP contains
individuals with or .

Example advancedVSP demonstrates some advanced usages of virtual splitters.

Example: Advanced virtual subpopulation usages.

36 Chapter 4. Individuals and Populations

virtualSubPop.py

simuPOP

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=[2000, 4000], loci=[30], infoFields='x')
>>> # assign random information fields
>>> sim.initSex(pop)
>>> sim.initInfo(pop, lambda: random.randint(0, 3), infoFields='x')
>>> #
>>> # 1, use a combined splitter
>>> pop.setVirtualSplitter(sim.CombinedSplitter(splitters = [
... sim.SexSplitter(),
... sim.InfoSplitter(field='x', values=[0, 1, 2, 3])
...]))
>>> pop.numVirtualSubPop() # Number of defined VSPs
6
>>> pop.subPopName([0, 0]) # Each VSP has a name
'Male'
>>> pop.subPopSize([0, 0]) # sim.MALE
1011
>>> pop.subPopSize([1, 4]) # individuals in sp 1 with value 2 at field x
1048
>>> #
>>> # use a product splitter that defines additional VSPs by sex and info
>>> pop.setVirtualSplitter(sim.ProductSplitter(splitters = [
... sim.SexSplitter(names=['M', 'F']), # give a new set of names
... sim.InfoSplitter(field='x', values=[0, 1, 2, 3])
...]))
>>> pop.numVirtualSubPop() # Number of defined VSPs
8
>>> pop.subPopName([0, 0]) # Each VSP has a name
'M, x = 0'
>>> pop.subPopSize([0, 0]) # sim.MALE with value 1 in sp 0
240
>>> pop.subPopSize([1, 5]) # sim.FEMALE with value 1 in sp 1
453
>>> #
>>> # use a combined splitter to join VSPs defined by a
>>> # product splitter
>>> pop.setVirtualSplitter(sim.CombinedSplitter([
... sim.ProductSplitter([
... sim.SexSplitter(),
... sim.InfoSplitter(field='x', values=[0, 1, 2, 3])])],
... vspMap = [[0,1,2], [4,5,6], [7]],
... names = ['Male x<=3', 'Female x<=3', 'Female x=4']))
>>> pop.numVirtualSubPop() # Number of defined VSPs
3
>>> pop.subPopName([0, 0]) # Each VSP has a name
'Male x<=3'
>>> pop.subPopSize([0, 0]) # sim.MALE with value 0, 1, 2 at field x
770
>>> pop.subPopSize([1, 1]) # sim.FEMALE with value 0, 1 or 2 at field x
1493

now exiting runScriptInteractively...

Download advancedVSP.py

4.3. Population 37

advancedVSP.py

simuPOP

4.3.5 Access individuals and their properties

There are many ways to access individuals of a population. For example, function Population.
Individual(idx) returns a reference to the idx-th individual in a population. An optional parameter subPop
can be specified to return the idx-th individual in the subPop-th subpopulation.

If you would like to access a group of individuals, either from a whole population, a subpopulation, or from a virtual
subpopulation, Population.individuals([subPop]) is easier to use. This function returns a Python iterator
that can be used to iterate through individuals. An advantage of this function is that subPopcan be a virtual subpop-
ulation which makes it easy to iterate through Individuals with certain properties (such as all male Individuals). If you
would like to iterate through multiple virtual subpopulations in one or more ancestral generations, you can use another
function Population.allIndividuals(subPops, ancGens).

If more than one generations are stored in a population, function ancestor(idx, [subPop], gen) can be used
to access Individual from an ancestral generation (see Section subsec_Ancestral_populations for details). Because
there is no group access function for ancestors, it may be more convenient to use useAncestralGen to make an
ancestral generation the current generation, and use Population.Individuals. Note that ancestor() function
can always access individuals at a certain generation, regardless which generation the current generation is. Example
batchAccess demonstrates how to use all these Individual-access functions.

If an unique ID is assigned to all individuals in a population, you can look up individuals from their IDs using function
Population.indByID(). The information field to save individual ID is usually ind_id and you can use operator
IdTagger and its function form tagID to set this field. Note that this function can be used to look up individuals
in the present and all ancestral generations, although a parameter (ancGen) can be used to limit search to a specific
generation if you know in advance which generation the individual locates.

Example: Access individuals of a population

>>> import simuPOP as sim
>>> # create a sim.population with two generations. The current generation has values
>>> # 0-9 at information field x, the parental generation has values 10-19.
>>> pop = sim.Population(size=[5, 5], loci=[2, 3], infoFields='x', ancGen=1)
>>> pop.setIndInfo(range(10, 20), 'x')
>>> pop1 = pop.clone()
>>> pop1.setIndInfo(range(10), 'x')
>>> pop.push(pop1)
>>> #
>>> ind = pop.individual(5) # using absolute index
>>> ind.x
5.0
>>> ind.x # the same as ind.x
5.0
>>> # use a for loop, and relative index
>>> for idx in range(pop.subPopSize(1)):
... print(pop.individual(idx, 1).x)
...
5.0
6.0
7.0
8.0
9.0
>>> # It is usually easier to use an iterator
>>> for ind in pop.individuals(1):
... print(ind.x)
...
5.0
6.0
7.0

(continues on next page)

38 Chapter 4. Individuals and Populations

simuPOP

(continued from previous page)

8.0
9.0
>>> # Access individuals in VSPs
>>> pop.setVirtualSplitter(sim.InfoSplitter(cutoff=[3, 7, 17], field='x'))
>>> for ind in pop.individuals([1, 1]):
... print(ind.x)
...
5.0
6.0
>>> # Access all individuals in all ancestral generations
>>> print([ind.x for ind in pop.allIndividuals()])
[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0,
→˓ 16.0, 17.0, 18.0, 19.0]
>>> # or only specified subpopulations or ancestral generations
>>> print([ind.x for ind in pop.allIndividuals(subPops=[(0,2), (1,3)], ancGens=1)])
[10.0, 11.0, 12.0, 13.0, 14.0, 17.0, 18.0, 19.0]
>>>
>>> # Access individuals in ancetral generations
>>> pop.ancestor(5, 1).x # absolute index
15.0
>>> pop.ancestor(0, 1, 1).x # relative index
15.0
>>> # Or make ancestral generation the current generation and use 'individual'
>>> pop.useAncestralGen(1)
>>> pop.individual(5).x # absolute index
15.0
>>> pop.individual(0, 1).x # relative index
15.0
>>> # 'ancestor' can still access the 'present' (generation 0) generation
>>> pop.ancestor(5, 0).x
5.0
>>> # access individual by ID
>>> pop.addInfoFields('ind_id')
>>> sim.tagID(pop)
>>> [int(ind.ind_id) for ind in pop.individuals()]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> # access individual by ID. Note that individual 12 is in the parental generation
>>> pop.indByID(12).x
1.0

now exiting runScriptInteractively...

Download accessIndividual.py

Although it is easy to access individuals in a population, it is often more efficient to access genotypes and information
fields in batch mode. For example, functions genotype() andsetGenotype() can read/write genotype of all
individuals in a population or (virtual) subpopulation, functions indInfo() and setIndInfo() can read/write
certain information fields in a population or (virtual) subpopulation. The write functions work in a circular manner in
the sense that provided values are reused if they are not enough to fill all genotypes or information fields. Example
batchAccess demonstrates the use of such functions.

Example: Access Individual properties in batch mode

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=[4, 6], loci=2, infoFields='x')
>>> pop.setIndInfo([random.randint(0, 10) for x in range(10)], 'x')

(continues on next page)

4.3. Population 39

accessIndividual.py

simuPOP

(continued from previous page)

>>> pop.indInfo('x')
(7.0, 5.0, 8.0, 10.0, 7.0, 0.0, 8.0, 4.0, 4.0, 10.0)
>>> pop.setGenotype([0, 1, 2, 3], 0)
>>> pop.genotype(0)
[0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
>>> pop.setVirtualSplitter(sim.InfoSplitter(cutoff=[3], field='x'))
>>> pop.setGenotype([0]) # clear all values
>>> pop.setGenotype([5, 6, 7], [1, 1])
>>> pop.indInfo('x', 1)
(7.0, 0.0, 8.0, 4.0, 4.0, 10.0)
>>> pop.genotype(1)
[5, 6, 7, 5, 0, 0, 0, 0, 6, 7, 5, 6, 7, 5, 6, 7, 5, 6, 7, 5, 6, 7, 5, 6]

now exiting runScriptInteractively...

Download batchAccess.py

4.3.6 Attach arbitrary auxillary information using information fields

Information fields are usually set during population creation, using the infoFields parameter of the population con-
structor. It can also be set or added using functions setInfoFields, addInfoFieldand addInfoFields.
Example popInfo demonstrates how to read and write information fields from an individual, or from a population
in batch mode. Note that functions Population.indInfo and Population.setIndInfo can be applied to
(virtual) subpopulation using a optional parameter subPop.

Example: Add and use of information fields in a population

>>> import simuPOP as sim
>>> pop = sim.Population(10)
>>> pop.setInfoFields(['a', 'b'])
>>> pop.addInfoFields('c')
>>> pop.addInfoFields(['d', 'e'])
>>> pop.infoFields()
('a', 'b', 'c', 'd', 'e')
>>> #
>>> # information fields can be accessed in batch mode
>>> pop.setIndInfo([1], 'c')
>>> # as well as individually.
>>> for ind in pop.individuals():
... ind.e = ind.c + 1
...
>>> print(pop.indInfo('e'))
(2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0)

now exiting runScriptInteractively...

Download popInfo.py

4.3.7 Keep track of ancestral generations

A simuPOP population usually holds individuals in one generation. During evolution, an offspring generation will
replace the parental generation and become the present generation (population), after it is populated from a parental
population. The parental generation is discarded.

40 Chapter 4. Individuals and Populations

batchAccess.py
popInfo.py

simuPOP

This is usually enough when only the present generation is of interest. However, parental generations can provide use-
ful information on how genotype and other information are passed from parental to offspring generations. simuPOP
provides a mechanism to store and access arbitrary number of ancestral generations in a population object. Applica-
tions of this feature include pedigree tracking, reconstruction, and pedigree ascertainments.

A parameter ancGen is used to specify how many generations a population object can store (which is usually called
the ancestral depth of a population). This parameter is default to 0, meaning keeping no ancestral population. You
can specify a positive number n to store n most recent generations; or -1 to store all generations. Of course, storing
all generations during an evolutionary process is likely to exhaust the RAM of your computer quickly.

Several member functions can be used to manipulate ancestral generations:

• ancestralGens()returns the number of ancestral generations stored in a population.

• setAncestralDepth(depth) resets the number of generations a population can store.

• push(pop)will push population pop into the current population. popwill become the current generation, and
the current generation will either be removed (if ancGen == 0), or become the parental generation of pop. The
greatest ancestral generation may be removed. This function is rarely used because populations with ancestral
generations are usually created during an evolutionary process.

• useAncestralGen(idx) set the present generation to idx generation. idx = 1 for the parental gen-
eration, 2 for grand-parental, . . . , and 0 for the present generation. This is useful because most population
functions act on the present generation. You should always call setAncestralPop(0) after you examined
the ancestral generations.

If a population has several ancestral generations, they are referred by their indexes 0 (the latest generation), 1 (parental
generation), . . . and (top-most ancestral generation) where equals to ancestralGens(). In many cases, you can
retrieve the properties of ancestral generations directly, using functions such as

• popSize(ancGen=-1), subPopSizes(ancGen=-1), subPopSize(subPop, ancGen=-1):
population and subpopulation sizes of ancestral generation ancGen.

• ancestor(index, ancGen): Get a reference to the index individual of ancestral generation ancGen.

However, most population member functions work at the current generation so you will need to switch to an ancestral
generation using function useAncestralGen() if you would like to manipulate an ancestral generation. For
example, you can remove the second subpopulation of the parental generation using functions:

pop.useAncestralGen(1)
pop.removeSubPops(1)

A typical use of ancestral generations is demonstrated in example extract. In this example, a population is created and
is initialized with allele frequency 0.5. Its ancestral depth is set to 2 at the beginning of generation 18 so that it can hold
parental generations at generation 18 and 19. The allele frequency at each generation is calculated and displayed, both
during evolution using a Stat operator, and after evolution using the function form this operator. Note that setting
the ancestral depth at the end of an evolutionary process is a common practice because we are usually only interested
in the last few generations.

Example: Ancestral populations

>>> import simuPOP as sim
>>> pop = sim.Population(500, loci=1, ancGen=2)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme = sim.RandomMating(),
... postOps=[

(continues on next page)

4.3. Population 41

simuPOP

(continued from previous page)

... sim.Stat(alleleFreq=0, begin=-3),

... sim.PyEval(r"'%.3f\n' % alleleFreq[0][0]", begin=-3)

...],

... gen = 20

...)
0.495
0.510
0.506
20
>>> # information
>>> pop.ancestralGens()
2
>>> pop.popSize(ancGen=1)
500
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> # number of males in the current and parental generation
>>> pop.subPopSize((0,0)), pop.subPopSize((0,0), ancGen=1)
(254, 249)
>>> # start from current generation
>>> for i in range(pop.ancestralGens(), -1, -1):
... pop.useAncestralGen(i)
... sim.stat(pop, alleleFreq=0)
... print('%d %.3f' % (i, pop.dvars().alleleFreq[0][0]))
...
2 0.495
1 0.510
0 0.506
>>> # restore to the current generation
>>> pop.useAncestralGen(0)

now exiting runScriptInteractively...

Download ancestralPop.py

4.3.8 Change genotypic structure of a population

Several functions are provided to remove, add empty loci or chromosomes, and to merge loci or chromosomes from
another population. They can be used to trim unneeded loci, expand existing population or merge two populations.
Example extract demonstrates how to use these populations. Note that function Population.addLociFrom by
default merges chromosomes one by one according to chromosome index. If byName is set to True, it will try to match
chromosomes by name and merge them. This example also demonstrates the use of DBG_WARNING flag, which will
trigger a warning message when chromosomes with different names are merged.

Example: Add and remove loci and chromosomes

>>> import simuOpt
>>> simuOpt.setOptions(debug='DBG_WARNING')
>>> import simuPOP as sim
Turn on debug 'DBG_WARNING'
>>> pop = sim.Population(10, loci=3, chromNames=['chr1'])
>>> # 1 1 1,
>>> pop.setGenotype([1])
>>> # 1 1 1, 0 0 0
>>> pop.addChrom(lociPos=[0.5, 1, 2], lociNames=['rs1', 'rs2', 'rs3'],
... chromName='chr2')

(continues on next page)

42 Chapter 4. Individuals and Populations

ancestralPop.py

simuPOP

(continued from previous page)

>>> pop1 = sim.Population(10, loci=3, chromNames=['chr3'],
... lociNames=['rs4', 'rs5', 'rs6'])
>>> # 2 2 2,
>>> pop1.setGenotype([2])
>>> # 1 1 1, 0 0 0, 2 2 2
>>> pop.addChromFrom(pop1)
>>> # 1 1 1, 0 0 0, 2 0 2 2 0
>>> pop.addLoci(chrom=[2, 2], pos=[1.5, 3.5], lociNames=['rs7', 'rs8'])
(7, 10)
>>> # 1 1 1, 0 0 0, 2 0 2 0
>>> pop.removeLoci(8)
>>> # loci names can also be used.
>>> pop.removeLoci(['rs1', 'rs7'])
>>> sim.dump(pop)
Ploidy: 2 (diploid)
Chromosomes:
1: chr1 (AUTOSOME, 3 loci)

(1), (2), (3)
2: chr2 (AUTOSOME, 2 loci)

rs2 (1), rs3 (2)
3: chr3 (AUTOSOME, 3 loci)

rs4 (1), rs6 (3), rs8 (3.5)
population size: 10 (1 subpopulations with 10 Individuals)
Number of ancestral populations: 0

SubPopulation 0 (), 10 Individuals:
0: MU 111 00 220 | 111 00 220
1: MU 111 00 220 | 111 00 220
2: MU 111 00 220 | 111 00 220
3: MU 111 00 220 | 111 00 220
4: MU 111 00 220 | 111 00 220
5: MU 111 00 220 | 111 00 220
6: MU 111 00 220 | 111 00 220
7: MU 111 00 220 | 111 00 220
8: MU 111 00 220 | 111 00 220
9: MU 111 00 220 | 111 00 220

>>> # add loci from another population
>>> pop2 = sim.Population(10, loci=2, lociPos=[0.1, 2.2], chromNames='chr3')
>>> pop.addLociFrom(pop2)
WARNING: Chromosome 'chr3' is merged to chromosome 'chr1'.
>>> pop.addLociFrom(pop2, byName=2)
>>> sim.dump(pop, genotype=False)
Ploidy: 2 (diploid)
Chromosomes:
1: chr1 (AUTOSOME, 5 loci)

(0.1), (1), (2), (2.2), (3)
2: chr2 (AUTOSOME, 2 loci)

rs2 (1), rs3 (2)
3: chr3 (AUTOSOME, 5 loci)

(0.1), rs4 (1), (2.2), rs6 (3), rs8 (3.5)
population size: 10 (1 subpopulations with 10 Individuals)
Number of ancestral populations: 0

now exiting runScriptInteractively...

4.3. Population 43

simuPOP

Download addRemoveLoci.py

4.3.9 Remove or extract individuals and subpopulations from a population

Functions Population.removeIndividuals and Population.removeSubPops remove selected indi-
viduals or groups of individuals from a population. Functions Population.extractIndividuals and
Population.extractSubPops extract individuals and subpopulations from an existing population and form
a new one.

Functions removeIndividauls and extractIndividuals could be used to remove or extract individuals
from the present generation by indexes or from all ancestral generations by IDs or a Python filter function. This
function should accept parameter ind or one or more information fields. simuPOP will pass individual for parameter
ind, and values at specified information fields (age in this example) of each individual to this function. The present
population structure will be kept, even if some subpopulations are left empty. For example, you could remove the first
thirty individuals of a population using

pop.removeIndividuals(indexes=range(30))

or remove all individuals at age 20 or 30 using

pop.removeIndividuals(IDs=(20, 30), idField='age')

or remove all individuals with age between 20 and 30 using

pop.removeIndividuals(filter=lambda age: age >=20 and age <=30)

. In the last example, a Python lambda function is defined to avoid the definition of a named function.

Functions removeSubPops or extractSubPops could be used to remove or extract subpopulations, or goups of
individuals defined by virtual subpopulations from a population. The latter case is very interesting because it could be
used to remove or extract individuals with similar properties, such as all individuals between the ages 40 and 60, as
demonstrated in Example extract.

Example: Extract individuals

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=[200, 200], loci=[5, 5], infoFields='age')
>>> sim.initGenotype(pop, genotype=range(10))
>>> sim.initInfo(pop, lambda: random.randint(0,75), infoFields='age')
>>> pop.setVirtualSplitter(sim.InfoSplitter(field='age', cutoff=[20, 60]))
>>> # remove individuals
>>> pop.removeIndividuals(indexes=range(0, 300, 10))
>>> print(pop.subPopSizes())
(180, 190)
>>> # remove individuals using IDs
>>> pop.setIndInfo([1, 2, 3, 4], field='age')
>>> pop.removeIndividuals(IDs=[2, 4], idField='age')
>>> # remove indiviuals using a filter function
>>> sim.initSex(pop)
>>> pop.removeIndividuals(filter=lambda ind: ind.sex() == sim.MALE)
>>> print([pop.individual(x).sex() for x in range(8)])
[2, 2, 2, 2, 2, 2, 2, 2]
>>> #
>>> # remove subpopulation
>>> pop.removeSubPops(1)
>>> print(pop.subPopSizes())

(continues on next page)

44 Chapter 4. Individuals and Populations

addRemoveLoci.py

simuPOP

(continued from previous page)

(56,)
>>> # remove virtual subpopulation (people with age between 20 and 60)
>>> pop.removeSubPops([(0, 1)])
>>> print(pop.subPopSizes())
(56,)
>>> # extract another virtual subpopulation (people with age greater than 60)
>>> pop1 = pop.extractSubPops([(0,2)])
>>> sim.dump(pop1, structure=False, max=10)
SubPopulation 0 (), 0 Individuals:

now exiting runScriptInteractively...

Download extract.py

4.3.10 Store arbitrary population information as population variables

Each simuPOP population has a Python dictionary that can be used to store arbitrary Python variables. These vari-
ables are usually used by various operators to share information between them. For example, the Stat operator
calculates population statistics and stores the results in this Python dictionary. Other operators such as the PyEval
and TerminateIfread from this dictionary and act upon its information.

simuPOP provides two functions, namely Population.vars() and Population.dvars() to access a pop-
ulation dictionary. These functions return the same dictionary object but dvars() returns a wrapper class so that
you can access this dictionary as attributes. For example, pop.vars()['alleleFreq'][0] is equivalent to
pop.dvars().alleleFreq[0]. Because dictionary subPop[spID] is frequently used by operators to store
variables related to a particular (virtual) subpopulation, function pop.vars(subPop) is provided as a shortcut to
pop.vars()['subPop'][spID]. Example popVars demonstrates how to set and access population variables.

Example: population variables

>>> import simuPOP as sim
>>> from pprint import pprint
>>> pop = sim.Population(100, loci=2)
>>> sim.initGenotype(pop, freq=[0.3, 0.7])
>>> print(pop.vars()) # No variable now
{}
>>> pop.dvars().myVar = 21
>>> print(pop.vars())
{'myVar': 21}
>>> sim.stat(pop, popSize=1, alleleFreq=0)
>>> # pprint prints in a less messy format
>>> pprint(pop.vars())
{'alleleFreq': {0: defdict({0: 0.275, 1: 0.725})},
'alleleNum': {0: defdict({0: 55.0, 1: 145.0})},
'myVar': 21,
'popSize': 100,
'subPopSize': [100]}

>>> # print number of allele 1 at locus 0
>>> print(pop.vars()['alleleNum'][0][1])
145.0
>>> # use the dvars() function to access dictionary keys as attributes
>>> print(pop.dvars().alleleNum[0][1])
145.0
>>> print(pop.dvars().alleleFreq[0])

(continues on next page)

4.3. Population 45

extract.py

simuPOP

(continued from previous page)

defdict({0: 0.275, 1: 0.725})

now exiting runScriptInteractively...

Download popVars.py

It is important to understand that this dictionary forms a local namespace in which Python expressions can be eval-
uated. This is the basis of how expression-based operators work. For example, the PyEvaloperator in example
simple_example evaluates expression ‘‘'%.2f\\t' % LD[0][1]'' in each population’s local namespace when
it is applied to that population. This yields different results for different population because their LD values are differ-
ent. In addition to Python expressions, Python statements can also be executed in the local namespace of a population,
using the stmts parameter of the PyEval or PyExec operator. Example expression demonstrates the use of a
simuPOP terminator, which terminates the evolution of a population when its expression is evaluated as True. Note
that The evolve()function of this example does not specify how many generations to evolve so it will stop only
after all replicates stop. The return value of this function indicates how many generations each replicate has evolved.
This example also demonstrates how to run multiple replicates of an evolutionary process, which we will discuss in
detail latter.

Example: Expression evaluation in the local namespace of a population

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(100, loci=1), rep=5)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme = sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.TerminateIf('len(alleleFreq[0]) == 1')
...]
...)
(129, 1540, 180, 247, 242)

now exiting runScriptInteractively...

Download expression.py

4.3.11 Save and load a population

simuPOP populations can be saved to and loaded from disk files using Population.save(file) member func-
tion and global function loadPopulation. Virtual splitters are not saved because they are considered as runtime
definitions. Although files in any extension can be used, extension .pop is recommended. Example savePop demon-
strates how to save and load a population in the native simuPOP format.

Example: Save and load a population

>>> import simuPOP as sim
>>> pop = sim.Population(100, loci=5, chromNames=['chrom1'])
>>> pop.dvars().name = 'my sim.Population'
>>> pop.save('sample.pop')
>>> pop1 = sim.loadPopulation('sample.pop')
>>> pop1.chromName(0)
'chrom1'

(continues on next page)

46 Chapter 4. Individuals and Populations

popVars.py
expression.py

simuPOP

(continued from previous page)

>>> pop1.dvars().name
'my sim.Population'

now exiting runScriptInteractively...

Download savePop.py

The native simuPOP format is portable across different platforms but is not human readable and is not recognized
by other applications. If you need to save a simuPOP population in a format that is recognizable by a particular
software, you can use functions importPopulation, export, and operator Exporter if you would like to
export populations during evolution. These functions are defined in module simuPOP.utils.

4.3.12 Import and export datasets in unsupported formats *

simuPOP provides a few utility functions to import and export populations in common formats such as GENEPOP,
Phylip, and STRUCTURE (see chapter utility modules for details). If you need to import data from a file in a format
that is not currently supported, you generally need to first scan the file for information such as number and names of
chromosomes, loci, alleles, subpopulation, and individuals. After you create a population without genotype informa-
tion from these parameters, you can scan the file for the second time and fill the population with genotypes and other
information. Example importData demonstrates how to define a function to import from a file that is saved by function
saveCSV .

Example: Import a population from another file format

>>> import simuPOP as sim
>>> def importData(filename):
... 'Read data from ``filename`` and create a population'
... data = open(filename)
... header = data.readline()
... fields = header.split(',')
... # columns 1, 3, 5, ..., without trailing '_1'
... names = [fields[x].strip()[:-2] for x in range(1, len(fields), 2)]
... popSize = 0
... alleleNames = set()
... for line in data.readlines():
... # get all allele names
... alleleNames |= set([x.strip() for x in line.split(',')[1:]])
... popSize += 1
... # create a population
... alleleNames = list(alleleNames)
... pop = sim.Population(size=popSize, loci=len(names), lociNames=names,
... alleleNames=alleleNames)
... # start from beginning of the file again
... data.seek(0)
... # discard the first line
... data.readline()
... for ind, line in zip(pop.individuals(), data.readlines()):
... fields = [x.strip() for x in line.split(',')]
... sex = sim.MALE if fields[0] == '1' else sim.FEMALE
... ploidy0 = [alleleNames.index(fields[x]) for x in range(1, len(fields), 2)]
... ploidy1 = [alleleNames.index(fields[x]) for x in range(2, len(fields), 2)]
... ind.setGenotype(ploidy0, 0)
... ind.setGenotype(ploidy1, 1)
... ind.setSex(sex)
... # close the file

(continues on next page)

4.3. Population 47

savePop.py

simuPOP

(continued from previous page)

... data.close()

... return pop

...
>>> from simuPOP.utils import saveCSV
>>> pop = sim.Population(size=[10], loci=[3, 2], lociNames=['rs1', 'rs2', 'rs3', 'rs4
→˓', 'rs5'],
... alleleNames=['A', 'B'])
>>> sim.initSex(pop)
>>> sim.initGenotype(pop, freq=[0.5, 0.5])
>>> # output sex but not affection status.
>>> saveCSV(pop, filename='sample.csv', affectionFormatter=None,
... sexFormatter={sim.MALE:1, sim.FEMALE:2})
>>> # have a look at the file
>>> print(open('sample.csv').read())
sex, rs1_1, rs1_2, rs2_1, rs2_2, rs3_1, rs3_2, rs4_1, rs4_2, rs5_1, rs5_2
2, B, B, B, B, B, A, A, B, B, A
2, B, A, B, A, B, A, A, A, A, B
1, B, B, B, B, B, B, B, B, B, A
1, B, A, B, A, B, B, B, A, A, A
1, B, B, B, B, B, B, A, A, B, A
1, A, B, B, A, B, B, B, A, B, B
1, B, B, B, B, B, B, B, B, A, A
2, B, B, A, A, B, A, A, A, B, A
2, A, B, B, B, A, B, B, A, A, B
2, B, A, A, B, A, A, B, B, B, A

>>> pop1 = importData('sample.csv')
>>> sim.dump(pop1)
Ploidy: 2 (diploid)
Chromosomes:
1: (AUTOSOME, 5 loci)

rs1 (1), rs2 (2), rs3 (3), rs4 (4), rs5 (5)
population size: 10 (1 subpopulations with 10 Individuals)
Number of ancestral populations: 0

SubPopulation 0 (), 10 Individuals:
0: FU BBBAB | BBABA
1: FU BBBAA | AAAAB
2: MU BBBBB | BBBBA
3: MU BBBBA | AABAA
4: MU BBBAB | BBBAA
5: MU ABBBB | BABAB
6: MU BBBBA | BBBBA
7: FU BABAB | BAAAA
8: FU ABABA | BBBAB
9: FU BAABB | ABABA

now exiting runScriptInteractively...

Download importData.py

Unless there are specific requirements in the order and labeling of individuals, exporting a simuPOP
population is usually straightforward. Functions that are useful in such occasions include struc-
tural functions Population.numSubPop(), Population.subPopName, Population.popSize()
and Population.subPopSizes(), and individual access functions Population.individual() and
Population.individuals() and individual population access functions such as Individual.allele() and

48 Chapter 4. Individuals and Populations

importData.py

simuPOP

Individual.info(). Function saveFSTAT in the cookbook module fstatUtil or saveCSV in module
simuPOP.utils are good examples you can follow.

4.3. Population 49

simuPOP

50 Chapter 4. Individuals and Populations

CHAPTER 5

simuPOP Operators

simuPOP is large, consisting of more than 70 operators and various functions that covers all important aspects of
genetic studies. These includes mutation (k-allele, stepwise, generalized stepwise), migration (arbitrary, can create
new subpopulation), recombination (uniform or nonuniform), gene conversion, quantitative trait, selection, penetrance
(single or multi-locus, hybrid), ascertainment (case-control, affected sibpairs, random), statistics calculation (allele,
genotype, haplotype, heterozygote number and frequency; expected heterozygosity; bi-allelic and multi-allelic , and
linkage disequilibrium measures; , and); pedigree tracing, visualization (using R or other Python modules). This
chapter covers the basic and some not-so-basic usages of these operators, organized roughly by genetic factors.

5.1 Introduction to operators

Operators are objects that act on populations. There are two types of operators:

• Operators that are applied to populations. These operators are used in the initOps, preOps, postOps
and finalOps parameters of the evolve function. The initOps operators are applied before an evolution-
ary process, the preOps operators are applied to the parental population at each generation before mating, the
postOps operators are applied to the offspring population at each generation after mating, and the finalOps
operators are applied after an evolutionary process. Examples of such operators include MergeSubPops to
merge subpopulations and StepwiseMutator to mutate individuals using a stepwise mutation model.

• Operators that are applied to individuals (offspring) during mating. These operators are used in the ops
parameter of a mating scheme. They are usually used to transmit genotype or other information from parents
to offspring. Examples of such operators include MendelianGenoTransmitter that transmit parental
genotype to offspring according to Mendelian laws and ParentsTagger that record the indexes of parents in
the parental population to each offspring.

Some mutators could be applied both to populations and individuals. For example, an IdTagger could be applied to
a whole population and assign an unique ID to all individuals, or to offspring during mating.

The following sections will introduce common features of all operators. The next chapter will explain all simuPOP
operators in detail.

51

simuPOP

5.1.1 Apply operators to selected replicates and (virtual) subpopulations at se-
lected generations

Operators are, by default, applied to all generations during an evolutionary process. This can be changed using the
begin, end, step and at parameters. As their names indicate, these parameters control the starting generation
(begin), ending generation (end), generations between two applicable generations (step), and an explicit list of
applicable generations (at, a single generation number is also acceptable). Other parameters will be ignored if at is
specified. It is worth noting that, if an evolutionary process has a pre-sepcified ending generation, negative generations
numbers are allowed. They are counted backward from the ending generation.

For example, if a simulator starts at generation 0, and the evolve function has parameter gen=10, the simulator will
stop at the beginning of generation 10. Generation -1 refers to generation 9, and generation -2 refers to generation 8,
and so on. Example applicableGen demonstrates how to set applicable generations of an operator. In this example, a
population is initialized before evolution using an InitGenotype operator. allele frequency at locus 0 is calculated
at generation 80, 90, but not 100 because the evolution stops at the beginning of generation 100. A PyEval operator
outputs generation number and allele frequency at the end of generation 80 and 90. Another PyEval operator outputs
similar information at generation 90 and 99, before and after mating. Note, however, because allele frequencies are
only calculated twice, the pre-mating allele frequency at generation 90 is actually calculated at generation 80, and the
allele frequencies display for generation 99 are calculated at generation 90. At the end of the evolution, the population
is saved to a file using a SavePopulation operator.

Example: Applicable generations of an operator.

>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=[20])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.8, 0.2])
...],
... preOps=[
... sim.PyEval(r"'At the beginning of gen %d: allele Freq: %.2f\n' % (gen,
→˓alleleFreq[0][0])",
... at = [-10, -1])
...],
... matingScheme = sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0, begin=80, step=10),
... sim.PyEval(r"'At the end of gen %d: allele freq: %.2f\n' % (gen,
→˓alleleFreq[0][0])",
... begin=80, step=10),
... sim.PyEval(r"'At the end of gen %d: allele Freq: %.2f\n' % (gen,
→˓alleleFreq[0][0])",
... at = [-10, -1])
...],
... finalOps=sim.SavePopulation(output='sample.pop'),
... gen=100
...)
At the end of gen 80: allele freq: 0.92
At the beginning of gen 90: allele Freq: 0.92
At the end of gen 90: allele freq: 0.93
At the end of gen 90: allele Freq: 0.93
At the beginning of gen 99: allele Freq: 0.93
At the end of gen 99: allele Freq: 0.93
100

now exiting runScriptInteractively...

52 Chapter 5. simuPOP Operators

simuPOP

Download applicableGen.py

5.1.2 Applicable populations and (virtual) subpopulations

A simulator can evolve multiple replicates of a population simultaneously. Different operators can be applied to
different replicates of this population. This allows side by side comparison between simulations.

Parameter reps is used to control which replicate(s) an operator can be applied to. This parameter can be a list of
replicate numbers or a single replicate number. Negative index is allowed where -1 refers to the last replicate. This
technique has been widely used to produce table-like output where a PyOutput outputs a newline when it is applied
to the last replicate of a simulator. Example hybridOperator demonstrates how to use this reps parameter. It is worth
noting that negative indexes are dynamic indexes relative to number of active populations. For example, rep=-1 will
refer to a previous population if the last population has stopped evolving. Use a non-negative replicate number if this
is not intended.

Example: Apply operators to a subset of populations

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(100, loci=[20]), 5)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.2, 0.8])
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0, step=10),
... sim.PyEval('gen', step=10, reps=0),
... sim.PyEval(r"'\t%.2f' % alleleFreq[0][0]", step=10, reps=(0, 2, -1)),
... sim.PyOutput('\n', step=10, reps=-1)
...],
... gen=30,
...)
0 0.23 0.22 0.29
10 0.15 0.23 0.21
20 0.04 0.07 0.10
(30, 30, 30, 30, 30)

now exiting runScriptInteractively...

Download replicate.py

An operator can also be applied to specified (virtual) subpopulations. For example, an initializer can be
applied to male individuals in the first subpopulation, and everyone in the second subpopulation using parameter
subPops=[(0,0), 1], if a virtual subpopulation is defined by individual sex. Generally speaking,

• subPops=[] applies the operator to all subpopulation. This is usually the default value of an operator.

• subPops=[vsp1, vsp2,...] applies the operator all specified (virtual) subpopulations. (e.g.
subPops=[(0,0), 1]).

• subPops=sp is an abbreviation for subPops=[sp]. If sp is virtual, it has to be written as [sp] because
subPops=(0, 1) is intepreted as two non-virtual subpopulation.

However, not all operators support this parameter, and even if they do, their interpretations of parameter input may
vary. Please refer to documentation for individual operators in the simuPOP reference manual for details.

5.1. Introduction to operators 53

applicableGen.py
replicate.py

simuPOP

5.1.3 Dynamically determined loci (parameter loci) *

Many operators accept a parameter loci to specify the applicable loci. This parameter can be

• ALL_AVAIL: all available loci of the population to which the operator is applied.

• [1, 2, 4, 5]: A list of loci indexes. When the operator is applied to a population, it will be applied to the specified
loci.

• [('chr1', 5), ('chr1', 10), ('chr2', 5)]: A list of chromosome position pairs. That is to
say, when the operator is applied to a population, it will find loci at specified position of specified chromosome.
Here chromosome names are names specified by parameter chromNames of the Population constructor.
That is to say, the operator can be applied to all population with such chromosomes and loci at specified loca-
tions.

• func: A function with an optional parameter pop. When the operator is applied to a population, it will call this
function, optionally pass the population to be applied to this function, and use its output as indexes of loci.

The last usage is very interesting because it allows the determination of loci according to population property. For
example, Example dynamicLoci shows an example with a MaSelector that is applied to the locus with highest
frequency at each generation by calling function mostPopular, which calculates allele frequency and pick the locus
with highest allele frequency, This example looks silly, but the technique is very useful in simulating the introduction
of disease loci by, for example, adding positive selection pressure to one of the chosen loci.

Example: Natural selection with dynamically determined loci

>>> import simuPOP as sim
>>> pop = sim.Population(100, loci=[10], infoFields='fitness')
>>>
>>> def mostPopular(pop):
... sim.stat(pop, alleleFreq=sim.ALL_AVAIL)
... freq = [pop.dvars().alleleFreq[x][1] for x in range(pop.totNumLoci())]
... max_freq = max(freq)
... pop.dvars().selLoci = (freq.index(max_freq), max_freq)
... return [freq.index(max_freq)]
...
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.6, 0.4]),
...],
... preOps=[
... sim.MaSelector(fitness=[1, 0.9, 0.8], loci=mostPopular),
... sim.PyEval(r"'gen=%d, select against %d with frequency %.2f\n' % (gen,
→˓selLoci[0], selLoci[1])"),
...],
... matingScheme=sim.RandomMating(),
... gen=10,
...)
gen=0, select against 6 with frequency 0.45
gen=1, select against 7 with frequency 0.46
gen=2, select against 2 with frequency 0.51
gen=3, select against 2 with frequency 0.48
gen=4, select against 2 with frequency 0.45
gen=5, select against 9 with frequency 0.45
gen=6, select against 3 with frequency 0.46
gen=7, select against 9 with frequency 0.44
gen=8, select against 7 with frequency 0.47
gen=9, select against 3 with frequency 0.44

(continues on next page)

54 Chapter 5. simuPOP Operators

simuPOP

(continued from previous page)

10

now exiting runScriptInteractively...

Download dynamicLoci.py

5.1.4 Write output of operators to one or more files

All operators we have seen, except for the SavePopulation operator in Example applicableGen, write their output
to the standard output, namely your terminal window. However, it would be much easier for bookkeeping and further
analysis if these output can be redirected to disk files. Parameter output is designed for this purpose.

Parameter output can take the following values:

• '' (an empty string): No output.

• '>': Write to standard output.

• 'filename' or '>filename': Write the output to a file named filename. If multiple operators write to the
same file, or if the same operator writes to the file file several times, only the last write operation will succeed.

• '>>filename': Append the output to a file named filename. The file will be opened at the beginning of
evolve function and closed at the end. An existing file will be cleared.

• '>>>filename': This is similar to the '>>' form but the file will not be cleared at the beginning of the
evolve function.

• '!expr': expr is considered as a Python expression that will be evaluated at a population’s local namespace
whenever an output string is needed. For example, '!''%d.txt'' % gen' would return 0.txt, 1.txt
etc at generation 0, 1,

• File handle of an opened file. Actually any python object with a write function.

• A Python function that can accept a string as its only parameter (func(msg)). When an operator outputs a
message, this function will be called with this message.

• A WithMode(output, 'b') object with output being the any of the allowed output string or function.
This object tells simuPOP that the output is opened in binary model so that it should output bytes instead of
texts to it. This is mostly designed for Python 3 because file objects in Python 2 accepts string even if they are
opened in binary mode.

Because a table output such as the one in Example hybridOperator is written by several operators, it is clear that all of
them need to use the '>>' output format.

The SavePopulation operator in Example applicableGen write to file sample.pop. This works well if there is
only one replicate but not so when the operator is applied to multiple populations. Only the last population will be
saved successfully! In this case, the expression form of parameter output should be used.

The expression form of this parameter accepts a Python expression. Whenever a filename is needed, this expression is
evaluated against the local namespace of the population it is applied to. Because the evolve function automatically
sets variables gen and rep in a population’s local namespace, such information can be used to produce an output
string. Of course, any variable in this namespace can be used so you are not limited to these two variable.

Example hybridOperator demonstrates the use of these two parameters. In this example, a table is written to file LD.
txt using output='>>LD.txt'. Similar operation to output='R2.txt' fails because only the last value is
written to this file. The last operator writes output for each replicate to their respective output file such as LD_0.txt,
using an expression that involves variable rep.

Example: Use the output and outputExpr parameters

5.1. Introduction to operators 55

dynamicLoci.py

simuPOP

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(size=1000, loci=2), rep=3)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[1, 2, 2, 1])
...],
... matingScheme = sim.RandomMating(ops=sim.Recombinator(rates=0.01)),
... postOps=[
... sim.Stat(LD=[0, 1]),
... sim.PyEval(r"'%.2f\t' % LD[0][1]", step=20, output='>>LD.txt'),
... sim.PyOutput('\n', reps=-1, step=20, output='>>LD.txt'),
... sim.PyEval(r"'%.2f\t' % R2[0][1]", output='R2.txt'),
... sim.PyEval(r"'%.2f\t' % LD[0][1]", step=20, output="!'>>LD_%d.txt' % rep
→˓"),
...],
... gen=100
...)
(100, 100, 100)
>>> print(open('LD.txt').read())
0.25 0.24 0.24
0.21 0.20 0.21
0.16 0.15 0.17
0.15 0.13 0.13
0.11 0.10 0.13

>>> print(open('R2.txt').read()) # Only the last write operation succeed.
0.20
>>> print(open('LD_2.txt').read()) # Each replicate writes to a different file.
0.24 0.21 0.17 0.13 0.13

now exiting runScriptInteractively...

Download output.py

Example outputFunc demonstrates an advanced usage of the output parameter. In this example, a logging object is
created to write to a logfile as well as the standard output. The info and debug functions of this object are assigned
to two operators so that their outputs can be sent to both a logfile and to the console window. One of the advantages of
using a logging mechanism is that debugging output could be suppressed easily by adjusting the logging level of the
logging object. Note that function logging.info() automatically adds a new line to its input messages before it
writes them to an output.

Example: Output to a Python function

>>> import simuPOP as sim
>>> import logging
>>> # logging to a file simulation.log, with detailed debug information
>>> logging.basicConfig(
... filename='simulation.log',
... level=logging.DEBUG,
... format='%(levelname)s: %(message)s',
... filemode='w'
...)
>>> formatter = logging.Formatter('%(message)s')
>>> logger = logging.getLogger('')
>>> pop = sim.Population(size=1000, loci=2)
>>> pop.evolve(
... initOps=[

(continues on next page)

56 Chapter 5. simuPOP Operators

output.py

simuPOP

(continued from previous page)

... sim.InitSex(),

... sim.InitGenotype(genotype=[1, 2, 2, 1])

...],

... matingScheme = sim.RandomMating(ops=sim.Recombinator(rates=0.01)),

... postOps=[

... sim.Stat(LD=[0, 1]),

... sim.PyEval(r"'LD: %d, %.2f' % (gen, LD[0][1])", step=20,

... output=logger.info), # send LD to console and a logfile

... sim.PyEval(r"'R2: %d, %.2f' % (gen, R2[0][1])", step=20,

... output=logger.debug), # send R2 only to a logfile

...],

... gen=100

...)
100
>>> print(open('simulation.log').read())
INFO: LD: 0, 0.25
DEBUG: R2: 0, 0.97
INFO: LD: 20, 0.20
DEBUG: R2: 20, 0.64
INFO: LD: 40, 0.18
DEBUG: R2: 40, 0.51
INFO: LD: 60, 0.12
DEBUG: R2: 60, 0.25
INFO: LD: 80, 0.10
DEBUG: R2: 80, 0.17

now exiting runScriptInteractively...

Download outputFunc.py

5.1.5 During-mating operators

All operators in Examples applicableGen, replicate and output are applied before or after mating. There
is, however, a hidden during-mating operator that is called by RandomMating(). This operator is called
MendelianGenoTransmitter() and is responsible for transmitting genotype from parents to offspring according
to Mendel’s laws. All pre-defined mating schemes (see Section sec_Mating_Schemes) use a special kind of during-
mating operator to transmit genotypes. They are called genotype transmitters just to show the kind of task they
perform. More during mating operators could be specified by replacing the default operator used in the ops parameter
of a mating scheme (or an offspring generator if you are defining your own mating scheme).

Operators used in a mating scheme honor applicability parameters begin, step, end, at and reps although
they do not support negative population and replicate indexes. It is therefore possible to apply different during-mating
operators at different generations. For example, a Recombinator is used in Example transmitter to transmit parental
genotypes to offspring after generation 30 while the MendelianGenoTransmitter is applied before that.

Example: Genotype transmitters

>>> import simuPOP as sim
>>> pop = sim.Population(size=10000, loci=2)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[1, 2, 2, 1])
...],

(continues on next page)

5.1. Introduction to operators 57

outputFunc.py

simuPOP

(continued from previous page)

... matingScheme = sim.RandomMating(ops=[

... sim.MendelianGenoTransmitter(end=29),

... sim.Recombinator(rates=0.01, begin=30),

...]),

... postOps=[

... sim.Stat(LD=[0, 1]),

... sim.PyEval(r"'gen %d, LD: %.2f\n' % (gen, LD[0][1])", step=20)

...],

... gen=100

...)
gen 0, LD: 0.25
gen 20, LD: 0.25
gen 40, LD: 0.23
gen 60, LD: 0.19
gen 80, LD: 0.15
100

now exiting runScriptInteractively...

Download transmitter.py

During-mating operators can be applied to (virtual) subpopulations using parameter subPops, which refers to
(virtual) subpopulations in the offspring population. Section subsec_Pre_defined_genotype_transmitters and
sec_Genotype_transmitters list all genotype transmitters, Section subsec_Customized_genotype_transmitter demon-
strates how to define your own genotype transmitter, Section subsec_vspSelection demonstrates the use of during-
mating operator in virtual subpopulations.

5.1.6 Function form of an operator

Operators are usually applied to populations through a simulator but they can also be applied to a population directly.
For example, it is possible to create an InitGenotype operator and apply to a population as follows:

InitGenotype(freq=[.3, .2, .5]).apply(pop)

Similarly, you can apply the hybrid penetrance model defined in Example hybridOperator to a population by

PyPenetrance(func=myPenetrance, loci=[10, 30, 50]).apply(pop)

This usage is used so often that it deserves some simplification. Equivalent functions are defined for most operators.
For example, function initGenotype is defined for operator InitGenotype as follows

Example: The function form of operator texttt{InitGenotype

>>> from simuPOP import InitGenotype, Population
>>> def initGenotype(pop, *args, **kwargs):
... InitGenotype(*args, **kwargs).apply(pop)
...
>>> pop = Population(1000, loci=[2,3])
>>> initGenotype(pop, freq=[.2, .3, .5])

now exiting runScriptInteractively...

Download funcform.py

These functions are called function form of operators. Using these functions, the above two example can be written as

58 Chapter 5. simuPOP Operators

transmitter.py
funcform.py

simuPOP

initGenotype(pop, freq=[.3, .2, .5])

and

pyPenetrance(pop, func=myPenetrance, loci=[10, 30, 50])

respectively. Note that applicability parameters such as begin and end can still be passed, but they are ignored by
these functions.

Finally, it is worth noting that, if you have a function that manipulates population, you can make it an operator by
wrapping it in a PyOperator so that it can be called repeatedly during evolution. For example, for a function
myFunc that works on a population, you can define a wrapper function

def Func(pop):
call myFunc
myFunc(pop)
return True

which can then use it in a PyOperator as follows:

PyOperator(func=Func)

The wrapper function is not needed if myFunc returns True by itself. It can also be simplifed to a lambda function

PyOperator(func=lambda pop: myFunc(pop) is None)

if you are certain that myFunc does not return any value (return None).

Note: Whereas output files specified by '>' are closed immediately after they are written, those specified by '>>'
and '>>>' are not closed after the operator is applied to a population. This is not a problem when operators are used
in a simulator because Simulator.evolve closes all files opened by operators, but can cause trouble when the
operator is applied directly to a population. For example, multiple calls to dump(pop, output='>>file') will
dump pop to file repeatedly but file will not be closed afterward. In this case, closeOutput('file') should
be used to explicitly close the file.

5.2 Initialization

simuPOP provides three operators to initialize individual sex, information fields and genotype at the population level.
A number of parameter are provided to cover most commonly used initialization scenarios. A Python operator can be
used to intialize a population explicitly if none of the operators fits your need.

5.2.1 Initialize individual sex (operator InitSex)

Operator InitSex() and function initSex() initialize individual sex either randomly or using a given sequence.
In the first case, individuals are assigned MALE or FEMALE with equal probability unless parameter maleFreq is
used to specify the probability of having a male Individual. Alternatively, parameter maleProp can be used to spec-
ify exact proportions of male individuals so that you will have exactly 1000 males and 1000 females if you apply
InitSex(maleProp=0.5) to a population of 2000 individuals.

Both parameters maleFreq and maleProp assigns individual sex randomly. If for some reason you need to specify
individual sex explicitly, you could use a sequence of sex (MALE or FEMALE) to assign sex to individuals succesively.
The list will be reused if needed. If a list of (virtual) subpopulations are given, this operator will only initialize

5.2. Initialization 59

simuPOP

individuals in these (virtual) subpopulations. Example InitSex demonstrates how to use two InitSex operators to
initialize two subpopulations.

Example: Initialize individual sex

>>> import simuPOP as sim
>>> pop = sim.Population(size=[1000, 1000])
>>> sim.initSex(pop, maleFreq=0.3, subPops=0)
>>> sim.initSex(pop, sex=[sim.MALE, sim.FEMALE, sim.FEMALE], subPops=1)
>>> sim.stat(pop, numOfMales=True, vars='numOfMales_sp')
>>> print(pop.dvars(0).numOfMales)
290
>>> print(pop.dvars(1).numOfMales)
334

now exiting runScriptInteractively...

Download InitSex.py

5.2.2 Initialize genotype (operator InitGenotype)

Operator InitGenotype (and its function form initGenotype) initializes individual genotype by allele fre-
quency, allele proportion, haplotype frequency, haplotype proportions or a list of genotypes:

• By frequency of alleles. For example, InitGenotype(freq=(0, 0.2, 0.4, 0.2)) will assign allele
0, 1, 2, and 3 with probability 0, 0.2, 0.4 and 0.2 respectively.

• By proportions of alleles. For example, InitGenotype(prop=(0, 0.2, 0.4, 0.2)) will assign 400
allele 1, 800 allele 2 and 400 allele 3 to a diploid population with 800 individuals.

• By frequency of haplotypes. For example, InitGenotype(haplotypes=[[0, 0], [1,1], [0,1],
[1,1]]) will assign four haplotypes with equal probabilities. InitGenotype(haplotypes=[[0, 0],
[1,1], [0,1],[1,1]], freq=[0.2, 0.2, 0.3, 0.3]) will assign these haplotypes with differ-
ent frequencies. If there are more than two loci, the haplotypes will be repeated.

• By frequency of haplotypes. For example, InitGenotype(haplotypes=[[0, 0], [1,1], [0,1],
[1,1]], prop=[0.2, 0.2, 0.3, 0.3]) will assign four haplotypes with exact proportions.

• By a list of genotype. For example, InitGenotype(genotype=[1, 2, 2, 1]) will assign genotype 1,
2, 2, 1 repeatedly to a population. If individuals in this population has two homologous copies of a chromosome
with two loci, this operator will assign haplotype 1, 2 to the first homologous copy of the chromosome, and 2,
1 to the second copy.

• By multiple allele frequencies or proportions returned by a function passed to parameter freq or prop (new in
version 1.1.7). This function can accept parameters loc, subPop or vsp and returns locus, subpopopulation
or virtual subpopulation specific allele frequencies. For example, if you would like to initialize genotypes with
random allele frequency, you can set freq=lambda : random.random() so that a new frequency is
drawn from an uniform distribution for each new locus. Note that simuPOP expects the return value of this
function to be a list of frequencies for alleles 0, 1, . . . , but treats a single return value x as [x, 1-x] for simplicity.

Parameter loci and ploidy can be used to specify a subset of loci and homologous sets of chromosomes to ini-
tialize, and parameter subPops can be used to specify subsets of individuals to initialize. Example InitGenotype
demonstrates how to use these the InitGenotype operator, including examples on how to define and use virtual
subpopulations to initialize individual genotype by sex or by proportion.

Example: Initialize individual genotype

60 Chapter 5. simuPOP Operators

InitSex.py

simuPOP

>>> import simuPOP as sim
>>> pop = sim.Population(size=[2000, 3000], loci=[5, 7])
>>> # by allele frequency
>>> def printFreq(pop, loci):
... sim.stat(pop, alleleFreq=loci)
... print(', '.join(['{:.3f}'.format(pop.dvars().alleleFreq[x][0]) for x in
→˓loci]))
...
>>> sim.initGenotype(pop, freq=[.4, .6])
>>> sim.dump(pop, max=6, structure=False)
SubPopulation 0 (), 2000 Individuals:

0: MU 11000 0011111 | 11111 0101110
1: MU 00000 1111111 | 11101 1111001
2: MU 10111 0111100 | 01111 1011111
3: MU 11011 1101010 | 11010 1011111
4: MU 11011 0011010 | 10011 1001110
5: MU 00001 1010011 | 11111 1111110

SubPopulation 1 (), 3000 Individuals:
2000: MU 10011 0010100 | 01001 0011010

>>> printFreq(pop, range(5))
0.397, 0.404, 0.400, 0.402, 0.406
>>> # by proportion
>>> sim.initGenotype(pop, prop=[0.4, 0.6])
>>> printFreq(pop, range(5))
0.400, 0.400, 0.400, 0.400, 0.400
>>> # by haplotype frequency
>>> sim.initGenotype(pop, freq=[.4, .6], haplotypes=[[1, 1, 0, 1], [0, 0, 1]])
>>> sim.dump(pop, max=6, structure=False)
SubPopulation 0 (), 2000 Individuals:

0: MU 11011 1011101 | 00100 1001001
1: MU 11011 1011101 | 11011 1011101
2: MU 00100 1001001 | 00100 1001001
3: MU 00100 1001001 | 00100 1001001
4: MU 11011 1011101 | 11011 1011101
5: MU 00100 1001001 | 11011 1011101

SubPopulation 1 (), 3000 Individuals:
2000: MU 00100 1001001 | 00100 1001001

>>> printFreq(pop, range(5))
0.597, 0.597, 0.403, 0.597, 0.597
>>> # by haplotype proportion
>>> sim.initGenotype(pop, prop=[0.4, 0.6], haplotypes=[[1, 1, 0], [0, 0, 1, 1]])
>>> printFreq(pop, range(5))
0.600, 0.600, 0.400, 0.000, 0.600
>>> # by genotype
>>> pop = sim.Population(size=[2, 3], loci=[5, 7])
>>> sim.initGenotype(pop, genotype=[1]*5 + [2]*7 + [3]*5 +[4]*7)
>>> sim.dump(pop, structure=False)
SubPopulation 0 (), 2 Individuals:

0: MU 11111 2222222 | 33333 4444444
1: MU 11111 2222222 | 33333 4444444

SubPopulation 1 (), 3 Individuals:
2: MU 11111 2222222 | 33333 4444444
3: MU 11111 2222222 | 33333 4444444
4: MU 11111 2222222 | 33333 4444444

(continues on next page)

5.2. Initialization 61

simuPOP

(continued from previous page)

>>> #
>>> # use virtual subpopulation
>>> pop = sim.Population(size=[2000, 3000], loci=[5, 7])
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> sim.initSex(pop)
>>> sim.initGenotype(pop, genotype=range(10), loci=range(5))
>>> # initialize all males
>>> sim.initGenotype(pop, genotype=[2]*7, loci=range(5, 12),
... subPops=[(0, 0), (1, 0)])
>>> # assign genotype by proportions
>>> pop.setVirtualSplitter(sim.ProportionSplitter([0.4, 0.6]))
>>> sim.initGenotype(pop, freq=[0.2, 0.8], subPops=[(0,0)])
>>> sim.initGenotype(pop, freq=[0.5, 0.5], subPops=[(0,1)])
>>> #
>>> # initialize by random allele frequency
>>> import random
>>> sim.initGenotype(pop, freq=lambda : random.random())
>>> printFreq(pop, range(5))
0.580, 0.239, 0.100, 0.576, 0.674
>>> # initialize with loci specific frequency. here
>>> # lambda loc: 0.01*loc is equivalent to
>>> # lambda loc: [0.01*loc, 1-0.01*loc]
>>> sim.initGenotype(pop,
... freq=lambda loc: 0.01*loc)
>>> printFreq(pop, range(5))
0.000, 0.009, 0.018, 0.029, 0.041
>>> # initialize with VSP-specific frequency
>>> sim.initGenotype(pop,
... freq=lambda vsp: [[0.2, 0.8], [0.5, 0.5]][vsp[1]],
... subPops=[(0, 0), (0, 1)])
>>>

now exiting runScriptInteractively...

Download InitGenotype.py

5.2.3 Initialize information fields (operator InitInfo)

Operator InitInfo and its function form initInfo initialize one or more information fields of all individuals or
Individuals in selected (virtual) subpopulations using either a list of values or a Python function. If a value or a list of
value is given, it will be used repeatedly to assign values of specified information fields of all applicable individuals.
For example, initInfo(pop, values=1, infoFields='x') will assign value 1 to information field x of
all individuals, and

initInfo(pop, values=[1, 2, 3], infoFields='x', subPops=[(0,1)])

will assign values 1, 2, 3, 1, 2, 3. . . to information field x of individuals in the second virtual subpopulation of
subpopulation 0.

The values parameter also accepts a Python function. This feature is usually used to assign random values to an
information field. For example, values=random.random would assign a random value between 0 and 1. If a
function takes parameters, a lambda function can be used. For example,

initInfo(pop, lambda : random.randint(2, 5), infoFields=['x', 'y'])

62 Chapter 5. simuPOP Operators

InitGenotype.py

simuPOP

assigns random integers between 2 and 5 to information fields x and y of all individuals in pop. Example InitInfo
demonstrates these usages.

Example: initialize information fields

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=[5], loci=[2], infoFields=['sex', 'age'])
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> sim.initSex(pop)
>>> sim.initInfo(pop, 0, subPops=[(0,0)], infoFields='sex')
>>> sim.initInfo(pop, 1, subPops=[(0,1)], infoFields='sex')
>>> sim.initInfo(pop, lambda: random.randint(20, 70), infoFields='age')
>>> sim.dump(pop, structure=False)
SubPopulation 0 (), 5 Individuals:

0: FU 00 | 00 | 1 39
1: FU 00 | 00 | 1 29
2: MU 00 | 00 | 0 68
3: MU 00 | 00 | 0 50
4: MU 00 | 00 | 0 21

now exiting runScriptInteractively...

Download InitInfo.py

5.3 Expressions and statements

5.3.1 Output a Python string (operator PyOutput)

Operator PyOutput is a simple operator that prints a Python string when it is applied to a population. It is commonly
used to print the progress of a simulation (e.g. PyOutput('start migration\\n', at=200)) or output
separators to beautify outputs from PyEval outputs (e.g. PyOutput('\\n', rep=-1).

5.3.2 Execute Python statements (operator PyExec)

Operator PyExec executes Python statements in a population’s local namespace when it is applied to that population.
This operator is designed to execute short Python statements but multiple statements separated by newline characters
are allowed.

Example PyExec uses two PyExec operators to create and use a variable traj in each population’s local namespace.
The first operator initialize this variable as an empty list. During evolution, the frequency of allele 1 at locus 0 is
calcuated (operator Stat) and appended to this variable (operator PyExec). The result is a trajectory of allele
frequencies during evolution.

Example: Execute Python statements during evolution

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(100, loci=1),
... rep=2)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.2, 0.8]),

(continues on next page)

5.3. Expressions and statements 63

InitInfo.py

simuPOP

(continued from previous page)

... sim.PyExec('traj=[]')

...],

... matingScheme=sim.RandomMating(),

... postOps=[

... sim.Stat(alleleFreq=0),

... sim.PyExec('traj.append(alleleFreq[0][1])'),

...],

... gen=5

...)
(5, 5)
>>> # print Trajectory
>>> print(', '.join(['%.3f' % x for x in simu.dvars(0).traj]))
0.775, 0.790, 0.760, 0.750, 0.750

now exiting runScriptInteractively...

Download PyExec.py

5.3.3 Evaluate and output Python expressions (operator PyEval)

Operator PyEval evaluate a given Python expression in a population’s local namespace and output its return value.
This operator has been widely used (e.g. Example simple_example, ancestralPop, applicableGen and output) to output
statistics of populations and report progress.

Two additional features of this operator may become handy from time to time. First, an optional Python statements
(parameter stmts) can be specified which will be executed before the expression is evaluated. Second, the population
being applied can be exposed in its own namespace as a variable (parameter exposePop). This makes it possible
to access properties of a population other than its variables. Example PyEval demonstrates both features. In this
example, two statements are executed to count the number of unique parents in an offspring population and save them
as variables numFather and numMother. The operator outputs these two variables alone with a generation number.

Example: Evaluate a expression and statements in a population’s local namespace.

>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=1,
... infoFields=['mother_idx', 'father_idx'])
>>> pop.evolve(
... initOps=sim.InitSex(),
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... sim.ParentsTagger(),
...]),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.PyEval(r'"gen %d, #father %d, #mother %d\n"' \
... ' % (gen, numFather, numMother)',
... stmts="numFather = len(set(pop.indInfo('father_idx')))\n"
... "numMother = len(set(pop.indInfo('mother_idx')))",
... exposePop='pop')
...],
... gen=3
...)
gen 0, #father 439, #mother 433
gen 1, #father 433, #mother 432
gen 2, #father 449, #mother 420

(continues on next page)

64 Chapter 5. simuPOP Operators

PyExec.py

simuPOP

(continued from previous page)

3

now exiting runScriptInteractively...

Download PyEval.py

Note that the function form of this operator (pyEval) returns the result of the expression rather than writting it to an
output.

5.3.4 Expression and statement involving individual information fields (operator
InfoEval and InfoExec) *

Operators PyEval and PyExec work at the population level, using the local namespace of populations. Operator
InfoEval and InfoExec, on the contraray, work at the individual level, using individual information fields (and
population variables) as variables. In this case, individual information fields are copied to the population namespace
one by one before expression or statements are executed for each individual. Optionally, the individual object can be
exposed to these namespace using a user-specified name (parameter exposeInd). Individual information fields will be
updated if the value of these fields are changed.

Operator InfoEval evaluates an expression and outputs its value. Operator InfoExec executes one or more
statements and does not produce any output. Operator InfoEval is usually used to output individual information
fields and properties in batch mode. It is faster and sometimes easier to use than corresponding for loop plus individual
level operations. For example

• InfoEval(r'''%.2f\\t'' % a') outputs the value of information field a for all individuals, separated
by tabs.

• InfoEval('ind.sexChar()', exposeInd='ind') outputs the sex of all individuals using an ex-
posed individual object ind.

• InfoEval('a+b**2') outputs for information fields and for all individuals.

Example InfoEval demonstrates the use of this operator.

Example: Evaluate expressions using individual information fields

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(20, loci=1, infoFields='a')
>>> pop.setVirtualSplitter(sim.InfoSplitter('a', cutoff=[3]))
>>> sim.initGenotype(pop, freq=[0.2, 0.8])
>>> pop.setIndInfo([random.randint(2, 5) for x in range(20)], 'a')
>>> sim.infoEval(pop, 'a', subPops=[(0, 0)]);print(' ')
2.02.02.02.0
>>> sim.infoEval(pop, 'ind.allele(0, 0)', exposeInd='ind');print(' ')
11011111111100111111
>>> # use sim.population variables
>>> pop.dvars().b = 5
>>> sim.infoEval(pop, '"%d " % (a+b)');print(' ')
8 9 10 8 9 10 8 9 10 10 9 7 9 7 9 7 9 7 9 8

now exiting runScriptInteractively...

Download InfoEval.py

Operator InfoExec is usually used to set individual information fields. For example

• InfoExec('age += 1') increases the age of all individuals by one.

5.3. Expressions and statements 65

PyEval.py
InfoEval.py

simuPOP

• InfoExec('risk = 2 if packPerYear > 10 else 1.5') sets information field risk to 2 if
packPerYear is greater than 10, and 1.5 otherwise. Note that conditional expression is only available
for Python version 2.5 or later.

• InfoExec('a = b*c') sets the value of information field a to the product of b and c.

Example InfoExec demonstrates the use of this operator, using its function form infoExec.

Example: Execute statements using individual information fields

>>> import simuPOP as sim
>>> pop = sim.Population(100, loci=1, infoFields=['a', 'b', 'c'])
>>> sim.initSex(pop)
>>> sim.initGenotype(pop, freq=[0.2, 0.8])
>>> sim.infoExec(pop, 'a=1')
>>> print(pop.indInfo('a')[:10])
(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
>>> sim.infoExec(pop, 'b=ind.sex()', exposeInd='ind')
>>> print(pop.indInfo('b')[:10])
(2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0)
>>> sim.infoExec(pop, 'c=a+b')
>>> print(pop.indInfo('c')[:10])
(3.0, 3.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0)
>>> pop.dvars().d = 5
>>> sim.infoExec(pop, 'c+=d')
>>> print(pop.indInfo('c')[:10])
(8.0, 8.0, 7.0, 7.0, 7.0, 7.0, 7.0, 8.0, 8.0, 8.0)
>>> # the operator can update population variable as well
>>> sim.infoExec(pop, 'd+=c*c')
>>> print(pop.dvars().d)
5835.0

now exiting runScriptInteractively...

Download InfoExec.py

Note that a statement can also be specified for operator InfoEval, which will be executed before an expression is
evaluated.

5.3.5 Using functions in external modules in simuPOP expressions and statements

All simuPOP expressions and statements are evaluated in a population’s local namespace, which is a dictionary with
no access to external modules. If you would like to use external modules (e.g. functions from the random module),
you will have to import them to the namespace explicitly, using something like

exec('import random', pop.vars(), pop.vars())

before you evolve the population.

Example outputByInterval demonstrates the application of this technique. This example imports the time module
in the population’s local namespace and set init_time and last_time before evolution. During evolution,
anIfElse operator is used to output the status of the simulation for every 5 seconds using expression time.time()
- last_time > 5. last_time is reset using the PyExec operator. The evolution will last 20 seconds and be
terminated by the Terminator with expression time.time() - init_time > 20.

Example: Write the status of an evolutionary process every 10 seconds

66 Chapter 5. simuPOP Operators

InfoExec.py

simuPOP

>>> import simuPOP as sim
>>> import time
>>> pop = sim.Population(1000, loci=10)
>>> pop.dvars().init_time = time.time()
>>> pop.dvars().last_time = time.time()
>>> exec('import time', pop.vars(), pop.vars())
>>> pop.evolve(
... initOps=sim.InitSex(),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.IfElse('time.time() - last_time > 5', [
... sim.PyEval(r'"Gen: %d\n" % gen'),
... sim.PyExec('last_time = time.time()')
...]),
... sim.TerminateIf('time.time() - init_time > 20')
...]
...)
Gen: 5043
Gen: 9971
Gen: 14997
19925
>>>

now exiting runScriptInteractively...

Download outputByInterval.py

5.4 Demographic changes

A mating scheme controls the size of an offspring generation using parameter subPopSize. This parameter has
been described in detail in section subsec_offspring_size. In summary,

• The subpopulation sizes of the offspring generation will be the same as the parental generation if subPopSize is
not set.

• The offspring generation will have a fixed size if subPopSize is set to a number (no subpopulation) or a list
of subpopulation sizes.

• The subpopulation sizes of an offspring generation will be determined by the return value of a demographic
function if subPopSize is set to such a function (a function that returns subpopulation sizes at each genera-
tion).

Note: Parameter subPopSize only controls subpopulation sizes of an offspring generation immediately after it is
generated. population or subpopulation sizes could be changed by other operators.

During mating, a mating scheme goes through each parental subpopulation and populates its corresponding offspring
subpopulation. This implies that

• Parental and offspring populations should have the same number of subpopulations.

• Mating happens strictly within each subpopulation.

This section will introduce several operators that allow you to move dndividuals across the boundary of subpopu-
lations (migration), and change the number of subpopulations during evolution (split and merge). Please refer to
subsec_offspring_size (control the size of the offspring generation section of chapter mating scheme) for more details.
For more advanced demographic models, please refer to the simuPOP.demography module.

5.4. Demographic changes 67

outputByInterval.py

simuPOP

5.4.1 Migration (operator Migrator)

Migration by probability

Operator Migrator (and its function form migrate) migrates individuals from one subpopulation to another. The
key parameters are

• from subpopulations (parameter subPops). A list of subpopulations from which individuals migrate. Default
to all subpopulations.

• to subpopulations (parameter toSubPops). A list of subpopulations to which individuals migrate. Default to
all subpopulations. A new subpopulation ID can be specified to create a new subpopulation from migrants.

• A migration rate matrix (parameter rate). A by matrix (a nested list in Python) that specifies migration rate
from each source to each destination subpopulation. That is to say, specifies migration rate from to . Needless
to say, and are determined by the number of from and to subpopulations.

Example migrateByProb demonstrate the use of a Migrator to migrate individuals between three subpopulations.
Note that

• Operator Migrator relies on an information field migrate_to (configurable) to record destination subpop-
ulation of each individual so this information field needs to be added to a population befor migration.

• Migration rates to subpopulation themselves are determined automatically so they can be left unspecified.

Example: Migration by probability

>>> import simuPOP as sim
>>> pop = sim.Population(size=[1000]*3, infoFields='migrate_to')
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=sim.Migrator(rate=[
... [0, 0.1, 0.1],
... [0, 0, 0.1],
... [0, 0.1, 0]
...]),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(popSize=True),
... sim.PyEval('subPopSize'),
... sim.PyOutput('\n')
...],
... gen = 5
...)
[762, 1108, 1130]
[601, 1175, 1224]
[490, 1233, 1277]
[395, 1282, 1323]
[320, 1300, 1380]
5

now exiting runScriptInteractively...

Download migrateByProb.py

Migration by proportion and counts

Migration rate specified in the rate parameter in Example migrateByProb is intepreted as probabilities. That is to say,
a migration rate is interpreted as the probability at which any individual in subpopulation migrates to subpopulation .

68 Chapter 5. simuPOP Operators

migrateByProb.py

simuPOP

The exact number of migrants are randomly distributed.

If you would like to specify exactly how many migrants migrate from a subpopulation to another, you can specify
parameter mode of operator Migrator to BY_PROPORTION or BY_COUNTS. The BY_PROPORTION mode in-
terpret as proportion of individuals who will migrate from subpopulation to so the number of migrant will be exactly
subPopSize(m). In the BY_COUNTS mode, is interpretted as number of migrants, regardless the size of subpopula-
tion . Example migrateByPropAndCount demonstrates these two migration modes, as well as the use of parameters
subPops and toSubPops.

Example: Migration by proportion and count

>>> import simuPOP as sim
>>> pop = sim.Population(size=[1000]*3, infoFields='migrate_to')
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=sim.Migrator(rate=[[0.1], [0.2]],
... mode=sim.BY_PROPORTION,
... subPops=[1, 2],
... toSubPops=[3]),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(popSize=True),
... sim.PyEval('subPopSize'),
... sim.PyOutput('\n')
...],
... gen = 5
...)
[1000, 900, 800, 300]
[1000, 810, 640, 550]
[1000, 729, 512, 759]
[1000, 657, 410, 933]
[1000, 592, 328, 1080]
5
>>> #
>>> pop.evolve(
... preOps=sim.Migrator(rate=[[50, 50], [100, 50]],
... mode=sim.BY_COUNTS,
... subPops=[3, 2],
... toSubPops=[2, 1]),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(popSize=True),
... sim.PyEval('subPopSize'),
... sim.PyOutput('\n')
...],
... gen = 5
...)
[1000, 692, 328, 980]
[1000, 792, 328, 880]
[1000, 892, 328, 780]
[1000, 992, 328, 680]
[1000, 1092, 328, 580]
5

now exiting runScriptInteractively...

Download migrateByPropAndCount.py

5.4. Demographic changes 69

migrateByPropAndCount.py

simuPOP

Theoretical migration models

To facilitate the use of widely used theoretical migration models, a few functions are defined in module simuPOP.
demography subsec_Predefined_migration_models. These functions generate migration matrixes that can be
plugged in to the Migrator operator.

migrate from virtual subpopulations *

Under a realistic eco-social settings, individuals in a subpopulation rarely have the same probability to migrate. Genetic
evidence has shown that female has a higher migrate rate than male in humans, perhaps due to migration patterns
related to inter-population marriages. Such sex-biased migration also happens in other large migration events such as
slave trade.

It is easy to simulate most of such complex migration models by migrating from virtual subpopulations. For exam-
ple, if you define virtual subpopulations by sex, you can specify different migration rates for males and females and
control the proportion of males among migrants, by specifying virtual subpopulations in parameter subPops. Pa-
rameter toSubPops does not accept virtual subpopulations because you cannot, for example, migrate to females in
a subpopulation.

Example migrateVSP demonstrate a sex-biased migration model where males dominate migrants from subpopulation
0. To avoid confusing, this example uses the proportion migration mode. At the beginning of the first generation, there
are 500 males and 500 females in each subpopulation. A 10% male migration rate and 5% female migration rate leads
to 50 male migrants and 25 female migrants. Subpopulation sizes and number of males in each subpopulation before
mating are therefore:

• Subpopulation 0: male 500-50, female 500-25, total 925

• Subpopulation 1: male 500+50, female 500+25, total 1075

Note that the unspecified to subpopulations are subpopulation 0 and 1, which cannot be virtual.

Example: Migration from virtual subpopulations

>>> import simuPOP as sim
>>> pop = sim.Population(size=[1000]*2, infoFields='migrate_to')
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> pop.evolve(
... # 500 males and 500 females
... initOps=sim.InitSex(sex=[sim.MALE, sim.FEMALE]),
... preOps=[
... sim.Migrator(rate=[
... [0, 0.10],
... [0, 0.05],
...],
... mode = sim.BY_PROPORTION,
... subPops=[(0, 0), (0, 1)]),
... sim.Stat(popSize=True, numOfMales=True, vars='numOfMales_sp'),
... sim.PyEval(r"'%d/%d\t%d/%d\n' % (subPop[0]['numOfMales'], subPopSize[0], "
... "subPop[1]['numOfMales'], subPopSize[1])"),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(popSize=True, numOfMales=True, vars='numOfMales_sp'),
... sim.PyEval(r"'%d/%d\t%d/%d\n' % (subPop[0]['numOfMales'], subPopSize[0], "
... "subPop[1]['numOfMales'], subPopSize[1])"),
...],
... gen = 2
...)

(continues on next page)

70 Chapter 5. simuPOP Operators

simuPOP

(continued from previous page)

450/925 550/1075
426/925 520/1075
384/859 562/1141
425/859 582/1141
2

now exiting runScriptInteractively...

Download migrateVSP.py

Arbitrary migration models **

If none of the described migration mothods fits your need, you can always resort to manual migration. One such
example is when you need to mimick an existing evolutionary scenario so you know exactly which subpopulation
each individual will migrate to.

Manual migration is actually very easy. All you need to do is specifying the destination subpopulation of all individuals
in the from subpopulations (parameter subPops), using an information field (usually migrate_to). You can
then call the Migrator using mode=BY_IND_INFO. Example manualMigration shows how to manually move
individuals around. This example uses the function form of Migrator. You usually need to use a Python operator
to set destination subpopulations if you would like to manually migrate individuals during an evolutionary process.

Example: Manual migration

>>> import simuPOP as sim
>>> pop = sim.Population([10]*2, infoFields='migrate_to')
>>> pop.setIndInfo([0, 1, 2, 3]*5, 'migrate_to')
>>> sim.migrate(pop, mode=sim.BY_IND_INFO)
>>> pop.subPopSizes()
(5, 5, 5, 5)

now exiting runScriptInteractively...

Download manualMigration.py

Note: individuals with an invalid destination subpopulation ID (e.g. an negative number) will be discarded silently.
Although not recommended, this feature can be used to remove individuals from a subpopulation.

5.4.2 Migration using backward migration matrix (operator BackwardMigrator)

Backward migration matrices are widely used in theoretical population genetics and coalescent based simulations.
Instead of specifying the probability of migrating from one subpopulation to another (namely how migration happens),
such matrices specify the probability that individuals in a subpopulation originate from others (namely the result
of migration). simuPOP simulates such models by converting backward migration matrices to foward ones using
the theory described below. Due to the limit of such models, simuPOP cannot simulate migration from/to virtual
subpopulatons, creation of new subpopulation, different source and destination subpopulations, and will generate an
error if the conversion process fails.

To explain the differences between forward and backward migration matrices, let us assume that there are subpopula-
tions with population sizes , and a forward migration matrix

5.4. Demographic changes 71

migrateVSP.py
manualMigration.py

simuPOP

where is the probability that an individual will migration from subpopulation to . After migration happens, subppu-
lation sizes are changed to , and the origin of individuals in each subpopulation can be described by the backward
migration matrix

where is the probability that an individual in subpopulation originates from subpopulation .

These qualities can be derived from original population sizes and the forward migration matrix. That is to say, the size
of new subpopulation is the sum of all migrants to this subpopulation

and the size of the original population is the sum of all migrants from this subpopulation

and the composition of subpopulation (e.g. individuals originate from subpopulation) is

In matrix form, these formulas can be written as

and

Therefore, given a backward migration matrix and current population size , we can derive a forward migration matrix
using

and

Note that is always true if is symmetric and (equal subpopulation size) so simuPOP will use directly in this case. Also
note that might not be inversable and and might be invalid (e.g. negative population size or forward migration rate) for
given and . simuPOP will terminate with an error message in these cases.

The following example backwardMigration demonstrates how to use a backward migration matrix to perform migra-
tion. It initializes all individuals with indexes of subpopulations they belong to before migration and calculates the
percent of individuals from each source population using a PyOperator with function originOfInds. The so-called
overseved backward migration matrix is similar to specified migration matrix despite of stochastic effects. This exam-
ple also uses turnOnDebug function to let the operator print the expected subpopulation size () and calculate forward
migration matrix () at each generation, which, as expected, vary from generation to generation.

Example: Migration using a backward migration matrix

>>> import simuPOP as sim
>>> sim.turnOnDebug('DBG_MIGRATOR')
>>> pop = sim.Population(size=[10000, 5000, 8000], infoFields=['migrate_to', 'migrate_
→˓from'])
>>> def originOfInds(pop):
... print('Observed backward migration matrix at generation {}'.format(pop.
→˓dvars().gen))
... for sp in range(pop.numSubPop()):
... # get source subpop for all individuals in subpopulation i
... origins = pop.indInfo('migrate_from', sp)
... spSize = pop.subPopSize(sp)
... B_sp = [origins.count(j) * 1.0 /spSize for j in range(pop.numSubPop())]
... print(' ' + ', '.join(['{:.3f}'.format(x) for x in B_sp]))
... return True
...
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=
... # mark the source subpopulation of each individual
... [sim.InitInfo(i, subPops=i, infoFields='migrate_from') for i in range(3)]
→˓+ [
... # perform migration
... sim.BackwardMigrator(rate=[
... [0, 0.04, 0.02],
... [0.05, 0, 0.02],
... [0.02, 0.01, 0]

(continues on next page)

72 Chapter 5. simuPOP Operators

simuPOP

(continued from previous page)

...]),

... # calculate and print observed backward migration matrix

... sim.PyOperator(func=originOfInds),

... # calculate population size

... sim.Stat(popSize=True),

... # and print it

... sim.PyEval(r'"Pop size after migration: {}\n".format(", ".join([str(x)
→˓for x in subPopSize]))'),
...],
... matingScheme=sim.RandomMating(),
... gen = 5
...)
Expected next population size is 10211.4, 4851.8, 7936.84
Forward migration matrix is 0.959867, 0.024259, 0.0158737, 0.0816908, 0.902435, 0.
→˓0158737, 0.0255284, 0.0121295, 0.962342
Observed backward migration matrix at generation 0

0.939, 0.040, 0.021
0.051, 0.927, 0.022
0.020, 0.010, 0.969

Pop size after migration: 10218, 4859, 7923
Expected next population size is 10453.6, 4690.64, 7855.79
Forward migration matrix is 0.961671, 0.0229529, 0.0153764, 0.0860553, 0.897777, 0.
→˓0161675, 0.0263879, 0.0118406, 0.961772
Observed backward migration matrix at generation 1

0.942, 0.038, 0.020
0.049, 0.932, 0.020
0.023, 0.010, 0.968

Pop size after migration: 10417, 4706, 7877
Expected next population size is 10675.5, 4517.1, 7807.37
Forward migration matrix is 0.963329, 0.0216814, 0.0149897, 0.0907397, 0.89267, 0.
→˓0165902, 0.0271056, 0.0114691, 0.961425
Observed backward migration matrix at generation 2

0.942, 0.039, 0.020
0.048, 0.930, 0.022
0.020, 0.010, 0.970

Pop size after migration: 10660, 4536, 7804
Expected next population size is 10946, 4323.5, 7730.53
Forward migration matrix is 0.965217, 0.0202791, 0.0145038, 0.0965253, 0.886432, 0.
→˓0170426, 0.0280522, 0.0110802, 0.960868
Observed backward migration matrix at generation 3

0.940, 0.040, 0.020
0.050, 0.930, 0.020
0.020, 0.011, 0.969

Pop size after migration: 10942, 4321, 7737
Expected next population size is 11260.4, 4079.55, 7660
Forward migration matrix is 0.967357, 0.0186417, 0.0140011, 0.104239, 0.878033, 0.
→˓0177274, 0.0291081, 0.0105456, 0.960346
Observed backward migration matrix at generation 4

0.937, 0.043, 0.021
0.046, 0.933, 0.021
0.019, 0.009, 0.972

Pop size after migration: 11331, 4042, 7627
5

now exiting runScriptInteractively...

Download backwardMigrate.py

5.4. Demographic changes 73

backwardMigrate.py

simuPOP

5.4.3 Split subpopulations (operators SplitSubPops)

Operator SplitSubPops splits one or more subpopulations into finer subpopulations. It can be used to simulate
populations that originate from the same founder population. For example, a population of size 1000 in Example split-
BySize is split into three subpopulations of sizes 300, 300 and 400 respectively, after evolving as a single population
for two generations.

Example: Split subpopulations by size

>>> import simuPOP as sim
>>> pop = sim.Population(1000)
>>> pop.evolve(
... preOps=[
... sim.SplitSubPops(subPops=0, sizes=[300, 300, 400], at=2),
... sim.Stat(popSize=True),
... sim.PyEval(r'"Gen %d:\t%s\n" % (gen, subPopSize)')
...],
... matingScheme=sim.RandomSelection(),
... gen = 4
...)
Gen 0: [1000]
Gen 1: [1000]
Gen 2: [300, 300, 400]
Gen 3: [300, 300, 400]
4

now exiting runScriptInteractively...

Download splitBySize.py

Operator SplitSubPops splits a subpopulation by sizes of the resulting subpopulations. It is often easier to do so
with proportions. In addition, if a demographic function is used, you should make sure that the number of subpopula-
tions will be the same before and after mating at any generation. One way of doing this is to apply a SplitSubPops
operator at the right generation. Example splitByProp demonstrates such an evolutionary scenario. However, it is often
easier to split the population in the demographic function in such case (see section subsec_Advanced_demo_func for
details).

Example: Split subpopulations by proportion

>>> import simuPOP as sim
>>> def demo(gen, pop):
... if gen < 2:
... return 1000 + 100 * gen
... else:
... return [x + 50 * gen for x in pop.subPopSizes()]
...
>>> pop = sim.Population(1000)
>>> pop.evolve(
... preOps=[
... sim.SplitSubPops(subPops=0, proportions=[.5]*2, at=2),
... sim.Stat(popSize=True),
... sim.PyEval(r'"Gen %d:\t%s\n" % (gen, subPopSize)')
...],
... matingScheme=sim.RandomSelection(subPopSize=demo),
... gen = 4
...)
Gen 0: [1000]
Gen 1: [1000]

(continues on next page)

74 Chapter 5. simuPOP Operators

splitBySize.py

simuPOP

(continued from previous page)

Gen 2: [550, 550]
Gen 3: [650, 650]
4

now exiting runScriptInteractively...

Download splitByProp.py

Either by sizes or by proportions, individuals in a subpopulation are divided randomly. It is, however, also possible
to split subpopulations according to individual information fields. In this case, individuals with different values at a
given information field will be split into different subpopulations. This is demonstrated in Example splitByInfo where
the function form of operator SplitSubPops is used.

Example: Split subpopulations by individual information field

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population([1000]*3, subPopNames=['a', 'b', 'c'], infoFields='x')
>>> pop.setIndInfo([random.randint(0, 3) for x in range(1000)], 'x')
>>> print(pop.subPopSizes())
(1000, 1000, 1000)
>>> print(pop.subPopNames())
('a', 'b', 'c')
>>> sim.splitSubPops(pop, subPops=[0, 2], infoFields=['x'])
>>> print(pop.subPopSizes())
(243, 244, 262, 251, 1000, 243, 244, 262, 251)
>>> print(pop.subPopNames())
('a', 'a', 'a', 'a', 'b', 'c', 'c', 'c', 'c')

now exiting runScriptInteractively...

Download splitByInfo.py

5.4.4 Merge subpopulations (operator MergeSubPops)

Operator MergeSubPops merges specified subpopulations into a single subpopulation. This operator can be used
to simulate admixed populations where two or more subpopulations merged into one subpopulation and continue to
evolve for a few generations. Example MergeSubPops simulates such an evolutionary scenario. A demographic model
could be added similar to Example splitByProp.

Example: Merge multiple subpopulations into a single subpopulation

>>> import simuPOP as sim
>>> pop = sim.Population([500]*2)
>>> pop.evolve(
... preOps=[
... sim.MergeSubPops(subPops=[0, 1], at=3),
... sim.Stat(popSize=True),
... sim.PyEval(r'"Gen %d:\t%s\n" % (gen, subPopSize)')
...],
... matingScheme=sim.RandomSelection(),
... gen = 5
...)
Gen 0: [500, 500]
Gen 1: [500, 500]
Gen 2: [500, 500]

(continues on next page)

5.4. Demographic changes 75

splitByProp.py
splitByInfo.py

simuPOP

(continued from previous page)

Gen 3: [1000]
Gen 4: [1000]
5

now exiting runScriptInteractively...

Download MergeSubPops.py

5.4.5 Resize subpopulations (operator ResizeSubPops)

Whenever possible, it is recommended that subpopulation sizes are changed naturally, namely through the population
of an offspring generation. However, it is sometimes desired to change the size of a population forcefully. Exam-
ples of such applications include immediate expansion of a small population before evolution, and the simulation of
sudden population size change caused by natural disaster. By default, new individuals created by such sudden pop-
ulation expansion get their genotype from existing individuals. Example ResizeSubPops shows a scenario where two
subpopulations expand instantly at generation 3.

Example: Resize subpopulation sizes

>>> import simuPOP as sim
>>> pop = sim.Population([500]*2)
>>> pop.evolve(
... preOps=[
... sim.ResizeSubPops(proportions=(1.5, 2), at=3),
... sim.Stat(popSize=True),
... sim.PyEval(r'"Gen %d:\t%s\n" % (gen, subPopSize)')
...],
... matingScheme=sim.RandomSelection(),
... gen = 5
...)
Gen 0: [500, 500]
Gen 1: [500, 500]
Gen 2: [500, 500]
Gen 3: [750, 1000]
Gen 4: [750, 1000]
5

now exiting runScriptInteractively...

Download ResizeSubPops.py

5.4.6 Time-dependent migration rate

In evolutionary scenarios with complex demographic models, number of subpopulations and migration rate might
change from generation to generation. For example, if one of the subpopulations is split into two, the migration matrix
has to be changed to accommendate increased number of subpopulations.

If there are a limited number of demographic changes and a few number of pre- determined migration matrices. You
can use a number of Migrators that are applied at different generations. For example, you can use the following
operators to apply the first migration scheme during first ten generations (0, . . . , 9), and the second migration scheme
during the rest of the evolutionary process:

preOps=[
Migrator(rate=M1, end=9),

(continues on next page)

76 Chapter 5. simuPOP Operators

MergeSubPops.py
ResizeSubPops.py

simuPOP

(continued from previous page)

Migrator(rate=M2, begin=10),
]

If changes of demographies are frequent or stochastic so that migration matrices can only be determined program-
matically, it is easier to use a PyOperator to migrate populations using the function form of a Migrator. This
is demonstrated in Example varyingMigr where migration matrixes are computed dynamically due to random split of
subpopulations.

Example: Varying migration rate

>>> import simuPOP as sim
>>>
>>> from simuPOP.utils import migrIslandRates
>>> import random
>>>
>>> def demo(pop):
... # this function randomly split populations
... numSP = pop.numSubPop()
... if random.random() > 0.3:
... pop.splitSubPop(random.randint(0, numSP-1), [0.5, 0.5])
... return pop.subPopSizes()
...
>>> def migr(pop):
... numSP = pop.numSubPop()
... sim.migrate(pop, migrIslandRates(0.01, numSP))
... return True
...
>>> pop = sim.Population(10000, infoFields='migrate_to')
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=[
... sim.PyOperator(func=migr),
... sim.Stat(popSize=True),
... sim.PyEval(r'"Gen %d:\t%s\n" % (gen, subPopSize)')
...],
... matingScheme=sim.RandomMating(subPopSize=demo),
... gen = 5
...)
Gen 0: [10000]
Gen 1: [4982, 5018]
Gen 2: [2495, 2505, 5000]
Gen 3: [2509, 2517, 4974]
Gen 4: [2512, 2512, 4976]
5

now exiting runScriptInteractively...

Download VaryingMigr.py

5.4. Demographic changes 77

VaryingMigr.py

simuPOP

5.5 Genotype transmitters

5.5.1 Generic genotype transmitters (operators GenoTransmitter,
CloneGenoTransmitter, MendelianGenoTransmitter,
SelfingGenoTransmitter, HaplodiploidGenoTransmitter, and
MitochondrialGenoTransmitter) *

A number of during-mating operators are defined to transmit genotype from parent(s) to offspring. They are rarely
used or even seen directly because they are used as genotype transmitters of mating schemes.

• GenoTransmitter: This genotype transmitter is usually used by customized genotype transmitters because
it provides some utility functions that are more efficient than their Pythonic counterparts.

• CloneGenoTransmitter: Copy all genotype on non-customized chromosomes from a parent to an off-
spring. It also copies parental sex to the offspring because sex can be genotype determined. This genotype
transmitter is used by mating scheme CloneMating. This genotype transmitter can be applied to popula-
tions of any ploidy type. If you would like to copy part of the chromosomes, or customized chromosomes, a
parameter chroms could be used to specify chromosomes to copy.

• MendelianGenoTransmitter: Copy genotypes from two parents (a male and a female) to an offspring
following Mendel’s laws, used by mating scheme RandomMating.This genotype transmitter can only be
applied to diploid populations.

• SelfingGenoTransmitter: Copy genotypes from one parent to an offspring using self-fertilization, used
by mating scheme SelfMating. This genotype transmitter can only be applied to diploid populations.

• HaplodiploidGenoTransmitter: Set genotype to male and female offspring differently in a hap-
lodiploid population, used by mating scheme HaplodiploidMating. This genotype transmitter can only
be applied to haplodiploid populations.

• MitochondrialGenoTransmitter: Treat a single mitochondrial chromosome, or all customized chro-
mosomes, or specified chromosomes as mitochondrial chromosomes and transmit maternal mitochondrial chro-
mosomes randomly to an offspring. This genotype transmitter can be applied to populations of any ploidy type.
It trasmits the first homologous copy of chromosomes maternally and clears alleles on other homologous copies
of chromosomes of an offspring.

5.5.2 Recombination (Operator Recombinator)

The generic genotype transmitters do not handle genetic recombination. A genotype transmitter Recombinator
is provided for such purposes, and can be used with RandomMating and SelfMating (replace
MendelianGenoTransmitter and SelfingGenoTransmitter used in these mating schemes).

Recombination rate is implemented between adjacent markers. There can be only one recombination event between
adjacent markers no matter how far apart they are located on a chromosome. In practise, a Recombinator goes
along chromosomes and determine, between each adjacent loci, whether or not a recombination happens.

Recombination rates could be specified in the following ways:

1. If a single recombination rate is specified through paramter rates, it will be the recombination rate between all
adjacent loci, regardless of loci position.

2. If recombination happens only after certain loci, you can specify these loci using parameter loci. For example,

Recombinator(rates=0.1, loci=[2, 5])

recombines a chromosome only after loci 2 (between 2 and 3) and 5 (between 5 and 6).

78 Chapter 5. simuPOP Operators

simuPOP

3. If parameter loci is given with a list of loci, different recombination rate can be given to each of them. The
two lists should have the same length. For example

Recombinator(rates=[0.1, 0.05], loci=[2, 5])

uses two different recombination rates after loci 2 and 5.

4. If parameter loci is not given (default to loci=ALL_AVAIL) but a list of recombination rates is assigned,
the rates will be assigned to each locus. The length of prameter rates should equal to total number of loci but
the recombiantion rates for the locus at the end of each chromosome will be ignored (assumed to be 0.5). For
example

Recombinator(rates=[0.1]*5 + [0.2]*5)

uses two different recombination rates for two chromosomes with 5 loci.

5. If recombination rates vary across your chromosomes, a long list of rate and loci may be needed to specify
recombination rates one by one. An alternative method is to specify a recombination intensity. Recombination
rate between two adjacent loci is calculated as the product of this intensity and distance between them. For
example, if you apply operator

Recombinator(intensity=0.1)

to a population

Population(size=100, loci=[4], lociPos=[0.1, 0.2, 0.4, 0.8])

The recombination rates between adjacent markers will be 0.1*0.1, 0.1*0.2 and 0.1*0.4 respectively.

Example: Genetic recombination at all and selected loci

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(size=[1000], loci=[100]),
... rep=2)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[0]*100 + [1]*100)
...],
... matingScheme=sim.RandomMating(ops = [
... sim.Recombinator(rates=0.01, reps=0),
... sim.Recombinator(rates=[0.01]*10, loci=range(50, 60), reps=1),
...]),
... postOps=[
... sim.Stat(LD=[[40, 55], [60, 70]]),
... sim.PyEval(r'"%d:\t%.3f\t%.3f\t" % (rep, LD_prime[40][55], LD_
→˓prime[60][70])'),
... sim.PyOutput('\n', reps=-1)
...],
... gen = 5
...)
0: 0.741 0.806 1: 0.904 1.000
0: 0.658 0.715 1: 0.882 1.000
0: 0.491 0.668 1: 0.843 1.000
0: 0.435 0.610 1: 0.818 1.000
0: 0.383 0.567 1: 0.763 1.000
(5, 5)

now exiting runScriptInteractively...

5.5. Genotype transmitters 79

simuPOP

Download recRate.py

Example recRate demonstrates how to specify recombination rates for all loci or for specified loci. In this example,
two replicates of a population are evolved, subject to two different Recombinators. The first Recombinator applies
the same recombination rate between all adjacent loci, and the second Recombinator recombines only after loci 50 -
59. Because there is no recombination event between loci 60 and 70 for the second replicate, linkage disequilibrium
values between these two loci does not decrease as what happens in the first replicate.

Example: Genetic recombination rates specified by intensity

>>> import simuPOP as sim
>>> pop = sim.Population(size=[1000], loci=3, lociPos=[0, 1, 1.1])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[0]*3 + [1]*3)
...],
... matingScheme=sim.RandomMating(ops=sim.Recombinator(intensity=0.01)),
... postOps=[
... sim.Stat(LD=[[0, 1], [1, 2]]),
... sim.PyEval(r'"%.3f\t%.3f\n" % (LD_prime[0][1], LD_prime[1][2])', step=10)
...],
... gen = 50
...)
0.988 0.998
0.912 0.996
0.836 0.991
0.896 0.982
0.814 0.991
50

now exiting runScriptInteractively...

Download recIntensity.py

Example recIntensity demonstrates the use of the intensity parameter. In this example, the distances between
the first two loci and the latter two loci are 1 and 0.1 respectively. This leads recombination rates 0.01 and 0.001
respectively with a recombination intensity 0.01. Consequently, LD between the first two loci decay much faster than
the latter two.

If more advanced recombination model is desired, a customized genotype transmitter can be used. For example,
Example sexSpecificRec uses two Recombinators to implement sex-specific recombination.

Note: Both loci positions and recombination intensity are unitless. You can assume different unit for loci position
and recombination intensity as long as the resulting recombination rate makes sense.

5.5.3 Gene conversion (Operator Recombinator) *

simuPOP uses the Holliday junction model to simulate gene conversion. This model treats recombination and conver-
sion as a unified process. The key features of this model is

• Two (out of four) chromatids pair and a single strand cut is made in each chromatid

• Strand exchange takes place between the chromatids

• Ligation occurs yielding two completely intact DNA molecules

• Branch migration occurs, giving regions of heteroduplex DNA

80 Chapter 5. simuPOP Operators

recRate.py
recIntensity.py

simuPOP

• Resolution of the Holliday junction gives two DNA molecules with heteroduplex DNA. Depending upon how
the holliday junction is resolved, we either observe no exchange of flanking markers, or an exchange of flanking
markers. The former forms a conversion event, which can be considered as a double recombination.

In practise, gene conversion can be considered as a double recombination event. That is to say, when a recombination
event happens, it has certain probability to trigger a second recombination event along the chromosome. The distance
between the two locations where recombination events happen is the tract length of this conversion event.

The probability at which gene conversion happens, and how tract length is determined is specify using parameter
convMode of a Recombinator. This parameter can be

• NoConversion No gene conversion. (default)

• (NUM_MARKERS, prob, N) Convert a fixed number N of markers at probability prob.

• (TRACT_LENGTH, prob, N) Convert a fixed length N of chromosome regions at probability prob. This
can be used when markers are not equally spaced on chromosomes.

• (GEOMETRIC_DISTRIBUTION, prob, p) When a conversion event happens at probability prob, con-
vert a random number of markers, with a geometric distribution with parameter p.

• (EXPONENTIAL_DISTRIBUTION, prob, p) When a conversion event happens at probability prob,
convert a random length of chromosome region, using an exponential distribution with parameter p.

Note that

• If tract length is determined by length (TractLength or ExponentialDistribution), the starting point
of the flanking region is uniformly distributed between marker and , if the recombination happens at marker .
That is to say, it is possible that no marker is converted with a positive tract length.

• A conversion event will act like a recombination event if its flanking region exceeds the end of a chromosome,
or if another recombination event happens before the end of the flanking region.

Example conversion compares two Recombinators. The first Recombinator is a regular Recombinator that recombine
between loci 50 and 51. The second Recombinator is a conversion operator because every recombination event will
become a conversion event (prob=1). Because a second recombination event will surely happen between loci 60 and
61, there will be either no or double recombination events between loci 40, 70. LD between these two loci therefore
does not decrease, although LD between locus 55 and these two loci will decay.

Example: Gene conversion

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(size=[1000], loci=[100]),
... rep=2)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[0]*100 + [1]*100)
...],
... matingScheme=sim.RandomMating(ops=[
... sim.Recombinator(rates=0.01, loci=50, reps=0),
... sim.Recombinator(rates=0.01, loci=50, reps=1, convMode=(sim.NUM_MARKERS,
→˓1, 10)),
...]),
... postOps=[
... sim.Stat(LD=[[40, 55], [40, 70]]),
... sim.PyEval(r'"%d:\t%.3f\t%.3f\t" % (rep, LD_prime[40][55], LD_
→˓prime[40][70])'),
... sim.PyOutput('\n', reps=-1)
...],
... gen = 5

(continues on next page)

5.5. Genotype transmitters 81

simuPOP

(continued from previous page)

...)
0: 0.988 0.988 1: 0.980 1.000
0: 0.982 0.982 1: 0.982 1.000
0: 0.982 0.982 1: 0.974 1.000
0: 0.974 0.974 1: 0.954 1.000
0: 0.960 0.960 1: 0.940 1.000
(5, 5)

now exiting runScriptInteractively...

Download conversion.py

5.5.4 Tracking all recombination events **

To understand the evolutionary history of a simulated population, it is sometimes needed to track down all ancestral
recombination events. In order to do that, you will first need to give an unique ID to each individual so that you could
make sense of the dumped recombination events. Although this is routinely done using operator IdTagger (see
example IdTagger for details), it is a little tricky here because you need to place the during- mating IdTagger before
a Recombinator in the ops parameter of a mating scheme so that offspring ID could be set and outputted correctly.

After setting the name of the ID field (usually ind_id) to the infoField parameter of a Recombinator, it
can dump a list of recombinatin events (loci after which recombinatin events happened) for each set of homologous
chromosomes of an offspring. Each line is in the format of

offspringID parentID startingPloidy rec1 rec2

Example trackRec gives an example how the output looks like.

Example: Tracking all recombination events

>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=[1000, 2000], infoFields='ind_id')
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.IdTagger(),
...],
... matingScheme=sim.RandomMating(ops = [
... sim.IdTagger(),
... sim.Recombinator(rates=0.001, output='>>rec.log', infoFields='ind_id')]),
... gen = 5
...)
5
>>> rec = open('rec.log')
>>> # print the first three lines of the log file
>>> print(''.join(rec.readlines()[:4]))
1001 642 0 381 999 1490
1001 250 1 908 999 1315 2134
1002 847 1 999
1002 91 0 975 999 1245 2546

now exiting runScriptInteractively...

Download trackRec.py

82 Chapter 5. simuPOP Operators

conversion.py
trackRec.py

simuPOP

5.6 Mutation

A mutator (a mutation operator) mutates alleles at certain loci from one allele to another. Because alleles are
simple non-nagative numbers that can be intrepreted as nucleotides, codons, squences of nucleotides or even ge-
netic deletions, appropriate mutation models have to be chosen for different types of loci. Please refer to Section
sec_Genotypic_structure for a few examples.

A mutator will mutate alleles at all loci unless parameter loci is used to specify a subset of loci. Different mutators
have different concepts and forms of mutation rates. If a mutator accepts only a single mutation rate (which can be
in the form of a list or a matrix), it uses parameter rate and applies the same mutation rate to all loci. If a mutator
accepts a list of mutation rates (each of which is a single number), it uses parameter rates and applies different
mutation rates to different loci if multiple loci are specified. Note that parameter rates also accepts single form
inputs (e.g. rates=0.01) in which case the same mutation rate will be applied to all loci.

5.6.1 Mutation models specified by rate matrixes (MatrixMutator)

A mutation model can be defined as a mutation rate matrix where is the probability that an allele mutates to per
generation per locus. Although mathematical formulation of are sometimes unscaled, simuPOP assumes for all and
requires such rate matrixes in the specification of a mutation model. of such a matrix are ignored because they are
automatically calculated from .

A MatrixMutator is defined to mutate between alleles 0, 1, . . . , according to a given rate matrix. Conceptually
speaking, this mutator goes through each mutable allele and mutates it to allele according to probabilities , . Most
alleles will be kept intact because mutations usually happen at low probability (with close to 1). For example, Example
MatrixMutator simulates a locus with 3 alleles. Because the rate at which allele 2 mutats to alleles 0 and 1 is higher
than the rate alleles 0 and 2 mutate to allele 2, the frequency of allele 2 decreases over time.

Example: General mutator specified by a mutation rate matrix

>>> import simuPOP as sim
>>> pop = sim.Population(size=[2000], loci=1)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.2, 0.3, 0.5])
...],
... preOps=sim.MatrixMutator(rate = [
... [0, 1e-5, 1e-5],
... [1e-4, 0, 1e-4],
... [1e-3, 1e-3, 0]
...]),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0, step=100),
... sim.PyEval(r"', '.join(['%.3f' % alleleFreq[0][x] for x in range(3)]) +
→˓'\n'",
... step=100),
...],
... gen=1000
...)
0.192, 0.302, 0.505
0.241, 0.292, 0.467
0.328, 0.273, 0.399
0.270, 0.322, 0.408
0.312, 0.412, 0.276
0.330, 0.344, 0.327

(continues on next page)

5.6. Mutation 83

simuPOP

(continued from previous page)

0.332, 0.424, 0.244
0.426, 0.372, 0.201
0.413, 0.384, 0.203
0.395, 0.408, 0.198
1000

now exiting runScriptInteractively...

Download MatrixMutator.py

Note: Alleles other than 0, 1, . . . , $n-1$ will not be mutated because their mutation rates are undefined. A warning
message will be displayed for this case when debugging code DBG_WARNING is turnned on.

5.6.2 k-allele mutation model (KAlleleMutator)

A -allele model assumes alleles at a locus and mutate between them using rate matrix

The only parameter is the mutation rate, which is the rate at which an allele mutates to any other allele with equal
probability.

This mutation model is a special case of the MatrixMutator but a specialized KAlleleMutator is recom-
mended because it provides better performance, especially when is large. In addition, this operator allows different
mutation rates at different loci. When is not specified, it is assumed to be the number of allowed alleles (e.g. 2 for
binary modules). Example KAlleleMutator desmonstrates the use of this operator where parameters rate and loci
are used to specify different mutation rates for different loci. Because this operator treats all alleles equally, all alleles
will have the same allele frequency in the long run.

Example: A k-allele mutation model

>>> import simuPOP as sim
>>> pop = sim.Population(size=[2000], loci=1*3)
>>> pop.evolve(
... initOps=sim.InitSex(),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.KAlleleMutator(k=5, rates=[1e-2, 1e-3], loci=[0, 1]),
... sim.Stat(alleleFreq=range(3), step=100),
... sim.PyEval(r"', '.join(['%.3f' % alleleFreq[x][0] for x in range(3)]) +
→˓'\n'",
... step=100),
...],
... gen=500
...)
0.991, 0.999, 1.000
0.368, 0.918, 1.000
0.300, 0.815, 1.000
0.257, 0.639, 1.000
0.209, 0.573, 1.000
500

now exiting runScriptInteractively...

Download KAlleleMutator.py

84 Chapter 5. simuPOP Operators

MatrixMutator.py
KAlleleMutator.py

simuPOP

Note: If alleles k and higher exist in the population, they will not be mutated because their mutation rates are
undefined. A warning message will be displayed for this case when debugging code DBG_WARNING is turnned on.

5.6.3 Diallelic mutation models (SNPMutator)

MatrixMutator and KAlleleMutator are general purpose mutators in the sense that they do not assume a type
for the mutated alleles. This and the following sections describe mutation models for specific types of alleles.

If there are only two alleles at a locus, a diallelic mutation model should be used. Because single nucleotide polymor-
phisms (SNPs) are the most widely avaiable diallelic markers, a SNPMutator is provided to mutate such markers
using a mutate rate matrix

Despite of its name, this mutator can be used in many theoretical models assuming and . If , mutations will be
directional. Example SNPMutator applies such a directional mutaton model to two loci, but with a purifying selection
applied to the first locus. Because of the selection pressure, the frequency of allele 1 at the first locus does not increase
indefinitely as allele 1 at the second locus.

Example: A diallelic directional mutation model

>>> import simuPOP as sim
>>> pop = sim.Population(size=[2000], loci=[1, 1], lociNames=['A', 'B'],
... infoFields='fitness')
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=[
... sim.SNPMutator(u=0.001),
... sim.MaSelector(loci='A', fitness=[1, 0.99, 0.98]),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=['A', 'B'], step=100),
... sim.PyEval(r"'%.3f\t%.3f\n' % (alleleFreq[0][1], alleleFreq[1][1])",
... step=100),
...],
... gen=500
...)
0.001 0.001
0.077 0.087
0.099 0.192
0.099 0.300
0.085 0.400
500

now exiting runScriptInteractively...

Download SNPMutator.py

5.6.4 Nucleotide mutation models (AcgtMutator)

Mutations in these models assume alleles 0, 1, 2, 3 as nucleotides A, C, G, and T. The operator is named
AcgtMutator to remind you the alphabetic order of these nucleotides. This mutation model is specified by a
rate matrix

5.6. Mutation 85

SNPMutator.py

simuPOP

which is determined by 12 parameters. However, several simpler models with fewer parameters can be used. In
addition to parameters shared by all mutation operators, a nucleotide mutator is specified by a parameter list and a
model name. For example:

AcgtMutator(rate=[1e-5, 0.5], model='K80')

specifies a nucleotide mutator using Kimura’s 2-parameter model with and . Because multiple parameters could
be involved for a particular mutation model, the definition of a mutation rate and other paramters are model
dependent and may varying with different mathematical representation of the models.

The names and acceptable parameters of acceptable models are listed below:

1. Jukes and Cantor 1969 model: model='JC69', rate=[]

The Jukes and Cantor model is similar to a -allele model but its definition of is different. More specifically,
when a mutation event happens at rate , an allele will have equal probability to mutate to any of the 4 allelic
states.

2. Kimura’s 2-parameter 1980 model: model='K80', rate=[,]

Kimura ‘s model distinguishes transitions (, and namely and with probability) and transversions (others) with
probability . It would be a Jukes and Cantor model if .

3. Felsenstein 1981 model: model='F81', rate=[, , ,].

This model assumes different base frequencies but the same probabilities for transitions and transversions. is
calculated from , and .

4. Hasegawa, Kishino and Yano 1985 model: model='HKY85', rate=[, , , ,]

This model replaces 1/4 frequency used in the Kimura’s 2-parameter model with nucleotide-specific frequencies.

5. Tamura 1992 model: model='T92', rate=[,]

This model is a HKY85 model with and ,

6. Tamura and Nei 1993 model: model='TN93', rate=[, , , , ,]

This model extends the HKY1985 model by distinguishing transitions (namely) and transitions () with different
.

7. Generalized time reversible model: model='GTR', rate=[, , , , , , , ,]

The generalized time reviersible model is the most general neutral, indepdendent, finite-sites, time-reversible
model possible. It is specified by six parameters and base frequencies. Its rate matrix is defined as

8. General model: model='general' (default), rate=[, , , , , , , , , , ,].

This is the most general model with 12 parameters:

It is not surprising that all other models are implemented as special cases of this model.

Example AcgtMutator applies a Kimmura’s 2-parameter mutation model to a population with a single nucleotide
marker.

Example: A Kimura’s 2 parameter mutation model

>>> import simuPOP as sim
>>> pop = sim.Population(size=[2000], loci=1,
... alleleNames=['A', 'C', 'G', 'T'])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.1, .1, .1, .7])

(continues on next page)

86 Chapter 5. simuPOP Operators

simuPOP

(continued from previous page)

...],

... matingScheme=sim.RandomMating(),

... preOps=[

... sim.AcgtMutator(rate=[1e-4, 0.5], model='K80'),

... sim.Stat(alleleFreq=0, step=100),

... sim.PyEval(r"', '.join(['%.3f' % alleleFreq[0][x] for x in range(4)]) +
→˓'\n'",
... step=100),
...],
... gen=500
...)
0.093, 0.101, 0.094, 0.712
0.142, 0.073, 0.084, 0.701
0.135, 0.160, 0.083, 0.623
0.230, 0.128, 0.013, 0.628
0.293, 0.189, 0.008, 0.510
500

now exiting runScriptInteractively...

Download AcgtMutator.py

5.6.5 Mutation model for microsatellite markers (StepwiseMutator)

The stepwise mutation model (SMM) was proposed by Ohta1973 to model the mutation of Variable Number Tandem
Repeat (VNTR), which consists of tandem repeat of sequences. VNTR markers consisting of short sequences (e.g.
5 basepair or less) are also called microsatellite markers. A mutation event of a VNTR marker either increase of
decrease the number of repeats, as a result of slipped-strand mispairing or unequal sister chromatid exchange and
genetic recombination.

A StepwiseMutator assumes that alleles at a locus are the number of tandem repeats and mutates them by increas-
ing or decreasing the number of repeats during a mutation event. By adjusting parameters incProb, maxAllele
and mutStep, this operator can be used to simulate the standard neutral stepwise mutation model and a number of
generalized stepwise mutation models. For example, Example StepwiseMutator uses two StepwiseMutator to
mutate two microsatellite markers, using a standard and a generalized model where a geometric distribution is used to
determine the number of steps.

Example: A standard and a generalized stepwise mutation model

>>> import simuPOP as sim
>>> pop = sim.Population(size=1000, loci=[1, 1])
>>> pop.evolve(
... # all start from allele 50
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq= [0]*50 + [1])
...],
... matingScheme=sim.RandomMating(),
... preOps=[
... sim.StepwiseMutator(rates=1e-3, loci=0),
... sim.StepwiseMutator(rates=1e-3, incProb=0.6, loci=1,
... mutStep=(sim.GEOMETRIC_DISTRIBUTION, 0.2)),
...],
... gen=100
...)

(continues on next page)

5.6. Mutation 87

AcgtMutator.py

simuPOP

(continued from previous page)

100
>>> # count the average number tandem repeats at both loci
>>> cnt0 = cnt1 = 0
>>> for ind in pop.individuals():
... cnt0 += ind.allele(0, 0) + ind.allele(0, 1)
... cnt1 += ind.allele(1, 0) + ind.allele(1, 1)
...
>>> print('Average number of repeats at two loci are %.2f and %.2f.' % \
... (cnt0/2000., cnt1/2000.))
Average number of repeats at two loci are 50.03 and 49.70.

now exiting runScriptInteractively...

Download StepwiseMutator.py

5.6.6 Simulating arbitrary mutation models using a hybrid mutator (PyMutator)*

A hybrid mutator PyMutator mutates random alleles at selected loci (parameter loci), replicates (parameter
loci), subpopulations (parameter subPop) with specified mutation rate (parameter rate). Instead of mutating
the alleles by itself, it passes the alleles to a user-defined function and use it return values as the mutated alleles.
Arbitrary mutation models could be implemented using this operator.

Example PyMutator applies a simple mutation model where an allele is increased by a random number between 1 and
5 when it is mutated. Two different mutation rates are used for two different loci so average alleles at these two loci
are different.

Example: A hybrid mutation model

>>> import simuPOP as sim
>>> import random
>>> def incAllele(allele):
... return allele + random.randint(1, 5)
...
>>> pop = sim.Population(size=1000, loci=[20])
>>> pop.evolve(
... initOps=sim.InitSex(),
... matingScheme=sim.RandomMating(),
... postOps=sim.PyMutator(func=incAllele, rates=[1e-4, 1e-3],
... loci=[2, 10]),
... gen = 1000
...)
1000
>>> # count the average number tandem repeats at both loci
>>> def avgAllele(pop, loc):
... ret = 0
... for ind in pop.individuals():
... ret += ind.allele(loc, 0) + ind.allele(loc, 1)
... return ret / (pop.popSize() * 2.)
...
>>> print('Average number of repeats at two loci are %.2f and %.2f.' % \
... (avgAllele(pop, 2), avgAllele(pop, 10)))
Average number of repeats at two loci are 0.01 and 2.19.

now exiting runScriptInteractively...

Download PyMutator.py

88 Chapter 5. simuPOP Operators

StepwiseMutator.py
PyMutator.py

simuPOP

5.6.7 Mixed mutation models (MixedMutator) **

Mixed mutation models are sometimes used to model real data. For example, a -allele model can be used to explain
extremely large or small number of tandem repeats at a microsatellite marker which are hard to justify using a stan-
dard stepwise mutation model. A mixed mutation model would apply two or more mutation models at pre-specified
probabilities.

A MixedMutator is constructed by a list of mutators and their respective probabilities. It accepts regular mutator
parameters such as rates, loci, subPops, mapIn and mapOut and mutates aleles at specified rate. When a
mutation event happens, it calls one of the mutators to mutate the allele. For example, Example MixedMutator applies
a mixture of -allele model and stepwise model to mutate a micosatellite model.

Example: A mixed k-allele and stepwise mutation model

>>> import simuPOP as sim
>>> pop = sim.Population(5000, loci=[1, 1])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[50, 50])
...],
... preOps=[
... # the first locus uses a pure stepwise mutation model
... sim.StepwiseMutator(rates=0.001, loci=0),
... # the second locus uses a mixed model
... sim.MixedMutator(rates=0.001, loci=1, mutators=[
... sim.KAlleleMutator(rates=1, k=100),
... sim.StepwiseMutator(rates=1)
...], prob=[0.1, 0.9])],
... matingScheme=sim.RandomMating(),
... gen = 20
...)
20
>>> # what alleles are there?
>>> geno0 = []
>>> geno1 = []
>>> for ind in pop.individuals():
... geno0.extend([ind.allele(0, 0), ind.allele(0, 1)])
... geno1.extend([ind.allele(1, 0), ind.allele(1, 1)])
...
>>> print('Locus 0 has alleles', ', '.join([str(x) for x in set(geno0)]))
Locus 0 has alleles 49, 50, 51
>>> print('Locus 1 has alleles', ', '.join([str(x) for x in set(geno1)]))
Locus 1 has alleles 67, 49, 50, 51, 88

now exiting runScriptInteractively...

Download MixedMutator.py

When a mutation event happens, mutators in Example MixedMutator mutate the allele with probability (mutation
rate) 1. If different mutation rates are specified, the overall mutation rates would be the product of mutation rate
of MixedMutator and the passed mutators. However, it is extremely important to understand that although
MixedMutator(rates=mu) with StepwiseMutator(rates=1) and MixedMutator(rates=1)with
StepwiseMutator(rates=mu) mutate alleles at the same mutation rate, the former is much more efficient be-
cause it triggers far less mutation events.

5.6. Mutation 89

MixedMutator.py

simuPOP

5.6.8 Context-dependent mutation models (ContextMutator)**

All mutation models we have seen till now are context independent. That is to say, how an allele is mutated depends
only on the allele itself. However, it is understood that DNA and amino acid substitution rates are highly sequence
context-dependent, e.g., C T substitutions in vertebrates may occur much more frequently at CpG sites. To simulate
such models, a mutator must consider the context of a mutated allele, e.g. certain number of alleles to the left and right
of this allele, and mutate the allele accordingly.

A ContextMutator can be used to mutate an allele depending on its surrounding loci. This mutator is constructed
by a list of mutators and their respective contexts. It accepts regular mutator parameters such as rates, loci,
subPops, mapIn and mapOut and mutates aleles at specified rate. When a mutation event happens, it checks the
context of the mutaed allele and choose a corresponding mutator to mutate the allele. An additional mutator can be
specified to mutate alleles with unknown context. Example ContextMutator applies two SNPMutator at different
rates under different contexts.

Example: A context-dependent mutation model

>>> import simuPOP as sim
>>> pop = sim.Population(5000, loci=[3, 3])
>>> pop.evolve(
... # initialize locus by 0, 0, 0, 1, 0, 1
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[1, 1], loci=[3, 5])
...],
... preOps=[
... sim.ContextMutator(mutators=[
... sim.SNPMutator(u=0.1),
... sim.SNPMutator(u=1),
...],
... contexts=[(0, 0), (1, 1)],
... loci=[1, 4],
... rates=0.01
...),
... sim.Stat(alleleFreq=[1, 4], step=5),
... sim.PyEval(r"'Gen: %2d freq1: %.3f, freq2: %.3f\n'" +
... " % (gen, alleleFreq[1][1], alleleFreq[4][1])", step=5)
...],
... matingScheme=sim.RandomMating(),
... gen = 20
...)
Gen: 0 freq1: 0.001, freq2: 0.010
Gen: 5 freq1: 0.005, freq2: 0.059
Gen: 10 freq1: 0.007, freq2: 0.108
Gen: 15 freq1: 0.015, freq2: 0.142
20

now exiting runScriptInteractively...

Download ContextMutator.py

Note that although

ContextMutator(mutators=[
SNPMutator(u=0.1),
SNPMutator(u=1)],
contexts=[(0, 0), (1, 1)],
rates=0.01

(continues on next page)

90 Chapter 5. simuPOP Operators

ContextMutator.py

simuPOP

(continued from previous page)

)

and

ContextMutator(mutators=[
SNPMutator(u=0.001),
SNPMutator(u=0.01)],
contexts=[(0, 0), (1, 1)],
rates=1

)

both apply two SNPMutator at mutation rates 0.001 and 0.01, the former is more efficient because it triggers less
mutation events.

Context-dependent mutator can also be implemented by a PyMutator. When a non-zero parameter context is
specified, this mutator will collect context number of alleles to the left and right of a mutated allele and pass them
as a second parameter of the user-provided mutation function. Example pyContextMutator applies the same mutation
model as Example ContextMutator using a PyMutator.

Example: A hybrid context-dependent mutation model

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(5000, loci=[3, 3])
>>> def contextMut(allele, context):
... if context == [0, 0]:
... if allele == 0 and random.random() < 0.1:
... return 1
... elif context == [1, 1]:
... if allele == 0:
... return 1
... # do not mutate
... return allele
...
>>> pop.evolve(
... # initialize locus by 0, 0, 0, 1, 0, 1
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[1, 1], loci=[3, 5])
...],
... preOps=[
... sim.PyMutator(func=contextMut, context=1,
... loci=[1, 4], rates=0.01
...),
... #sim.SNPMutator(u=0.01, v= 0.01, loci=[1, 4]),
... sim.Stat(alleleFreq=[1, 4], step=5),
... sim.PyEval(r"'Gen: %2d freq1: %.3f, freq2: %.3f\n'" +
... " % (gen, alleleFreq[1][1], alleleFreq[4][1])", step=5)
...],
... matingScheme=sim.RandomMating(),
... gen = 20
...)
Gen: 0 freq1: 0.000, freq2: 0.000
Gen: 5 freq1: 0.000, freq2: 0.000
Gen: 10 freq1: 0.000, freq2: 0.000
Gen: 15 freq1: 0.000, freq2: 0.000
20

(continues on next page)

5.6. Mutation 91

simuPOP

(continued from previous page)

now exiting runScriptInteractively...

Download pyContextMutator.py

5.6.9 Manually-introduced mutations (PointMutator)

Operator PointMutator is different from all other mutators in that it mutates specified alleles of specified individ-
uals. It is usually used to manually introduce one or more mutants to a population. Although it is not a recommended
method to introduce a disease predisposing allele, the following example (Example PointMutator) demonstrates an
evolutionary process where mutants are repeatedly introduced and raised by positive selection until it reaches an ap-
preciable allele frequency. This example uses two IfElse operators. The first one introduces a mutant when there
is no mutant in the population, and the second one terminate the evolution when the frequency of the mutant reaches
0.05.

Example: Use a point mutator to introduce a disease predisposing allele

>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=1, infoFields='fitness')
>>> pop.evolve(
... initOps=sim.PyOutput('Introducing alleles at generation'),
... preOps=sim.MaSelector(loci=0, wildtype=0, fitness=[1, 1.05, 1.1]),
... matingScheme=sim.RandomSelection(),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.IfElse('alleleNum[0][1] == 0', ifOps=[
... sim.PyEval(r"' %d' % gen"),
... sim.PointMutator(inds=0, loci=0, allele=1),
...]),
... sim.IfElse('alleleFreq[0][1] > 0.05', ifOps=[
... sim.PyEval(r"'.\nTerminate at generation %d at allele freq %.3f.\n'" +
... " % (gen, alleleFreq[0][1])"),
... sim.TerminateIf('True'),
...])
...],
...)
Introducing alleles at generation 0 1 2 16 17 18 22 30 32 33 34 41 81 82 83.
Terminate at generation 111 at allele freq 0.051.
112

now exiting runScriptInteractively...

Download PointMutator.py

5.6.10 Apply mutation to (virtual) subpopulations *

A mutator is usually applied to all individuals in a population. However, you can restrict its use to specified subpopula-
tions and/or virtual subpopulations using parameter subPop. For example, you can use subPop=[0, 2] to apply
the mutator only to individuals in subpopulations 0 and 2.

Virtual subpopulations can also be specified in this parameter. For example, you can apply different mutation models to
male and female individuals, to unaffected or affected individuals, to patients at different stages of a cancer. Example
mutatorVSP demonstrate a mutation model where individuals with more tandem repeats at a disease predisposing

92 Chapter 5. simuPOP Operators

pyContextMutator.py
PointMutator.py

simuPOP

locus are more likely to develop a disease (e.g. fragile-X). Affected individuals are then subject to a non-neutral
mutation model at an accerlerated mutation rate.

Example: Applying mutation to virtual subpopulations.

>>> import simuPOP as sim
>>> def fragileX(geno):
... '''A disease model where an individual has increased risk of
... affected if the number of tandem repeats exceed 75.
... '''
... # Alleles A1, A2.
... maxRep = max(geno)
... if maxRep < 50:
... return 0
... else:
... # individuals with allele >= 70 will surely be affected
... return min(1, (maxRep - 50)*0.05)
...
>>> def avgAllele(pop):
... 'Get average allele by affection sim.status.'
... sim.stat(pop, alleleFreq=(0,1), subPops=[(0,0), (0,1)],
... numOfAffected=True, vars=['alleleNum', 'alleleNum_sp'])
... avg = []
... for alleleNum in [\
... pop.dvars((0,0)).alleleNum[0], # first locus, unaffected
... pop.dvars((0,1)).alleleNum[0], # first locus, affected
... pop.dvars().alleleNum[1], # second locus, overall
...]:
... alleleSum = numAllele = 0
... for idx,cnt in enumerate(alleleNum):
... alleleSum += idx * cnt
... numAllele += cnt
... if numAllele == 0:
... avg.append(0)
... else:
... avg.append(alleleSum * 1.0 /numAllele)
... # unaffected, affected, loc2
... pop.dvars().avgAllele = avg
... return True
...
>>> pop = sim.Population(10000, loci=[1, 1])
>>> pop.setVirtualSplitter(sim.AffectionSplitter())
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[50, 50])
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... # determine affection sim.status for each offspring (duringMating)
... sim.PyPenetrance(func=fragileX, loci=0),
... # unaffected offspring, mutation rate is high to save some time
... sim.StepwiseMutator(rates=1e-3, loci=1),
... # unaffected offspring, mutation rate is high to save some time
... sim.StepwiseMutator(rates=1e-3, loci=0, subPops=[(0, 0)]),
... # affected offspring have high probability of mutating upward
... sim.StepwiseMutator(rates=1e-2, loci=0, subPops=[(0, 1)],
... incProb=0.7, mutStep=3),

(continues on next page)

5.6. Mutation 93

simuPOP

(continued from previous page)

... # number of affected

... sim.PyOperator(func=avgAllele, step=20),

... sim.PyEval(r"'Gen: %3d #Aff: %d AvgRepeat: %.2f (unaff), %.2f (aff), %.2f
→˓(unrelated)\n'"
... + " % (gen, numOfAffected, avgAllele[0], avgAllele[1], avgAllele[2])",
... step=20),
...],
... gen = 101
...)
Gen: 0 #Aff: 0 AvgRepeat: 1.01 (unaff), 0.00 (aff), 1.01 (unrelated)
Gen: 20 #Aff: 6 AvgRepeat: 1.53 (unaff), 0.50 (aff), 1.52 (unrelated)
Gen: 40 #Aff: 20 AvgRepeat: 2.56 (unaff), 2.04 (aff), 1.53 (unrelated)
Gen: 60 #Aff: 46 AvgRepeat: 2.56 (unaff), 2.04 (aff), 2.04 (unrelated)
Gen: 80 #Aff: 55 AvgRepeat: 3.08 (unaff), 1.53 (aff), 2.04 (unrelated)
Gen: 100 #Aff: 48 AvgRepeat: 2.04 (unaff), 1.52 (aff), 2.04 (unrelated)
101

now exiting runScriptInteractively...

Download mutatorVSP.py

At the beginning of a simulation, all individuals have 50 copies of a tandem repeat and the mutation follows a standard
neutral stepwise mutation model. individuals with more than 50 repeats will have an increasing probability to develop
a disease () for). The averge repeat number therefore increases for affected individuals. In contrast, the mean number
of repeats at locus 1 on a separate chromosome oscillate around 50.

5.6.11 Allele mapping **

If alleles in your simulation do not follow the convention of a mutation model, you may want to use the pop.
recodeAlleles() function to recode your alleles so that appropriate mutation models could be applied. If this
is not possible, you can use a general mutation model with your own mutation matrix, or an advanced feature called
allele mapping.

Allele mapping is done through two parameters mapIn and mapOut, which map alleles in your population to and from
alleles assumed in a mutation model. For example, an AcgtMutator mutator assumes alleles A, C, G and T for
alleles 0, 1, 2, and 3 respectively. If for any reason the alleles in your application does not follow this order, you will
need to map these alleles to the alleles assumed in the mutator. For example, if you assumes C, G, A, T for alleles 0, 1,
2, and 3 respectively, you can use parameters

mapIn=[1, 2, 0, 3], mapOut=[2, 0, 1, 3]

to map your alleles (C(0)->C(1), G(1)->G(2), A(2)->A(0), T(3)->T(3)) to alleles AcgtMutator as-
sumes, and then map mutated alleles (A(0)->A(2), C(1)->C(0), G(2)->G(1), T(3)->T(3)) back. Example
alleleMapping gives another example where alleles 4, 5, 6 and 7 are mutated using a 4-allele model.

Example: Allele mapping for mutation operators

>>> import simuPOP as sim
>>> pop = sim.Population(size=[2000], loci=1)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0]*4 + [0.1, 0.2, 0.3, 0.4])
...],
... matingScheme=sim.RandomMating(),

(continues on next page)

94 Chapter 5. simuPOP Operators

mutatorVSP.py

simuPOP

(continued from previous page)

... postOps=[

... sim.KAlleleMutator(k=4, rates=1e-4, mapIn=[0]*4 + list(range(4)),

... mapOut=[4, 5, 6, 7]),

... sim.Stat(alleleFreq=0, step=100),

... sim.PyEval(r"', '.join(['%.2f' % alleleFreq[0][x] for x in range(8)]) +
→˓'\n'",
... step=100),
...],
... gen=500
...)
0.00, 0.00, 0.00, 0.00, 0.09, 0.20, 0.30, 0.41
0.00, 0.00, 0.00, 0.00, 0.13, 0.20, 0.40, 0.26
0.00, 0.00, 0.00, 0.00, 0.17, 0.20, 0.31, 0.31
0.00, 0.00, 0.00, 0.00, 0.19, 0.18, 0.26, 0.37
0.00, 0.00, 0.00, 0.00, 0.18, 0.24, 0.23, 0.34
500

now exiting runScriptInteractively...

Download alleleMapping.py

These two parameters also accept Python functions which should return corresponding mapped-in or out allele for a
given allele. These two functions can be used to explore very fancy mutation models. For example, you can categorize
a large number of alleles into alleles assumed in a mutation model, and emit random alleles from a mutated allele.

5.6.12 Mutation rate and transition matrix of a MatrixMutator**

A MatrixMutator is specified by a mutation rate matrix. Although mutation rates of this mutator is typically
allele-dependent, the MatrixMutator is implemented as a two-step process where mutation events are trig-
gered independent to allelic states. This section describes these two steps which can be useful if you need to
use a maxtrixMutator in a MixedMutator or ContextMutator, and would like to factor out an allele-
independent mutation rate to the wrapper mutator.

Because alleles usually have different probabilities of mutating to other alleles, a mutation process is usually allele
dependent. Given a mutation model , it is obviously inefficient to go through all mutable alleles and determine
whether or not to mutate it using . simuPOP uses a two step procedure to mutate a large number of alleles. More
specifically, for each mutation model, we determine as the overall mutation rate, and then

1. For each allele, trigger a mutation event with probability . Because is usually very small and is the same for all
alleles, this step can be implemented efficiently.

2. When a mutation event happens, mutation allele to allele with probability

Because steps 1 and 2 are independent, it is easy to verify that

if and

where the first and second items are probabilities of no-mutation at steps 1 and 2. was chosen as the smallest that
makes for all .

For example, for a -allele model with

is directly for the first step and

for the second step. Therefore, mutation rate in a -allele model could be interpreted as the probability of mutation, and
a mutation event would mutate an allele to any other allele with equal probability.

For a classical mutation model with and ,

5.6. Mutation 95

alleleMapping.py

simuPOP

if and , ,

That is to say, we would mutate at a mutation rate , mutate allele to with probability 1 and mutate allele to with
probability 0.5.

5.6.13 Infinite-sites model and other simulation techniques **

Infinite-sites and infinite-alleles models have some similarities. If you assume that mutation is the only force to create
new mutants, you can treat a long chromosomal region as a locus and use the infinite-alleles model, actually a -allele
model with large , to mimic the infinite-site model. This assumption is certainly wrong with the infinite-site model
when recombination is involved, because recombination creates new haplotypes (alleles) under the infinite-site model.
However, for short regions where recombination can be ignored, an -allele model can be an easy and fast way to
mimic an infinite-site model. That statement basically says that you have a choice between two models if you would
like to simulate the evolution of this gene, namely considering the gene as a locus and simulating variants as alleles,
or considering the gene as a sequence and simulating haplotypes as alleles.

For example, the CFTR gene (for cystic fibrosis) can have many alleles (thinking in terms of infinite-allele model)
which are nucleotide mutations on tens of locations (infinite-site model). In order to simulate the evolution of this
gene, you have a choice between two models, namely considering the gene as a locus and simulating variants as
alleles, or considering the gene as a sequence and simulating haplotypes as alleles. Because there is supposed to be
only one mutant at each site, you can assign a unique location for each allele of an infinite-allele model and convert
multi-allelic datasets simulated by an infinite-allele model to sequences of diallelic markers. Note that mutation rates
are interpreted differently for these two models.

If specific location of such a mutation is needed, it is possible to record the location of mutations during an evolution
and minic an infinite-sites model. For example, alleles in Example infiniteSites are used to store location of a mutation
event. When a mutation event happens, the location of the new allele (rather the allele itself) is recorded on the
chromosome (actually list of mutation events) of an individual. The transmission of chromosomes proceed normally
and effectively transmit mutants from parents to offspring. At the end of the simulation, each individual accumulates
a number of mutation events and they are essentially alleles at their respective locations.

Example: Mimicking an infinite-sites model using mutation events as alleles

>>> import simuOpt
>>> simuOpt.setOptions(alleleType='long')
>>> import simuPOP as sim
>>>
>>> def infSitesMutate(pop, param):
... '''Apply an infinite mutation model'''
... (startPos, endPos, rate) = param
... # for each individual
... for ind in pop.individuals():
... # for each homologous copy of chromosomes
... for p in range(2):
... # using a geometric distribution to determine
... # the first mutation location
... loc = sim.getRNG().randGeometric(rate)
... # if a mutation happens, record the mutated location
... if startPos + loc < endPos:
... try:
... # find the first non-zero location
... idx = ind.genotype(p).index(0)
... # record mutation here
... ind.setAllele(startPos + loc, idx, ploidy=p)
... except:
... raise

(continues on next page)

96 Chapter 5. simuPOP Operators

simuPOP

(continued from previous page)

... print('Warning: more than %d mutations have accumulated' %
→˓pop.totNumLoci())
... pass
... return True
...
>>> pop = sim.Population(size=[2000], loci=[100])
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=[
... # mutate in a 10Mb region at rate 1e-8
... sim.PyOperator(func=infSitesMutate, param=(1, 10000000, 1e-8)),
...],
... matingScheme=sim.RandomMating(),
... gen = 100
...)
100
>>> # now, we get a sim.Population. Let us have a look at the 'alleles'.
>>> # print the first five mutation locations
>>> print(pop.individual(0).genotype()[:5])
[1527502, 4774892, 7979220, 3671118, 395142]
>>> # how many alleles are there (does not count 0)?
>>> print(len(set(pop.genotype())) - 1)
2700
>>> # Allele count a simple count of alleles.
>>> cnt = {}
>>> for allele in pop.genotype():
... if allele == 0:
... continue
... if allele in cnt:
... cnt[allele] += 1
... else:
... cnt[allele] = 1
...
>>> # highest allele frequency?
>>> print(max(cnt.values()) *0.5 / pop.popSize())
0.05475

now exiting runScriptInteractively...

Download infiniteSites.py

All mutation models in simuPOP apply to existing alleles at pre-specified loci. However, if the location of loci cannot
be determined beforehand, it is sometimes desired to create new loci as a result of mutation. A customized operator can
be used for this purpose (see Example newOperator), but extra attention is needed to make sure that other operators
are applied to the correct loci because loci indexes will be changed with the insertion of new loci. This technique could
also be used to simulate mutations over long sequences.

5.6.14 Recording and tracing individual mutants **

Mutation operators mutate alleles in place and by default do not generate any output. If you are interested in knowing
the source of each mutant, you can specify an output stream and let the mutation operators dump details of each
mutation event, which consists of generation number, locus index, ploidy, original allele, and mutated allele. If a list
of information fields are specified through parameter infoFields, values at these information fields will also be
outputted (if they exist in the population. The default information field is ind_id, which allow you to record the ID
of individuals harboring the mutants.

5.6. Mutation 97

infiniteSites.py

simuPOP

Example countMutants demonstrates how to use this feature to count the number of mutants at each locus. Instead of
sending the output to a file (e.g. output='>>mutants.txt'), this example sends the output to a Python function,
which parses input string and counts the number of mutants at each locus using a global dictionary variable. As we
can see from the output, because the KAlleleMutator uses a higher mutation rate (0.01) at locus 1 than mutation rate
(0.001) at locus 0, there are 10 times more mutants at the second locus. There are about 3/4 mutations on the locus on
chromosome X and 1/4 mutations on the locus on chromosome Y, for obvious reasons.

Example: Count number of mutants from mutator outputs

>>> import simuPOP as sim
>>> from collections import defaultdict
>>> # count number of mutants at each locus
>>> counter = defaultdict(int)
>>> def countMutants(mutants):
... global counter
... for line in mutants.split('\n'):
... # a trailing \n will lead to an empty string
... if not line:
... continue
... (gen, loc, ploidy, a1, a2, id) = line.split('\t')
... counter[int(loc)] += 1
...
>>> pop = sim.Population([5000]*3, loci=[2,1,1], infoFields='ind_id',
... chromTypes=[sim.AUTOSOME, sim.CHROMOSOME_X, sim.CHROMOSOME_Y])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
... sim.IdTagger(),
...],
... preOps=[
... sim.KAlleleMutator(rates=[0.001] + [0.01]*3,
... loci=range(4), k=100, output=countMutants),
...],
... matingScheme=sim.RandomMating(
... ops=[
... sim.IdTagger(),
... sim.MendelianGenoTransmitter()
...]),
... gen = 10
...)
10
>>> print(counter.items())
dict_items([(0, 308), (1, 2984), (2, 2319), (3, 768)])

now exiting runScriptInteractively...

Download countMutants.py

5.7 Penetrance

Penetrance is the probability for an individual to be affected with a disease conditioning on his or her genotype and
other risk factors. A penetrance model calculates such a probability for an individual and assign affection status
randomly according to this probability. For example, if an individual with genotype 10 has probability 0.2 to be
affected according to a penetrance model, he or she will be affected with probability 0.2. Note that simuPOP supports
only one affection status. If there are multiple affection outcomes involved, you can treat them as binary quantitative

98 Chapter 5. simuPOP Operators

countMutants.py

simuPOP

traits and use information fields to store them.

A penetrance operator can be applied before or after mating, to assign affection status to all individuals in the parental
or offspring generation, respectively. It can also be applied during mating and assign affection status to each offspring.
The latter could be used to assit natural selection through the selection of offspring. You can also assign affection status
to all individuals in a population using the function form of a penetrance operator (e.g. function mapPenetrance
for operator MapPenetrance). Compared the penetrance operators that assign affection status to only the current
generation, these functions by default assign affection status to all ancestral generations as well.

A penetrance operator usually do not store the penetrance values. However, if an information field is given, penetrance
values will be saved to this information field before it is used to determine individual affection status.

5.7.1 Map penetrance model (operator MapPenetrance)

A map penetrance opertor uses a Python dictionary to provide penetrance values for each type of genotype. For
example, Example MapPenetrance uses a dictionary with keys (0,0), (0,1) and (1,1) to specify penetrance for
individuals with these genotypes at locus 0.

Example: A penetrance model that uses pre-defined fitness value

>>> import simuPOP as sim
>>> pop = sim.Population(size=2000, loci=2)
>>> sim.initGenotype(pop, freq=[.2, .8])
>>> sim.mapPenetrance(pop, loci=0,
... penetrance={(0,0):0, (0,1):.2, (1,1):.3})
>>> sim.stat(pop, genoFreq=0, numOfAffected=1, vars='genoNum')
>>> # number of affected individuals
>>> pop.dvars().numOfAffected
531
>>> # which should be roughly (#01 + #10) * 0.2 + #11 * 0.3
>>> (pop.dvars().genoNum[0][(0,1)] + pop.dvars().genoNum[0][(1,0)]) * 0.2 \
... + pop.dvars().genoNum[0][(1,1)] * 0.3
514.2

now exiting runScriptInteractively...

Download MapPenetrance.py

The above example assumes that penetrance for individuals with genotypes (0,1) and (1,0) are the same. This
assumption is usually valid but can be vialoated with impriting. In that case, you can specify fitness for both types
of genotypes. The underlying mechanism is that the MapPenetrance looks up a genotype in the dictionary first
directly, and then without phase information if a genotype is not found.

This operator supports haplodiploid populations and sex chromosomes. In these cases, only valid alleles should be
listed which can lead to dictionary keys with different lengths. In addition, although less used because of potentially a
large number of keys, this operator can act on multiple loci. For example,

• keys (a1,a2) and (a1,) can be used to specify fitness values for female and male individuals in a hap-
lodiploid population, respectively

• keys (x1,x2) and (x1,) can be used to specify fitness for female and male individuals according to a
locus on the X chromosome in a diploid population, respectively. Similarly, keys () and (y,) for a locus on
chromosome Y.

• keys (a1,a2,b1,b2) can be used to specify fitness values according to genotype at two loci in a diploid
population.

5.7. Penetrance 99

MapPenetrance.py

simuPOP

5.7.2 Multi-allele penetrance model (operator MaPenetrance)

A multi-allele penetrance model divides alleles into two groups, wildtype A and mutants a, and treat alleles within
each group as the same. The penetrance model is therefore simplified to

• Two fitness values for genotype , in the haploid case

• Three fitness values for genotype AA, Aa and aa in the diploid single locus case. Genotype Aa and aA are
assumed to have the same impact on fitness.

The default wildtype group contains allele 0 so the two allele groups are zero and non-zero alleles. Example MaPene-
trance demonstrates the use of this operator.

Example: A multi-allele penetrance model

>>> import simuPOP as sim
>>> pop = sim.Population(5000, loci=3)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.9] + [0.02]*5)
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.MaPenetrance(loci=0, penetrance=(0.01, 0.2, 0.3)),
... sim.Stat(numOfAffected=True, vars='propOfAffected'),
... sim.PyEval(r"'Gen: %d Prevalence: %.1f%%\n' % (gen, propOfAffected*100)"),
...],
... gen = 5
...)
Gen: 0 Prevalence: 4.4%
Gen: 1 Prevalence: 4.4%
Gen: 2 Prevalence: 4.7%
Gen: 3 Prevalence: 4.4%
Gen: 4 Prevalence: 4.3%
5

now exiting runScriptInteractively...

Download MaPenetrance.py

Operator MaPenetrance also supports multiple loci by specifying fitness values for all combination of genotype at
specified loci. In the case of two loci, this operator requires

• Four fitness values for genotype AB, Ab, aB and ab in the haploid case,

• Nine fitness values for genotype AABB, AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb, and aabb in the
haploid case.

In general, values are needed for haploid populations and values are needed for diploid populations where is the
number of loci. This operator does not yet support haplodiploid populations and sex chromosomes.

5.7.3 Multi-loci penetrance model (operator MlPenetrance)

Although an individual’s affection status can be affected by several factors, each of which can be modeled individually,
only one penetrance value is used to determine a person’s affection status and we have to use a multi-locus
penetrance model to combine single-locus models.

This multi-loci penetrance model applies several penetrance models to each Individual and computes an overall pen-
etrance value from the penetrance values provided by these operators. Although this selector is designed to obtain

100 Chapter 5. simuPOP Operators

MaPenetrance.py

simuPOP

multi- loci penetrance values from several single-locus penetrance models, any penetrance operator, including those
obtain their penetrance values from multiple disease predisposing loci, can be used in this operator. This operator uses
parameter mode to control how Individual penetrance values are combined. More specifically, if are penetrance values
obtained from individual selectors, this selector returns

• if mode=MULTIPLICATIVE, and

• if mode=ADDITIVE, and

• if mode=HETEROGENEITY

0 or 1 will be returned if the returned fitness value is out of range of [0,1].

Example MlPenetrance demonstrates the use of this operator using an multiplicative multi-locus model over three
additive single-locus models at three diesease predisposing loci.

Example: A multi-loci penetrance model

>>> import simuPOP as sim
>>> pop = sim.Population(5000, loci=3)
>>> sim.initGenotype(pop, freq=[0.2]*5)
>>> # the multi-loci penetrance
>>> sim.mlPenetrance(pop, mode=sim.MULTIPLICATIVE,
... ops = [sim.MaPenetrance(loci=loc,
... penetrance=[0, 0.3, 0.6]) for loc in range(3)])
>>> # count the number of affected individuals.
>>> sim.stat(pop, numOfAffected=True)
>>> pop.dvars().numOfAffected
542

now exiting runScriptInteractively...

Download MlPenetrance.py

5.7.4 Hybrid penetrance model (operator PyPenetrance)

When your selection model involves multiple interacting genetic and environmental factors, it might be easier to
calculate a penetrance value explicitly using a Python function. A hybrid penetrance operator can be used for this
purpose. If your penetrance model depends solely on genotype, you can define a function such as

def pfunc(geno):
calculate penetrance according to genotype at specified loci
in the order of A1,A2,B1,B2,C1,C2 for loci A,B,C (for diploid)
return val

and use this function in an operator PySelector(func=pfunc, loci=loci). If your penetrance model de-
pends on genotype as well as some information fields, you can define a function in the form of

def pfunc(geno, fields):
calculate penetrance according to genotype at specified loci
and values at specified informaton fields.
return val

and use this function in an operator PySelector(func=pfunc, loci=loci, paramFields=fields). If
the function you provide accepts three arguments, PyPenetrancewill pass generation number as the third argument
so that you could implement generation-specific penetrance models (e.g. pfunc(geno, fields, gen)).

When a PyPenetrance operator is used to calculate penetrance for an individual, it will collect his or her genotype
at specified loci, optional values at specified information fields, and the generation number to a user- specified Python

5.7. Penetrance 101

MlPenetrance.py

simuPOP

function, and take its return value as penetrance. As you can imagine, the incorporation of information fields and
generation number allow the implementation of very complex penetrance scenarios such as gene environment interac-
tion and varying selection pressures. Note that this operator does not pass sex and affection status to the user-defined
function. If your selection model is sex-dependent, you can define an information field sex, synchronize its value
with individual sex (e.g. using operator InfoExec('sex=ind.sex()', exposeInd='ind') and pass this
information to the user- defined function (PySelector(func=func, paramFields='sex')).

Example PySelector demonstrates how to use a PyPenetrance to specify penetrance values according to a fitness
table and the smoking status of each individual. In this example, Individual risk is doubled when he or she smokes.
The disease prevalence is therefore much higher in smokers than in non-smokers.

Example: A hybrid penetrance model

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=2000, loci=[1]*2, infoFields=['p', 'smoking'])
>>> pop.setVirtualSplitter(sim.InfoSplitter(field='smoking', values=[0,1]))
>>> # the second parameter gen can be used for varying selection pressure
>>> def penet(geno, smoking):
... # BB Bb bb
... # AA 0.01 0.01 0.01
... # Aa 0.01 0.03 0.03
... # aa 0.01 0.03 0.05
... #
... # geno is (A1 A2 B1 B2)
... if geno[0] + geno[1] == 1 and geno[2] + geno[3] != 0:
... v = 0.03 # case of AaBb
... elif geno[0] + geno[1] == 2 and geno[2] + geno[3] == 1:
... v = 0.03 # case of aaBb
... elif geno[0] + geno[1] ==2 and geno[2] + geno[3] == 2:
... v = 0.05 # case of aabb
... else:
... v = 0.01 # other cases
... if smoking:
... return v * 2
... else:
... return v
...
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.5, .5]),
... sim.PyOutput('Calculate prevalence in smoker and non-smokers\n'),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... # set smoking status randomly
... sim.InitInfo(lambda : random.randint(0,1), infoFields='smoking'),
... # assign affection status
... sim.PyPenetrance(loci=[0, 1], func=penet),
... sim.Stat(numOfAffected=True, subPops=[(0, sim.ALL_AVAIL)],
... vars='propOfAffected_sp', step=20),
... sim.PyEval(r"'Non-smoker: %.2f%%\tSmoker: %.2f%%\n' % "
... "(subPop[(0,0)]['propOfAffected']*100, subPop[(0,1)]['propOfAffected
→˓']*100)",
... step=20)
...],
... gen = 50

(continues on next page)

102 Chapter 5. simuPOP Operators

simuPOP

(continued from previous page)

...)
Calculate prevalence in smoker and non-smokers
Non-smoker: 2.24% Smoker: 4.52%
Non-smoker: 2.29% Smoker: 3.61%
Non-smoker: 1.85% Smoker: 3.80%
50
>>>

now exiting runScriptInteractively...

Download PyPenetrance.py

5.8 Quantitative trait

Quantitative traits are naturally stored in information fields of each individual. A quantitative trait operator assigns
quantitative trait fields according to individual genetic (genotype) and environmental (other information fields) infor-
mation. Although a large number of quantitative trait models have been used in theoretical and empirical studies, no
model is popular enough to deserve a specialized operator. Therefore, only one hybrid operator is currently provided
in simuPOP.

5.8.1 A hybrid quantitative trait operator (operator PyQuanTrait)

Operator PyQuanTrait accepts a user defined function that returns quantitative trait values for specified infor-
mation fields. This operator can comunicate with functions in one of the forms of func(geno), func(geno,
field_name, ...) or func(geno, field_name, gen) where field_name should be name of existing
fields. simuPOP will pass genotype and value of specified fields according to name of the passed function. Note that
geno are arrange locus by locus, namely in the order of A1,‘‘A2‘‘,‘‘B1‘‘,‘‘B2‘‘ for loci A and B.

A quantitative trait operator can be applied before or after mating and assign values to the trait fields of all parents or
offspring, respectively. It can also be applied during mating to assign trait values to offspring. Example PyQuanTrait
demonstrates the use of this operator, using two trait fields trait1 and trait2 which are determined by individual
genotype and age. This example also demonstrates how to calculate statistics within virtual subpopulations (defined
by age).

Example: A hybrid quantitative trait model

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=5000, loci=2, infoFields=['qtrait1', 'qtrait2', 'age'])
>>> pop.setVirtualSplitter(sim.InfoSplitter(field='age', cutoff=[40]))
>>> def qtrait(geno, age):
... 'Return two traits that depends on genotype and age'
... return random.normalvariate(age * sum(geno), 10), random.randint(0,
→˓10*sum(geno))
...
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.2, 0.8]),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... # use random age for simplicity

(continues on next page)

5.8. Quantitative trait 103

PyPenetrance.py

simuPOP

(continued from previous page)

... sim.InitInfo(lambda:random.randint(20, 75), infoFields='age'),

... sim.PyQuanTrait(loci=(0,1), func=qtrait, infoFields=['qtrait1', 'qtrait2
→˓']),
... sim.Stat(meanOfInfo=['qtrait1'], subPops=[(0, sim.ALL_AVAIL)],
... vars='meanOfInfo_sp'),
... sim.PyEval(r"'Mean of trait1: %.3f (age < 40), %.3f (age >=40)\n' % "
... "(subPop[(0,0)]['meanOfInfo']['qtrait1'], subPop[(0,1)]['meanOfInfo'][
→˓'qtrait1'])"),
...],
... gen = 5
...)
Mean of trait1: 92.876 (age < 40), 183.515 (age >=40)
Mean of trait1: 94.041 (age < 40), 183.374 (age >=40)
Mean of trait1: 95.447 (age < 40), 183.288 (age >=40)
Mean of trait1: 95.017 (age < 40), 183.919 (age >=40)
Mean of trait1: 94.769 (age < 40), 185.430 (age >=40)
5
>>>

now exiting runScriptInteractively...

Download PyQuanTrait.py

5.9 Natural Selection

5.9.1 Natural selection through the selection of parents

In the simplest scenario, natural selection is implemented in two steps:

• Before mating happens, an operator (called a selector) goes through a population and assign each individual a
fitness value. The fitness values are stored in an information field called fitness.

• When mating happens, parents are chosen with probabilities that are proportional to their fitness values. For
example, assuming that a parental population consists of four Individuals with fitness values 1, 2, 3, and 4,
respectively, the probability that they are picked to produce offspring are , , , and respectively. As you can
image, if the offspring population has 10 individuals, the four parents will on average parent 1, 2, 3 and 4
offspring.

Because parents with lower fitness values have less chance to be produce offspring, their genotypes have less chance
to be passed to an offspring generation. If the decreased fitness is caused by the presence of certain mutant (e.g. a
mutant causing a serious disease), individuals with that mutant will have less change to survive and effecitively reduce
or eleminate that mutant from the population.

Example selectParents gives an example of natural selection. In this example, a MapSelector is used to explicitly
assign fitness value to genotypes at the first locus. The fitness values are 1, 0.98, 0.97 for genotypes 00, 01 and
11 respectively. The selector set individual fitness values to information field fitness before mating happens. The
RandomMating mating scheme then selects parents according to parental fitness values.

Example: Natural selection through the selection of parents

>>> import simuPOP as sim
>>> pop = sim.Population(4000, loci=1, infoFields='fitness')
>>> simu = sim.Simulator(pop, rep=3)
>>> simu.evolve(
... initOps=[

(continues on next page)

104 Chapter 5. simuPOP Operators

PyQuanTrait.py

simuPOP

(continued from previous page)

... sim.InitSex(),

... sim.InitGenotype(freq=[0.5, 0.5])

...],

... preOps=sim.MapSelector(loci=0, fitness={(0,0):1, (0,1):0.98, (1,1):0.97}),

... matingScheme=sim.RandomMating(),

... postOps=[

... sim.Stat(alleleFreq=0, step=10),

... sim.PyEval("'Gen:%3d ' % gen", reps=0, step=10),

... sim.PyEval(r"'%.3f\t' % alleleFreq[0][1]", step=10),

... sim.PyOutput('\n', reps=-1, step=10)

...],

... gen = 50

...)
Gen: 0 0.490 0.492 0.487
Gen: 10 0.433 0.430 0.431
Gen: 20 0.403 0.390 0.419
Gen: 30 0.343 0.325 0.383
Gen: 40 0.303 0.297 0.334
(50, 50, 50)

now exiting runScriptInteractively...

Download selectParents.py

Note: The selection algorithm used in simuPOP is called fitness proportionate selection, or roulette-wheel selection.
simuPOP does not use the more efficient stochastic universal sampling algorithm because the number of needed
offspring is unknown in advance.

5.9.2 Natural selection through the selection of offspring *

Natural selection can also be implemented as selection of offspring. Remember that an individual will be discarded
if one of the during-mating operators fails (return False), a during-mating selector discards offspring according
to fitness values of offspring. Instead of relative fitness that will be compared against other individuals during
the selection of parents, fitness values of a during-mating selector are considered as absolute fitness which are
probabilities to survive and have to be between 0 and 1.

A during-mating selector works as follows:

1. During evolution, parents are chosen randomly to produce one or more offspring. (Nothing prevents you from
choosing parents according to their fitness values, but it is rarely justifiable to apply natural selection to both
parents and offspring.)

2. A selection operator is applied to each offspring during mating and determines his or her fitness value. The
fitness value is considered as probability to survive so an offspring will be discarded (operator returns False)
if the fitnessvalue is larger than an uniform random number.

3. Repeat steps 1 and 2 until the offspring generation is populated.

Because many offspring will be generated and discarded, especially when offspring fitness values are low, selection
through offspring is less efficient than selection through parents. In addition, absolute fitness is usually more difficult
to estimate than relative fitness. So, unless there are compelling reasons (e.g. simulating realistic scenarios of survival
competition among offspring), selection through parents are recommended.

Example selectOffspring gives an example of natural selection through the selection of offspring. This example looks
almost identical to Example selectParents but the underlying selection mechanism is quite different. Note that selection

5.9. Natural Selection 105

selectParents.py

simuPOP

through offspring does not save fitness values to an information field so you do not need to add information field fitness
to the population.

Example: Natural selection through the selection of offspring

>>> import simuPOP as sim
>>> pop = sim.Population(10000, loci=1)
>>> simu = sim.Simulator(pop, rep=3)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... sim.MapSelector(loci=0, fitness={(0,0):1, (0,1):0.98, (1,1):0.97}),
...]),
... postOps=[
... sim.Stat(alleleFreq=0, step=10),
... sim.PyEval("'Gen:%3d ' % gen", reps=0, step=10),
... sim.PyEval(r"'%.3f\t' % alleleFreq[0][1]", step=10),
... sim.PyOutput('\n', reps=-1, step=10)
...],
... gen = 50
...)
Gen: 0 0.493 0.493 0.496
Gen: 10 0.461 0.464 0.465
Gen: 20 0.436 0.445 0.442
Gen: 30 0.389 0.386 0.385
Gen: 40 0.370 0.345 0.348
(50, 50, 50)

now exiting runScriptInteractively...

Download selectOffspring.py

5.9.3 Are two selection scenarios equivalent? **

If you look closely at Examples selectParents and selectOffspring, you will notice that their results are quite similar.
This is actually what you should expect in most cases. Let us look at the theoretical consequence of selection through
parents or offspring in a simple case with asexual mating.

Assuming a diallelic marker with three genotypes , and , with frequencies , and , and relative fitness values , , and
respectively. If we select through offspring, the proportion of genotype etc., should be

because offspring genotypes are randomly drawn from the parental generation, and each offspring has certain proba-
bility to survive.

Now, if we select through parents, the proportion of parents with genotype will be the number of individuals times its
probability to be chosen:

This is, however, exactly

which corresponds to the proportion of offspring with such genotype. That is to say, in this simple case, two types of
selection scenarios yield identical results.

These two types of selection scenarios do not have to always yield identical results. Exceptions exist in cases with more
than one offspring or sexual mating with sex-specific survival rate. simuPOP provides both selection implementations
and you should choose one of them for your particular simulation.

106 Chapter 5. simuPOP Operators

selectOffspring.py

simuPOP

5.9.4 Map selector (operator MapSelector)

A map selector uses a Python dictionary to provide fitness values for each type of genotype. For example, Exam-
ple MapSelector uses a dictionary with keys (0,0), (0,1) and (1,1) to specify fitness values for individuals
with these genotypes at locus 0. This example is a typical example of heterozygote advantage. When the genotype
frequencies will go to an equilibrium state. Theoretically, if and , the stable allele frequency of allele 0 is

which is in the example (,).

Example: A selector that uses pre-defined fitness value

>>> import simuPOP as sim
>>> pop = sim.Population(size=1000, loci=1, infoFields='fitness')
>>> s1 = .1
>>> s2 = .2
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.2, .8])
...],
... preOps=sim.MapSelector(loci=0, fitness={(0,0):1-s1, (0,1):1, (1,1):1-s2}),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.PyEval(r"'%.4f\n' % alleleFreq[0][0]", step=100)
...],
... gen=301
...)
0.2250
0.6605
0.6530
0.6870
301
>>>

now exiting runScriptInteractively...

Download MapSelector.py

The above example assumes that the fitness value for individuals with genotypes (0,1) and (1,0) are the same.
This assumption is usually valid but can be vialoated with impriting. In that case, you can specify fitness for both
types of genotypes. The underlying mechanism is that the MapSelector looks up a genotype in the dictionary first
directly, and then without phase information if a genotype is not found.

This operator supports haplodiploid populations and sex chromosomes. In these cases, only valid alleles should be
listed which can lead to dictionary keys with different lengths. In addition, although less used because of potentially a
large number of keys, this operator can act on multiple loci. Please refer to MapPenetrance for details.

5.9.5 Multi-allele selector (operator MaSelector)

A multi-allele selector divides alleles into two groups, wildtype A and mutants a, and treat alleles within each group
as the same. The fitness model is therefore simplified to

• Two fitness values for genotype , in the haploid case

• Three fitness values for genotype AA, Aa and aa in the diploid single locus case. Genotype Aa and aA are
assumed to have the same impact on fitness.

5.9. Natural Selection 107

MapSelector.py

simuPOP

The default wildtype group contains allele 0 so the two allele groups are zero and non-zero alleles. Example MaSelec-
tor demonstrates the use of this operator. This example is identical to Example MapSelector except that there are five
alleles at locus 0 and alleles 1, 2, 3, 4 are treated as a single non-widetype group.

Example: A multi-allele selector

>>> import simuPOP as sim
>>> pop = sim.Population(size=1000, loci=1, infoFields='fitness')
>>> s1 = .1
>>> s2 = .2
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.2] * 5)
...],
... preOps=sim.MaSelector(loci=0, fitness=[1-s1, 1, 1-s2]),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.PyEval(r"'%.4f\n' % alleleFreq[0][0]", step=100)
...],
... gen = 301)
0.2250
0.6605
0.6530
0.6870
301

now exiting runScriptInteractively...

Download MaSelector.py

Operator MaSelector also supports multiple loci by specifying fitness values for all combination of genotype at
specified loci. In the case of two loci, this operator requires

• Four fitness values for genotype AB, Ab, aB and ab in the haploid case,

• Nine fitness values for genotype AABB, AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb, and aabb in the
haploid case.

In general, values are needed for haploid populations and values are needed for diploid populations where is the
number of loci. This operator does not yet support haplodiploid populations and sex chromosomes. Example MaSe-
lectorHaploid demonstrates the use of a multi-locus model in a haploid population.

Example: A multi-locus multi-allele selection model in a haploid population

>>> import simuPOP as sim
>>> pop = sim.Population(size=10000, ploidy=1, loci=[1,1], infoFields='fitness')
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.5, .5])
...],
... # fitness values for AB, Ab, aB and ab
... preOps=sim.MaSelector(loci=[0,1], fitness=[1, 1, 1, 0.95]),
... matingScheme=sim.RandomSelection(),
... postOps=[
... sim.Stat(haploFreq=[0, 1], step=25),
... sim.PyEval(r"'%.3f\t%.3f\t%.3f\t%.3f\n' % (haploFreq[(0,1)][(0,0)],"
... "haploFreq[(0,1)][(0,1)], haploFreq[(0,1)][(1,0)],"

(continues on next page)

108 Chapter 5. simuPOP Operators

MaSelector.py

simuPOP

(continued from previous page)

... "haploFreq[(0,1)][(1,1)])", step=25)

...],

... gen = 100

...)
0.264 0.243 0.252 0.240
0.292 0.294 0.321 0.093
0.339 0.330 0.303 0.027
0.310 0.383 0.297 0.009
100

now exiting runScriptInteractively...

Download MaSelectorHaploid.py

5.9.6 Multi-locus selection models (operator MlSelector)

Although an individual’s fitness can be affected by several factors, each of which can be modeled individually, only
one fitness value is used to determine a person’s ability to pass all these factors to his or her offspring. Although
in theory we sometimes assume independent evolution of disease predisposing loci (mostly for mathematical reasons),
in practise we have to use a multi-locus selection model to combine single-locus models.

This multi-loci selector applies several selectors to each individual and computes an overall fitness value from the
fitness values provided by these selectors. Although this selector is designed to obtain multi-loci fitness values from
several single-locus fitness models, any selector, including those obtain their fitness values from multiple disease
predisposing loci, can be used in this selector. This selector uses parameter mode to control how individual fitness
values are combined. More specifically, if are fitness values obtained from individual selectors, this selector returns

• if mode=MULTIPLICATIVE, and

• if mode=ADDITIVE, and

• if mode=HETEROGENEITY

0 will be returned if the returned fitness value is less than 0.

This operator simply combines individual fitness values and it is your responsibility to apply and interpret these
models. For example, if relative fitness values are greater than one, the heterogeneity model hardly makes sense.
Example MlSelector demonstrates the use of this operator using an additive multi-locus model over an additive and a
recessive single- locus model at two diesease predisposing loci. For comparison, we simulate two additional replicates
with selection only applying to one of the two loci. It would be interesting to see if these two loci evolve more or less
independently by comparing allele freqency trajectories of these two replicates to those in the first replicate.

Example: A multi-loci selector

>>> import simuPOP as sim
>>> pop = sim.Population(size=10000, loci=2, infoFields='fitness')
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.5, .5])
...],
... preOps=[
... sim.MlSelector([
... sim.MapSelector(loci=0, fitness={(0,0):1, (0,1):1, (1,1):.8}),
... sim.MapSelector(loci=1, fitness={(0,0):1, (0,1):0.9, (1,1):.8}),
...], mode = sim.ADDITIVE, reps=0),
... sim.MapSelector(loci=0, fitness={(0,0):1, (0,1):1, (1,1):.8}, reps=1),

(continues on next page)

5.9. Natural Selection 109

MaSelectorHaploid.py

simuPOP

(continued from previous page)

... sim.MapSelector(loci=1, fitness={(0,0):1, (0,1):0.9, (1,1):.8}, reps=2)

...],

... matingScheme=sim.RandomMating(),

... postOps=[

... sim.Stat(alleleFreq=[0,1]),

... sim.PyEval(r"'REP %d:\t%.3f\t%.3f\t' % (rep, alleleFreq[0][1],
→˓alleleFreq[1][1])"),
... sim.PyOutput('\n', reps=-1),
...],
... gen = 5
...)
REP 0: 0.472 0.465
REP 0: 0.452 0.429
REP 0: 0.429 0.397
REP 0: 0.405 0.378
REP 0: 0.382 0.355
5

now exiting runScriptInteractively...

Download MlSelector.py

5.9.7 A hybrid selector (operator PySelector)

When your selection model involves multiple interacting genetic and environmental factors, it might be easier to
calculate a fitness value explicitly using a Python function. A hybrid selector can be used for this purpose. If your
selection model depends solely on genotype, you can define a function such as

def fitness_func(geno):
calculate fitness according to genotype at specified loci
genotypes are arrange locus by locus, namely A1,A2,B1,B2 for loci A and B
return val

and use this function in an operator PySelector(func=fitness_func, loci=loci). If your selection
model depends on genotype as well as some information fields, you can define a function in the form of

def fitness_func(geno, field1, field2):
calculate fitness according to genotype at specified loci
and values at specified informaton fields.
return val

where field1, field2 are names of information fields. simuPOP will pass genotype and value of specified fields
according to name of the passed function. Note that genotypes are arrange locus by locus, namely in the order of
A1,‘‘A2‘‘,‘‘B1‘‘,‘‘B2‘‘ for loci A and B. Other parameters such as gen, ind, and pop are also allowed. Please check
the reference manual for details.

When a PySelector is used to calculate fitness for an individual (parents if applied pre-mating, offspring if applied
during-mating), it will collect his or her genotype at specified loci, optional values at specified information fields,
generation number, or individual to a user-specified Python function, and take its return value as fitness. As you can
imagine, the incorporation of information fields and generation number allow the implementation of very complex
selection scenarios such as gene environment interaction and varying selection pressures.

Example PySelector demonstrates how to use a PySelector to specify fitness values according to a fitness table
and the smoking status of each individual.

Example: A hybrid selector

110 Chapter 5. simuPOP Operators

MlSelector.py

simuPOP

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=2000, loci=[1]*2, infoFields=['fitness', 'smoking'])
>>> s1 = .02
>>> s2 = .03
>>> # the second parameter gen can be used for varying selection pressure
>>> def sel(geno, smoking):
... # BB Bb bb
... # AA 1 1 1
... # Aa 1 1-s1 1-s2
... # aa 1 1 1-s2
... #
... # geno is (A1 A2 B1 B2)
... if geno[0] + geno[1] == 1 and geno[2] + geno[3] == 1:
... v = 1 - s1 # case of AaBb
... elif geno[2] + geno[3] == 2:
... v = 1 - s2 # case of ??bb
... else:
... v = 1 # other cases
... if smoking:
... return v * 0.9
... else:
... return v
...
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.5, .5])
...],
... preOps=sim.PySelector(loci=[0, 1], func=sel),
... matingScheme=sim.RandomMating(),
... postOps=[
... # set smoking status randomly
... sim.InitInfo(lambda : random.randint(0,1), infoFields='smoking'),
... sim.Stat(alleleFreq=[0, 1], step=20),
... sim.PyEval(r"'%.4f\t%.4f\n' % (alleleFreq[0][1], alleleFreq[1][1])",
→˓step=20)
...],
... gen = 50
...)
0.4943 0.4890
0.4880 0.4285
0.4898 0.4073
50

now exiting runScriptInteractively...

Download PySelector.py

5.9.8 Multi-locus random fitness effects (operator PyMlSelector)

If the fitness of individuals is determined by fitness effects over a large number of loci, both MlSelector and
PySelector are difficult to use because the former requires a large number of single-locus selectors, and the latter
requires the processing long genome sequences. If the overall fitness can be determined by fitness effects of mutants,
a PyMlSelector can be used. This operator

• Calls a user-provided call-back function for each locus with at least a mutant (non-zero allele). The function can

5.9. Natural Selection 111

PySelector.py

simuPOP

accept location and genotype so the fitness can be location and genotype dependent. The return value is cached
so the function will be called only once for each locus-genotype pair.

• The fitness of each individual is determined by fitness values of loci with at least one mutant, using the same
methods as operator MlSelector. This implicitly assumes that loci without any mutant have fitness value 1
and will not contribute to the final fitness value.

Example PySelector demonstrates how to use a PyMlSelector to implement a fitness model where each mutant
has a random fitness drawn from a Gamma distribution. An additive model is used so a homozygote will have a fitness
penalty that doubles that of a heterozygote. Because the fitness values of heterozygote and homozygote at each locus
are requested separately, a class is used to store locus-specific s values.

The fitness value of each locus-genotype pair is outputted to a file, and it should be interesting to plot the distribution
of allele frequency at each locus against the fitness values, because mutants that suffer from stronger negative natural
selection are supposed to be rarer.

Example: Random fitness effect

>>> import simuOpt
>>> simuOpt.setOptions(quiet=True, alleleType='mutant')
>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=2000, loci=[10000], infoFields=['fitness'])
>>>
>>> class GammaDistributedFitness:
... def __init__(self, alpha, beta):
... self.coefMap = {}
... self.alpha = alpha
... self.beta = beta
...
... def __call__(self, loc, alleles):
... # because s is assigned for each locus, we need to make sure the
... # same s is used for fitness of genotypes 01 (1-s) and 11 (1-2s)
... # at each locus
... if loc in self.coefMap:
... s = self.coefMap[loc]
... else:
... s = random.gammavariate(self.alpha, self.beta)
... self.coefMap[loc] = s
... #
... if 0 in alleles:
... return 1. - s
... else:
... return 1. - 2.*s
...
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=[
... sim.AcgtMutator(rate=[0.00001], model='JC69'),
... sim.PyMlSelector(GammaDistributedFitness(0.23, 0.185),
... output='>>sel.txt'),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(numOfSegSites=sim.ALL_AVAIL, step=50),
... sim.PyEval(r"'Gen: %2d #seg sites: %d\n' % (gen, numOfSegSites)",
... step=50)
...],
... gen = 201

(continues on next page)

112 Chapter 5. simuPOP Operators

simuPOP

(continued from previous page)

...)
Gen: 0 #seg sites: 180
Gen: 50 #seg sites: 1310
Gen: 100 #seg sites: 1479
Gen: 150 #seg sites: 1511
Gen: 200 #seg sites: 1579
201
>>> print(''.join(open('sel.txt').readlines()[:5]))
5855 1 0 0.978125
1085 2 0 0.340724
2907 0 1 0.998146
7773 0 1 0.927273
1835 0 2 0.999976

now exiting runScriptInteractively...

Download PyMlSelector.py

5.9.9 Alternative implementations of natural selection

If you know how natural selection works in simuPOP, you do not have to use a selector to perform natural selection.
For example,

• If you choose to use fitness values of parents to perform probabilistic natural selection during mating, you
just need to set individual fitness in some way before mating. (You do not even have to use information
field fitness because you can specify which information field to use in a mating scheme using parameter
selectionField). This can be done through a penetrance model (as shown in the following example)
where affected individuals are selected against during mating, a quantitative trait model (where a trait is defined
to control individual fitness), or by setting information field fitness manually through a Python operator.

• If you would like to perform deterministic selection on certain phenotype, you can explicitly remove individuals
before or during mating. More explicitly, you can use an operator DiscardIf to remove parents before mating
or remove offspring during mating according to certain status (disease status or quantitative trait), provided that
the trait status is defined before this operator is applied.

Example peneSelector demonstrates a commonly used case where parents who are affected with certain disease are
excluded from producing offspring. In this example, a penetrance model (operator MaPenetrance) is applied to the
parental generation to determine who will be affected. An InfoExec operator is used to set individual fitness to 1 if he
or she is unaffected, and 0 if he or she is affected. Due to the way parents are selected, affected parents will not be able
to produce offspring as long as there is any unaffected individual. Because individual affection status is determined
by his or her genotype, this genotype - affection status - fitness relationship could be implemented using an equivalent
MaSelector. This method could be extended to InfoExec('fitness = 1 - 0.01*ind.affected()',
exposeInd='ind') to select against, but not remove, affected parents, and similarly InfoExec('fitness
= 1 - 0.01*(LDL > 250)') to select against individuals according to a quantitative trait. For this particular
example, a DiscardIf operator could be used, although it can be slower because of the explicit removal of parents.

Example: Natural selection according to individual affection status

>>> import simuPOP as sim
>>> pop = sim.Population(size=2000, loci=1, infoFields='fitness')
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.5, .5])

(continues on next page)

5.9. Natural Selection 113

PyMlSelector.py

simuPOP

(continued from previous page)

...],

... preOps=[

... sim.MaPenetrance(loci=0, penetrance=[0.01, 0.1, 0.2]),

... sim.Stat(numOfAffected=True, step=25, vars='propOfAffected'),

... sim.PyEval(r"'Percent of affected: %.3f\t' % propOfAffected", step=50),

... sim.InfoExec('fitness = not ind.affected()', exposeInd='ind')

...],

... matingScheme=sim.RandomMating(),

... postOps=[

... sim.Stat(alleleFreq=0),

... sim.PyEval(r"'%.4f\n' % alleleFreq[0][1]", step=50)

...],

... gen=151

...)
Percent of affected: 0.110 0.4713
Percent of affected: 0.009 0.0095
Percent of affected: 0.013 0.0000
Percent of affected: 0.008 0.0000
151

now exiting runScriptInteractively...

Download peneSelector.py

5.9.10 Frequency dependent or dynamic selection pressure *

If individual fitness depends on individual information fields and/or population variables, you will have to calculate
individual fitness using expressions or functions. In order to access individual information fields and population
variable and calculate individual fitness, you have the option to

• Use a PySelector and pass genotype, values of information fields, references to individual and population to
a user-provided function, which returns fitness value for each individual.

• Use of PyOperator to obtain information of the population (e.g. variables) and all individuals. Determine
individual fitness and set information field fitness of all individuals.

• Use an operator InfoExec to calculate individual fitness using expressions. This method can be more efficient
than others because simuPOP does not have to call a user-provided function.

Example freqDependentSelection demonstrates an example where the fitness values of individuals are calculated from
allele frequencies calculated using a Stat operator. Because the fitness values of individuals are 1, , for genotype 00,
01 and 11 where is the frequency of allele 1, this allele will be under purifying selection if its frequency is over 0.5,
and positive selection if its frequency is less than 0.5. Consequently, the frequency of this allele will oscillate around
0.5 during evolution, as shown in the result of this example.

Example: Frequency dependent selection

>>> import simuPOP as sim
>>> pop = sim.Population(size=2000, loci=1, infoFields='fitness')
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.5, .5])
...],
... preOps=[
... sim.Stat(alleleFreq=0),

(continues on next page)

114 Chapter 5. simuPOP Operators

peneSelector.py

simuPOP

(continued from previous page)

... sim.InfoExec('''fitness = {

... 0: 1,

... 1: 1 - (alleleFreq[0][1] - 0.5)*0.1,

... 2: 1 - (alleleFreq[0][1] - 0.5)*0.2}[ind.allele(0,0)+ind.allele(0,1)]'
→˓'',
... exposeInd='ind'),
... sim.Stat(meanOfInfo='fitness'),
... sim.PyEval(r"'alleleFreq=%.3f, mean fitness=%.5f\n' % (alleleFreq[0][1],
→˓meanOfInfo['fitness'])",
... step=25),
...],
... matingScheme=sim.RandomMating(),
... gen=151
...)
alleleFreq=0.495, mean fitness=1.00045
alleleFreq=0.504, mean fitness=0.99955
alleleFreq=0.484, mean fitness=1.00150
alleleFreq=0.492, mean fitness=1.00076
alleleFreq=0.499, mean fitness=1.00005
alleleFreq=0.526, mean fitness=0.99726
alleleFreq=0.514, mean fitness=0.99856
151

now exiting runScriptInteractively...

Download freqDependentSelector.py

5.9.11 Support for virtual subpopulations *

Support for virtual subpopulations allows you to use different selectors for different (virtual) subpopulations. Because
virtual subpopulations may overlap, and they do not have to cover all individuals in a subpopulation, it is important to
remember that

• If virtual subpopulations overlap, the fitness value set by the last selector will be used.

• If an individual is not included in any of the virtual subpopulation, its fitness value will be zero which will
prevent them from producing any offspring.

Example vspSelector demonstrates how to apply selectors to virtual subpopulations. This example has two subpop-
ulations, each having two virtual subpopulations defined by sex. Natural selection is applied to male individuals in
the first subpopulation, and female individuals in the second subpopulation. However, because the sex of offspring is
randomly determined, the selection actually decreases the disease allele frequency for all inviduals.

Example: Selector in virtual subpopulations

>>> import simuPOP as sim
>>> pop = sim.Population(size=[5000, 5000], loci=1, infoFields='fitness')
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.5, .5])
...],
... preOps=[
... sim.MaSelector(loci=0, fitness=[1, 1, 0.98], subPops=[(0,0), (1,1)]),
... sim.MaSelector(loci=0, fitness=[1, 0.99, 0.98], subPops=[(0,1), (1,0)]),

(continues on next page)

5.9. Natural Selection 115

freqDependentSelector.py

simuPOP

(continued from previous page)

...],

... matingScheme=sim.RandomMating(),

... postOps=[

... sim.Stat(alleleFreq=[0], subPops=[(sim.ALL_AVAIL, sim.ALL_AVAIL)],

... vars='alleleFreq_sp', step=50),

... sim.PyEval(r"'%.4f\t%.4f\t%.4f\t%.4f\n' % "

... "tuple([subPop[x]['alleleFreq'][0][1] for x in ((0,0),(0,1),(1,0),(1,
→˓1))])",
... step=50)
...],
... gen=151
...)
0.5022 0.5083 0.4970 0.5020
0.4086 0.4054 0.3849 0.3817
0.3275 0.3259 0.2435 0.2532
0.2715 0.2662 0.1305 0.1338
151

now exiting runScriptInteractively...

Download vspSelector.py

Selecting through offspring can also be applied to virtual subpopulations. For example, Example vspDuringMatingS-
elector moves the selectors to the ops parameter of RandomMating. In this way, male and female offspring will
have different survival probabilities according to their genotype.

Example: Selection against offspring in virtual subpopulations

>>> import simuPOP as sim
>>> pop = sim.Population(size=[5000, 5000], loci=1, infoFields='fitness')
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.5, .5])
...],
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... sim.MaSelector(loci=0, fitness=[1, 1, 0.98], subPops=[(0,0), (1,1)]),
... sim.MaSelector(loci=0, fitness=[1, 0.99, 0.98], subPops=[(0,1), (1,0)]),
...]),
... postOps=[
... sim.Stat(alleleFreq=[0], subPops=[(sim.ALL_AVAIL, sim.ALL_AVAIL)],
... vars='alleleFreq_sp', step=50),
... sim.PyEval(r"'%.4f\t%.4f\t%.4f\t%.4f\n' % "
... "tuple([subPop[x]['alleleFreq'][0][1] for x in ((0,0),(0,1),(1,0),(1,
→˓1))])",
... step=50)
...],
... gen=151
...)
0.5018 0.5034 0.4941 0.4853
0.3652 0.3728 0.3820 0.3766
0.2882 0.2920 0.2590 0.2667
0.2083 0.1994 0.2378 0.2356
151

(continues on next page)

116 Chapter 5. simuPOP Operators

vspSelector.py

simuPOP

(continued from previous page)

now exiting runScriptInteractively...

Download vspDuringMatingSelector.py

5.9.12 Natural selection in heterogeneous mating schemes **

Multiple mating schemes could be applied to the same subpopulation in a heterogeneous mating scheme
(HeteroMating). These mating schemes may or may not support natural selection, may be applied to different
virtual subpopulations of population, and they may see Individuals differently in terms of individual fitness. Parameter
fitnessField of a mating scheme could be used to handle such cases. More specifically,

• You can turn off the natural selection support of a mating scheme by setting fitnessField=''.

• If a mating scheme uses a different set of fitness values, you can add an information field (e.g. fitness1), set-
ting individual fitness to this information field using a selector (with parameter infoFields='fitness1')
and tells a mating scheme to look in this information field for fitness values (using parameter
fitnessField='fitness1').

5.10 Tagging operators

In simuPOP, tagging refers to the action of setting various information fields of offspring, usually using various parental
information during the production of offspring. simuPOP provides a number of tagging operators (called taggers) for
various purposes. Because tagging operators are during-mating operators, parameter subPops can be used to tag
only offspring that belong to specified virtual subpopulation. (e.g. all male offspring)

5.10.1 Inheritance tagger (operator InheritTagger)

An inheritance tagger passes values of parental information field(s) to the corresponding offspring information field(s).
Depending on the parameters, an InheritTagger can

• For asexual mating schemes, pass one or more information fields from parent to offspring.

• Pass one or more information fields from father to offspring (mode=PATERNAL).

• Pass one or more information fields from mother to offspring (mode=MATERNAL).

• Pass the maximal, minimal, sum, multiplcation or average of values of one or more information fields of both
parents (mode=MAXIMUM, MINIMUM, ADDITION, MULTIPLICATION or MEAN).

This can be used to track the spread of certain information during evolution. For example, ExampleInheritTagger tags
the first individuals of ten subpopulations of size 1000. individuals in the offspring generation inherits the maximum
value of field x from his/her parents so x is inherited regardless of the sex of parents. A Stat operator is used to calculate
the number of offspring having this tag in each subpopulation. The results show that some tagged ancestors have
many offspring, and some have none. If you run this simulation long enough, you can see that all ancestors become
the ancestor of either none or all indiviudals in a population. Note that this simulation only considers genealogical
inheritance and ancestors do not have to pass any genotype to the last generation.

Example: Use an inherit tagger to track offspring of individuals

>>> import simuPOP as sim
>>> pop = sim.Population(size=[1000]*10, loci=1, infoFields='x')
>>> # tag the first individual of each subpopulation.
>>> for sp in range(pop.numSubPop()):

(continues on next page)

5.10. Tagging operators 117

vspDuringMatingSelector.py

simuPOP

(continued from previous page)

... pop.individual(0, sp).x = 1

...
>>> pop.evolve(
... initOps=sim.InitSex(),
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... sim.InheritTagger(mode=sim.MAXIMUM, infoFields='x'),
...]),
... postOps=[
... sim.Stat(sumOfInfo='x', vars=['sumOfInfo_sp']),
... sim.PyEval(r'", ".join(["%3d" % subPop[i]["sumOfInfo"]["x"] for i in
→˓range(10)])+"\n"'),
...],
... gen = 5
...)
2, 1, 0, 1, 1, 2, 3, 3, 1, 1
5, 1, 0, 1, 1, 3, 3, 5, 3, 0
9, 2, 0, 2, 2, 7, 9, 5, 13, 0

21, 4, 0, 2, 5, 18, 11, 9, 27, 0
39, 5, 0, 6, 8, 36, 23, 20, 67, 0

5

now exiting runScriptInteractively...

Download InheritTagger.py

5.10.2 Summarize parental informatin fields (operator SummaryTagger)

A SummaryTagger summarize values of one or more parental information fields and place the result in an offspring
information field. If mating is sexual, two sets of values will be involved. Summarization methods include MEAN,
MINIMUM, MAXIMUM, SUMMATION and MULTIPLICATION. The operator is usually used to summarize certain
characteristic of parents of each offspring. For example, a SummaryTagger is used in Example SummaryTagger to
calculate the mean fitness of parents during each mating event. The results are saved in the avgFitness field of
offspring. Because allele 1 at locus 0 is under purifying selection, the allele frequency of this allele decreases. In the
mean time, fitness of parents increases because less and less parents have this allele.

Example: Using a summary tagger to calculate mean fitness of parents.

>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=1, infoFields=['fitness', 'avgFitness'])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
...],
... preOps=sim.MaSelector(loci=0, wildtype=0, fitness=[1, 0.99, 0.95]),
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... sim.SummaryTagger(mode=sim.MEAN, infoFields=['fitness', 'avgFitness']),
...]),
... postOps=[
... sim.Stat(alleleFreq=0, meanOfInfo='avgFitness', step=10),
... sim.PyEval(r"'gen %d: allele freq: %.3f, average fitness of parents: %.
→˓3f\n' % "
... "(gen, alleleFreq[0][1], meanOfInfo['avgFitness'])", step=10)

(continues on next page)

118 Chapter 5. simuPOP Operators

InheritTagger.py

simuPOP

(continued from previous page)

...],

... gen = 50,

...)
gen 0: allele freq: 0.473, average fitness of parents: 0.984
gen 10: allele freq: 0.421, average fitness of parents: 0.986
gen 20: allele freq: 0.388, average fitness of parents: 0.988
gen 30: allele freq: 0.288, average fitness of parents: 0.991
gen 40: allele freq: 0.256, average fitness of parents: 0.993
50

now exiting runScriptInteractively...

Download SummaryTagger.py

5.10.3 Tracking parents (operator ParentsTagger)

A parents tagger is used to record the indexes of parents (in the parental population) in the information fields (default to
father_idx, mother_idx) of their offspring. These indexes provide a way to track down an individuals parents,
offspring and consequently all relatives in a multi- generation population. Because this operator has been extensively
used in this guide, please refer to other sections for an Example (e.g. Example basicInfoFields).

As long as parental generations do not change after the offspring generation is created, recorded parental indexes can
be used to locate parents of an individual. However, in certain applications when parental generations change (e.g. to
draw a pedigree from a large population), or when individuals can not be looked up easily using indexes (e.g. after
individuals are saved to a file), giving every Individual an unique ID and refer to them using ID will be a better choice.

5.10.4 Tracking index of offspring within families (operator OffspringTagger)

An offspring tagger is used to record the index of offspring within each family in an information field (default to
offspring_idx) of offspring. Because the index is reset for each mating event, the index will be reset even if two
adjacent families share the same parents. In addition, this operator records the relative index of an offspring so the
index will not change if an offspring is re-generated when the previous offspring is discarded for any reason.

Because during-mating selection operator discards offspring according their genotypes, a mating scheme can produce
families with varying sizes even if numOffspring is set to a constant number. On the other hand, if we would like
to ensure equal family size N in the presence of natural selection, we will have to produce more offspring so that there
can be at least N offspring in each family after selection. Once N offspring have been generated, excessive offspring
can be discarded according to offspring_idx. The following example demonstrates such a simulation scenario:

Example: Keeping constant family size in the presence of natural selection against offspring

>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=1, infoFields='offspring_idx')
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
...],
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... # lethal recessive alleles
... sim.MaSelector(loci=0, wildtype=0, fitness=[1, 0.90, 0.5]),
... sim.OffspringTagger(),
... sim.DiscardIf('offspring_idx > 4'),

(continues on next page)

5.10. Tagging operators 119

SummaryTagger.py

simuPOP

(continued from previous page)

...], numOffspring=10),

... postOps=[

... sim.Stat(alleleFreq=0, step=10),

... sim.PyEval(r"'gen %d: allele freq: %.3f\n' % "

... "(gen, alleleFreq[0][1])", step=10)

...],

... gen = 50,

...)
gen 0: allele freq: 0.445
gen 10: allele freq: 0.187
gen 20: allele freq: 0.089
gen 30: allele freq: 0.087
gen 40: allele freq: 0.059
50

now exiting runScriptInteractively...

Download OffspringTagger.py

Because families with lethal alleles produce the same number of offspring as families without such alleles, natural
selection happens within each families and is weaker than the case when natural selection is used to all offspring. This
phenomena is generally referred to as reproductive compensation.

5.10.5 Assign unique IDs to individuals (operator IdTagger)

Although it is possible to use generation number and individual indexes to locate individuals in an evolving population,
an unique I D makes it much easier to identify individuals when migration is involved, and to analyze an evolutionary
process outside of simuPOP. An operator IdTagger (and its function form tagID) is provided by simuPOP to
assign an unique ID to all individuals during evolution.

The IDs of individuals are usually stored in an information field named ind_id. To ensure uniqueness across pop-
ulations, a single source of ID is used for this operator. individual IDs are assigned consecutively starting from 0. If
you would like to reset the sequence or start from a different number, you can call the reset(startID) function
of any IdTagger.

An IdTagger is usually used during-mating to assign ID to each offspring. However, if it is applied directly to a
population, it will assign unique IDs to all individuals in this population. This property is usually used in the preOps
parameter of function Simulator.evolve to assign initial ID to a population. For example, two IdTagger
operators are used in Example IdTagger to assign IDs to all individuals. Although different operators are used, different
IDs are assigned to individuals.

Example: Assign unique IDs to individuals

>>> import simuPOP as sim
>>> pop = sim.Population(10, infoFields='ind_id', ancGen=1)
>>> pop.evolve(
... initOps=sim.IdTagger(),
... matingScheme=sim.RandomSelection(ops=[
... sim.CloneGenoTransmitter(),
... sim.IdTagger(),
...]),
... gen = 1
...)
1
>>> print([int(ind.ind_id) for ind in pop.individuals()])
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

(continues on next page)

120 Chapter 5. simuPOP Operators

OffspringTagger.py

simuPOP

(continued from previous page)

>>> pop.useAncestralGen(1)
>>> print([int(ind.ind_id) for ind in pop.individuals()])
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> sim.tagID(pop) # re-assign ID
>>> print([int(ind.ind_id) for ind in pop.individuals()])
[21, 22, 23, 24, 25, 26, 27, 28, 29, 30]

now exiting runScriptInteractively...

Download IdTagger.py

5.10.6 Tracking Pedigrees (operator PedigreeTagger)

A PedigreeTagger is similar to a ParentsTagger in that it records parental information in offspring’s infor-
mation fields. However, instead of indexes of parents, this operator records an unique ID of each parent to make it
easier to study and reconstruct a complete pedigree of a whole evolutionary process. The default information fields
are father_id and mother_id.

By default, the PedigreeTagger does not produce any output. However, if a valid output string (or function)
is specified, it will output the ID of offspring and their parents, sex and affection status of offspring, and option-
ally values at specified information fields (parameter outputFields) and genotype at specified loci (parameter
outputLoci). Because this operator only outputs offspring, the saved file does not have detailed information of
individuals in the top-most ancestral generation. If you would like to record complete pedigree information, you can
apply PedigreeTagger in the initOps operator of function Simulator.evolve or Population.evolve
to output information of the initial population. Although this operator is primarily used to output pedigree information,
values at specified information fields and genotypes at specified loci could also be outputed.

Example PedigreeTagger demonstrates how to output the complete pedigree of an evolutionary process. Note that
IdTagger has to be applied before PedigreeTagger so that IDs of offspring could be assigned before they are
outputted.

Example: Output a complete pedigree of an evolutionary process

>>> import simuPOP as sim
>>> pop = sim.Population(100, infoFields=['ind_id', 'father_id', 'mother_id'])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.IdTagger(),
... sim.PedigreeTagger(output='>>pedigree.txt'),
...],
... matingScheme=sim.RandomMating(ops=[
... sim.IdTagger(),
... sim.PedigreeTagger(output='>>pedigree.txt'),
... sim.MendelianGenoTransmitter()]
...),
... gen = 100
...)
100
>>> ped = open('pedigree.txt')
>>> lines = ped.readlines()
>>> ped.close()
>>> # first few lines, saved by the first PedigreeTagger
>>> print(''.join(lines[:3]))
1 0 0 F U

(continues on next page)

5.10. Tagging operators 121

IdTagger.py

simuPOP

(continued from previous page)

2 0 0 F U
3 0 0 M U

>>> # last several lines, saved by the second PedigreeTagger
>>> print(''.join(lines[-3:]))
10098 9974 9915 F U
10099 9967 9997 M U
10100 9945 9936 M U

>>> # load this file
>>> ped = sim.loadPedigree('pedigree.txt')
>>> # should have 100 ancestral generations (plus one present generation)
>>> ped.ancestralGens()
100

now exiting runScriptInteractively...

Download PedigreeTagger.py

5.10.7 A hybrid tagger (operator PyTagger)

A PyTagger uses a user-defined function to pass parental information fields to offspring. When a mating event
happens, this operator collect values of specified information fields of parents, pass them to a user-provided function,
and use the return values to set corresponding offspring information fields. A typical usage of this operator is to set
random environmental factors that are affected by parental values. Example PyTagger demonstrates such an example
where the location of each offspring (x, y) is randomly assigned around the middle position of his or her parents.

Example: Use of a hybrid tagger to pass parental information to offspring

>>> import simuPOP as sim
>>> import random
>>> def randomMove(x, y):
... '''Pass parental information fields to offspring'''
... # shift right with high concentration of alleles...
... off_x = random.normalvariate((x[0]+x[1])/2., 0.1)
... off_y = random.normalvariate((y[0]+y[1])/2., 0.1)
... return off_x, off_y
...
>>> pop = sim.Population(1000, loci=[1], infoFields=['x', 'y'])
>>> pop.setVirtualSplitter(sim.GenotypeSplitter(loci=0, alleles=[[0, 0], [0,1], [1,
→˓1]]))
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
... sim.InitInfo(random.random, infoFields=['x', 'y'])
...],
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... sim.PyTagger(func=randomMove),
...]),
... postOps=[
... sim.Stat(minOfInfo='x', maxOfInfo='x'),
... sim.PyEval(r"'Range of x: %.2f, %.2f\n' % (minOfInfo['x'], maxOfInfo['x'])
→˓")

(continues on next page)

122 Chapter 5. simuPOP Operators

PedigreeTagger.py

simuPOP

(continued from previous page)

...],

... gen = 5

...)
Range of x: -0.17, 1.12
Range of x: -0.05, 1.14
Range of x: 0.01, 1.01
Range of x: 0.01, 1.04
Range of x: 0.06, 0.95
5
>>>

now exiting runScriptInteractively...

Download PyTagger.py

5.10.8 Tagging that involves other parental information

If the way how parental information fields pass to their offspring is affected by parental genotype, sex, or affection
status, you could use a Python operator (PyOperator) during mating to explicitly obtain parental information and
set offspring information fields.

Alternatively, you can add another information field, translate needed information to this field and pass the genotype
information in the form of information field. Operator InfoExec could be helpful in this case. Example otherTagging
demonstrates such an example where the number of affected parents are recorded in an information field. Before
mating happens, a penetrance operator is used to assign affection status to parents. The affection status is then copied to
an information field affected so that operator SummaryTagger could be used to count the number of affected parents.
Two MaPenetrance operators are used both before and after mating to assign affection status to both parental and
offspring generations. This helps dividing the offspring generation into affected and unaffected virtual subpopulations.
Not surprisingly, the average number of affected parents is larger for affected individuals than unaffected individuals.

Example: Tagging that involves other parental information

>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=[1], infoFields=['aff', 'numOfAff'])
>>> # define virtual subpopulations by affection sim.status
>>> pop.setVirtualSplitter(sim.AffectionSplitter())
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
...],
... preOps=[
... # get affection sim.status for parents
... sim.MaPenetrance(loci=0, wildtype=0, penetrance=[0.1, 0.2, 0.4]),
... # set 'aff' of parents
... sim.InfoExec('aff = ind.affected()', exposeInd='ind'),
...],
... # get number of affected parents for each offspring and store in numOfAff
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... sim.SummaryTagger(mode=sim.SUMMATION, infoFields=['aff', 'numOfAff'])]),
... postOps=[
... # get affection sim.status for offspring
... sim.MaPenetrance(loci=0, wildtype=0, penetrance=[0.1, 0.2, 0.4]),
... # calculate mean 'numOfAff' of offspring, for unaffected and affected
→˓subpopulations.

(continues on next page)

5.10. Tagging operators 123

PyTagger.py

simuPOP

(continued from previous page)

... sim.Stat(meanOfInfo='numOfAff', subPops=[(0,0), (0,1)], vars=['meanOfInfo_
→˓sp']),
... # print mean number of affected parents for unaffected and affected
→˓offspring.
... sim.PyEval(r"'Mean number of affected parents: %.2f (unaff), %.2f (aff)\n
→˓' % "
... "(subPop[(0,0)]['meanOfInfo']['numOfAff'], subPop[(0,1)]['meanOfInfo
→˓']['numOfAff'])")
...],
... gen = 5
...)
Mean number of affected parents: 0.41 (unaff), 0.44 (aff)
Mean number of affected parents: 0.41 (unaff), 0.54 (aff)
Mean number of affected parents: 0.47 (unaff), 0.55 (aff)
Mean number of affected parents: 0.47 (unaff), 0.55 (aff)
Mean number of affected parents: 0.42 (unaff), 0.45 (aff)
5
>>>

now exiting runScriptInteractively...

Download otherTagging.py

5.11 Statistics calculation (operator Stat)

5.11.1 How statistics calculation works

A Stat operator calculates specified statistics of a population when it is applied to this population. This operator
can be applied to specified replicates (parameter rep) at specified generations (parameter begin, end, step, and at).
This operator does not produce any output (ignore parameter output) after statistics are calculated. Instead, it stores
results in the local namespace of the population being applied. Other operators can retrieve these variables or evalulate
expression directly in this local namespace.

The Stat operator is usually used in conjunction with a PyEval or PyExec operator which execute Python state-
ments and/or expressions in a population’s local namespace. For example, operators

ops = [
Stat(alleleFreq=[0]),
PyEval("'%.2f' % alleleFreq[0][0]")

]

in the ops parameter of the Simulator.evolve function will be applied to populations during evolution. The first
operator calculates allele frequency at the first locus and store the results in each population’s local namespace. The
second operator formats and outputs one of the variables. Because of the flexiblity of the PyEval operator, you can
output statistics, even simple derived statistics, in any format. For example, you can output expected heterozygosity ()
using calculated allele frequencies as follows:

PyEval("'H_exp=%.2f' % (1-sum([x*x for x in alleleFreq[0].values()]))")

Note that alleleFreq[0] is a dictionary.

You can also retrieve variables in a population directly using functions Population.vars() or Population.
dvars(). The only difference between these functions is that vars returns a dictionary and dvars() returns a Python

124 Chapter 5. simuPOP Operators

otherTagging.py

simuPOP

object that uses variable names as attributes (vars()['alleleFreq'] is equivalent to dvars.alleleFreq).
This method is usually used when the function form of the Stat operator is used. For example,

stat(pop, alleleFreq=[0])
H_exp = 1 - sum([x*x for x in pop.dvars().alleleFreq[0].values()])

uses the stat function (note the capital S) to count frequencies of alleles for a given population and calculates
expected heterozygosity using these variables.

5.11.2 defdict datatype

simuPOP uses dictionaries to save statistics such as allele frequencies. For example, alleleFreq[5] can be {0:0.
2, 3:0.8} meaning there are 20% allele 0 and 80% allele 3 at locus 5 in a population. However, because it is
sometimes unclear whether or not a particular allele exists in a population, alleleFreq[5][allele] can fail
with a KeyError exception if alleleFreq[5] does not have key allele.

To address this problem, a special default dictionary type defdict is used for dictionaries with keys determined
from a population. This derived dictionary type works just like a regular dictionay, but it returns 0, instead of rais-
ing a KeyError exception, when an invalid key is used. For example, subpopulations in Example defdictType
have different alleles. Although pop.dvars(sp).alleleFreq[0] have only two keys for sp=0 or 1, pop.
dvars(sp).alleleFreq[0][x] are used to print frequencies of alleles 0, 1 and 2.

Example: The defdict datatype

>>> import simuPOP as sim
>>> pop = sim.Population([100]*2, loci=1)
>>> sim.initGenotype(pop, freq=[0, 0.2, 0.8], subPops=0)
>>> sim.initGenotype(pop, freq=[0.2, 0.8], subPops=1)
>>> sim.stat(pop, alleleFreq=0, vars=['alleleFreq_sp'])
>>> for sp in range(2):
... print('Subpop %d (with %d alleles): ' % (sp, len(pop.dvars(sp).
→˓alleleFreq[0])))
... for a in range(3):
... print('%.2f ' % pop.dvars(sp).alleleFreq[0][a])
...
Subpop 0 (with 2 alleles):
0.00
0.21
0.79
Subpop 1 (with 2 alleles):
0.21
0.79
0.00

now exiting runScriptInteractively...

Download defdict.py

Note: The standard collections module of Python has a defaultdict type that accepts a default factory
function that will be used when an invalid key is encountered. The defdict type is similar to defaultdict(int)
but with an important difference: when an invalid key is encountered, d[key]with a default value will be inserted to a
defaultdict(int), but will not be inserted to a defdict. That is to say, it is safe to use alleleFreq[loc].
keys() to get available alleles after non-assignment alleleFreq[loc][allele] operations.

5.11. Statistics calculation (operator Stat) 125

defdict.py

simuPOP

5.11.3 Support for virtual subpopulations

The Stat operator supports parameter subPops and can calculate statistics in specified subpopulations. For example

Stat(alleleFreq=[0], subPops=[(0, 0), (1, 0)])

will calculate the frequencies of alleles at locus 0, among Individuals in two virtual subpopulations. If the virtual
subpopulation is defined by sex (using a SexSplitter), the above operator will calculate allele frequency among
all males in the first and second subpopulations (not separately!). If subPops is not specified, allele frequency of the
whole population (all subpopulations) will be calculated.

Although many statistics could be calculated and outputted, the Stat operator by default outputs a selected number
of variables for each statisic calculated. Other statistics could be calculated and outputted if their names are specified
in parameter vars. Variable names ending with _sp is interpreted as variables that will be calculated and outputted
in all or specified (virtual) subpopulations. For example, parameter vars in

Stat(alleleFreq=[0], subPops=[0, (1, 0)], vars=['alleleFreq_sp', 'alleleNum_sp'])

tells this operator to output numbers and frequencies of alleles at locus 0 in subpopulation 0 and virtual subpopulation
(1,0). These variables will be saved in dictionaries subPop[sp] of the local namespace. For example, the above
operator will write variables such as subPop[0]['alleleFreq'], subPop[(1,0)]['alleleFreq']
and subPop[(1,0)]['alleleNum']. Functions Population.vars(sp) and Population.dvars(sp)
are provided as shortcuts to access these variables but the full variable names have to be specified if these variables are
used in expressions.

By default, the same variables will be set for a statistic, regardless of the values of the loci and subPops parameter.
This can be a problem if multiple Stat operators are used to calculate the same statistics for different sets of loci
(e.g. for each chromosome) or subpopulations. To avoid name conflict, you can use parameter suffix to add a suffix to
all variables outputted by a Stat operator. For example, Example statSuffix uses 4 Stat operators to calculate overall
and pairwise values for three subpopulations. Different suffixes are used for pairwise estimators so that variables set
by these operators will not override each other.

Example: Add suffixes to variables set by multiple Stat operators

>>> import simuPOP as sim
>>> pop = sim.Population([5000]*3, loci=5)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(structure=range(5), subPops=(0, 1), suffix='_01', step=40),
... sim.Stat(structure=range(5), subPops=(1, 2), suffix='_12', step=40),
... sim.Stat(structure=range(5), subPops=(0, 2), suffix='_02', step=40),
... sim.Stat(structure=range(5), step=40),
... sim.PyEval(r"'Fst=%.3f (pairwise: %.3f %.3f %.3f)\n' % (F_st, F_st_01, F_
→˓st_12, F_st_02)",
... step=40),
...],
... gen = 200
...)
Fst=0.000 (pairwise: 0.000 0.000 0.000)
Fst=0.004 (pairwise: 0.006 0.003 0.004)
Fst=0.012 (pairwise: 0.017 0.015 0.004)
Fst=0.008 (pairwise: 0.012 0.010 0.001)

(continues on next page)

126 Chapter 5. simuPOP Operators

simuPOP

(continued from previous page)

Fst=0.008 (pairwise: 0.007 0.009 0.007)
200

now exiting runScriptInteractively...

Download statSuffix.py

Note: The Stat opeartor accepts overlapping or even duplicate virtual subpopulations. During the calculation of
summary statistics, these subpopulations are treated as separate subpopulations so some individuals can be counted
more than once. For example, individuals in virtual subpopulation (0, 1) will be counted twice during the calculation
of allele frequency and population size in operator

Stat(alleleFreq=[0], popSize=True, subPops=[0, (0, 1)])

5.11.4 Counting individuals by sex and affection status

Parameters popSize, numOfMales and numOfAffected provide basic Individual counting statistics. They count the num-
ber of all, male/female, affected/unaffected individuals in all or specified (virtual) subpopulations, and set variables
such as popSize, numOfMales, numOfFemales, numOfAffected, numOfUnaffected. Proportions and
statistics for subpopulations are available if variables such as propOfMales, numOfAffected_sp are specified
in parameter vars. Another variable subPopSize is defined for parameter popSize=True. It is a list of sizes of all
or specified subpopulations and is easier to use than referring to variable popSize from individual subpopulations.

Example statCount demonstrates how to use these parameters in operator Stat. It defines four VSPs by sex and
affection status (using a stackedSplitter) and count individuals by sex and affection status. It is worth noting
that pop.dvars().popSize in the first example is the total number of individuals in two virtual subpopulations
(0,0) and (0,2), which are all male indiviudals, and all unaffected individuals. Because these two VSPs overlap,
this variable can be larger than actual population size.

Example: Count individuals by sex and/or affection status

>>> import simuPOP as sim
>>> pop = sim.Population(10000, loci=1)
>>> pop.setVirtualSplitter(sim.CombinedSplitter(
... [sim.SexSplitter(), sim.AffectionSplitter()]))
>>> sim.initSex(pop)
>>> sim.initGenotype(pop, freq=[0.2, 0.8])
>>> sim.maPenetrance(pop, loci=0, penetrance=[0.1, 0.2, 0.5])
>>> # Count sim.population size
>>> sim.stat(pop, popSize=True, subPops=[(0, 0), (0, 2)])
>>> # popSize is the size of two VSPs, does not equal to total sim.population size.
>>> # Because two VSPs overlap (all males and all unaffected), popSize can be
>>> # greater than real sim.population size.
>>> print(pop.dvars().subPopSize, pop.dvars().popSize)
[5052, 6080] 11132
>>> # print popSize of each virtual subpopulation.
>>> sim.stat(pop, popSize=True, subPops=[(0, 0), (0, 2)], vars='popSize_sp')
>>> # Note the two ways to access variable in (virtual) subpopulations.
>>> print(pop.dvars((0,0)).popSize, pop.dvars().subPop[(0,2)]['popSize'])
5052 6080
>>> # Count number of male (should be the same as the size of VSP (0,0).
>>> sim.stat(pop, numOfMales=True)
>>> print(pop.dvars().numOfMales)

(continues on next page)

5.11. Statistics calculation (operator Stat) 127

statSuffix.py

simuPOP

(continued from previous page)

5052
>>> # Count the number of affected and unaffected male individual
>>> sim.stat(pop, numOfMales=True, subPops=[(0, 2), (0, 3)], vars='numOfMales_sp')
>>> print(pop.dvars((0,2)).numOfMales, pop.dvars((0,3)).numOfMales)
3056 1996
>>> # or number of affected male and females
>>> sim.stat(pop, numOfAffected=True, subPops=[(0, 0), (0, 1)], vars='numOfAffected_sp
→˓')
>>> print(pop.dvars((0,0)).numOfAffected, pop.dvars((0,1)).numOfAffected)
1996 1924
>>> # These can also be done using a sim.ProductSplitter...
>>> pop.setVirtualSplitter(sim.ProductSplitter(
... [sim.SexSplitter(), sim.AffectionSplitter()]))
>>> sim.stat(pop, popSize=True, subPops=[(0, x) for x in range(4)])
>>> # counts for male unaffected, male affected, female unaffected and female affected
>>> print(pop.dvars().subPopSize)
[3056, 1996, 3024, 1924]

now exiting runScriptInteractively...

Download statCount.py

5.11.5 Number of segregating and fixed sites

Parameter numOfSegSites counts the number of segregating sites for specified or all loci, for all individuals or individ-
uals in specified (virtual) subpopulations. It can also be used to count the number of fixed sites . This parameter sets
variables numOfSegSites and numOfFixedSites. Here we defined fixed sites as loci with only one non-zero
allele (e.g. fixed to a non- zero allele). Other numbers, such as all loci with only one allele (including zero), or loci
with all wildtype alleles (only zero), can be derived from these two counts. Starting from version 1.1.3, variables
segSites and fixedSites can be used to return a list of segregating and fixed sites.

For example, Example numSegSites demonstrates how to use this operator to calculate the number of segregating sites
(sites with alleles 0 and 1), number of fixed sites (sites with only allele 1), and number of loci with only wildtype
alleles (loci with only allele 0). As you can see, the population starts with 100 segregating sites. During evolution,
alleles at some loci get lost and some get fixed, and there should be no segregating site if we evolve the population for
long enough.

Example: Count number of segregating and fixed sites

>>> import simuPOP as sim
>>> pop = sim.Population(100, loci=[1]*100)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.3, 0.7]),
... sim.PyOutput('#all 0\t#seg sites\t#all 1\n'),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(numOfSegSites=sim.ALL_AVAIL,
... vars=['numOfSegSites', 'numOfFixedSites']),
... sim.PyEval(r'"%d\t%d\t%d\n" % (100-numOfSegSites-numOfFixedSites,'
... 'numOfSegSites, numOfFixedSites)',
... step=50)
...],

(continues on next page)

128 Chapter 5. simuPOP Operators

statCount.py

simuPOP

(continued from previous page)

... gen=500

...)
#all 0 #seg sites #all 1
0 100 0
0 93 7
3 76 21
7 55 38
12 40 48
17 31 52
19 23 58
22 19 59
26 14 60
28 10 62
500
>>> # output a list of segregating sites
>>> sim.stat(pop, numOfSegSites=sim.ALL_AVAIL, vars='segSites')
>>> print(pop.dvars().segSites)
[11, 15, 20, 32, 39, 43, 44, 51, 86, 95]

now exiting runScriptInteractively...

Download statNumOfSegSites.py

5.11.6 Allele count and frequency

Parameter alleleFreq accepts a list of markers at which allele frequencies in all or specified (vir-
tual) subpopulations will be calculated. This statistic sets variables alleleFreq[loc][allele] and
alleleNum[loc][allele] which are frequencies and numbers of allele allele at locus loc, respectively.
If variables alleleFreq_sp and alleleNum_sp are specified in parameter vars, these variables will be set
for all or specified (virtual) subpopulations. At the Python level, these variables are dictionaries of default
dictionaries. That is to say, alleleFreq[loc] at a unspecified locus will raise a KeyError exception, and
alleleFreq[loc][allele] of an invalid allele will return 0.

Example statAlleleFreq demonstrates an advanced usage of allele counting statistic. In this example, two virtual
subpopulations are defined by individual affection status. During evolution, a multi-allele penetrance operator is used
to determine individual affection status and a Stat operator is used to calculate allele frequencies in these two virtual
subpopulations, and in the whole population. Because the simulated disease is largely caused by the existence of allele
1 at the first locus, it is expected that the frequency of allele 1 is higher in the case group than in the control group. It is
worth noting that alleleFreq[0][1] in this example is the frequency of allele 1 in the whole population because
these two virtual subpopulations add up to the whole population.

Example: Calculate allele frequency in affected and unaffected individuals

>>> import simuPOP as sim
>>> pop = sim.Population(10000, loci=1)
>>> pop.setVirtualSplitter(sim.AffectionSplitter())
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(loci=0, freq=[0.8, 0.2])
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.MaPenetrance(penetrance=[0.1, 0.4, 0.6], loci=0),
... sim.Stat(alleleFreq=0, subPops=[(0, 0), (0, 1)],

(continues on next page)

5.11. Statistics calculation (operator Stat) 129

statNumOfSegSites.py

simuPOP

(continued from previous page)

... vars=['alleleFreq', 'alleleFreq_sp']),

... sim.PyEval(r"'Gen: %d, freq: %.2f, freq (aff): %.2f, freq (unaff): %.2f\n
→˓' % " + \
... "(gen, alleleFreq[0][1], subPop[(0,1)]['alleleFreq'][0][1]," + \
... "subPop[(0,0)]['alleleFreq'][0][1])"),
...],
... gen = 5
...)
Gen: 0, freq: 0.20, freq (aff): 0.41, freq (unaff): 0.14
Gen: 1, freq: 0.20, freq (aff): 0.40, freq (unaff): 0.14
Gen: 2, freq: 0.20, freq (aff): 0.41, freq (unaff): 0.14
Gen: 3, freq: 0.20, freq (aff): 0.41, freq (unaff): 0.14
Gen: 4, freq: 0.19, freq (aff): 0.41, freq (unaff): 0.14
5

now exiting runScriptInteractively...

Download statAlleleFreq.py

5.11.7 Genotype count and frequency

Parameter genoFreq accepts a list of loci at which genotype counts and frequencies are calculated and outputted. A
genotype is represented as a tuple of alleles at a locus. The length of the tupples** **is determined by the number
of homologous copy of chromosomes in a population. For example, genotypes in a diploid population are ordered
pairs such as (1, 2) where 1 and 2 are alleles at a locus on, respectively, the first and second homologous copies of
chromosomes. (1, 2) and (2, 1) are different genotypes. This statistic sets dictionaries (with locus indexes as
keys) of default dictionaries (with genotypes as keys) genoFreq and genoNum.

Example statGenoFreq creates a small population and initializes a locus with rare alleles 0, 1 and a common allele
2. A function stat (the function form of operator Stat) is used to count the available genotypes. Note that pop.
dvars().genoFreq[0][(i,j)] can be used to print frequencies of all genotypes even when not all genotypes
are available in the population.

Example: Counting genotypes in a population

>>> import simuPOP as sim
>>> pop = sim.Population(100, loci=[1, 1, 1], lociNames=['A', 'X', 'Y'],
... chromTypes=[sim.AUTOSOME, sim.CHROMOSOME_X, sim.CHROMOSOME_Y])
>>> sim.initGenotype(pop, freq=[0.01, 0.05, 0.94])
>>> sim.stat(pop, genoFreq=['A', 'X']) # both loci indexes and names can be used.
>>> print('Available genotypes on autosome:', list(pop.dvars().genoFreq[0].keys()))
Available genotypes on autosome: [(0, 2), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]
>>> for i in range(3):
... for j in range(3):
... print('%d-%d: %.3f' % (i, j, pop.dvars().genoFreq[0][(i,j)]))
...
0-0: 0.000
0-1: 0.000
0-2: 0.020
1-0: 0.000
1-1: 0.030
1-2: 0.070
2-0: 0.010
2-1: 0.040
2-2: 0.830

(continues on next page)

130 Chapter 5. simuPOP Operators

statAlleleFreq.py

simuPOP

(continued from previous page)

>>> print('Genotype frequency on chromosome X:\n', \
... '\n'.join(['%s: %.3f' % (x,y) for x,y in pop.dvars().genoFreq[1].items()]))
Genotype frequency on chromosome X:
(0,): 0.020

(1,): 0.030
(2,): 0.950

now exiting runScriptInteractively...

Download statGenoFreq.py

5.11.8 Homozygote and heterozygote count and frequency

In a diploid population, a heterozygote is a genotype with two different alleles and a homozygote is a genotype with
two identical alleles. Parameter heteroFreq accepts a list of loci and outputs variables heteroFreq which is a
dictionary of heterozygote frequencies at specfied loci. Optional variables heteroNum, homoFreq and homoNum
can be outputted for all and each (virtual) subpopulations. Example statHeteroFreq demonstrates the decay of het-
erozygosity of a locus due to genetic drift.

Example: Counting homozygotes and heterozygotes in a population

>>> import simuPOP as sim
>>> pop = sim.Population(100, loci=1)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(heteroFreq=0, step=10),
... sim.PyEval(r"'Gen: %d, HeteroFreq: %.2f\n' % (gen, heteroFreq[0])",
→˓step=20)
...],
... gen = 100
...)
Gen: 0, HeteroFreq: 0.45
Gen: 20, HeteroFreq: 0.44
Gen: 40, HeteroFreq: 0.55
Gen: 60, HeteroFreq: 0.46
Gen: 80, HeteroFreq: 0.40
100

now exiting runScriptInteractively...

Download statHeteroFreq.py

5.11.9 Haplotype count and frequency

Haplotypes refer to alleles on the same homologous copy of a chromosome at specified loci. For example, an diploid
individual can have haplotypes (0, 2, 1) and (0, 1, 1) at loci (2, 3, 5) if he or she has genotype (0,
0), (2, 1) and (1,1) at loci 2, 3 and 5 respectively. Parameter haploFreq accept one or more lists of loci spec-
ifying one or more haplotype sites (e.g. haploFreq=[(0,1,2), (2,3)] specifies two haplotype sites). The
results are saved to dictionaries (with haplotype site as keys) of default dictionaries (with haplotype as keys). For

5.11. Statistics calculation (operator Stat) 131

statGenoFreq.py
statHeteroFreq.py

simuPOP

example, haploFreq[(0,1,2)][(0,1,1)] will be the frequency of haplotype (0, 1, 1) at loci (0, 1,
2). Example statHaploFreq prints the numbers of genotypes and haplotypes at loci 0, 1 and 2 of a small population.
Note that the viewVars function defined in module simuUtil can make use of a wxPython window to view all
variables if it is called in GUI mode.

Example: Counting haplotypes in a population

>>> import simuPOP as sim
>>> from simuPOP.utils import viewVars
>>> pop = sim.Population(100, loci=3)
>>> sim.initGenotype(pop, freq=[0.2, 0.4, 0.4], loci=0)
>>> sim.initGenotype(pop, freq=[0.2, 0.8], loci=2)
>>> sim.stat(pop, genoFreq=[0, 1, 2], haploFreq=[0, 1, 2],
... vars=['genoNum', 'haploFreq'])
>>> viewVars(pop.vars(), gui=False)
{'genoNum': {0: {(0, 0): 3.0,

(0, 1): 7.0,
(0, 2): 5.0,
(1, 0): 9.0,
(1, 1): 14.0,
(1, 2): 16.0,
(2, 0): 8.0,
(2, 1): 14.0,
(2, 2): 24.0},

1: defdict({(0, 0): 100.0}),
2: {(0, 0): 4.0,

(0, 1): 19.0,
(1, 0): 15.0,
(1, 1): 62.0}},

'haploFreq': {(0, 1, 2): {(0, 0, 0): 0.03,
(0, 0, 1): 0.145,
(1, 0, 0): 0.055,
(1, 0, 1): 0.315,
(2, 0, 0): 0.125,
(2, 0, 1): 0.33}}}

now exiting runScriptInteractively...

Download statHaploFreq.py

Note: haploFreq does not check if loci in a haplotype site belong to the same chromosome, or if loci are duplicated
or in order. It faithfully assemble alleles at specified loci as haplotypes although these haplotypes might not be
biologically meaningful.

Note: Counting a large number of haplotypes on long haplotype sites may exhaust the RAM of your computer.

5.11.10 Summary statistics of information fields

Parameter sumOfInfo, meanOfInfo, varOfInfo, maxOfInfo and minOfInfo are used to calculate the sum,
mean, sample variance (), max and min of specified information fields of individuals in all or specified (virtual)
subpopulations. The results are saved in dictionaries sumOfInfo, meanOfInfo, varOfInfo, maxOfInfo and
minOfInfo with information fields as keys. For example, parameter meanOfInfo='age' calculates the mean
age of all individuals and set variable meanOfInfo['age'].

132 Chapter 5. simuPOP Operators

statHaploFreq.py

simuPOP

Example statInfo demonstrates a mixing process of two populations. The population starts with two types of individu-
als with ancestry values 0 or 1 (information field anc). During the evolution, parents mate randomly and the ancestry
of offspring is the mean of parental ancestry values. A Stat operator is used to calculate the mean and variance of
individual ancestry values, and the number of individuals in five ancestry groups. It is not surprising that whereas
population mean ancestry does not change, more and more people have about the same number of ancestors from each
group and have an ancestry value around 0.5. The variance of ancestry values therefore decreases gradually.

Example: Calculate summary statistics of information fields

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population([500], infoFields='anc')
>>> # Defines VSP 0, 1, 2, 3, 4 by anc.
>>> pop.setVirtualSplitter(sim.InfoSplitter('anc', cutoff=[0.2, 0.4, 0.6, 0.8]))
>>> #
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... # anc is 0 or 1
... sim.InitInfo(lambda : random.randint(0, 1), infoFields='anc')
...],
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... sim.InheritTagger(mode=sim.MEAN, infoFields='anc')
...]),
... postOps=[
... sim.Stat(popSize=True, meanOfInfo='anc', varOfInfo='anc',
... subPops=[(0, sim.ALL_AVAIL)]),
... sim.PyEval(r"'Anc: %.2f (%.2f), #inds: %s\n' %" + \
... "(meanOfInfo['anc'], varOfInfo['anc'], " + \
... "', '.join(['%4d' % x for x in subPopSize]))")
...],
... gen = 5,
...)
Anc: 0.51 (0.12), #inds: 118, 0, 251, 0, 131
Anc: 0.51 (0.06), #inds: 27, 121, 190, 137, 25
Anc: 0.52 (0.03), #inds: 14, 143, 138, 181, 24
Anc: 0.52 (0.02), #inds: 4, 85, 267, 137, 7
Anc: 0.52 (0.01), #inds: 0, 40, 385, 75, 0
5

now exiting runScriptInteractively...

Download statInfo.py

5.11.11 Linkage disequilibrium

Parameter LD accepts a list of loci-pairs (e.g. LD=[(0,1),(2,3)]) with optional primary alleles at two loci (e.g.
LD=[(0,1,0,0),(2,3)]). For each pair of loci, this operator calculates linkage disequilibrium and optional
association measures between them.

Assuming that two loci are both diallelic, one with alleles and , and the other with alleles and . If we denote , as allele
and haplotype frequencies for allele and haplotype , respectively, the linkage disequilibrium measures with respect to
primaries alleles A and B are

• Basic LD measure :

D ranges from -0.25 to 0.25. The sign depends on the choice of alleles (A and B) at two loci.

5.11. Statistics calculation (operator Stat) 133

statInfo.py

simuPOP

• Lewontin’s where

D’ ranges from -1 to 1. The sign depends on the choice of alleles (A and B) at two loci.

• (in Devlin1995)

If one or both loci have more than 2 alleles, or if no primary allele is specified, the LD measures are calculated as
follows:

• If primary alleles are specified, all other alleles are considered as minor alleles with combined frequency (e.g.).
The same formulas apply which lead to signed and measures.

• If primary alleles are not specified, these LD measures are calculated as the average of the absolute value of
diallelic measures of all allele pairs. For example, the multi-allele version of is

where and iterate through all alleles at the two loci. In the diallelic case, LD measures will be the absolute
value of the single measures because and only differ by signs.

In another word,

• LD=[loc1, loc2] will yield positive and measures.

• LD=[loc1, loc2, allele1, allele2] will yield signed and measures.

• In the diallelic case, both cases yield identical results except for signs of and .

• In the multi-allelic case, the results can be different because LD=[loc1, loc2, allele1, allele2]
combines non-primary alleles and gives a single diallelic measure.

Note: A large number of linkage disequilibrium measures have been used in different disciplines but not all of
them are well-accepted. Requests of adding a particular LD measure will be considered when a reliable reference is
provided.

Association tests between specified loci could also be calculated using a by table of haplotype frequencies. If primary
alleles are specified, non-primary alleles are combined to form a 2 by 2 table (). Otherwise, and are respective numbers
of alleles at two loci.

• and its -value (variable LD_ChiSq and LD_ChiSq_p, respectively). A one-side test with degrees of freedom
will be used.

• Cramer V statistic (variable CramerV):

where equals the total number of haplotypes (for autosomes in diploid populations).

This statistic sets variables LD, LD_prime, R2, and optionally ChiSq, ChiSq_p and CramerV. SubPopulation
specific variables can be calculated by specifying variables such as LD_sp and R2_sp. Example statLD demonstrates
how to calculate various LD measures and output selected variables. Note that the significant overall LD between two
loci is an artifact of population structure because loci are in linkage equilibrium in each subpopulation.

Example: Linkage disequilibrium measures

>>> import simuPOP as sim
>>> pop = sim.Population([1000]*2, loci=3)
>>> sim.initGenotype(pop, freq=[0.2, 0.8], subPops=0)
>>> sim.initGenotype(pop, freq=[0.8, 0.2], subPops=1)
>>> sim.stat(pop, LD=[[0, 1, 0, 0], [1, 2]],
... vars=['LD', 'LD_prime', 'R2', 'LD_ChiSq', 'LD_ChiSq_p', 'CramerV',
... 'LD_prime_sp', 'LD_ChiSq_p_sp'])
>>> from pprint import pprint
>>> pprint(pop.vars())
{'CramerV': {0: defdict({1: 0.3355834766347789}),

(continues on next page)

134 Chapter 5. simuPOP Operators

simuPOP

(continued from previous page)

1: defdict({2: 0.39144946095755695})},
'LD': {0: defdict({1: 0.08387987499999999}),

1: defdict({2: 0.09783043749999992})},
'LD_ChiSq': {0: defdict({1: 450.4650791611408}),

1: defdict({2: 612.9307219358476})},
'LD_ChiSq_p': {0: defdict({1: 0.0}), 1: defdict({2: 0.0})},
'LD_prime': {0: defdict({1: 0.3425347836362625}),

1: defdict({2: 0.4057999832524774})},
'R2': {0: defdict({1: 0.1126162697902852}),

1: defdict({2: 0.15323268048396166})},
'subPop': {0: {'LD_ChiSq_p': {0: defdict({1: 0.03843990070970382}),

1: defdict({2: 0.5110492462003573})},
'LD_prime': {0: defdict({1: -0.17661111690962444}),

1: defdict({2: 0.016760924318107204})}},
1: {'LD_ChiSq_p': {0: defdict({1: 0.8024214035646771}),

1: defdict({2: 0.11685510935577492})},
'LD_prime': {0: defdict({1: -0.02259456714902688}),

1: defdict({2: 0.035632559660018596})}}}}

now exiting runScriptInteractively...

Download statLD.py

5.11.12 Genetic association

Genetic association refers to association between individual genotype (alleles or genotype) and phenotype (affection
status). There are a large number of statistics tests based on different study designs (e.g. case-control, Pedigree, longi-
tudinal) with different covariate variables. Although specialized software applications should be used for sophisticated
statistical analysis, simuPOP provides a number of simple genetic association tests for convenience. These tests

• Are single-locus tests that test specified loci separately.

• Are based on individual affection status. Associations between genotype and quantitative traits are currently
unsupported.

• Apply to all individuals in specified (virtual) subpopulations. Because a population usually has much more
unaffected individuals than affected ones, it is a common practice to draw certain types of samples (e.g. a
case-control sample with the same number of cases and controls) before statistical tests are applied.

simuPOP currently supports the following tests:

• Allele-based Chi-square test: This is the basic allele-based test that can be applied to diploid as well as haploid
populations. Basically, a 2 by contigency table is set up for each locus with being the number of alleles in cases
and controls . A test is applied to each locus and set variables Allele_ChiSq and Allele_ChiSq_p to
the statistic and its two-sided value (with degrees freedom). Note that genotype information is not preserved in
such a test.

• Genotype-based Chi-square test: This is the genotype-based test for diploid populations. Basically, a 2 by
contigency table is set up for each locus with being the number of genotype (unordered pairs of alleles) in cases
and controls . A test is applied to each locus and set variables Geno_ChiSq and Geno_ChiSq_p to the
statistic and its two-sided value (with degrees freedom). This test is usually applied to diallelic loci with 3
genotypes (AA, Aa and aa) but it can be applied to loci with more than two alleles as well.

• Genotype-based trend test: This Cochran-Armitage test can only be applied to diallelic loci in diploid popu-
lations. For each locus, a 2 by 3 contigency table is set up with being the number of genotype (AA, Aa and aa
with A being the wildtype allele) in cases and controls . A Cochran- Armitage trend test is applied to each locus
and set variables Armitage_p to its two-sided value.

5.11. Statistics calculation (operator Stat) 135

statLD.py

simuPOP

Example statAssociation demonstrates how to apply a penetrance model, draw a case-control sample and apply genetic
association tests to an evolving population. In this example, a penetrance model is applied to a locus (locus 3). A
Python operator is then used to draw a case-control sample from the population and test genetic association at two
surrounding loci. Because these two loci are tightly linked to the disease predisposing locus, they are in strong
association with the disease initially. However, because of recombination, such association decays with time at rates
depending on their genetic distances to the disease predisposing locus.

Example: Genetic association tests

>>> import simuPOP as sim
>>> from simuPOP.utils import *
>>> from simuPOP.sampling import drawCaseControlSample
>>> def assoTest(pop):
... 'Draw case-control sample and apply association tests'
... sample = drawCaseControlSample(pop, cases=500, controls=500)
... sim.stat(sample, association=(0, 2), vars=['Allele_ChiSq_p', 'Geno_ChiSq_p',
→˓'Armitage_p'])
... print('Allele test: %.2e, %.2e, Geno test: %.2e, %.2e, Trend test: %.2e, %.2e
→˓' \
... % (sample.dvars().Allele_ChiSq_p[0], sample.dvars().Allele_ChiSq_p[2],
... sample.dvars().Geno_ChiSq_p[0], sample.dvars().Geno_ChiSq_p[2],
... sample.dvars().Armitage_p[0], sample.dvars().Armitage_p[2]))
... return True
...
>>> pop = sim.Population(size=100000, loci=3)
>>> pop.setVirtualSplitter(sim.ProportionSplitter([0.5, 0.5]))
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[0]*3, subPops=[(0,0)]),
... sim.InitGenotype(genotype=[1]*3, subPops=[(0,1)]),
...],
... matingScheme=sim.RandomMating(ops=sim.Recombinator(loci=[0, 1], rates=[0.01,
→˓0.005])),
... postOps=[
... sim.MaPenetrance(loci=1, penetrance=[0.1, 0.2, 0.4]),
... sim.PyOperator(func=assoTest, step=20),
...],
... gen = 100
...)
Allele test: 0.00e+00, 0.00e+00, Geno test: 0.00e+00, 0.00e+00, Trend test: 0.00e+00,
→˓0.00e+00
Allele test: 1.14e-13, 4.44e-16, Geno test: 3.09e-13, 2.66e-15, Trend test: 7.66e-14,
→˓2.22e-16
Allele test: 1.71e-08, 8.55e-15, Geno test: 4.95e-08, 3.45e-13, Trend test: 1.62e-08,
→˓7.36e-14
Allele test: 8.57e-09, 7.99e-15, Geno test: 3.09e-08, 2.18e-14, Trend test: 7.05e-09,
→˓2.66e-15
Allele test: 3.12e-06, 9.05e-09, Geno test: 5.95e-06, 8.83e-08, Trend test: 2.12e-06,
→˓1.26e-08
100

now exiting runScriptInteractively...

Download statAssociation.py

136 Chapter 5. simuPOP Operators

statAssociation.py

simuPOP

5.11.13 population structure

Parameter structure measures the structure of a population using the following statistics:

• The statistic developed by Nei Nei1973. This statistic is equivalent to Wright’s fixation index in the diallelic case
so it can be considered as the multi-allele and multi-locus extension of Wright’s . It assumes known genotype
frequency so it can be used to calculate true of a population when all genotype information is available. This
statistic sets a dictionary of locus level (variable g_st) and a summary statistics for all loci (variable G_st).

• Wright’s fixation index calculated using an algorithm developed by Weir1984. This statistic considers existing
populations as random samples from an infinite pool of populations with the same ancestral population so it is
best to be applied to random samples where true genotype frequencies are unknown. This statistic sets dictionar-
ies of locus level , and (variables f_st, f_is and f_it), and summary statistics for all loci (variables F_st,
F_is and F_it) . When hetergozygote count is unavailable (non-diploid population, loci on sex chromosomes
and mitochondrial chromosomes), simuPOP uses expected heterozygosity to estimate this quantity.

These statistics by default uses all existing subpopulations, but it can also be applied to a subset of subpopulations, or
even virtual subpopulations using parameter subPops. That is to say, you can measure the genetic difference between
males and females using subPops=[(0,0), (0,1)] if a SexSplitter is used to define two virtual subpopulations
with male and female individuals respectively.

Example statStructure demonstrate a simulation with two replicates. In the first replicate, three subpopulations evolve
separately without migration and become more and more genetically distinct. In the second replicate, a low level
migration is applied between subpopulations so the population structure is kept at a low level.

Example: Measure of population structure

>>> import simuPOP as sim
>>> from simuPOP.utils import migrIslandRates
>>> simu = sim.Simulator(sim.Population([5000]*3, loci=10, infoFields='migrate_to'),
... rep=2)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... preOps=sim.Migrator(rate=migrIslandRates(0.01, 3), reps=1),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(structure=range(10), step=40),
... sim.PyEval("'Fst=%.3f (rep=%d without migration) ' % (F_st, rep)",
→˓step=40, reps=0),
... sim.PyEval("'Fst=%.3f (rep=%d with migration) ' % (F_st, rep)", step=40,
→˓reps=1),
... sim.PyOutput('\n', reps=-1, step=40)
...],
... gen = 200
...)
Fst=0.000 (rep=0 without migration) Fst=0.000 (rep=1 with migration)
Fst=0.003 (rep=0 without migration) Fst=0.002 (rep=1 with migration)
Fst=0.006 (rep=0 without migration) Fst=0.002 (rep=1 with migration)
Fst=0.008 (rep=0 without migration) Fst=0.003 (rep=1 with migration)
Fst=0.010 (rep=0 without migration) Fst=0.001 (rep=1 with migration)
(200, 200)

now exiting runScriptInteractively...

Download statStructure.py

5.11. Statistics calculation (operator Stat) 137

statStructure.py

simuPOP

5.11.14 Hardy-Weinberg equilibrium test

Parameter HWE accepts a list of loci at which exact Hardy Weinberg equilibrium tests are applied. The p-values of the
tests are assigned to a dictionary HWE. Example statHWE demonstrates how Hardy Weinberg equilibrium is reached
in one generation.

Example: Hardy Weinberg Equilibrium test

>>> import simuPOP as sim
>>> pop = sim.Population([1000], loci=1)
>>> pop.setVirtualSplitter(sim.ProportionSplitter([0.4, 0.4, 0.2]))
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[0,0], subPops=[(0,0)]),
... sim.InitGenotype(genotype=[0,1], subPops=[(0,1)]),
... sim.InitGenotype(genotype=[1,1], subPops=[(0,2)]),
...],
... preOps=[
... sim.Stat(HWE=0, genoFreq=0),
... sim.PyEval(r'"HWE p-value: %.5f (AA: %.2f, Aa: %.2f, aa: %.2f)\n" %
→˓(HWE[0], '
... 'genoFreq[0][(0,0)], genoFreq[0][(0,1)] + genoFreq[0][(1,0)],
→˓genoFreq[0][(1,1)])'),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(HWE=0, genoFreq=0),
... sim.PyEval(r'"HWE p-value: %.5f (AA: %.2f, Aa: %.2f, aa: %.2f)\n" %
→˓(HWE[0], '
... 'genoFreq[0][(0,0)], genoFreq[0][(0,1)] + genoFreq[0][(1,0)],
→˓genoFreq[0][(1,1)])'),
...],
... gen = 1
...)
HWE p-value: 0.00000 (AA: 0.40, Aa: 0.40, aa: 0.20)
HWE p-value: 0.93636 (AA: 0.38, Aa: 0.48, aa: 0.15)
1

now exiting runScriptInteractively...

Download statHWE.py

5.11.15 Measure of Inbreeding

Inbreeding coefficient at a generation is defined as the probability that the two alleles in a given individual are identical
by decent (IBD). Although it is usually very difficult to estimate this quantity, it is easy to observe it directly during
evolution if the ancestors of alleles are tracked. This can be done using the lineage module of simuPOP where allelic
lineage is tracked during evolution. For example, Example statIBD output the frequency of IBD loci in a population of
size 500. It also outputs the frequency of IBS (Identical by State), which should always be larger than IBD frequency,
and theoretical estimate of the decay of inbreeding coefficient.

Example: Frequency of IBD as a measure of inbreeding coefficient

>>> import simuOpt
>>> simuOpt.setOptions(alleleType='lineage')
>>> import simuPOP as sim

(continues on next page)

138 Chapter 5. simuPOP Operators

statHWE.py

simuPOP

(continued from previous page)

>>> pop = sim.Population([500], loci=[1]*100)
>>> pop.evolve(
... initOps=[
... sim.InitLineage(),
... sim.InitSex(),
... sim.InitGenotype(freq=[0.2]*5),
...],
... preOps=[
... sim.Stat(inbreeding=sim.ALL_AVAIL, popSize=True, step=10),
... sim.PyEval(r'"gen %d: IBD freq %.4f, IBS freq %.4f, est: %.4f\n" % '
... '(gen, sum(IBD_freq.values()) /len(IBD_freq), '
... ' sum(IBS_freq.values()) /len(IBS_freq), '
... ' 1 - (1-1/(2.*popSize))**gen)', step=10)
...],
... matingScheme=sim.RandomMating(),
... gen = 100
...)
gen 0: IBD freq 0.0000, IBS freq 0.1994, est: 0.0000
gen 10: IBD freq 0.0084, IBS freq 0.2072, est: 0.0100
gen 20: IBD freq 0.0167, IBS freq 0.2142, est: 0.0198
gen 30: IBD freq 0.0266, IBS freq 0.2204, est: 0.0296
gen 40: IBD freq 0.0380, IBS freq 0.2292, est: 0.0392
gen 50: IBD freq 0.0486, IBS freq 0.2383, est: 0.0488
gen 60: IBD freq 0.0577, IBS freq 0.2457, est: 0.0583
gen 70: IBD freq 0.0689, IBS freq 0.2566, est: 0.0676
gen 80: IBD freq 0.0782, IBS freq 0.2616, est: 0.0769
gen 90: IBD freq 0.0887, IBS freq 0.2638, est: 0.0861
100

now exiting runScriptInteractively...

Download statIBD.py

5.11.16 Effective population size

Effective population size is an important, yet complicated concept in population genetics. Simply put, the effective
population size is determined by a mating scheme, namely how parents are selected and how offsprings are generated.
In the context of forward-time simulation, if we populate an offspring population from a parental population, a true
effective population size can be calculated, under certain assumptions, as

where and are the mean and variance of the number of gametes each parent transmits to the offspring generation.
Naturally, the number of sex chromosomes transmitted will be different for males and females. This effective size is
independent of genotypes and is called the demographic effective size.

Because the calculation of demographic effective size needs to track which alleles are transmitted from parental to
offspring population, it has to collect information from both parental and offspring populations, and can only be
calculated using the lineage modules of simuPOP. As shown in Example statNeDemographic, a Stat operator is
applied before mating to mark lineage of alleles of each locus with an individual index, and save the IDs of parents
in a variable Ne_demo_base. After mating, another Stat operator is used to count how many alleles each parent
has contributed to the offspring generation, and calculate demographic effective size accordingly. This example uses
three virtual subpopulations, a whole subpopulation, all male individuals, and all female individuals, and calculated
effective size for loci on an autosome, an X chromosome, and a Y chromosome. As we can imagine, the effective size
is 0 at the Y chromosome for all females, because no such chromsome is transmitted from the parental population.

Example: Demographic effective population size

5.11. Statistics calculation (operator Stat) 139

statIBD.py

simuPOP

>>> import simuOpt
>>> simuOpt.setOptions(alleleType='lineage', quiet=True)
>>> import simuPOP as sim
>>> pop = sim.Population([2000], loci=[1]*3,
... chromTypes=[sim.AUTOSOME, sim.CHROMOSOME_X, sim.CHROMOSOME_Y])
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.3, 0.7]),
...],
... preOps=[
... sim.Stat(effectiveSize=range(3), subPops=[0, (0,0), (0,1)],
... vars='Ne_demo_base_sp'),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(effectiveSize=range(3), subPops=[0, (0,0), (0,1)],
... vars='Ne_demo_sp'),
... sim.PyEval(r'"Demographic Ne: %.1f (auto), %.1f (X), %.1f (Y), '
... r'Males: %.1f, %.1f, %.1f, Females: %.1f, %.1f, %.1f\n"'
... '% tuple([subPop[0]["Ne_demo"][x] for x in (0, 1, 2)] + '
... '[subPop[(0,0)]["Ne_demo"][x] for x in (0, 1, 2)] + '
... '[subPop[(0,1)]["Ne_demo"][x] for x in (0, 1, 2)])')
...],
... gen = 5
...)
Demographic Ne: 2021.2 (auto), 1808.8 (X), 1056.1 (Y), Males: 1038.4, 1049.4, 1056.1,
→˓Females: 983.8, 983.8, nan
Demographic Ne: 2024.8 (auto), 1886.4 (X), 918.2 (Y), Males: 965.7, 1014.2, 918.2,
→˓Females: 1063.3, 1063.3, nan
Demographic Ne: 2048.7 (auto), 1858.5 (X), 969.2 (Y), Males: 1023.0, 1037.4, 969.2,
→˓Females: 1025.1, 1025.1, nan
Demographic Ne: 1955.0 (auto), 1790.6 (X), 956.8 (Y), Males: 958.8, 985.2, 956.8,
→˓Females: 996.5, 996.5, nan
Demographic Ne: 2000.5 (auto), 1811.7 (X), 955.1 (Y), Males: 983.8, 966.2, 955.1,
→˓Females: 1016.8, 1016.8, nan
5

now exiting runScriptInteractively...

Download statNeDemographic.py

Effective population sizes could also be estimated from genotypes because changes of genotypes reflects properties
of the mating scheme. However, it is important to realize that evolving a population for one generation is only
one realization of many possible realizations of the same mating scheme (effective size). If we consider the
demographic effective size as the average effective size of all realizations, estimating effective size from genotypes
will be inaccurate unless a large number of unlinked loci are used. The temporal methods essentially try to get better
estimate by averaging such realizations across multiple generations, although the demographic effective size might
vary due to change of population size.

simuPOP currently provides two temporal methods proposed by Waples (1989) and Jorde & Ryman’s (2007). Because
these methods estimate effective population size using changes of allele frequencies of samples at two generations, it
is necessary to set a baseline generation before any temporal method could be applied.

The baseline information is saved to variable Ne_temporal_base when this variable is specified in the vars
parameter of the Stat operator. After the baseline is set, for example, at generation 0, if the operator Stat is applied
at generations 0, 20, and 40, it will set variable Ne_waples89_P1, Ne_waples89_P2(for Waples 1989) and

140 Chapter 5. simuPOP Operators

statNeDemographic.py

simuPOP

Ne_tempoFS_P1, Ne_tempoFS_P2 (for Jorde & Ryman 2007, as implemented in a package TempoFS) as the
census population size at generation 0, estimated effective population sizes between generation 0 and 20 at generation
20, and estimates between 0 and 40 at generation 40. The variables are lists of three elements: the estimated Ne and
lower and upper boundaries of the 95% confidence interval.

Sampling plan 1 assumes that samples are drawn with replacement at the first time point so that some of the individuals
sampled in the first time period could have contributed genes to subsequent generations (see Nei and Tajima, 1981
Genetics and other papers). simuPOP uses census population (or subpopulation if the statistics are calcuated for
each subpopulations) size as and consider the sample being a subset of the population (or subpopulation), it should
be applied to a virtual subpopulation (e.g. a subset of individuals defined by a RangeSplitter) of the whole
population. Sample plan 2 treats the sample as a sample from an infinitely-sized population, and should be applied to
a population (sample) that is actually extracted from a larger population. Results under both assumptions are calculated
and provided so you should choose the ones that match your sampling plan.

Example statNeTemporal demonstrates how to calculate temporal effective population sizes at a 20 generation interval
during evolution, using a fixed baseline generation at generation 0. The statistics are estimated from genotypes at
50 unlinked loci from 500 random samples from a population of size 2000. Instead of drawing random samples
explicitly, this example defines a virtual subpopulation that consists of the first 500 individuals in the population. The
Stat operator is applied at generations 0, 20, 40, . . . , 100 to this virtual subpopulation, with the first output being
the census size (of the sample). Because a standard Wright-Fisher random mating scheme is used, the true effective
population size should be around 2000. It would be interesting to adjust this evolutionary process (with population
expansion, with varying number of offspring etc) and the method of estimation (sample size, generations between
estimates) to see how well this statistic estimate effective population size under different scenarios.

Example: Temporal effective population size using a fixed baseline sample

>>> import simuPOP as sim
>>> pop = sim.Population([2000], loci=[1]*50)
>>> pop.setVirtualSplitter(sim.RangeSplitter([0, 500]))
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.3, 0.7]),
... sim.Stat(effectiveSize=range(50), subPops=[(0,0)],
... vars='Ne_temporal_base'),
...],
... preOps=[
... sim.Stat(effectiveSize=range(50), subPops=[(0,0)],
... vars=['Ne_waples89_P1', 'Ne_tempoFS_P1'], step=20),
... sim.PyEval(r'"Waples Ne: %.1f (%.1f - %.1f), TempoFS: '
... r'%.1f (%.1f - %.1f), at generation %d\n" % '
... 'tuple(Ne_waples89_P1 + Ne_tempoFS_P1 + [gen])', step=20)
...],
... matingScheme=sim.RandomMating(),
... gen = 101
...)
Waples Ne: 500.0 (500.0 - 500.0), TempoFS: 500.0 (500.0 - 500.0), at generation 0
Waples Ne: 1853.1 (1155.2 - 3536.1), TempoFS: 1843.2 (1255.1 - 3467.7), at generation
→˓20
Waples Ne: 1537.9 (979.7 - 2452.6), TempoFS: 1565.7 (1117.0 - 2617.2), at generation
→˓40
Waples Ne: 1843.3 (1178.0 - 2872.4), TempoFS: 1963.4 (1332.2 - 3730.9), at generation
→˓60
Waples Ne: 1783.0 (1143.4 - 2710.7), TempoFS: 1807.2 (1291.5 - 3008.7), at generation
→˓80
Waples Ne: 1572.7 (1011.2 - 2346.6), TempoFS: 1639.5 (1205.1 - 2563.6), at generation
→˓100

(continues on next page)

5.11. Statistics calculation (operator Stat) 141

simuPOP

(continued from previous page)

101

now exiting runScriptInteractively...

Download statNeTemporal.py

Instead of using a fixed baseline generation, it is also possible to reset baseline generation during evolution. For
example, Example statNeInterval demonstrates how to calculate temporal effective population sizes at a 20 generation
interval during evolution. This example sets variable Ne_temporal_base with Ne_waples89_P1 whenever the
Stat operator is applied. This effectively resets the baseline generation to the present generation at generations 0, 20,
40, etc, so baseline generations 0, 20, 40, . . . are used at generations 20, 40, This example also demonstrates how
to use the suffix parameter to apply the same statistics with different parameters.

Example: Temporal effective population size between consecutive samples

>>> import simuPOP as sim
>>> pop = sim.Population([2000], loci=[1]*50)
>>> pop.setVirtualSplitter(sim.RangeSplitter([0, 500]))
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.3, 0.7]),
... sim.Stat(effectiveSize=range(50), subPops=[(0,0)],
... vars='Ne_temporal_base'),
...],
... preOps=[
... sim.Stat(effectiveSize=range(50), subPops=[(0,0)],
... vars='Ne_waples89_P1', step=20),
... sim.Stat(effectiveSize=range(50), subPops=[(0,0)], step=20,
... suffix='_i', vars=['Ne_temporal_base', 'Ne_waples89_P1']),
... sim.PyEval(r'"Waples Ne (till %d): %.1f (%.1f - %.1f), '
... r'(interval) %.1f (%.1f - %.1f)\n" % '
... 'tuple([gen] + Ne_waples89_P1 + Ne_waples89_P1_i)',
... step=20)
...],
... matingScheme=sim.RandomMating(),
... gen = 101
...)
Waples Ne (till 0): 500.0 (500.0 - 500.0), (interval) 500.0 (500.0 - 500.0)
Waples Ne (till 20): 1853.1 (1155.2 - 3536.1), (interval) 1853.1 (1155.2 - 3536.1)
Waples Ne (till 40): 1537.9 (979.7 - 2452.6), (interval) 2063.7 (1281.1 - 4094.1)
Waples Ne (till 60): 1843.3 (1178.0 - 2872.4), (interval) 1681.9 (1052.1 - 3112.9)
Waples Ne (till 80): 1783.0 (1143.4 - 2710.7), (interval) 1872.7 (1167.0 - 3586.3)
Waples Ne (till 100): 1572.7 (1011.2 - 2346.6), (interval) 2056.1 (1276.6 - 4073.3)
101

now exiting runScriptInteractively...

Download statNeInterval.py

Linkage disequilibrium method is another popular method to estimate effective population size. Compared to temporal
methods, it has the distinct advantage that it requires only one sample. simuPOP provides a method that is developed
by Waples in his 2006 paper. To use this method, you will need to specify variable Ne_LD for a random mating
scheme, or Ne_LD_mono for a monogamous mating scheme. statNeLD demonstrates this usage. Note that because
the LDNe mehod is sensitive to rare alleles (which can lead to inflated measure of LD), simuPOP provides estimates
that ignores alleles with frequencies less than 0 (all alleles are kept), 0.01, 0.02 and 0.05. The results are saved in
variable Ne_LD as a dictionary with keys 0, 0.01, 0.02, 0.05, and values as lists of estimated effective population sizes

142 Chapter 5. simuPOP Operators

statNeTemporal.py
statNeInterval.py

simuPOP

and their 95% confidence intervals. Because of the existence of many rare alleles, the example gives quite different
estimates with and without rare alleles (using cutoff=0.02).

Example: Effective population size estimated using a LD based method

>>> import simuPOP as sim
>>> pop = sim.Population([2000], loci=[1]*50)
>>> pop.setVirtualSplitter(sim.RangeSplitter([0, 500]))
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.005]*4 + [0.015]*2 + [0.25, 0.7]),
...],
... preOps=[
... sim.Stat(effectiveSize=sim.ALL_AVAIL, subPops=[(0,0)],
... vars='Ne_LD', step=20),
... sim.PyEval(r'"LD Ne (gen %d): %.1f (%.1f - %.1f)'
... r', %.1f (%.1f - %.1f, adjusted)\n" % '
... 'tuple([gen] + Ne_LD[0.] + Ne_LD[0.02])',
... step=20)
...],
... matingScheme=sim.RandomMating(),
... gen = 101
...)
LD Ne (gen 0): 30623.2 (5220.9 - inf), inf (8071.2 - inf, adjusted)
LD Ne (gen 20): 6297.4 (2574.4 - inf), 1900.0 (1160.3 - 4647.8, adjusted)
LD Ne (gen 40): 2187.6 (1554.1 - 3589.2), 2535.5 (1459.2 - 8173.8, adjusted)
LD Ne (gen 60): 2757.8 (1799.2 - 5619.3), 3510.9 (1801.6 - 32066.7, adjusted)
LD Ne (gen 80): 2574.0 (1729.7 - 4828.9), 1813.2 (1197.7 - 3501.7, adjusted)
LD Ne (gen 100): 3234.6 (1819.5 - 12210.9), 2834.8 (1603.4 - 10168.4, adjusted)
101

now exiting runScriptInteractively...

Download statNeLD.py

simuPOP allows you to estimate effective population size using genotypes at selected loci from selected individuals.
It is up to you, however, to decide when to apply the operator (pre- or post-mating), how to draw samples, and select
the right method for your data. For example, the temporal methods assume discrete generations and no (or slight)
selection, migration, and mutation. The LD method assumes that markers are selectively neutral and independent;
population has discrete generations and is closed to immigration; and sampling is random. In addition, to keep the
interface simple, simuPOP does not provide many options as dedicated programs do (e.g. TempoFS). Please export
your samples in other formats (e.g. use operator Export(format=''GENEPOP'') or function export(pop,
format=''GENEPOP'') from module simuPOP.utiles) and use these programs if you need such flexibilities.

5.11.17 Other statistics

If you need other statistics, a popular approach is to define them using Python operators. If your statistics is based on
existing statistics such as allele frequency, it is a good idea to calculate existing statistics using a stat function and
derive your statistics from population variables. Please refer to the last chapter of this guide on an example.

If you would like to calculate some summary statistics that involves individual information fields but cannot be calcu-
lated using parameters such as minOfInfo, you can try to use operators such as InfoExec to process individuals one by
one and collect result. For example, you can use operators

5.11. Statistics calculation (operator Stat) 143

statNeLD.py

simuPOP

PyExec('s=0')
InfoExec('s+=x*x')
PyEval('s')

to calculate and report where x is an information field during evolution. This makes use of the fact that operator
InfoExec goes through all individuals and evaluate the statement.

If performance becomes a problem, you might want to have a look at the source code of simuPOP and implement your
statistics at the C++ level. If you believe that your statistics are popular enough, please send your implementation to
the simuPOP mailinglist for possible inclusion of your statistics into simuPOP.

5.11.18 Support for sex and customized chromosome types

simuPOP supports statistics calculation for loci on sex chromosomes. For example, when pair-wise difference between
haplotypes is calculated using parameter neutrality, it will pick the right haplotypes for X, and Y chromosomes.
However, because neutrality is calculated based on a group of haplotypes of all specified loci, even if the loci are
collected across chromosomes, you can not use operator

Stat(neutrality=ALL_AVAIL)

if the loci are selected from chromosomes of different types, because different numbers of haplotypes exists on these
chromosomes. To calculate Pi for these chromosomes, you would have to calculate them separately, using operators
such as

Stat(neutrality=range(30,40), suffix='_X')
Stat(neutrality=range(40,50), suffix='_Y')

so that all specified loci are on the same type of chromosomes. Here we use parameter suffix to avoid conflict of
variable names because both operator would produce the same variable Pi without this parameter.

The case with customized chromosomes are more complex because the meaning of these chromosomes are defined
by users. If these chromosomes are mitochondrial DNAs, only chromosomes from the females are carrying useful
information. If you would like to calculate, for example, the Pi statistics for these chromosomes, you will have to
explicitly selected females for calculation. This can be done by operator

Stat(neutrality=range(50,60), vsps=[(ALL_AVAIL, 'FEMALE')], suffix='_mt')

if VSPs have been created by a SexSplitter.

Example statChromTypes demonstrates the use of these operators. This example intentionally initializes all individuals
with the same haplotypes on all chromosomes (the InitGenotype operator ignores chromosome types). Because
of different chromosome types, four Stat operators are used to get the Pi statistics for them. These operators return
different results because different sets of haplotypes are picked for the calculation of this statistics.

Example: Statistics for sex and customized chromosome types

>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=[5]*4,
... chromTypes=[sim.AUTOSOME, sim.CHROMOSOME_X, sim.CHROMOSOME_Y, sim.
→˓MITOCHONDRIAL])
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(haplotypes=[[0, 1, 2, 0, 1]*4, [2, 1, 0, 2, 3]*4],
... prop=[0.4, 0.6]),

(continues on next page)

144 Chapter 5. simuPOP Operators

simuPOP

(continued from previous page)

...],

... matingScheme=sim.RandomMating(

... ops=[

... sim.MendelianGenoTransmitter(),

... sim.MitochondrialGenoTransmitter()]),

... preOps=[

... sim.Stat(neutrality=range(5)),

... sim.Stat(neutrality=range(5, 10), suffix='_X'),

... sim.Stat(neutrality=range(10, 15), suffix='_Y'),

... sim.Stat(neutrality=range(15, 20), suffix='_mt'),

... sim.PyEval(r'"%.3f %.3f %.3f %.3f\n" % (Pi, Pi_X, Pi_Y, Pi_mt)'),

...],

... gen = 2

...)
1.921 1.900 1.973 1.914
1.931 1.921 1.957 1.945
2

now exiting runScriptInteractively...

Download statChromTypes.py

5.12 Conditional operators

5.12.1 Conditional operator (operator IfElse) *

Operator IfElse provides a simple way to conditionally apply an operator. The condition can be a fixed condition,
a expression (a string) that will be evaluated in a population’s local namespace or a user-defined function when it is
applied to the population.

The first case is used to control the execution of certain operators depending on user input. For example, Example
IfElseFixed determines whether or not some outputs should be given depending on a variable verbose. Note that
the applicability of the conditional operators are determined by the IfElse operator and individual opearators. That
is to say, the parameters begin, step, end, at, and reps of operators in ifOps and elseOps are only honored
when operator IfElse is applied.

Example: A conditional opeartor with fixed condition

>>> import simuPOP as sim
>>> pop = sim.Population(size=1000, loci=1)
>>> verbose = True
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
...],
... matingScheme=sim.RandomMating(),
... postOps=sim.IfElse(verbose,
... ifOps=[
... sim.Stat(alleleFreq=0),
... sim.PyEval(r"'Gen: %3d, allele freq: %.3f\n' % (gen, alleleFreq[0][1])
→˓",
... step=5)
...],

(continues on next page)

5.12. Conditional operators 145

statChromTypes.py

simuPOP

(continued from previous page)

... begin=10),

... gen = 30

...)
Gen: 10, allele freq: 0.483
Gen: 15, allele freq: 0.455
Gen: 20, allele freq: 0.481
Gen: 25, allele freq: 0.481
30

now exiting runScriptInteractively...

Download IfElseFixed.py

When a string is specified, it will be considered as an expression and be evaluated in a population’s namespace. The
return value will be used to determine if an operator should be executed. For example, you can re-introduce a mutant if
it gets lost in the population, output a warning when certain condition is met, or record the occurance of certain events
in a population. For example, Example IfElse records the number of generations the frequency of an allele goes below
0.4 and beyong 0.6 before it gets lost or fixed in the population. Note that a list of else-operators can also be executed
when the condition is not met.

Example: A conditional opeartor with dynamic condition

>>> import simuPOP as sim
>>> simu = sim.Simulator(
... sim.Population(size=1000, loci=1),
... rep=4)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
... sim.PyExec('below40, above60 = 0, 0')
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.IfElse('alleleFreq[0][1] < 0.4',
... sim.PyExec('below40 += 1')),
... sim.IfElse('alleleFreq[0][1] > 0.6',
... sim.PyExec('above60 += 1')),
... sim.IfElse('len(alleleFreq[0]) == 1',
... sim.PyExec('stoppedAt = gen')),
... sim.TerminateIf('len(alleleFreq[0]) == 1')
...]
...)
(892, 1898, 4001, 2946)
>>> for pop in simu.populations():
... print('Overall: %4d, below 40%%: %4d, above 60%%: %4d' % \
... (pop.dvars().stoppedAt, pop.dvars().below40, pop.dvars().above60))
...
Overall: 891, below 40%: 20, above 60%: 515
Overall: 1897, below 40%: 1039, above 60%: 51
Overall: 4000, below 40%: 2878, above 60%: 0
Overall: 2945, below 40%: 198, above 60%: 1731

now exiting runScriptInteractively...

Download IfElse.py

146 Chapter 5. simuPOP Operators

IfElseFixed.py
IfElse.py

simuPOP

In the last case, a user-defined function can be specified. This function should accept parameter popwhen the operator
is applied to a population, and one or more parameters pop, off, dad and mom when it is applied during-mating. The
later could be used to apply different during-mating operators for different types of parents or offspring. For example,
Example pedigreeMatingAgeStructured in Chapter 6 uses a CloneGenoTransmitter when only one parent is
available (when parameter mom is None), and a MendelianGenoTransmitter when two parents are available.

5.12.2 Conditionally terminate an evolutionary process (operator TerminateIf)

Operator TerminateIf has been described and used in several examples such as Example simuGen, expression and
IfElse. This operator accept an Python expression and terminate the evolution of the population being applied if the
expression is evaluated to be True. This operator is well suited for situations where the number of generations to
evolve cannot be determined in advance.

If a TerminateIf operator is applied to the offspring generation, the evolutionary cycle is considered to be com-
pleted. If the evolution is terminated before mating, the evolutionary cycle is condered to be incomplete. Such a
difference can be important if the number of generations that have been involved is important for your analysis.

A less-known feature of operator TerminateIf is its ability to terminate the evolution of all replicates, using
parameter stopAll=True. For example, Example TerminateIf terminates the evolution of all populations when
one of the populations gets fixed. The return value of simu.evolve shows that some populations have evolved one
generation less than the population being fixed.

Example: Terminate the evolution of all populations in a simulator

>>> import simuPOP as sim
>>> simu = sim.Simulator(
... sim.Population(size=100, loci=1),
... rep=10)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.TerminateIf('len(alleleFreq[0]) == 1', stopAll=True)
...]
...)
(88, 88, 88, 88, 87, 87, 87, 87, 87, 87)
>>>

now exiting runScriptInteractively...

Download TerminateIf.py

5.12.3 Conditional removal of individuals (operator DiscardIf)

Operator DiscardIf accepts a fixed condition or probability, or a condition or a Python function that returns either
True/False or a probability to remove an individual. When it is applied during mating, it will evaluate the condition
or call the function for each offspring, and discard the offspring if the return value of the expression or function
is True, or remove at a probability if the return value is a number between 0 and 1. The python expression accepts
information fields as variables so operator DiscardIf('age > 80') will discard all individuals with age > 80, and
DiscardIf('1-fitness') will remove individuals according to 1 minus their fitness. Optionally, the offspring
itself can be used in the expression if parameter exposeInd is used to set the variable name of the offspring.

5.12. Conditional operators 147

TerminateIf.py

simuPOP

Alternatively, a Python function can be passed to this operator. This function should be defined with parameters pop,
off, mom, dad or names of information fields. For example, DiscardIf(lambda age: age > 80) will
remove individuals with age > 80.

A constant expression is also allowed in this operator. A fixed condition or number is acceptable so DiscardIf(0.
1) will randomly remove 10% of all individuals. Although it does not make sense to use DiscardIf(True) be-
cause all offspring will be discarded, it is quite useful to use this operator in the context of DiscardIf(True,
subPops=[(0, 0)]) to remove all individuals in a virtual subpopulation. If virtual subpopulation (0, 0) is
defined as all individuals with age > 80, the last method achieves the same effect as the first two methods.

Example DiscardIf demonstrates an interesting application of this operator. This example evolves a population for
one generation. Instead of keeping all offspring, it keeps only 500 affected and 500 unaffected offspring. This is
achieved by defining virtual subpopulations by affection status and range, and discard the first 500 offspring if they
are unaffected, and the last 500 offspring if they are affected.

Example: Use operator DiscardIf to generate case control samples

>>> import simuPOP as sim
>>> pop = sim.Population(size=500, loci=1)
>>> pop.setVirtualSplitter(sim.ProductSplitter([
... sim.AffectionSplitter(),
... sim.RangeSplitter([[0,500], [500, 1000]]),
...])
...)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
...],
... matingScheme=sim.RandomMating(
... ops=[
... sim.MendelianGenoTransmitter(),
... sim.MaPenetrance(loci=0, penetrance=[0, 0.01, 0.1]),
... sim.DiscardIf(True, subPops=[
... (0, 'Unaffected, Range [0, 500)'),
... (0, 'Affected, Range [500, 1000)')])
...],
... subPopSize=1000,
...),
... gen = 1
...)
1
>>> sim.stat(pop, numOfAffected=True)
>>> print(pop.dvars().numOfAffected, pop.dvars().numOfUnaffected)
500 500

now exiting runScriptInteractively...

Download DiscardIf.py

5.13 Miscellaneous operators

5.13.1 An operator that does nothing (operator NoneOp)

Operator NoneOp does nothing when it is applied to a population. It provides a placeholder when an operator is
needed but no action is required. Example NoneOp demonstrates a typical usage of this operator

148 Chapter 5. simuPOP Operators

DiscardIf.py

simuPOP

if hasSelection:
sel = MapSelector(loci=[0], fitness=[1, 0.99, 0.98])

else:
sel = NoneOp()

#
simu.evolve(

preOps=[sel], # and other operators
matingScheme=RandomMating(),
gen=10

)

5.13.2 dump the content of a population (operator Dumper)

Operator Dumper and its function form dump has been used extensively in this guide. They are prefect for demon-
stration and debugging purposes because they display all properties of a population in a human readable format. They
are, however, rarely used in realistic settings because outputting a large population to your terminal can be disastrous.

Even with modestly-sized populations, it is a good idea to dump only parts of the population that you are interested. For
example, you can use parameter genotype=False to stop outputting individual genotype, structure=False
to stop outtputing genotypic and population structure information, loci=range(5) to output genotype only at the
first five loci, max=N to output only the first N individuals (default to 100), subPops=[(0, 0)] to output, for
example, only the first virtual subpopulation in subpopulation 0. Multiple virtual subpopulations are allowed and you
can even use subPops=[(ALL_AVAIL, 0)] to go through a specific virtual subpopulation of all subpopulations.
This operator by default only dump the present generation but you can set ancGens to a list of generation numbers
or ALL_AVAIL to dump part or all ancestral generations. Finally, if there are more than 10 alleles, you can set the
width at which each allele will be printed. The following example (Example Dumper) presents a rather complicated
usage of this operator.

Example: dump the content of a population

>>> import simuPOP as sim
>>> pop = sim.Population(size=[10, 10], loci=[20, 30], infoFields='gen',
... ancGen=-1)
>>> sim.initSex(pop)
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> pop1 = pop.clone()
>>> sim.initGenotype(pop, freq=[0]*20 + [0.1]*10)
>>> pop.setIndInfo(1, 'gen')
>>> sim.initGenotype(pop1, freq=[0]*50 + [0.1]*10)
>>> pop1.setIndInfo(2, 'gen')
>>> pop.push(pop1)
>>> sim.dump(pop, width=3, loci=[5, 6, 30], subPops=([0, 0], [1, 1]),
... max=10, structure=False)
SubPopulation 0,0 (Male), 5 Individuals:

2: MU 56 54 52 | 58 54 51 | 2
3: MU 52 50 51 | 56 51 50 | 2
4: MU 50 53 52 | 52 59 56 | 2
5: MU 57 54 56 | 57 57 53 | 2
6: MU 59 54 54 | 57 51 50 | 2

SubPopulation 1,1 (Female), 7 Individuals:
10: FU 54 53 57 | 59 59 59 | 2
11: FU 55 59 51 | 59 51 58 | 2
12: FU 55 58 58 | 57 54 58 | 2
14: FU 53 57 52 | 51 54 58 | 2
15: FU 51 58 59 | 54 52 54 | 2

(continues on next page)

5.13. Miscellaneous operators 149

simuPOP

(continued from previous page)

>>> # list all male individuals in all subpopulations
>>> sim.dump(pop, width=3, loci=[5, 6, 30], subPops=[(sim.ALL_AVAIL, 0)],
... max=10, structure=False)
SubPopulation 0,0 (Male), 5 Individuals:

2: MU 56 54 52 | 58 54 51 | 2
3: MU 52 50 51 | 56 51 50 | 2
4: MU 50 53 52 | 52 59 56 | 2
5: MU 57 54 56 | 57 57 53 | 2
6: MU 59 54 54 | 57 51 50 | 2

SubPopulation 1,0 (Male), 3 Individuals:
13: MU 55 52 53 | 57 56 52 | 2
17: MU 55 51 51 | 57 55 51 | 2
19: MU 56 54 53 | 58 58 56 | 2

now exiting runScriptInteractively...

Download Dumper.py

5.13.3 Save a population during evolution (operator SavePopulation)

Because it is usually not feasible to store all parental generations of an evolving population, it is a common practise to
save snapshots of a population during an evolutionary process for further analysis. Operator SavePopulation is
designed for this purpose. When it is applied to a population, it will save the population to a file specified by parameter
output.

The tricky part is that populations at different generations need to be saved to different filenames so the expression
version of parameter output needs to be used (see operator BaseOperator for details). For example, expression
'snapshot_%d_%d.pop' % (rep, gen) is used in Example SavePopulation to save population to files such
as snapshot_5_20.pop during the evolution.

Example: Save snapshots of an evolving population

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(100, loci=2),
... rep=5)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.2, 0.8])
...],
... matingScheme=sim.RandomMating(),
... postOps=sim.SavePopulation(output="!'snapshot_%d_%d.pop' % (rep, gen)",
... step = 10),
... gen = 50
...)
(50, 50, 50, 50, 50)

now exiting runScriptInteractively...

Download SavePopulation.py

150 Chapter 5. simuPOP Operators

Dumper.py
SavePopulation.py

simuPOP

5.13.4 Pause and resume an evolutionary process (operator Pause) *

If you are presenting an evolutinary process in public, you might want to temporarily stop the evolution so that your
audience can have a better look at intermediate results or figures. If you have an exceptionally long evolutionary
process, you might want to examine the status of the evolution process from time to time. These can be done using a
Pause operator.

The Pause operator can stop the evolution at specified generations, or when you press a key. In the first case, you
usually specify the generations to Pause (e.g. Pause(step=1000)) so that you can examine the status of a simulation
from time to time. In the second case, you can apply the operator at each generation and Pause the simulation when
you press a key (e.g. Pause(stopOnKeyStroke=True)). A specific key can be specified so that you can use
different keys to stop different populations, as shown in Example Pause.

Example: Pause the evolution of a simulation

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(100), rep=10)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme=sim.RandomMating(),
... postOps=[sim.Pause(stopOnKeyStroke=str(x), reps=x) for x in range(10)],
... gen = 100
...)
(100, 100, 100, 100, 100, 100, 100, 100, 100, 100)

now exiting runScriptInteractively...

Download Pause.py

When a simulation is Paused, you are given the options to resume evolution, stop the evolution of the Paused population
or all populations, or enter an interactive Python shell to examine the status of a population, which will be available in
the Python shell as pop_X_Y where X and Y are generation and replicate number of the population, respectively. The
evolution will resume after you exit the Python shell.

5.13.5 Measuring execution time of operators (operator TicToc) *

The TicToc operator can be used to measure the time between two events during an evolutionary process. It outputs
the elapsed time since the last time it is called, and the overall time since the operator is created. It is very flexible in
that you can measure the time spent for mating in an evolutionary cycle if you apply it before and after mating, and
you can measure time spent for several evolutionary cycles using generation applicability parameters such as step
and at. The latter usage is demonstrated in Example TicToc.

Example: Monitor the performance of operators

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(10000, loci=[100]*5), rep=2)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.1, 0.9])
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0),

(continues on next page)

5.13. Miscellaneous operators 151

Pause.py

simuPOP

(continued from previous page)

... sim.TicToc(step=50, reps=-1),

...],

... gen = 101

...)
Start stopwatch.
Elapsed time: 5.00s Overall time: 5.00s
Elapsed time: 4.00s Overall time: 9.00s
(101, 101)

now exiting runScriptInteractively...

Download TicToc.py

5.14 Hybrid and Python operators

5.14.1 Hybrid operators

Despite the large number of built-in operators, it is obviously not possible to implement every genetics models avail-
able. For example, although simuPOP provides several penetrance models, a user may want to try a customized one.
In this case, one can use a hybrid operator.

A hybrid operator is an operator that calls a user-defined function when its applied to a population. The number and
meaning of input parameters and return values vary from operator to operator. For example, a hybrid mutator sends
a to- be-mutated allele to a user-defined function and use its return value as a mutant allele. A hybrid selector uses
the return value of a user defined function as individual fitness. Such an operator handles the routine part of the work
(e.g. scan through a chromosome and determine which allele needs to be mutated), and leave the creative part to users.
Such a mutator can be used to implement complicated genetic models such as an asymmetric stepwise mutation model
for microsatellite markers.

simuPOP operators use parameter names to determine which information should be passed to a user-defined
function. For example, a hybrid quantitative trait operator recognizes parameters ind, geno, gen and names of
information fields such as smoking. If your model depends on genotype, you could provide a function with parameter
geno (e.g. func(geno)); if your model depends on smoking and genotype, you could provide a function with
parameters geno and smoking (e.g. func(geno, smoking)); if you model depends on individual sex, you can
use a function that passes the whole individual (e.g. func(ind)) so that you could check individual sex. When a
hybrid operator is applied to a population, it will check the parameter names of provided Python function and send
requested information automatically.

For example, Example hybridOperator defines a three- locus heterogeneity penetrance model Risch1990 that yields
positive penetrance only when at least two disease susceptibility alleles are available. The underlying mechanism of
this operator is that for each individual, simuPOP will collect genotype at specified loci (parameter loci) and send
them to function myPenetrance and evaluate. The return values are used as the penetrance value of the individual,
which is then interpreted as the probability that this individual will become affected.

Example: Use a hybrid operator

>>> import simuPOP as sim
>>> def myPenetrance(geno):
... 'A three-locus heterogeneity penetrance model'
... if sum(geno) < 2:
... return 0
... else:
... return sum(geno)*0.1
...

(continues on next page)

152 Chapter 5. simuPOP Operators

TicToc.py

simuPOP

(continued from previous page)

>>> pop = sim.Population(1000, loci=[20]*3)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.8, 0.2])
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.PyPenetrance(func=myPenetrance, loci=[10, 30, 50]),
... sim.Stat(numOfAffected=True),
... sim.PyEval(r"'%d: %d\n' % (gen, numOfAffected)")
...],
... gen = 5
...)
0: 97
1: 96
2: 78
3: 95
4: 80
5

now exiting runScriptInteractively...

Download hybrid.py

5.14.2 Python operator PyOperator *

If hybrid operators are still not flexible enough, you can always resort to a pure-Python operator PyOperator. This
operator has full access to the evolving population (or parents and offspring when aplied during-mating), and can
therefore perform arbitrary operations.

A PyOperator that is applied pre- or post- mating expects a function with one or both parameters pop and param,
wherepop is the population being applied, and param is optional, depending on whether or not a parameter is passed
to the PyOperator() constructor. Function func can perform arbitrary action to pop and must return True or
False. The evolution of pop will be stopped if this function returns False. This is essentially how operator
TerminateIf works. Alternatively, this callback function can accept ind as one of the parameters. In this case,
the function will be called for all individuals or individuals in specified (virtual) subpopulations. Individuals will be
removed from the populaton if this function returns False.

Example PyOperator defines such a function. It accepts a cutoff value and two mutation rates as parameters. It then
calculate the frequency of allele 1 at each locus and apply a two-allele model at high mutation rate if the frequency
is lower than the cutoff and a low mutation rate otherwise. The kAlleleMutate function is the function form of a
mutator KAlleleMutator (see Section subsec_Function_form for details).

Example: A frequency dependent mutation operator

import simuPOP as sim
def dynaMutator(pop, param):

'''This mutator mutates commom loci with low mutation rate and rare
loci with high mutation rate, as an attempt to raise allele frequency
of rare loci to an higher level.'''
unpack parameter
(cutoff, mu1, mu2) = param;
sim.stat(pop, alleleFreq=range(pop.totNumLoci()))
for i in range(pop.totNumLoci()):

(continues on next page)

5.14. Hybrid and Python operators 153

hybrid.py

simuPOP

(continued from previous page)

Get the frequency of allele 1 (disease allele)
if pop.dvars().alleleFreq[i][1] < cutoff:

sim.kAlleleMutate(pop, k=2, rates=mu1, loci=[i])
else:

sim.kAlleleMutate(pop, k=2, rates=mu2, loci=[i])
return True

Download PyOperator.py

Example usePyOperator demonstrates how to use this operator. It first initializes the population using two
InitGenotype operators that initialize loci with different allele frequencies. It applies a PyOperatorwith func-
tion dynaMutator and a tuple of parameters. Allele frequencies at all loci are printed at generation 0, 10, 20, and
30. Note that this PyOperator is applied at to the parental generation so allele frequencies have to be recalculated
to be used by post- mating operator PyEval.

Example: Use a PyOperator during evolution

>>> pop = sim.Population(size=10000, loci=[2, 3])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.99, .01], loci=[0, 2, 4]),
... sim.InitGenotype(freq=[.8, .2], loci=[1, 3])
...],
... preOps=sim.PyOperator(func=dynaMutator, param=(.2, 1e-2, 1e-5)),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=range(5), step=10),
... sim.PyEval(r"' '.join(['%.2f' % alleleFreq[x][1] for x in range(5)]) + '\n
→˓'",
... step=10),
...],
... gen = 31
...)
0.02 0.20 0.02 0.20 0.02
0.11 0.22 0.11 0.20 0.11
0.19 0.21 0.20 0.20 0.18
0.21 0.21 0.22 0.21 0.21
31

now exiting runScriptInteractively...

Download PyOperator.py

5.14.3 During-mating Python operator *

A PyOperator can also be applied during-mating. They can be used to filter out unwanted offspring (by returning
False in a user-defined function), modify offspring, calculate statistics, or pass additional information from parents
to offspring. Depending the names of parameters of your function, the Python operator will pass offspring (parameter
off), his or her parents (parameter dad and mom), the whole population (parameter pop) and an optional parameter
(parameter param) to this function. For example, function func(off) will accept references to an offspring, and
func(off, mom, dad) will accept references to both offspring and his or her parents.

Example duringMatingPyOperator demonstrates the use of a during-mating Python operator. This operator rejects an
offspring if it has allele 1 at the first locus of the first homologous chromosome, and results in an offspring population
without such individuals.

154 Chapter 5. simuPOP Operators

PyOperator.py
PyOperator.py

simuPOP

Example: Use a during-mating PyOperator

>>> import simuPOP as sim
>>> def rejectInd(off):
... 'reject an individual if it off.allele(0) == 1'
... return off.allele(0) == 0
...
>>> pop = sim.Population(size=100, loci=1)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme=sim.RandomMating(
... ops=[
... sim.MendelianGenoTransmitter(),
... sim.PyOperator(func=rejectInd)
...]),
... gen = 1
...)
1
>>> # You should see no individual with allele 1 at locus 0, ploidy 0.
>>> pop.genotype()[:20]
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

now exiting runScriptInteractively...

Download pyDuringMatingOperator.py

PyOperator is the most powerful operator in simuPOP and has been widely used, for example, to calculate statistics
and is not supported by the Stat() operator, to examine population property during evolution, or prepare populations
for a special mating scheme. However, because PyOperatorworks in the Python interpreter, it is expected that
it runs slower than operators that are implemented at the C/C++ level. If performance becomes an issue, you can
re-implement part or all the operator in C++. Section subsec_Using_C++ describes how to do this.

5.14.4 Define your own operators *

PyOperator is a Python class so you can derive your own operator from this operator. The tricky part is that the
constructor of the derived operator needs to call the __init__ function of PyOperator will proper functions. This
technique has been used by simuPOP in a number of occasions. For example, the VarPlotter operator defined in
plotter.py is derived from PyOperator. This class encapsulates several different plot class that uses rpy to
plot python expressions. One of the plotters is passed to the func parameter of PyOperator.__init__ so that it
can be called when this operator is applied.

Example sequentialSelfing rewrites the dynaMutator defined in Example PyOperator into a derived operator. The
parameters are now passed to the constructor of dynaMutator and are saved as member variables. A member
function mutate is defined and is passed to the constructor of PyOperator. Other than making dynaMutator
look like a real simuPOP operator, this example does not show a lot of advantage over defining a function. However,
when the operator gets complicated (as in the case for VarPlotter), the object oriented implementation will prevail.

Example: Define a new Python operator

>>> import simuPOP as sim
>>> class dynaMutator(sim.PyOperator):
... '''This mutator mutates commom loci with low mutation rate and rare
... loci with high mutation rate, as an attempt to raise allele frequency
... of rare loci to an higher level.'''

(continues on next page)

5.14. Hybrid and Python operators 155

pyDuringMatingOperator.py

simuPOP

(continued from previous page)

... def __init__(self, cutoff, mu1, mu2, *args, **kwargs):

... self.cutoff = cutoff

... self.mu1 = mu1

... self.mu2 = mu2

... sim.PyOperator.__init__(self, func=self.mutate, *args, **kwargs)

... #

... def mutate(self, pop):

... sim.stat(pop, alleleFreq=range(pop.totNumLoci()))

... for i in range(pop.totNumLoci()):

... # Get the frequency of allele 1 (disease allele)

... if pop.dvars().alleleFreq[i][1] < self.cutoff:

... sim.kAlleleMutate(pop, k=2, rates=self.mu1, loci=[i])

... else:

... sim.kAlleleMutate(pop, k=2, rates=self.mu2, loci=[i])

... return True

...
>>> pop = sim.Population(size=10000, loci=[2, 3])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.99, .01], loci=[0, 2, 4]),
... sim.InitGenotype(freq=[.8, .2], loci=[1, 3])
...],
... preOps=dynaMutator(cutoff=.2, mu1=1e-2, mu2=1e-5),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=range(5), step=10),
... sim.PyEval(r"' '.join(['%.2f' % alleleFreq[x][1] for x in range(5)]) + '\n
→˓'",
... step=10),
...],
... gen = 31
...)
0.02 0.20 0.02 0.20 0.02
0.11 0.22 0.11 0.20 0.11
0.19 0.21 0.20 0.20 0.18
0.21 0.21 0.22 0.21 0.21
31

now exiting runScriptInteractively...

Download newOperator.py

New during-mating operators can be defined similarly. They are usually used to define customized genotype transmit-
ters. Section subsec_Customized_genotype_transmitter will describe this feature in detail.

156 Chapter 5. simuPOP Operators

newOperator.py

CHAPTER 6

Evolving populations

6.1 Mating Schemes

Mating schemes are responsible for populating an offspring generation from the parental generation. There are cur-
rently two types of mating schemes

• A homogeneous mating scheme is the most flexible and most frequently used mating scheme and is the center
topic of this section. A homogeneous mating is composed of a parent chooser that is responsible for choosing
parent(s) from a (virtual) subpopulation and an offspring generator that is used to populate all or part of the
offspring generation. During-mating operators are used to transmit genotypes from parents to offspring. Figure
fig_homogeneous_mating_scheme demonstrates this process.

• A heterogeneous mating scheme applies several homogeneous mating scheme to different (virtual) subpop-
ulations. Because the division of virtual subpopulations can be arbitrary, this mating scheme can be used to
simulate mating in heterogeneous populations such as populations with age structure.

• A pedigree mating scheme evolves a population by following the pedigree structure of a pedigree. This mating
scheme is used to a replay a recorded or manually created evolutionary process.

This section describes some standard features of mating schemes and most pre- defined mating schemes. The next
section will demonstrate how to build complex nonrandom mating schemes from scratch.

Figure: A homogeneous mating scheme

A homogeneous mating scheme is responsible to choose parent(s) from a subpopulation or a virtual subpopulation,
and population part or all of the corresponding offspring subpopulation. A parent chooser is used to choose one or
two parents from the parental generation, and pass it to an offspring generator, which produces one or more offspring.
During mating operators such as taggers and Recombinator can be applied when offspring is generated.

6.1.1 Control the size of the offspring generation

A mating scheme goes through each subpopulation and populates the subpopulations of an offspring generation se-
quentially. The number of offspring in each subpopulation is determined by the mating scheme, following the follow-
ing rules:

157

simuPOP

Users/bpeng1/simuPOP/simuPOP/doc/figures/HomoMatingScheme.png

158 Chapter 6. Evolving populations

simuPOP

• A simuPOP mating scheme, by default, produces an offspring generation that has the same subpopulation sizes
as the parental generation. This does not guarantee a constant population size because some operators, such as
a Migrator and DiscardIf can change population or subpopulation sizes.

• If fixed subpopulation sizes are given to parameter subPopSize. A mating scheme will generate an offspring
generation with specified sizes even if an operator has changed parental population sizes.

• A demographic function can be specified to parameter subPopSize. This function should take one of the
two forms func(gen) or func(gen, pop) where gen is the current generation number and pop is the
parental population just before mating. This function should return an array of new subpopulation sizes. A single
number can be returned if there is only one subpopulation. The simuPOP.demography module provides a
number of demography-related functions for complex evolutionary secenarios. Please consider contributing
to this module if you have implemented demographic models for particular populations.

The following examples demonstrate these cases. Example migrSize uses a default RandomMating() scheme that
keeps parental subpopulation sizes. Because migration between two subpopulations are asymmetric, the size of the
first subpopulation increases at each generation, although the overall population size keeps constant.

Example: Free change of subpopulation sizes

>>> import simuPOP as sim
>>> pop = sim.Population(size=[500, 1000], infoFields='migrate_to')
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=sim.Migrator(rate=[[0.8, 0.2], [0.4, 0.6]]),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(popSize=True),
... sim.PyEval(r'"%s\n" % subPopSize')
...],
... gen = 3
...)
[843, 657]
[948, 552]
[1010, 490]
3

now exiting runScriptInteractively...

Download migrSize.py

Example migrFixedSize uses the same Migrator to move individuals between two subpopulations. Because a constant
subpopulation size is specified, the offspring generation always has 500 and 1000 individuals in its two subpopulations.
Note that operators Stat and PyEval are applied both before and after mating. It is clear that subpopulation sizes
changes before mating as a result of migration, although the pre-mating population sizes vary because of uncertainties
of migration.

Example: Force constant subpopulation sizes

>>> import simuPOP as sim
>>> pop = sim.Population(size=[500, 1000], infoFields='migrate_to')
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=[
... sim.Migrator(rate=[[0.8, 0.2], [0.4, 0.6]]),
... sim.Stat(popSize=True),
... sim.PyEval(r'"%s\n" % subPopSize')
...],
... matingScheme=sim.RandomMating(subPopSize=[500, 1000]),

(continues on next page)

6.1. Mating Schemes 159

migrSize.py

simuPOP

(continued from previous page)

... postOps=[

... sim.Stat(popSize=True),

... sim.PyEval(r'"%s\n" % subPopSize')

...],

... gen = 3

...)
[843, 657]
[500, 1000]
[795, 705]
[500, 1000]
[821, 679]
[500, 1000]
3

now exiting runScriptInteractively...

Download migrFixedSize.py

Example demoFunc uses a demographic function to control the subpopulation size of the offspring generation. This
example implements a linear population expansion model but arbitrarily complex demographic model can be imple-
mented similarly.

Example: Use a demographic function to control population size

>>> import simuPOP as sim
>>> def demo(gen):
... return [500 + gen*10, 1000 + gen*10]
...
>>> pop = sim.Population(size=[500, 1000], infoFields='migrate_to')
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=sim.Migrator(rate=[[0.8, 0.2], [0.4, 0.6]]),
... matingScheme=sim.RandomMating(subPopSize=demo),
... postOps=[
... sim.Stat(popSize=True),
... sim.PyEval(r'"%s\n" % subPopSize')
...],
... gen = 3
...)
[500, 1000]
[510, 1010]
[520, 1020]
3

now exiting runScriptInteractively...

Download demoFunc.py

If the size of the offspring generation can not be determined directly from generation number, you can pass the
parental population as parameter pop to the demographic function. For example, Example demoFunc1 implements a
demographic model where a population expand at random numbers at each generation.

Example: Use parental population to determine the size of offspring population

>>> import simuPOP as sim
>>> import random
>>> def demo(pop):
... return [x + random.randint(50, 100) for x in pop.subPopSizes()]

(continues on next page)

160 Chapter 6. Evolving populations

migrFixedSize.py
demoFunc.py

simuPOP

(continued from previous page)

...
>>> pop = sim.Population(size=[500, 1000], infoFields='migrate_to')
>>> pop.evolve(
... initOps=sim.InitSex(),
... matingScheme=sim.RandomMating(subPopSize=demo),
... postOps=[
... sim.Stat(popSize=True),
... sim.PyEval(r'"%s\n" % subPopSize')
...],
... gen = 3
...)
[586, 1075]
[649, 1128]
[742, 1214]
3

now exiting runScriptInteractively...

Download demoFunc1.py

In all the above examples, migration and demographic changes are introduced manually to influence the evolution of
populations. However, the demographic changes might be driven by other factors such as natural selection so that it
is difficult to predict the size of offspring generations in advance. In this case, you can manually remove individuals
from parental (or offspring) populations using appropriate operators.

For example, a population in Example demoBySelection suffers from a sudden reduction of population size (due
to perhaps a famine) at generation 3, and a gradual reduction of population size (due to perhaps an outburst of an
infectious disease) after generation 5. The first event is implemented using a ResizeSubPops operator that directly
shrink the population size in half. The second event is implemented using a MaPenetrance and a DiscardIf
operator. The first operator assigns affection status of each individual using a disease model that involves individual
genotype. The second operator discard all individuals that are affected with the disease. Despite of these unfortunate
events, the population tries to expand exponentially with offspring population sizes set to 105% of their parental
populations.

Example: Change of population size caused by natural selection

>>> import simuPOP as sim
>>> def demo(pop):
... return int(pop.popSize() * 1.05)
...
>>> pop = sim.Population(size=10000, loci=1)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.7, 0.3])
...],
... preOps=[
... sim.Stat(popSize=True),
... sim.PyEval(r'"%d %s --> " % (gen, subPopSize)'),
... sim.ResizeSubPops(0, proportions=[0.5], at=2),
... sim.MaPenetrance(loci=0, penetrance=[0.01, 0.2, 0.6], begin=4),
... sim.DiscardIf('ind.affected()', exposeInd='ind', begin=4),
... sim.Stat(popSize=True),
... sim.PyEval(r'"%s --> " % subPopSize'),
...],
... matingScheme=sim.RandomMating(subPopSize=demo),
... postOps=[

(continues on next page)

6.1. Mating Schemes 161

demoFunc1.py

simuPOP

(continued from previous page)

... sim.Stat(popSize=True),

... sim.PyEval(r'"%s\n" % subPopSize')

...],

... gen = 6

...)
0 [10000] --> [10000] --> [10500]
1 [10500] --> [10500] --> [11025]
2 [11025] --> [5512] --> [5787]
3 [5787] --> [5787] --> [6076]
4 [6076] --> [5188] --> [5447]
5 [5447] --> [4845] --> [5087]
6

now exiting runScriptInteractively...

Download demoBySelection.py

6.1.2 Advanced use of demographic functions *

The parental population passed to a demographic function is usually used to determine offspring population size from
parental population size. However, because this function is called immediately before mating happens, it provides a
good opportunity for you to prepare the parental generation for mating. Such activities could generally be done by
operators, but operations related to demographic changes could be done here. For example, Example advancedDe-
moFunc uses a demographic function to split populations at certain generation. The advantage of this method over
the use of a SplitSubPops operator (for example as in Example splitByProp) is that all demographic information
presents in the same function so you do not have to worry about changing an operator when your demographic model
changes.

Example: Use a demographic function to split parental population

>>> import simuPOP as sim
>>> def demo(gen, pop):
... if gen < 2:
... return 1000 + 100 * gen
... if gen == 2:
... # this happens right before mating at generation 2
... size = pop.popSize()
... pop.splitSubPop(0, [size // 2, size - size//2])
... # for generation two and later
... return [x + 50 * gen for x in pop.subPopSizes()]
...
>>> pop = sim.Population(1000)
>>> pop.evolve(
... preOps=[
... sim.Stat(popSize=True),
... sim.PyEval(r'"Gen %d:\t%s (before mating)\t" % (gen, subPopSize)')
...],
... matingScheme=sim.RandomSelection(subPopSize=demo),
... postOps=[
... sim.Stat(popSize=True),
... sim.PyEval(r'"%s (after mating)\n" % subPopSize')
...],
... gen = 5
...)
Gen 0: [1000] (before mating) [1000] (after mating)

(continues on next page)

162 Chapter 6. Evolving populations

demoBySelection.py

simuPOP

(continued from previous page)

Gen 1: [1000] (before mating) [1100] (after mating)
Gen 2: [1100] (before mating) [650, 650] (after mating)
Gen 3: [650, 650] (before mating) [800, 800] (after mating)
Gen 4: [800, 800] (before mating) [1000, 1000] (after mating)
5

now exiting runScriptInteractively...

Download advancedDemoFunc.py

6.1.3 Determine the number of offspring during mating

simuPOP by default produces only one offspring per mating event. Because more parents are involved in the pro-
duction of offspring, this setting leads to larger effective population sizes than mating schemes that produce more
offspring at each mating event. However, various situations require a larger family size or even varying family sizes.
In these cases, parameter numOffspring can be used to control the number of offspring that are produced at each
mating event. This parameter takes the following types of inputs

• If a single number is given, numOffspring offspring are produced at each mating event.

• If a Python function is given, this function will be called each time when a mating event happens. Generation
number can be passed to this function as parameter gen to allow different numbers of offspring at different
generations. A python generator function can also be passed to provide an iterator interface to yield number of
offspring for all mating events.

• If a tuple (or list) with more than one numbers is given, the first number must be one of
GEOMETRIC_DISTRIBUTION, POISSON_DISTRIBUTION, BINOMIAL_DISTRIBUTION and
UNIFORM_DISTRIBUTION, with one or two additional parameters.

The number of offspring in the last case will then follow a specific statistical distribution. More specifically,

• numOffspring=(GEOMETRIC_DISTRIBUTION, p): The number of offspring for each mating event
follows a geometric distribution with mean and variance :

• numOffspring=(POISSON_DISTRIBUTION, p): The number of offspring for each mating event fol-
lows a Poisson distribution with mean and variance . The distribution is

Note that, however, because families with zero offspring are ignored, the distribution of the observed number of
offspring (excluding zero) follows a zero-truncated Poission distribution with probability

The mean number of offspring is therefore , which is 2.31 for .

• numOffspring=(BINOMIAL_DISTRIBUTION, p, n):The number of offspring for each mating event
follows a Binomial distribution with mean and variance .

Because families with zero offspring are ignored, the distribution of the observed number of offspring (excluding
zero) follows a zero-truncated Bionimial distribution, with mean number of offspring being .

• numOffspring=(UNIFORM_DISTRIBUTION, a, b): The number of offspring for each mating event
follows a discrete uniform distribution with lower bound and upper bound .

The lower bound of this distribution can be 0 but is identical to the case with .

Example numOff demonstrates how to use parameter numOffspring. In this example, a function
checkNumOffspring is defined. It takes a mating scheme as its input parameter and use it to evolve a population
with 30 individuals. After evolving a population for one generation, parental indexes are used to identify siblings, and
then the number of offspring per mating event.

Example: Control the number of offspring per mating event.

6.1. Mating Schemes 163

advancedDemoFunc.py

simuPOP

>>> import simuPOP as sim
>>> def checkNumOffspring(numOffspring, ops=[]):
... '''Check the number of offspring for each family using
... information field father_idx
... '''
... pop = sim.Population(size=[30], loci=1, infoFields=['father_idx', 'mother_idx
→˓'])
... pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
...],
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... sim.ParentsTagger(),
...] + ops,
... numOffspring=numOffspring),
... gen=1)
... # get the parents of each offspring
... parents = [(x, y) for x, y in zip(pop.indInfo('mother_idx'),
... pop.indInfo('father_idx'))]
... # Individuals with identical parents are considered as siblings.
... famSize = []
... lastParent = (-1, -1)
... for parent in parents:
... if parent == lastParent:
... famSize[-1] += 1
... else:
... lastParent = parent
... famSize.append(1)
... return famSize
...
>>> # Case 1: produce the given number of offspring
>>> checkNumOffspring(numOffspring=2)
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
>>> # Case 2: Use a Python function
>>> import random
>>> def func(gen):
... return random.randint(5, 8)
...
>>> checkNumOffspring(numOffspring=func)
[5, 7, 5, 5, 6, 2]
>>> # Case 3: A geometric distribution
>>> checkNumOffspring(numOffspring=(sim.GEOMETRIC_DISTRIBUTION, 0.3))
[3, 1, 1, 3, 4, 1, 1, 1, 2, 1, 1, 4, 6, 1]
>>> # Case 4: A Possition distribution
>>> checkNumOffspring(numOffspring=(sim.POISSON_DISTRIBUTION, 1.6))
[2, 2, 1, 5, 3, 3, 1, 1, 2, 3, 3, 2, 2]
>>> # Case 5: A Binomial distribution
>>> checkNumOffspring(numOffspring=(sim.BINOMIAL_DISTRIBUTION, 0.1, 10))
[1, 4, 1, 1, 2, 1, 1, 3, 1, 1, 1, 3, 2, 2, 1, 1, 1, 2, 1]
>>> # Case 6: A uniform distribution
>>> checkNumOffspring(numOffspring=(sim.UNIFORM_DISTRIBUTION, 2, 6))
[4, 4, 2, 6, 6, 2, 2, 2, 2]
>>> # Case 7: With selection on offspring
>>> checkNumOffspring(numOffspring=8,
... ops=[sim.MapSelector(loci=0, fitness={(0,0):1, (0,1):0.8, (1,1):0.5})])

(continues on next page)

164 Chapter 6. Evolving populations

simuPOP

(continued from previous page)

[8, 5, 7, 6, 4]

now exiting runScriptInteractively...

Download numOff.py

However, the actual number of offspring can be less than specified because offspring can be discarded during
mating. More specifically, if any during- mating generator, such as a during-mating selector, returns False during
the production of offspring, the offspring will be discarded so the total number of offspring will be reduced. This
is the case in the seventh case of Example numOff where offspring with certain genotypes have lower probabilities
to survive. If you would like to control size of families in the presence of natural selection, you could set a larger
numOffspring use a OffspringTagger to mark the index of offspring, and discard offspring conditionally
using operator DiscardIf . Please refer to example OffspringTagger for details.

6.1.4 Dynamic population size determined by number of offspring *

What we have described so far requires you to determine the size of offspring population in advance. Each mating event
produces a number of offspring that is determined by parameter NumOffspring. The mating process stops when
the offspring population is filled. This works for most scenarios but there are cases where the offspring population
size is determined dynamically from a fixed number of mating events with random number of offspring. For example,
you might design a mating scheme where all males in a population mate only once and produce random number of
offspring.

These kind of mating schemes can be simulated using a demographic model that calculates offspring population size
from pre-simulated number of offspring for each family. More specifically, we

• Define a demogrphic function (model) that will be called before mating happens.

• This function determines and save the number of offspring for each mating event, and return the total number
of offspring as offspring population size.

• Pass a function or generator to parameter numOffspring to pass pre-determined number of offspring. This
function will be called each time when number of offspring is needed.

The number of offspring could be saved and retrieved as global variable but a more clever method is to store the
numbers of offspring in a demographic model (class). Example dynamicNumOff demonstrates this method by im-
plementing a demographic model that simulate, save, and return the number of offspring. Note that although we
determine the number of mating events from number of males in the parental population, a random mating scheme
will choose parents with replacement so it is likely that some parents will be chosen multiple times while some others
are not chosen at all. Please refer to section “Non-random and customized mating schemes” to learn how to define a
mating scheme that picks parents without replacement.

Example: Dynamic population size determined by number of offspring

>>> import simuPOP as sim
>>>
>>> import random
>>>
>>> class RandomNumOff:
... # a demographic model
... def __init__(self):
... self.numOff = []
...
... def getNumOff(self):
... # return the pre-simulated number of offspring as a generator function
... for item in self.numOff:

(continues on next page)

6.1. Mating Schemes 165

numOff.py

simuPOP

(continued from previous page)

... yield item

...

... def __call__(self, pop):

... # define __call__ so that a RandomNumOff object is callable.

... #

... # Each male produce from 1 to 3 offspring. For large population, get the

... # number of males instead of checking the sex of each individual

... self.numOff = [random.randint(1, 3) for ind in pop.individuals() if ind.
→˓sex() == sim.MALE]
... # return the total population size
... print('{} mating events with number of offspring {}'.format(len(self.
→˓numOff), self.numOff))
... return sum(self.numOff)
...
>>>
>>> pop = sim.Population(10)
>>>
>>> # create a demogranic model
>>> numOffModel = RandomNumOff()
>>>
>>> pop.evolve(
... preOps=sim.InitSex(),
... matingScheme=sim.RandomMating(
... # the model will be called before mating to deteremine
... # family and population size
... subPopSize=numOffModel,
... # the getNumOff function (generator) returns number of offspring
... # for each mating event
... numOffspring=numOffModel.getNumOff
...),
... gen=3
...)
5 mating events with number of offspring [3, 2, 2, 3, 3]
6 mating events with number of offspring [3, 2, 3, 1, 2, 3]
6 mating events with number of offspring [2, 1, 1, 2, 3, 2]
3
>>>

now exiting runScriptInteractively...

Download dynamicNumOff.py

6.1.5 Determine sex of offspring

Because sex can influence how genotypes are transmitted (e.g. sex chromosomes, haplodiploid population), simuPOP
determines offspring sex before it passes an offspring to a genotype transmitter (during-mating operator) to transmit
genotype from parents to offspring. The default sexMode in almost all mating schemes is RandomSex, in which
case simuPOP assign Male or Female to offspring with equal probability.

Other sex determination methods are also available:

• sexMode=RANDOM_SEX: Sex is determined randomly, with equal probability for MALE and FEMALE. This is
the default mode for sexual mating schemes such as random mating.

• sexMode=NO_SEX: Sex is not simulated so everyone is MALE. This is the default mode for asexual mating
schemes.

166 Chapter 6. Evolving populations

dynamicNumOff.py

simuPOP

• sexMode=(PROB_OF_MALES, prob): Produce males with given probability.

• sexMode=(NUM_OF_MALES, n): The first n offspring in each family will be Male. If the number of
offspring at a mating event is less than or equal to n, all offspring will be male.

• sexMode=(NUM_OF_FEMALES, n): The first n offspring in each family will be Female.

• sexMode=(SEQUENCE_OF_SEX, s1, s2, ...): Use sequence s1, s2, . . . for offspring in each mat-
ing event.

• sexMode=(GLOBAL_SEQUENCE_OF_SEX, s1, s2, ...): Use sequence s1, s2, . . . for all offspring
in a subpopulation. Because other mode of sex determination works within each mating event, this is the only
way to ensure proportion of sex in a subpopulation. For example, (GLOBAL_SEQUENCE_OF_SEX, MALE,
FEMALE) will gives MALE and FEMALE iteratively to all offspring, making sure there are equal number of
males and females (if there are even number of offspring).

• sexMode=func or sexMode=generator_func: In this last case, a Python function or a Python generator
function can be specified to provide sex to each offspring. The function is called whenever an offspring is
created. The generator function is called for each subpopulation, and provides an iterator that provides sex for
all offspring in a subpopulation.

NumOfMales and NumOfFemales are useful in theoretical studies where the sex ratio of a population needs to
be controlled strictly, or in special mating schemes, usually for animal populations, where only a certain number of
male or female Individuals are allowed in a family. It worth noting that a genotype transmitter can override specified
offspring sex. This is the case for CloneGenoTransmitter where an offspring inherits both genotype and sex
from his/her parent.

Example sexMode demonstrates how to use parameter sexMode. In this example, a function checkSexMode is
defined. It takes a mating scheme as its input parameter and use it to evolve a population with 40 individuals. After
evolving a population for one generation, sexes of all offspring are returned as a string.

Example: Determine the sex of offspring

>>> import simuPOP as sim
>>> def checkSexMode(ms):
... '''Check the assignment of sex to offspring'''
... pop = sim.Population(size=[40])
... pop.evolve(initOps=sim.InitSex(), matingScheme=ms, gen=1)
... # return individual sex as a string
... return ''.join(['M' if ind.sex() == sim.MALE else 'F' for ind in pop.
→˓individuals()])
...
>>> # Case 1: sim.NO_SEX (all male, sim.RandomMating will not continue)
>>> checkSexMode(sim.RandomMating(sexMode=sim.NO_SEX))
'MM'
>>> # Case 2: sim.RANDOM_SEX (sim.Male/Female with probability 0.5)
>>> checkSexMode(sim.RandomMating(sexMode=sim.RANDOM_SEX))
'MFFFFFFMFFFMFFFMMFFMFFMMMFFMMFMFFFFFFFMF'
>>> # Case 3: sim.PROB_OF_MALES (Specify probability of male)
>>> checkSexMode(sim.RandomMating(sexMode=(sim.PROB_OF_MALES, 0.8)))
'MMFMMFFMMFFMMMMMMMMMFMMFFMMMMMMMMMMMMMMM'
>>> # Case 4: sim.NUM_OF_MALES (Specify number of male in each family)
>>> checkSexMode(sim.RandomMating(numOffspring=3, sexMode=(sim.NUM_OF_MALES, 1)))
'MFFMFFMFFMFFMFFMFFMFFMFFMFFMFFMFFMFFMFFM'
>>> # Case 5: sim.NUM_OF_FEMALES (Specify number of female in each family)
>>> checkSexMode(sim.RandomMating(
... numOffspring=(sim.UNIFORM_DISTRIBUTION, 4, 6),
... sexMode=(sim.NUM_OF_FEMALES, 2))
...)
'FFMMFFMMMFFMMFFMMMMFFMMFFMMMMFFMMFFMMFFM'

(continues on next page)

6.1. Mating Schemes 167

simuPOP

(continued from previous page)

>>> # Case 6: sim.SEQUENCE_OF_SEX
>>> checkSexMode(sim.RandomMating(
... numOffspring=4, sexMode=(sim.SEQUENCE_OF_SEX, sim.MALE, sim.FEMALE))
...)
'MF'
>>> # Case 7: sim.GLOBAL_SEQUENCE_OF_SEX
>>> checkSexMode(sim.RandomMating(
... numOffspring=3, sexMode=(sim.GLOBAL_SEQUENCE_OF_SEX, sim.MALE, sim.FEMALE))
...)
'MF'
>>> # Case 8: A generator function
>>> def sexFunc():
... i = 0
... while True:
... i += 1
... if i % 2 == 0:
... yield sim.MALE
... else:
... yield sim.FEMALE
...
>>> checkSexMode(sim.RandomMating(numOffspring=3, sexMode=sexFunc))
'FM'

now exiting runScriptInteractively...

Download sexMode.py

6.1.6 Monogamous mating

Monogamous mating (monogamy) in simuPOP refers to mating schemes in which each parent mates only once. In
an asexual setting, this implies parents are chosen without replacement. In sexual mating schemes, this means that
parents are chosen without replacement, they have only one spouse during their life time so that all siblings have the
same parents (no half-sibling).

simuPOP provides a diploid sexual monogamous mating scheme MonogamousMating. However, without careful
planning, this mating scheme can easily stop working due to the lack of parents. For example, if a population has
40 males and 55 females, only 40 successful mating events can happen and result in 40 offspring in the offspring
generation. MonogamousMating will exit if the offspring generation is larger than 40.

Example monogamous demonstrates one scenario of using a monogamous mating scheme where sex of par-
ents and offspring are strictly specified so that parents will not be exhausted. The sex initializer InitSex as-
signs exactly 10 males and 10 females to the initial population. Because of the use of numOffspring=2,
sexMode=(NUM_OF_MALES, 1), each mating event will produce exactly one male and one female. Unlike a
random mating scheme that only about 80% of parents are involved in the production of an offspring population with
the same size, this mating scheme makes use of all parents.

Example: Sexual monogamous mating

>>> import simuPOP as sim
>>> pop = sim.Population(20, infoFields=['father_idx', 'mother_idx'])
>>> pop.evolve(
... initOps=sim.InitSex(sex=(sim.MALE, sim.FEMALE)),
... matingScheme=sim.MonogamousMating(
... numOffspring=2,
... sexMode=(sim.NUM_OF_MALES, 1),

(continues on next page)

168 Chapter 6. Evolving populations

sexMode.py

simuPOP

(continued from previous page)

... ops=[

... sim.MendelianGenoTransmitter(),

... sim.ParentsTagger(),

...],

...),

... gen = 5

...)
5
>>> [ind.sex() for ind in pop.individuals()]
[1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2]
>>> [int(ind.father_idx) for ind in pop.individuals()]
[16, 16, 2, 2, 4, 4, 8, 8, 0, 0, 14, 14, 10, 10, 12, 12, 18, 18, 6, 6]
>>> [int(ind.mother_idx) for ind in pop.individuals()]
[13, 13, 17, 17, 1, 1, 15, 15, 19, 19, 9, 9, 3, 3, 5, 5, 7, 7, 11, 11]
>>> # count the number of distinct parents
>>> len(set(pop.indInfo('father_idx')))
10
>>> len(set(pop.indInfo('mother_idx')))
10

now exiting runScriptInteractively...

Download monogamous.py

6.1.7 Polygamous mating

In comparison to monogamous mating, parents in a polygamous mate with more than one spouse during their life-
cycle. Both polygany (one man has more than one wife) and polyandry (one woman has more than one husband)
are supported.

Other than regular parameters such as numOffspring, mating scheme PolygamousMating accepts parameters
polySex (default to Male) and polyNum (default to 1). During mating, an individual with polySex is selected
and then mate with polyNum randomly selected spouse. Example polygamous demonstrates the use of this mating
schemes. Note that this mating scheme support natural selection, but does not yet handle varying polyNum and
selection of parents without replacement.

Example: Sexual polygamous mating

>>> import simuPOP as sim
>>> pop = sim.Population(100, infoFields=['father_idx', 'mother_idx'])
>>> pop.evolve(
... initOps=sim.InitSex(),
... matingScheme=sim.PolygamousMating(polySex=sim.MALE, polyNum=2,
... ops=[sim.ParentsTagger(),
... sim.MendelianGenoTransmitter()],
...),
... gen = 5
...)
5
>>> [int(ind.father_idx) for ind in pop.individuals()][:20]
[67, 67, 42, 42, 91, 91, 25, 25, 65, 65, 47, 47, 18, 18, 16, 16, 96, 96, 57, 57]
>>> [int(ind.mother_idx) for ind in pop.individuals()][:20]
[58, 58, 58, 0, 68, 32, 37, 89, 6, 85, 12, 58, 36, 12, 66, 44, 51, 85, 60, 29]

now exiting runScriptInteractively...

6.1. Mating Schemes 169

monogamous.py

simuPOP

Download polygamous.py

6.1.8 Asexual random mating

Mating scheme RandomSelection implements an asexual random mating scheme. It randomly select parents from
a parental population (with replacement) and copy them to an offspring generation. Both genotypes and sex of the
parents are copied because genotype and sex are sometimes related. This mating scheme can be used to simulate the
evolution of haploid sequences in a standard haploid Wright-Fisher model.

Example RandomSelection applies a RandomSelection mating scheme to a haploid population with 100 se-
quences. A parentTagger is used to track the parent of each individual. Although sex information is not used
in this mating scheme, Individual sexes are initialized and passed to offspring.

Example: Asexual random mating

>>> import simuPOP as sim
>>> pop = sim.Population(100, ploidy=1, loci=[5, 5], ancGen=1,
... infoFields='parent_idx')
>>> pop.evolve(
... initOps=sim.InitGenotype(freq=[0.3, 0.7]),
... matingScheme=sim.RandomSelection(ops=[
... sim.ParentsTagger(infoFields='parent_idx'),
... sim.CloneGenoTransmitter(),
...]),
... gen = 5
...)
5
>>> ind = pop.individual(0)
>>> par = pop.ancestor(ind.parent_idx, 1)
>>> print(ind.sex(), ind.genotype())
1 [1, 1, 0, 1, 1, 0, 1, 0, 0, 0]
>>> print(par.sex(), par.genotype())
1 [1, 1, 0, 0, 1, 1, 1, 1, 0, 1]

now exiting runScriptInteractively...

Download RandomSelection.py

6.1.9 Mating in haplodiploid populations

Male individuals in a haplodiploid population are derived from unfertilized eggs and thus have only one set of chro-
mosomes. Mating in such a population is handled by a special mating scheme called haplodiplodMating. This
mating scheme chooses a pair of parents randomly and produces some offspring. It transmit maternal chromosomes
and paternal chromosomes (the only copy) to female offspring, and only maternal chromosomes to male offspring.
Example HaplodiploidMating demonstrates how to use this mating scheme. It uses three initializers because sex has
to be initialized before two other intializers can initialize genotype by sex.

Example: Random mating in haplodiploid populations

>>> import simuPOP as sim
>>> pop = sim.Population(10, ploidy=sim.HAPLODIPLOID, loci=[5, 5],
... infoFields=['father_idx', 'mother_idx'])
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> pop.evolve(
... initOps=[
... sim.InitSex(),

(continues on next page)

170 Chapter 6. Evolving populations

polygamous.py
RandomSelection.py

simuPOP

(continued from previous page)

... sim.InitGenotype(genotype=[0]*10, subPops=[(0, 'Male')]),

... sim.InitGenotype(genotype=[1]*10+[2]*10, subPops=[(0, 'Female')])

...],

... preOps=sim.Dumper(structure=False),

... matingScheme=sim.HaplodiploidMating(

... ops=[sim.HaplodiploidGenoTransmitter(), sim.ParentsTagger()]),

... postOps=sim.Dumper(structure=False),

... gen = 1

...)
SubPopulation 0 (), 10 Individuals:

0: FU 11111 11111 | 22222 22222 | 0 0
1: FU 11111 11111 | 22222 22222 | 0 0
2: MU 00000 00000 | _____ _____ | 0 0
3: MU 00000 00000 | _____ _____ | 0 0
4: MU 00000 00000 | _____ _____ | 0 0
5: MU 00000 00000 | _____ _____ | 0 0
6: MU 00000 00000 | _____ _____ | 0 0
7: FU 11111 11111 | 22222 22222 | 0 0
8: FU 11111 11111 | 22222 22222 | 0 0
9: FU 11111 11111 | 22222 22222 | 0 0

SubPopulation 0 (), 10 Individuals:
0: MU 11111 11111 | _____ _____ | 4 9
1: MU 11111 22222 | _____ _____ | 4 8
2: MU 22222 11111 | _____ _____ | 6 8
3: MU 22222 11111 | _____ _____ | 3 8
4: MU 22222 22222 | _____ _____ | 2 8
5: MU 22222 22222 | _____ _____ | 6 9
6: FU 22222 22222 | 00000 00000 | 2 1
7: FU 22222 22222 | 00000 00000 | 2 1
8: FU 22222 22222 | 00000 00000 | 3 9
9: FU 11111 11111 | 00000 00000 | 5 8

1

now exiting runScriptInteractively...

Download HaplodiploidMating.py

Note that this mating scheme does not support recombination and the standard Recombinator does not work with
haplodiploid populations. Please refer to the next Chapter for how to define a customized genotype transmitter to
handle such a situation.

6.1.10 Self-fertilization

Some plant populations evolve through self-fertilization. That is to say, a parent fertilizes with itself during the
production of offspring (seeds). In a SelfMating mating scheme, parents are chosen randomly (one at a time), and
are used twice to produce two homologous sets of offspring chromosomes. The standard Recombinator can be used
with this mating scheme. Example SelfMating initializes each chromosome with different alleles to demonstrate how
these alleles are transmitted in this population.

Example: Selfing mating scheme

>>> import simuPOP as sim
>>> pop = sim.Population(20, loci=8)

(continues on next page)

6.1. Mating Schemes 171

HaplodiploidMating.py

simuPOP

(continued from previous page)

>>> # every chromosomes are different. :-)
>>> for idx, ind in enumerate(pop.individuals()):
... ind.setGenotype([idx*2], 0)
... ind.setGenotype([idx*2+1], 1)
...
>>> pop.evolve(
... matingScheme=sim.SelfMating(ops=sim.Recombinator(rates=0.01)),
... gen = 1
...)
1
>>> sim.dump(pop, width=3, structure=False, max=10)
SubPopulation 0 (), 20 Individuals:

0: FU 36 36 36 36 36 36 36 36 | 36 36 36 36 36 36 36 36
1: FU 6 6 6 6 6 6 6 6 | 7 7 7 7 7 7 7 7
2: MU 33 33 33 33 33 33 33 33 | 33 33 33 33 33 33 33 33
3: MU 22 22 22 22 22 23 23 23 | 22 22 22 22 22 22 22 22
4: FU 27 27 27 27 27 27 27 27 | 27 27 27 27 27 27 27 27
5: MU 15 15 15 15 15 15 15 15 | 15 15 15 15 15 15 15 15
6: MU 35 35 35 35 34 34 34 34 | 34 34 34 34 34 34 34 34
7: FU 11 11 11 11 11 11 11 11 | 10 10 10 10 10 10 10 10
8: MU 11 11 11 11 11 11 11 11 | 11 11 11 11 11 11 11 11
9: FU 24 24 24 24 24 24 24 24 | 25 25 25 25 25 25 25 25

now exiting runScriptInteractively...

Download SelfMating.py

6.1.11 Heterogeneous mating schemes *

Different groups of individuals in a population may have different mating patterns. For example, individuals with
different properties can have varying fecundity, represented by different numbers of offspring generated per mating
event. This can be extended to aged populations in which only adults (may be defined by age > 20 and age < 40) can
produce offspring, where other individuals will either be copied to the offspring generation or die.

A heterogeneous mating scheme (HeteroMating) accepts a list of mating schemes that are applied to different
subpopulation or virtual subpopulations. If multiple mating schemes are applied to the same subpopulation, each of
them only populate part of the offspring subpopulation. This is illustrated in Figure fig_heterogenous_mating.

Figure: Illustration of a heterogeneous mating scheme

A heterogeneous mating scheme that applies homogeneous mating schemes MS0, MS0.0, MS0.1, MS1, MS2.0 and
MS2.1 to subpopulation 0, the first and second virtual subpopulation in subpopulation 0, subpopulation 1, the first and
second virtual subpopulation in subpopulation 2, respectively. Note that VSP 0 and 1 in subpopulation 0 overlap, and
do not add up to subpopulation 0.

For example, Example hateroMatingSP applies two random mating schemes to two subpopulations. The first mating
scheme produces two offspring per mating event, and the second mating scheme produces four.

Example: Applying different mating schemes to different subpopulations

>>> import simuPOP as sim
>>> pop = sim.Population(size=[1000, 1000], loci=2,
... infoFields=['father_idx', 'mother_idx'])
>>> pop.evolve(
... initOps=sim.InitSex(),

(continues on next page)

172 Chapter 6. Evolving populations

SelfMating.py

simuPOP

Users/bpeng1/simuPOP/simuPOP/doc/figures/MatingScheme.png

6.1. Mating Schemes 173

simuPOP

(continued from previous page)

... matingScheme=sim.HeteroMating([

... sim.RandomMating(numOffspring=2, subPops=0,

... ops=[sim.MendelianGenoTransmitter(), sim.ParentsTagger()]

...),

... sim.RandomMating(numOffspring=4, subPops=1,

... ops=[sim.MendelianGenoTransmitter(), sim.ParentsTagger()]

...)

...]),

... gen=10

...)
10
>>> [int(ind.father_idx) for ind in pop.individuals(0)][:10]
[134, 134, 451, 451, 780, 780, 443, 443, 457, 457]
>>> [int(ind.father_idx) for ind in pop.individuals(1)][:10]
[1978, 1978, 1978, 1978, 1582, 1582, 1582, 1582, 1322, 1322]

now exiting runScriptInteractively...

Download HeteroMatingSP.py

The real power of heterogeneous mating schemes lies on their ability to apply different mating schemes to different
virtual subpopulations. For example, due to different micro-environmental factors, plants in the same population may
exercise both self and cross-fertilization. Because of the randomness of such environmental factors, it is difficult
to divide a population into self and cross-mating subpopulations. Applying different mating schemes to groups of
individuals in the same subpopulation is more appropriate.

Example hateroMatingVSP applies two mating schemes to two VSPs defined by proportions of individuals. In this
mating scheme, 20% of individuals go through self-mating and 80% of individuals go through random mating. This
can be seen from the parental indexes of individuals in the offspring generation: individuals whose mother_idx are
-1 are genetically only derived from their fathers.

It might be surprising that offspring resulted from two mating schemes mix with each other so the same VSPs in
the next generation include both selfed and cross-fertilized offspring. If this not desired, you can set parameter
shuffleOffspring=False in HeteroMating(). Because the number of offspring that are produced by each
mating scheme is proportional to the size of parental (virtual) subpopulation, the first 20% of individuals that are
produced by self-fertilization will continue to self-fertilize.

Example: Applying different mating schemes to different virtual subpopulations

>>> import simuPOP as sim
>>> pop = sim.Population(size=[1000], loci=2,
... infoFields=['father_idx', 'mother_idx'])
>>> pop.setVirtualSplitter(sim.ProportionSplitter([0.2, 0.8]))
>>> pop.evolve(
... initOps=sim.InitSex(),
... matingScheme=sim.HeteroMating(matingSchemes=[
... sim.SelfMating(subPops=[(0, 0)],
... ops=[sim.SelfingGenoTransmitter(), sim.ParentsTagger()]
...),
... sim.RandomMating(subPops=[(0, 1)],
... ops=[sim.SelfingGenoTransmitter(), sim.ParentsTagger()]
...)
...]),
... gen = 10
...)
10
>>> [int(ind.father_idx) for ind in pop.individuals(0)][:15]

(continues on next page)

174 Chapter 6. Evolving populations

HeteroMatingSP.py

simuPOP

(continued from previous page)

[789, 666, 145, 125, 681, 183, 727, 308, 392, 11, 183, 223, 208, 29, 309]
>>> [int(ind.mother_idx) for ind in pop.individuals(0)][:15]
[370, 272, -1, 520, 121, 91, 220, 519, 101, 271, -1, 263, 663, -1, 286]

now exiting runScriptInteractively...

Download HeteroMatingVSP.py

Because there is no restriction on the choice of VSPs, mating schemes can be applied to overlapped (virtual) subpop-
ulations. For example,

HeteroMating(
matingSchemes = [

SelfMating(subPops=[(0, 0)]),
RandomMating(subPops=0)
]

)

will apply SelfMating to the first 20% individuals, and RandomMating will be applied to all individuals. Similarly,

HeteroMating(
matingSchemes = [

SelfMating(subPops=0),
RandomMating(subPops=0)
]

)

will allow all individuals to be involved in both SelfMating and RandomMating.

This raises the question of how many offspring each mating scheme will produce. By default, the number of offspring
produced will be proportional to the size of parental (virtual) subpopulations. In the last example, because both mating
schemes are applied to the same subpopulation, half of all offspring will be produced by selfing and the other half will
be produced by random mating.

This behavior can be changed by a weighting scheme controlled by parameter weight of each homogeneous mating
scheme. Briefly speaking, a positive weight will be compared against other mating schemes. a negative weight is
considered proportional to the existing (virtual) subpopulation size. Negative weights are considered before positive
or zero weights.

This weighting scheme is best explained by an example. Assuming that there are three mating schemes working on
the same parental subpopulation

• Mating scheme A works on the whole subpopulation of size 1000

• Mating scheme B works on a virtual subpopulation of size 500

• Mating scheme C works on another virtual subpopulation of size 800

Assuming the corresponding offspring subpopulation has individuals,

• If all weights are 0, the offspring subpopulation is divided in proportion to parental (virtual) subpopulation sizes.
In this example, the mating schemes will produce , , individuals respectively.

• If all weights are negative, they are multiplied to their parental (virtual) subpopulation sizes. For example,
weight (-1, -2, -0.5) will lead to sizes (1000, 1000, 400) in the offspring subpopulation. If in this case, an error
will be raised.

• If all weights are positive, the number of offspring produced from each mating scheme is proportional to these
weights. For example, weights (1, 2, 3) will lead to , , individuals respectively. In this case, 0 weights will
produce no offspring.

6.1. Mating Schemes 175

HeteroMatingVSP.py

simuPOP

• If there are mixed positive and negative weights, the negative weights are processed first, and the rest of the
individuals are divided using non-negative weights. For example, three mating schemes with weights (-0.5, 2,
3) will produce 500, , individuals respectively.

The last case is demonstrated in Example HeteroMatingWeight where three random mating schemes are applied to
subpopulation 0, virtual subpopulation(0, 0) and virtual subpopulation (0, 1), with weights -0.5, 2, and 3
respectively. This example uses an advanced features that will be described in the next section. Namely, three during-
mating Python operators are passed to each mating scheme to mark their offspring with different numbers.

Example: A weighting scheme used by heterogeneous mating schemes.

>>> import simuPOP as sim
>>> pop = sim.Population(size=[1000], loci=2,
... infoFields='mark')
>>> pop.setVirtualSplitter(sim.RangeSplitter([[0, 500], [200, 1000]]))
>>>
>>> pop.evolve(
... initOps=sim.InitSex(),
... matingScheme=sim.HeteroMating([
... sim.RandomMating(subPops=0, weight=-0.5,
... ops=[sim.InfoExec('mark=0'), sim.MendelianGenoTransmitter()]),
... sim.RandomMating(subPops=[(0, 0)], weight=2,
... ops=[sim.InfoExec('mark=1'), sim.MendelianGenoTransmitter()]),
... sim.RandomMating(subPops=[(0, 1)], weight=3,
... ops=[sim.InfoExec('mark=2'), sim.MendelianGenoTransmitter()])
...]),
... gen = 10
...)
10
>>> marks = list(pop.indInfo('mark'))
>>> marks.count(0.)
500
>>> marks.count(1.)
200
>>> marks.count(2.)
300

now exiting runScriptInteractively...

Download HeteroMatingWeight.py

As a special case that can be quite annoying during the simulation of small populations, a (virtual) subpopulation can
have no male and/or female. If the parental (virtual) subpopulation is empty, it will produce no offspring regardless
of its weight. However, if the parental (virtual) subpopulation is not empty, it will be expected to produce some off-
spring, which is not possible if a sexual mating scheme is used. In this case, you can use a parameter weightBy
to specify how parental (virtual) population sizes are calculated. This parameter accepts values ANY_SEX (default),
MALE_ONLY, FEMALE_ONLY, PAIR_ONLY, and use all individuals, number of male individuals, number of female
individuals, and number of male/female pairs (basically the less of numbers of males and females) as the size of
parental (virtual) subpopulation, respectively. When weightBy=PAIR_ONLY is used, parental (virtual) subpopu-
lations with only males or females will appear to be empty and produce no offspring. Note that in this mode (also
MALE_ONLY, FEMALE_ONLY), the perceived parental population sizes are no longer the actual parental population
sizes so you might need to adjust parameter weight (e.g. weight=-2) to produce correct number of offspring.

6.1.12 Conditional mating schemes

A ConditionalMating mating scheme allows you to apply different mating schemes to populations with different
properties. The condition can be a constant (True or False), an expression that will be evaluated in the local namspace

176 Chapter 6. Evolving populations

HeteroMatingWeight.py

simuPOP

of the parental population, or a function that can take parental population as its input paramter (with parameter name
pop).

Using variable rep and gen in the local namespace of the parental population, we can use this mating scheme to
apply different mating schemes to different replicates and/or at different generations. For example, matingScheme-
ByRepAndGen simulates the evolution of three replicates. The first replicate uses regular mating scheme, the third
replicate uses a mating scheme that produces 70% of males, and the second replicate do this only for the first 5
generations. Because there are three cases, a nested ConditionalMating is used.

Example: Apply different mating schemes for different replicates at different generations

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(1000, loci=[10]), rep=3)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme=sim.ConditionalMating('rep == 0',
... # the first replicate use standard random mating
... sim.RandomMating(),
... sim.ConditionalMating('rep == 1 and gen >= 5',
... # the second replicate produces more males for the first 5 generations
... sim.RandomMating(),
... # the last replicate produces more males all the time
... sim.RandomMating(sexMode=(sim.PROB_OF_MALES, 0.7))
...)
...),
... postOps=[
... sim.Stat(numOfMales=True),
... sim.PyEval("'gen=%d' % gen", reps=0),
... sim.PyEval(r"'\t%d' % numOfMales"),
... sim.PyOutput('\n', reps=-1)
...],
... gen=10
...)
gen=0 477 686 718
gen=1 477 689 698
gen=2 519 692 713
gen=3 479 709 704
gen=4 539 710 688
gen=5 496 482 698
gen=6 489 488 701
gen=7 495 508 715
gen=8 497 488 688
gen=9 528 498 698
(10, 10, 10)

now exiting runScriptInteractively...

Download matingSchemeByRepAndGen.py

A function can be passed as the condition of a ConditionalMating mating scheme. This allows you to apply
operators such as Stat to examine the condition of populations more closely and determine which mating scheme to
use.

6.1. Mating Schemes 177

matingSchemeByRepAndGen.py

simuPOP

6.2 Simulator

A simuPOP simulator evolves one or more copies of a population forward in time, subject to various operators.
Although a population could evolve by itself using function Population.evolve, a simulator with one replicate
is actually used.

6.2.1 Add, access and remove populations from a simulator

A simulator could be created by one or more replicates of a list of populations. For example, you could create a
simulator from five replicates of a population using

Simulator(pop, rep=5)

or from a list of populations using

Simulator([pop, pop1, pop2])

. pop, pop1 and pop2 do not have to have the same genotypic structure. In order to avoid duplication of potentially
large populations, a population is by default stolen after it is used to create a simulator. If you would like to keep
the populations, you could set parameter stealPops to False so that the populations will be copied to the simu-
lator. Populations in a simulator can be added or removed using functions Simulator.add() and Simulator.
extract(idx).

When a simulator is created, you can access populations in this simulator using function Simulator.
population(idx) or iterate through all populations using function Simulator.populations(). These func-
tions return references to the populations so that you can access populations. Modifying these references will change
the corresponding populations within the simulator. The references will become invalid once the simulator object is
destoryed.

Example Simulator demonstrates different ways to create a simulator and how to access populations within it.

Example: Create a simulator and access populations

>>> import simuPOP as sim
>>> pop = sim.Population(100, loci=10)
>>> # five copies of the same population
>>> simu = sim.Simulator(pop, rep=5)
>>> simu.numRep()
5
>>> # evolve for ten generations and save the populations
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.3, 0.7])
...],
... matingScheme=sim.RandomMating(),
... finalOps=sim.SavePopulation('!"pop%d.pop"%rep'),
... gen=10
...)
(10, 10, 10, 10, 10)
>>> # load the population and create another Simulator
>>> simu = sim.Simulator([sim.loadPopulation('pop%d.pop' % x) for x in range(5)])
>>> # continue to evolve
>>> simu.evolve(
... matingScheme=sim.RandomMating(),
... gen=10

(continues on next page)

178 Chapter 6. Evolving populations

simuPOP

(continued from previous page)

...)
(10, 10, 10, 10, 10)
>>> # print out allele frequency
>>> for pop in simu.populations():
... sim.stat(pop, alleleFreq=0)
... print('%.2f' % pop.dvars().alleleFreq[0][0])
...
0.36
0.30
0.28
0.01
0.11
>>> # get a population
>>> pop = simu.extract(0)
>>> simu.numRep()
4

now exiting runScriptInteractively...

Download Simulator.py

6.2.2 Number of generations to evolve

A simulator usually evolves a specific number of generations according to parameter gen of the evolve function. A
generation number is used to track the number of generations a simulator has evolved. Because a new population has
generation number 0, a population would be at the beginning of generation after it evolves generations. The generation
number would increase if the simulator continues to evolve. During evoluting, variables rep (replicate number) and
gen (current generation number) are set to each population’s local namespace.

It is not always possible to know in advance the number of generations to evolve. For example, you may want to evolve
a population until a specific allele gets fixed or lost in the population. In this case, you can let the simulator run indef-
initely (do not set the gen parameter) and depend on a *terminator *to terminate the evolution of a population. The
easiest method to do this is to use population variables to track the status of a population, and use a TerminateIf
operator to terminate the evolution according to the value of an expression. Example simuGen demonstrates the use
of such a terminator, which terminates the evolution of a population if allele 0 at locus 5 is fixed or lost. It also shows
the application of an interesting operator IfElse, which applies an operator, in this case PyEval, only when an
expression returns True. Note that this example calls the simulator.evolve function twice. The first call does
not specify a mating scheme so a default empty mating scheme (MatingScheme) that does not transmit genotype is
used. Populations start from the beginning of the fifth generation when the second simulator.evole function is
called.

The generation number is stored in each Population using population variable gen.You can access these numbers from
a simulator using function Simulator.dvars(idx) or from a population using function Population.dvars().
If needed, you can reset generation numbers by changing these variables.

Example: Generation number of a simulator

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(50, loci=[10], ploidy=1),
... rep=3)
>>> simu.evolve(gen = 5)
(5, 5, 5)
>>> simu.dvars(0).gen
5
>>> simu.evolve(

(continues on next page)

6.2. Simulator 179

Simulator.py

simuPOP

(continued from previous page)

... initOps=[sim.InitGenotype(freq=[0.5, 0.5])],

... matingScheme=sim.RandomSelection(),

... postOps=[

... sim.Stat(alleleFreq=5),

... sim.IfElse('alleleNum[5][0] == 0',

... sim.PyEval(r"'Allele 0 is lost in rep %d at gen %d\n' % (rep, gen)")),

... sim.IfElse('alleleNum[5][0] == 50',

... sim.PyEval(r"'Allele 0 is fixed in rep %d at gen %d\n' % (rep, gen)
→˓")),
... sim.TerminateIf('len(alleleNum[5]) == 1'),
...],
...)
Allele 0 is fixed in rep 2 at gen 29
Allele 0 is fixed in rep 1 at gen 74
Allele 0 is lost in rep 0 at gen 120
(116, 70, 25)
>>> [simu.dvars(x).gen for x in range(3)]
[121, 75, 30]

now exiting runScriptInteractively...

Download simuGen.py

6.2.3 Evolve populations in a simulator

There are a number of rules about when and how operators are applied during the evolution of a population. In
summary, in the order at which operators are processed and applied,

• Operators specified in parameter initOps of function Simulator.evolve will be applied to the initial
population before evolution, subject to replicate applicability restraint specified by parameter reps.

• Operators specified in parameter preOps of function Simulator.evolve will be applied to the parental
population at each generation, subject to replicate and generation applicability restraint specified by parameters
begin, end, step, at, and reps.

• During-mating operators specified in the ops parameter of a mating scheme will be called during mating to
transmit genotype (and possibly information fields etc) from parental to offspring, subject to replicate and gen-
eration applicability restraint specified by parameters begin, end, step, at, and reps.

• Operators specified in parameter postOps of function Simulator.evolve will be applied to the offspring
population at each generation, subject to replicate and generation applicability restraint specified by parameters
begin, end, step, at, and reps.

• Operators specified in parameter finalOps of function Simulator.evolve will be applied to the final
population after evolution, subject to replicate applicability restraint specified by parameter reps.

Figure fig_operator_orders illustrated how operators are applied to an evolutionary process. It worth noting that a
default during-mating operator is defined for each mating scheme. User-specfied operators will replace the default
operator so you need to explicitly specify the default operator if you intent to add another one.

Figure: Orders at which operators are applied during an evolutionary process

If you suspect that your simulation is not running as expected, you can have a close look at your evolutionary process by
setting the dryrun parameter of an evolve function to True, or by calling function describeEvolProcess().
This function takes the same set of parameters as Simulator.evolve() and returns a description of the evolution
process, which might help you identify misuse of operators.

Example: describe an evolutionary process

180 Chapter 6. Evolving populations

simuGen.py

simuPOP

Users/bpeng1/simuPOP/simuPOP/doc/figures/operators.png

6.2. Simulator 181

simuPOP

>>> import simuPOP as sim
>>>
>>> def outputstat(pop):
... 'Calculate and output statistics, ignored'
... return True
...
>>> # describe this evolutionary process
>>> print(sim.describeEvolProcess(
... initOps=[
... sim.InitSex(),
... sim.InitInfo(lambda: random.randint(0, 75), infoFields='age'),
... sim.InitGenotype(freq=[0.5, 0.5]),
... sim.IdTagger(),
... sim.PyOutput('Prevalence of disease in each age group:\n'),
...],
... preOps=sim.InfoExec('age += 1'),
... matingScheme=sim.HeteroMating([
... sim.CloneMating(subPops=[(0,0), (0,1), (0,2)], weight=-1),
... sim.RandomMating(ops=[
... sim.IdTagger(),
... sim.Recombinator(intensity=1e-4)
...], subPops=[(0,1)]),
...]),
... postOps=[
... sim.MaPenetrance(loci=0, penetrance=[0.01, 0.1, 0.3]),
... sim.PyOperator(func=outputstat)
...],
... gen = 100,
... numRep = 3
...))
Replicate 0 1 2:
Apply pre-evolution operators to the initial population (initOps).

* <simuPOP.InitSex> initialize sex randomly

* <simuPOP.InitInfo> initialize information field age using a Python
function <lambda>

* <simuPOP.InitGenotype> initialize individual genotype acccording to
allele frequencies.

* <simuPOP.IdTagger> assign an unique ID to individuals

* <simuPOP.PyOutput> write 'Prevalence of disease in each age group:... '
to output

Evolve a population for 100 generations

* Apply pre-mating operators to the parental generation (preOps)
<simuPOP.InfoExec> execute statement age += 1 using information fields

as variables.

* Populate an offspring populaton from the parental population using mating
scheme <simuPOP.HeteroMating> a heterogeneous mating scheme with 2
homogeneous mating schemes:
<simuPOP.HomoMating> a homogeneous mating scheme that uses

- <simuPOP.SequentialParentChooser> chooses a parent sequentially
- <simuPOP.OffspringGenerator> produces offspring using operators

. <simuPOP.CloneGenoTransmitter> clone genotype, sex and
information fields of parent to offspring

in subpopulations (0, 0), (0, 1), (0, 2).
<simuPOP.HomoMating> a homogeneous mating scheme that uses

- <simuPOP.RandomParentsChooser> chooses two parents randomly

(continues on next page)

182 Chapter 6. Evolving populations

simuPOP

(continued from previous page)

- <simuPOP.OffspringGenerator> produces offspring using operators
. <simuPOP.IdTagger> assign an unique ID to individuals
. <simuPOP.Recombinator> genetic recombination.

in subpopulations (0, 1).

* Apply post-mating operators to the offspring population (postOps).
<simuPOP.MaPenetrance> multiple-alleles penetrance
<simuPOP.PyOperator> calling a Python function outputstat

No operator is applied to the final population (finalOps).

now exiting runScriptInteractively...

Download describe.py

6.3 Non-random and customized mating schemes *

6.3.1 The structure of a homogeneous mating scheme *

A homogeneous mating scheme (HomoMating) populates an offspring generation as follows:

1. Create an empty offspring population (generation) with appropriate size. Parental and offspring generation can
differ in size but they must have the same number of subpopulations.

2. For each subpopulation, repeatedly choose a parent or a pair of parents from the parental generation. This is
done by a simuPOP object called a parent chooser.

3. One or more offspring are produced from the chosen parent(s) and are placed in the offspring population. This
is done by a simuPOP offspring generator. An offspring generator uses one or more during-mating operators
to transmit parental genotype to offspring. These operators are called genotype transmitters.

4. After the offspring generation is populated, it will replace the parental generation and becomes the present
generation of a population.

To define a homogeneous mating scheme, you will need to provide a chooser (a parent chooser that is responsi-
ble for choosing one or two parents from the parental generation) and a generator (an offspring generator that is
responsible for generating a number of offspring from the chosen parents). For example, a selfingMating mat-
ing scheme uses a RandomParentChooser to choose a parent randomly from a population, possibly according
to individual fitness, it uses a standard OffspringGenerator that uses a selfingOffspringGenerator
to transmit genotype. The constructor of HomoMating also accepts parameters subPopSize (parameter to con-
trol offspring subpopulation sizes), subPops (applicable subpopulatiosn or virtual subpopulations), and weight
(weighting parameter when used in a heterogeneous mating scheme). When this mating scheme is applied to the
whole population, subPopSize is used to determine the subpopulation sizes of the offspring generation (see Sec-
tion subsec_offspring_size for details), parameters subPops and weight are ignored. Otherwise, the number of
offspring this mating scheme will produce is determined by the heterogeneous mating scheme.

Example RandomMating demonstrates how the most commonly used mating scheme, the diploid sex-
ual RandomMating mating scheme is defined in simuPOP.py. This mating scheme uses a
RandomParentsChooser with replacement, and a standard OffspringGenerator using a default
MendelianGenoTransmitter.

Example: Define a random mating scheme

6.3. Non-random and customized mating schemes * 183

describe.py

simuPOP

def RandomMating(numOffspring=1., sexMode=RANDOM_SEX,
ops=MendelianGenoTransmitter(), subPopSize=[],
subPops=ALL_AVAIL, weight=0, selectionField='fitness'):

'A basic diploid sexual random mating scheme.'
return HomoMating(

chooser=RandomParentsChooser(True, selectionField),
generator=OffspringGenerator(ops, numOffspring, sexMode),
subPopSize=subPopSize,
subPops=subPops,
weight=weight)

Download RandomMating.py

Different parent choosers and offspring generators can be combined to define a large number of homogeneous mating
schemes. Some of the parent choosers return one parent so they work with offspring generators that need one parent
(e.g. selfing or clone offspring generator); some of the parent choosers return two parents so they work with offspring
generators that need two parents (e.g. Mendelian offspring generator). For example, the standard SelfMating
mating scheme uses a RandomParentChooser but you can easily use a SequentialParentChooser to
choose parents sequentially and self- fertilize parents one by one. This is demonstrated in Example sequentialSelfing.

Example: Define a sequential selfing mating scheme

>>> import simuPOP as sim
>>> pop = sim.Population(100, loci=5*3, infoFields='parent_idx')
>>> pop.evolve(
... initOps=[sim.InitGenotype(freq=[0.2]*5)],
... preOps=sim.Dumper(structure=False, max=5),
... matingScheme=sim.HomoMating(
... sim.SequentialParentChooser(),
... sim.OffspringGenerator(ops=[
... sim.SelfingGenoTransmitter(),
... sim.ParentsTagger(infoFields='parent_idx'),
...])
...),
... postOps=sim.Dumper(structure=False, max=5),
... gen = 1
...)
SubPopulation 0 (), 100 Individuals:

0: MU 441000142224423 | 431303440010114 | 0
1: MU 334442443034342 | 113203441333201 | 0
2: MU 034344042424240 | 344304121430212 | 0
3: MU 132322330420043 | 141300223114240 | 0
4: MU 111123040033342 | 344344221133120 | 0

SubPopulation 0 (), 100 Individuals:
0: MU 441000142224423 | 431303440010114 | 0
1: FU 334442443034342 | 113203441333201 | 1
2: MU 344304121430212 | 034344042424240 | 2
3: FU 141300223114240 | 132322330420043 | 3
4: FU 344344221133120 | 111123040033342 | 4

1

now exiting runScriptInteractively...

Download sequentialSelfing.py

184 Chapter 6. Evolving populations

RandomMating.py
sequentialSelfing.py

simuPOP

6.3.2 Offspring generators *

An OffspringGenerator accepts a parameters ops (a list of during- mating operators), numOffspring (con-
trol number of offspring per mating event) and sexMode (control offspring sex). We have examined the last two
parameters in detail in sections subsec_number_of_offspring and subsec_offspring_sex.

The most tricky parameter is the ops parameter. It accepts a list of during mating operators that are used to transmit
genotypes from parent(s) to offspring and/or set individual information fields. The standard OffspringGenerator
does not have any default operator so no genotype will be transmitted by default. All stock mating schemes use
a default genotype transmitter. (e,g, a MendelianGenoTransmitter in Example RandomMating is passed to
the offspring generator used in RandomMating). Note that you need to specify all needed operators if you use
parameter ops to change the operators used in a mating scheme (see Example HeteroMatingWeight). That is to say,
you can use ops=Recombinator() to replace a default MendelianGenoTransmitter(), but you have to use
ops=[IdTagger(), MendelianGenoTransmitter()] if you would like to add a during-mating operator
to the default one.

Another offspring generator is provided in simuPOP. This ControlledOffspringGeneratoris used to control
an evolutionary process so that the allele frequencies at certain loci follows some pre-simulated frequency trajectories.
Please refer to Peng2007a for rationals behind such an offspring generator and its applications in the simulation of
complex human diseases.

Example controlledOffGenerator demonstrates the use of such a controlled offspring generator. Instead of using a
realistic frequency trajectory function, it forces allele frequency at locus 5 to increase linearly. In contrast, the allele
frequency at locus 15 on the second chromosome oscillates as a result of genetic drift. Note that the random mating
version of this mating scheme is defined in simuPOP as ControlledRandomMating.

Example: A controlled random mating scheme

>>> import simuPOP as sim
>>> def traj(gen):
... return [0.5 + gen * 0.01]
...
>>> pop = sim.Population(1000, loci=[10]*2)
>>> # evolve the sim.Population while keeping allele frequency 0.5
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme=sim.HomoMating(sim.RandomParentChooser(),
... sim.ControlledOffspringGenerator(loci=5,
... alleles=[0], freqFunc=traj,
... ops = sim.SelfingGenoTransmitter())),
... postOps=[
... sim.Stat(alleleFreq=[5, 15]),
... sim.PyEval(r'"%.2f\t%.2f\n" % (alleleFreq[5][0], alleleFreq[15][0])')
...],
... gen = 5
...)
0.50 0.51
0.51 0.51
0.52 0.51
0.53 0.52
0.54 0.54
5

now exiting runScriptInteractively...

Download controlledOffGenerator.py

6.3. Non-random and customized mating schemes * 185

controlledOffGenerator.py

simuPOP

6.3.3 Genotype transmitters *

Although any during mating operators can be used in parameter opsof an offspring generator, those that transmit
genotype from parents to offspring are customarily called genotype transmitters. simuPOP provides a number of
genotype transmitters including clone, Mendelian, selfing, haplodiploid, genotype transmitter, and a Recombinator.
They are usually used implicitly in a mating scheme, but they can also be used explicitly.

Although simuPOP provides a number of genotype transmitters, they may still be cases where customized genotype
transmitter is needed. For example, a Recombinator can be used to recombine parental chromosomes but it is well
known that male and female individuals differ in recombination rates. How can you apply two different Recombinators
to male and female Individuals separately?

An immediate thought can be the use of virtual subpopulations. If you apply two random mating schemes to two
virtual subpopulations defined by sex, RandomParentsChooser will not work because no opposite sex can be
found in each virtual subpopulation. In this case, a customized genotype transmitter can be used.

A customized genotype transmitter is only a Python during-mating operator. Although it is possible to define a function
and use a PyOperator directly (Example PyOperator), it is much better to derive an operator from PyOperator, as the
case in Example newOperator.

Example sexSpecificRec defines a sexSpecificRecombinator that uses, internally, two different Recombinators
to recombine male and female parents. The key statement is the PyOperator.__init__ line which initializes a
Python operator with given function self.transmitGenotype. Example sexSpecificRec outputs the population
in two generations. You should notice that paternal chromosome are not recombined when they are transmitted to
offspring.

Example: A customized genotype transmitter for sex-specific recombination

>>> from simuPOP import *
>>> class sexSpecificRecombinator(PyOperator):
... def __init__(self, intensity=0, rates=0, loci=[], convMode=NO_CONVERSION,
... maleIntensity=0, maleRates=0, maleLoci=[], maleConvMode=NO_CONVERSION,
... *args, **kwargs):
... # This operator is used to recombine maternal chromosomes
... self.Recombinator = Recombinator(rates, intensity, loci, convMode)
... # This operator is used to recombine paternal chromosomes
... self.maleRecombinator = Recombinator(maleRates, maleIntensity,
... maleLoci, maleConvMode)
... #
... PyOperator.__init__(self, func=self.transmitGenotype, *args, **kwargs)
... #
... def transmitGenotype(self, pop, off, dad, mom):
... # Form the first homologous copy of offspring.
... self.Recombinator.transmitGenotype(mom, off, 0)
... # Form the second homologous copy of offspring.
... self.maleRecombinator.transmitGenotype(dad, off, 1)
... return True
...
>>> pop = Population(10, loci=[15]*2, infoFields=['father_idx', 'mother_idx'])
>>> pop.evolve(
... initOps=[
... InitSex(),
... InitGenotype(freq=[0.4] + [0.2]*3)
...],
... matingScheme=RandomMating(ops=[
... sexSpecificRecombinator(rates=0.1, maleRates=0),
... ParentsTagger()
...]),

(continues on next page)

186 Chapter 6. Evolving populations

simuPOP

(continued from previous page)

... postOps=Dumper(structure=False),

... gen = 2

...)
SubPopulation 0 (), 10 Individuals:

0: FU 230000130212000 130110020112120 | 310300000030330 000113003202000 | 6 7
1: FU 110100000002000 223313300111002 | 331311301000220 002330110020020 | 6 7
2: MU 230301121003012 032010332330303 | 303303022100031 310232031321031 | 5 0
3: MU 103001320130222 031300110100023 | 303303022100031 003000012020002 | 5 9
4: FU 210230113000000 231111000121000 | 303303022100031 003000012020002 | 5 8
5: MU 322030133101023 110323303020211 | 322111021000001 301200303300133 | 2 8
6: MU 210230113000000 231111000121000 | 331303300011323 310232031321031 | 5 8
7: FU 200331312001001 200011203020203 | 031032120003212 101032020302120 | 3 1
8: FU 230000130212000 223313300111002 | 303303022100031 003000012020002 | 5 7
9: FU 200331312001001 130301011230300 | 322111021000001 320103032303101 | 2 1

SubPopulation 0 (), 10 Individuals:
0: MU 230000130212000 223313300111002 | 322030133101023 301200303300133 | 5 8
1: MU 230000130212000 130110020112120 | 303303022100031 310232031321031 | 2 0
2: FU 303303022100031 003000012020002 | 322111021000001 301200303300133 | 5 4
3: FU 331311301000220 223313300111002 | 322111021000001 110323303020211 | 5 1
4: MU 200331312001001 101032020302120 | 230301121003012 032010332330303 | 2 7
5: FU 031032120003212 200011203020203 | 103001320130222 031300110100023 | 3 7
6: FU 200331312001001 320103032303101 | 303303022100031 032010332330303 | 2 9
7: FU 200331312001001 320103032303101 | 303303022100031 310232031321031 | 2 9
8: FU 200331312001001 130301011230300 | 303303022100031 031300110100023 | 3 9
9: MU 303303022100031 003000012020002 | 210230113000000 231111000121000 | 6 4

2

now exiting runScriptInteractively...

Download sexSpecificRec.py

6.3.4 A Python parent chooser *

Parent choosers are responsible for choosing one or two parents from a parental (virtual) subpopulation. simuPOP
defines a few parent choosers that choose parent(s) sequentially, randomly (with or without replacement), or with
additional conditions. Some of these parent choosers support natual selection. We have seen sequential and random
parent choosers in Examples sequentialSelfing and controlledOffGenerator. Please refer to the simuPOP reference
manual for details about these objects.

A parent choosing scheme can be quite complicated in reality. For example, salamanders along a river may mate with
their neighbors and form several subspecies. This behavior cannot be readily simulated using any pre-define parent
choosers so a hybrid parent chooser PyParentsChooser() should be used.

A PyParentsChooser accepts a user-defined Python generator function, instead of a normal python function, that
returns a parent, or a pair of parents repeatedly. Briefly speaking, when a generator function is called, it returns a
generator object that provides an iterator interface. Each time when this iterator iterates, this function resumes where
it was stopped last time, executes and returns what the next yield statement returns. For example, example generator
defines a function that calculate for . It does not calculate each repeatedly but returns , , . . . sequentially.

Example: A sample generator function

>>> import simuPOP as sim
>>> def func():

(continues on next page)

6.3. Non-random and customized mating schemes * 187

sexSpecificRec.py

simuPOP

(continued from previous page)

... i = 1

... all = 0

... while i <= 5:

... all += 1./i

... i += 1

... yield all

...
>>> for i in func():
... print('%.3f' % i)
...
1.000
1.500
1.833
2.083
2.283

now exiting runScriptInteractively...

Download generator.py

A PyParentsChooser accepts a parent generator function, which takes a population and a subpopulation index
as parameters. When this parent chooser is applied to a subpopulation, it will call this generator function and ask the
generated generator object repeated for either a parent, or a pair of parents (references to individual objects or indexes
relative to a subpopulation). Note that PyParentsChooser does not support virtual subpopulation but you can
mimic the effect by returning only parents from certain virtual subpopulations.

Example PyParentsChooser implements a hybrid parent chooser that chooses parents with equal social status (rank).
In this parent chooser, all males and females are categorized by their sex and social status. A parent is chosen randomly,
and then his/her spouse is chosen from females/males with the same social status. The rank of their offspring can
increase or decrease randomly. It becomes obvious now that whereas a python function can return random male/female
pair, the generator interface is much more efficient because the identification of sex/status groups is done only once.

Example: A hybrid parent chooser that chooses parents by their social status

>>> import simuPOP as sim
>>> from random import randint
>>> def randomChooser(pop, subPop):
... males = []
... females = []
... # identify males and females in each social rank
... for rank in range(3):
... males.append([x for x in pop.individuals(subPop) \
... if x.sex() == sim.MALE and x.rank == rank])
... females.append([x for x in pop.individuals(subPop) \
... if x.sex() == sim.FEMALE and x.rank == rank])
... #
... while True:
... # choose a rank randomly
... rank = int(pop.individual(randint(0, pop.subPopSize(subPop) - 1), subPop).
→˓rank)
... yield males[rank][randint(0, len(males[rank]) - 1)], \
... females[rank][randint(0, len(females[rank]) - 1)]
...
>>> def setRank(rank):
... 'The rank of offspring can increase or drop to zero randomly'
... # only use rank of the father
... return (rank[0] + randint(-1, 1)) % 3

(continues on next page)

188 Chapter 6. Evolving populations

generator.py

simuPOP

(continued from previous page)

...
>>> pop = sim.Population(size=[1000, 2000], loci=1, infoFields='rank')
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitInfo(lambda : randint(0, 2), infoFields='rank')
...],
... matingScheme=sim.HomoMating(
... sim.PyParentsChooser(randomChooser),
... sim.OffspringGenerator(ops=[
... sim.MendelianGenoTransmitter(),
... sim.PyTagger(setRank),
...])
...),
... gen = 5
...)
5

now exiting runScriptInteractively...

Download PyParentsChooser.py

Built-in parent choosers could be used in a PyParentsChooser to choose parents. The parent chooser needs
to be initialized with the parental population and subpopulation index. Calling the chooseParents func-
tion repeatedly will return pairs of individuals from the population (None will be returned for one of the par-
ents if the parent chooser only returns one parent). The use of built-in parent choosers can improve the perfor-
mance of your PyParentsChooser, especially for complex selection patterns (e.g. with natural selection). For
example, BuiltInParentsChooser implements a similar mating scheme as Example PyParentsChooser but uses a
RandomParentChooser to choose males randomly.

Example: Use built-in parent choosers in a Python parent chooser

>>> import simuPOP as sim
>>> from random import randint
>>>
>>> def randomChooser(pop, subPop):
... maleChooser = sim.RandomParentChooser(sexChoice=sim.MALE_ONLY)
... maleChooser.initialize(pop, subPop)
... females = []
... # identify females in each social rank
... for rank in range(3):
... females.append([x for x in pop.individuals(subPop) \
... if x.sex() == sim.FEMALE and x.rank == rank])
... #
... while True:
... # choose a random male
... m = maleChooser.chooseParents()[0]
... rank = int(m.rank)
... # find a female in the same rank
... yield m, females[rank][randint(0, len(females[rank]) - 1)]
...
>>> def setRank(rank):
... 'The rank of offspring can increase or drop to zero randomly'
... # only use rank of the father
... return (rank[0] + randint(-1, 1)) % 3
...
>>> pop = sim.Population(size=[1000, 2000], loci=1, infoFields='rank')

(continues on next page)

6.3. Non-random and customized mating schemes * 189

PyParentsChooser.py

simuPOP

(continued from previous page)

>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitInfo(lambda : randint(0, 2), infoFields='rank')
...],
... matingScheme=sim.HomoMating(
... sim.PyParentsChooser(randomChooser),
... sim.OffspringGenerator(ops=[
... sim.MendelianGenoTransmitter(),
... sim.PyTagger(setRank),
...])
...),
... gen = 5
...)
5

now exiting runScriptInteractively...

Download BuiltInParentsChooser.py

6.3.5 Using C++ to implement a parent chooser **

A user defined parent chooser can be fairly complex and computationally intensive. For example, if a parent tends to
find a spouse in his/her vincinity, geometric distances between all qualified individuals and a chosen parent need to be
calculated for each mating event. If the optimization of the parent chooser can speed up the simulation significantly, it
may be worthwhile to write the parent chooser in C++.

Although it is feasible, and sometimes easier to derive a class from class ParentChooser in mating.h (.cpp),
modifying simuPOP source code is not recommended because you would have to modify a new version of simuPOP
whenever you upgrade your simuPOP distribution. Implementing your parent choosing algorithm in another Python
module is preferred.

The first step is to write your own parent chooser in C/C++. Basically, you will need to pass all necessary infor-
mation to the C++ level and implement an algorithm to choose parents randomly. Although simple function based
solutions are possible, a C++ level class such as the myParentsChooserclass defined in Example parentChoose-
Header is recommended. This class is initialized with indexes of male and female individuals and use a function
chooseParents to return a pair of parents randomly. This parent chooser is very simple but more complicated
parent selection scenarios can be implemented similarly.

Example: Implement a parent chooser in C++

#include <stdlib.h>
#include <vector>
#include <utility>
using std::pair;
using std::vector;
class myParentsChooser
{
public:

// A constructor takes all locations of male and female.
myParentsChooser(const std::vector<int> & m, const std::vector<int> & f)

: male_idx(m), female_idx(f)
{

srand(time(0));
}

(continues on next page)

190 Chapter 6. Evolving populations

BuiltInParentsChooser.py

simuPOP

(continued from previous page)

pair<unsigned long, unsigned long> chooseParents()
{

unsigned long male = rand() % male_idx.size();
unsigned long female = rand() % male_idx.size();
return std::make_pair(male, female);

}
private:

vector<int> male_idx;
vector<int> female_idx;

};

Download myParentsChooser.h

The second step is to wrap your C++ functions and classes to a Python module. There are many tools available
but SWIG (www.swig.org) is arguably the most convenient and powerful one. To use SWIG, you will need to
prepare an interface file, which basically tells SWIG which functions and classes you would like to expose and how to
pass parameters between Python and C++. Example parentsChooserInterface lists an interface file for the C++ class
defined in Example parentChooseHeader. Please refer to the SWIG reference manual for details.

Example: An interface file for the myParentsChooser class

%module myParentsChooser
%{
#include "myParentsChooser.h"
%}
// std_vector.i for std::vector
%include "std_vector.i"
%template() std::vector<int>;
// stl.i for std::pair
%include "stl.i"
%template() std::pair<unsigned long, unsigned long>;
%include "myParentsChooser.h"

Download myParentsChooser.i

The exact procedure to generate and compile a wrapper file varies from system to system, and from compiler to
compiler. Fortunately, the standard Python module setup process supports SWIG. All you need to do is to write a
Python setup.py file and let the distutil module of Python handle all the details for you. A typical setup.py
file is demonstrated in Example parentsChooserSetup.

Example: Building and installing the myParentsChooser module

from distutils.core import setup, Extension
import sys
Under linux/gcc, lib stdc++ is needed for C++ based extension.
if sys.platform == 'linux2':

libs = ['stdc++']
else:

libs = []
setup(name = "myParentsChooser",

description = "A sample parent chooser",
py_modules = ['myParentsChooser'], # will be generated by SWIG
ext_modules = [

Extension('_myParentsChooser',
sources = ['myParentsChooser.i'],
swig_opts = ['-O', '-shadow', '-c++', '-keyword',],

(continues on next page)

6.3. Non-random and customized mating schemes * 191

myParentsChooser.h
myParentsChooser.i

simuPOP

(continued from previous page)

include_dirs = ["."],
)

]
)

Download setup.py

You parent chooser can now be compiled and installed using the standard Python setup.py commands such as

python setup.py install

Please refer to the Python reference manual for other building and installation options. Note that Python 2.4 and earlier
do not support option swig_opts well so you might have to pass these options using command

python setup.py build_ext --swig-opts=-O -templatereduce \
-shadow -c++ -keyword -nodefaultctor install

Example parentChooseHeader demonstrates how to use such a C++ parents chooser in your simuPOP script. It uses
the same Python parent chooser interface as in PyParentsChooser, but leaves all the (potentially) computationally
intensive parts to the C++ level myParentsChooser object.

Example: Implement a parent chooser in C++

import simuPOP as sim

The class myParentsChooser is defined in module myParentsChooser
try:

from myParentsChooser import myParentsChooser
except ImportError:

if failed to import the C++ version, use a Python version
import random
class myParentsChooser:

def __init__(self, maleIndexes, femaleIndexes):
self.maleIndexes = maleIndexes
self.femaleIndexes = femaleIndexes

def chooseParents(self):
return self.maleIndexes[random.randint(0, len(self.maleIndexes)-1)],\

self.femaleIndexes[random.randint(0, len(self.femaleIndexes)-1)]

def parentsChooser(pop, sp):
'How to call a C++ level parents chooser.'
create an object with needed information (such as x, y) ...
pc = myParentsChooser(

[x for x in range(pop.popSize()) if pop.individual(x).sex() == sim.MALE],
[x for x in range(pop.popSize()) if pop.individual(x).sex() == sim.FEMALE])

while True:
return indexes of parents repeatedly
yield pc.chooseParents()

pop = sim.Population(100, loci=1)
simu.evolve(

initOps=[
sim.InitSex(),
sim.InitGenotype(freq=[0.5, 0.5])

],
matingScheme=sim.HomoMating(sim.PyParentsChooser(parentsChooser),

sim.OffspringGenerator(ops=sim.MendelianGenoTransmitter())),

(continues on next page)

192 Chapter 6. Evolving populations

setup.py

simuPOP

(continued from previous page)

gen = 100
)

Download cppParentChooser.py

6.4 Age structured populations with overlapping generations **

Age is an important factor in many applications because it is related to many genetic (most obviously mating) and
environmental factors that influence the evolution of a population. The evolution of age structured populations will
lead to overlapping generations because parents can co-exist with their offspring in such a population. Although
simuPOP is based on a discrete generation model, it can be used to simulate age structured populations.

To evolve an age structured population, you will need to

• Define an information field age and use it to store age of all individuals. Age is usally assigned randomly at the
beginning of a simulation.

• Define a virtual splitter that splits the parental population into several virtual subpopulation. The most important
VSP consists of mating individuals (e.g. individuals with age between 20 and 40). Advanced features of virtual
splitters can be used to define complex VSPs such as males between age 20 - 40 and females between age 15-30
(use a ProductSplitter to split subpopulations by sex and age, and then a CombinedSplitter to join
several smaller VSPs together).

• Use a heterogeneous mating scheme that clones most individuals to the next generation (year) and produce
offspring from the mating VSP.

Example ageStructured gives an example of the evolution of age-structured population.

• Information fields ind_id, father_id and mother_id and operators IdTagger and
PedigreeTagger are used to track pedigree information during evolution.

• A CloneMating mating scheme is used to copy surviving individuals and a RandomMating mating scheme
is used to produce offspring.

• IdTagger and PedigreeTagger are used in the ops parameter of RandomMating because only new
offspring should have a new ID and record parental IDs. If you use these operators in the duringOps parameter
of the evolve function, individuals copied by CloneMating will have a new ID, and a missing parental ID.

• The resulting population is age-structured so Pedigrees could be extracted from such a population.

• The penetrance function is age dependent. Because this penetrance function is applied to all individuals at each
year and an individual will have the disease once he or she is affected, this penetrance function is more or less a
hazard function.

Example: Example of the evolution of age-structured population.

>>> import simuPOP as sim
>>> import random
>>> N = 10000
>>> pop = sim.Population(N, loci=1, infoFields=['age', 'ind_id', 'father_id', 'mother_
→˓id'])
>>> pop.setVirtualSplitter(sim.InfoSplitter(field='age', cutoff=[20, 50, 75]))
>>> def demoModel(gen, pop):
... '''A demographic model that keep a constant supply of new individuals'''
... # number of individuals that will die
... sim.stat(pop, popSize=True, subPops=[(0,3)])
... # individuals that will be kept, plus some new guys.

(continues on next page)

6.4. Age structured populations with overlapping generations ** 193

cppParentChooser.py

simuPOP

(continued from previous page)

... return pop.popSize() - pop.dvars().popSize + N // 75

...
>>> def pene(geno, age, ind):
... 'Define an age-dependent penetrance function'
... # this disease does not occur in children
... if age < 16:
... return 0
... # if an individual is already affected, keep so
... if ind.affected():
... return 1
... # the probability of getting disease increases with age
... return (0., 0.001*age, 0.001*age)[sum(geno)]
...
>>> def outputstat(pop):
... 'Calculate and output statistics'
... sim.stat(pop, popSize=True, numOfAffected=True,
... subPops=[(0, sim.ALL_AVAIL)],
... vars=['popSize_sp', 'propOfAffected_sp'])
... for sp in range(3):
... print('%s: %.3f%% (size %d)' % (pop.subPopName((0,sp)),
... pop.dvars((0,sp)).propOfAffected * 100.,
... pop.dvars((0,sp)).popSize))
... #
... return True
...
>>>
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... # random assign age
... sim.InitInfo(lambda: random.randint(0, 75), infoFields='age'),
... # random genotype
... sim.InitGenotype(freq=[0.5, 0.5]),
... # assign an unique ID to everyone.
... sim.IdTagger(),
... sim.PyOutput('Prevalence of disease in each age group:\n'),
...],
... # increase the age of everyone by 1 before mating.
... preOps=sim.InfoExec('age += 1'),
... matingScheme=sim.HeteroMating([
... # all individuals with age < 75 will be kept. Note that
... # CloneMating will keep individual sex, affection status and all
... # information fields (by default).
... sim.CloneMating(subPops=[(0,0), (0,1), (0,2)], weight=-1),
... # only individuals with age between 20 and 50 will mate and produce
... # offspring. The age of offspring will be zero.
... sim.RandomMating(ops=[
... sim.IdTagger(), # give new born an ID
... sim.PedigreeTagger(), # track parents of each individual
... sim.MendelianGenoTransmitter(), # transmit genotype
...],
... numOffspring=(sim.UNIFORM_DISTRIBUTION, 1, 3),
... subPops=[(0,1)]),],
... subPopSize=demoModel),
... # number of individuals?
... postOps=[
... sim.PyPenetrance(func=pene, loci=0),

(continues on next page)

194 Chapter 6. Evolving populations

simuPOP

(continued from previous page)

... sim.PyOperator(func=outputstat, step=20)

...],

... gen = 200

...)
Prevalence of disease in each age group:
age < 20: 0.578% (size 2596)
20 <= age < 50: 2.649% (size 4002)
50 <= age < 75: 4.217% (size 3249)
age < 20: 0.526% (size 2660)
20 <= age < 50: 27.627% (size 3931)
50 <= age < 75: 50.317% (size 3313)
age < 20: 0.489% (size 2660)
20 <= age < 50: 28.470% (size 3927)
50 <= age < 75: 61.757% (size 3347)
age < 20: 0.639% (size 2660)
20 <= age < 50: 29.449% (size 3990)
50 <= age < 75: 62.384% (size 3246)
age < 20: 0.526% (size 2660)
20 <= age < 50: 27.694% (size 3990)
50 <= age < 75: 64.030% (size 3325)
age < 20: 0.865% (size 2660)
20 <= age < 50: 28.070% (size 3990)
50 <= age < 75: 60.782% (size 3325)
age < 20: 0.489% (size 2660)
20 <= age < 50: 29.624% (size 3990)
50 <= age < 75: 60.812% (size 3325)
age < 20: 0.526% (size 2660)
20 <= age < 50: 29.273% (size 3990)
50 <= age < 75: 61.714% (size 3325)
age < 20: 0.789% (size 2660)
20 <= age < 50: 27.769% (size 3990)
50 <= age < 75: 61.233% (size 3325)
age < 20: 0.639% (size 2660)
20 <= age < 50: 29.073% (size 3990)
50 <= age < 75: 59.669% (size 3325)
200
>>>
>>> # draw two Pedigrees from the last age-structured population
>>> from simuPOP import sampling
>>> sample = sampling.drawNuclearFamilySample(pop, families=2, numOffspring=(2,3),
... affectedParents=(1,2), affectedOffspring=(1,3))
>>> sim.dump(sample)
Ploidy: 2 (diploid)
Chromosomes:
1: (AUTOSOME, 1 loci)

(1)
Information fields:
age ind_id father_id mother_id
population size: 8 (1 subpopulations with 8 Individuals)
Number of ancestral populations: 0

SubPopulation 0 (), 8 Individuals:
0: MA 1 | 0 | 37 31578 27047 27596
1: MU 1 | 0 | 29 32638 29986 29012
2: MA 1 | 0 | 37 31579 27047 27596
3: FA 1 | 0 | 57 29012 25317 22955
4: MU 0 | 0 | 49 29986 27087 25888

(continues on next page)

6.4. Age structured populations with overlapping generations ** 195

simuPOP

(continued from previous page)

5: FA 1 | 1 | 67 27596 24124 24202
6: FA 1 | 0 | 29 32637 29986 29012
7: MA 1 | 0 | 71 27047 23653 20932

>>>

now exiting runScriptInteractively...

Download ageStructured.py

6.5 Tracing allelic lineage *

Lineage of alleles consists of information such as the distribution of alleles (how many people carry this allele, and
the relationship between carriers) and age of alleles (when the alleles were introduced to the population). These
information are important for the study of evolutionary history of mutants. They are not readily available for normal
simulations, and even if you can track the generations when mutants are introduced, alleles in the present generation
that are of the same type (Identity by Stat, IBS) do not necessarily have the same ancestral origin (Identity by Decent,
IBD).

The lineage modules of simuPOP provides facilities to track allelic lineage. More specifically,

• Each allele is associated with an integer number (an allelic lineage) that identifies the origin, or the source of
the allele.

• The lineage of each allele is transmitted along with the allele during evolution. New alleles will be introduced
with their own lineage, even if they share the same states with existing alleles.

• Origin of alleles can be accessed using member functions of the Individual and Population classes.

Example geneticContribution demonstrates how to determine the contribution of genetic information from each ances-
tor. For this simulation, the alleles of each ancestor are associated with individual-specific numbers. During evolution,
some alleles might get lost, some are copied, and pieces of chromosomes are mixed due to genetic recombination. At
the end of simulation, the average number of ‘contributors’ of genetic information to each individual is calculated, as
well as the percent of genetic information from each ancestor. Although this particular simulation can be mimicked
using pure- genotype simulations by using special alleles for each ancestor, the combined information regarding the
state and origin of each allele will be very useful for genetic studies that involve IBD and IBS.

Example: Contribution of genetic information from ancestors

>>> import simuOpt
>>> simuOpt.setOptions(alleleType='lineage', quiet=True)
>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=[10]*4)
>>>
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.25]*4),
... sim.InitLineage(range(1000), mode=sim.PER_INDIVIDUAL),
...],
... matingScheme=sim.RandomMating(ops=sim.Recombinator(rates=0.001)),
... gen = 100
...)
100
>>> # average number of 'contributors'

(continues on next page)

196 Chapter 6. Evolving populations

ageStructured.py

simuPOP

(continued from previous page)

>>> num_contributors = [len(set(ind.lineage())) for ind in pop.individuals()]
>>> print('Average number of contributors is %.2f' % (sum(num_contributors) /
→˓float(pop.popSize())))
Average number of contributors is 13.98
>>> # percent of genetic information from each ancestor (baseline is 1/1000)
>>> lineage = pop.lineage()
>>> lin_perc = [lineage.count(x)/float(len(lineage)) for x in range(1000)]
>>> # how many of ancestors do not have any allele left?
>>> print('Number of ancestors with no allele left: %d' % lin_perc.count(0.))
Number of ancestors with no allele left: 817
>>> # top five contributors
>>> lin_perc.sort()
>>> lin_perc.reverse()
>>> print('Top contributors (started with 0.001): %.5f %.5f %.5f' % (lin_perc[0], lin_
→˓perc[1], lin_perc[2]))
Top contributors (started with 0.001): 0.03474 0.03058 0.02475

now exiting runScriptInteractively...

Download geneticContribution.py

Example geneticContribution uses operator InitLineage to explictly assign lineage to alleles of each individual.
You can also track the fate of finer genetic pieces by assigning different lineage values to chromosomes, or each loci
using different mode. This operator can also assign lineage of alleles to an ID stored in an information field, which
is usually ind_id, a field used by operators such as IdTagger and PedigreeTagger to assign and trace the
pedigree (parentship) information during evolution. More interesting, when such a field is present, mutation operators
will assign the IDs of recipients of mutants as the lineage of these mutants. This makes it possible to track the origin
of mutants. Moreover, when a mode FROM_INFO_SIGNED is used, additional ploidy information will be tagged to
lineage values (negative values for mutants on the second homologous copy of chromosomes) so that you can track
the inheritance of haplotypes.

To make use of these features, it is important to assign IDs to individuals before these operators are applied. Example
ageOfMutants demonstrates how to use the lineage information to determine the age of mutants. This example evolves
a constant population of size 10,000. An IdTagger is used before InitGenotype so individual IDs will be
assigned as allelic lineages. Because all offspring get their own IDs during evolution, the IDs of individuals are
assigned to mutants as their lineages, and can be used to determine the age of these mutants. This is pretty easy to
do in this example because of constant population size. For more complex demographic models, you might have to
record the minimal and maximum IDs of each generation in order to determine the age of mutants.

Example: Distribution of age of mutants

>>> import simuOpt
>>> simuOpt.setOptions(alleleType='lineage', quiet=True)
>>> import simuPOP as sim
>>> pop = sim.Population(size=10000, loci=[10]*10, infoFields='ind_id')
>>> # just to make sure IDs starts from 1
>>> sim.IdTagger().reset(1)
>>> pop.evolve(
... initOps = [
... sim.InitSex(),
... sim.InitGenotype(freq=[0.2, 0.3, 0.4, 0.1]),
... sim.IdTagger(),
... sim.InitLineage(mode=sim.FROM_INFO),
...],
... # an extremely high mutation rate, just for demonstration
... preOps = sim.AcgtMutator(rate=0.01, model='JC69'),

(continues on next page)

6.5. Tracing allelic lineage * 197

geneticContribution.py

simuPOP

(continued from previous page)

... matingScheme=sim.RandomMating(

... ops=[

... sim.IdTagger(),

... sim.MendelianGenoTransmitter(),

...]

...),

... gen = 10

...)
10
>>> lin = pop.lineage()
>>> # Number of alleles from each generation
>>> for gen in range(10):
... id_start = gen*10000 + 1
... id_end = (gen+1)*10000
... num_mut = len([x for x in lin if x >= id_start and x <= id_end])
... print('Gen %d: %5.2f %%' % (gen, num_mut / (2*10000*100.) * 100))
...
Gen 0: 93.40 %
Gen 1: 0.72 %
Gen 2: 0.71 %
Gen 3: 0.70 %
Gen 4: 0.74 %
Gen 5: 0.76 %
Gen 6: 0.73 %
Gen 7: 0.74 %
Gen 8: 0.75 %
Gen 9: 0.75 %

now exiting runScriptInteractively...

Download ageOfMutants.py

6.6 Pedigrees

6.6.1 Create a pedigree object

A Pedigree object is basically a static population object that is used to track relationship between individuals. An
unique ID is required for all individuals so that individuals could be identified easily using their IDs. Individuals
in a pedigree usually have one or two information fields to record the IDs of their parents. Operators IdTagger
and PedigreeTagger are usually used to maintain these information fields which are, although customizable,
almost always ind_id, father_id and mother_id. After pedigrees are identified, population operations could
be applied, for example, to extracted identified pedigrees from an existing population. This is basically how module
simuPOP.sampling works.

A new pedigree can be created from a population object with an ID field (default to ind_id), and two optional
parental ID fields (default to father_id and mother_id). For example,

ped = Pedigree(pop, infoFields=ALL_AVAIL)

will create a pedigree object from population pop with information fields ind_id, father_id and mother_id,
copying all available information fields. The ID field should have an unique ID for each individual and the parental
ID fields should record the ID of his or her parents. Genotype information and additional information fields can be
copied to a pedigree object if needed. The population object is unchanged.

198 Chapter 6. Evolving populations

ageOfMutants.py

simuPOP

Another method is to directly convert a population object to a pedigree object, using member function asPedigree
of a population class. For example,

pop.asPedigree()

will convert the existing population to a pedigree object. Object pop can then be able to call all pedigree mem-
ber functions. Once your task is done, you can convert the object back to a population using the Pedigree.
asPopulation() member function of the object.

A pedigree object can also be created from a file saved by function Pedigree.save() or operator
PedigreeTagger using function loadPedigree. Please refer to section save and load pedigrees in details.

6.6.2 Locate close and remote relatives of each individual

A pedigree object provides several functions for you to identify spouse, sibling and more distant relatives of each
individual. The results are stored to additional information fields of each individual. For example, if you would like to
know the offspring of all individuals, you can call function Pedigree.locateRelatives as follows:

offFields = ['off1', 'off2', 'off3']
ped.addInfoFields(offFields)
ped.locateRelatives(OFFSPRING, resultFields=offFields)

This function will locate up to 3 (determined by the length of resultFields) offspring of each individual and put
their IDs in specified informaton fields. This function allows you to identify spouses (it is common to have multiple
spouses when random mating is used), outbred spouse (exclude spouses who share at least one of the parents), offspring
(all offspring) and common offspring with a specified spouse, siblings (share at least one parent) and full siblings (share
two parents). It also allows you to limit the result by sex and affection status (e.g. find only affected female offspring).

More distant relationship can be derived from these relationship using function Pedigree.traceRelatives.
This function accepts a path of information fields and follows the path to identify relatives. For example

sibFields = ['sib1', 'sib2']
offFields = ['off1', 'off2', 'off3']
cousinFields = ['cousin1', 'cousin2', 'cousin3']
ped.addInfoFields(sibFields + offFields + cousinFields)
ped.locateRelatives(FULLSIBLING, resultFields=sibFields)
ped.locateRelatives(OFFSPRING, resultFields=offFields)
ped.traceRelatives([['father_id', 'mother_id'], sibFields, offFields],

sex=[ANY_SEX, MALE_ONLY, FEMALE_ONLY],
resultField=cousinFields)

would first identify full siblings and offspring of all individuals and then locate father or mother’s male sibling’s
daughters. As you can imagine, this function can be used to track very complicated relationships.

This function also provides a function for you to identify individuals with specified relatives. Example locateRelative
gives an example how to locate a grandfather with at least five grandchildren. With such information, functions such as
Population.extractIndividuals() could be used to extract Pedigrees from a population. This is basically
how simuPOP.sampling module works.

Example: Locate close and distant relatives of individuals

>>> import simuPOP as sim
>>> pop = sim.Population(1000, ancGen=2, infoFields=['ind_id', 'father_id', 'mother_id
→˓'])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),

(continues on next page)

6.6. Pedigrees 199

simuPOP

(continued from previous page)

... sim.IdTagger(),

...],

... matingScheme=sim.RandomMating(

... numOffspring=(sim.UNIFORM_DISTRIBUTION, 2, 4),

... ops=[

... sim.MendelianGenoTransmitter(),

... sim.IdTagger(),

... sim.PedigreeTagger()

...],

...),

... gen = 5

...)
5
>>> ped = sim.Pedigree(pop)
>>> offFields = ['off%d' % x for x in range(4)]
>>> grandOffFields = ['grandOff%d' % x for x in range(5)]
>>> ped.addInfoFields(['spouse'] + offFields + grandOffFields)
>>> # only look spouse for fathers...
>>> ped.locateRelatives(sim.OUTBRED_SPOUSE, ['spouse'], sex=sim.FEMALE_ONLY)
>>> ped.locateRelatives(sim.COMMON_OFFSPRING, ['spouse'] + offFields)
>>> # trace offspring of offspring
>>> ped.traceRelatives([offFields, offFields], resultFields=grandOffFields)
True
>>> #
>>> IDs = ped.individualsWithRelatives(grandOffFields)
>>> # check on ID.
>>> grandFather = IDs[0]
>>> grandMother = ped.indByID(grandFather).spouse
>>> # some ID might be invalid.
>>> children = [ped.indByID(grandFather).info(x) for x in offFields]
>>> childrenSpouse = [ped.indByID(x).spouse for x in children if x >= 1]
>>> childrenParents = [ped.indByID(x).father_id for x in children if x >= 1] \
... + [ped.indByID(x).mother_id for x in children if x >= 1]
>>> grandChildren = [ped.indByID(grandFather).info(x) for x in grandOffFields]
>>> grandChildrenParents = [ped.indByID(x).father_id for x in grandChildren if x >=
→˓1] \
... + [ped.indByID(x).mother_id for x in grandChildren if x >= 1]
>>>
>>> def idString(IDs):
... uniqueIDs = list(set(IDs))
... uniqueIDs.sort()
... return ', '.join(['%d' % x for x in uniqueIDs if x >= 1])
...
>>> print('''GrandParents: %d, %d
... Children: %s
... Spouses of children: %s
... Parents of children: %s
... GrandChildren: %s
... Parents of grandChildren: %s ''' % \
... (grandFather, grandMother, idString(children), idString(childrenSpouse),
... idString(childrenParents), idString(grandChildren),
→˓idString(grandChildrenParents)))
GrandParents: 3040, 3847
Children: 4078, 4079, 4080
Spouses of children: 4446, 4797
Parents of children: 3040, 3847
GrandChildren: 5188, 5189, 5879, 5880, 5881

(continues on next page)

200 Chapter 6. Evolving populations

simuPOP

(continued from previous page)

Parents of grandChildren: 4078, 4079, 4446, 4797
>>>
>>> # let us look at the structure of this complete pedigree using another method
>>> famSz = ped.identifyFamilies()
>>> # it is amazing that there is a huge family that connects almost everyone
>>> len(famSz), max(famSz)
(533, 2383)
>>> # if we only look at the last two generations, things are much better
>>> ped.addInfoFields('ped_id')
>>> famSz = ped.identifyFamilies(pedField='ped_id', ancGens=[0,1])
>>> len(famSz), max(famSz)
(664, 114)

now exiting runScriptInteractively...

Download locateRelative.py

6.6.3 Identify pedigrees (related individuals)

The Pedigree class provides some other functions that allows you to identify related individuals. For example,

• Function Pedigree.identifyAncestors identifies all ancestors of specified individuals or all individu-
als at the present generation. In a diaploid population when there is only one parent, you can see that only a
small portion of ancestors have offspring in the last generation.

• Function Pedigree.identifyOffspring identifies all offspring of specified individuals across multiple
generations.

• Function Pedigree.identifyFamilies groups all related individuals into families and assign a family
ID to all family members. You might be surprised by how large this kind of family can be when parents are
allowed to have multiple spouses.

All these functions support parameters subPops and ancGens so that you can limit your search in specific sub-
populations and ancestral generations. For example, you can limit your search to all male individuals to find out
someone’s male offspring. Example locateFamilies demonstrates how to use these functions to analyze the structure
of a complete pedigree.

Example: Identify all ancestors

>>> import simuPOP as sim
>>> pop = sim.Population(1000, ancGen=-1, infoFields=['ind_id', 'father_id', 'mother_
→˓id'])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.IdTagger(),
...],
... matingScheme=sim.RandomMating(
... numOffspring=(sim.UNIFORM_DISTRIBUTION, 2, 4),
... ops=[
... sim.MendelianGenoTransmitter(),
... sim.IdTagger(),
... sim.PedigreeTagger()
...],
...),
... gen = 19

(continues on next page)

6.6. Pedigrees 201

locateRelative.py

simuPOP

(continued from previous page)

...)
19
>>> # we now have the complete pedigree of 20 generations
>>> pop.asPedigree()
>>> # total number of individuals should be 20 * 1000
>>> # how many families do we have?
>>> fam = pop.identifyFamilies()
>>> len(fam)
525
>>> # but how many families with more than 1 individual?
>>> # The rest of them must be in the initial generation
>>> len([x for x in fam if x > 1])
18
>>> # let us look backward. allAnc are the ancestors who have offspring in the
>>> # last generation. You can see this is a small number compared the number of
>>> # ancestors.
>>> allAnc = pop.identifyAncestors()
>>> len(allAnc)
8614

now exiting runScriptInteractively...

Download locateFamilies.py

6.6.4 Save and load pedigrees

A complete pedigree, including ID, sex and affection status of each individual, IDs of their parents, and optionally
values of some information fields and genotypes at some loci could be saved to a file, and be loaded using function
loadPedigree. The loaded pedigree could be analyzed using pedigree functions, or be used to direct the evolution
of another evolutionary process using a pedigree mating scheme.

A pedigree could be saved in two ways. In the first method, a pedigree could be created using the methods de-
scribed above and be saved using function Pedigree.save(). However, if the population is large, recording all
ancestral generations may not be feasible. If this is the case, you can use a PedigreeTagger operator to save
individual information during the evolution. If you do not care about details of the top-most ancestral generation, a
PedigreeTagger used in a mating scheme should be enough to record pedigree information of all offspring. Individ-
ual in the top-most generation who have offspring in the next generation will be constructed in loadPedigree.
If you would like to include detailed information about all individuals in the top-most ancestral generation, you can
use a PedigreeTagger in the initOps parameter of the Simulator.evolve() or Population.evolve()
function.

Example saveLoadPedigree demonstrates how to use these functions to analyze the structure of a complete pedigree.

Example: Save and load a complete pedigree

>>> import simuPOP as sim
>>> pop = sim.Population(4, loci=1, infoFields=['ind_id', 'father_id', 'mother_id'],
... ancGen=-1)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.IdTagger(),
... sim.InitGenotype(freq=[0.5, 0.5]),
... sim.PedigreeTagger(output='>>pedigree.ped', outputLoci=0)
...],

(continues on next page)

202 Chapter 6. Evolving populations

locateFamilies.py

simuPOP

(continued from previous page)

... matingScheme=sim.RandomMating(

... ops=[

... sim.MendelianGenoTransmitter(),

... sim.IdTagger(),

... sim.PedigreeTagger(output='>>pedigree.ped', outputLoci=0)

...],

...),

... gen = 2

...)
2
>>> #
>>> print(open('pedigree.ped').read())
1 0 0 F U 0 0
2 0 0 F U 0 1
3 0 0 M U 1 1
4 0 0 M U 1 1
5 4 1 M U 0 1
6 4 2 F U 1 1
7 3 2 F U 0 1
8 3 2 M U 1 1
9 8 7 F U 1 1
10 5 6 M U 1 1
11 5 6 M U 1 1
12 5 7 F U 0 1

>>> pop.asPedigree()
>>> pop.save('pedigree1.ped', loci=0)
>>> print(open('pedigree1.ped').read())
1 0 0 F U 0 0
2 0 0 F U 0 1
3 0 0 M U 1 1
4 0 0 M U 1 1
5 4 1 M U 0 1
6 4 2 F U 1 1
7 3 2 F U 0 1
8 3 2 M U 1 1
9 8 7 F U 1 1
10 5 6 M U 1 1
11 5 6 M U 1 1
12 5 7 F U 0 1

>>> #
>>> ped = sim.loadPedigree('pedigree1.ped')
>>> sim.dump(ped, ancGens=range(3))
Ploidy: 2 (diploid)
Chromosomes:
1: (AUTOSOME, 1 loci)

(1)
Information fields:
ind_id father_id mother_id
population size: 4 (1 subpopulations with 4 Individuals)
Number of ancestral populations: 2

SubPopulation 0 (), 4 Individuals:
0: FU 1 | 1 | 9 8 7
1: MU 1 | 1 | 10 5 6
2: MU 1 | 1 | 11 5 6

(continues on next page)

6.6. Pedigrees 203

simuPOP

(continued from previous page)

3: FU 0 | 1 | 12 5 7

Ancestral population 1
SubPopulation 0 (), 4 Individuals:

0: MU 0 | 1 | 5 4 1
1: FU 1 | 1 | 6 4 2
2: FU 0 | 1 | 7 3 2
3: MU 1 | 1 | 8 3 2

Ancestral population 2
SubPopulation 0 (), 4 Individuals:

0: FU 0 | 0 | 1 0 0
1: FU 0 | 1 | 2 0 0
2: MU 1 | 1 | 3 0 0
3: MU 1 | 1 | 4 0 0

Download saveLoadPedigree.py

6.7 Evolve a population following a specified pedigree structure **

There are some applications where you would like to repeat the same evolutionary process repeatedly using the same
pedigree structure. For example, a gene- dropping simulation method basically initialize leaves of a pedigree with
random genotypes and pass the genotypes along the pedigree according to Mendelian laws. This can be done in
simuPOP using a pedigree mating scheme.

A pedigree mating scheme PedigreeMating evolves a population following an existing pedigree structure. If the
Pedigree object has N ancestral generations and a present generation, it can be used to evolve a population for N
generations, starting from the topmost ancestral generation. At the k-th generation, this mating scheme produces an
offspring generation according to subpopulation structure of the N-k-1 ancestral generation in the pedigree object
(e.g. producing the offspring population of generation 0 according to the N-1 ancestral generation of the pedigree
object). For each offspring, this mating scheme copies individual ID and sex from the corresponing individual in the
pedigree object. It then locates the parents of each offspring using their IDs in the pedigree object. A list of during
mating operators are then used to transmit parental genotype to the offspring.

To use this mating scheme, you should

• Prepare a pedigree object with N ancestral generations (and a present generation). Parental information should
be available at the present, parental, . . . , and N-1 ancestral generations. This object could be created by evolv-
ing a population with ancGen set to -1 with parental information tracked by operators idTagger() and
pedigreeTagger().

• Prepare the population so that it contains individuals with IDs matching this generation, or at least individuals
who have offspring in the next topmost ancestral generation. Because individuals in such a population will
parent offsprings at the N-1 ancestral generation of the pedigree object, it is a good idea to assign ind_id using
ped.indInfo('father_id') and ped.infInfo('mother_id') of the N-1 ancestral generation of
ped.

• Evolve the population using a PedigreeMating mating scheme for N or less generations. Because parents
are chosen by their IDs, subpopulation structure is ignored and migration will have no effect on the evolutionary
process. No IdTagger should be used to assign IDs to offspring because re-labeling IDs will confuse this
mating scheme. This mating scheme copies individual sex from pedigree individual to each offspring because
individual sex may affect the way genotypes are transmitted (e.g. a MendelianGenoTransmitter() with
sex chromosomes).

204 Chapter 6. Evolving populations

saveLoadPedigree.py

simuPOP

Example pedigreeMating demonstrates how to create a complete pedigree by evolving a population without genotype,
and then replay the evolutionary process using another population.

Example: Use a pedigree mating scheme to replay an evolutionary process.

>>> import simuPOP as sim
>>> # create a population without any genotype
>>> from simuPOP.utils import migrSteppingStoneRates
>>> ped = sim.Population(size=[1000]*5, ancGen=-1,
... infoFields=['ind_id', 'father_id', 'mother_id', 'migrate_to'])
>>> ped.evolve(
... initOps=[
... sim.InitSex(),
... sim.IdTagger(),
...],
... preOps=sim.Migrator(rate=migrSteppingStoneRates(0.1, 5)),
... matingScheme=sim.RandomMating(
... numOffspring=(sim.UNIFORM_DISTRIBUTION, 2, 4),
... ops=[
... # we do not even need a genotype transmitter...
... sim.IdTagger(),
... sim.PedigreeTagger(),
...]),
... gen=100
...)
100
>>> # convert itself to a pedigree object
>>> ped.asPedigree()
>>> # we should have 100 ancestral generations
>>> N = ped.ancestralGens()
>>> # We should have 101 * 1000 * 5 individuals, but how many actually
>>> # contribute genotype to the last generation?
>>> anc = ped.identifyAncestors()
>>> len(anc)
205647
>>> # remove individuals who do not contribute genotype to the last generation
>>> allIDs = [x.ind_id for x in ped.allIndividuals()]
>>> removedIDs = list(set(allIDs) - set(anc))
>>> ped.removeIndividuals(IDs=removedIDs)
>>> # now create a top most population, but we do not need all of them
>>> # so we record only used individuals
>>> IDs = [x.ind_id for x in ped.allIndividuals(ancGens=N)]
>>> sex = [x.sex() for x in ped.allIndividuals(ancGens=N)]
>>> # create a population, this time with genotype. Note that we do not need
>>> # populaton structure because PedigreeMating disregard population structure.
>>> pop = sim.Population(size=len(IDs), loci=1000, infoFields='ind_id')
>>> # manually initialize ID and sex
>>> sim.initInfo(pop, IDs, infoFields='ind_id')
>>> sim.initSex(pop, sex=sex)
>>> pop.evolve(
... initOps=sim.InitGenotype(freq=[0.4, 0.6]),
... # we do not need migration, or set number of offspring,
... # or demographic model, but we do need a genotype transmitter
... matingScheme=sim.PedigreeMating(ped,
... ops=sim.MendelianGenoTransmitter()),
... gen=100
...)
100

(continues on next page)

6.7. Evolve a population following a specified pedigree structure ** 205

simuPOP

(continued from previous page)

>>> # let us compare the pedigree and the population object
>>> print(ped.indInfo('ind_id')[:5])
(500001.0, 500002.0, 500003.0, 500004.0, 500005.0)
>>> print(pop.indInfo('ind_id')[:5])
(500001.0, 500002.0, 500003.0, 500004.0, 500005.0)
>>> print([ped.individual(x).sex() for x in range(5)])
[1, 2, 1, 1, 2]
>>> print([pop.individual(x).sex() for x in range(5)])
[1, 2, 1, 1, 2]
>>> print(ped.subPopSizes())
(663, 1254, 1213, 1230, 640)
>>> print(pop.subPopSizes())
(663, 1254, 1213, 1230, 640)

now exiting runScriptInteractively...

Download pedigreeMating.py

As long as unique IDs are used for individuals in different generations, the same technique could be used for overlap-
ping generations as well. Even if some individuals are copied from generation to generation, separate IDs should be
assigned to these individuals so that a pedigree could be correctly constructed. Because these individuals are copied
from a single parent, the pedigree object will have mixed number of parents (some individuals have one parent, some
have two). If PedigreeTagger operators are used to record parental information, such a pedigree could be loaded
by function loadPedigree. Example pedigreeMatingAgeStructured evolves an age-structured population. Instead
of saving all ancestral generations to a population object and convert it to a pedigree, this example saves the complete
pedigree to file structure.ped and load the pedigree using function loadPedigree.

Example: Replay an evolutionary process of an age-structured population

>>> import simuPOP as sim
>>>
>>> import random
>>> N = 10000
>>> pop = sim.Population(N, infoFields=['age', 'ind_id', 'father_id', 'mother_id'])
>>> # we simulate age 0, 1, 2, 3
>>> pop.setVirtualSplitter(sim.InfoSplitter(field='age', values=[0, 1, 2, 3]))
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... # random assign age
... sim.InitInfo(lambda: random.randint(0, 3), infoFields='age'),
... # random genotype
... sim.InitGenotype(freq=[0.5, 0.5]),
... # assign an unique ID to everyone.
... sim.IdTagger(),
...],
... # increase the age of everyone by 1 before mating.
... preOps=sim.InfoExec('age += 1'),
... matingScheme=sim.HeteroMating([
... # age 1, 2 will be copied
... sim.CloneMating(
... ops=[
... # This will set offspring ID
... sim.CloneGenoTransmitter(),
... # new ID for offspring in order to track pedigree
... sim.IdTagger(),
... # both offspring and parental IDs will be the same

(continues on next page)

206 Chapter 6. Evolving populations

pedigreeMating.py

simuPOP

(continued from previous page)

... sim.PedigreeTagger(output='>>structured.ped'),

...],

... subPops=[(0,1), (0,2)],

... weight=-1

...),

... # age 2 produce offspring

... sim.RandomMating(

... ops=[

... # new ID for offspring

... sim.IdTagger(),

... # record complete pedigree

... sim.PedigreeTagger(output='>>structured.ped'),

... sim.MendelianGenoTransmitter(), # transmit genotype

...],

... subPops=[(0,2)]

...)]

...),

... gen=20

...)
20
>>>
>>> # use a pedigree object recovered from a file saved by operator PedigreeTagger
>>> ped = sim.loadPedigree('structured.ped')
>>> # create a top most population, but we do not need all of them
>>> # so we record only used individuals
>>> IDs = [x.ind_id for x in ped.allIndividuals(ancGens=ped.ancestralGens())]
>>> sex = [x.sex() for x in ped.allIndividuals(ancGens=ped.ancestralGens())]
>>> # create a population, this time with genotype. Note that we do not need
>>> # populaton structure because PedigreeMating disregard population structure.
>>> pop = sim.Population(size=len(IDs), loci=1000, infoFields='ind_id')
>>> # manually initialize ID and sex
>>> sim.initInfo(pop, IDs, infoFields='ind_id')
>>> sim.initSex(pop, sex=sex)
>>> pop.evolve(
... initOps=sim.InitGenotype(freq=[0.4, 0.6]),
... # we do not need migration, or set number of offspring,
... # or demographic model, but we do need a genotype transmitter
... matingScheme=sim.PedigreeMating(ped,
... ops=sim.IfElse(lambda mom: mom is None,
... sim.CloneGenoTransmitter(),
... sim.MendelianGenoTransmitter())
...),
... gen=100
...)
20
>>> #
>>> print(pop.indInfo('ind_id')[:5])
(200001.0, 200002.0, 200003.0, 200004.0, 200005.0)
>>> print([pop.individual(x).sex() for x in range(5)])
[1, 2, 2, 1, 1]
>>> # The pedigree object does not have population structure
>>> print(pop.subPopSizes())
(10000,)

now exiting runScriptInteractively...

Download pedigreeMatingAgeStructured.py

6.7. Evolve a population following a specified pedigree structure ** 207

pedigreeMatingAgeStructured.py

simuPOP

The pedigree is then used to repeat the evolutionary process. However, because some individuals were produced sexu-
ally using MendelianGenoTransmitter and some were copied using CloneGenoTransitter, an IfElse
operator has to be used to transmit genotypes correctly. This example uses the function condition of the IfElse
operator and makes use of the fact that parent mom will be None if an individual is copied from his or her father.

plainnat simuPOP

6.8 Simulation of mitochondrial DNAs (mtDNAs) *

Mitochondrial DNAs resides in human mitochondrion. A zygote inherits its organelles from the cytoplasm of the egg,
and thus organelle inheritance is generally maternal. Whereas there is only one copy of a nuclear chromosome per
gamete, there are man copies of an organellar chromosome, forming a population of identical organelle chromosomes
that is transmitted to the offspring through the egg. Because these organellar chromosomes are identical, they are
modelled in simuPOP as a single chromosome with type MITOCHONDRIAL. In order to simulate mitochondrial
DNAs, it is important to remember:

• MendelianGenoTransmitter and Recombinator do not handle mitochondrial DNAs so you will have
to explicitly use MitochondrialGenoTransmitter to transmit the mitochondrial DNAs from mother to
offspring. Note that CloneGenoTransmitter is a special transmitter that will copy everything including
sex, information fields to offspring.

• The Stat operator recognizes this chromosome type and will report allele, haplotype, and genotype counts,
and other statistics correctly, although some diploid-specific statistics are not applicable.

• Natural selections on mtDNAs is usually performed using operator MapSelector where single alleles are
assigned a fitness value. Operator MaSelector assumes two alleles and is not applicable.

Example mitochondrial demonstrates the use of a Recombinator to recombine an autosome and two sex chromo-
somes, and a MitochondrialGenoTransmitter to transmit mitochondrial chromosomes. Natural selection is
applied to allele 3 at the 3rd locus on the mitochondrial DNA, whose frequency in the population decreases as a result.

Example: Transmission of mitochondrial chromosomes

>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=[5]*4,
... # one autosome, two sex chromosomes, and one mitochondrial chromosomes
... chromTypes=[sim.AUTOSOME, sim.CHROMOSOME_X, sim.CHROMOSOME_Y, sim.
→˓MITOCHONDRIAL],
... infoFields=['fitness'])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.25]*4)
...],
... preOps=[
... sim.MapSelector(loci=17, fitness={(0,): 1, (1,): 1, (2,): 1, (3,): 0.4})
...],
... matingScheme=sim.RandomMating(ops= [
... sim.Recombinator(rates=0.1),
... sim.MitochondrialGenoTransmitter(),
...]),
... postOps=[
... sim.Stat(alleleFreq=17, step=10),
... sim.PyEval(r'"%.2f %.2f %.2f %.2f\n" % (alleleNum[17][0],'
... 'alleleNum[17][1], alleleNum[17][2], alleleNum[17][3])', step=10),
...],
... gen = 100

(continues on next page)

208 Chapter 6. Evolving populations

simuPOP

(continued from previous page)

...)
1288.00 273.00 325.00 114.00
1384.00 245.00 371.00 0.00
1492.00 138.00 370.00 0.00
1461.00 69.00 470.00 0.00
1449.00 65.00 486.00 0.00
1536.00 17.00 447.00 0.00
1624.00 7.00 369.00 0.00
1538.00 0.00 462.00 0.00
1619.00 0.00 381.00 0.00
1623.00 0.00 377.00 0.00
100

now exiting runScriptInteractively...

Download mitochondrial.py

You might wonder how a mutation can change the allele of all organelles in the mitochondrion. This is generally
believed to be done through natural drift during cytoplasmic segreagation, which is not a mitotic process because
it takes place in dividing asexual cells. Because only one mitochondrial chromosome is allowed in simuPOP, you
will have to use customized chromosome types if you would like to simulate this process. Fortunately, operator
MitochondrialGenoTransmitter can select random organelles from multiple customized chromosomes, if
no chromosome of type MITOCHONDRIAL is present.

Example mtDNA_evolve demonstrates the fixation of mutant in cells with multiple organelles. Althogh mutations are
introduced to only one of the organelles, after a number of cell divisions, the majority of the cells now have only one
type of allele. This example uses a RandomSelection mating scheme to select cells randomly from the parental
population. Because no sexual reproduction is involved, MitochondrialGenoTransmitter passes the parental
genotype to offspring regardless of sex of parent. This example also demonstrates a disadvantage of using customized
chromosomes in that you will have to calculate statistics by yourself because only you know the meaning of these
chromosomes. In this example, a function is written to count the number of mutants in each cell (individual), and
summarize the number of cells with 0, 1, 2, 3, 4, and 5 copies of the mutant.

Example: Evolution of multiple organelles in mitochondrion

>>> import simuPOP as sim
>>>
>>> def alleleCount(pop):
... summary = [0]* 6
... for ind in pop.individuals():
... geno = ind.genotype(ploidy=0)
... summary[geno[0] + geno[2] + geno[4] + geno[6] + geno[8]] += 1
... print('%d %s' % (pop.dvars().gen, summary))
... return True
...
>>> pop = sim.Population(1000, loci=[2]*5, chromTypes=[sim.CUSTOMIZED]*5)
>>> pop.evolve(
... # every one has miDNAs 10, 00, 00, 00, 00
... initOps=[
... sim.InitGenotype(haplotypes=[[1]+[0]*9]),
...],
... # random select cells for cytoplasmic segregation
... matingScheme=sim.RandomSelection(ops= [
... sim.MitochondrialGenoTransmitter(),
...]),
... postOps=sim.PyOperator(func=alleleCount, step=10),
... gen = 51

(continues on next page)

6.8. Simulation of mitochondrial DNAs (mtDNAs) * 209

mitochondrial.py

simuPOP

(continued from previous page)

...)
0 [333, 408, 219, 38, 2, 0]
10 [806, 16, 14, 16, 11, 137]
20 [816, 1, 1, 3, 0, 179]
30 [833, 0, 0, 0, 0, 167]
40 [805, 0, 0, 0, 0, 195]
50 [849, 0, 0, 0, 0, 151]
51

now exiting runScriptInteractively...

Download mtDNA_evolve.py

210 Chapter 6. Evolving populations

mtDNA_evolve.py

CHAPTER 7

Utility Modules

7.1 Module simuOpt (function simuOpt.setOptions)

Module simuOpt handles options to specify which simuPOP module to load and how this module should be
loaded, using function simuOpt.setOptionswith parameters alleleType (short, long, or binary), op-
timized (standard or optimized), gui (whether or not use a graphical user interface and which graphical
toolkit to use), revision (minimal required version/revision), quiet (with or without banner message, and debug
(which debug code to turn on). These options have been discussed in Example lst_Use_of_standard_module and
lst_Use_of_optimized_module and other related sections. Note that most options can be set by environmental vari-
ables and command line options which are sometimes more versatile to use.

7.2 Module simuPOP.utils

The simuPOP.utils module provides a few utility functions and classes. They do not belong to the simuPOP core
but are distributed with simuPOP because they are frequently used and play an important role in some specialized
simulation techniques. Please refer to the simuPOP online cookbook (http://simupop.sourceforge.net/
cookbook) for more utility modules and functions.

7.2.1 Trajectory simulation (classes Trajectory and TrajectorySimulator)

A forward-time simulation, by its nature, is directly influenced by random genetic drift. Starting from the same parental
generation, allele frequencies in the offspring generation would vary from simulation to simulation, with perhaps
a predictable mean frequency which is determined by factors such as parental allele frequency, natural selection,
mutation and migration.

Genetic drift is unavoidable and is in many cases the target of theoretical and simulation studies. However, in certain
types of studies, there is often a need to control the frequencies of certain alleles in the present generation. For
example, if we are studying a particular penetrance model with pre-specified frequencies of disease predisposing
alleles, the simulated populations would better have consistent allele frequencies at the disease predisposing loci, and
consequently consistent disease prevalence.

211

simuPOP

simuPOP provides a special offspring generator ControlledOffspringGenerator and an associated mating
scheme called ControlledRandomMating that can be used to generate offspring generations conditioning on
frequencies of one or more alleles. This offspring generator essentially uses a reject-sampling algorithm to select (or
reject) offspring according to their genotypes at specified loci. A detailed description of this algorithm is given in
Peng2007a.

The controlled random mating scheme accepts a user-defined trajectory function that tells the mating scheme the
desired allele frequencies at each generation. Example controlledOffGenerator uses a manually defined function that
raises the frequency of an allele steadily. However, given known demographic and genetic factors, a trajectory should
be simulated randomly so that it represents a random sample from all possible trajectories that match the allele
frequency requirement. If such a condition is met, the controlled evolutionary process can be considered as a random
process conditioning on allele frequencies at the present generation. Please refer to Peng2007a for a detailed discussion
about the theoretical requirements of a valid trajectory simulator.

The simuUtil module provides functions and classes that implement two trajectory simulation methods that can
be used in different situations. The first class is TrajectorySimulator which takes a demographic model and
a selection model as its input and simulates allele frequency trajectories using a forward or backward algorithm. The
demographic model is given by parameter N, which can be a constant (e.g. N=1000) for constant population size, a
list of subpopulation sizes (e.g. N=[1000, 2000]) for a structured population with constant size, or a demographic
function that returns population or subpopulation sizes at each generation. In the last case, subpopulations can be split
or merged with the constrait that subpopulations can be merged into one, from split from one population.

A fitness model specifies the fitness of genotypes at one or more loci using parameter fitness. It can be a list
of three numbers (e.g. fitness=[1, 1.001, 1.003]), repsenting the fitness of genotype AA, Aa and aa at
one or more loci; or different fitness for genotypes at each locus (e.g. fitness=[1, 1.001, 1.003, 1, 1,
1.002]), or for each combination or genotype (interaction). In the last case, values are needed for each genotype
if there are loci. This trajectory simulator also accepts generation-specific fitness values by accepting a function that
returns fitness values at each generation.

The simulator then simulates trajectories of allele frequencies and return them as objects of class Trajectory.
This object can be used provide a trajectory function that can be used directly in a ControlledRandomMating
mating scheme (function func()) or provide a list of PointMutator to introduce mutants at appropriate generations
(function mutators()). If a simulation failed after specified number of attempts, a None object will be returned.

Forward-time trajectory simulations (function simulateForwardTrajectory)

A forward simulation starts from a specified generation with specified allele frequencies at one or more loci. The sim-
ulator simulates allele frequencies forward-in-time, until it reaches a specified ending generation. A trajectory object
will be returned if the simulated allele frequencies fall into specified ranges. Example forwardTrajectory demonstrates
how to use this simulation method to obtain and use a simulated trajectory, for two unlinked loci under different
selection pressure.

Example: Simulation and use of forward-time simulated trajectories.

>>> import simuOpt
>>> simuOpt.setOptions(quiet=True)
>>> import simuPOP as sim
>>> from simuPOP.utils import Trajectory, simulateForwardTrajectory
>>>
>>> traj = simulateForwardTrajectory(N=[2000, 4000], fitness=[1, 0.99, 0.98],
... beginGen=0, endGen=100, beginFreq=[0.2, 0.3],
... endFreq=[[0.1, 0.11], [0.2, 0.21]])
>>> #
>>> #traj.plot('log/forwardTrajectory.png', set_ylim_top=0.5,
>>> # plot_c_sp=['r', 'b'], set_title_label='Simulated Trajectory (forward-time)')
>>> pop = sim.Population(size=[2000, 4000], loci=10, infoFields='fitness')

(continues on next page)

212 Chapter 7. Utility Modules

simuPOP

(continued from previous page)

>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.8, 0.2], subPops=0),
... sim.InitGenotype(freq=[0.7, 0.3], subPops=1),
... sim.PyOutput('Sp0: loc2\tloc5\tSp1: loc2\tloc5\n'),
...],
... matingScheme=sim.ControlledRandomMating(
... ops=[sim.Recombinator(rates=0.01)],
... loci=5, alleles=1, freqFunc=traj.func()),
... postOps=[
... sim.Stat(alleleFreq=[2, 5], vars=['alleleFreq_sp'], step=20),
... sim.PyEval(r"'%.2f\t%.2f\t%.2f\t%.2f\n' % (subPop[0]['alleleFreq'][2][1],"
... "subPop[0]['alleleFreq'][5][1], subPop[1]['alleleFreq'][2][1],"
... "subPop[1]['alleleFreq'][5][1])", step=20)
...],
... gen = 101
...)
Sp0: loc2 loc5 Sp1: loc2 loc5
0.19 0.20 0.30 0.29
0.20 0.20 0.29 0.27
0.20 0.14 0.28 0.27
0.17 0.13 0.27 0.26
0.14 0.13 0.31 0.23
0.13 0.10 0.27 0.20
101

now exiting runScriptInteractively...

Download forwardTrajectory.py

Figure fig_forwardTrajectory plots simulated trajectories of one locus in two subpopulations. The plot function uses
either rpy or matplotlib as the underlying plotting library.

Figure: Simulated trajectories of one locus in two subpopulations

Backward-time trajectory simulations (function simulateBackwardTrajectory).

A backward simulation starts from specified frequencies at the present generation. In the single-allele case, the sim-
ulations goes backward-in-time until an allele gets lost. The length of such a trajectory is random, which is usually
a desired property because the age of a mutant in the present generation is usually unknown and is assumed to be
random.

This trajectory simulation technique is usually used as follows:

1. Determine a demographic and a natural selection model using which a forward- time simulation will be per-
formed.

2. Given current disease allele frequencies, simulate trajectories of allele frequencies at each DSL using a backward
approach.

3. Evolve a population forward-in-time, using designed demographic and selection models. A
ControlledRandomMating scheme instead of the usual RandomMating scheme should be used.

Figure fig_backTrajectory plots simulated trajectories of two unlinked loci.

Figure: Simulated trajectories of two unlinked loci

The trajectory is used in a ControlledRandomMating scheme in the following evolutionary scenario:

7.2. Module simuPOP.utils 213

forwardTrajectory.py

simuPOP

log/forwardTrajectory.png

214 Chapter 7. Utility Modules

simuPOP

log/backTrajectory.png

7.2. Module simuPOP.utils 215

simuPOP

Example: Simulation and use of backward-time simulated trajectories.

>>> import simuPOP as sim
>>> from simuPOP.utils import Trajectory, simulateBackwardTrajectory
>>> from math import exp
>>> def Nt(gen):
... 'An exponential sim.Population growth demographic model.'
... return int((5000) * exp(.00115 * gen))
...
>>> def fitness(gen, sp):
... 'Constant positive selection pressure.'
... return [1, 1.01, 1.02]
...
>>> # simulate a trajectory backward in time, from generation 1000
>>> traj = simulateBackwardTrajectory(N=Nt, fitness=fitness, nLoci=2,
... endGen=1000, endFreq=[0.1, 0.2])
>>> # matplotlib syntax
>>> #traj.plot('log/backTrajectory.png', set_ylim_top=0.3, set_ylim_bottom=0,
>>> # plot_c_loc=['r', 'b'], set_title_label='Simulated Trajectory (backward-
→˓time)')
>>>
>>> print('Trajectory simulated with length %s ' % len(traj.traj))
Trajectory simulated with length 834
>>> pop = sim.Population(size=Nt(0), loci=[1]*2)
>>> # save Trajectory function in the sim.population's local namespace
>>> # so that the sim.PyEval operator can access it.
>>> pop.dvars().traj = traj.func()
>>> pop.evolve(
... initOps=[sim.InitSex()],
... preOps=traj.mutators(loci=[0, 1]),
... matingScheme=sim.ControlledRandomMating(loci=[0, 1], alleles=[1, 1],
... subPopSize=Nt, freqFunc=traj.func()),
... postOps=[
... sim.Stat(alleleFreq=[0, 1], begin=500, step=100),
... sim.PyEval(r"'%4d: %.3f (exp: %.3f), %.3f (exp: %.3f)\n' % (gen,
→˓alleleFreq[0][1],"
... "traj(gen)[0], alleleFreq[1][1], traj(gen)[1])",
... begin=500, step=100)
...],
... gen=1001 # evolve 1001 generations to reach the end of generation 1000
...)
500: 0.013 (exp: 0.013), 0.000 (exp: 0.000)
600: 0.005 (exp: 0.005), 0.003 (exp: 0.003)
700: 0.011 (exp: 0.011), 0.008 (exp: 0.008)
800: 0.012 (exp: 0.013), 0.031 (exp: 0.031)
900: 0.037 (exp: 0.037), 0.092 (exp: 0.092)

1000: 0.101 (exp: 0.100), 0.200 (exp: 0.200)
1001

now exiting runScriptInteractively...

Download backTrajectory.py

7.2.2 Graphical or text-based progress bar (class ProgressBar)

If your simulation takes a while to finish, you could use a progress bar to indicate its progress. The ProgressBar
class is provided for such a purpose. Basically, you create a ProgressBar project with intended total steps, and calls

216 Chapter 7. Utility Modules

backTrajectory.py

simuPOP

its update member function with each progress. Depending on available graphical toolkit and the global or local
GUI settings, a wxPython based dialog, a Tkinter based dialog, or a text-based dialog will be used. Example
ProgressBar demonstrates how to use a text-based progress bar. If the progress bar is updated at each step (such
as in this example), function update() can be called without parameter because it updates the progress bar at an
increment of 1 in this case.

Example: Using a text-based progress bar

>>> import simuPOP as sim
>>> from simuPOP.utils import ProgressBar
>>> pop = sim.Population(10000, loci=[10], infoFields='index')
>>> prog = ProgressBar('Setting individual genotype...\n', pop.popSize(), gui=False)
Setting individual genotype...
>>> for idx in range(pop.popSize()):
... # do something to each individaul
... pop.individual(idx).index = idx
... # idx + 1 can be ignored in this case.
... prog.update(idx + 1)
...
....1....2....3....4....5....6....7....8....9.... Done.

now exiting runScriptInteractively...

Download ProgressBar.py

7.2.3 Display population variables (function viewVars)

If a population has a large number of variables, or if you are not sure which variable to output, you could use function
viewVars to view the population variables in a tree form. If wxPython is available, a dialog could be used to view
the variables interactively. Example viewVars demonstrates how to use this function. The wxPython-based dialog is
displayed in Figure viewVars.

Example: Using function viewVars to display population variables

import simuPOP as sim
from simuPOP.utils import viewVars
pop = sim.Population([1000, 2000], loci=3)
sim.initGenotype(pop, freq=[0.2, 0.4, 0.4], loci=0)
sim.initGenotype(pop, freq=[0.2, 0.8], loci=2)
sim.stat(pop, genoFreq=[0, 1, 2], haploFreq=[0, 1, 2],

alleleFreq=range(3),
vars=['genoFreq', 'genoNum', 'haploFreq', 'alleleNum_sp'])

viewVars(pop.vars())

Download viewVars.py

Figure: Using wxPython to display population variables

7.2.4 Import simuPOP population from files in GENEPOP, PHYLIP and FSTAT for-
mats (function importPopulation)

A function importPopulation is provided in the simuPOP.utils module to import populations from files in
GENEPOP, PHYLIP and FSTAT formats. Because these formats do not support many of the features of a simuPOP
population, this function can only import genotype and basic information of a population. Because formats GENEPOP
and FSTAT formats uses allele 0 to indicate missing value, true alleles in these formats start at value 1. If you would

7.2. Module simuPOP.utils 217

ProgressBar.py
viewVars.py

simuPOP

Users/bpeng1/simuPOP/simuPOP/doc/figures/viewVars.png

218 Chapter 7. Utility Modules

simuPOP

like to import alleles with starting value 0, you can use parameter adjust=-1 to adjust imported values, if you data do
not have any missing value.

7.2.5 Export simuPOP population to files in STRUCTURE, GENEPOP, FSTAT,
Phylip, PED, MAP, MS, and CSV formats (function export and operator
Exporter)

simuPOP uses a program-specific binary format to save and load populations but you can use the export function to
export a simuPOP population in other formats if you would like to use other programs to analyze simulated popula-
tions. An operator Exporter is also provided so that you could export populations during evolution. Operator arameters
such as output, begin, end, step, at, reps, and subPops are supported so that you could export subsets of individuals at
multiple generations using different file names (e.g. output='!''%d.ped'' % gen' to output to different files
at different generations).

Commonly used population genetics file formats such as GENEPOP, FSTAT, Phylip, MS, and STRUCTURE are
supported. Because these formats cannot store all information in a simuPOP population, export and import op-
erations can lose information. Also, because the processing application have different assumptions, some conver-
sion of genotypes might be needed. For example, because GENEPOP uses allele 0 as missing genotype, function
export(format='genepop') accepts a parameter adjust with default value 1 to export alleles 0, 1 etc to 1,
2, The same applies to function importPopulation where some file formats accepts a parameter adjust
(with default value 1) to adjust allele values. Please refer to the simuPOP reference manual for a detailed list of
acceptable parameters for each format.

Example importExport demonstrates how to import and export a population in formats FSTAT and STRUCTURE.
For the FSTAT format, because the population is exported with allele values shifted by 1, the imported popula-
tion has different alleles than the original population. This can be fixed by adding parameter adjust=-1 to the
importPopulation function.

Example: Save and load a population

>>> import simuPOP as sim
>>> from simuPOP.utils import importPopulation, export
>>> pop = sim.Population([2,4], loci=5, lociNames=['a1', 'a2', 'a3', 'a4', 'a5'],
... infoFields='BMI')
>>> sim.initGenotype(pop, freq=[0.3, 0.5, 0.2])
>>> sim.initSex(pop)
>>> sim.initInfo(pop, [20, 30, 40, 50, 30, 25], infoFields='BMI')
>>> export(pop, format='fstat', output='fstat.txt')
Exporting....1....2....3....4....5....6....7....8....9.... Done.
>>> print(open('fstat.txt').read())
2 5 3 1
a1
a2
a3
a4
a5
1 21 21 23 12 12
1 22 23 22 22 21
2 31 21 22 11 13
2 22 22 33 23 21
2 22 32 33 22 21
2 33 33 22 21 32

>>> export(pop, format='structure', phenotype='BMI', output='stru.txt')
Exporting....1....2....3....4....5....6....7....8....9.... Done.
>>> print(open('stru.txt').read())

(continues on next page)

7.2. Module simuPOP.utils 219

simuPOP

(continued from previous page)

a1 a2 a3 a4 a5
-1 1.0 1.0 1.0 1.0
1 1 20 1 1 1 0 0
1 1 20 0 0 2 1 1
2 1 30 1 1 1 1 1
2 1 30 1 2 1 1 0
1 2 40 2 1 1 0 0
1 2 40 0 0 1 0 2
2 2 50 1 1 2 1 1
2 2 50 1 1 2 2 0
3 2 30 1 2 2 1 1
3 2 30 1 1 2 1 0
4 2 25 2 2 1 1 2
4 2 25 2 2 1 0 1

>>> pop1 = importPopulation(format='fstat', filename='fstat.txt')
>>> sim.dump(pop1)
Ploidy: 2 (diploid)
Chromosomes:
1: (AUTOSOME, 5 loci)

a1 (1), a2 (2), a3 (3), a4 (4), a5 (5)
population size: 6 (2 subpopulations with 2 (1), 4 (2) Individuals)
Number of ancestral populations: 0

SubPopulation 0 (1), 2 Individuals:
0: MU 22211 | 11322
1: MU 22222 | 23221

SubPopulation 1 (2), 4 Individuals:
2: MU 32211 | 11213
3: MU 22322 | 22331
4: MU 23322 | 22321
5: MU 33223 | 33212

now exiting runScriptInteractively...

Download importExport.py

Because coalescent simulations are increasingly used to generate initial populations in equilibrium stats, importing
data in MS format is very useful. Because MS only simulates haploid sequences with genotype only at segregating
sites, you might have to simulate an even number of sequences and use option ploidy=2 to import the simulated
data as a haploid population. In addition, a parameter mergeBy is provided to import multiple replicates as multiple
subpopulations or chromosomes. This corresponds to the splitBy parameter when you export your data in MS format.
Example importMS demonstrates how to use these parameters.

Example: Export and import in MS format

>>> import simuPOP as sim
>>> from simuPOP.utils import importPopulation, export
>>> pop = sim.Population([20,20], loci=[10, 10])
>>> # simulate a population but mutate only a subset of loci
>>> pop.evolve(
... preOps=[
... sim.InitSex(),
... sim.SNPMutator(u=0.1, v=0.01, loci=range(5, 17))
...],
... matingScheme=sim.RandomMating(),

(continues on next page)

220 Chapter 7. Utility Modules

importExport.py

simuPOP

(continued from previous page)

... gen=100

...)
100
>>> # export first chromosome, all individuals
>>> export(pop, format='ms', output='ms.txt')
Exporting....1....2....3....4....5....6....7....8....9.... Done.
>>> # export first chromosome, subpops as replicates
>>> export(pop, format='ms', output='ms_subPop.txt', splitBy='subPop')
Exporting....1....2....3....4....5....6....7....8....9.... Done.
>>> # export all chromosomes, but limit to all males in subPop 1
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> export(pop, format='ms', output='ms_chrom.txt', splitBy='chrom', subPops=[(1,0)])
Exporting....1....2....3....4....5....6....7....8....9.... Done.
>>> #
>>> print(open('ms_chrom.txt').read())
simuPOP_export 20 2
30164 48394 29292

//
segsites: 5
positions: 6.0 7.0 8.0 9.0 10.0
11110
11111
11110
11111
11011
11111
01111
10111
11111
11111
01111
01111
11011
11111
01111
11011
11101
10111
11111
11111

//
segsites: 7
positions: 1.0 2.0 3.0 4.0 5.0 6.0 7.0
1101111
1110011
1101110
1111111
0111110
1111111
1110001
1111111
0111110
1111111
1111111
1111111

(continues on next page)

7.2. Module simuPOP.utils 221

simuPOP

(continued from previous page)

1111111
1011111
1111111
1111111
1011111
1111111
1111111
1011111

>>> # import as haploid sequence
>>> pop = importPopulation(format='ms', filename='ms.txt')
>>> # import as diploid
>>> pop = importPopulation(format='ms', filename='ms.txt', ploidy=2)
>>> # import as a single chromosome
>>> pop = importPopulation(format='ms', filename='ms_subPop.txt', mergeBy='subPop')

now exiting runScriptInteractively...

Download importMS.py

If the file format you are interested in is not supported, you can export data in csv format and convert the file by
yourself. You can also try to write your own import or export functions as described in the advanced topics section of
this guide.

7.2.6 Export simuPOP population in csv format (function saveCSV, deprecated)

Function saveCSV is provided in the simuPOP.utils module to save (the present generation of) a simuPOP
population in comma separated formats. It allows you to save individual information fields, sex, affection status and
genotype (in that order). Because this function allows you to output these information in different formats using
parameters infoFormatter, sexFormatter, affectionFormatter, and genoFormatter, this function
can already be used to export a simuPOP population to formats that are recognizable by some populat software appli-
cations. Example saveCSV creates a small population and demonstrates how to save it in different formats.

Example: Using function saveCSV to save a simuPOP population in different formats

>>> import simuPOP as sim
>>> from simuPOP.utils import saveCSV
>>> pop = sim.Population(size=[10], loci=[2, 3],
... lociNames=['r11', 'r12', 'r21', 'r22', 'r23'],
... alleleNames=['A', 'B'], infoFields='age')
>>> sim.initSex(pop)
>>> sim.initInfo(pop, [2, 3, 4], infoFields='age')
>>> sim.initGenotype(pop, freq=[0.4, 0.6])
>>> sim.maPenetrance(pop, loci=0, penetrance=(0.2, 0.2, 0.4))
>>> # no filename so output to standard output
>>> saveCSV(pop, infoFields='age')
age, sex, aff, r11_1, r11_2, r12_1, r12_2, r21_1, r21_2, r22_1, r22_2, r23_1, r23_2
2.0, F, A, B, B, B, B, B, A, B, B, B, A
3.0, F, U, B, A, B, A, B, A, A, A, A, B
4.0, M, U, B, B, B, B, B, B, B, B, B, A
2.0, M, U, B, A, B, A, B, B, B, B, B, A
3.0, M, A, B, B, B, B, B, B, A, A, B, A
4.0, M, U, A, B, B, A, B, B, B, B, B, B
2.0, M, U, B, B, B, B, B, B, B, B, A, A
3.0, F, U, B, B, A, A, B, B, A, A, B, B

(continues on next page)

222 Chapter 7. Utility Modules

importMS.py

simuPOP

(continued from previous page)

4.0, F, U, A, B, B, B, B, B, B, A, B, B
2.0, F, A, B, A, A, B, A, A, B, B, B, A
>>> # change affection code and how to output genotype
>>> saveCSV(pop, infoFields='age', affectionFormatter={True: 1, False: 2},
... genoFormatter={(0,0):'AA', (0,1):'AB', (1,0):'AB', (1,1):'BB'})
age, sex, aff, r11, r12, r21, r22, r23
2.0, F, 1, BB, BB, AB, BB, AB
3.0, F, 2, AB, AB, AB, AA, AB
4.0, M, 2, BB, BB, BB, BB, AB
2.0, M, 2, AB, AB, BB, BB, AB
3.0, M, 1, BB, BB, BB, AA, AB
4.0, M, 2, AB, AB, BB, BB, BB
2.0, M, 2, BB, BB, BB, BB, AA
3.0, F, 2, BB, AA, BB, AA, BB
4.0, F, 2, AB, BB, BB, AB, BB
2.0, F, 1, AB, AB, AA, BB, AB
>>> # save to a file
>>> saveCSV(pop, filename='pop.csv', infoFields='age', affectionFormatter={True: 1,
→˓False: 2},
... genoFormatter=lambda geno: (geno[0] + 1, geno[1] + 1), sep=' ')
>>> print(open('pop.csv').read())
age sex aff r11_1 r11_2 r12_1 r12_2 r21_1 r21_2 r22_1 r22_2 r23_1 r23_2
2.0 F 1 2 2 2 2 2 1 2 2 2 1
3.0 F 2 2 1 2 1 2 1 1 1 1 2
4.0 M 2 2 2 2 2 2 2 2 2 2 1
2.0 M 2 2 1 2 1 2 2 2 2 2 1
3.0 M 1 2 2 2 2 2 2 1 1 2 1
4.0 M 2 1 2 2 1 2 2 2 2 2 2
2.0 M 2 2 2 2 2 2 2 2 2 1 1
3.0 F 2 2 2 1 1 2 2 1 1 2 2
4.0 F 2 1 2 2 2 2 2 2 1 2 2
2.0 F 1 2 1 1 2 1 1 2 2 2 1

now exiting runScriptInteractively...

Download saveCSV.py

This function is now deprecated with the introduction of function **‘‘export‘‘ and operator ‘‘Exporter‘‘.**

7.3 Module simuPOP.demography

7.3.1 Predefined migration models

The following functions are defined to generate migration matrixes for popular migration models.

• migrIslandRates(r, n) returns a migration matrix

for a traditional island model where individuals have equal probability of migrating to any other subpopulations.
This model is also called a migrant- pool island model.

• migrHierarchicalIslandRates(r1, r2, n) models a hierarchical island model in which local
populations are grouped into neighborhoods within which there is considerable gene flow and between which
there is less gene flow. should be a list of group size. is the within-group migration rate and is the cross-group
migration rate. That is to say, an individual in an island has probability to stay, to be a migratant to other islands
in the group (migration rate depending on the size of group), and to be a migrant to other islands in another

7.3. Module simuPOP.demography 223

saveCSV.py

simuPOP

group (migration rate depending on the number of islands in other groups). Both and can vary across groups
of islands. For example, migrHierarchicalIslandRates([r11, r12], r2, [3, 2]) returns a
migration matrix

• migrSteppingStoneRates(r, n, circular=False) returns a migration matrix

and if circular=True, returns

• migr2DSteppingStoneRates(r, m, n, diagonal=False, circular=False)models a 2D
stepping stone model in which local populations are arranged into a lattice of (rows, columns) patches. The
population thus needs to have subpopulations with subpopulation indexes counted by row. In this model, an
individual in a center patch has a probability of to stay, and to migrate to its neighbor patches if diagonal is
set to False, or to migrate to 8 neighbors (including diagnal ones) if range is set to 8. If circular is set to
False, the corner patch has a probability of or (if range=8) to migrate, and a side patch has a probability or
to migrate. If circular is set to True, the lattice will be conceptually connected to a ball so that there is no
boundary effect. For example, for a 3 by 2 lattice

with diagonal=False and circular=False, the migration matrix will be

Many more migration models have been proposed and studied, sometimes under different names with slightly different
definitions. If you cannot find your model there, it should not be too difficult to construct a migration rate matrix for
it. I will be glad to add such functions to this module if you could provide a reference and your implementation of the
model.

7.3.2 Uniform interface of demographic models

A realistic demographic models can be very complex that involves population growth, population bottleneck, subdi-
vided populations, migration, population split and admixture for a typical demographic model for human populations,
and carrying capacity, fecunity, sex distribution and many more factors for more complex ones (e.g. models for animal
populations under continuous habitat). The goal of this module is to provide a common interface for demographic
models, classes for frequently used demographic models, and several pre-defined demographic models for human
populations. More complex demographic models will be added if needed.

A demographic model usually consists of the following components:

• An initial population size that is used to initialize a population (the size parameter of sim.Population)

• One or more operators to split and merge populations (e.g. Operators SplitSubPops)

• One or more operators to migrate individuals across subpopulations (e.g. operator Migrator)

• Determine sizes of subpopulations before mating (parameter subPopSize of a mating scheme)

• Number of generations to evolve (parameter gen of the evolve function) or operators to terminate the evolu-
tion conditionally (e.g. operator TerminateIf)

Using an object-oriented approach, a demographic model defined in this module encapsulates all these in a single
object. More specifically, a demographic object model is a callable Python object that

• has attribute model.init_size and model.info_fields to determine the initial population size
and required information fields to construct an initial population (e.g., sim.Population(size=model.
init_size, infoFields=model.info_fields + ['my_fields']))

• handles population split, merge, migration etc internally before mating when it is passed to parameter
subPopSize of a mating scheme. (e.g. RandomMating(subPopSize=model))

• has attribute model.num_gens to determine the number of generations to evolve (e.g. pop.evolve(..
., gen=model.num_gens)). The model can optionally terminate the evolution by returnning an empty
offspring population size before mating.

224 Chapter 7. Utility Modules

simuPOP

• provides a function model.plot(filename='', title='') to plot the demographic function. It by
default prints out population sizes whenever population size changes. If a filename is specified and if module
matplotlib is available, it will plot the demographic model and save it to filename. A title can be
specified for the figure. This function actually use the demographic model to evolve a haploid population using
RandomSelection mating scheme, which is a good way to test if your demographic model works properly.

• saves population sizes of evolved generations, which makes it possible to revert an evolutionary process to an
previous state using operator RevertIf.

A demographic model can be defined in two ways. The first approach is to specify the size of subpopulations at
each generation, and the second approach is to specify the events that change population sizes. The simuPOP.
demography module provides functions and classes to define demographic models using both approaches and you
can use the one that is most convenient for your model.

7.3.3 Demographic models defined by outcomes

The simuPOP.demography module defines a number of widely used demographic models, including linear and
exponential population growth with carrying capacity, shrink, split and merge, and bottleneck.

For example,

• InstantChangeModel(T=1000, N0=1000, G=500, NG=2000)

defines an instant population growth model that expands a population of size from 1000 to 2000 instantly
at generation 500

• InstantChangeModel(T=1000, N0=1000, G=[500, 600], NG=[100, 1000])

defines a bottleneck model that introduces a bottleneck of size 100 between generation 500 and 600 to a
population of size 1000

• InstantChangeModel(T=1000, N0=1000, G=500, NG=[[400, 600]])

defines a bottleneck model that split a population of size into two subpopulations of sizes 400 and 600 at
generation 500

• ExponentialGrowthModel(T=100, N0=1000, NT=10000)

expands a population of size 1000 to 10000 in 100 generations

• ExponentialGrowthModel(T=100, N0=[200, 800], r=[0.02, 0.01],
ops=Migrator(rate=[[0, 0.1], [0.1, 0]])

expands a population of two subpopulation sizes at rate 0.02 and 0.01 for 100 generations, with
migration between these two subpopulations. The initial population will be resized (split if necessary) to
two populations of sizes 200 and 800.

• LinearGrowthModel(N0=(200, 'A'), r=0.02, NT=1000)

expands a population of size 200 at a rate 0f 0.02 (add 4 individuals at each generation) until it reaches
size 1000. Here the initial size is expressed as a size name tuple, which directs the demographic model to
assign the name A to the initial population. Such named size is acceptable for all places where population
size is needed.

Here we specify only two of the three parameters for linear and exponential growth models and allow simuPOP to
figure out the rest. If all three parameters are specified, the ending population size will be interpretted as carraying

7.3. Module simuPOP.demography 225

simuPOP

capacity, namely population growth (or decline of negative rates are specified) will stop after it reaches the specified
size.

A demographic model does not have to have a fixed initial population size. If an initial population size is not provided,
its size will be determined from the population when it is first applied to. For example

• InstantChangeModel(T=100, G=50, NT=[0.5, 0.5])

split a population into two equally sized subpopulations at generation 50. The ending population size is
set to [0.5, 0.5], which means 50% of the size at time G.

• InstantChangeModel(T=100, G=50, NT=[None, 100])

forks a population of size 100 from the main population at generation 50. NT=[None, 100] is equiv-
alent to NT=[1.0, 100] in this case.

• InstantChangeModel(T=0, removEmptySubPops=True)

removes all empty subpopulations from the existing subpopulation. Here we do not specify an input
population size because the the size of the input population will be kept.

• InstantChangeMoel(T=0, N0=[None, 0, None], removEmptySubPops=True)

removes the second of the three subpopulations while keep other two subpopulations intact. The input
population of this demographic model must have three subpopulations.

• ExponentialGrowthModel(T=100, NT=[10000, 20000])

expands a population of two subpopulations to sizes 10000 and 20000 in 100 generations. An error
will be raised if the population does not have two subpopulations.

• ExponentialGrowthModel(T=100, N0=[1., 400], NT=[10000, 20000],
ops=Migrator(rate=[[0, 0.1], [0.1, 0]])

split a population into two subpopulations. The first one keeps all individuals (100%), the second one with
400 individuals, and then expands them, with migration, to sizes 10000 and 20000 in 100 generations.

The demography model also defines two models for population admxture. The HI model (Hybrid Isolation) model
creates a separate subpopulation with and individuals from two specified subpopulations. The CGF (Continuous Gene
Flow) model replaces individuals from the doner population at each generation, thus keep both the recipient and doner
population constant in size. For example,

• AdmixtureModel(model=('HI', 1, 3, 0.5, 'Admixed'), T=10)

Creates a separate population with 50% of individuals from subpopulation 1 and 50% of individuals from
subpopulation 3, regardless if population sizes 1 and 3 have the same number of individuals. An optional
name Admixed is assigned to the new subpopulation. The admixed population will evolve independently
for 10 generations.

• AdmixtureModel(model=('CGF', 1, 3, 0.9), T=10)

Replaces 10% of individuals in subpopulation 1 with individuals from subpopulation 3 for 10 generations.

As you can imagine, these models do not provide a valid init_size to initialize a population. As a matter of
fact, they are mostly stacked to other demographic models to form more complex demographic models, in model
MultiStageModel. For example,

226 Chapter 7. Utility Modules

simuPOP

• MultiStageModel([
InstantChangeModel(T=1000, N0=1000, G=[500, 600], NG=[100, 1000]),
ExponentialGrowthModel(T=100, NT=10000)

])

defines a demographic model with a bottleneck followed by exponential population growth. N0 of the
second stage is not specified because it is determined from its previous stage.

• MultiStageModel([
LinearGrowthModel(T=100, N0=1000, r=0.01),
ExponentialGrowthModel(T=100, N0=[0.4, 0.6], r=0.001),
ExponentialGrowthModel(r=0.01, NT=[2000, 4000]),
AdmixtureModel(model=('HI', 0, 1, 0.8, 'admixed'), T=10)

])

defines a demographic model that expands a single population linearly for 100 generations, split into two
subpopulations and grow exponentially at a rate of 0.001, and growth at a higher rate of 0.01 until they
reaches sizes 2000 and 4000 respectively. This stage is tricky because one of the subpopulations will
reach its carrying capacity sooner and keep a contant population size afterwards. As the last step, the two
populations admixed and formed a new subpopulation called admixed. The model is depicted in figure
fig_multi_stage

Figure: A linear and two stage exponential population growth model, followed by population admixture

Example demoModel defines a demographic model use it to evolve a population. The demographic model is depicted
in Figure fig_demoModel_example.

Example: A demographic model for human population

>>> import simuPOP as sim
>>> from simuPOP.demography import *
>>> model = MultiStageModel([
... InstantChangeModel(T=200,
... # start with an ancestral population of size 1000
... N0=(1000, 'Ancestral'),
... # change population size at 50 and 60
... G=[50, 60],
... # change to population size 200 and back to 1000
... NG=[(200, 'bottleneck'), (1000, 'Post-Bottleneck')]),
... ExponentialGrowthModel(
... T=50,
... # split the population into two subpopulations
... N0=[(400, 'P1'), (600, 'P2')],
... # expand to size 4000 and 5000 respectively
... NT=[4000, 5000])]
...)
>>> #
>>> # model.init_size returns the initial population size
>>> # migrate_to is required for migration
>>> pop = sim.Population(size=model.init_size, loci=1,
... infoFields=model.info_fields)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme=sim.RandomMating(subPopSize=model),
... finalOps=

(continues on next page)

7.3. Module simuPOP.demography 227

simuPOP

log/MultiStage.png

228 Chapter 7. Utility Modules

simuPOP

(continued from previous page)

... sim.Stat(alleleFreq=0, vars=['alleleFreq_sp']),

... gen=model.num_gens

...)
250
>>> # print out population size and frequency
>>> for idx, name in enumerate(pop.subPopNames()):
... print('%s (%d): %.4f' % (name, pop.subPopSize(name),
... pop.dvars(idx).alleleFreq[0][0]))
...
P1 (4000): 0.6185
P2 (5000): 0.7218
>>> # get a visual presentation of the demographic model
>>> model.plot('log/demoModel.png',
... title='A bottleneck + exponential growth demographic model')
A bottleneck + exponential growth demographic model
0: 1000 (Ancestral)
50: 200 (bottleneck)
60: 1000 (Post-Bottleneck)
200: 419 (P1), 626 (P2)
201: 439 (P1), 653 (P2)
202: 459 (P1), 681 (P2)
203: 481 (P1), 711 (P2)
204: 504 (P1), 742 (P2)
205: 527 (P1), 774 (P2)
206: 552 (P1), 807 (P2)
207: 578 (P1), 842 (P2)
208: 605 (P1), 879 (P2)
209: 634 (P1), 917 (P2)
210: 664 (P1), 957 (P2)
211: 695 (P1), 998 (P2)
212: 728 (P1), 1041 (P2)
213: 762 (P1), 1086 (P2)
214: 798 (P1), 1133 (P2)
215: 836 (P1), 1183 (P2)
216: 875 (P1), 1234 (P2)
217: 916 (P1), 1287 (P2)
218: 960 (P1), 1343 (P2)
219: 1005 (P1), 1401 (P2)
220: 1052 (P1), 1462 (P2)
221: 1102 (P1), 1525 (P2)
222: 1154 (P1), 1591 (P2)
223: 1208 (P1), 1660 (P2)
224: 1265 (P1), 1732 (P2)
225: 1325 (P1), 1807 (P2)
226: 1387 (P1), 1885 (P2)
227: 1452 (P1), 1967 (P2)
228: 1521 (P1), 2052 (P2)
229: 1592 (P1), 2141 (P2)
230: 1667 (P1), 2234 (P2)
231: 1746 (P1), 2331 (P2)
232: 1828 (P1), 2432 (P2)
233: 1915 (P1), 2537 (P2)
234: 2005 (P1), 2647 (P2)
235: 2099 (P1), 2761 (P2)
236: 2198 (P1), 2881 (P2)
237: 2302 (P1), 3006 (P2)
238: 2410 (P1), 3136 (P2)

(continues on next page)

7.3. Module simuPOP.demography 229

simuPOP

(continued from previous page)

239: 2524 (P1), 3272 (P2)
240: 2643 (P1), 3414 (P2)
241: 2767 (P1), 3562 (P2)
242: 2898 (P1), 3716 (P2)
243: 3034 (P1), 3877 (P2)
244: 3177 (P1), 4045 (P2)
245: 3327 (P1), 4220 (P2)
246: 3484 (P1), 4403 (P2)
247: 3648 (P1), 4593 (P2)
248: 3820 (P1), 4792 (P2)
249: 4000 (P1), 5000 (P2)
Traceback (most recent call last):

File "/var/folders/ys/gnzk0qbx5wbdgm531v82xxljv5yqy8/T/tmpdvg5jvxd", line 2, in
→˓<module>

#begin_ignore
File "/Users/bpeng1/anaconda3/envs/sos/lib/python3.6/site-packages/simuPOP/

→˓demography.py", line 446, in plot
region = region.reshape(region.size / 4, 4)

TypeError: 'float' object cannot be interpreted as an integer

now exiting runScriptInteractively...

Download demoModel.py

Figure: A exponential population growth followed by bottleneck demographic model

7.3.4 Demographic models defined by population changes (events)

Another way to define a demographic model is to specify the events that changes population sizes. This approach can
be easier to use because it conforms with the way many demographic models are specified, also because the events can
be specified for a subset of subpopulations so you can, for example, split one subpopulation without worrying about
its impact on other subpopulations.

A event-based demographic model is defined using

EventBasedModel(events=[], T=None, N0=None, ops=[], infoFields=[])

whereT and N0 are the duration and initial size of the demographic model, respectively, and ops is the operators
that will be applied to the population (without checking applicability). Parameter events acepts one or more of
DemographicEvent and its derived classes. For example,

ExpansionEvent(rates=0.05, begin=500)

expands all subpopulations exponentially at a rate of 0.05, and

ExpansionEvent(rates=[0.05, 0.01], capacity=10000, subPops=[0, 2], begin=500)

expands two subpopulations at rates 0.05 and 0.01 respectively, until they reach 10000 individuals in each subpopula-
tion.

ExpansionEvent(slopes=500, subPops=[0, 2], begin=500)

expands the populations linearly by adding 500 individuals to each subpopulation at each generation. These events
happen at each generation starting from generation 500.

230 Chapter 7. Utility Modules

demoModel.py

simuPOP

log/demoModel.png

7.3. Module simuPOP.demography 231

simuPOP

Simiarly, you can split, merge, and resize subpopulations using events SplitEvent, MergeEvent, and
ResizeEvent. For example,

SplitEvent(subPops='AF', sizes=[500, 500], names=['AF', 'EU'], at=-4000)

splits an ancestral population named AF to two populations AF and EU at 4000 generations before the end of the
demographic model. The AF population will be expanded automatically if it does not have 1000 individuals.

Finally, an AdmixtureEvent mix two or more subpopulations by certain proportions, and either create a new
subpopulation or replace an existing subpopulation. In particular,

AdmixtureEvent(subPops=['MX', 'EU'], at=-10, sizes=[0.4, 0.6], name='MXL')

creates a new admixed population called MXL with 40% of individuals from the MX population, and the rest from the
EU population. The admixture process happens once and follows an Hybrid Isolation model. Alternatively,

AdmixtureEvent(subPops=['MX', 'EU'], begin=-10, sizes=[0.8, 0.2], toSubPop='MX')

will create an admixed population with 80% MX and 20% EU individuals for 10 generations. Because 20% of the
admixed population will be replaced by individuals from the EU population, this models a continuous gene flow model
of admixture. If you would like to control the exact size of the admixed population, you can specify the number of
individuals as integer numbers instead of proportions:

AdmixtureEvent(subPops=['MX', 'EU'], begin=-10, sizes=[int(1400*0.8), int(1400*0.2)],
→˓toSubPop='MX')

Note that the type of elements in parameter sizes is important, 1. stands for all subpopulation and 1 stands for one
individual from it.

ExampledemoEventModel defines the same model as demoModel using an event based demographic model. The result
is depicted in Figure fig_demoEventModel_example. These two models look similar but the event-based model does
not have the same final population sizes as the previous model. This is because the population size of the previous
model was calculated by whereas the event based model was calculated using for each generation, and the integer
rounding error accumulates over time.

Example: A event-based demographic model

>>> import simuPOP as sim
>>> from simuPOP.demography import *
>>> import math
>>> model = EventBasedModel(
... N0=(1000, 'Ancestral'),
... T=250,
... events=[
... ResizeEvent(at=50, sizes=200),
... ResizeEvent(at=60, sizes=1000),
... SplitEvent(sizes=[0.4, 0.6], names=['P1', 'P2'], at=200),
... ExpansionEvent(rates=[math.log(4000/400)/50, math.log(5000/600)/50],
→˓begin=200)
...]
...)
>>> #
>>> # model.init_size returns the initial population size
>>> # migrate_to is required for migration
>>> pop = sim.Population(size=model.init_size, loci=1,
... infoFields=model.info_fields)
>>> pop.evolve(
... initOps=[

(continues on next page)

232 Chapter 7. Utility Modules

simuPOP

(continued from previous page)

... sim.InitSex(),

... sim.InitGenotype(freq=[0.5, 0.5])

...],

... matingScheme=sim.RandomMating(subPopSize=model),

... finalOps=

... sim.Stat(alleleFreq=0, vars=['alleleFreq_sp']),

... gen=model.num_gens

...)
250
>>> # print out population size and frequency
>>> for idx, name in enumerate(pop.subPopNames()):
... print('%s (%d): %.4f' % (name, pop.subPopSize(name),
... pop.dvars(idx).alleleFreq[0][0]))
...
P1 (4000): 0.6185
P2 (5000): 0.7218
>>> # get a visual presentation of the demographic model
>>> model.plot('log/demoEventModel.png',
... title='A event-based bottleneck + exponential growth demographic model')
A event-based bottleneck + exponential growth demographic model
0: 1000 (Ancestral)
50: 200 (Ancestral)
60: 1000 (Ancestral)
200: 419 (P1), 626 (P2)
201: 439 (P1), 653 (P2)
202: 459 (P1), 681 (P2)
203: 481 (P1), 711 (P2)
204: 504 (P1), 742 (P2)
205: 527 (P1), 774 (P2)
206: 552 (P1), 807 (P2)
207: 578 (P1), 842 (P2)
208: 605 (P1), 879 (P2)
209: 634 (P1), 917 (P2)
210: 664 (P1), 957 (P2)
211: 695 (P1), 998 (P2)
212: 728 (P1), 1041 (P2)
213: 762 (P1), 1086 (P2)
214: 798 (P1), 1133 (P2)
215: 836 (P1), 1183 (P2)
216: 875 (P1), 1234 (P2)
217: 916 (P1), 1287 (P2)
218: 960 (P1), 1343 (P2)
219: 1005 (P1), 1401 (P2)
220: 1052 (P1), 1462 (P2)
221: 1102 (P1), 1525 (P2)
222: 1154 (P1), 1591 (P2)
223: 1208 (P1), 1660 (P2)
224: 1265 (P1), 1732 (P2)
225: 1325 (P1), 1807 (P2)
226: 1387 (P1), 1885 (P2)
227: 1452 (P1), 1967 (P2)
228: 1521 (P1), 2052 (P2)
229: 1592 (P1), 2141 (P2)
230: 1667 (P1), 2234 (P2)
231: 1746 (P1), 2331 (P2)
232: 1828 (P1), 2432 (P2)
233: 1915 (P1), 2537 (P2)

(continues on next page)

7.3. Module simuPOP.demography 233

simuPOP

(continued from previous page)

234: 2005 (P1), 2647 (P2)
235: 2099 (P1), 2761 (P2)
236: 2198 (P1), 2881 (P2)
237: 2302 (P1), 3006 (P2)
238: 2410 (P1), 3136 (P2)
239: 2524 (P1), 3272 (P2)
240: 2643 (P1), 3414 (P2)
241: 2767 (P1), 3562 (P2)
242: 2898 (P1), 3716 (P2)
243: 3034 (P1), 3877 (P2)
244: 3177 (P1), 4045 (P2)
245: 3327 (P1), 4220 (P2)
246: 3484 (P1), 4403 (P2)
247: 3648 (P1), 4593 (P2)
248: 3820 (P1), 4792 (P2)
249: 4000 (P1), 5000 (P2)
>>>

now exiting runScriptInteractively...

Download demoEventModel.py

Figure: A event-based demographic model

7.3.5 Predefined demographic models for human populations

The simuPOP.demography module currently defines the following models

• Out of Africa model for YRI, CEU and CHB populations (fig_Out_of_Africa),

OutOfAfricaModel(10000).plot('OutOfAfrica.png')

Figure: Out of Africa model for YRI, CEU, and CHB populations

• The settlement of new world model for Mexican American (fig_Settlement_of_New) (Gutenkunst, 2009, PLoS
Genetics). In this model, the simulated CHB and MX populations are mixed to produce an admixed population
at the last generation.

SettlementOfNewWorldModel(10000).plot('SettlementOfNewWorld.png')

Figure: Settlement of New World model for Mexican America population

• The demographic model developed by cosi (Schaffner, 2005, genome research).

CosiModel(20000).plot('Cosi.png')

Figure: Demographic models for African, Asian and European populations (cosi)

These functions all accept a parameter scale. If specified, it will scale all population sizes and generation numbers by
the specified scaling factor. For example

CosiModel(20000, scale=10)

will result in a demographic model that evolves 2000 instead of 20000 generations, with all population sizes reduced
by a factor of 10. Note that the burn-in period of the examples above are relatively short and you might need to use a
longer burn-in period (e.g. T=100,000 generations for a burn-in period of about 80,000 generations).

234 Chapter 7. Utility Modules

demoEventModel.py

simuPOP

Users/bpeng1/simuPOP/simuPOP/doc/log/demoEventModel.png

7.3. Module simuPOP.demography 235

simuPOP

log/OutOfAfrica.png

236 Chapter 7. Utility Modules

simuPOP

log/SettlementOfNewWorld.png

7.3. Module simuPOP.demography 237

simuPOP

log/Cosi.png

238 Chapter 7. Utility Modules

simuPOP

7.3.6 Demographic model without predefined generations to evolve *

All migration models accept one or more operators that will be applied to the population before population population
changes are applied. The most frequently application of this operator is to pass a migrator to the model, but we can also
pass an operator to terminate a demographic model under certain conditions. For example, Example demoTerminate
defines a demographic model that starts with a burn-in stage with indefinite size and will stop if the average allele
frequency at segregating sites exceeds 0.1. It splits to two equally sized subpopulations and expand rate a rate of 0.01
to size 2000 and 5000 respectively.

Example: A demographic model with a terminator

>>> import simuPOP as sim
simuPOP Version 1.1.9 : Copyright (c) 2004-2016 Bo Peng
Revision 4583 (Oct 10 2018) for Python 3.6.6 (64bit, 0thread)
Random Number Generator is set to mt19937 with random seed 0x81aae4a664e115de.
This is the standard short allele version with 256 maximum allelic states.
For more information, please visit http://simupop.sourceforge.net,
or email simupop-list@lists.sourceforge.net (subscription required).
>>> import simuPOP.demography as demo
>>>
>>> model = demo.MultiStageModel([
... demo.InstantChangeModel(N0=1000,
... ops=[
... sim.Stat(alleleFreq=sim.ALL_AVAIL, numOfSegSites=sim.ALL_AVAIL),
... # terminate if the average allele frequency of segregating sites
... # are more than 0.1
... sim.TerminateIf('sum([x[1] for x in alleleFreq.values() if '
... 'x[1] != 0])/(1 if numOfSegSites==0 else numOfSegSites) > 0.1')
...]
...),
... demo.ExponentialGrowthModel(N0=[0.5, 0.5], r=0.01, NT=[2000, 5000])
...]
...)
>>>
>>> pop = sim.Population(size=model.init_size, loci=100)
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=sim.SNPMutator(u=0.001, v=0.001),
... matingScheme=sim.RandomMating(subPopSize=model),
... postOps=[
... sim.Stat(alleleFreq=sim.ALL_AVAIL, numOfSegSites=sim.ALL_AVAIL,
... popSize=True, step=50),
... sim.PyEval(r'"%d: %s, %.3f\n" % (gen, subPopSize, sum([x[1] for x '
... 'in alleleFreq.values() if x[1] != 0])/(1 if numOfSegSites == 0 '
... 'else numOfSegSites))', step=50)
...],
...)
0: [1000], 0.001
50: [1000], 0.047
100: [1000], 0.089
150: [738, 738], 0.128
200: [1218, 1218], 0.166
250: [2000, 2007], 0.199
300: [2000, 3310], 0.230
343
>>>

now exiting runScriptInteractively...

7.3. Module simuPOP.demography 239

simuPOP

Download demoTerminate.py

7.4 Module simuPOP.sampling

7.4.1 Introduction

Sampling, in simuPOP term, is the action of extracting individuals from a large, potentially multi-generational,
population according to certain criteria. the simuPOP.sampling module provides several classes and functions
and allows you to define more complicated sampling schemes by deriving from its these class. For example, you
can use drawRandomSample(pop, size=100) to select 100 random individuals from a population, or use
drawAffectedSibpairSample(pop, families=100) to select 100 pairs of affected invididuals with their
parents from a multi-generational population, or a age- structured population with parents and offspring in the same
generation.

The simuPOP.sampling module currently support random, case control, affected sibpair, nuclear family and three-
generation family sampling types, and a combined sampling type that allows you to draw different types of samples.
For each sampling type X, a sampler class and two functions DrawXSample and DrawXSamples are provided
The first function returns a population with all sampled individuals and the second function returns a list of sample
populations.

If you would like to define your own sampling type, you can derive your sampler from one of the existing sampler
classes. These sampler classes provide member functions prepareSample, drawSample and drawSamples
and you typically only need to extend prepareSample of an appropriate base class.

7.4.2 Sampling individuals randomly (class RandomSampler, functions
drawRandomSample and drawRandomSamples)

Functions drawRandomSample and drawRandomSamples draw random invidiauls from a given population. If
a simple number is given to parameter size, population structure will be ignored so individuals will be drawn from
all subpopulations. If a list of numbers are given, this function will draw specified numbers of individuals from each
subpopulation. This function does not need parental information. If your population does not have an ID field, you
will not be able to locate extracted individuals in the original population.

Example randomSample demonstrates how to draw a random sample from the whole population, and from each
subpopulation. Because sample populations keep the population structure of the source population (this might change
when parameter subPops is used, see a later section for details), we can use sample.subPopSizes() to check
how many individuals are sampled from each subpopulation.

Example: Draw random samples from a structured population

>>> import simuPOP as sim
>>> from simuPOP.sampling import drawRandomSample
>>> pop = sim.Population([2000]*5, loci=1)
>>> # sample from the whole population
>>> sample = drawRandomSample(pop, sizes=500)
>>> print(sample.subPopSizes())
(104, 105, 110, 81, 100)
>>> # sample from each subpopulation
>>> sample = drawRandomSample(pop, sizes=[100]*5)
>>> print(sample.subPopSizes())
(100, 100, 100, 100, 100)

now exiting runScriptInteractively...

240 Chapter 7. Utility Modules

demoTerminate.py

simuPOP

Download randomSample.py

7.4.3 Sampling cases and controls (class CaseControlSampler, functions
CaseControlSample and CaseControlSamples)

Functions drawCaseControlSample and drawCaseControlSamples draw cases (affected individuals) and
controls (unaffected invidiauls) from a given population. If a simple number is given to parameter cases and
controls, population structure will be ignored so individuals will be drawn from all subpopulations. If a list of
numbers are given, this function will draw specified number of cases and controls from each subpopulation.

Example caseControlSample demonstrates how to draw multiple case-control samples from a population, and perform
case-control assocition tests using the stat function.

Example: Draw case control samples from a population and perform association test

>>> import simuPOP as sim
>>> from simuPOP.sampling import drawCaseControlSamples
>>> pop = sim.Population([10000], loci=5)
>>> sim.initGenotype(pop, freq=[0.2, 0.8])
>>> sim.maPenetrance(pop, loci=2, penetrance=[0.11, 0.15, 0.20])
>>> # draw multiple case control sample
>>> samples = drawCaseControlSamples(pop, cases=500, controls=500, numOfSamples=5)
>>> for sample in samples:
... sim.stat(sample, association=range(5))
... print(', '.join(['%.6f' % sample.dvars().Allele_ChiSq_p[x] for x in
→˓range(5)]))
...
0.694748, 0.333041, 0.001039, 0.078127, 0.774085
0.261750, 0.954592, 0.031830, 0.737788, 0.865679
0.954949, 0.371093, 0.092487, 0.622153, 0.075739
0.654721, 0.433848, 0.002859, 0.696375, 0.956630
0.439721, 1.000000, 0.069651, 0.471087, 0.238199

now exiting runScriptInteractively...

Download caseControlSample.py

7.4.4 Sampling Pedigrees (functions indexToID and plotPedigree)

If your sampling scheme involves parental information, you need to prepare your population so that it has

• an ID field (usually 'ind_id') that stores a unique ID for each individual.

• two information fields (usually 'father_id', and 'mother_id') that stores the ID of parents of each
individual. Although simuPOP supports one- parent Pedigrees, this feature will not be discussed in this guide.

The preferred method to prepare such a population is to add information fields ind_id, father_id and
mother_id to a population and track ID based Pedigrees during evolution. More specifically, you can use oper-
ators IdTagger and PedigreeTagger to assign IDs and record parental IDs of each offspring during mating.
This method supports age-structured population when parents and offspring can be stored in the same generation.

You can also use information fields father_idx and mother_idx and operator ParentsTagger to track in-
dexes of parents in the parental generations. Before sampling, you can use function indexToID to add needed
information fields and convert index based parental relationship to ID based relationshop. Because parents have to
stay in ancestral generations, this method does not support age-structured population.

7.4. Module simuPOP.sampling 241

randomSample.py
caseControlSample.py

simuPOP

If you have R and rpy installed on your system, you can install the kinship library of R and use it to analyze Pedi-
gree. The simuPOP.sampling module provides a function plotPedigree to use this library to plot Pedigrees.
Example plotPedigree demonstrates how to use function sampling.indexToID to prepare a pedigree and how to use
sampling.DrawPedigree to plot it.

Figure fig_Pedigree plots a small three-generational population with 15 individuals at each generation. It is pretty
clear that random mating produces bad pedigree structure because it is common that one parent would have multiple
spouses.

7.4.5 Sampling affected sibpairs (class AffectedSibpairSampler, functions
drawAffectedSibpairSample(s))

An affected sibpair family consists of two parents and their affected offspring. Such families are useful in linkage
analysis because of high likelihood of shared disease predisposing alleles between siblings. simuPOP.sampling
module provides functions drawAffectedSibpairSample and drawAffectedSibpairSamples to draw
such families from a population. Example sampleAffectedSibpair draws two affected sibpair from the pedigree created
in Example plotPedigree, with samples plotted in Figure fig_affectedSibpair.

Example: Draw affected sibpairs from a population

>>> import simuPOP as sim
>>> from simuPOP.sampling import indexToID
>>> pop = sim.Population(size=15, loci=5, infoFields=['father_idx', 'mother_idx'],
→˓ancGen=2)
>>> pop.evolve(
... preOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.7, 0.3]),
...],
... matingScheme=sim.RandomMating(numOffspring=(sim.UNIFORM_DISTRIBUTION, 2, 4),
... ops=[sim.MendelianGenoTransmitter(), sim.ParentsTagger()]),
... postOps=sim.MaPenetrance(loci=3, penetrance=(0.1, 0.4, 0.7)),
... gen = 5
...)
5
>>> indexToID(pop, reset=True)
>>> # three information fields were added
>>> print(pop.infoFields())
('father_idx', 'mother_idx', 'ind_id', 'father_id', 'mother_id')
>>> # save this population for future use
>>> pop.save('log/pedigree.pop')
>>>
>>> from simuPOP.sampling import drawAffectedSibpairSample
>>> pop = sim.loadPopulation('log/pedigree.pop')
>>> sample = drawAffectedSibpairSample(pop, families=2)
Warning: number of requested Pedigrees 2 is greater than what exists (0).
Warning: not enough non-overlapping Pedigrees are found (requested 2, found 0).

now exiting runScriptInteractively...

Download sampleAffectedSibpair.py

242 Chapter 7. Utility Modules

sampleAffectedSibpair.py

simuPOP

7.4.6 Sampling nuclear families (class NuclearFamilySampler, functions
drawNuclearFamilySample and drawNuclearFamilySamples)

A nuclear family consists of two parents and their offspring. Functions drawNuclearFamilySample and
drawNuclearFamilySamples to draw such families from a population, with restrictions on number of offspring,
number of affected parents and number of affected offspring. Although fixed numbers could be given, a range with
minimal and maximal acceptable numbers are usually provided. Example sampleNuclearFamily draws two nuclear
families from the pedigree created in Example plotPedigree. The samples are plotted in Figure fig_nuclearFamily.

Example: Draw nuclear families from a population

>>> import simuPOP as sim
>>> from simuPOP.sampling import drawNuclearFamilySample
>>> pop = sim.loadPopulation('log/pedigree.pop')
>>> sample = drawNuclearFamilySample(pop, families=2, numOffspring=(2,4),
... affectedParents=(1,2), affectedOffspring=(1, 3))
Warning: number of requested Pedigrees 2 is greater than what exists (0).
Warning: not enough non-overlapping Pedigrees are found (requested 2, found 0).
>>> # try to separate two families?
>>> sample.asPedigree()
>>> #= sim.Pedigree(sample, loci=sim.ALL_AVAIL, infoFields=sim.ALL_AVAIL)
>>> sample.addInfoFields('ped_id')
>>> # return size of families
>>> sz = sample.identifyFamilies(pedField='ped_id')
>>> print(sz)
()
>>> ped1 = sample.extractIndividuals(IDs=0, idField='ped_id')
>>> # print the ID of all individuals in the first pedigree
>>> print([ind.ind_id for ind in ped1.allIndividuals()])
[]

now exiting runScriptInteractively...

Download sampleNuclearFamily.py

7.4.7 Sampling three-generation families (class ThreeGenFamilySampler, func-
tions drawThreeGenFamilySample and drawThreeGenFamilySamples)

A three-generation family consists of two parents, their common offspring, offspring’s spouses, and their com-
mon offspring (grandchidren). individuals in sampled families have either no or two parents. Functions
drawThreeGenFamilySample and drawThreeGenFamilySamples to draw such families from a popula-
tion, with restrictions on number of offspring, total number of individuals and number of affected individuals in the
Pedigree. These parameters (numOffspring, pedSize and numAffected) could be a fixed number of a range
with minimal and maximal acceptable numbers. Example sampleNuclearFamily draws two three generation families
from the pedigree created in Example plotPedigree. The samples are plotted in Figure fig_nuclearFamily.

Example: Draw three-generation families from a population

>>> import simuPOP as sim
>>> from simuPOP.sampling import drawThreeGenFamilySample
>>> pop = sim.loadPopulation('log/pedigree.pop')
>>> sample = drawThreeGenFamilySample(pop, families=2, numOffspring=(1, 3),
... pedSize=(8, 15), numOfAffected=(2, 5))

now exiting runScriptInteractively...

Download sampleThreeGenFamily.py

7.4. Module simuPOP.sampling 243

sampleNuclearFamily.py
sampleThreeGenFamily.py

simuPOP

7.4.8 Sampling different types of samples (class CombinedSampler, functions
drawCombinedSample and drawCombinedSamples)

Samples in real world studies sometimes do not have uniform types so it is useful to draw samples of different types
from the same population. Although it is possible to draw samples using different functions and combine them,
handling of overlapping individuals, namely individuals who are chosen by multiple samplers, can be a headache.
The combined sampler of simuPOP.sampling is designed to overcome this problem. This sampler takes a list
of sampler objects and apply them to a population sequentially. The extracted sample will not have overlapping
individuals.

Example combinedSampling draws an affected sibpair family and a nuclear family from the pedigree created in Ex-
ample plotPedigree. The samples are plotted in Figure combinedSampling.

Example: Draw different types of samples from a population

>>> import simuPOP as sim
>>> from simuPOP.sampling import drawCombinedSample, AffectedSibpairSampler,
→˓NuclearFamilySampler
>>> pop = sim.loadPopulation('log/pedigree.pop')
>>> sample = drawCombinedSample(pop, samplers = [
... AffectedSibpairSampler(families=1),
... NuclearFamilySampler(families=1, numOffspring=(2,4), affectedParents=(1,2),
→˓affectedOffspring=(1,3))
...])
Warning: number of requested Pedigrees 1 is greater than what exists (0).
Warning: not enough non-overlapping Pedigrees are found (requested 1, found 0).
Warning: number of requested Pedigrees 1 is greater than what exists (0).
Warning: not enough non-overlapping Pedigrees are found (requested 1, found 0).

now exiting runScriptInteractively...

Download combinedSampling.py

7.4.9 Sampling from subpopulations and virtual subpopulations *

Virtual subpopulations (VSPs) could be specified in the subPops parameter of sampling classes and functions. This
can be used to limit your samples to individuals with certain properties. For example, you may want to match the
age of cases and controls in a case-control association study by selecting your samples from a certain age group. For
examples, Example samplingVSP draws 500 cases and 500 controls from two a VSP with individual ages between 40
and 60.

Example: Draw samples from a virtual subpopulation.

>>> import simuPOP as sim
>>> # create an age-structured population with a disease
>>> import random
>>> pop = sim.Population(10000, loci=10, infoFields='age')
>>> sim.initGenotype(pop, freq=[0.3, 0.7])
>>> sim.initInfo(pop, lambda: random.randint(0, 70), infoFields='age')
>>> pop.setVirtualSplitter(sim.InfoSplitter(cutoff=(40, 60), field='age'))
>>> sim.maPenetrance(pop, loci=5, penetrance=(0.1, 0.2, 0.3))
>>> #
>>> from simuPOP.sampling import drawCaseControlSample
>>> sample = drawCaseControlSample(pop, cases=500, controls=500, subPops=[(0,1)])
>>> ageInSample = sample.indInfo('age')
>>> print(min(ageInSample), max(ageInSample))

(continues on next page)

244 Chapter 7. Utility Modules

combinedSampling.py

simuPOP

(continued from previous page)

40.0 59.0

now exiting runScriptInteractively...

Download samplingVSP.py

If a list of sample sizes is given, specified number of samples will be drawn from each subpopulation. For exam-
ple, if you have an age-structured population when individuals with different ages have different risk to a disease,
you might want to draw affected individuals from different age groups and perform association analyses. Function
drawCaseControlSample cannot be used because both groups are affected, but you can drawRandomSample
from two VSPs defined by age. Example samplingSeparateVSPs demonstrates how to use this method.

Example: Sampling separately from different virtual subpopulations

>>> import simuPOP as sim
>>> # create an age-structured population with a disease
>>> import random
>>> pop = sim.Population(10000, loci=10, infoFields='age')
>>> sim.initGenotype(pop, freq=[0.3, 0.7])
>>> sim.initInfo(pop, lambda: random.randint(0, 70), infoFields='age')
>>> pop.setVirtualSplitter(sim.InfoSplitter(cutoff=(20, 40), field='age'))
>>> # different age group has different penetrance
>>> sim.maPenetrance(pop, loci=5, penetrance=(0.1, 0.2, 0.3), subPops=[(0,1)])
>>> sim.maPenetrance(pop, loci=5, penetrance=(0.2, 0.4, 0.6), subPops=[(0,2)])
>>> # count the number of affected individuals in each group
>>> sim.stat(pop, numOfAffected=True, subPops=[(0,1), (0,2)], vars='numOfAffected_sp')
>>> print(pop.dvars((0,1)).numOfAffected, pop.dvars((0,2)).numOfAffected)
668 2215
>>> #
>>> from simuPOP.sampling import drawRandomSample
>>> sample = drawRandomSample(pop, sizes=[500, 500], subPops=[(0,1), (0,2)])
>>> # virtual subpopulations are rearranged to different subpopulations.
>>> print(sample.subPopSizes())
(500, 500)

now exiting runScriptInteractively...

Download samplingSeparateVSPs.py

7.5 Module simuPOP.gsl

simuPOP makes use of many functions from the GUN Scientific Library. These functions are used to generate random
number and perform statistical tests within simuPOP. Although these functions are not part of simuPOP, they can be
useful to users of simuPOP from time to time and it makes sense to expose these functions directly to users.

Module simuPOP.gsl contains a number of GSL functions. Because only a small proportion of GSL functions
are used in simuPOP, this module is by no means a comprehensive wrapper of GSL. Please refer to the simuPOP
reference manual for a list of functions included in this module, and the GSL manual for more details. Because
random number generation functions such as gsl_ran_gamma are already provided in the simuPOP.RNG class
(e.g. getRNG.randGamma), they are not provided in this module.

7.5. Module simuPOP.gsl 245

samplingVSP.py
samplingSeparateVSPs.py

simuPOP

246 Chapter 7. Utility Modules

CHAPTER 8

A real world example

Previous chapters use a lot of examples to demonstrate individual simuPOP features. However, it might not be clear
how to integrate these features in longer scripts that address real world problems, which may involve larger popula-
tions, more complex genetic and demographic models and may run thousands of replicates with different parameters.
This chapter will show you, step by step, how to write a complete simuPOP script that has been used in a real-world
research topic.

8.1 Simulation scenario

Reich and Lander Reich2001a proposed a population genetics framework to model the evolution of allelic spectra (the
number and population frequency of alleles at a locus). The model is based on the fact that human population grew
quickly from around 10,000 to 6 billion in 18,000 -150,000 years. His analysis showed that at the founder population,
both common and rare diseases have simple spectra. After the sudden expansion of population size, the allelic spectra
of simple diseases become complex; while those of complex diseases remained simple.

This example is a simplified version of the simuCDCV.py script that simulates this evolution process and ob-
serve the allelic spectra of both types of diseases. The complete script is available at http://simupop.sourceforge.
net/cookbookthe simuPOP online cookbook. The results are published in Peng2007, which has much more detailed
discussion about the simulations, and the parameters used.

8.2 Demographic model

The original paper used a very simple instant population growth model. Under the model assumption, a population
with an initial population size would evolve generations, instantly expand its population size to and evolve another
generations. Such a model can be easily implemented as follows:

def ins_expansion(gen):
'An instant population growth model'
if gen < G0:

return N0

(continues on next page)

247

http://simupop.sourceforge.net/cookbookthe
http://simupop.sourceforge.net/cookbookthe

simuPOP

(continued from previous page)

else:
return N1

Other demographic models could be implemented similarly. For example, an exponential population growth model
that expand the population size from to in generations could be defined as

def exp_expansion(gen):
'An exponential population growth model'
if gen < G0:

return N0
else:

rate = (math.log(N1) - math.log(N0))/G1
return int(N0 * math.exp((gen - G0) * rate))

That is to say, we first solve from and then calculate for a given generation.

There is a problem here: the above definitions treat N0, G0, N1 and G1 as global variables. This is OK for small scripts
but is certainly not a good idea for larger scripts especially when different parameters will be used. A better way is
to wrap these functions by another function that accept N0, G0, N1 and G1 as parameters. That is demonstrated in
Example reichDemo where a function demo_model is defined to return either an instant or an exponential population
growth demographic function.

Example: A demographic function producer

>>> import simuPOP as sim
>>> import math
>>> def demo_model(model, N0=1000, N1=100000, G0=500, G1=500):
... '''Return a demographic function
... model: linear or exponential
... N0: Initial sim.population size.
... N1: Ending sim.population size.
... G0: Length of burn-in stage.
... G1: Length of sim.population expansion stage.
... '''
... def ins_expansion(gen):
... if gen < G0:
... return N0
... else:
... return N1
... rate = (math.log(N1) - math.log(N0))/G1
... def exp_expansion(gen):
... if gen < G0:
... return N0
... else:
... return int(N0 * math.exp((gen - G0) * rate))
... if model == 'instant':
... return ins_expansion
... elif model == 'exponential':
... return exp_expansion
...
>>> # when needed, create a demographic function as follows
>>> demo_func = demo_model('exponential', 1000, 100000, 500, 500)
>>> # sim.population size at generation 700
>>> print(demo_func(700))
6309

now exiting runScriptInteractively...

248 Chapter 8. A real world example

simuPOP

Download reichDemo.py

Note: The defined demographic functions return the total population size (a number) at each generation beacuse no
subpopulation is considered. A list of subpopulation sizes should be returned if there are more than one subpopulations.

8.3 Mutation and selection models

The thoretical model empolyees an infinite allele model where there is a single wild type allele and an infinite number
of disease alleles. Each mutation would introduce a new disease allele and there is no back mutation (mutation from
disease allele to wild type allele).

This mutation model can be mimicked by a -allele model with resaonably large . We initialize all alleles to 0 which is
the wild type () and all other alleles are considered as disease alleles (). Because an allele in a allele mutation model
can mutate to any other allele with equal probability, since there are many more disease alleles than the wild type
allele. If we choose a smaller (e.g.), recurrent and back mutations can on longer be ignored but it would be interesting
to simulate such cases because they are more realistic than the infinite allele model in some cases.

A -allele model can be simulated using the KAlleleMutator operator which accepts a mutation rate and a maxi-
mum allelic state as parameters.

KAlleleMutator(k=k, rates=mu)

Because there are many possible disease alleles, a multi-allelic selector (MaSelector) could be used to select against
the disease alleles. This operator accept a single or a list of wild type alleles ([0] in this case) and treat all other alleles
as disease alleles. A penetrance table is needed which specified the fitness of each individual when they have 0, 1 or
2 disease alleles respectively. In this example, we assume a recessive model in which only genotype causes genetic
disadvantages. If we assume a selection pressure parameter , the operator to use is

MaSelector(loci=0, wildtype=0, penetrance=[1, 1, 1-s])

Note that the use of this selector requires a population information field fitness.

This example uses a single-locus selection model but the complete script allows the use of different kinds of multi-
locus selection model. If we assume a multiplicative multi-locus selection model where fitness values at different loci
are combined (multiplied), a multi-locus selection model (MlSelector) could be used as follows:

MlSelector([
MaSelector(loci=loc1, fitness=[1,1,1-s1], wildtype=0),
MaSelector(loci=loc2, fitness=[1,1,1-s2], wildtype=0)],
mode=MULTIPLICATIVE

)

These multi-locus model treat disease alleles at different loci more or less independently. If more complex multi-locus
models (e.g. models involve gene - gene and/or gene - interaction) are involved, a multi-locus selector that uses a
multi-locus penetrance table could be used.

8.4 Output statistics

We first want to output total disease allele frequency of each locus. This is easy because Stat() operator can calculate
allele frequency for us. What we need to do is use a Stat() operator to calculate allele frequency and get the result
from population variable alleleFreq. Because allele frequcies add up to one, we can get the total disease allele
frequency using the allele frequency of the wild type allele 0 (). The actual code would look more or less like this:

8.3. Mutation and selection models 249

reichDemo.py

simuPOP

Stat(alleleFreq=[0,1]),
PyEval(r'"%.2f" % (1-alleleFreq[0][0])')

We are also interested in the effective number of alleles Reich2001a at a locus. Because simuPOP does not provide
an operator or function to calculate this statistic, we will have to calculate it manually. Fortunately, this is not difficult
because effective number of alleles can be calculated from existing allele frequencies, using formula

where is the allele frequency of disease allele .

A quick-and-dirty way to output at a locus (e.g. locus 0) can be:

PyEval('1./sum([(alleleFreq[0][x]/(1-alleleFreq[0][0]))**2 for x in alleleFreq[0].
→˓keys() if x != 0])')

but this expression looks complicated and does not handle the case when . A more robust method would involve the
stmts parameter of PyEval, which will be evaluated before parameter expr:

PyEval(stmts='''if alleleFreq[0][0] == 1:
ne = 0

else:
freq = [freq[0][x] for x in alleleFreq[0].keys() if x != 0]
ne = 1./sum([(f/(1-alleleFreq[0][0])**2 for x in freq])

''', expr=r'"%.3f" % ne')

However, this piece of code does not look nice with the multi-line string, and the operator is not really reusable (only
valid for locus o). It makes sense to define a function to calculate generally:

def ne(pop, loci):
' calculate effective number of alleles at given loci'
stat(pop, alleleFreq=loci)
ne = {}
for loc in loci:

freq = [y for x,y in pop.dvars().alleleFreq[loc].iteritems() if x != 0]
sumFreq = 1 - pop.dvars().alleleFreq[loc][0]
if sumFreq == 0:

ne[loc] = 0
else:

ne[loc] = 1. / sum([(x/sumFreq)**2 for x in freq])
save the result to the population.
pop.dvars().ne = ne
return True

When it is needed to calculate effective number of alleles, a Python operator that uses this function can be used. For
example, operator

PyOperator(func=ne, param=[0], step=5)
PyEval(r'"%.3f" % ne[0]', step=5)

would calculate effective number of alleles at locus 0 and output it.

The biggest difference between PyEval and PyOperator is that PyOperator is no longer evaluated in the
population’s local namespace. You will have to get the variables explicitly using the pop.dvars() function, and
the results have to be explicitly saved to the population’s local namespace.

The final implementation, as a way to demonstrate how to define a new statistics that hides all the details, defines a
new operator by inheriting a class from PyOperator. The resulting operator could be used as a regular operator
(e.g., ne(loci=[0])). A function Ne is also defined as the function form of this operator. The code is listed in
Example reichstat

250 Chapter 8. A real world example

simuPOP

Example: A customized operator to calculate effective number of alleles

>>> import simuPOP as sim
>>> class ne(sim.PyOperator):
... '''Define an operator that calculates effective number of
... alleles at given loci. The result is saved in a population
... variable ne.
... '''
... def __init__(self, loci, *args, **kwargs):
... self.loci = loci
... sim.PyOperator.__init__(self, func=self.calcNe, *args, **kwargs)
... #
... def calcNe(self, pop):
... sim.stat(pop, alleleFreq=self.loci)
... ne = {}
... for loc in self.loci:
... freq = pop.dvars().alleleFreq[loc]
... sumFreq = 1 - pop.dvars().alleleFreq[loc][0]
... if sumFreq == 0:
... ne[loc] = 0
... else:
... ne[loc] = 1. / sum([(freq[x]/sumFreq)**2 for x in list(freq.
→˓keys()) if x != 0])
... # save the result to the sim.Population.
... pop.dvars().ne = ne
... return True
...
>>> def Ne(pop, loci):
... '''Function form of operator ne'''
... ne(loci).apply(pop)
... return pop.dvars().ne
...
>>> pop = sim.Population(100, loci=[10])
>>> sim.initGenotype(pop, freq=[.2] * 5)
>>> print(Ne(pop, loci=[2, 4]))
{2: 3.9565470135154768, 4: 3.948841408365935}

now exiting runScriptInteractively...

Download reichstat.py

8.5 Initialize and evolve the population

With appropriate operators to perform mutation, selection and output statistics, it is relatively easy to write a simulator
to perform a simulation. This simulator would create a population, initialize alleles with an initial allic spectrum, and
then evolve it according to specified demographic model. During the evolution, mutation and selection will be applied,
statistics will be calculated and outputed.

Example: Evolve a population subject to mutation and selection

>>> import simuPOP as sim
>>>
>>>
>>> def simulate(model, N0, N1, G0, G1, spec, s, mu, k):
... '''Evolve a sim.Population using given demographic model
... and observe the evolution of its allelic spectrum.

(continues on next page)

8.5. Initialize and evolve the population 251

reichstat.py

simuPOP

(continued from previous page)

... model: type of demographic model.

... N0, N1, G0, G1: parameters of demographic model.

... spec: initial allelic spectrum, should be a list of allele

... frequencies for each allele.

... s: selection pressure.

... mu: mutation rate.

... k: k for the k-allele model

... '''

... demo_func = demo_model(model, N0, N1, G0, G1)

... pop = sim.Population(size=demo_func(0), loci=1, infoFields='fitness')

... pop.evolve(

... initOps=[

... sim.InitSex(),

... sim.InitGenotype(freq=spec, loci=0)

...],

... matingScheme=sim.RandomMating(subPopSize=demo_func),

... postOps=[

... sim.KAlleleMutator(k=k, rates=mu),

... sim.MaSelector(loci=0, fitness=[1, 1, 1 - s], wildtype=0),

... ne(loci=[0], step=100),

... sim.PyEval(r'"%d: %.2f\t%.2f\n" % (gen, 1 - alleleFreq[0][0], ne[0])',

... step=100),

...],

... gen = G0 + G1

...)

...
>>> simulate('instant', 1000, 10000, 500, 500, [0.9]+[0.02]*5, 0.01, 1e-4, 200)
0: 0.09 4.91
100: 0.12 2.63
200: 0.09 1.22
300: 0.02 2.85
400: 0.02 2.12
500: 0.05 1.02
600: 0.06 1.51
700: 0.08 1.58
800: 0.09 1.80
900: 0.08 1.79

now exiting runScriptInteractively...

Download reichEvolve.py

8.6 Option handling

Everything seems to be perfect until you need to

1. Run more simulations with different parameters such as initial population size and mutaion rate. This requires
the script to get its parameters from command line (or a configuration file) and executes in batch mode, perhaps
on a cluster system.

2. Allow users who are not familiar with the script to run it. This would better be achieved by a graphical user
interface.

3. Allow other Python scripts to import your script and run the simulation function directly.

Although a number of Python modules such as getopt are available, the simuPOP simuOpt module is especially

252 Chapter 8. A real world example

reichEvolve.py

simuPOP

designed to allow a simuPOP script to be run both in batch and in GUI mode, in standard and optimized mode.
Example reich makes use of this module.

Example: A complete simulation script

#!/usr/bin/env python
#
Author: Bo Peng
Purpose: A real world example for simuPOP user's guide.
#
'''
Simulation the evolution of allelic spectra (number and frequencies
of alleles at a locus), under the influence of sim.population expansion,
mutation, and natural selection.
'''
import simuOpt
simuOpt.setOptions(quiet=True, alleleType='long')
import simuPOP as sim
import sys, types, os, math
options = [

{'name': 'demo',
'default': 'instant',
'label': 'Population growth model',
'description': 'How does a sim.Population grow from N0 to N1.',
'type': ('chooseOneOf', ['instant', 'exponential']),

},
{'name': 'N0',
'default': 10000,
'label': 'Initial sim.population size',
'type': 'integer',
'description': '''Initial sim.population size. This size will be maintained

till the end of burnin stage''',
'validator': simuOpt.valueGT(0)

},
{'name': 'N1',
'default': 100000,
'label': 'Final sim.population size',
'type': 'integer',
'description': 'Ending sim.population size (after sim.population expansion)',
'validator': simuOpt.valueGT(0)

},
{'name': 'G0',
'default': 500,
'label': 'Length of burn-in stage',
'type': 'integer',
'description': 'Number of generations of the burn in stage.',
'validator': simuOpt.valueGT(0)

},
{'name': 'G1',
'default': 1000,
'label': 'Length of expansion stage',
'type': 'integer',
'description': 'Number of geneartions of the sim.population expansion stage',
'validator': simuOpt.valueGT(0)

},
{'name': 'spec',
'default': [0.9] + [0.02]*5,
'label': 'Initial allelic spectrum',

(continues on next page)

8.6. Option handling 253

simuPOP

(continued from previous page)

'type': 'numbers',
'description': '''Initial allelic spectrum, should be a list of allele

frequencies, for allele 0, 1, 2, ... respectively.''',
'validator': simuOpt.valueListOf(simuOpt.valueBetween(0, 1)),

},
{'name': 's',
'default': 0.01,
'label': 'Selection pressure',
'type': 'number',
'description': '''Selection coefficient for homozygtes (aa) genotype.

A recessive selection model is used so the fitness values of
genotypes AA, Aa and aa are 1, 1 and 1-s respectively.''',

'validator': simuOpt.valueGT(-1),
},
{'name': 'mu',
'default': 1e-4,
'label': 'Mutation rate',
'type': 'number',
'description': 'Mutation rate of a k-allele mutation model',
'validator': simuOpt.valueBetween(0, 1),

},
{'name': 'k',
'default': 200,
'label': 'Maximum allelic state',
'type': 'integer',
'description': 'Maximum allelic state for a k-allele mutation model',
'validator': simuOpt.valueGT(1),

},
]

def demo_model(type, N0=1000, N1=100000, G0=500, G1=500):
'''Return a demographic function
type: linear or exponential
N0: Initial sim.population size.
N1: Ending sim.population size.
G0: Length of burn-in stage.
G1: Length of sim.population expansion stage.
'''
rate = (math.log(N1) - math.log(N0))/G1
def ins_expansion(gen):

if gen < G0:
return N0

else:
return N1

def exp_expansion(gen):
if gen < G0:

return N0
else:

return int(N0 * math.exp((gen - G0) * rate))

if type == 'instant':
return ins_expansion

elif type == 'exponential':
return exp_expansion

class ne(sim.PyOperator):
(continues on next page)

254 Chapter 8. A real world example

simuPOP

(continued from previous page)

'''Define an operator that calculates effective number of
alleles at given loci. The result is saved in a population
variable ne.
'''
def __init__(self, loci, *args, **kwargs):

self.loci = loci
sim.PyOperator.__init__(self, func=self.calcNe, *args, **kwargs)

def calcNe(self, pop):
sim.stat(pop, alleleFreq=self.loci)
ne = {}
for loc in self.loci:

freq = pop.dvars().alleleFreq[loc]
sumFreq = 1 - pop.dvars().alleleFreq[loc][0]
if sumFreq == 0:

ne[loc] = 0
else:

ne[loc] = 1. / sum([(freq[x]/sumFreq)**2 for x in list(freq.keys())
→˓if x != 0])

save the result to the sim.Population.
pop.dvars().ne = ne
return True

def simuCDCV(model, N0, N1, G0, G1, spec, s, mu, k):
'''Evolve a sim.Population using given demographic model
and observe the evolution of its allelic spectrum.
model: type of demographic model.
N0, N1, G0, G1: parameters of demographic model.
spec: initial allelic spectrum, should be a list of allele

frequencies for each allele.
s: selection pressure.
mu: mutation rate.
k: maximum allele for the k-allele model
'''
demo_func = demo_model(model, N0, N1, G0, G1)
print(demo_func(0))
pop = sim.Population(size=demo_func(0), loci=1, infoFields='fitness')
pop.evolve(

initOps=[
sim.InitSex(),
sim.InitGenotype(freq=spec, loci=0)

],
matingScheme=sim.RandomMating(subPopSize=demo_func),
postOps=[

sim.KAlleleMutator(rates=mu, k=k),
sim.MaSelector(loci=0, fitness=[1, 1, 1 - s], wildtype=0),
ne(loci=(0,), step=100),
sim.PyEval(r'"%d: %.2f\t%.2f\n" % (gen, 1 - alleleFreq[0][0], ne[0])',

step=100),
],
gen = G0 + G1

)
return pop

if __name__ == '__main__':
get parameters
par = simuOpt.Params(options, __doc__)

(continues on next page)

8.6. Option handling 255

simuPOP

(continued from previous page)

if not par.getParam():
sys.exit(1)

if not sum(par.spec) == 1:
print('Initial allelic spectrum should add up to 1.')
sys.exit(1)

save user input to a configuration file
par.saveConfig('simuCDCV.cfg')
#
simuCDCV(*par.asList())

Download simuCDCV.py

Example reich uses a programming style that is used by almost all simuPOP scripts. I highly recommend this style
because it makes your script seld-documentary and work well under a variety of environments. A script written in this
style follows the following order:

1. First comment block

The first line of the script should always be

#!/usr/bin/env python

This line tells a Unix shell which program should be used to process this script if the script to set to be executable.
This line is ignored under windows. It is customary to put author and date information at the top of a script as
Python comments.

2. Module doc string

The first string in a script is the module docstring, which can be referred by variable __doc__ in the script. It
is a good idea to describe what this script does in detail here. As you will see later, this docstring will be used
in the simuOpt.getParam() function and be outputed in the usage information of the script.

3. Loading simuPOP and other Python modules

simuPOP and other modules are usually imported after module docstring. This is where you specify which
simuPOP module to use. Although a number of parameters could be used, usually only alleleType is
specified because other parameters such as gui and optimized should better be controlled from command
line.

4. Parameter description list

A list of parameter description dictionaries are given here. This list specifies what parameters will be used in
this script and describes the type, default value, name of command line option, label of the parameter in the
parameter input dialog in detail. Although some directionary items can be ignored, it is a good practice to give
detailed information about each parameter here.

5. Helper functions and classes

Helper functions and classes are given before the main simulation function.

6. Main simulation function

The main simulation function preforms the main functionality of the whole script. It is written as a function so
that it can be imported and executed by another script. The parameter processing part of the script would be
ignored in this case.

7. Script execution part conditioned by __name__ == '__main__'

The execution part of a script should always be inside of a if __name__ == '__main__' block so that
the script will not be executed when it is imported by another script. The first few lines of this execution block

256 Chapter 8. A real world example

simuCDCV.py

simuPOP

are almost always

par = simuOpt.Params(options, __doc__)
if not par.getParam():

sys.exit(1)

which creates a simuOpt object and tries to get parameters from command line option, a configuration file, a
parameter input dialog or interactive user input, depending on how this script is executed. Optionally, you can
use

par.saveConfig('file.cfg')

to save the current configuration to a file so that the same parameters could be retrieved later using parameter
--config file.cfg.

After simply parameter validation, the main simulation function can be called. This example uses
simuCDCV(*par.asList()) because the parameter list in the par object match the parameter list of
function simuCDCV exactly. If there are a large number of parameters, it may be better to pass the simuOpt
object directly in the main simulation function.

The script written in this style could be executed in a number of ways.

1. If a user executes the script directly, a Tkinter or wxPython dialog will be displayed for users to input parameters.
This parameter is shown in Figure fig_simuCDCV_dialog.

Figure: Parameter input dialog of the simuCDCV script

2. The help message of this script could be displayed using the Help button of the parameter input dialog, or using
command simuCDCV.py -h.

3. Using parameter --gui=False, the script will be run in batch mode. You can specify parameters using

simuCDCV.py --gui=False --config file.cfg

if a parameter file is available, or use command line options such as

simuCDCV.py --gui=False --demo='instant' --N0=10000 --N1=100000 \
--G0=500 --G1=500 --spec='[0.9]+[0.02]*5' --s=0.01 \
--mu='1e-4' --k=200

Note that parameters with useDefault set to True can be ignored if the default parameter is used. In
addition, parameter --optimized could be used to load the optimized version of a simuPOP module. For
this particular configuration, the optimized module is 30% faster (62s vs. 40s) than the standard module.

4. The simulation function could be imported to another script as follows

from simuCDCV import simuCDCV
simuCDCV(model='instant', N0=10000, N1=10000, G0=500, G1=500,

spec=[0.9]+[0.02]*5, s=0.01, mu=1e-4, k=200)

document

8.6. Option handling 257

simuPOP

Users/bpeng1/simuPOP/simuPOP/doc/figures/simuCDCV.png

258 Chapter 8. A real world example

CHAPTER 9

Front Matter

Abstract

simuPOP is a general-purpose individual-based forward-time population genetics simulation environment. Unlike
coalescent-based programs, simuPOP evolves populations forward in time, subject to arbitrary number of genetic
and environmental forces such as mutation, recombination, migration and population/subpopulation size changes.
In contrast to competing applications that use command-line options or configuration files to direct the execution
of a limited number of predefined evolutionary scenarios, users of simuPOP’s scripting interface could make use
of many of its unique features, such as customized chromosome types, arbitrary nonrandom mating schemes, vir-
tual subpopulations, information fields and Python operators, to construct and study almost arbitrarily complex
evolutionary scenarios.

simuPOP is provided as a number of Python modules, which consist of a large number of Python objects and
functions, including population, mating schemes, operators (objects that manipulate populations) and simulators to
coordinate the evolutionary processes. It is the users’ responsibility to write a Python script to glue these pieces
together and form a simulation. At a more user-friendly level, an increasing number of functions and scripts
contributed by simuPOP users is available in the online simuPOP cookbook. They provide useful functions for
different applications (e.g. load and manipulate HapMap samples, import and export files from another application)
and allow users who are unfamiliar with simuPOP to perform a large number of simulations ranging from basic
population genetics models to generating datasets under complex evolutionary scenarios.

This document provides complete references to all classes and functions of simuPOP and its utility modules. Please
refer to the simuPOP user’s guide for a detailed introduction to simuPOP concepts, and a number of examples on
how to use simuPOP to perform various simulations. All resources, including a pdf version of this guide and a
mailing list can be found at the simuPOP homepage http://simupop.sourceforge.net.

How to cite simuPOP:

Bo Peng and Marek Kimmel (2005) simuPOP: a forward-time population genetics simulation environ-
ment. bioinformatics, 21 (18): 3686-3687.

Bo Peng and Christopher Amos (2008) Forward-time simulations of nonrandom mating populations
using simuPOP. bioinformatics, 24 (11): 1408-1409.

259

simuPOP

260 Chapter 9. Front Matter

CHAPTER 10

simuPOP Components

10.1 Individual, Population, pedigree and Simulator

10.1.1 class GenoStruTrait

class GenoStruTrait
All individuals in a population share the same genotypic properties such as number of chromosomes, number
and position of loci, names of markers, chromosomes, and information fields. These properties are stored in this
GenoStruTrait class and are accessible from both Individual and Population classes. Currently, a
genotypic structure consists of

• Ploidy, namely the number of homologous sets of chromosomes, of a population. Haplodiploid population
is also supported.

• Number of chromosomes and number of loci on each chromosome.

• Positions of loci, which determine the relative distance between loci on the same chromosome. No unit is
assumed so these positions can be ordinal (1, 2, 3, . . . , the default), in physical distance (bp, kb or mb),
or in map distance (e.g. centiMorgan) depending on applications.

• Names of alleles, which can either be shared by all loci or be specified for each locus.

• Names of loci and chromosomes.

• Names of information fields attached to each individual.

In addition to basic property access functions, this class provides some utility functions such as locusByName,
which looks up a locus by its name.

GenoStruTrait()
A GenoStruTrait object is created with the construction of a Population object and cannot be
initialized directly.

absLocusIndex(chrom, locus)
return the absolute index of locus locus on chromosome chrom. c.f. chromLocusPair.

261

simuPOP

alleleName(allele, locus=0)
return the name of allele allele at lcous specified by the alleleNames parameter of the Population
function. locus could be ignored if alleles at all loci share the same names. If the name of an allele is
unspecified, its value ('0', '1', '2', etc) is returned.

alleleNames(locus=0)
return a list of allele names at locus given by the alleleNames parameter of the Population func-
tion. locus could be ignored if alleles at all loci share the same names. This list does not have to
cover all possible allele states of a population so alleleNames()[``*allele*]‘‘ might fail (use
alleleNames(``*allele*)‘‘ instead).

chromBegin(chrom)
return the index of the first locus on chromosome chrom.

chromByName(name)
return the index of a chromosome by its name.

chromEnd(chrom)
return the index of the last locus on chromosome chrom plus 1.

chromLocusPair(locus)
return the chromosome and relative index of a locus using its absolute index locus. c.f. absLocusIndex.

chromName(chrom)
return the name of a chromosome chrom.

chromNames()
return a list of the names of all chromosomes.

chromType(chrom)
return the type of a chromosome chrom (CUSTOMIZED, AUTOSOME, CHROMOSOME_X,
CHROMOSOME_Y or MITOCHONDRIAL.

chromTypes()
return the type of all chromosomes (CUSTOMIZED, AUTOSOME, CHROMOSOME_X, CHROMOSOME_Y, or
MITOCHONDRIAL).

indexesOfLoci(loci=ALL_AVAIL)
return the indexes of loci with positions positions (list of (chr, pos) pairs). Raise a ValueError if any of
the loci cannot be found.

infoField(idx)
return the name of information field idx.

infoFields()
return a list of the names of all information fields of the population.

infoIdx(name)
return the index of information field name. Raise an IndexError if name is not one of the information
fields.

lociByNames(names)
return the indexes of loci with names names. Raise a ValueError if any of the loci cannot be found.

lociDist(locus1, locus2)
Return the distance between loci locus1 and locus2 on the same chromosome. A negative value will be
returned if locus1 is after locus2.

lociNames()
return the names of all loci specified by the lociNames parameter of the Population function. An empty
list will be returned if lociNames was not specified.

262 Chapter 10. simuPOP Components

simuPOP

lociPos()
return the positions of all loci, specified by the lociPos prameter of the Population function. The
default positions are 1, 2, 3, 4, . . . on each chromosome.

locusByName(name)
return the index of a locus with name name. Raise a ValueError if no locus is found. Note that empty
strings are used for loci without name but you cannot lookup such loci using this function.

locusName(locus)
return the name of locus locus specified by the lociNames parameter of the Population function. An
empty string will be returned if no name has been given to locus locus.

locusPos(locus)
return the position of locus locus specified by the lociPos parameter of the Population function.

numChrom()
return the number of chromosomes.

numLoci(chrom)
return the number of loci on chromosome chrom.

numLoci()
return a list of the number of loci on all chromosomes.

ploidy()
return the number of homologous sets of chromosomes, specified by the ploidy parameter of the
Population function. Return 2 for a haplodiploid population because two sets of chromosomes are
stored for both males and females in such a population.

ploidyName()
return the ploidy name of this population, can be one of haploid, diploid, haplodiploid,
triploid, tetraploid or #-ploid where # is the ploidy number.

totNumLoci()
return the total number of loci on all chromosomes.

10.1.2 class Individual

class Individual
A Population consists of individuals with the same genotypic structure. An Individual object cannot be
created independently, but refences to inidividuals can be retrieved using member functions of a Population
object. In addition to structural information shared by all individuals in a population (provided by class
GenoStruTrait), the Individual class provides member functions to get and set genotype, sex, affec-
tion status and information fields of an individual.

Genotypes of an individual are stored sequentially and can be accessed locus by locus, or in batch. The alleles
are arranged by position, chromosome and ploidy. That is to say, the first allele on the first chromosome of the
first homologous set is followed by alleles at other loci on the same chromsome, then markers on the second
and later chromosomes, followed by alleles on the second homologous set of the chromosomes for a diploid
individual. A consequence of this memory layout is that alleles at the same locus of a non-haploid individual are
separated by Individual::totNumLoci() loci. It is worth noting that access to invalid chromosomes,
such as the Y chromosomes of female individuals, is not restricted.

Individual()
An Individual object cannot be created directly. It has to be accessed from a Population object
using functions such as Population::Individual(idx).

affected()
Return True if this individual is affected.

10.1. Individual, Population, pedigree and Simulator 263

simuPOP

allele(idx, ploidy=-1, chrom=-1)
return the current allele at a locus, using its absolute index idx. If a ploidy ploidy and/or a chromosome
indexes is given, idx is relative to the beginning of specified homologous copy of chromosomes (if chrom=-
1) or the beginning of the specified homologous copy of specified chromosome (if chrom >= 0).

alleleChar(idx, ploidy=-1, chrom=-1)
return the name of allele(idx, ploidy, chrom). If idx is invalid (e.g. second homologus copy
of chromosome Y), ‘_’ is returned.

alleleLineage(idx, ploidy=-1, chrom=-1)
return the lineage of the allele at a locus, using its absolute index idx. If a ploidy ploidy and/or a chromo-
some indexes is given, idx is relative to the beginning of specified homologous copy of chromosomes (if
chrom=-1) or the beginning of the specified homologous copy of specified chromosome (if chrom >= 0).
This function returns 0 for modules without lineage information.

__cmp__(rhs)
a python function used to compare the individual objects

genotype(ploidy=ALL_AVAIL, chroms=ALL_AVAIL)
return an editable array (a carray object) that represents all alleles of an individual. If ploidy or chroms is
given, only alleles on the specified chromosomes and homologous copy of chromosomes will be returned.
If multiple chromosomes are specified, there should not be gaps between chromosomes. This function
ignores type of chromosomes so it will return unused alleles for sex and mitochondrial chromosomes.

info(field)
Return the value of an information field filed (by index or name). ind.info(name) is equivalent to
ind.name although the function form allows the use of indexes of information fieldes.

lineage(ploidy=ALL_AVAIL, chroms=ALL_AVAIL)
return an editable array (a carray_lineage object) that represents the lineages of all alleles of an
individual. If ploidy or chroms is given, only lineages on the specified chromosomes and homologous
copy of chromosomes will be returned. If multiple chromosomes are specified, there should not be gaps
between chromosomes. This function ignores type of chromosomes so it will return lineage of unused
alleles for sex and mitochondrial chromosomes. A None object will be returned for modules without
lineage information.

mutants(ploidy=ALL_AVAIL, chroms=ALL_AVAIL)
return an itertor that iterate through all mutants (non-zero alleles) of an individual. Each mutant is pre-
sented as a tuple of (index, value) where index is the index of mutant ranging from zero to totNumLoci()
* ploidy() - 1, so you will have to adjust indexes to check multiple alleles at a locus. If ploidy or chroms is
given, only alleles on the specified chromosomes and homologous copy of chromosomes will be iterated.
If multiple chromosomes are specified, there should not be gaps between chromosomes. This function
ignores type of chromosomes so it will return unused alleles for sex and mitochondrial chromosomes.

setAffected(affected)
set affection status to affected (True or False).

setAllele(allele, idx, ploidy=-1, chrom=-1)
set allele allele to a locus, using its absolute index idx. If a ploidy ploidy and/or a chromosome indexes are
given, idx is relative to the beginning of specified homologous copy of chromosomes (if chrom=-1) or the
beginning of the specified homologous copy of specified chromosome (if chrom >= 0).

setAlleleLineage(lineage, idx, ploidy=-1, chrom=-1)
set lineage lineage to an allele, using its absolute index idx. If a ploidy ploidy and/or a chromosome indexes
are given, idx is relative to the beginning of specified homologous copy of chromosomes (if chrom=-1) or
the beginning of the specified homologous copy of specified chromosome (if chrom >= 0). This function
does nothing for modules without lineage information.

setGenotype(geno, ploidy=ALL_AVAIL, chroms=ALL_AVAIL)

264 Chapter 10. simuPOP Components

simuPOP

Fill the genotype of an individual using a list of alleles geno. If parameters ploidy and/or chroms are
specified, alleles will be copied to only all or specified chromosomes on selected homologous copies of
chromosomes. geno will be reused if its length is less than number of alleles to be filled. This func-
tion ignores type of chromosomes so it will set genotype for unused alleles for sex and mitochondrial
chromosomes.

setInfo(value, field)
set the value of an information field field (by index or name) to value. ind.setInfo(value,
field) is equivalent to ind.field = value although the function form allows the use of indexes
of information fieldes.

setLineage(lineage, ploidy=ALL_AVAIL, chroms=ALL_AVAIL)
Fill the lineage of an individual using a list of IDs lineage. If parameters ploidy and/or chroms are spec-
ified, lineages will be copied to only all or specified chromosomes on selected homologous copies of
chromosomes. lineage will be reused if its length is less than number of allelic lineage to be filled. This
function ignores type of chromosomes so it will set lineage to unused alleles for sex and mitochondrial
chromosomes. It does nothing for modules without lineage information.

setSex(sex)
set individual sex to MALE or FEMALE.

sex()
return the sex of an individual, 1 for male and 2 for female.

10.1.3 class Population

class Population
A simuPOP population consists of individuals of the same genotypic structure, organized by generations, sub-
populations and virtual subpopulations. It also contains a Python dictionary that is used to store arbitrary popu-
lation variables.

In addition to genotypic structured related functions provided by the GenoStruTrait class, the population
class provides a large number of member functions that can be used to

• Create, copy and compare populations.

• Manipulate subpopulations. A population can be divided into several subpopulations. Because individuals
only mate with individuals within the same subpopulation, exchange of genetic information across subpop-
ulations can only be done through migration. A number of functions are provided to access subpopulation
structure information, and to merge and split subpopulations.

• Define and access virtual subpopulations. A virtual subpopulation splitter can be assigned to a population,
which defines groups of individuals called virtual subpopulations (VSP) within each subpopulation.

• Access individuals individually, or through iterators that iterate through individuals in (virtual) subpopu-
lations.

• Access genotype and information fields of individuals at the population level. From a population point of
view, all genotypes are arranged sequentially individual by individual. Please refer to class Individual
for an introduction to genotype arragement of each individual.

• Store and access ancestral generations. A population can save arbitrary number of ancestral generations.
It is possible to directly access an ancestor, or make an ancestral generation the current generation for more
efficient access.

• Insert or remove loci, resize (shrink or expand) a population, sample from a population, or merge with
other populations.

• Manipulate population variables and evaluate expressions in this local namespace.

10.1. Individual, Population, pedigree and Simulator 265

simuPOP

• Save and load a population.

Population(size=[], ploidy=2, loci=[], chromTypes=[], lociPos=[], ancGen=0, chromNames=[], al-
leleNames=[], lociNames=[], subPopNames=[], infoFields=[])

The following parameters are used to create a population object:

size A list of subpopulation sizes. The length of this list determines the number of subpopulations of this
population. If there is no subpopulation, size=[popSize] can be written as size=popSize.

ploidy Number of homologous sets of chromosomes. Default to 2 (diploid). For efficiency considerations,
all chromosomes have the same number of homologous sets, even if some customized chromosomes
or some individuals (e.g. males in a haplodiploid population) have different numbers of homologous
sets. The first case is handled by setting chromTypes of each chromosome. Only the haplodiploid
populations are handled for the second case, for which ploidy=HAPLODIPLOID should be used.

loci A list of numbers of loci on each chromosome. The length of this parameter determines the number
of chromosomes. If there is only one chromosome, numLoci instead of [numLoci] can be used.

chromTypes A list that specifies the type of each chromosome, which can be AUTOSOME,
CHROMOSOME_X, CHROMOSOME_Y, or CUSTOMIZED. All chromosomes are assumed to be au-
tosomes if this parameter is ignored. Sex chromosome can only be specified in a diploid population
where the sex of an individual is determined by the existence of these chromosomes using the XX
(FEMALE) and XY (MALE) convention. Both sex chromosomes have to be available and be specified
only once. Because chromosomes X and Y are treated as two chromosomes, recombination on the
pseudo-autosomal regions of the sex chromsomes is not supported. CUSTOMIZED chromosomes are
special chromosomes whose inheritance patterns are undefined. They rely on user- defined functions
and operators to be passed from parents to offspring. Multiple customized chromosomes have to be
arranged consecutively.

lociPos Positions of all loci on all chromosome, as a list of float numbers. Default to 1, 2, . . . etc on each
chromosome. lociPos should be arranged chromosome by chromosome. If lociPos are not in order
within a chromosome, they will be re-arranged along with corresponding lociNames (if specified).

ancGen Number of the most recent ancestral generations to keep during evolution. Default to 0, which
means only the current generation will be kept. If it is set to -1, all ancestral generations will be kept
in this population (and exhaust your computer RAM quickly).

chromNames A list of chromosome names. Default to '' for all chromosomes.

alleleNames A list or a nested list of allele names. If a list of alleles is given, it will be used for all loci in
this population. For example, alleleNames=('A','C','T','G') gives names A, C, T, and G
to alleles 0, 1, 2, and 3 respectively. If a nested list of names is given, it should specify alleles names
for all loci.

lociNames A list of names for each locus. It can be empty or a list of unique names for each locus.
If loci are not specified in order, loci names will be rearranged according to their position on the
chromosome.

subPopNames A list of subpopulation names. All subpopulations will have name '' if this parameter is
not specified.

infoFields Names of information fields (named float number) that will be attached to each individual.

absIndIndex(idx, subPop)
return the absolute index of an individual idx in subpopulation subPop.

addChrom(lociPos, lociNames=[], chromName="", alleleNames=[], chromType=AUTOSOME)
Add chromosome chromName with given type chromType to a population, with loci lociNames inserted
at position lociPos. lociPos should be ordered. lociNames and chromName should not exist in the current
population. Allele names could be specified for all loci (a list of names) or differently for each locus (a

266 Chapter 10. simuPOP Components

simuPOP

nested list of names), using parameter alleleNames. Empty loci names will be used if lociNames is not
specified. The newly added alleles will have zero lineage in modules wiht lineage information.

addChromFrom(pop)
Add chromosomes in population pop to the current population. population pop should have the same
number of individuals as the current population in the current and all ancestral generations. Chromosomes
of pop, if named, should not conflict with names of existing chromosome. This function merges genotypes
on the new chromosomes from population pop individual by individual.

addIndFrom(pop)
Add all individuals, including ancestors, in pop to the current population. Two populations should have
the same genotypic structures and number of ancestral generations. Subpopulations in population pop are
kept.

addInfoFields(fields, init=0)
Add a list of information fields fields to a population and initialize their values to init. If an information
field alreay exists, it will be re-initialized.

addLoci(chrom, pos, lociNames=[], alleleNames=[])
Insert loci lociNames at positions pos on chromosome chrom. These parameters should be lists of the same
length, although names may be ignored, in which case empty strings will be assumed. Single-value input
is allowed for parameter chrom and pos if only one locus is added. Alleles at inserted loci are initialized
with zero alleles. Note that loci have to be added to existing chromosomes. If loci on a new chromosome
need to be added, function addChrom should be used. Optionally, allele names could be specified either
for all loci (a single list) or each loci (a nested list). This function returns indexes of the inserted loci.
Newly inserted alleles will have zero lineage in modules with lineage information.

addLociFrom(pop, byName=False)
Add loci from population pop. By default, chromosomes are merged by index and names of merged
chromosomes of population pop will be ignored (merge of two chromosomes with different names will
yield a warning). If byName is set to True, chromosomes in pop will be merged to chromosomes with
identical names. Added loci will be inserted according to their position. Their position and names should
not overlap with any locus in the current population. population pop should have the same number of
individuals as the current population in the current and all ancestral generations. Allele lineages are also
copied from pop in modules with lineage information.

ancestor(idx, gen, subPop=[])
Return a reference to individual idx in ancestral generation gen. The correct individual will be returned
even if the current generation is not the present one (see also useAncestralGen). If a valid subPop is
specified, index is relative to that subPop. Virtual subpopulation is not supported. Note that a float idx is
acceptable as long as it rounds closely to an integer.

ancestralGens()
Return the actual number of ancestral generations stored in a population, which does not necessarily equal
to the number set by setAncestralDepth().

clone()
Create a cloned copy of a population. Note that Python statement pop1 = pop only creates a reference
to an existing population pop.

__cmp__(rhs)
a python function used to compare the population objects

dvars(subPop=[])
Return a wrapper of Python dictionary returned by vars(subPop) so that dictionary keys can be ac-
cessed as attributes.

extractIndividuals(indexes=[], IDs=[], idField="ind_id", filter=None)
Extract individuals with given absolute indexes (parameter indexes), IDs (parameter IDs, stored in infor-

10.1. Individual, Population, pedigree and Simulator 267

simuPOP

mation field idField, default to ind_id), or a filter function (parameter filter). If a list of absolute indexes
are specified, the present generation will be extracted and form a one-generational population. If a list
of IDs are specified, this function will look through all ancestral generations and extract individuals with
given ID. Individuals with shared IDs are allowed. In the last case, a user-defined Python function should
be provided. This function should accept parameter "ind" or one or more of the information fields. All
individuals, including ancestors if there are multiple ancestral generations, will be passed to this function.
Individuals that returns True will be extracted. Extracted individuals will be in their original ancestral
generations and subpopulations, even if some subpopulations or generations are empty. An IndexError
will be raised if an index is out of bound but no error will be given if an invalid ID is encountered.

extractSubPops(subPops=ALL_AVAIL, rearrange=False)
Extract a list of (virtual) subpopulations from a population and create a new population. If rearrange is
False (default), structure and names of extracted subpopulations are kept although extracted subpopu-
lations can have fewer individuals if they are created from extracted virtual subpopulations. (e.g. it is
possible to extract all male individuals from a subpopulation using a SexSplitter()). If rearrange is
True, each (virtual) subpopulation in subPops becomes a new subpopulation in the extracted population
in the order at which they are specified. Because each virtual subpopulation becomes a subpopulation,
this function could be used, for example, to separate male and female individuals to two subpopulations
(subPops=[(0,0), (0,1)]). If overlapping (virtual) subpopulations are specified, individuals will
be copied multiple times. This function only extract individuals from the present generation.

genotype(subPop=[])
Return an editable array of the genotype of all individuals in a population (if subPop=[], default), or
individuals in a subpopulation subPop. Virtual subpopulation is unsupported.

indByID(id, ancGens=ALL_AVAIL, idField="ind_id")
Return a reference to individual with id stored in information field idField (default to ind_id). This
function by default search the present and all ancestral generations (ancGen=ALL_AVAIL), but you can
limit the search in specific generations if you know which generations to search (ancGens=[0,1] for
present and parental generations) or UNSPECIFIED to search only the current generation. If no individual
with id is found, an IndexError will be raised. A float id is acceptable as long as it rounds closely to
an integer. Note that this function uses a dynamic searching algorithm which tends to be slow. If you need
to look for multiple individuals from a static population, you might want to convert a population object to
a pedigree object and use function Pedigree.indByID.

indInfo(field, subPop=[])
Return the values (as a list) of information field field (by index or name) of all individuals (if
subPop=[], default), or individuals in a (virtual) subpopulation (if subPop=sp or (sp, vsp)).

individual(idx, subPop=[])
Return a refernce to individual idx in the population (if subPop=[], default) or a subpopulation (if
subPop=sp). Virtual subpopulation is not supported. Note that a float idx is acceptable as long as it
rounds closely to an integer.

individuals(subPop=[])
Return an iterator that can be used to iterate through all individuals in a population (if subPop=[],
default), or a (virtual) subpopulation (subPop=spID or (spID, vspID)). If you would like to iterate
through multiple subpopulations in multiple ancestral generations, please use function Population.
allIndividuals().

lineage(subPop=[])
Return an editable array of the lineage of alleles for all individuals in a population (if subPop=[],
default), or individuals in a subpopulation subPop. Virtual subpopulation is unsupported. This function
returns ‘‘None‘‘ for modules without lineage information.

mergeSubPops(subPops=ALL_AVAIL, name="", toSubPop=-1)
Merge subpopulations subPops. If subPops is ALL_AVAIL (default), all subpopulations will be merged.
subPops do not have to be adjacent to each other. They will all be merged to the subpopulation with the

268 Chapter 10. simuPOP Components

simuPOP

smallest subpopulation ID, unless a subpopulation ID is specified using parameter toSubPop. Indexes of
the rest of the subpopulation may be changed. A new name can be assigned to the merged subpopulation
through parameter name (an empty name will be ignored). This function returns the ID of the merged
subpopulation.

mutants(subPop=[])
Return an iterator that iterate through mutants of all individuals in a population (if subPop=[], default),
or individuals in a subpopulation subPop. Virtual subpopulation is unsupported. Each mutant is presented
as a tuple of (index, value) where index is the index of mutant (from 0 to totNumLoci()*ploidy()) so you
will have to adjust its value to check multiple alleles at a locus. This function ignores type of chromosomes
so non-zero alleles in unused alleles of sex and mitochondrial chromosomes are also iterated.

numSubPop()
Return the number of subpopulations in a population. Return 1 if there is no subpopulation structure.

numVirtualSubPop()
Return the number of virtual subpopulations (VSP) defined by a VSP splitter. Return 0 if no VSP is
defined.

popSize(ancGen=-1, sex=ANY_SEX)
Return the total number of individuals in all subpopulations of the current generation (default) or the an
ancestral generation ancGen. This function by default returns number of all individuals (sex=ANY_SEX),
but it will return number of males (if sex=MALE_ONLY), number of females (if sex=MALE_ONLY), and
number of male/female pairs (if sex=PAIR_ONLY) which is essentially less of the number of males and
females.

push(pop)
Push population pop into the current population. Both populations should have the same genotypic struc-
ture. The current population is discarded if ancestralDepth (maximum number of ancestral generations
to hold) is zero so no ancestral generation can be kept. Otherise, the current population will become the
parental generation of pop. If ancGen of a population is positive and there are already ancGen ancestral
generations (c.f. ancestralGens()), the greatest ancestral generation will be discarded. In any case,
Population*pop* becomes invalid as all its individuals are absorbed by the current population.

recodeAlleles(alleles, loci=ALL_AVAIL, alleleNames=[])
Recode alleles at loci (can be a list of loci indexes or names, or all loci in a population (ALL_AVAIL))
to other values according to parameter alleles. This parameter can a list of new allele numbers for alleles
0, 1, 2, . . . (allele x will be recoded to newAlleles[x], x outside of the range of newAlleles will
not be recoded, although a warning will be given if DBG_WARNING is defined) or a Python function,
which should accept one or both parameters allele (existing allele) and locus (index of locus). The
return value will become the new allele. This function is intended to recode some alleles without listing
all alleles in a list. It will be called once for each existing allele so it is not possible to recode an allele
to different alleles. A new list of allele names could be specified for these loci. Different sets of names
could be specified for each locus if a nested list of names are given. This function recode alleles for all
subpopulations in all ancestral generations.

removeIndividuals(indexes=[], IDs=[], idField="ind_id", filter=None)
remove individual(s) by absolute indexes (parameter index) or their IDs (parameter IDs), or using a filter
function (paramter filter). If indexes are used, only individuals at the current generation will be removed.
If IDs are used, all individuals with one of the IDs at information field idField (default to "ind_id") will
be removed. Although "ind_id" usually stores unique IDs of individuals, this function is frequently
used to remove groups of individuals with the same value at an information field. An IndexError will
be raised if an index is out of bound, but no error will be given if an invalid ID is specified. In the last case,
a user-defined function should be provided. This function should accept parameter "ind" or one or more
of the information fields. All individuals, including ancestors if there are multiple ancestral generations,
will be passed to this function. Individuals that returns True will be removed. This function does not
affect subpopulation structure in the sense that a subpopulation will be kept even if all individuals from it

10.1. Individual, Population, pedigree and Simulator 269

simuPOP

are removed.

removeInfoFields(fields)
Remove information fields fields from a population.

removeLoci(loci=UNSPECIFIED, keep=UNSPECIFIED)
Remove loci (absolute indexes or names) and genotypes at these loci from the current population. Alter-
natively, a parameter keep can be used to specify loci that will not be removed.

removeSubPops(subPops)
Remove (virtual) subpopulation(s) subPops and all their individuals. This function can be used to remove
complete subpopulations (with shifted subpopulation indexes) or individuals belonging to virtual subpop-
ulations of a subpopulation. In the latter case, the subpopulations are kept even if all individuals have been
removed. This function only handles the present generation.

resize(sizes, propagate=False)
Resize population by giving new subpopulation sizes sizes. individuals at the end of some subpopulations
will be removed if the new subpopulation size is smaller than the old one. New individuals will be ap-
pended to a subpopulation if the new size is larger. Their genotypes will be set to zero (default), or be
copied from existing individuals if propagate is set to True. More specifically, if a subpopulation with
3 individuals is expanded to 7, the added individuals will copy genotypes from individual 1, 2, 3, and 1
respectively. Note that this function only resizes the current generation.

save(filename)
Save population to a file filename, which can be loaded by a global function
loadPopulation(filename).

setAncestralDepth(depth)
set the intended ancestral depth of a population to depth, which can be 0 (does not store any ancestral
generation), -1 (store all ancestral generations), and a positive number (store depth ancestral generations.
If there exists more than depth ancestral generations (if depth > 0), extra ancestral generations are removed.

setGenotype(geno, subPop=[])
Fill the genotype of all individuals in a population (if subPop=[]) or in a (virtual) subpopulation subPop
(if subPop=sp or (sp, vsp)) using a list of alleles geno. geno will be reused if its length is less than
subPopSize(subPop)*totNumLoci()*ploidy().

setIndInfo(values, field, subPop=[])
Set information field field (specified by index or name) of all individuals (if subPop=[], default), or
individuals in a (virtual) subpopulation (subPop=sp or (sp, vsp)) to values. values will be reused if
its length is smaller than the size of the population or (virtual) subpopulation.

setInfoFields(fields, init=0)
Set information fields fields to a population and initialize them with value init. All existing information
fields will be removed.

setLineage(geno, subPop=[])
Fill the lineage of all individuals in a population (if subPop=[]) or in a (virtual) subpopulation subPop (if
subPop=sp or (sp, vsp)) using a list of IDs lineage. lineage will be reused if its length is less than
subPopSize(subPop)*totNumLoci()*ploidy(). This function returns directly for modules
without lineage information.

setSubPopByIndInfo(field)
Rearrange individuals to their new subpopulations according to their integer values at information field
field (value returned by Individual::info(field)). individuals with negative values at this field
will be removed. Existing subpopulation names are kept. New subpopulations will have empty names.

setSubPopName(name, subPop)
Assign a name name to subpopulation subPop. Note that subpopulation names do not have to be unique.

270 Chapter 10. simuPOP Components

simuPOP

setVirtualSplitter(splitter)
Set a VSP splitter to the population, which defines the same VSPs for all subpopulations. If different
VSPs are needed for different subpopulations, a CombinedSplitter can be used to make these VSPs
available to all subpopulations.

sortIndividuals(infoFields, reverse=False)
Sort individuals according to values at specified information fields (infoFields). Individuals will be sorted
at an increasing order unless reverse is set to true.

splitSubPop(subPop, sizes, names=[])
Split subpopulation subPop into subpopulations of given sizes, which should add up to the size of subpop-
ulation subPop or 1, in which case sizes are treated as proportions. If subPop is not the last subpopulation,
indexes of subpopulations after subPop are shifted. If subPop is named, the same name will be given to
all new subpopulations unless a new set of names are specified for these subpopulations. This function
returns the IDs of split subpopulations.

subPopBegin(subPop)
Return the index of the first individual in subpopulation subPop.

subPopByName(name)
Return the index of the first subpopulation with name name. An IndexError will be raised if subpopu-
lations are not named, or if no subpopulation with name name is found. Virtual subpopulation name is not
supported.

subPopEnd(subPop)
Return the index of the last individual in subpopulation subPop plus 1, so that
range(subPopBegin(subPop), subPopEnd(subPop) can iterate through the index of all
individuals in subpopulation subPop.

subPopIndPair(idx)
Return the subpopulation ID and relative index of an individual, given its absolute index idx.

subPopName(subPop)
Return the “spName - vspName” (virtual named subpopulation), “” (unnamed non-virtual subpopulation),
“spName” (named subpopulation) or “vspName” (unnamed virtual subpopulation), depending on whether
subpopulation is named or if subPop is virtual.

subPopNames()
Return the names of all subpopulations (excluding virtual subpopulations). An empty string will be re-
turned for unnamed subpopulations.

subPopSizes(ancGen=-1)
Return the sizes of all subpopulations at the current generation (default) or specified ancestral generation
ancGen. Virtual subpopulations are not considered.

swap(rhs)
Swap the content of two population objects, which can be handy in some particular circumstances. For
example, you could swap out a population in a simulator.

updateInfoFieldsFrom(fields, pop, fromFields=[], ancGens=ALL_AVAIL)
Update information fields fields from fromFields of another population (or Pedigree) pop. Two populations
should have the same number of individuals. If fromFields is not specified, it is assumed to be the same as
fields. If ancGens is not ALL_AVAIL, only the specified ancestral generations are updated.

useAncestralGen(idx)
Making ancestral generation idx (0 for current generation, 1 for parental generation, 2 for grand-parental
generation, etc) the current generation. This is an efficient way to access Population properties of an
ancestral generation. useAncestralGen(0) should always be called afterward to restore the correct
order of ancestral generations.

10.1. Individual, Population, pedigree and Simulator 271

simuPOP

vars(subPop=[])
return variables of a population as a Python dictionary. If a valid subpopulation subPop is specified, a
dictionary vars()["subPop"][subPop] is returned. A ValueError will be raised if key subPop
does not exist in vars(), or if key subPop does not exist in vars()["subPop"].

virtualSplitter()
Return the virtual splitter associated with the population, None will be returned if there is no splitter.

asPedigree(idField=’ind_id’, fatherField=’father_id’, motherField=’mother_id’)
Convert the existing population object to a pedigree. After this function pedigree function should magically
be usable for this function.

subPopSize(subPop=[], ancGen=-1, sex=ANY_SEX)
Return the size of a subpopulation (subPopSize(sp)) or a virtual subpopulation
(subPopSize([sp, vsp])) in the current generation (default) or a specified ancestral genera-
tion ancGen. If no subpop is given, it is the same as popSize(ancGen, sex). Population and
virtual subpopulation names can be used. This function by default returns number of all individuals
(sex=ANY_SEX), but it will return number of males (if sex=MALE_ONLY), number of females (if
sex=MALE_ONLY), and number of male/female pairs (if sex=PAIR_ONLY) which is essentially less of
the number of males and females. <group>2-subpopsize</grouplociList()>

allIndividuals(subPops=ALL_AVAIL, ancGens=True)
Return an iterator that iterat through all (virtual) subpopulations in all ancestral generations. A list of
(virtual) subpopulations (subPops) and a list of ancestral generations (ancGens, can be a single number)
could be specified to iterate through only selected subpopulation and generations. Value ALL_AVAIL is
acceptable in the specification of sp and/or vsp in specifying a virtual subpopulation (sp, vsp) for
the iteration through all or specific virtual subpopulation in all or specific subpopulations.

evolve(initOps=[], preOps=[], matingScheme=MatingScheme(), postOps=[], finalOps=[], gen=-1,
dryrun=False)

Evolve the current population gen generations using mating scheme matingScheme and operators initOps
(applied before evolution), preOps (applied to the parental population at the beginning of each life cycle),
postOps (applied to the offspring population at the end of each life cycle) and finalOps (applied at the end of
evolution). More specifically, this function creates a Simulator using the current population, call its evolve
function using passed parameters and then replace the current population with the evolved population.
Please refer to function Simulator.evolve for more details about each parameter.

10.1.4 class Pedigree

class Pedigree
The pedigree class is derived from the population class. Unlike a population class that emphasizes on individual
properties, the pedigree class emphasizes on relationship between individuals. An unique ID for all individ-
uals is needed to create a pedigree object from a population object. Compared to the Population class, a
Pedigree object is optimized for access individuals by their IDs, regardless of population structure and ances-
tral generations. Note that the implementation of some algorithms rely on the fact that parental IDs are smaller
than their offspring because individual IDs are assigned sequentially during evolution. Pedigrees with manually
assigned IDs should try to obey such a rule.

Pedigree(pop, loci=[], infoFields=[], ancGens=ALL_AVAIL, idField="ind_id", father-
Field="father_id", motherField="mother_id", stealPop=False)

Create a pedigree object from a population, using a subset of loci (parameter loci, can be a list of loci
indexes, names, or ALL_AVAIL, default to no locus), information fields (parameter infoFields, default to
no information field besides idField, fatherField and motherField), and ancestral generations (parameter
ancGens, default to all ancestral generations). By default, information field father_id (parameter
fatherField) and mother_id (parameter motherField) are used to locate parents identified by ind_id
(parameter idField), which should store an unique ID for all individuals. Multiple individuls with the same

272 Chapter 10. simuPOP Components

simuPOP

ID are allowed and will be considered as the same individual, but a warning will be given if they actually
differ in genotype or information fields. Operators IdTagger and PedigreeTagger are usually used
to assign such IDs, although function sampling.indexToID could be used to assign unique IDs and
construct parental IDs from index based relationship recorded by operator ParentsTagger. A pedigree
object could be constructed with one or no parent but certain functions such as relative tracking will not be
available for such pedigrees. In case that your are no longer using your population object, you could steal
the content from the population by setting stealPop to True.

clone()
Create a cloned copy of a Pedigree.

identifyAncestors(IDs=ALL_AVAIL, subPops=ALL_AVAIL, ancGens=ALL_AVAIL)
If a list of individuals (IDs) is given, this function traces backward in time and find all ancestors of these
individuals. If IDs is ALL_AVAIL, ancestors of all individuals in the present generation will be located.
If a list of (virtual) subpopulations (subPops) or ancestral geneartions (ancGens) is given, the search will
be limited to individuals in these subpopulations and generations. This could be used to, for example, find
all fathers of IDs. This function returns a list of IDs, which includes valid specified IDs. Invalid IDs will
be silently ignored. Note that parameters subPops and ancGens will limit starting IDs if IDs is set to
ALL_AVAIL, but specified IDs will not be trimmed according to these parameters.

identifyFamilies(pedField="", subPops=ALL_AVAIL, ancGens=ALL_AVAIL)
This function goes through all individuals in a pedigree and group related individuals into families. If
an information field pedField is given, indexes of families will be assigned to this field of each family
member. The return value is a list of family sizes corresponding to families 0, 1, 2, . . . etc. If a list of
(virtual) subpopulations (parameter subPops) or ancestral generations are specified (parameter ancGens),
the search will be limited to individuals in these subpopulations and generations.

identifyOffspring(IDs=[], subPops=ALL_AVAIL, ancGens=ALL_AVAIL)
This function traces forward in time and find all offspring of individuals specified in parameter IDs. If a
list of (virtual) subpopulations (subPops) or ancestral geneartions (ancGens) is given, the search will be
limited to individuals in these subpopulations and generations. This could be used to, for example, find all
male offspring of IDs. This function returns a list of IDs, which includes valid starting IDs. Invalid IDs are
silently ignored. Note that parameters subPops and ancGens will limit search result but will not be used to
trim specified IDs.

indByID(id)
Return a reference to individual with id. An IndexError will be raised if no individual with id is found.
An float id is acceptable as long as it rounds closely to an integer.

individualsWithRelatives(infoFields, sex=[], affectionStatus=[], subPops=ALL_AVAIL, anc-
Gens=ALL_AVAIL)

Return a list of IDs of individuals who have non-negative values at information fields infoFields. Ad-
ditional requirements could be specified by parameters sex and affectionStatus. sex can be ANY_SEX
(default), MALE_ONLY, FEMALE_ONLY, SAME_SEX or OPPOSITE_SEX, and affectionStatus can be
AFFECTED, UNAFFECTED or ANY_AFFECTION_STATUS (default). This function by default check all
individuals in all ancestral generations, but you could limit the search using parameter subPops (a list of
(virtual) subpopulations) and ancestral generations ancGens. Relatives fall out of specified subpopulations
and ancestral generaions will be considered invalid.

locateRelatives(relType, resultFields=[], sex=ANY_SEX, affectionSta-
tus=ANY_AFFECTION_STATUS, ancGens=ALL_AVAIL)

This function locates relatives (of type relType) of each individual and store their IDs in information fields
relFields. The length of relFields determines how many relatives an individual can have.

Parameter relType specifies what type of relative to locate, which can be

• SPOUSE locate spouses with whom an individual has at least one common offspring.

• OUTBRED_SPOUSE locate non-slibling spouses, namely spouses with no shared parent.

10.1. Individual, Population, pedigree and Simulator 273

simuPOP

• OFFSPRING all offspring of each individual.

• COMMON_OFFSPRING common offspring between each individual and its spouse (located by
SPOUSE or OUTBRED_SPOUSE). relFields should consist of an information field for spouse and
m-1 fields for offspring where m is the number of fields.

• FULLSIBLING siblings with common father and mother,

• SIBLING siblings with at least one common parent.

Optionally, you can specify the sex and affection status of relatives you would like to locate, using
parameters sex and affectionStatus. sex can be ANY_SEX (default), MALE_ONLY, FEMALE_ONLY,
SAME_SEX or OPPOSITE_SEX, and affectionStatus can be AFFECTED, UNAFFECTED or
ANY_AFFECTION_STATUS (default). Only relatives with specified properties will be located.

This function will by default go through all ancestral generations and locate relatives for all individuals.
This can be changed by setting parameter ancGens to certain ancestral generations you would like to
process.

save(filename, infoFields=[], loci=[])
Save a pedigree to file filename. This function goes through all individuals of a pedigree and outputs
in each line the ID of individual, IDs of his or her parents, sex ('M' or 'F'), affection status ('A' or
'U'), values of specified information fields infoFields and genotypes at specified loci (parameter loci,
which can be a list of loci indexes, names, or ALL_AVAIL). Allele numbers, instead of their names are
outputed. Two columns are used for each locus if the population is diploid. This file can be loaded using
function loadPedigree although additional information such as names of information fields need to
be specified. This format differs from a ‘‘‘‘.ped file used in some genetic analysis software in that there
is no family ID and IDs of all individuals have to be unique. Note that parental IDs will be set to zero
if the parent is not in the pedigree object. Therefore, the parents of individuals in the top-most ancestral
generation will always be zero.

traceRelatives(fieldPath, sex=[], affectionStatus=[], resultFields=[], ancGens=ALL_AVAIL)
Trace a relative path in a population and record the result in the given information fields result-
Fields. This function is used to locate more distant relatives based on the relatives located by function
locateRelatives. For example, after siblings and offspring of all individuals are located, you can
locate mother’s sibling’s offspring using a relative path, and save their indexes in each individuals infor-
mation fields resultFields.

A relative path consits of a fieldPath that specifies which information fields to look for at each step,
a sex specifies sex choices at each generation, and a affectionStatus that specifies affection status at each
generation. fieldPath should be a list of information fields, sex and affectionStatus are optional. If specified,
they should be a list of ANY_SEX, MALE_ONLY, FEMALE_ONLY, SAME_SEX and OppsiteSex for
parameter sex, and a list of UNAFFECTED, AFFECTED and ANY_AFFECTION_STATUS for parameter
affectionStatus.

For example, if fieldPath = [['father_id', 'mother_id'], ['sib1', 'sib2'],
['off1', 'off2']], and sex = [ANY_SEX, MALE_ONLY, FEMALE_ONLY], this function
will locate father_id and mother_id for each individual, find all individuals referred by
father_id and mother_id, find informaton fields sib1 and sib2 from these parents and locate
male individuals referred by these two information fields. Finally, the information fields off1 and off2
from these siblings are located and are used to locate their female offspring. The results are father or
mother’s brother’s daughters. Their indexes will be saved in each individuals information fields result-
Fields. If a list of ancestral generations is given in parameter ancGens is given, only individuals in these
ancestral generations will be processed.

asPopulation()
Convert the existing pedigree object to a population. This function will behave like a regular population
after this function call.

274 Chapter 10. simuPOP Components

simuPOP

10.1.5 class Simulator

class Simulator
A simuPOP simulator is responsible for evolving one or more populations forward in time, subject to various
operators. Populations in a simulator are created from one or more replicates of specified populations. A number
of functions are provided to access and manipulate populations, and most importantly, to evolve them.

Simulator(pops, rep=1, stealPops=True)
Create a simulator with rep (default to 1) replicates of populations pops, which is a list of populations
although a single population object is also acceptable. Contents of passed populations are by default moved
to the simulator to avoid duplication of potentially large population objects, leaving empty populations
behind. This behavior can be changed by setting stealPops to False, in which case populations are
copied to the simulator.

add(pop, stealPop=True)
Add a population pop to the end of an existing simulator. This function by default moves pop to the sim-
ulator, leaving an empty population for passed population object. If steal is set to False, the population
will be copied to the simulator, and thus unchanged.

clone()
Clone a simulator, along with all its populations. Note that Python assign statement simu1 = simu
only creates a symbolic link to an existing simulator.

__cmp__(rhs)
a Pyton function used to compare the simulator objects Note that mating schemes are not tested.

dvars(rep, subPop=[])
Return a wrapper of Python dictionary returned by vars(rep, subPop) so that dictionary keys can
be accessed as attributes.

evolve(initOps=[], preOps=[], matingScheme=MatingScheme, postOps=[], finalOps=[], gen=-1,
dryrun=False)

Evolve all populations gen generations, subject to several lists of operators which are applied at different
stages of an evolutionary process. Operators initOps are applied to all populations (subject to applicability
restrictions of the operators, imposed by the rep parameter of these operators) before evolution. They are
used to initialize populations before evolution. Operators finalOps are applied to all populations after the
evolution.

Operators preOps, and postOps are applied during the life cycle of each generation. These operators can be
applied at all or some of the generations, to all or some of the evolving populations, depending the begin,
end, step, at and reps parameters of these operators. These operators are applied in the order at which they
are specified. populations in a simulator are evolved one by one. At each generation, operators preOps
are applied to the parental generations. A mating scheme is then used to populate an offspring generation.
For each offspring, his or her sex is determined before during- mating operators of the mating scheme are
used to transmit parental genotypes. After an offspring generation is successfully generated and becomes
the current generation, operators postOps are applied to the offspring generation. If any of the preOps and
postOps fails (return False), the evolution of a population will be stopped. The generation number of a
population, which is the variable "gen" in each populations local namespace, is increased by one if an
offspring generation has been successfully populated even if a post-mating operator fails. Another variable
"rep" will also be set to indicate the index of each population in the simulator. Note that populations in
a simulator does not have to have the same generation number. You could reset a population’s generation
number by changing this variable.

Parameter gen can be set to a non-negative number, which is the number of generations to evolve. If a
simulator starts at the beginning of a generation g (for example 0), a simulator will stop at the beginning
(instead of the end) of generation g + gen (for example gen). If gen is negative (default), the evolution
will continue indefinitely, until all replicates are stopped by operators that return False at some point
(these operators are called terminators). At the end of the evolution, the generations that each replicates

10.1. Individual, Population, pedigree and Simulator 275

simuPOP

have evolved are returned. Note that finalOps are applied to all applicable population, including those that
have stopped before others.

If parameter dryrun is set to True, this function will print a description of the evolutionary process gen-
erated by function describeEvolProcess() and exits.

extract(rep)
Extract the rep-th population from a simulator. This will reduce the number of populations in this simulator
by one.

numRep()
Return the number of replicates.

population(rep)
Return a reference to the rep-th population of a simulator. The reference will become invalid once the
simulator starts evolving or becomes invalid (removed). If an independent copy of the population is needed,
you can use population.clone() to create a cloned copy or simulator.extract() to remove
the population from the simulator.

populations()
Return a Python iterator that can be used to iterate through all populations in a simulator.

vars(rep, subPop=[])
Return the local namespace of the rep-th population, equivalent to x.Population(rep).
vars(subPop).

10.2 Virtual splitters

10.2.1 class BaseVspSplitter

class BaseVspSplitter
This class is the base class of all virtual subpopulation (VSP) splitters, which provide ways to define groups of
individuals in a subpopulation who share certain properties. A splitter defines a fixed number of named VSPs.
They do not have to add up to the whole subpopulation, nor do they have to be distinct. After a splitter is
assigned to a population, many functions and operators can be applied to individuals within specified VSPs.

Each VSP has a name. A default name is determined by each splitter but you can also assign a name to each
VSP. The name of a VSP can be retrieved by function BaseVspSplitter.name() or Population.
subPopName().

Only one VSP splitter can be assigned to a population, which defined VSPs for all its subpopulations. If different
splitters are needed for different subpopulations, a CombinedSplitter can be used.

BaseVspSplitter(names=[])
This is a virtual class that cannot be instantiated.

clone()
All VSP splitter defines a clone() function to create an identical copy of itself.

name(vsp)
Return the name of VSP vsp (an index between 0 and numVirtualSubPop()).

numVirtualSubPop()
Return the number of VSPs defined by this splitter.

vspByName(name)
Return the index of a virtual subpopulation from its name. If multiple virtual subpopulations share the
same name, the first vsp is returned.

276 Chapter 10. simuPOP Components

simuPOP

10.2.2 class SexSplitter

class SexSplitter
This splitter defines two VSPs by individual sex. The first VSP consists of all male individuals and the second
VSP consists of all females in a subpopulation.

SexSplitter(names=[])
Create a sex splitter that defines male and female VSPs. These VSPs are named Male and Female unless
a new set of names are specified by parameter names.

name(vsp)
Return "Male" if vsp=0 and "Female" otherwise, unless a new set of names are specified.

numVirtualSubPop()
Return 2.

10.2.3 class AffectionSplitter

class AffectionSplitter
This class defines two VSPs according individual affection status. The first VSP consists of unaffected invidiauls
and the second VSP consists of affected ones.

AffectionSplitter(names=[])
Create a splitter that defined two VSPs by affection status.These VSPs are named Unaffected and
Affected unless a new set of names are specified by parameter names.

name(vsp)
Return "Unaffected" if vsp=0 and "Affected" if vsp=1, unless a new set of names are specified.

numVirtualSubPop()
Return 2.

10.2.4 class InfoSplitter

class InfoSplitter
This splitter defines VSPs according to the value of an information field of each indivdiual. A VSP is defined
either by a value or a range of values.

InfoSplitter(field, values=[], cutoff=[], ranges=[], names=[])
Create an infomration splitter using information field field. If parameter values is specified, each item in
this list defines a VSP in which all individuals have this value at information field field. If a set of cutoff
values are defined in parameter cutoff, individuals are grouped by intervals defined by these cutoff values.
For example, cutoff=[1,2] defines three VSPs with v < 1, 1 <= v < 2 and v >=2 where v is
the value of an individual at information field field. If parameter ranges is specified, each range defines
a VSP. For example, ranges=[[1, 3], [2, 5]] defines two VSPs with 1 <= v < 3 and 2 <=
3 < 5. Of course, only one of the parameters values, cutoff and ranges should be defined, and values in
cutoff should be distinct, and in an increasing order. A default set of names are given to each VSP unless
a new set of names is given by parameter names.

name(vsp)
Return the name of a VSP vsp, which is field = value if VSPs are defined by values in parameter
values, or field < value (the first VSP), v1 <= field < v2 and field >= v (the last VSP)
if VSPs are defined by cutoff values. A user- specified name, if specified, will be returned instead.

numVirtualSubPop()
Return the number of VSPs defined by this splitter, which is the length parameter values or the length of
cutoff plus one, depending on which parameter is specified.

10.2. Virtual splitters 277

simuPOP

10.2.5 class ProportionSplitter

class ProportionSplitter
This splitter divides subpopulations into several VSPs by proportion.

ProportionSplitter(proportions=[], names=[])
Create a splitter that divides subpopulations by proportions, which should be a list of float numbers (be-
tween 0 and 1) that add up to 1. A default set of names are given to each VSP unless a new set of names
is given by parameter names.

name(vsp)
Return the name of VSP vsp, which is "Prop p"where p=propotions[vsp]. A user specified name
will be returned if specified.

numVirtualSubPop()
Return the number of VSPs defined by this splitter, which is the length of parameter proportions.

10.2.6 class RangeSplitter

class RangeSplitter
This class defines a splitter that groups individuals in certain ranges into VSPs.

RangeSplitter(ranges, names=[])
Create a splitter according to a number of individual ranges defined in ranges. For example,
RangeSplitter(ranges=[[0, 20], [40, 50]]) defines two VSPs. The first VSP consists
of individuals 0, 1, . . . , 19, and the sceond VSP consists of individuals 40, 41, . . . , 49. Note that a
nested list has to be used even if only one range is defined. A default set of names are given to each VSP
unless a new set of names is given by parameter names.

name(vsp)
Return the name of VSP vsp, which is "Range [a, b)" where [a, b) is range ranges[vsp]. A
user specified name will be returned if specified.

numVirtualSubPop()
Return the number of VSPs, which is the number of ranges defined in parameter ranges.

10.2.7 class GenotypeSplitter

class GenotypeSplitter
This class defines a VSP splitter that defines VSPs according to individual genotype at specified loci.

GenotypeSplitter(loci, alleles, phase=False, names=[])
Create a splitter that defines VSPs by individual genotype at loci (can be indexes or names of one or more
loci). Each list in a list allele defines a VSP, which is a list of allowed alleles at these loci. If only one VSP
is defined, the outer list of the nested list can be ignored. If phase if true, the order of alleles in each list is
significant. If more than one set of alleles are given, Individuals having either of them is qualified.

For example, in a haploid population, loci=1, alleles=[0, 1] defines a VSP with individuals
having allele 0 or 1 at locus 1, alleles=[[0, 1], [2]] defines two VSPs with indivdiuals in
the second VSP having allele 2 at locus 1. If multiple loci are involved, alleles at each locus need to
be defined. For example, VSP defined by loci=[0, 1], alleles=[0, 1, 1, 1] consists of
individuals having alleles [0, 1] or [1, 1] at loci [0, 1].

In a haploid population, loci=1, alleles=[0, 1] defines a VSP with individuals having genotype
[0, 1] or [1, 0] at locus 1. alleles[[0, 1], [2, 2]] defines two VSPs with indivdiuals in
the second VSP having genotype [2, 2] at locus 1. If phase is set to True, the first VSP will only has
individuals with genotype [0, 1]. In the multiple loci case, alleles should be arranged by haplotypes, for

278 Chapter 10. simuPOP Components

simuPOP

example, loci=[0, 1], alleles=[0, 0, 1, 1], phase=True defines a VSP with individ-
uals having genotype -0-0-, -1-1- at loci 0 and 1. If phase=False (default), genotypes -1-1-,
-0-0-, -0-1- and -1-0- are all allowed.

A default set of names are given to each VSP unless a new set of names is given by parameter names.

name(vsp)
Return name of VSP vsp, which is "Genotype loc1,loc2:genotype" as defined by parameters
loci and alleles. A user provided name will be returned if specified.

numVirtualSubPop()
number of virtual subpops of subpopulation sp

10.2.8 class CombinedSplitter

class CombinedSplitter
This splitter takes several splitters and stacks their VSPs together. For example, if the first splitter defines 3
VSPs and the second splitter defines 2, the two VSPs from the second splitter become the fourth (index 3) and
the fifth (index 4) VSPs of the combined splitter. In addition, a new set of VSPs could be defined as the union of
one or more of the original VSPs. This splitter is usually used to define different types of VSPs to a population.

CombinedSplitter(splitters=[], vspMap=[], names=[])
Create a combined splitter using a list of splitters. For example,
CombinedSplitter([SexSplitter(), AffectionSplitter()]) defines a combined
splitter with four VSPs, defined by male (vsp 0), female (vsp 1), unaffected (vsp 2) and affected
individuals (vsp 3). Optionally, a new set of VSPs could be defined by parameter vspMap. Each item
in this parameter is a list of VSPs that will be combined to a single VSP. For example, vspMap=[(0,
2), (1, 3)] in the previous example will define two VSPs defined by male or unaffected, and female
or affected individuals. VSP names are usually determined by splitters, but can also be specified using
parameter names.

name(vsp)
Return the name of a VSP vsp, which is the name a VSP defined by one of the combined splitters unless a
new set of names is specified. If a vspMap was used, names from different VSPs will be joined by "or".

numVirtualSubPop()
Return the number of VSPs defined by this splitter, which is the sum of the number of VSPs of all combined
splitters.

10.2.9 class ProductSplitter

class ProductSplitter
This splitter takes several splitters and take their intersections as new VSPs. For example, if the first splitter
defines 3 VSPs and the second splitter defines 2, 6 VSPs will be defined by splitting 3 VSPs defined by the first
splitter each to two VSPs. This splitter is usually used to define finer VSPs from existing VSPs.

ProductSplitter(splitters=[], names=[])
Create a product splitter using a list of splitters. For example,
ProductSplitter([SexSplitter(), AffectionSplitter()]) defines four VSPs
by male unaffected, male affected, female unaffected, and female affected individuals. VSP names are
usually determined by splitters, but can also be specified using parameter names.

name(vsp)
Return the name of a VSP vsp, which is the names of indivdual VSPs separated by a comma, unless a new
set of names is specified for each VSP.

10.2. Virtual splitters 279

simuPOP

numVirtualSubPop()
Return the number of VSPs defined by this splitter, which is the sum of the number of VSPs of all combined
splitters.

10.3 Mating Schemes

10.3.1 class MatingScheme

class MatingScheme
This mating scheme is the base class of all mating schemes. It evolves a population generation by generation
but does not actually transmit genotype.

MatingScheme(subPopSize=[])
Create a base mating scheme that evolves a population without transmitting genotypes. At each generation,
this mating scheme creates an offspring generation according to parameter subPopSize, which can be a list
of subpopulation sizes (or a number if there is only one subpopulation) or a Python function which will
be called at each generation, just before mating, to determine the subpopulation sizes of the offspring
generation. The function should be defined with one or both parameters of gen and pop where gen is
the current generation number and pop is the parental population just before mating. The return value of
this function should be a list of subpopulation sizes for the offspring generation. A single number can be
returned if there is only one subpopulation. The passed parental population is usually used to determine
offspring population size from parental population size but you can also modify this population to prepare
for mating. A common practice is to split and merge parental populations in this function so that you
demographic related information and actions could be implemented in the same function.

10.3.2 class HomoMating

class HomoMating
A homogeneous mating scheme that uses a parent chooser to choose parents from a prental generation, and
an offspring generator to generate offspring from chosen parents. It can be either used directly, or within a
heterogeneous mating scheme. In the latter case, it can be applied to a (virtual) subpopulation.

HomoMating(chooser, generator, subPopSize=[], subPops=ALL_AVAIL, weight=0)
Create a homogeneous mating scheme using a parent chooser chooser and an offspring generator genera-
tor.

If this mating scheme is used directly in a simulator, it will be responsible for creating an offspring popula-
tion according to parameter subPopSize. This parameter can be a list of subpopulation sizes (or a number
if there is only one subpopulation) or a Python function which will be called at each generation to deter-
mine the subpopulation sizes of the offspring generation. Please refer to class MatingScheme for details
about this parameter.

If this mating shcme is used within a heterogeneous mating scheme. Parameters subPops and weight are
used to determine which (virtual) subpopulations this mating scheme will be applied to, and how many
offspring this mating scheme will produce. Please refer to mating scheme HeteroMating for the use of
these two parameters.

10.3.3 class HeteroMating

class HeteroMating
A heterogeneous mating scheme that applies a list of homogeneous mating schemes to different (virtual) sub-
populations.

280 Chapter 10. simuPOP Components

simuPOP

HeteroMating(matingSchemes, subPopSize=[], shuffleOffspring=True, weightBy=ANY_SEX)
Create a heterogeneous mating scheme that will apply a list of homogeneous mating schemes mat-
ingSchemes to different (virtual) subpopulations. The size of the offspring generation is determined by
parameter subPopSize, which can be a list of subpopulation sizes or a Python function that returns a list of
subpopulation sizes at each generation. Please refer to class MatingScheme for a detailed explanation
of this parameter.

Each mating scheme defined in matingSchemes can be applied to one or more (virtual) subpopulation. If
parameter subPops is not specified, a mating scheme will be applied to all subpopulations. If a list of
(virtual) subpopulation is specified, the mating scheme will be applied to specific (virtual) subpopulations.

If multiple mating schemes are applied to the same subpopulation, a weight (parameter weight) can be
given to each mating scheme to determine how many offspring it will produce. The default weight for all
mating schemes are 0. In this case, the number of offspring each mating scheme produces is proportional
to the number of individuals in its parental (virtual) subpopulation (default to all parents, but can be father
for weightBy=MALE_ONLY, mother for weightBy=FEMALE_ONLY, or father mother pairs (less of
number of father and mothers) for weightBy=PAIR_ONLY). If all weights are negative, the numbers of
offspring are determined by the multiplication of the absolute values of the weights and their respective
parental (virtual) subpopulation sizes. If all weights are positive, the number of offspring produced by each
mating scheme is proportional to these weights, except for mating schemes with zero parental population
size (or no father, no mother, or no pairs, depending on value of parameter weightBy). Mating schemes
with zero weight in this case will produce no offspring. If both negative and positive weights are present,
negative weights are processed before positive ones.

A sexual mating scheme might fail if a parental (virtual) subpopulation has no father or mother. In this
case, you can set weightBy to PAIR_ONLY so a (virtual) subpopulation will appear to have zero size,
and will thus contribute no offspring to the offspring population. Note that the perceived parental (virtual)
subpopulation size in this mode (and in modes of MALE_ONLY, FEMALE_ONLY) during the calculation
of the size of the offspring subpopulation will be roughly half of the actual population size so you might
have to use weight=-2 if you would like to have an offspring subpopulation that is roughly the same
size of the parental (virtual) subpopulation.

If multiple mating schemes are applied to the same subpopulation, offspring produced by these mating
schemes are shuffled randomly. If this is not desired, you can turn off offspring shuffling by setting
parameter shuffleOffspring to False.

10.3.4 class ConditionalMating

class ConditionalMating
A conditional mating scheme that applies different mating schemes according to a condition (similar to operator
IfElse). The condition can be a fixed condition, an expression or a user-defined function, to determine which
mating scheme to be used.

ConditionalMating(cond, ifMatingScheme, elseMatingScheme)
Create a conditional mating scheme that applies mating scheme ifMatingScheme if the condition cond is
True, or elseMatingScheme if cond is False. If a Python expression (a string) is given to parameter
cond, the expression will be evalulated in parental population’s local namespace. When a Python function
is specified, it accepts parameter pop for the parental population. The return value of this function should
be True or False. Otherwise, parameter cond will be treated as a fixed condition (converted to True or
False) upon which ifMatingScheme or elseMatingScheme will alway be applied.

10.3.5 class PedigreeMating

class PedigreeMating
This mating scheme evolves a population following an existing pedigree structure. If the Pedigree object

10.3. Mating Schemes 281

simuPOP

has N ancestral generations and a present generation, it can be used to evolve a population for N generations,
starting from the topmost ancestral generation. At the k-th generation, this mating scheme produces an offspring
generation according to subpopulation structure of the N-k-1 ancestral generation in the pedigree object (e.g.
producing the offspring population of generation 0 according to the N-1 ancestral generation of the pedigree
object). For each offspring, this mating scheme copies individual ID and sex from the corresponing individual
in the pedigree object. It then locates the parents of each offspring using their IDs in the pedigree object. A list
of during mating operators are then used to transmit parental genotype to the offspring. The population being
evolved must have an information field 'ind_id'.

PedigreeMating(ped, ops, idField="ind_id")
Creates a pedigree mating scheme that evolves a population according to Pedigree object ped. The
evolved population should contain individuals with ID (at information field idField, default to 'ind_id')
that match those individual in the topmost ancestral generation who have offspring. After parents of each
individuals are determined from their IDs, a list of during-mating operators ops are applied to transmit
genotypes. The return value of these operators are not checked.

parallelizable()
FIXME: No document

10.3.6 class SequentialParentChooser

class SequentialParentChooser
This parent chooser chooses a parent from a parental (virtual) subpopulation sequentially. Natural selection is
not considered. If the last parent is reached, this parent chooser will restart from the beginning of the (virtual)
subpopulation.

SequentialParentChooser(sexChoice=ANY_SEX)
Create a parent chooser that chooses a parent from a parental (virtual) subpopulation sequentially. Param-
eter choice can be ANY_SEX (default), MALE_ONLY and FEMALE_ONLY. In the latter two cases, only
male or female individuals are selected. A RuntimeError will be raised if there is no male or female
individual from the population.

chooseParents()
Return chosen parents from a population if the parent chooser object is created with a population.

initialize(pop, subPop)
Initialize a parent chooser for subpopulation subPop of population pop.

10.3.7 class SequentialParentsChooser

class SequentialParentsChooser
This parent chooser chooses two parents (a father and a mother) sequentially from their respective sex groups.
Selection is not considered. If all fathers (or mothers) are exhausted, this parent chooser will choose fathers (or
mothers) from the beginning of the (virtual) subpopulation again.

SequentialParentsChooser()
Create a parent chooser that chooses two parents sequentially from a parental (virtual) subpopulation.

10.3.8 class RandomParentChooser

class RandomParentChooser
This parent chooser chooses a parent randomly from a (virtual) parental subpopulation. Parents are chosen with
or without replacement. If parents are chosen with replacement, a parent can be selected multiple times. If
individual fitness values are assigned to individuals (stored in an information field selectionField (default to

282 Chapter 10. simuPOP Components

simuPOP

"fitness"), individuals will be chosen at a probability proportional to his or her fitness value. If parents are
chosen without replacement, a parent can be chosen only once. An RuntimeError will be raised if all parents
are exhausted. Natural selection is disabled in the without- replacement case.

RandomParentChooser(replacement=True, selectionField="fitness", sexChoice=ANY_SEX)
Create a random parent chooser that choose parents with or without replacement (parameter replacement,
default to True). If selection is enabled and information field selectionField exists in the passed popula-
tion, the probability that a parent is chosen is proportional to his/her fitness value stored in selectionField.
This parent chooser by default chooses parent from all individuals (ANY_SEX), but it can be made to select
only male (MALE_ONLY) or female (FEMALE_ONLY) individuals by setting parameter sexChoice.

chooseParents()
Return chosen parents from a population if the parent chooser object is created with a population.

initialize(pop, subPop)
Initialize a parent chooser for subpopulation subPop of population pop.

10.3.9 class RandomParentsChooser

class RandomParentsChooser
This parent chooser chooses two parents, a male and a female, randomly from a (virtual) parental subpopula-
tion. Parents are chosen with or without replacement from their respective sex group. If parents are chosen with
replacement, a parent can be selected multiple times. If individual fitness values are assigned (stored in infor-
mation field selectionField, default to "fitness", the probability that an individual is chosen is proportional
to his/her fitness value among all individuals with the same sex. If parents are chosen without replacement,
a parent can be chosen only once. An RuntimeError will be raised if all males or females are exhausted.
Natural selection is disabled in the without-replacement case.

RandomParentsChooser(replacement=True, selectionField="fitness")
Create a random parents chooser that choose two parents with or without replacement (parameter replace-
ment, default to True). If selection is enabled and information field selectionField exists in the passed
population, the probability that a parent is chosen is proportional to his/her fitness value stored in selec-
tionField.

chooseParents()
Return chosen parents from a population if the parent chooser object is created with a population.

initialize(pop, subPop)
Initialize a parent chooser for subpopulation subPop of population pop.

10.3.10 class PolyParentsChooser

class PolyParentsChooser
This parent chooser is similar to random parents chooser but instead of selecting a new pair of parents each
time, one of the parents in this parent chooser will mate with several spouses before he/she is replaced. This
mimicks multi-spouse mating schemes such as polygyny or polyandry in some populations. Natural selection is
supported for both sexes.

PolyParentsChooser(polySex=MALE, polyNum=1, selectionField="fitness")
Create a multi-spouse parents chooser where each father (if polySex is MALE) or mother (if polySex is
FEMALE) has polyNum spouses. The parents are chosen with replacement. If individual fitness values are
assigned (stored to information field selectionField, default to "fitness"), the probability that
an individual is chosen is proportional to his/her fitness value among all individuals with the same sex.

chooseParents()
Return chosen parents from a population if the parent chooser object is created with a population.

10.3. Mating Schemes 283

simuPOP

initialize(pop, subPop)
Initialize a parent chooser for subpopulation subPop of population pop.

10.3.11 class CombinedParentsChooser

class CombinedParentsChooser
This parent chooser accepts two parent choosers. It takes one parent from each parent chooser and return
them as father and mother. Because two parent choosers do not have to choose parents from the same virtual
subpopulation, this parent chooser allows you to choose parents from different subpopulations.

CombinedParentsChooser(fatherChooser, motherChooser, allowSelfing=True)
Create a Python parent chooser using two parent choosers fatherChooser and motherChooser. It takes one
parent from each parent chooser and return them as father and mother. If two valid parents are returned,
the first valid parent (father) will be used for fatherChooser, the second valid parent (mother) will be used
for motherChooser. Although these two parent choosers are supposed to return a father and a mother
respectively, the sex of returned parents are not checked so it is possible to return parents with the same
sex using this parents chooser. This choose by default allows the selection of the same parents as father
and mother (self-fertilization), unless a parameter allowSelfing is used to disable it.

chooseParents()
Return chosen parents from a population if the parent chooser object is created with a population.

initialize(pop, subPop)
Initialize a parent chooser for subpopulation subPop of population pop.

10.3.12 class PyParentsChooser

class PyParentsChooser
This parent chooser accepts a Python generator function that repeatedly yields one or two parents, which can
be references to individual objects or indexes relative to each subpopulation. The parent chooser calls the
generator function with parental population and a subpopulation index for each subpopulation and retrieves
parents repeatedly using the iterator interface of the generator function.

This parent chooser does not support virtual subpopulation directly. However, because virtual subpopulations
are defined in the passed parental population, it is easy to return parents from a particular virtual subpopulation
using virtual subpopulation related functions.

PyParentsChooser(generator)
Create a Python parent chooser using a Python generator function parentsGenerator. This function should
accept one or both of parameters pop (the parental population) and subPop (index of subpopulation) and
return the reference or index (relative to subpopulation) of a parent or a pair of parents repeatedly using
the iterator interface of the generator function.

chooseParents()
Return chosen parents from a population if the parent chooser object is created with a population.

initialize(pop, subPop)
Initialize a parent chooser for subpopulation subPop of population pop.

10.3.13 class OffspringGenerator

class OffspringGenerator
An offspring generator generates offspring from parents chosen by a parent chooser. It is responsible for creating
a certain number of offspring, determinning their sex, and transmitting genotypes from parents to offspring.

284 Chapter 10. simuPOP Components

simuPOP

OffspringGenerator(ops, numOffspring=1, sexMode=RANDOM_SEX)
Create a basic offspring generator. This offspring generator uses ops genotype transmitters to transmit
genotypes from parents to offspring.

A number of during-mating operators (parameter ops) can be used to, among other possible duties such
as setting information fields of offspring, transmit genotype from parents to offspring. This general off-
spring generator does not have any default during-mating operator but all stock mating schemes use an
offspring generator with a default operator. For example, a mendelianOffspringGenerator is
used by RandomMating to trasmit genotypes. Note that applicability parameters begin, step, end,
at and reps could be used in these operators but negative population and generation indexes are unsup-
ported.

Parameter numOffspring is used to control the number of offspring per mating event, or in another word
the number of offspring in each family. It can be a number, a Python function or generator, or a mode
parameter followed by some optional arguments. If a number is given, given number of offspring will be
generated at each mating event. If a Python function is given, it will be called each time when a mating
event happens. When a generator function is specified, it will be called for each subpopulation to provide
number of offspring for all mating events during the populating of this subpopulation. Current generation
number will be passed to this function or generator function if parameter “gen” is used in this function. In
the last case, a tuple (or a list) in one of the following forms can be given:

• (GEOMETRIC_DISTRIBUTION, p)

• (POISSON_DISTRIBUTION, p), p > 0

• (BINOMIAL_DISTRIBUTION, p, N), 0 < p <=1, N > 0

• (UNIFORM_DISTRIBUTION, a, b), 0 <= a <= b.

In this case, the number of offspring will be determined randomly following the specified statistical distri-
butions. Because families with zero offspring are silently ignored, the distribution of the observed number
of offspring per mating event (excluding zero) follows zero-truncated versions of these distributions.

Parameter numOffspring specifies the number of offspring per mating event but the actual surviving off-
spring can be less than specified. More spefically, if any during-mating operator returns False, an off-
spring will be discarded so the actually number of offspring of a mating event will be reduced. This is
essentially how during-mating selector works.

Parameter sexMode is used to control the sex of each offspring. Its default value is usually RANDOM_SEX
which assign MALE or FEMALE to each individual randomly, with equal probabilities. If NO_SEX is given,
offspring sex will not be changed. sexMode can also be one of

• (PROB_OF_MALES, p) where p is the probability of male for each offspring,

• (NUM_OF_MALES, n) where n is the number of males in a mating event. If n is greater than or
equal to the number of offspring in this family, all offspring in this family will be MALE.

• (NUM_OF_FEMALES, n) where n is the number of females in a mating event,

• (SEQUENCE_OF_SEX, s1, s2 ...) where s1, s2 etc are MALE or FEMALE. The sequence
will be used for each mating event. It will be reused if the number of offspring in a mating event is
greater than the length of sequence.

• (GLOBAL_SEQUENCE_OF_SEX, s1, s2, ...) where s1, s2 etc are MALE or FEMALE.
The sequence will be used across mating events. It will be reused if the number of offspring in a
subpopulation is greater than the length of sequence.

Finally, parameter sexMode accepts a function or a generator function. A function will be called whenever
an offspring is produced. A generator will be created at each subpopulation and will be used to produce
sex for all offspring in this subpopulation. No parameter is accepted.

10.3. Mating Schemes 285

simuPOP

10.3.14 class ControlledOffspringGenerator

class ControlledOffspringGenerator
This offspring generator populates an offspring population and controls allele frequencies at specified loci.
At each generation, expected allele frequencies at these loci are passed from a user defined allele frequency
trajectory function. The offspring population is populated in two steps. At the first step, only families with
disease alleles are accepted until until the expected number of disease alleles are met. At the second step, only
families with wide type alleles are accepted to populate the rest of the offspring generation. This method is
described in detail in “Peng et al, (2007) PLoS Genetics”.

ControlledOffspringGenerator(loci, alleles, freqFunc, ops=[], numOffspring=1, sex-
Mode=RANDOM_SEX)

Create an offspring generator that selects offspring so that allele frequency at specified loci in the offspring
generation reaches specified allele frequency. At the beginning of each generation, expected allele fre-
quency of alleles at loci is returned from a user-defined trajectory function freqFunc. Parameter loci can
be a list of loci indexes, names, or ALL_AVAIL. If there is no subpopulation, this function should return a
list of frequencies for each locus. If there are multiple subpopulations, freqFunc can return a list of allele
frequencies for all subpopulations or combined frequencies that ignore population structure. In the former
case, allele frequencies should be arranged by loc0_sp0, loc1_sp0, . . . loc0_sp1, loc1_sp1, . . . , and so on.
In the latter case, overall expected number of alleles are scattered to each subpopulation in proportion to
existing number of alleles in each subpopulation, using a multinomial distribution.

After the expected alleles are calculated, this offspring generator accept and reject families according to
their genotype at loci until allele frequecies reach their expected values. The rest of the offspring generation
is then filled with families without only wild type alleles at these loci.

This offspring generator is derived from class OffspringGenerator. Please refer to class OffspringGenera-
tor for a detailed description of parameters ops, numOffspring and sexMode.

10.4 Pre-defined mating schemes

10.4.1 class CloneMating

class CloneMating
A homogeneous mating scheme that uses a sequential parent chooser and a clone offspring generator.

CloneMating(numOffspring=1, sexMode=None, ops=CloneGenoTransmitter(), subPopSize=[], sub-
Pops=ALL_AVAIL, weight=0, selectionField=None)

Create a clonal mating scheme that clones parents to offspring using a CloneGenoTransmitter.
Please refer to class OffspringGenerator for parameters ops and numOffspring, and
to class HomoMating for parameters subPopSize, subPops and weight. Parameters sex-
Mode and selectionField are ignored because this mating scheme does not support natural se-
lection, and CloneGenoTransmitter copies sex from parents to offspring. Note that
CloneGenoTransmitter by default also copies all parental information fields to offspring.

10.4.2 class RandomSelection

class RandomSelection
A homogeneous mating scheme that uses a random single-parent parent chooser with replacement, and a clone
offspring generator. This mating scheme is usually used to simulate the basic haploid Wright-Fisher model but
it can also be applied to diploid populations.

286 Chapter 10. simuPOP Components

simuPOP

RandomSelection(numOffspring=1, sexMode=None, ops=CloneGenoTransmitter(), subPopSize=[],
subPops=ALL_AVAIL, weight=0, selectionField=’fitness’)

Create a mating scheme that select a parent randomly and copy him or her to the off-
spring population. Please refer to class RandomParentChooser for parameter selection-
Field, to class OffspringGenerator for parameters ops and numOffspring, and to class
HomoMating for parameters subPopSize, subPops and weight. Parameter sexMode is ignored because
cloneOffspringGenerator copies sex from parents to offspring.

10.4.3 class RandomMating

class RandomMating
A homogeneous mating scheme that uses a random parents chooser with replacement and a Mendelian offspring
generator. This mating scheme is widely used to simulate diploid sexual Wright-Fisher random mating.

RandomMating(numOffspring=1, sexMode=RANDOM_SEX, ops=MendelianGenoTransmitter(), sub-
PopSize=[], subPops=ALL_AVAIL, weight=0, selectionField=’fitness’)

Creates a random mating ssheme that selects two parents randomly and transmit genotypes according to
Mendelian laws. Please refer to class RandomParentsChooser for parameter selectionField, to class
OffspringGenerator for parameters ops, sexMode and numOffspring, and to class HomoMating
for parameters subPopSize, subPops and weight.

10.4.4 class MonogamousMating

class MonogamousMating
A homogeneous mating scheme that uses a random parents chooser without replacement and a Mendelian
offspring generator. It differs from the basic random mating scheme in that each parent can mate only once so
there is no half-sibling in the population.

MonogamousMating(numOffspring=1, sexMode=RANDOM_SEX, ops=MendelianGenoTransmitter(),
subPopSize=[], subPops=ALL_AVAIL, weight=0, selectionField=None)

Creates a monogamous mating scheme that selects each parent only once. Please refer to class
OffspringGenerator for parameters ops, sexMode and numOffspring, and to class HomoMating
for parameters subPopSize, subPops and weight. Parameter selectionField is ignored because this mating
scheme does not support natural selection.

10.4.5 class PolygamousMating

class PolygamousMating
A homogeneous mating scheme that uses a multi-spouse parents chooser and a Mendelian offspring generator.
It differs from the basic random mating scheme in that each parent of sex polySex will have polyNum spouses.

PolygamousMating(polySex=MALE, polyNum=1, numOffspring=1, sexMode=RANDOM_SEX,
ops=MendelianGenoTransmitter(), subPopSize=[], subPops=ALL_AVAIL,
weight=0, selectionField=’fitness’)

Creates a polygamous mating scheme that each parent mates with multiple spouses. Please re-
fer to class PolyParentsChooser for parameters polySex, polyNum and selectionField, to class
OffspringGenerator for parameters ops, sexMode and numOffspring, and to class HomoMating
for parameters subPopSize, subPops and weight.

10.4.6 class HaplodiploidMating

class HaplodiploidMating
A homogeneous mating scheme that uses a random parents chooser with replacement and a haplodiploid off-

10.4. Pre-defined mating schemes 287

simuPOP

spring generator. It should be used in a haplodiploid population where male individuals only have one set of
homologous chromosomes.

HaplodiploidMating(numOffspring=1.0, sexMode=RANDOM_SEX,
ops=HaplodiploidGenoTransmitter(), subPopSize=[], subPops=ALL_AVAIL,
weight=0, selectionField=’fitness’)

Creates a mating scheme in haplodiploid populations. Please refer to class RandomParentsChooser
for parameter selectionField, to class OffspringGenerator for parameters ops, sexMode and nu-
mOffspring, and to class HomoMating for parameters subPopSize, subPops and weight.

10.4.7 class SelfMating

class SelfMating
A homogeneous mating scheme that uses a random single-parent parent chooser with or without replacement
(parameter replacement) and a selfing offspring generator. It is used to mimic self-fertilization in certain plant
populations.

SelfMating(replacement=True, numOffspring=1, sexMode=RANDOM_SEX,
ops=SelfingGenoTransmitter(), subPopSize=[], subPops=ALL_AVAIL, weight=0,
selectionField=’fitness’)

Creates a selfing mating scheme where two homologous copies of parental chromosomes are transmitted
to offspring according to Mendelian laws. Please refer to class RandomParentChooser for parame-
ter replacement and selectionField, to class OffspringGenerator for parameters ops, sexMode and
numOffspring, and to class HomoMating for parameters subPopSize, subPops and weight.

10.4.8 class HermaphroditicMating

class HermaphroditicMating
A hermaphroditic mating scheme that chooses two parents randomly from the population regardless of sex. The
parents could be chosen with or without replacement (parameter replacement). Selfing (if the same parents are
chosen) is allowed unless allowSelfing is set to False

HermaphroditicMating(replacement=True, allowSelfing=True, numOffspring=1, sex-
Mode=RANDOM_SEX, ops=MendelianGenoTransmitter(), subPop-
Size=[], subPops=ALL_AVAIL, weight=0, selectionField=’fitness’)

Creates a hermaphroditic mating scheme where individuals can serve as father or mother, or both
(self-fertilization). Please refer to class CombinedParentsChooser for parameter allowSelf-
ing‘‘, to :class:‘RandomParentChooser‘ for parameter *replacement and selectionField, to class
OffspringGenerator for parameters ops, sexMode and numOffspring, and to class HomoMating
for parameters subPopSize, subPops and weight.

10.4.9 class ControlledRandomMating

class ControlledRandomMating
A homogeneous mating scheme that uses a random sexual parents chooser with replacement and a controlled
offspring generator using Mendelian genotype transmitter. It falls back to a regular random mating scheme if
there is no locus to control or no trajectory is defined.

ControlledRandomMating(loci=[], alleles=[], freqFunc=None, numOffspring=1, sex-
Mode=RANDOM_SEX, ops=MendelianGenoTransmitter(), subPop-
Size=[], subPops=ALL_AVAIL, weight=0, selectionField=’fitness’)

Creates a random mating scheme that controls allele frequency at loci loci. At each generation, function
freqFunc will be called to called to obtain intended frequencies of alleles alleles at loci loci. The con-
trolled offspring generator will control the acceptance of offspring so that the generation reaches desired

288 Chapter 10. simuPOP Components

simuPOP

allele frequencies at these loci. If loci is empty or freqFunc is None, this mating scheme works identi-
cally to a RandomMating scheme. Rationals and applications of this mating scheme is described in
details in a paper Peng et al, 2007 (PLoS Genetics). Please refer to class RandomParentsChooser for
parameters selectionField, to class ControlledOffspringGenerator for parameters loci, alleles,
freqFunc, to class OffspringGenerator for parameters ops, sexMode and numOffspring, and to class
HomoMating for parameters subPopSize, subPops and weight.

10.5 Utility Classes

10.5.1 class WithArgs

class WithArgs
This class wraps around a user-provided function and provides an attribute args so that simuPOP knows which
parameters to send to the function. This is only needed if the function can not be defined with allowed parame-
ters.

WithArgs(func, args)
Return a callable object that wraps around function func. Parameter args should be a list of parameter
names.

10.5.2 class WithMode

class WithMode
This class wraps around a user-provided output string, function or file handle (acceptable by parameter output
of operators) so that simuPOP knows which mode the output should be written to. For example, if the output of
the operator is a binary compressed stream, WithMode(output, 'b') could be used to tell the operators
to output bytes instead of string. This is most needed for Python 3 because files in Python 2 accepts string even
if they are opened in binary mode.

WithMode(output, mode=”)
Return an object that wraps around output and tells simuPOP to output string in mode. This class
currently only support mode='' for text mode and mode='b' for binary output.

10.5.3 class RNG

class RNG
This random number generator class wraps around a number of random number generators from GNU Scientific
Library. You can obtain and change the RNG used by the current simuPOP module through the getRNG()
function, or create a separate random number generator and use it in your script.

RNG(name=None, seed=0)
Create a RNG object using specified name and seed. If rng is not given, environmental variable
GSL_RNG_TYPEwill be used if it is available. Otherwise, generator mt19937will be used. If seed is not
given, /dev/urandom, /dev/random, or other system random number source will be used to guaran-
tee that random seeds are used even if more than one simuPOP sessions are started simultaneously. Names
of supported random number generators are available from moduleInfo()['availableRNGs'].

name()
Return the name of the current random number generator.

randBinomial(n, p)
Generate a random number following a binomial distribution with parameters n and p.

10.5. Utility Classes 289

simuPOP

randChisq(nu)
Generate a random number following a Chi-squared distribution with nu degrees of freedom.

randExponential(mu)
Generate a random number following a exponential distribution with parameter mu.

randGamma(a, b)
Generate a random number following a gamma distribution with a shape parameters a and scale parameter
b.

randGeometric(p)
Generate a random number following a geometric distribution with parameter p.

randInt(n)
return a random number in the range of [0, 1, 2, ... n-1]

randMultinomial(N, p)
Generate a random number following a multinomial distribution with parameters N and p (a list of proba-
bilities).

randNormal(mu, sigma)
Generate a random number following a normal distribution with mean mu and standard deviation sigma.

randPoisson(mu)
Generate a random number following a Poisson distribution with parameter mu.

randTruncatedBinomial(n, p)
Generate a positive random number following a zero-truncated binomial distribution with parameters n
and p.

randTruncatedPoisson(mu)
Generate a positive random number following a zero-truncated Poisson distribution with parameter mu.

randUniform()
Generate a random number following a rng_uniform [0, 1) distribution.

seed()
Return the seed used to initialize the RNG. This can be used to repeat a previous session.

set(name=None, seed=0)
Replace the existing random number generator using RNG*name* with seed seed. If seed is 0, a random
seed will be used. If name is empty, use the existing RNG but reset the seed.

10.5.4 class WeightedSampler

class WeightedSampler
A random number generator that returns 0, 1, . . . , k-1 with probabilites that are proportional to their weights.
For example, a weighted sampler with weights 4, 3, 2 and 1will return numbers 0, 1, 2 and 3with probabilities
0.4, 0.3, 0.2 and 0.1, respectively. If an additional parameter N is specified, the weighted sampler will return
exact proportions of numbers if N numbers are returned. The version without additional parameter is similar to
the sample(prob, replace=FALSE) function of the R statistical package.

WeightedSampler(weights=[], N=0)
Creates a weighted sampler that returns 0, 1, . . . k-1 when a list of k weights are specified (weights).
weights do not have to add up to 1. If a non-zero N is specified, exact proportions of numbers will be
returned in N returned numbers.

draw()
Returns a random number between 0 and k-1 with probabilities that are proportional to specified weights.

290 Chapter 10. simuPOP Components

simuPOP

drawSamples(n=1)
Returns a list of n random numbers

10.6 Global functions

10.6.1 Function closeOutput

closeOutput(output="")
Output files specified by '>' are closed immediately after they are written. Those specified by '>>' and
'>>>' are closed by a simulator after Simulator.evolve(). However, these files will be kept open if
the operators are applied directly to a population using the operators’ function form. In this case, function
closeOutput can be used to close a specific file output, and close all unclosed files if output is unspecified.
An exception will be raised if output does not exist or it has already been closed.

10.6.2 Function describeEvolProcess

describeEvolProcess(initOps=[], preOps=[], matingScheme=MatingScheme, postOps=[], fi-
nalOps=[], gen=-1, numRep=1)

This function takes the same parameters as Simulator.evolve and output a description of how an evolu-
tionary process will be executed. It is recommended that you call this function if you have any doubt how your
simulation will proceed.

10.6.3 Function loadPopulation

loadPopulation(file)
load a population from a file saved by Population::save().

10.6.4 Function loadPedigree

loadPedigree(file, idField="ind_id", fatherField="father_id", motherField="mother_id", ploidy=2,
loci=[], chromTypes=[], lociPos=[], chromNames=[], alleleNames=[], lociNames=[],
subPopNames=[], infoFields=[])

Load a pedigree from a file saved by operator PedigreeTagger or function Pedigree.save. This file
contains the ID of each offspring and their parent(s) and optionally sex (‘M’ or ‘F’), affection status (‘A’ or ‘U’),
values of information fields and genotype at some loci. IDs of each individual and their parents are loaded to
information fields idField, fatherField and motherField. Only numeric IDs are allowed, and individual IDs must
be unique across all generations.

Because this file does not contain generation information, generations to which offspring belong are determined
by the parent- offspring relationships. Individuals without parents are assumed to be in the top-most ancestral
generation. This is the case for individuals in the top-most ancestral generation if the file is saved by function
Pedigree.save(), and for individuals who only appear as another individual’s parent, if the file is saved by
operator PedigreeTagger. The order at which offsprng is specified is not important because this function
essentially creates a top-most ancestral generation using IDs without parents, and creates the next generation
using offspring of these parents, and so on until all generations are recreated. That is to say, if you have a
mixture of pedigrees with different generations, they will be lined up from the top most ancestral generation.

If individual sex is not specified, sex of of parents are determined by their parental roles (father or mother)
but the sex of individuals in the last generation can not be determined so they will all be males. If additional
information fields are given, their names have to be specified using parameter infoFields. The rest of the columns
are assued to be alleles, arranged ploidy consecutive columns for each locus. If paraemter loci is not specified,

10.6. Global functions 291

simuPOP

the number of loci is calculated by number of columns divided by ploidy (default to 2). All loci are assumed
to be on one chromosome unless parameter loci is used to specified number of loci on each chromosome.
Additional parameters such as ploidy, chromTypes, lociPos, chromNames, alleleNames, lociNames could be
used to specified the genotype structured of the loaded pedigree. Please refer to class Population for details
about these parameters.

10.6.5 Function moduleInfo

moduleInfo()
Return a dictionary with information regarding the currently loaded simuPOP module. This dictionary has the
following keys:

• revision: revision number.

• version: simuPOP version string.

• optimized: Is this module optimized (True or False).

• alleleType: Allele type of the module (short, long or binary).

• maxAllele: the maximum allowed allele state, which is 1 for binary modules, 255 for short modules
and 65535 for long modules.

• compiler: the compiler that compiles this module.

• date: date on which this module is compiled.

• python: version of python.

• platform: platform of the module.

• wordsize: size of word, can be either 32 or 64.

• alleleBits: the number of bits used to store an allele

• maxNumSubPop: maximum number of subpopulations.

• maxIndex: maximum index size (limits population size * total number of marker).

• debug: A dictionary with debugging codes as keys and the status of each debugging code (True or
False) as their values.

10.6.6 Function getRNG

getRNG()
return the currently used random number generator

10.6.7 Function setRNG

setRNG(name=”, seed=0)
Set random number generator. This function is obsolete but is provided for compatibility purposes. Please use
setOptions instead

292 Chapter 10. simuPOP Components

simuPOP

10.6.8 Function setOptions

setOptions(numThreads=-1, name=None, seed=0)
First argument is to set number of thread in openMP. The number of threads can be be positive, inte-
ger (number of threads) or 0, which implies all available cores, or a number set by environmental variable
OMP_NUM_THREADS. Second and third argument is to set the type or seed of existing random number genera-
tor using RNG*name* with seed. If using openMP, it sets the type or seed of random number generator of each
thread.

10.6.9 Function turnOnDebug

turnOnDebug(code="")
Set debug code code. More than one code could be specified using a comma separated string. Name of available
codes are available from moduleInfo()['debug'].keys().

10.6.10 Function turnOffDebug

turnOffDebug(code="DBG_ALL")
Turn off debug code code. More than one code could be specified using a comma separated string. Default to
turn off all debug codes.

10.6. Global functions 293

simuPOP

294 Chapter 10. simuPOP Components

CHAPTER 11

Operator References

11.1 Base class for all operators

11.1.1 class BaseOperator

class BaseOperator
Operators are objects that act on populations. They can be applied to populations directly using their function
forms, but they are usually managed and applied by a simulator. In the latter case, operators are passed to the
evolve function of a simulator, and are applied repeatedly during the evolution of the simulator.

The BaseOperator class is the base class for all operators. It defines a common user interface that specifies at
which generations, at which stage of a life cycle, to which populations and subpopulations an operator is applied.
These are achieved by a common set of parameters such as begin, end, step, at, stage for all operators.
Note that a specific operator does not have to honor all these parameters. For example, a Recombinator can only
be applied during mating so it ignores the stage parameter.

An operator can be applied to all or part of the generations during the evolution of a simulator. At the beginning
of an evolution, a simulator is usually at the beginning of generation 0. If it evolves 10 generations, it evolves
generations 0, 1, „,., and 9 (10 generations) and stops at the begging of generation 10. A negative generation
number a has generation number 10 + a, with -1 referring to the last evolved generation 9. Note that the
starting generation number of a simulator can be changed by its setGen() member function.

Output from an operator is usually directed to the standard output (sys.stdout). This can be configured
using a output specification string, which can be '' for no output, '>' standard terminal output (default), a
filename prefixed by one or more '>' characters or a Python expression indicated by a leading exclamation
mark ('!expr'). In the case of '>filename' (or equivalently 'filename'), the output from an operator
is written to this file. However, if two operators write to the same file filename, or if an operator writes to this
file more than once, only the last write operation will succeed. In the case of '>>filename', file filename
will be opened at the beginning of the evolution and closed at the end. Outputs from multiple operators are
appended. >>>filename works similar to >>filename but filename, if it already exists at the beginning
of an evolutionary process, will not be cleared. If the output specification is prefixed by an exclamation mark,
the string after the mark is considered as a Python expression. When an operator is applied to a population,
this expression will be evaluated within the population’s local namespace to obtain a population specific output

295

simuPOP

specification. As an advanced feature, a Python function can be assigned to this parameter. Output strings will
be sent to this function for processing. Lastly, if the output stream only accept a binary output (e.g. a gzip
stream), WithMode(output, 'b') should be used to let simuPOP convert string to bytes before writing to
the output.

BaseOperator(output, begin, end, step, at, reps, subPops, infoFields)
The following parameters can be specified by all operators. However, an operator can ignore some param-
eters and the exact meaning of a parameter can vary.

output A string that specifies how output from an operator is written, which can be '' (no output), '>'
(standard output), 'filename' prefixed by one or more ‘>’, or an Python expression prefixed by
an exclamation mark ('!expr'). If a file object, or any Python object with a write function
is provided, the output will be write to this file. Alternatively, a Python function or a file object
(any Python object with a write function) can be given which will be called with a string of output
content. A global function WithMode can be used to let simuPOP output bytes instead of string.

begin The starting generation at which an operator will be applied. Default to 0. A negative number is
interpreted as a generation counted from the end of an evolution (-1 being the last evolved generation).

end The last generation at which an operator will be applied. Default to -1, namely the last generation.

step The number of generations between applicable generations. Default to 1.

at A list of applicable generations. Parameters begin, end, and step will be ignored if this parameter
is specified. A single generation number is also acceptable.

reps A list of applicable replicates. A common default value ALL_AVAIL is interpreted as all replicates
in a simulator. Negative indexes such as -1 (last replicate) is acceptable. rep=idx can be used as a
shortcut for rep=[idx].

subPops A list of applicable (virtual) subpopulations, such as subPops=[sp1, sp2, (sp2,
vsp1)]. subPops=[sp1] can be simplied as subPops=sp1. Negative indexes are not sup-
ported. A common default value (ALL_AVAIL) of this parameter reprents all subpopulations of the
population being aplied. Suport for this parameter vary from operator to operator and some opera-
tors do not support virtual subpopulations at all. Please refer to the reference manual of individual
operators for their support for this parameter.

infoFields A list of information fields that will be used by an operator. You usually do not need to
specify this parameter because operators that use information fields usually have default values for
this parameter.

apply(pop)
Apply an operator to population pop directly, without checking its applicability.

clone()
Return a cloned copy of an operator. This function is available to all operators.

11.2 Initialization

11.2.1 class InitSex

class InitSex
This operator initializes sex of individuals, either randomly or use a list of sexes.

InitSex(maleFreq=0.5, maleProp=-1, sex=[], begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
subPops=ALL_AVAIL, infoFields=[])

Create an operator that initializes individual sex to MALE or FEMALE. By default, it assigns sex to indi-
viduals randomly, with equal probability of having a male or a female. This probabability can be adjusted

296 Chapter 11. Operator References

simuPOP

through parameter maleFreq or be made to exact proportions by specifying parameter maleProp. Alterna-
tively, a fixed sequence of sexes can be assigned. For example, if sex=[MALE, FEMALE], individuals
will be assigned MALE and FEMALE successively. Parameter maleFreq or maleProp are ignored if sex
is given. If a list of (virtual) subpopulation is specified in parameter subPop, only individuals in these
subpopulations will be initialized. Note that the sex sequence, if used, is assigned repeatedly regardless of
(virtual) subpopulation boundaries so that you can assign sex to all individuals in a population.

11.2.2 class InitInfo

class InitInfo
This operator initializes given information fields with a sequence of values, or a user-provided function such as
random.random.

InitInfo(values, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, in-
foFields=[])

Create an operator that initialize individual information fields infoFields using a sequence of values or a
user-defined function. If a list of values are given, it will be used sequentially for all individuals. The
values will be reused if its length is less than the number of individuals. The values will be assigned
repeatedly regardless of subpopulation boundaries. If a Python function is given, it will be called, without
any argument, whenever a value is needed. If a list of (virtual) subpopulation is specified in parameter
subPop, only individuals in these subpopulations will be initialized.

11.2.3 class InitGenotype

class InitGenotype
This operator assigns alleles at all or part of loci with given allele frequencies, proportions or values. This
operator initializes all chromosomes, including unused genotype locations and customized chromosomes.

InitGenotype(freq=[], genotype=[], prop=[], haplotypes=[], genotypes=[], loci=ALL_AVAIL,
ploidy=ALL_AVAIL, begin=0, end=1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])

This function creates an initializer that initializes individual genotypes with random alleles, genotypes, or
haplotypes with specified frequencies (parameter freq) or proportions (parameter prop). If parameter geno-
types or haplotypes is not specified, freq specifies the allele frequencies of alleles 0, 1, 2. . . respectively.
Alternatively, you can use parameter prop to specified the exact proportions of alleles 0, 1, . . . , although
alleles with small proportions might not be assigned at all.

Values of parameter prob or prop should add up to 1. In addition to a vector, parameter prob and prop
can also be a function that accepts optional parameters loc, subPop or vsp and returns a list of requencies
for alleles 0, 1, etc, or a number for frequency of allele 0 as a speciail case for each locus, subpopulation
(parameter subPop), or virtual subpopulations (parameter vsp, pass as a tuple).

If parameter genotypes is specified, it should contain a list of genotypes (alleles on different strand of
chromosomes) with length equal to population ploidy. Parameter prob and prop then specifies frequencies
or proportions of each genotype, which can vary for each subpopulation but not each locus if the function
form of parameters is used.

If parameter haplotypes is specified, it should contain a list of haplotypes (alleles on the same strand of
chromosome) and parameter prob or prop specifies frequencies or proportions of each haplotype.

If loci, ploidy and/or subPop are specified, only specified loci, ploidy, and individuals in these (virtual)
subpopulations will be initialized. Parameter loci can be a list of loci indexes, names or ALL_AVAIL. If
the length of a haplotype is not enough to fill all loci, the haplotype will be reused. If a list (or a single)
haplotypes are specified without freq or prop, they are used with equal probability.

11.2. Initialization 297

simuPOP

In the last case, if a sequence of genotype is specified through parameter genotype (not genotypes), it will
be used repeatedly to initialize all alleles sequentially. This works similar to function Population.
setGenotype() except that you can limit the initialization to certain loci and ploidy.

11.2.4 class InitLineage

class InitLineage
This operator assigns lineages at all or part of loci with given values. This operator initializes all chromosomes,
including unused lineage locations and customized chromosomes.

InitLineage(lineage=[], mode=PER_ALLELE, loci=ALL_AVAIL, ploidy=ALL_AVAIL, be-
gin=0, end=1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, in-
foFields=["ind_id"])

This function creates an initializer that initializes lineages with either a specified set of values or from
the field infoFields (default to ind_id), whose value will be saved as the lineage of modified alleles. If
a list of values is specified in parameter lineage, each value in this list is applied to one or more alleles
so that each allele (PER_ALLELE, default mode), alleles on each chromosome (PER_CHROMOSOME), on
chromosomes of each ploidy (PER_PLOIDY), or for each individual (PER_INDIVIDUAL) have the same
lineage. A single value is allowed and values in lineage will be re-used if not enough values are provided.
If an empty list is provided, values 1, 2, 3, .. will be used to provide an unique identify for each allele,
genotype, chromosome, etc. If a valid field is specified (default to ind_id), the value of this field will
be used for all alleles of each individual if mode is set to FROM_INFO, or be adjusted to produce positive
values for alleles on the frist ploidy, and negative values for the second ploidy (and so on) if mode equals
to FROM_INFO_SIGNED. If loci, ploidy and/or subPops are specified, only specified loci, ploidy, and
individuals in these (virtual) subpopulations will be initialized.

11.3 Expression and Statements

11.3.1 class PyOutput

class PyOutput
This operator outputs a given string when it is applied to a population.

PyOutput(msg="", output=">", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])

Creates a PyOutput operator that outputs a string msg to output (default to standard terminal output)
when it is applied to a population. Please refer to class BaseOperator for a detailed description of
common operator parameters such as stage, begin and output.

11.3.2 class PyEval

class PyEval
A PyEval operator evaluates a Python expression in a population’s local namespace when it is applied to this
population. The result is written to an output specified by parameter output.

PyEval(expr="", stmts="", exposePop="", output=">", begin=0, end=-1, step=1, at=[],
reps=ALL_AVAIL, subPops=Py_False, infoFields=[])

Create a PyEval operator that evaluates a Python expression expr in a population’s local namespaces
when it is applied to this population. This namespace can either be the population’s local namespace
(pop.vars()), or namespaces subPop[sp] for (virtual) subpop (pop.vars(subpop)) in specified
subPops. If Python statements stmts is given (a single or multi-line string), the statement will be executed
before expr. If exposePop is set to an non-empty string, the current population will be exposed in its

298 Chapter 11. Operator References

simuPOP

own local namespace as a variable with this name. This allows the execution of expressions such as
'pop.individual(0).allele(0)'. The result of expr will be sent to an output stream specified
by parameter output. The exposed population variable will be removed after expr is evaluated. Please
refer to class BaseOperator for other parameters.

Note: Although the statements and expressions are evaluated in a population’s local namespace, they
have access to a global namespace which is the module global namespace. It is therefore possible to refer
to any module variable in these expressions. Such mixed use of local and global variables is, however,
strongly discouraged.

11.3.3 class PyExec

class PyExec
This operator executes given Python statements in a population’s local namespace when it is applied to this
population.

PyExec(stmts="", exposePop="", output=">", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=Py_False, infoFields=[])

Create a PyExec operator that executes statements stmts in a population’s local namespace when it is ap-
plied to this population. This namespace can either be the population’s local namespace (pop.vars()),
or namespaces subPop[sp] for each (virtual) subpop (pop.vars(subpop)) in specified subPops.
If exposePop is given, current population will be exposed in its local namespace as a variable named by
exposePop. Although multiple statements can be executed, it is recommended that you use this operator
to execute short statements and use PyOperator for more complex once. Note that exposed population
variables will be removed after the statements are executed.

11.3.4 class InfoEval

class InfoEval
Unlike operator PyEval and PyExec that work at the population level, in a population’s local namespace,
operator InfoEval works at the individual level, working with individual information fields. When this oper-
ator is applied to a population, information fields of eligible individuals are put into the local namespace of the
population. A Python expression is then evaluated for each individual. The result is written to an output.

InfoEval(expr="", stmts="", usePopVars=False, exposeInd="", output=">", begin=0, end=-1,
step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

Create an operator that evaluate a Python expression expr using individual information fields and popula-
tion variables as variables. If exposeInd is not empty, the individual itself will be exposed in the popula-
tion’s local namespace as a variable with name specified by exposeInd.

A Python expression (expr) is evaluated for each individual. The results are converted to strings and are
written to an output specified by parameter output. Optionally, a statement (or several statements separated
by newline) can be executed before expr is evaluated. The evaluation of this statement may change the
value of information fields.

Parameter usePopVars is obsolete because population variables are always usable in such expressions.

11.3.5 class InfoExec

class InfoExec
Operator InfoExec is similar to InfoEval in that it works at the individual level, using individual informa-

11.3. Expression and Statements 299

simuPOP

tion fields as variables. This is usually used to change the value of information fields. For example, "b=a*2"
will set the value of information field b to a*a for all individuals.

InfoExec(stmts="", usePopVars=False, exposeInd="", output="", begin=0, end=-1, step=1, at=[],
reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

Create an operator that executes Python statements stmts using individual information fields and population
variables as variables. If exposeInd is not empty, the individual itself will be exposed in the population’s
local namespace as a variable with name specified by exposeInd.

One or more python statements (stmts) are executed for each individual. Information fields of these indi-
viduals are then updated from the corresponding variables. For example, a=1 will set information field
a of all individuals to 1, a=b will set information field a of all individuals to information field b or a
population variable b if b is not an information field but a population variable, and a=ind.sex() will
set information field a of all individuals to its sex (needs exposeInd='ind'.

Parameter usePopVars is obsolete because population variables will always be usable.

11.4 Demographic models

11.4.1 class Migrator

class Migrator
This operator migrates individuals from (virtual) subpopulations to other subpopulations, according to either
pre-specified destination subpopulation stored in an information field, or randomly according to a migration
matrix.

In the former case, values in a specified information field (default to migrate_to) are considered as destination
subpopulation for each individual. If subPops is given, only individuals in specified (virtual) subpopulations
will be migrated where others will stay in their original subpopulation. Negative values are not allowed in this
information field because they do not represent a valid destination subpopulation ID.

In the latter case, a migration matrix is used to randomly assign destination subpoulations to each individual. The
elements in this matrix can be probabilities to migrate, proportions of individuals to migrate, or exact number
of individuals to migrate.

By default, the migration matrix should have m by m elements if there are m subpopulations. Element (i, j)
in this matrix represents migration probability, rate or count from subpopulation i to j. If subPops (length
m) and/or toSubPops (length n) are given, the matrix should have m by n elements, corresponding to specified
source and destination subpopulations. Subpopulations in subPops can be virtual subpopulations, which makes
it possible to migrate, for example, males and females at different rates from a subpopulation. If a subpopulation
in toSubPops does not exist, it will be created. In case that all individuals from a subpopulation are migrated,
the empty subpopulation will be kept.

If migration is applied by probability, the row of the migration matrix corresponding to a source subpopulation
is intepreted as probabilities to migrate to each destination subpopulation. Each individual’s detination subpop-
ulation is assigned randomly according to these probabilities. Note that the probability of staying at the present
subpopulation is automatically calculated so the corresponding matrix elements are ignored.

If migration is applied by proportion, the row of the migration matrix corresponding to a source subpopulation
is intepreted as proportions to migrate to each destination subpopulation. The number of migrants to each
destination subpopulation is determined before random indidividuals are chosen to migrate.

If migration is applied by counts, the row of the migration matrix corresponding to a source subpopulation
is intepreted as number of individuals to migrate to each detination subpopulation. The migrants are chosen
randomly.

300 Chapter 11. Operator References

simuPOP

This operator goes through all source (virtual) subpopulations and assign detination subpopulation of each
individual to an information field. Unexpected results may happen if individuals migrate from overlapping
virtual subpopulations.

Migrator(rate=[], mode=BY_PROBABILITY, toSubPops=ALL_AVAIL, begin=0, end=-1, step=1,
at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=["migrate_to"])

Create a Migrator that moves individuals from source (virtual) subpopulations subPops (default to mi-
grate from all subpopulations) to destination subpopulations toSubPops (default to all subpopulations),
according to existing values in an information field infoFields*[0], or randomly according to a migration
matrix *rate. In the latter case, the size of the matrix should match the number of source and destination
subpopulations.

Depending on the value of parameter mode, elements in the migration matrix (rate) are interpreted as either
the probabilities to migrate from source to destination subpopulations (mode = BY_PROBABILITY),
proportions of individuals in the source (virtual) subpopulations to the destination subpopulations (mode =
BY_PROPORTION), numbers of migrants in the source (virtual) subpopulations (mode = BY_COUNTS),
or ignored completely (mode = BY_IND_INFO). In the last case, parameter subPops is respected (only
individuals in specified (virtual) subpopulations will migrate) but toSubPops is ignored.

Please refer to operator BaseOperator for a detailed explanation for all parameters.

11.4.2 class BackwardMigrator

class BackwardMigrator
This operator migrates individuals between all available or specified subpopulations, according to a backward
migration matrix. It differs from Migrator in how migration matrixes are interpreted. Due to the limit of this
model, this operator does not support migration by information field, migration by count (mode = BY_COUNT),
migration from virtual subpopulations, migration between different number of subpopulations, and the creation
of new subpopulation, as operator Migrator provides.

In contrast to a forward migration matrix where m_{ij} is considered the probability (proportion or count) of
individuals migrating from subpopulation i to j, elements in a reverse migration matrix m_{ij} is considered
the probability (proportion or count) of individuals migrating from subpopulation j to i, namely the probability
(proportion or count) of individuals originats from subpopulation j.

If migration is applied by probability, the row of the migration matrix corresponding to a destination sub-
population is intepreted as probabilities to orignate from each source subpopulation. Each individual’s source
subpopulation is assigned randomly according to these probabilities. Note that the probability of originating
from the present subpopulation is automatically calculated so the corresponding matrix elements are ignored.

If migration is applied by proportion, the row of the migration matrix corresponding to a destination subpopu-
lation is intepreted as proportions to originate from each source subpopulation. The number of migrants from
each source subpopulation is determined before random indidividuals are chosen to migrate.

Unlike the forward migration matrix that describes how migration should be performed, the backward migra-
tion matrix describes the result of migration. The underlying forward migration matrix is calculated at each
generation and is in theory not the same across generations.

This operator calculates the corresponding forward migration matrix from backward matrix and current popula-
tion size. This process is not always feasible so an error will raise if no valid ending population size or forward
migration matrix could be determined. Please refer to the simuPOP user’s guide for an explanation of the theory
behind forward and backward migration matrices.

BackwardMigrator(rate=[], mode=BY_PROBABILITY, begin=0, end=-1, step=1, at=[],
reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=["migrate_to"])

Create a BackwardMigrator that moves individuals between subPop subpopulations randomly according
to a backward migration matrix rate. The size of the matrix should match the number of subpopulations.

11.4. Demographic models 301

simuPOP

Depending on the value of parameter mode, elements in the migration matrix (rate) are interpreted as either
the probabilities to originate from source subpopulations (mode = BY_PROBABILITY) or proportions of
individuals originate from the source (virtual) subpopulations (mode = BY_PROPORTION). Migration by
count is not supported by this operator.

Please refer to operator BaseOperator for a detailed explanation for all parameters.

11.4.3 class SplitSubPops

class SplitSubPops
Split a given list of subpopulations according to either sizes of the resulting subpopulations, proportion of
individuals, or an information field. The resulting subpopulations will have the same name as the original
subpopulation.

SplitSubPops(subPops=ALL_AVAIL, sizes=[], proportions=[], names=[], randomize=True, be-
gin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, infoFields=[])

Split a list of subpopulations subPops into finer subpopulations. A single subpopulation is acceptable but
virtual subpopulations are not allowed. All subpopulations will be split if subPops is not specified.

The subpopulations can be split in three ways:

• If parameter sizes is given, each subpopulation will be split into subpopulations with given size. The
sizes should add up to the size of all orignal subpopulations.

• If parameter proportions is given, each subpopulation will be split into subpopulations with corre-
sponding proportion of individuals. proportions should add up to 1.

• If an information field is given (parameter infoFields), individuals having the same value at this in-
formation field will be grouped into a subpopulation. The number of resulting subpopulations is
determined by the number of distinct values at this information field.

If parameter randomize is True (default), individuals will be randomized before a subpopulation is
split. This is designed to remove artificial order of individuals introduced by, for example, some non-
random mating schemes. Note that, however, the original individual order is not guaranteed even if this
parameter is set to False.

Unless the last subpopulation is split, the indexes of existing subpopulations will be changed. If a sub-
population has a name, this name will become the name for all subpopulations separated from this sub-
population. Optionally, you can assign names to the new subpopulations using a list of names specified in
parameter names. Because the same set of names will be used for all subpopulations, this parameter is not
recommended when multiple subpopulations are split.

Please refer to operator BaseOperator for a detailed explanation for all parameters.

Note: Unlike operator Migrator, this operator does not require an information field such as
migrate_to.

11.4.4 class MergeSubPops

class MergeSubPops
This operator merges subpopulations subPops to a single subpopulation. If subPops is ignored, all subpopu-
lations will be merged. Virtual subpopulations are not allowed in subPops.

MergeSubPops(subPops=ALL_AVAIL, name="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
infoFields=[])

Create an operator that merges subpopulations subPops to a single subpopulation. If subPops is not given,

302 Chapter 11. Operator References

simuPOP

all subpopulations will be merged. The merged subpopulation will take the name of the first subpopulation
being merged unless a new name is given.

Please refer to operator BaseOperator for a detailed explanation for all parameters.

11.4.5 class ResizeSubPops

class ResizeSubPops
This operator resizes subpopulations to specified sizes. individuals are added or removed depending on the new
subpopulation sizes.

ResizeSubPops(subPops=ALL_AVAIL, sizes=[], proportions=[], propagate=True, begin=0, end=-1,
step=1, at=[], reps=ALL_AVAIL, infoFields=[])

Resize given subpopulations subPops to new sizes size, or sizes proportional to original sizes (parameter
proportions). All subpopulations will be resized if subPops is not specified. If the new size of a subpop-
ulation is smaller than its original size, extra individuals will be removed. If the new size is larger, new
individuals with empty genotype will be inserted, unless parameter propagate is set to True (default). In
this case, existing individuals will be copied sequentially, and repeatedly if needed.

Please refer to operator BaseOperator for a detailed explanation for all parameters.

11.5 Genotype transmitters

11.5.1 class GenoTransmitter

class GenoTransmitter
This during mating operator is the base class of all genotype transmitters. It is made available to users because
it provides a few member functions that can be used by derived transmitters, and by customized Python during
mating operators.

GenoTransmitter(output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])

Create a base genotype transmitter.

clearChromosome(ind, ploidy, chrom)
Clear (set alleles to zero) chromosome chrom on the ploidy- th homologous set of chromosomes of individ-
ual ind. It is equivalent to ind.setGenotype([0], ploidy, chrom), except that it also clears
allele lineage if it is executed in a module with lineage allele type.

copyChromosome(parent, parPloidy, offspring, ploidy, chrom)
Transmit chromosome chrom on the parPloidy set of homologous chromosomes from parent to
the ploidy set of homologous chromosomes of offspring. It is equivalent to offspring.
setGenotype(parent.genotype(parPloidy, chrom), polidy, chrom), except that it
also copies allelic lineage when it is executed in a module with lineage allele type.

copyChromosomes(parent, parPloidy, offspring, ploidy)
Transmit the parPloidy set of homologous chromosomes from parent to the ploidy set of homologous
chromosomes of offspring. Customized chromosomes are not copied. It is equivalent to offspring.
setGenotype(parent.genotype(parPloidy), ploidy), except that it also copies allelic
lineage when it is executed in a module with lineage allele type.

11.5. Genotype transmitters 303

simuPOP

11.5.2 class CloneGenoTransmitter

class CloneGenoTransmitter
This during mating operator copies parental genotype directly to offspring. This operator works for all mating
schemes when one or two parents are involved. If both parents are passed, maternal genotype are copied. In
addition to genotypes on all non-customized or specified chromosomes, sex and information fields are by default
also coped copied from parent to offspring.

CloneGenoTransmitter(output="", chroms=ALL_AVAIL, begin=0, end=-1, step=1, at=[],
reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=ALL_AVAIL)

Create a clone genotype transmitter (a during-mating operator) that copies genotypes from parents to
offspring. If two parents are specified, genotypes are copied maternally. After genotype transmission,
offspring sex and affection status is copied from the parent even if sex has been determined by an offspring
generator. All or specified information fields (parameter infoFields, default to ALL_AVAIL) will also be
copied from parent to offspring. Parameters subPops is ignored. This operator by default copies genotypes
on all autosome and sex chromosomes (excluding customized chromosomes), unless a parameter chroms
is used to specify which chromosomes to copy. This operator also copies allelic lineage when it is executed
in a module with lineage allele type.

11.5.3 class MendelianGenoTransmitter

class MendelianGenoTransmitter
This Mendelian offspring generator accepts two parents and pass their genotypes to an offspring following
Mendel’s laws. Sex chromosomes are handled according to the sex of the offspring, which is usually determined
in advance by an offspring generator. Customized chromosomes are not handled.

MendelianGenoTransmitter(output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])

Create a Mendelian genotype transmitter (a during-mating operator) that transmits genotypes from parents
to offspring following Mendel’s laws. Autosomes and sex chromosomes are handled but customized chro-
mosomes are ignored. Parameters subPops and infoFields are ignored. This operator also copies allelic
lineage when it is executed in a module with lineage allele type.

transmitGenotype(parent, offspring, ploidy)
Transmit genotype from parent to offspring, and fill the ploidy homologous set of chromosomes. This
function does not set genotypes of customized chromosomes and handles sex chromosomes properly,
according to offspring sex and ploidy.

11.5.4 class SelfingGenoTransmitter

class SelfingGenoTransmitter
A genotype transmitter (during-mating operator) that transmits parental genotype of a parent through self-
fertilization. That is to say, the offspring genotype is formed according to Mendel’s laws, only that a parent
serves as both maternal and paternal parents.

SelfingGenoTransmitter(output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])

Create a self-fertilization genotype transmitter that transmits genotypes of a parent to an offspring through
self- fertilization. Cutsomized chromosomes are not handled. Parameters subPops and infoFields are
ignored. This operator also copies allelic lineage when it is executed in a module with lineage allele type.

304 Chapter 11. Operator References

simuPOP

11.5.5 class HaplodiploidGenoTransmitter

class HaplodiploidGenoTransmitter
A genotype transmitter (during-mating operator) for haplodiploid populations. The female parent is considered
as diploid and the male parent is considered as haploid (only the first homologous copy is valid). If the offspring
is FEMALE, she will get a random copy of two homologous chromosomes of her mother, and get the only
paternal copy from her father. If the offspring is MALE, he will only get a set of chromosomes from his mother.

HaplodiploidGenoTransmitter(output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
subPops=ALL_AVAIL, infoFields=[])

Create a haplodiploid genotype transmitter (during-mating operator) that transmit parental genotypes from
parents to offspring in a haplodiploid population. Parameters subPops and infoFields are ignored. This
operator also copies allelic lineage when it is executed in a module with lineage allele type.

11.5.6 class MitochondrialGenoTransmitter

class MitochondrialGenoTransmitter
This geno transmitter transmits the first homologous copy of a Mitochondrial chromosome. If no mito-
chondrial chromosome is present, it assumes that the first homologous copy of several (or all) Customized
chromosomes are copies of mitochondrial chromosomes. This operator transmits the mitochondrial chromo-
some from the female parent to offspring for sexsual reproduction, and any parent to offspring for asexual
reproduction. If there are multiple chromosomes, the organelles are selected randomly. If this transmitter is ap-
plied to populations with more than one homologous copies of chromosomes, it transmits the first homologous
copy of chromosomes and clears alleles (set to zero) on other homologous copies.

MitochondrialGenoTransmitter(output="", chroms=ALL_AVAIL, begin=0, end=-1,
step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL,
infoFields=[])

Createa a mitochondrial genotype transmitter that treats the Mitochondiral chromosome, or Customized
chromosomes if no Mitochondrial chromosome is specified, or a list of chromosomes specified by chroms,
as human mitochondrial chromosomes. These chromosomes should have the same length and the same
number of loci. This operator transmits these chromosomes randomly from the female parent to offspring
of both sexes. It also copies allelic lineage when it is executed in a module with lineage allele type.

11.5.7 class Recombinator

class Recombinator
A genotype transmitter (during-mating operator) that transmits parental chromosomes to offspring, subject
to recombination and gene conversion. This can be used to replace MendelianGenoTransmitter and
SelfingGenoTransmitter. It does not work in haplodiploid populations, although a customized geno-
type transmitter that makes uses this operator could be defined. Please refer to the simuPOP user’s guide or
online cookbook for details.

Recombination could be applied to all adjacent markers or after specified loci. Recombination rate between two
adjacent markers could be specified directly, or calculated using physical distance between them. In the latter
case, a recombination intensity is multiplied by physical distance between markers.

Gene conversion is interpreted as double-recombination events. That is to say, if a recombination event happens,
it has a certain probability (can be 1) to become a conversion event, namely triggering another recombination
event down the chromosome. The length of the converted chromosome can be controlled in a number of ways.

Note: simuPOP does not assume any unit to loci positions so recombination intensity could be explained
differntly (e.g. cM/Mb, Morgan/Mb) depending on your intepretation of loci positions. For example, if basepair
is used for loci position, intensity=10^-8 indicates 10^-8 per basepair, which is equivalent to 10^-2

11.5. Genotype transmitters 305

simuPOP

per Mb or 1 cM/Mb. If Mb is used for physical positions, the same recombination intensity could be achieved
by intensity=0.01.

Recombinator(rates=[], intensity=-1, loci=ALL_AVAIL, convMode=NO_CONVERSION, output="",
begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, in-
foFields=[])

Create a Recombinator (a mendelian genotype transmitter with recombination and gene conversion) that
passes genotypes from parents (or a parent in case of self-fertilization) to offspring.

Recombination happens by default between all adjacent markers but can be limited to a given set of loci,
which can be a list of loci indexes, names, list of chromosome position pairs, ALL_AVAIL, or a function
with optional parameter pop that will be called at each ganeeration to determine indexes of loci. Each
locus in this list specifies a recombination point between the locus and the locus immediately after it. Loci
that are the last locus on each chromosome are ignored.

If a single recombination rate (parameter rates) is specified, it will used for all loci (all loci or loci specified
by parameter loci), regardless of physical distances between adjacent loci.

If a list of recombination rates are specified in rates, different recombination rates could be applied after a
list of specified loci (between loci and their immediate neighbor to the right). The loci should be specified
by parameter loci as a list with the same length as rates, or ALL_AVAIL (default) in which case the length
of rates should equal to the total number of loci. Note that recombination rates specified for the last locus
on each chromosome are ignored because simuPOP assumes free recombination between chromosomes.

A recombination intensity (intensity) can be used to specify recombination rates that are proportional to
physical distances between adjacent markers. If the physical distance between two markers is d, the
recombination rate between them will be intensity * d. No unit is assume for loci position and
recombination intensity.

Gene conversion is controlled using parameter convMode, which can be

• NoConversion: no gene conversion (default).

• (NUM_MARKERS, prob, n): With probability prob, convert a fixed number (n) of markers if a
recombination event happens.

• (GEOMETRIC_DISTRIBUTION, prob, p): With probability prob, convert a random number
of markers if a recombination event happens. The number of markes converted follows a geometric
distribution with probability p.

• (TRACT_LENGTH, prob, n): With probability prob, convert a region of fixed tract length (n) if
a recombination event happens. The actual number of markers converted depends on loci positions
of surrounding loci. The starting position of this tract is the middle of two adjacent markers. For
example, if four loci are located at 0, 1, 2, 3 respectively, a conversion event happens between
0 and 1, with a tract length 2 will start at 0.5 and end at 2.5, covering the second and third loci.

• (EXPONENTIAL_DISTRIBUTION, prob, p): With probability prob, convert a region of ran-
dom tract length if a recombination event happens. The distribution of tract length follows a exponen-
tial distribution with probability p. The actual number of markers converted depends on loci positions
of surrounding loci.

simuPOP uses this probabilistic model of gene conversion because when a recombination event happens,
it may become a recombination event if the if the Holliday junction is resolved/repaired successfully, or
a conversion event if the junction is not resolved/repaired. The probability, however, is more commonly
denoted by the ratio of conversion to recombination events in the literature. This ratio varies greatly from
study to study, ranging from 0.1 to 15 (Chen et al, Nature Review Genetics, 2007). This translate to
0.1/0.9~0.1 to 15/16~0.94 of the gene conversion probability.

A Recombinator usually does not send any output. However, if an information field is given (parameter
infoFields), this operator will treat this information field as an unique ID of parents and offspring and

306 Chapter 11. Operator References

simuPOP

output all recombination events in the format of offspring_id parent_id starting_ploidy
loc1 loc2 ... `` where ``starting_ploidy indicates which homologous copy genotype
replication starts from (0 or 1), loc1, loc2 etc are loci after which recombination events happens. If
there are multiple chromosomes on the genome, you will see a lot of (fake) recombination events because
of independent segregation of chromosomes. Such a record will be generated for each set of homologous
chromosomes so an diploid offspring will have two lines of output. Note that individual IDs need to be set
(using a IdTagger operator) before this Recombinator is applied.

In addition to genotypes, this operator also copies alleleic lineage if it is executed in a module with lineage
allele type.

Note: There is no recombination between sex chromosomes (Chromosomes X and Y), although recombi-
nation is possible between pesudoautosomal regions on these chromosomes. If such a feature is required,
you will have to simulate the pesudoautosomal regions as separate chromosomes.

transmitGenotype(parent, offspring, ploidy)
This function transmits genotypes from a parent to the ploidy-th homologous set of chromosomes of an
offspring. It can be used, for example, by a customized genotype transmitter to use sex-specific recombi-
nation rates to transmit parental genotypes to offspring.

11.6 Mutation

11.6.1 class BaseMutator

class BaseMutator
Class mutator is the base class of all mutators. It handles all the work of picking an allele at specified loci
from certain (virtual) subpopulation with certain probability, and calling a derived mutator to mutate the allele.
Alleles can be changed before and after mutation if existing allele numbers do not match those of a mutation
model.

BaseMutator(rates=[], loci=ALL_AVAIL, mapIn=[], mapOut=[], context=0, output="", be-
gin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, in-
foFields=["ind_id"], lineageMode=FROM_INFO)

A mutator mutates alleles from one state to another with given probability. This base mutator does not
perform any mutation but it defines common behaviors of all mutators.

By default, a mutator mutates all alleles in all populations of a simulator at all generations. A number of
parameters can be used to restrict mutations to certain generations (parameters begin, end, step and at),
replicate populations (parameter rep), (virtual) subpopulations (parameter subPops) and loci (parameter
loci). Parameter loci can be a list of loci indexes, names, list of chromosome position pairs, ALL_AVAIL,
or a function with optional parameter pop that will be called at each ganeeration to determine indexes of
loci. Please refer to class BaseOperator for a detailed explanation of these parameters.

Parameter rate or its equivalence specifies the probability that a a mutation event happens. The exact form
and meaning of rate is mutator-specific. If a single rate is specified, it will be applied to all loci. If a list
of mutation rates are given, they will be applied to each locus specified in parameter loci. Note that not all
mutators allow specification of multiple mutation rate, especially when the mutation rate itself is a list or
matrix.

Alleles at a locus are non-negative numbers 0, 1, . . . up to the maximum allowed allele for the loaded mod-
ule (1 for binary, 255 for short and 65535 for long modules). Whereas some general mutation models treat
alleles as numbers, other models assume specific interpretation of alleles. For example, an AcgtMutator
assumes alleles 0, 1, 2 and 3 as nucleotides A, C, G and T. Using a mutator that is incompatible with your
simulation will certainly yield erroneous results.

11.6. Mutation 307

simuPOP

If your simulation assumes different alleles with a mutation model, you can map an allele to the allele used
in the model and map the mutated allele back. This is achieved using a mapIn list with its i-th item being
the corresponding allele of real allele i, and a mapOut list with its i-th item being the real allele of allele i
assumed in the model. For example mapIn=[0, 0, 1] and mapOut=[1, 2] would allow the use of
a SNPMutator to mutate between alleles 1 and 2, instead of 0 and 1. Parameters mapIn and mapOut also
accept a user-defined Python function that returns a corresponding allele for a given allele. This allows
easier mapping between a large number of alleles and advanced models such as random emission of alleles.

If a valid information field is specified for parameter infoFields (default to ind_id) for modules with
lineage allele type, the lineage of the mutated alleles will be the ID (stored in the first field of infoFields) of
individuals that harbor the mutated alleles if lineageMode is set to FROM_INFO (default). If lineageMode
is set to FROM_INFO_SIGNED, the IDs will be assigned a sign depending on the ploidy the mutation
happens (1 for ploidy 0, -1 for ploidy 1, etc). The lineage information will be transmitted along with the
alleles so this feature allows you to track the source of mutants during evolution.A

A mutator by default does not produce any output. However, if an non-empty output is specified, the
operator will output generation number, locus, ploidy, original allele, mutant, and values of all information
field specified by parameter infoFields (e.g. individual ID if ind_id is specified).

Some mutation models are context dependent. Namely, how an allele mutates will depend on its adjecent
alleles. Whereas most simuPOP mutators are context independent, some of them accept a parameter
context which is the number of alleles to the left and right of the mutated allele. For example context=1
will make the alleles to the immediate left and right to a mutated allele available to a mutator. These alleles
will be mapped in if parameter mapIn is defined. How exactly a mutator makes use of these information is
mutator dependent.

11.6.2 class MatrixMutator

class MatrixMutator
A matrix mutator mutates alleles 0, 1, . . . , n-1 using a n by n matrix, which specifies the probability at which
each allele mutates to another. Conceptually speaking, this mutator goes through all mutable allele and mutate
it to another state according to probabilities in the corresponding row of the rate matrix. Only one mutation rate
matrix can be specified which will be used for all specified loci. #

MatrixMutator(rate, loci=ALL_AVAIL, mapIn=[], mapOut=[], output="", begin=0, end=-1, step=1,
at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=["ind_id"], lineage-
Mode=FROM_INFO)

Create a mutator that mutates alleles 0, 1, . . . , n-1 using a n by n matrix rate. Item (i,j) of this
matrix specifies the probability at which allele i mutates to allele j. Diagnal items (i, i) are ignored
because they are automatically determined by other probabilities. Only one mutation rate matrix can be
specified which will be used for all loci in the applied population, or loci specified by parameter loci.
If alleles other than 0, 1, . . . , n-1 exist in the population, they will not be mutated although a warning
message will be given if debugging code DBG_WARNING is turned on. Please refer to classes mutator
and BaseOperator for detailed explanation of other parameters.

11.6.3 class KAlleleMutator

class KAlleleMutator
This mutator implements a k-allele mutation model that assumes k allelic states (alleles 0, 1, 2, . . . , k-1) at each
locus. When a mutation event happens, it mutates an allele to any other states with equal probability.

KAlleleMutator(k, rates=[], loci=ALL_AVAIL, mapIn=[], mapOut=[], output="", begin=0, end=-
1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=["ind_id"],
lineageMode=FROM_INFO)

Create a k-allele mutator that mutates alleles to one of the other k-1 alleles with equal probability. This

308 Chapter 11. Operator References

simuPOP

mutator by default applies to all loci unless parameter loci is specified. A single mutation rate will be used
for all loci if a single value of parameter rates is given. Otherwise, a list of mutation rates can be specified
for each locus in parameter loci. If the mutated allele is larger than or equal to k, it will not be mutated. A
warning message will be displayed if debugging code DBG_WARNING is turned on. Please refer to classes
mutator and BaseOperator for descriptions of other parameters.

11.6.4 class StepwiseMutator

class StepwiseMutator
A stepwise mutation model treats alleles at a locus as the number of tandem repeats of microsatellite or min-
isatellite markers. When a mutation event happens, the number of repeats (allele) either increase or decrease. A
standard stepwise mutation model increases of decreases an allele by 1 with equal probability. More complex
models (generalized stepwise mutation model) are also allowed. Note that an allele cannot be mutated beyond
boundaries (0 and maximum allowed allele).

StepwiseMutator(rates=[], loci=ALL_AVAIL, incProb=0.5, maxAllele=0, mutStep=[], mapIn=[],
mapOut=[], output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=["ind_id"], lineageMode=FROM_INFO)

Create a stepwise mutation mutator that mutates an allele by increasing or decreasing it. This mutator by
default applies to all loci unless parameter loci is specified. A single mutation rate will be used for all loci
if a single value of parameter rates is given. Otherwise, a list of mutation rates can be specified for each
locus in parameter loci.

When a mutation event happens, this operator increases or decreases an allele by mutStep steps. Acceptable
input of parameter mutStep include

• A number: This is the default mode with default value 1.

• (GEOMETRIC_DISTRIBUTION, p): The number of steps follows a a geometric distribution with
parameter p.

• A Python function: This user defined function accepts the allele being mutated and return the steps to
mutate.

The mutation process is usually neutral in the sense that mutating up and down is equally likely. You can
adjust parameter incProb to change this behavior.

If you need to use other generalized stepwise mutation models, you can implement them using a
PyMutator. If performance becomes a concern, I may add them to this operator if provided with a
reliable reference.

11.6.5 class PyMutator

class PyMutator
This hybrid mutator accepts a Python function that determines how to mutate an allele when an mutation event
happens.

PyMutator(rates=[], loci=ALL_AVAIL, func=None, context=0, mapIn=[], mapOut=[], out-
put="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, in-
foFields=["ind_id"], lineageMode=FROM_INFO)

Create a hybrid mutator that uses a user-provided function to mutate an allele when a mutation event
happens. This function (parameter func) accepts the allele to be mutated as parameter allele, locus
index locus, and optional array of alleles as parameter context, which are context alleles the left and
right of the mutated allele. Invalid context alleles (e.g. left allele to the first locus of a chromosome) will
be marked by -1. The return value of this function will be used to mutate the passed allele. The passed,
returned and context alleles might be altered if parameter mapIn and mapOut are used. This mutator by
default applies to all loci unless parameter loci is specified. A single mutation rate will be used for all loci

11.6. Mutation 309

simuPOP

if a single value of parameter rates is given. Otherwise, a list of mutation rates can be specified for each
locus in parameter loci. Please refer to classes mutator and BaseOperator for descriptions of other
parameters.

11.6.6 class MixedMutator

class MixedMutator
This mixed mutator accepts a list of mutators and use one of them to mutate an allele when an mutation event
happens.

MixedMutator(rates=[], loci=ALL_AVAIL, mutators=[], prob=[], mapIn=[], mapOut=[], context=0,
output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL,
infoFields=["ind_id"], lineageMode=FROM_INFO)

Create a mutator that randomly chooses one of the specified mutators to mutate an allele when a mutation
event happens. The mutators are choosen according to a list of probabilities (parameter prob) that should
add up to 1. The passed and returned alleles might be changed if parameters mapIn and mapOut are used.
Most parameters, including loci, mapIn, mapOut, rep, and subPops of mutators specified in parameter
mutators are ignored. This mutator by default applies to all loci unless parameter loci is specified. Please
refer to classes mutator and BaseOperator for descriptions of other parameters.

11.6.7 class ContextMutator

class ContextMutator
This context-dependent mutator accepts a list of mutators and use one of them to mutate an allele depending on
the context of the mutated allele.

ContextMutator(rates=[], loci=ALL_AVAIL, mutators=[], contexts=[], mapIn=[], mapOut=[], out-
put="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL,
infoFields=["ind_id"], lineageMode=FROM_INFO)

Create a mutator that choose one of the specified mutators to mutate an allele when a mutation event
happens. The mutators are choosen according to the context of the mutated allele, which is specified as a
list of alleles to the left and right of an allele (parameter contexts). For example, contexts=[(0,0),
(0,1), (1,1)] indicates which mutators should be used to mutate allele X in the context of 0X0, 0X1,
and 1X1. A context can include more than one alleles at both left and right sides of a mutated allele but all
contexts should have the same (even) number of alleles. If an allele does not have full context (e.g. when
a locus is the first locus on a chromosome), unavailable alleles will be marked as -1. There should be a
mutator for each context but an additional mutator can be specified as the default mutator for unmatched
contexts. If parameters mapIn is specified, both mutated allele and its context alleles will be mapped. Most
parameters, including loci, mapIn, mapOut, rep, and subPops of mutators specified in parameter mutators
are ignored. This mutator by default applies to all loci unless parameter loci is specified. Please refer to
classes mutator and BaseOperator for descriptions of other parameters.

11.6.8 class PointMutator

class PointMutator
A point mutator is different from all other mutators because mutations in this mutator do not happen randomly.
Instead, it happens to specific loci and mutate an allele to a specific state, regardless of its original state. This
mutator is usually used to introduce a mutant to a population.

PointMutator(loci, allele, ploidy=0, inds=[], output="", begin=0, end=-1, step=1, at=[],
reps=ALL_AVAIL, subPops=0, infoFields=["ind_id"], lineageMode=FROM_INFO)

Create a point mutator that mutates alleles at specified loci to a given allele of individuals inds. If there are
multiple alleles at a locus (e.g. individuals in a diploid population), only the first allele is mutated unless

310 Chapter 11. Operator References

simuPOP

indexes of alleles are listed in parameter ploidy. This operator is by default applied to individuals in the first
subpopulation but you can apply it to a different or more than one (virtual) subpopulations using parameter
subPops (AllAvail is also accepted). Please refer to class BaseOperator for detailed descriptions of
other parameters.

11.6.9 class SNPMutator

class SNPMutator
A mutator model that assumes two alleles 0 and 1 and accepts mutation rate from 0 to 1, and from 1 to 0 alleles.

SNPMutator(u=0, v=0, loci=True, mapIn=[], mapOut=[], output=”, begin=0, end=-1, step=1, at=[],
reps=True, subPops=ALL_AVAIL, infoFields=[’ind_id’], lineageMode=115)

Return a MatrixMutator with proper mutate matrix for a two-allele mutation model using mutation
rate from allele 0 to 1 (parameter u) and from 1 to 0 (parameter v)

11.6.10 class AcgtMutator

class AcgtMutator
This mutation operator assumes alleles 0, 1, 2, 3 as nucleotides A, C, G and T and use a 4 by 4 mutation
rate matrix to mutate them. Although a general model needs 12 parameters, less parameters are needed for
specific nucleotide mutation models (parameter model). The length and meaning of parameter rate is model
dependent.

AcgtMutator(rate=[], model=’general’, loci=True, mapIn=[], mapOut=[], output=”, begin=0,
end=-1, step=1, at=[], reps=True, subPops=ALL_AVAIL, infoFields=[’ind_id’], lin-
eageMode=115)

Create a mutation model that mutates between nucleotides A, C, G, and T (alleles are coded in that or-
der as 0, 1, 2 and 3). Currently supported models are Jukes and Cantor 1969 model (JC69), Kimura’s
2-parameter model (K80), Felsenstein 1981 model (F81), Hasgawa, Kishino and Yano 1985 model
(HKY85), Tamura 1992 model (T92), Tamura and Nei 1993 model (TN93), Generalized time reversible
model (GTR), and a general model (general) with 12 parameters. Please refer to the simuPOP user’s
guide for detailed information about each model.

11.7 Penetrance

11.7.1 class BasePenetrance

class BasePenetrance
A penetrance model models the probability that an individual has a certain disease provided that he or she has
certain genetic (genotype) and environmental (information field) riske factors. A penetrance operator calculates
this probability according to provided information and set his or her affection status randomly. For example,
an individual will have probability 0.8 to be affected if the penetrance is 0.8. This class is the base class to all
penetrance operators and defines a common interface for all penetrance operators.

A penetrance operator can be applied at any stage of an evolutionary cycle. If it is applied before or after
mating, it will set affection status of all parents and offspring, respectively. If it is applied during mating, it will
set the affection status of each offspring. You can also apply a penetrance operator to an individual using its
applyToIndividual member function.

By default, a penetrance operator assigns affection status of individuals but does not save the actual penetrance
value. However, if an information field is specified, penetrance values will be saved to this field for future
analysis.

11.7. Penetrance 311

simuPOP

When a penetrance operator is applied to a population, it is only applied to the current generation. You can,
however, use parameter ancGens to set affection status for all ancestral generations (ALL_AVAIL), or individ-
uals in specified generations if a list of ancestral generations is specified. Note that this parameter is ignored if
the operator is applied during mating.

BasePenetrance(ancGens=UNSPECIFIED, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
subPops=ALL_AVAIL, infoFields=[])

Create a base penetrance operator. This operator assign individual affection status in the present generation
(default). If ALL_AVAIL or a list of ancestral generations are spcified in parameter ancGens, individuals
in specified ancestral generations will be processed. A penetrance operator can be applied to specified
(virtual) subpopulations (parameter subPops) and replicates (parameter reps). If an informatio field is
given, penetrance value will be stored in this information field of each individual.

apply(pop)
set penetrance to all individuals and record penetrance if requested

applyToIndividual(ind, pop=None)
Apply the penetrance operator to a single individual ind and set his or her affection status. A population
reference can be passed if the penetrance model depends on population properties such as generation
number. This function returns the affection status.

11.7.2 class MapPenetrance

class MapPenetrance
This penetrance operator assigns individual affection status using a user-specified penetrance dictionary.

MapPenetrance(loci, penetrance, ancGens=UNSPECIFIED, begin=0, end=-1, step=1, at=[],
reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

Create a penetrance operator that get penetrance value from a dictionary penetrance with genotype at
loci as keys, and penetrance as values. For each individual, genotypes at loci are collected one by one
(e.g. p0_loc0, p1_loc0, p0_loc1, p1_loc1. . . for a diploid individual) and are looked up in the dictionary.
Parameter loci can be a list of loci indexes, names, list of chromosome position pairs, ALL_AVAIL, or a
function with optional parameter pop that will be called at each ganeeration to determine indexes of loci.
If a genotype cannot be found, it will be looked up again without phase information (e.g. (1,0) will
match key (0,1)). If the genotype still can not be found, a ValueError will be raised. This operator
supports sex chromosomes and haplodiploid populations. In these cases, only valid genotypes should be
used to generator the dictionary keys.

11.7.3 class MaPenetrance

class MaPenetrance
This operator is called a ‘multi-allele’ penetrance operator because it groups multiple alleles into two groups:
wildtype and non-wildtype alleles. Alleles in each allele group are assumed to have the same effect on individual
penetrance. If we denote all wildtype alleles as A, and all non-wildtype alleles a, this operator assign Individual
penetrance according to genotype AA, Aa, aa in the diploid case, and A and a in the haploid case.

MaPenetrance(loci, penetrance, wildtype=0, ancGens=UNSPECIFIED, begin=0, end=-1, step=1,
at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

Creates a multi-allele penetrance operator that groups multiple alleles into a wildtype group (with alleles
wildtype, default to [0]), and a non-wildtype group. A list of penetrance values is specified through
parameter penetrance, for genotypes at one or more loci. Parameter loci can be a list of loci indexes,
names, list of chromosome position pairs, ALL_AVAIL, or a function with optional parameter pop that
will be called at each ganeeration to determine indexes of loci. If we denote wildtype alleles using capital
letters A, B . . . and non-wildtype alleles using small letters a, b . . . , the penetrance values should be for

• genotypes A and a for the haploid single-locus case,

312 Chapter 11. Operator References

simuPOP

• genotypes AB, Ab, aB and bb for haploid two=locus cases,

• genotypes AA, Aa and aa for diploid single-locus cases,

• genotypes AABB, AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb, and aabb for diploid two- locus
cases,

• and in general 2**n for diploid and 3**n for haploid cases if there are n loci.

This operator does not support haplodiploid populations and sex chromosomes.

11.7.4 class MlPenetrance

class MlPenetrance
This penetrance operator is created by a list of penetrance operators. When it is applied to an individual, it
applies these penetrance operators to the individual, obtain a list of penetrance values, and compute a com-
bined penetrance value from them and assign affection status accordingly. ADDITIVE, multiplicative, and a
heterogeneour multi-locus model are supported. Please refer to Neil Rish (1989) “Linkage Strategies for

Genetically Complex Traits” for some analysis of these models.

MlPenetrance(ops, mode=MULTIPLICATIVE, ancGens=UNSPECIFIED, begin=0, end=-1, step=1,
at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

Create a multiple-locus penetrance operator from a list penetrance operator ops. When this operator is
applied to an individual (parents when used before mating and offspring when used during mating), it
applies these operators to the individual and obtain a list of (usually single-locus) penetrance values. These
penetrance values are combined to a single penetrance value using

• Prod(f_i), namely the product of individual penetrance if mode = MULTIPLICATIVE,

• sum(f_i) if mode = ADDITIVE, and

• 1-Prod(1 - f_i) if mode = HETEROGENEITY

0 or 1 will be returned if the combined penetrance value is less than zero or greater than 1.

Applicability parameters (begin, end, step, at, reps, subPops) could be used in both MlSelector and
selectors in parameter ops, but parameters in MlSelector will be interpreted first.

11.7.5 class PyPenetrance

class PyPenetrance
This penetrance operator assigns penetrance values by calling a user provided function. It accepts a list of loci
(parameter loci), and a Python function func which should be defined with one or more of parameters geno,
mut, gen, ind, pop, or names of information fields. When this operator is applied to a population, it passes
genotypes or mutants (non-zero alleles) at specified loci at specified loci, generation number, a reference to an
individual, a reference to the current population (usually used to retrieve population variables) and values at
specified information fields to respective parameters of this function. Genotypes of each individual are passed
as a tuple of alleles arranged locus by locus (in the order of A1,A2,B1,B2 for loci A and B). Mutants are passed
as a default dictionary of loci index (with respect to all genotype of individuals, not just the first ploidy) and
alleles. The returned penetrance values will be used to determine the affection status of each individual.

PyPenetrance(func, loci=[], ancGens=UNSPECIFIED, begin=0, end=-1, step=1, at=[],
reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

Create a Python hybrid penetrance operator that passes genotype at specified loci, values at specified
information fields (if requested), and a generation number to a user-defined function func. Parameter loci
can be a list of loci indexes, names, list of chromosome position pairs, ALL_AVAIL, or a function with
optional parameter pop that will be called at each ganeeration to determine indexes of loci. The return
value will be treated as Individual penetrance.

11.7. Penetrance 313

simuPOP

11.7.6 class PyMlPenetrance

class PyMlPenetrance
This penetrance operator is a multi-locus Python penetrance operator that assigns penetrance values by com-
bining locus and genotype specific penetrance values. It differs from a PyPenetrance in that the python
function is responsible for penetrance values values for each gentoype type at each locus, which can potentially
be random, and locus or gentoype-specific.

PyMlPenetrance(func, mode=MULTIPLICATIVE, loci=ALL_AVAIL, ancGens=UNSPECIFIED,
output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])

Create a penetrance operator that assigns individual affection status according to penetrance values com-
bined from locus- specific penetrance values that are determined by a Python call- back function. The
callback function accepts parameter loc, alleles (both optional) and returns location- or genotype- specific
penetrance values that can be constant or random. The penetrance values for each genotype will be cached
so the same penetrance values will be assigned to genotypes with previously assigned values. Note that a
function that does not examine the genotype naturally assumes a dominant model where genotypes with
one or two mutants have the same penetrance value. Because genotypes at a locus are passed separately
and in no particular order, this function is also responsible for assigning consistent fitness values for geno-
types at the same locus (a class is usually used). This operator currently ignores chromosome types so
unused alleles will be passed for loci on sex or mitochondrial chromosomes. This operator also ignores
the phase of genotype so genotypes (a,b) and (b,a) are assumed to have the same fitness effect.

Individual penetrance will be combined in ADDITIVE, MULTIPLICATIVE, or HETEROGENEITYmode
from penetrance values of loci with at least one non-zero allele (See MlPenetrance for details).

11.8 Quantitative Trait

11.8.1 class BaseQuanTrait

class BaseQuanTrait
A quantitative trait in simuPOP is simply an information field. A quantitative trait model simply assigns values
to one or more information fields (called trait fields) of each individual according to its genetic (genotype) and
environmental (information field) factors. It can be applied at any stage of an evolutionary cycle. If a quantitative
trait operator is applied before or after mating, it will set the trait fields of all parents and offspring. If it is applied
during mating, it will set the trait fields of each offspring.

When a quantitative trait operator is applied to a population, it is only applied to the current generation. You
can, however, use parameter ancGen=-1 to set the trait field of all ancestral generations, or a generation index
to apply to only ancestral generation younger than ancGen. Note that this parameter is ignored if the operator is
applied during mating.

BaseQuanTrait(ancGens=UNSPECIFIED, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])

Create a base quantitative trait operator. This operator assigns one or more quantitative traits to trait fields
in the present generation (default). If ALL_AVAIL or a list of ancestral generations are specified, this
operator will be applied to individuals in these generations as well. A quantitative trait operator can be
applied to specified (virtual) subpopulations (parameter subPops) and replicates (parameter reps).

apply(pop)
set qtrait to all individual

314 Chapter 11. Operator References

simuPOP

11.8.2 class PyQuanTrait

class PyQuanTrait
This quantitative trait operator assigns a trait field by calling a user provided function. It accepts a list of
loci (parameter loci), and a Python function func which should be defined with one or more of parameters
geno, mut, gen, ind, or names of information fields. When this operator is applied to a population, it passes
genotypes or mutants (non-zero alleles) of each individual at specified loci, generation number, a reference to
an individual, and values at specified information fields to respective parameters of this function. Genotypes of
each individual are passed as a tuple of alleles arranged locus by locus (in the order of A1,A2,B1,B2 for loci A
and B). Mutants are passed as a default dictionary of loci index (with respect to all genotype of individuals, not
just the first ploidy) and alleles. The return values will be assigned to specified trait fields.

PyQuanTrait(func, loci=[], ancGens=UNSPECIFIED, begin=0, end=-1, step=1, at=[],
reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

Create a Python hybrid quantitative trait operator that passes genotype at specified loci, optional values at
specified information fields (if requested), and an optional generation number to a user-defined function
func. Parameter loci can be a list of loci indexes, names, or ALL_AVAIL. The return value will be assigned
to specified trait fields (infoField). If only one trait field is specified, a number or a sequence of one element
is acceptable. Otherwise, a sequence of values will be accepted and be assigned to each trait field.

11.9 Natural selection

11.9.1 class BaseSelector

class BaseSelector
This class is the base class to all selectors, namely operators that perform natural selection. It defines a common
interface for all selectors.

A selector can be applied before mating or during mating. If a selector is applied to one or more (virtual)
subpopulations of a parental population before mating, it sets individual fitness values to all involved parents
to an information field (default to fitness). When a mating scheme that supports natural selection is applied
to the parental population, it will select parents with probabilities that are proportional to individual fitness
stored in an information field (default to fitness). Individual fitness is considered relative fitness and can be any
non-negative number. This simple process has some implications that can lead to advanced usages of natural
selection in simuPOP:

• It is up to the mating scheme how to handle individual fitness. Some mating schemes do not support
natural selection at all.

• A mating scheme performs natural selection according to fitness values stored in an information field. It
does not care how these values are set. For example, fitness values can be inherited from a parent using a
tagging operator, or set directly using a Python operator.

• A mating scheme can treat any information field as fitness field. If an specified information field does not
exist, or if all individuals have the same fitness values (e.g. 0), the mating scheme selects parents randomly.

• Multiple selectors can be applied to the same parental generation. individual fitness is determined by the
last fitness value it is assigned.

• A selection operator can be applied to virtual subpopulations and set fitness values only to part of the
individuals.

• individuals with zero fitness in a subpopulation with anyone having a positive fitness value will not be
selected to produce offspring. This can sometimes lead to unexpected behaviors. For example, if you
only assign fitness value to part of the individuals in a subpopulation, the rest of them will be effectively

11.9. Natural selection 315

simuPOP

discarded. If you migrate individuals with valid fitness values to a subpopulation with all individuals
having zero fitness, the migrants will be the only mating parents.

• It is possible to assign multiple fitness values to different information fields so that different homogeneous
mating schemes can react to different fitness schemes when they are used in a heterogeneous mating
scheme.

• You can apply a selector to the offspring generation using the postOps parameter of Simulator.
evolve, these fitness values will be used when the offspring generation becomes parental generation
in the next generation.

Alternatively, a selector can be used as a during mating operator. In this case, it caculates fitness value for each
offspring which will be treated as absolute fitness, namely the probability for each offspring to survive. This
process uses the fact that an individual will be discarded when any of the during mating operators returns False.
It is important to remember that:

• individual fitness needs to be between 0 and 1 in this case.

• Fitness values are not stored so the population does not need an information field fitness.

• This method applies natural selection to offspring instead of parents. These two implementation can be
identical or different depending on the mating scheme used.

• Seleting offspring is less efficient than the selecting parents, especially when fitness values are low.

• Parameter subPops are applied to the offspring population and is used to judge if an operator should be
applied. It thus does not make sense to apply a selector to a virtual subpopulation with affected individuals.

BaseSelector(output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL,
infoFields=ALL_AVAIL)

Create a base selector object. This operator should not be created directly.

11.9.2 class MapSelector

class MapSelector
This selector assigns individual fitness values using a user- specified dictionary. This operator can be applied to
populations with arbitrary number of homologous chromosomes.

MapSelector(loci, fitness, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL,
infoFields=ALL_AVAIL)

Create a selector that assigns individual fitness values using a dictionary fitness with genotype at loci
as keys, and fitness as values. Parameter loci can be a list of indexes, loci names, list of chromosome
position pairs, ALL_AVAIL, or a function with optional parameter pop that will be called at each ganeer-
ation to determine indexes of loci. For each individual (parents if this operator is applied before mating,
and offspring if this operator is applied during mating), genotypes at loci are collected one by one (e.g.
p0_loc0, p1_loc0, p0_loc1, p1_loc1. . . for a diploid individual, with number of alleles varying for sex
and mitochondrial DNAs) and are looked up in the dictionary. If a genotype cannot be found, it will be
looked up again without phase information (e.g. (1,0) will match key (0,1)). If the genotype still can
not be found, a ValueError will be raised. This operator supports sex chromosomes and haplodiploid
populations. In these cases, only valid genotypes should be used to generator the dictionary keys.

11.9.3 class MaSelector

class MaSelector
This operator is called a ‘multi-allele’ selector because it groups multiple alleles into two groups: wildtype and
non-wildtype alleles. Alleles in each allele group are assumed to have the same effect on individual fitness. If we
denote all wildtype alleles as A, and all non-wildtype alleles a, this operator assign individual fitness according
to genotype AA, Aa, aa in the diploid case, and A and a in the haploid case.

316 Chapter 11. Operator References

simuPOP

MaSelector(loci, fitness, wildtype=0, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=ALL_AVAIL)

Creates a multi-allele selector that groups multiple alleles into a wildtype group (with alleles wildtype,
default to [0]), and a non-wildtype group. A list of fitness values is specified through parameter fitness,
for genotypes at one or more loci. Parameter loci can be a list of indexes, loci names , list of chromosome
position pairs, ALL_AVAIL, or a function with optional parameter pop that will be called at each ganeer-
ation to determine indexes of loci. If we denote wildtype alleles using capital letters A, B . . . and non-
wildtype alleles using small letters a, b . . . , the fitness values should be for

• genotypes A and a for the haploid single-locus case,

• genotypes AB, Ab, aB and bb for haploid two=locus cases,

• genotypes AA, Aa and aa for diploid single-locus cases,

• genotypes AABB, AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb, and aabb for diploid two- locus
cases,

• and in general 2**n for diploid and 3**n for haploid cases if there are n loci.

This operator does not support haplodiploid populations, sex and mitochondrial chromosomes.

11.9.4 class MlSelector

class MlSelector
This selector is created by a list of selectors. When it is applied to an individual, it applies these selectors to
the individual, obtain a list of fitness values, and compute a combined fitness value from them. ADDITIVE,
multiplicative, and a heterogeneour multi-locus model are supported.

MlSelector(ops, mode=MULTIPLICATIVE, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=ALL_AVAIL)

Create a multiple-locus selector from a list selection operator selectors. When this operator is applied to
an individual (parents when used before mating and offspring when used during mating), it applies these
operators to the individual and obtain a list of (usually single-locus) fitness values. These fitness values
are combined to a single fitness value using

• Prod(f_i), namely the product of individual fitness if mode = MULTIPLICATIVE,

• 1-sum(1 - f_i) if mode = ADDITIVE,

• 1-Prod(1 - f_i) if mode = HETEROGENEITY, and

• exp(- sum(1 - f_i)) if mode = EXPONENTIAL,

zero will be returned if the combined fitness value is less than zero.

Applicability parameters (begin, end, step, at, reps, subPops) could be used in both MlSelector and
selectors in parameter ops, but parameters in MlSelector will be interpreted first.

11.9.5 class PySelector

class PySelector
This selector assigns fitness values by calling a user provided function. It accepts a list of loci (parameter loci)
and a Python function func which should be defined with one or more of parameters geno, mut, gen, ind,
pop or names of information fields. Parameter loci can be a list of loci indexes, names, list of chromosome
position pairs, ALL_AVAIL, or a function with optional parameter pop that will be called at each ganeeration
to determine indexes of loci. When this operator is applied to a population, it passes genotypes or mutants at
specified loci, generation number, a reference to an individual, a reference to the current population (usually
used to retrieve population variable), and values at specified information fields to respective parameters of this

11.9. Natural selection 317

simuPOP

function. Genotypes are passed as a tuple of alleles arranged locus by locus (in the order of A1,A2,B1,B2 for loci
A and B). Mutants are passed as a default dictionary of loci index (with respect to all genotype of individuals,
not just the first ploidy) and alleles. The returned value will be used to determine the fitness of each individual.

PySelector(func, loci=[], begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, output="", sub-
Pops=ALL_AVAIL, infoFields=ALL_AVAIL)

Create a Python hybrid selector that passes genotype at specified loci, values at specified information fields
(if requested) and a generation number to a user-defined function func. The return value will be treated as
individual fitness.

11.9.6 class PyMlSelector

class PyMlSelector
This selector is a multi-locus Python selector that assigns fitness to individuals by combining locus and genotype
specific fitness values. It differs from a PySelector in that the python function is responsible for assigning
fitness values for each gentoype type at each locus, which can potentially be random, and locus or gentoype-
specific.

PyMlSelector(func, mode=EXPONENTIAL, loci=ALL_AVAIL, output="", begin=0, end=-1, step=1,
at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=ALL_AVAIL)

Create a selector that assigns individual fitness values by combining locus-specific fitness values that are
determined by a Python call-back function. The callback function accepts parameter loc, alleles (both
optional) and returns location- or genotype-specific fitness values that can be constant or random. The
fitness values for each genotype will be cached so the same fitness values will be assigned to genotypes with
previously assigned values. Note that a function that does not examine the genotype naturally assumes a
dominant model where genotypes with one or two mutants have the same fitness effect. Because genotypes
at a locus are passed separately and in no particular order, this function is also responsible for assigning
consistent fitness values for genotypes at the same locus (a class is usually used). This operator currently
ignores chromosome types so unused alleles will be passed for loci on sex or mitochondrial chromosomes.
It also ignores phase of genotype so it will use the same fitness value for genotype (a,b) and (b,a).

Individual fitness will be combined in ADDITIVE, MULTIPLICATIVE, HETEROGENEITY, or
EXPONENTIAL mode from fitness values of loci with at least one non-zero allele (See MlSelector
for details). If an output is given, location, genotype, fitness and generation at which the new genotype
is assgined the value will be written to the output, in the format of ‘loc a1 a2 fitness gen’ for loci on
autosomes of diploid populations.

11.10 Tagging operators

11.10.1 class IdTagger

class IdTagger
An IdTagger gives a unique ID for each individual it is applies to. These ID can be used to uniquely identify an
individual in a multi-generational population and be used to reliably reconstruct a Pedigree.

To ensure uniqueness across populations, a single source of ID is used for this operator. individual IDs are
assigned consecutively starting from 1. Value 1 instead of 0 is used because most software applications use 0 as
missing values for parentship. If you would like to reset the sequence or start from a different number, you can
call the reset(startID) function of any IdTagger.

An IdTagger is usually used during-mating to assign ID to each offspring. However, if it is applied directly
to a population, it will assign unique IDs to all individuals in this population. This property is usually used in
the preOps parameter of function Simulator.evolve to assign initial ID to a population.

318 Chapter 11. Operator References

simuPOP

IdTagger(begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, output="", in-
foFields=["ind_id"])

Create an IdTagger that assign an unique ID for each individual it is applied to. The IDs are created
sequentially and are stored in an information field specified in parameter infoFields (default to ind_id).
This operator is considered a during-mating operator but it can be used to set ID for all individuals of a
population when it is directly applied to the population.

reset(startID=1)
Reset the global individual ID number so that IdTaggers will start from id (default to 1) again.

11.10.2 class InheritTagger

class InheritTagger
An inheritance tagger passes values of parental information field(s) to the corresponding fields of offspring. If
there are two parental values from parents of a sexual mating event, a parameter mode is used to specify how to
assign offspring information fields.

InheritTagger(mode=PATERNAL, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, output="", infoFields=[])

Creates an inheritance tagger that passes values of parental information fields (parameter infoFields) to the
corresponding fields of offspring. If there is only one parent, values at the specified information fields are
copied directly. If there are two parents, parameter mode specifies how to pass them to an offspring. More
specifically,

• mode=MATERNAL Passing the value from mother.

• mode=PATERNAL Passing the value from father.

• mode=MEAN Passing the average of two values.

• mode=MAXIMUM Passing the maximum value of two values.

• mode=MINIMUM Passing the minimum value of two values.

• mode=SUMMATION Passing the summation of two values.

• mode=MULTIPLICATION Passing the multiplication of two values.

An RuntimeError will be raised if any of the parents does not exist. This operator does not support
parameter subPops and does not output any information.

11.10.3 class SummaryTagger

class SummaryTagger
A summary tagger summarize values of one or more parental information field to another information field of
an offspring. If mating is sexual, two sets of parental values will be involved.

SummaryTagger(mode=MEAN, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, output="", infoFields=[])

Creates a summary tagger that summarize values of one or more parental information field (infoFields*[:-
1]) to an offspring information field (*infoFields*[-1]). A parameter *mode specifies how to pass summa-
rize parental values. More specifically,

• mode=MEAN Passing the average of values.

• mode=MAXIMUM Passing the maximum value of values.

• mode=Minumum Passing the minimum value of values.

• mode=SUMMATION Passing the sum of values.

11.10. Tagging operators 319

simuPOP

• mode=MULTIPLICATION Passing the multiplication of values.

This operator does not support parameter subPops and does not output any information.

11.10.4 class ParentsTagger

class ParentsTagger
This tagging operator records the indexes of parents (relative to the parental generation) of each offspring in
specified information fields (default to father_idx and mother_idx). Only one information field should
be specified if an asexsual mating scheme is used so there is one parent for each offspring. Information recorded
by this operator is intended to be used to look up parents of each individual in multi-generational Population.

ParentsTagger(begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, out-
put="", infoFields=["father_idx", "mother_idx"])

Create a parents tagger that records the indexes of parents of each offspring when it is applied to an
offspring during-mating. If two information fields are specified (parameter infoFields, with default value
['father_idx', 'mother_idx']), they are used to record the indexes of each individual’s father
and mother. Value -1 will be assigned if any of the parent is missing. If only one information field is
given, it will be used to record the index of the first valid parent (father if both parents are valid). This
operator ignores parameters output and subPops.

11.10.5 class OffspringTagger

class OffspringTagger
This tagging operator records the indexes of offspring within a family (sharing the same parent or parents) in
specified information field (default to offspring_idx). This tagger can be used to control the number of
offspring during mating.

OffspringTagger(begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, out-
put="", infoFields=ALL_AVAIL)

Create an offspring tagger that records the indexes of offspring within a family. The index is determined by
successful production of offspring during a mating events so the it does not increase the index if a previous
offspring is discarded, and it resets index even if adjacent families share the same parents. This operator
ignores parameters stage, output, and subPops.

11.10.6 class PedigreeTagger

class PedigreeTagger
This tagging operator records the ID of parents of each offspring in specified information fields (default to
father_id and mother_id). Only one information field should be specified if an asexsual mating scheme
is used so there is one parent for each offspring. Information recorded by this operator is intended to be used to
record full pedigree information of an evolutionary process.

PedigreeTagger(idField="ind_id", output="", outputFields=[], outputLoci=[], begin=0, end=-1,
step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=["father_id",
"mother_id"])

Create a pedigree tagger that records the ID of parents of each offspring when it is applied to an off-
spring during-mating. If two information fields are specified (parameter infoFields, with default value
['father_id', 'mother_id']), they are used to record the ID of each individual’s father and
mother stored in the idField (default to ind_id) field of the parents. Value -1 will be assigned if any
of the parent is missing. If only one information field is given, it will be used to record the ID of the first
valid parent (father if both pedigree are valid).

This operator by default does not send any output. If a valid output stream is given (should be in the form
of '>>filename' so that output will be concatenated), this operator will output the ID of offspring,

320 Chapter 11. Operator References

simuPOP

IDs of his or her parent(s), sex and affection status of offspring, and values at specified information fields
(outputFields) and loci (outputLoci) in the format of off_id father_id mother_id M/F A/U
fields genotype. father_id or mother_id will be ignored if only one parent is involved. This
file format can be loaded using function loadPedigree.

Because only offspring will be outputed, individuals in the top- most ancestral generation will not be
outputed. This is usually not a problem because individuals who have offspring in the next generation
will be constructed by function loadPedigree, although their information fields and genotype will
be missing. If you would like to create a file with complete pedigree information, you can apply this
operator before evolution in the initOps parameter of functions Population.evolve or Simulator.
evolve. This will output all individuals in the initial population (the top-most ancestral population after
evolution) in the same format. Note that sex, affection status and genotype can be changed by other
operators so this operator should usually be applied after all other operators are applied.

11.10.7 class PyTagger

class PyTagger
A Python tagger takes some information fields from both parents, pass them to a user provided Python function
and set the offspring individual fields with the return values.

PyTagger(func=None, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, out-
put="", infoFields=[])

Create a hybrid tagger that provides an user provided function func with values of specified information
fields (determined by parameter names of this function) of parents and assign corresponding information
fields of offspring with its return value. If more than one parent are available, maternal values are passed
after paternal values. For example, if a function func(A, B) is passed, this operator will send two
tuples with parental values of information fields 'A' and 'B' to this function and assign its return values
to fields 'A' and 'B' of each offspring. The return value of this function should be a list, although a
single value will be accepted if only one information field is specified. This operator ignores parameters
stage, output and subPops.

11.11 Statistics Calculation

11.11.1 class Stat

class Stat
Operator Stat calculates various statistics of the population being applied and sets variables in its local names-
pace. Other operators or functions can retrieve results from or evalulate expressions in this local namespace
after Stat is applied.

Stat(popSize=False, numOfMales=False, numOfAffected=False, numOfSegSites=[], numOfMu-
tants=[], alleleFreq=[], heteroFreq=[], homoFreq=[], genoFreq=[], haploFreq=[], hap-
loHeteroFreq=[], haploHomoFreq=[], sumOfInfo=[], meanOfInfo=[], varOfInfo=[], max-
OfInfo=[], minOfInfo=[], LD=[], association=[], neutrality=[], structure=[], HWE=[], inbreed-
ing=[], effectiveSize=[], vars=ALL_AVAIL, suffix="", output="", begin=0, end=-1, step=1, at=[],
reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

Create a Stat operator that calculates specified statistics of a population when it is applied to this popula-
tion. This operator can be applied to specified replicates (parameter rep) at specified generations (param-
eter begin, end, step, and at). This operator does not produce any output (ignore parameter output) after
statistics are calculated. Instead, it stores results in the local namespace of the population being applied.
Other operators can retrieve these variables or evalulate expression directly in this local namespace. Please
refer to operator BaseOperator for a detailed explanation of these common operator parameters.

11.11. Statistics Calculation 321

simuPOP

Stat supports parameter subPops. It usually calculate the same set of statistics for all subpopulations
(subPops=subPopList()). If a list of (virtual) subpopulations are specified, statistics for only spec-
ified subpopulations will be calculated. However, different statistics treat this parameter differently and it
is very important to check its reference before you use subPops for any statistics.

Calculated statistics are saved as variables in a population’s local namespace. These variables can be num-
bers, lists or dictionaries and can be retrieved using functions Population.vars() or Population.
dvars(). A special default dictionary (defdict) is used for dictionaries whose keys are determined
dynamically. Accessing elements of such a dictionary with an invalid key will yield value 0 instead of a
KeyError. If the same variables are calculated for one or more (virtual) subpopulation, the variables
are stored in vars()['subPop'][sp]['var'] where sp is a subpopulation ID (sp) or a tuple of
virtual subpopulation ID ((sp, vsp)). Population.vars(sp) and Population.dvars(sp)
provide shortcuts to these variables.

Operator Stat outputs a number of most useful variables for each type of statistic. For ex-
ample, alleleFreq calculates both allele counts and allele frequencies and it by default sets
variable alleleFreq (dvars().alleleFreq) for all or specified subpopulations. If this
does not fit your need, you can use parameter vars to output additional parameters, or limit
the output of existing parameters. More specifically, for this particular statistic, the available
variables are 'alleleFreq', 'alleleNum', 'alleleFreq_sp' ('alleleFreq' in each
subpopulation), and 'alleleNum_sp' ('alleleNum' in each subpopulation). You can set
vars=['alleleNum_sp'] to output only subpopulation specific allele count. An optional suffix (pa-
rameter suffix) can be used to append a suffix to default parameter names. This parameter can be used, for
example, to calculate and store the same statistics for different subpopulations (e.g. pairwise Fst).

Operator Stat supports the following statistics:

popSize: If popSize=True, number of individuals in all or specified subpopulations (parameter subPops)
will be set to the following variables:

• popSize (default): Number of individuals in all or specified subpopulations. Because subPops does
not have to cover all individuals, it may not be the actual population size.

• popSize_sp: Size of (virtual) subpopulation sp.

• subPopSize (default): A list of (virtual) subpopulation sizes. This variable is easier to use than
accessing popSize from each (virtual) subpopulation.

numOfMales: If numOfMales=True, number of male individuals in all or specified (virtual) subpopula-
tions will be set to the following variables:

• numOfMales (default): Total number of male individuals in all or specified (virtual) subpopulations.

• numOfFemales (default): Total number of female individuals in all or specified (virtual) subpopu-
lations.

• propOfMales: Proportion of male individuals.

• propOfFemales: Proportion of female individuals.

• numOfMales_sp: Number of male individuals in each (virtual) subpopulation.

• numOfFemales_sp: Number of female individuals in each (virtual) subpopulation.

• propOfMales_sp: Proportion of male individuals in each (virtual) subpopulation.

• propOfFemales_sp: Proportion of female individuals in each (virtual) subpopulation.

numOfAffected: If numOfAffected=True, number of affected individuals in all or specified (virtual) sub-
populations will be set to the following variables:

• numOfAffected (default): Total number of affected individuals in all or specified (virtual) subpop-
ulations.

322 Chapter 11. Operator References

simuPOP

• numOfUnaffected (default): Total number of unaffected individuals in all or specified (virtual)
subpopulations.

• propOfAffected: Proportion of affected individuals.

• propOfUnaffected: Proportion of unaffected individuals.

• numOfAffected_sp: Number of affected individuals in each (virtual) subpopulation.

• numOfUnaffected_sp: Number of unaffected individuals in each (virtual) subpopulation.

• propOfAffected_sp: Proportion of affected individuals in each (virtual) subpopulation.

• propOfUnaffected_sp: Proportion of unaffected individuals in each (virtual) subpopulation.

numOfSegSites: Parameter numOfSegSites accepts a list of loci (loci indexes, names, or ALL_AVAIL)
and count the number of loci with at least two different alleles (segregating sites) or loci with only one
non-zero allele (no zero allele, not segragating) for individuals in all or specified (virtual) subpopulations.
This parameter sets variables

• numOfSegSites (default): Number of segregating sites in all or specified (virtual) subpopulations.

• numOfSegSites_sp: Number of segregating sites in each (virtual) subpopulation.

• numOfFixedSites: Number of sites with one non-zero allele in all or specified (virtual) subpop-
ulations.

• numOfFixedSites_sp: Number of sites with one non-zero allele in in each (virtual) subpopula-
tions.

• segSites: A list of segregating sites in all or specified (virtual) subpopulations.

• segSites_sp: A list of segregating sites in each (virtual) subpopulation.

• fixedSites: A list of sites with one non-zero allele in all or specified (virtual) subpopulations.

• fixedSites_sp: A list of sites with one non-zero allele in in each (virtual) subpopulations.

numOfMutants: Parameter numOfMutants accepts a list of loci (loci indexes, names, or ALL_AVAIL)
and count the number of mutants (non-zero alleles) for individuals in all or specified (virtual) subpopula-
tions. It sets variables

• numOfMutants (default): Number of mutants in all or specified (virtual) subpopulations.

• numOfMutants_sp: Number of mutants in each (virtual) subpopulations.

alleleFreq: This parameter accepts a list of loci (loci indexes, names, or ALL_AVAIL), at which allele fre-
quencies will be calculated. This statistic outputs the following variables, all of which are dictionary (with
loci indexes as keys) of default dictionaries (with alleles as keys). For example, alleleFreq[loc][a]
returns 0 if allele a does not exist.

• alleleFreq (default): alleleFreq[loc][a] is the frequency of allele a at locus loc for all or
specified (virtual) subpopulations.

• alleleNum (default): alleleNum[loc][a] is the number of allele a at locus loc for all or
specified (virtual) subpopulations.

• alleleFreq_sp: Allele frequency in each (virtual) subpopulation.

• alleleNum_sp: Allele count in each (virtual) subpopulation.

heteroFreq and homoFreq: These parameters accept a list of loci (by indexes or names), at which the
number and frequency of homozygotes and/or heterozygotes will be calculated. These statistics are only
available for diploid populations. The following variables will be outputted:

11.11. Statistics Calculation 323

simuPOP

• heteroFreq (default for parameter heteroFreq): A dictionary of proportion of heterozygotes in all
or specified (virtual) subpopulations, with loci indexes as dictionary keys.

• homoFreq (default for parameter homoFreq): A dictionary of proportion of homozygotes in all or
specified (virtual) subpopulations.

• heteroNum: A dictionary of number of heterozygotes in all or specified (virtual) subpopulations.

• homoNum: A dictionary of number of homozygotes in all or specified (virtual) subpopulations.

• heteroFreq_sp: A dictionary of proportion of heterozygotes in each (virtual) subpopulation.

• homoFreq_sp: A dictionary of proportion of homozygotes in each (virtual) subpopulation.

• heteroNum_sp: A dictionary of number of heterozygotes in each (virtual) subpopulation.

• homoNum_sp: A dictionary of number of homozygotes in each (virtual) subpopulation.

genoFreq: This parameter accept a list of loci (by indexes or names) at which number and frequency of all
genotypes are outputed as a dictionary (indexed by loci indexes) of default dictionaries (indexed by tuples
of possible indexes). This statistic is available for all population types with genotype defined as ordered al-
leles at a locus. The length of genotype equals the number of homologous copies of chromosomes (ploidy)
of a population. Genotypes for males or females on sex chromosomes or in haplodiploid populations will
have different length. Because genotypes are ordered, (1, 0) and (0, 1) (two possible genotypes in
a diploid population) are considered as different genotypes. This statistic outputs the following variables:

• genoFreq (default): A dictionary (by loci indexes) of default dictionaries (by genotype) of genotype
frequencies. For example, genoFreq[1][(1, 0)] is the frequency of genotype (1, 0) at locus 1.

• genoNum (default): A dictionary of default dictionaries of genotype counts of all or specified (virtual)
subpopulations.

• genoFreq_sp: genotype frequency in each specified (virtual) subpopulation.

• genoFreq_sp: genotype count in each specified (virtual) subpopulation.

haploFreq: This parameter accepts one or more lists of loci (by index) at which number and frequency of
haplotypes are outputted as default dictionaries. [(1,2)] can be abbreviated to (1,2). For example,
using parameter haploFreq=(1,2,4), all haplotypes at loci 1, 2 and 4 are counted. This statistic
saves results to dictionary (with loci index as keys) of default dictionaries (with haplotypes as keys) such
as haploFreq[(1,2,4)][(1,1,0)] (frequency of haplotype (1,1,0) at loci (1,2,3)). This
statistic works for all population types. Number of haplotypes for each individual equals to his/her ploidy
number. Haplodiploid populations are supported in the sense that the second homologous copy of the
haplotype is not counted for male individuals. This statistic outputs the following variables:

• haploFreq (default): A dictionary (with tuples of loci indexes as keys) of default dictionaries of
haplotype frequencies. For example, haploFreq[(0, 1)][(1,1)] records the frequency of
haplotype (1,1) at loci (0, 1) in all or specified (virtual) subpopulations.

• haploNum (default): A dictionary of default dictionaries of haplotype counts in all or specified
(virtual) subpopulations.

• haploFreq_sp: Halptype frequencies in each (virtual) subpopulation.

• haploNum_sp: Halptype count in each (virtual) subpopulation.

haploHeteroFreq and haploHomoFreq: These parameters accept a list of haplotypes (list of loci), at
which the number and frequency of haplotype homozygotes and/or heterozygotes will be calculated. Note
that these statistics are observed count of haplotype heterozygote. The following variables will be out-
putted:

324 Chapter 11. Operator References

simuPOP

• haploHeteroFreq (default for parameter haploHeteroFreq): A dictionary of proportion of hap-
lotype heterozygotes in all or specified (virtual) subpopulations, with haplotype indexes as dictionary
keys.

• haploHomoFreq (default for parameter haploHomoFreq): A dictionary of proportion of homozy-
gotes in all or specified (virtual) subpopulations.

• haploHeteroNum: A dictionary of number of heterozygotes in all or specified (virtual) subpopu-
lations.

• haploHomoNum: A dictionary of number of homozygotes in all or specified (virtual) subpopula-
tions.

• haploHeteroFreq_sp: A dictionary of proportion of heterozygotes in each (virtual) subpopula-
tion.

• haploHomoFreq_sp: A dictionary of proportion of homozygotes in each (virtual) subpopulation.

• haploHeteroNum_sp: A dictionary of number of heterozygotes in each (virtual) subpopulation.

• haploHomoNum_sp: A dictionary of number of homozygotes in each (virtual) subpopulation.

sumOfinfo, meanOfInfo, varOfInfo, maxOfInfo and minOfInfo: Each of these five parameters accepts
a list of information fields. For each information field, the sum, mean, variance, maximum or minimal
(depending on the specified parameter(s)) of this information field at iddividuals in all or specified (virtual)
subpopulations will be calculated. The results will be put into the following population variables:

• sumOfInfo (default for sumOfInfo): A dictionary of the sum of specified information fields of indi-
viduals in all or specified (virtual) subpopulations. This dictionary is indexed by names of information
fields.

• meanOfInfo (default for meanOfInfo): A dictionary of the mean of information fields of all indi-
viduals.

• varOfInfo (default for varOfInfo): A dictionary of the sample variance of information fields of all
individuals.

• maxOfInfo (default for maxOfInfo): A dictionary of the maximum value of information fields of all
individuals.

• minOfInfo (default for minOfInfo): A dictionary of the minimal value of information fields of all
individuals.

• sumOfInfo_sp: A dictionary of the sum of information fields of individuals in each subpopulation.

• meanOfInfo_sp: A dictionary of the mean of information fields of individuals in each subpopu-
lation.

• varOfInfo_sp: A dictionary of the sample variance of information fields of individuals in each
subpopulation.

• maxOfInfo_sp: A dictionary of the maximum value of information fields of individuals in each
subpopulation.

• minOfInfo_sp: A dictionary of the minimal value of information fields of individuals in each
subpopulation.

LD: Parameter LD accepts one or a list of loci pairs (e.g. LD=[[0,1], [2,3]]) with optional primary
alleles at both loci (e.g. LD=[0,1,0,0]). For each pair of loci, this operator calculates linkage disequi-
librium and optional association statistics between two loci. When primary alleles are specified, signed
linkage disequilibrium values are calculated with non-primary alleles are combined. Otherwise, absolute

11.11. Statistics Calculation 325

simuPOP

values of diallelic measures are combined to yield positive measure of LD. Association measures are cal-
culated from a m by n contigency of haplotype counts (m=n=2 if primary alleles are specified). Please
refer to the simuPOP user’s guide for detailed information. This statistic sets the following variables:

• LD (default) Basic LD measure for haplotypes in all or specified (virtual) subpopulations. Signed if
primary alleles are specified.

• LD_prime (default) Lewontin’s D’ measure for haplotypes in all or specified (virtual) subpopula-
tions. Signed if primary alleles are specified.

• R2 (default) Correlation LD measure for haplotypes in all or specified (virtual) subpopulations.

• LD_ChiSq ChiSq statistics for a contigency table with frequencies of haplotypes in all or specified
(virtual) subpopulations.

• LD_ChiSq_p Single side p-value for the ChiSq statistic. Degrees of freedom is determined by
number of alleles at both loci and the specification of primary alleles.

• CramerV Normalized ChiSq statistics.

• LD_sp Basic LD measure for haplotypes in each (virtual) subpopulation.

• LD_prime_sp Lewontin’s D’ measure for haplotypes in each (virtual) subpopulation.

• R2_sp R2 measure for haplotypes in each (virtual) subpopulation.

• LD_ChiSq_sp ChiSq statistics for each (virtual) subpopulation.

• LD_ChiSq_p_sp p value for the ChiSq statistics for each (virtual) subpopulation.

• CramerV_sp Cramer V statistics for each (virtual) subpopulation.

association: Parameter association accepts a list of loci, which can be a list of indexes, names, or
ALL_AVAIL. At each locus, one or more statistical tests will be performed to test association between
this locus and individual affection status. Currently, simuPOP provides the following tests:

• An allele-based Chi-square test using alleles counts. This test can be applied to loci with more than
two alleles, and to haploid populations.

• A genotype-based Chi-square test using genotype counts. This test can be applied to loci with more
than two alleles (more than 3 genotypes) in diploid populations. aA and Aa are considered to be the
same genotype.

• A genotype-based Cochran-Armitage trend test. This test can only be applied to diallelic loci in
diploid populations. A codominant model is assumed.

This statistic sets the following variables:

• Allele_ChiSq A dictionary of allele-based Chi-Square statistics for each locus, using cases and
controls in all or specified (virtual) subpopulations.

• Allele_ChiSq_p (default) A dictionary of p-values of the corresponding Chi-square statistics.

• Geno_ChiSq A dictionary of genotype-based Chi-Square statistics for each locus, using cases and
controls in all or specified (virtual) subpopulations.

• Geno_ChiSq_p A dictionary of p-values of the corresponding genotype-based Chi-square test.

• Armitage_p A dictionary of p-values of the Cochran- Armitage tests, using cases and controls in
all or specified (virtual) subpopulations.

• Allele_ChiSq_sp A dictionary of allele-based Chi-Square statistics for each locus, using cases
and controls from each subpopulation.

• Allele_ChiSq_p_sp A dictionary of p-values of allele-based Chi-square tests, using cases and
controls from each (virtual) subpopulation.

326 Chapter 11. Operator References

simuPOP

• Geno_ChiSq_sp A dictionary of genotype-based Chi-Square tests for each locus, using cases and
controls from each subpopulation.

• Geno_ChiSq_p_sp A dictionary of p-values of genotype-based Chi-Square tests, using cases and
controls from each subpopulation.

• Armitage_p_sp A dictionary of p-values of the Cochran- Armitage tests, using cases and controls
from each subpopulation.

neutrality: This parameter performs neutrality tests (detection of natural selection) on specified loci,
which can be a list of loci indexes, names or ALL_AVAIL. It currently only outputs Pi, which is the
average number of pairwise difference between loci. This statistic outputs the following variables:

• Pi Mean pairwise difference between all sequences from all or specified (virtual) subpopulations.

• Pi_sp Mean paiewise difference between all sequences in each (virtual) subpopulation.

structure: Parameter structure accepts a list of loci at which statistics that measure population struc-
ture are calculated. structure accepts a list of loci indexes, names or ALL_AVAIL. This parameter currently
supports the following statistics:

• Weir and Cockerham’s Fst (1984). This is the most widely used estimator of Wright’s fixation index
and can be used to measure Population differentiation. However, this method is designed to estimate
Fst from samples of larger populations and might not be appropriate for the calculation of Fst of large
populations.

• Nei’s Gst (1973). The Gst estimator is another estimator for Wright’s fixation index but it is extended
for multi-allele (more than two alleles) and multi-loci cases. This statistics should be used if you
would like to obtain a true Fst value of a large Population. Nei’s Gst uses only allele frequency
information so it is available for all population type (haploid, diploid etc). Weir and Cockerham’s
Fst uses heterozygosity frequency so it is best for autosome of diploid populations. For non-diploid
population, sex, and mitochondrial DNAs, simuPOP uses expected heterozygosity (1 - sum p_i^2)
when heterozygosity is needed. These statistics output the following variables:

• F_st (default) The WC84 Fst statistic estimated for all * specified loci.

• F_is The WC84 Fis statistic estimated for all specified loci.

• F_it The WC84 Fit statistic estimated for all specified loci.

• f_st A dictionary of locus level WC84 Fst values.

• f_is A dictionary of locus level WC84 Fis values.

• f_it A dictionary of locus level WC84 Fit values.

• G_st Nei’s Gst statistic estimated for all specified loci.

• g_st A dictionary of Nei’s Gst statistic estimated for each locus.

HWE: Parameter HWE accepts a list of loci at which exact two-side tests for Hardy-Weinberg equilibrium
will be performed. This statistic is only available for diallelic loci in diploid populations. HWE can be a
list of loci indexes, names or ALL_AVAIL. This statistic outputs the following variables:

• HWE (default) A dictionary of p-values of HWE tests using genotypes in all or specified (virtual)
subpopulations.

• HWE_sp A dictionary of p-values of HWS tests using genotypes in each (virtual) subpopulation.

inbreeding: Inbreeding measured by Identitcal by Decent (and by State). This statistics go through all
loci of individuals in a diploid population and calculate the number and proportions of alleles that are
identitcal by decent and by state. Because ancestral information is only available in lineage module,
variables IBD_freq are always set to zero in other modules. Loci on sex and mitochondrial chromosomes,
and non-diploid populations are currently not supported. This statistic outputs the following variables:

11.11. Statistics Calculation 327

simuPOP

• IBD_freq (default) The frequency of IBD pairs among all allele pairs. To use this statistic, the
population must be initialized by operator InitLineage() to assign each ancestral allele an unique
identify.

• IBS_freq (default) The proportion of IBS pairs among all allele pairs.

• IBD_freq_sp frequency of IBD in each (virtual) subpopulations.

• IBS_freq_sp frequency of IBS in each (virtual) subpopulations.

effectiveSize: Parameter effectiveSize accepts a list of loci at which the effective population size
for the whole or specified (virtual) subpopulations is calculated. effectiveSize can be a list of loci indexes,
names or ALL_AVAIL. Parameter subPops is usually used to define samples from which effective sizes
are estimated. This statistic allows the calculation of true effective size based on number of gametes each
parents transmit to the offspring population (per- locus before and after mating), and estimated effective
size based on sample genotypes. Due to the temporal natural of some methods, more than one Stat oper-
ators might be needed to calculate effective size. The vars parameter specified which method to use and
which variable to set. Acceptable values include:

• Ne_demo_base When this variable is set before mating, it stores IDs of breeding parents and,
more importantly, assign an unique lineage value to alleles at specified loci of each individual. This
feature is only available for lineage modules and will change lineage values at specified loci of
all individuals.

• Ne_demo_base_sp Pre-mating information for each (virtual) subpopulation, used by variable
Ne_demo_sp.

• Ne_demo A dictionary of locus-specific demographic effective population size, calculated using
number of gemetes each parent transmits to the offspring population. The method is vased on Crow
& Denniston 1988 (Ne = KN-1/k-1+Vk/k) and need variable Ne_demo_base set before mating.
Effective size estimated from this formula is model dependent and might not be applicable to
your mating schemes.

• Ne_demo_sp Calculate subpopulation-specific effective size.

• Ne_temporal_base When this variable is set in parameter vars, the Stat operator saves baseline
allele frequencies and other information in this variable, which are used by temporary methods to
estimate effective population size according to changes in allele frequency between the baseline and
present generations. This variable could be set repeatedly to change baselines.

• Ne_temporal_base_sp Set baseline information for each (virtual) subpopulation specified.

• Ne_tempoFS_P1 Effective population size, 2.5% and 97.5% confidence interval for sampling plan
1 as a list of size 3, estimated using a temporal method as described in Jorde & Ryman (2007), and as
implemented by software tempoFS (http://www.zoologi.su.se/~ryman/). This variable is set to census
population size if no baseline has been set, and to the temporal effective size between the present and
the baseline generation otherwise. This method uses population size or sum of subpopulation sizes of
specified (virtual) subpopulations as census population size for the calculation based on plan 1.

• Ne_tempoFS_P2 Effective population size, 2.5% and 97.5% confidence interval for sampling plan
2 as a list of size 6, estimated using a temporal method as described in Jorde & Ryman (2007). This
variable is set to census population size no baseline has been set, and to the temporal effective size
between the present and the baseline generation otherwise. This method assumes that the sample is
drawn from an infinitely-sized population.

• Ne_tempoFS deprecated, use Ne_tempoFS_P2 instead.

• Ne_tempoFS_P1_sp Estimate effective size of each (virtual) subpopulation using method Jorde
& Ryman 2007, assuming sampling plan 1. The census population sizes for sampling plan 1 are the
sizes for each subpopulation that contain the specified (virtual) subpopulations.

328 Chapter 11. Operator References

http://www.zoologi.su.se/~ryman/

simuPOP

• Ne_tempoFS_P2_sp Estimate effective size of each (virtual) subpopulation using method Jorde &
Ryman 2007, assuming sampling plan 2.

• Ne_tempoFS_sp deprecated, use Ne_tempoFS_P2_sp instead.

• Ne_waples89_P1 Effective population size, 2.5% and 97.5% confidence interval for sampling
plan 1 as a list of size 6, estimated using a temporal method as described in Waples 1989, Genetics.
Because this is a temporal method, Ne_waples89 estimates effective size between the present and the
baseline generation set by variable Ne_temporal_base. Census population size will be resutned if
no baseline has been set. This method uses population size or sum of subpopulation sizes of specified
(virtual) subpopulations as census population size for the calculation based on plan 1.

• Ne_waples89_P2 Effective population size, 2.5% and 97.5% confidence interval for sampling
plan 2 as a list of size 6, estimated using a temporal method as described in Waples 1989, Genetics.
Because this is a temporal method, Ne_waples89 estimates effective size between the present and the
baseline generation set by variable Ne_temporal_base. Census population size will be returned
if no baseline has been set.

• Ne_waples89_P1_sp Estimate effective size for each (virtual) subpopulation using method
Waples 89, assuming sampling plan 1. The census population sizes are the sizes for each subpop-
ulation that contain the specified (virtual) subpopulation.

• Ne_waples89_P2_sp Estimate effective size for each (virtual) subpopulation using method
Waples 89, assuming sampling plan 2.

• Ne_waples89_sp deprecated, use Ne_waples89_P2_sp instead.

• Ne_LD Lists of length three for effective population size, 2.5% and 97.% confidence interval for cutoff
allele frequency 0., 0.01, 0.02 and 0.05 (as dictionary keys), using a parametric method, estimated
from linkage disequilibrim information of one sample, using LD method developed by Waples &
Do 2006 (LDNe). This method assumes unlinked loci and uses LD measured from genotypes at
loci. Because this is a sample based method, it should better be applied to a random sample of the
population. 95% CI is calculated using a Jackknife estimated effective number of independent alleles.
Please refer to relevant papers and the LDNe user’s guide for details.

• Ne_LD_sp Estimate LD-based effective population size for each specified (virtual) subpopulation.

• Ne_LD_mono A version of Ne_LD that assumes monogamy (see Waples 2006 for details.

• Ne_LD_mono_sp Ne_LD_mono calculated for each (virtual) subpopulation.

11.12 Conditional operators

11.12.1 class IfElse

class IfElse
This operator uses a condition, which can be a fixed condition, an expression or a user-defined function, to
determine which operators to be applied when this operator is applied. A list of if-operators will be applied
when the condition is True. Otherwise a list of else-operators will be applied.

IfElse(cond, ifOps=[], elseOps=[], output=">", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
subPops=ALL_AVAIL, infoFields=[])

Create a conditional operator that will apply operators ifOps if condition cond is met and elseOps other-
wise. If a Python expression (a string) is given to parameter cond, the expression will be evalulated in
each population’s local namespace when this operator is applied. When a Python function is specified, it
accepts parameter pop when it is applied to a population, and one or more parameters pop, off, dad
or mom when it is applied during mating. The return value of this function should be True or False.
Otherwise, parameter cond will be treated as a fixed condition (converted to True or False) upon which

11.12. Conditional operators 329

simuPOP

one set of operators is always applied. The applicability of ifOps and elseOps are controlled by parameters
begin, end, step, at and rep of both the IfElse operator and individual operators but ifOps and elseOps
opeartors does not support negative indexes for replicate and generation numbers.

11.12.2 class TerminateIf

class TerminateIf
This operator evaluates an expression in a population’s local namespace and terminate the evolution of this
population, or the whole simulator, if the return value of this expression is True. Termination caused by an
operator will stop the execution of all operators after it. The generation at which the population is terminated
will be counted in the evolved generations (return value from Simulator::evolve) if termination happens
after mating.

TerminateIf(condition="", stopAll=False, message="", output="", begin=0, end=-1, step=1, at=[],
reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

Create a terminator with an expression condition, which will be evalulated in a population’s local names-
pace when the operator is applied to this population. If the return value of condition is True, the evolution
of the population will be terminated. If stopAll is set to True, the evolution of all replicates of the sim-
ulator will be terminated. If this operator is allowed to write to an output (default to “”), the generation
number, proceeded with an optional message.

11.12.3 class DiscardIf

class DiscardIf
This operator discards individuals according to either an expression that evaluates according to individual infor-
mation field, or a Python function that accepts individual and its information fields.

DiscardIf(cond, exposeInd="", output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])

Create an operator that discard individuals according to an expression or the return value of a Python
function (parameter cond). This operator can be applied to a population before or after mating, or to
offspring during mating. If an expression is passed to cond, it will be evalulated with each individual’s
information fields (see operator InfoEval for details). If exposeInd is non-empty, individuals will be
available for evaluation in the expression as an variable with name spacied by exposeInd. If the expression
is evaluated to be True, individuals (if applied before or after mating) or offspring (if applied during
mating) will be removed or discard. Otherwise the return value should be either False (not discard),
or a float number between 0 and 1 as the probability that the individual is removed. If a function is
passed to cond, it should accept paramters ind and pop or names of information fields when it is applied
to a population (pre or post mating), or parameters off, dad, mom, pop (parental population), or names of
information fields if the operator is applied during mating. Individuals will be discarded if this function
returns True or at a probability if a float number between 0 and 1 is returned. A constant expression
(e.g. True, False, 0.4) is also acceptable, with the last example (cond=0.1) that removes 10%
of individuals at randomly. This operator supports parameter subPops and will remove only individuals
belonging to specified (virtual) subpopulations.

11.13 The Python operator

11.13.1 class PyOperator

class PyOperator
An operator that calls a user-defined function when it is applied to a population (pre- or post-mating) or off-
springs (during- mating). The function can have have parameters pop when the operator is applied pre- or

330 Chapter 11. Operator References

simuPOP

post-mating, pop, off, dad, mom when the operator is applied during-mating. An optional parameter
can be passed if parameter param is given. In the during-mating case, parameters pop, dad and mom can be
ignored if offspringOnly is set to True.

PyOperator(func, param=None, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])

Create a pure-Python operator that calls a user-defined function when it is applied. If this operator is
applied before or after mating, your function should have form func(pop) or func(pop, param)
where pop is the population to which the operator is applied, param is the value specified in parameter
param. param will be ignored if your function only accepts one parameter. Althernatively, the function
should have form func(ind) with optional parameters pop and param. In this case, the function will
be called for all individuals, or individuals in subpopulations subPops. Individuals for which the function
returns Falsewill be removed from the population. This operator can therefore perform similar functions
as operator DiscardIf.

If this operator is applied during mating, your function should accept parameters pop, off (or ind), dad,
mom and param where pop is the parental population, and off or ind, dad, and mom are offspring and
their parents for each mating event, and param is an optional parameter. If subPops are provided, only
offspring in specified (virtual) subpopulations are acceptable.

This operator does not support parameters output, and infoFields. If certain output is needed, it should
be handled in the user defined function func. Because the status of files used by other operators through
parameter output is undetermined during evolution, they should not be open or closed in this Python
operator.

11.14 Miscellaneous operators

11.14.1 class NoneOp

class NoneOp
This operator does nothing when it is applied to a population. It is usually used as a placeholder when an
operator is needed syntactically.

NoneOp(output=">", begin=0, end=0, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, in-
foFields=[])

Create a NoneOp.

11.14.2 class Dumper

class Dumper
This operator dumps the content of a population in a human readable format. Because this output format is not
structured and can not be imported back to simuPOP, this operator is usually used to dump a small population
to a terminal for demonstration and debugging purposes.

Dumper(genotype=True, structure=True, ancGens=UNSPECIFIED, width=1, max=100, loci=[], out-
put=">", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, in-
foFields=ALL_AVAIL)

Create a operator that dumps the genotype structure (if structure is True) and genotype (if genotype is
True) to an output (default to standard terminal output). Because a population can be large, this operator
will only output the first 100 (parameter max) individuals of the present generation (parameter ancGens).
All loci will be outputed unless parameter loci are used to specify a subset of loci. This operator by default
output values of all information fields unless parameter infoFields is used to specify a subset of info fields
to display. If a list of (virtual) subpopulations are specified, this operator will only output individuals in

11.14. Miscellaneous operators 331

simuPOP

these outputs. Please refer to class BaseOperator for a detailed explanation for common parameters
such as output and stage.

11.14.3 class SavePopulation

class SavePopulation
An operator that save populations to specified files.

SavePopulation(output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])

Create an operator that saves a population to output when it is applied to the population. This operator sup-
ports all output specifications ('', 'filename', 'filename' prefixed by one or more ‘>’ characters,
and '!expr') but output from different operators will always replace existing files (effectively ignore
‘>’ specification). Parameter subPops is ignored. Please refer to class BaseOperator for a detailed
description about common operator parameters such as stage and begin.

11.14.4 class Pause

class Pause
This operator pauses the evolution of a simulator at given generations or at a key stroke. When a simulator
is stopped, you can go to a Python shell to examine the status of an evolutionary process, resume or stop the
evolution.

Pause(stopOnKeyStroke=False, prompt=True, output=">", begin=0, end=-1, step=1, at=[],
reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

Create an operator that pause the evolution of a population when it is applied to this population. If sto-
pOnKeyStroke is False (default), it will always pause a population when it is applied, if this parameter is
set to True, the operator will pause a population if any key has been pressed. If a specific character is set,
the operator will stop when this key has been pressed. This allows, for example, the use of several pause
operators to pause different populations.

After a population has been paused, a message will be displayed (unless prompt is set to False) and tells
you how to proceed. You can press 's' to stop the evolution of this population, 'S' to stop the evolution
of all populations, or 'p' to enter a Python shell. The current population will be available in this Python
shell as "pop_X_Y" when X is generation number and Y is replicate number. The evolution will continue
after you exit this interactive Python shell.

Note: Ctrl-C will be intercepted even if a specific character is specified in parameter stopOnKeyStroke.

11.14.5 class TicToc

class TicToc
This operator, when called, output the difference between current and the last called clock time. This can
be used to estimate execution time of each generation. Similar information can also be obtained from
turnOnDebug("DBG_PROFILE"), but this operator has the advantage of measuring the duration between
several generations by setting step parameter. As an advanced feature that mainly used for performance test-
ing, this operator accepts a parameter stopAfter (seconds), and will stop the evolution of a population if the
overall time exceeds stopAfter. Note that elapsed time is only checked when this operator is applied to a popula-
tion so it might not be able to stop the evolution process right after stopAfter seconds. This operator can also be
applied during mating. Note that to avoid excessive time checking, this operator does not always check system
time accurately.

332 Chapter 11. Operator References

simuPOP

TicToc(output=">", stopAfter=0, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])

Create a TicToc operator that outputs the elapsed since the last time it was applied, and the overall time
since the first time this operator is applied.

11.15 Function form of operators

11.15.1 Function acgtMutate

acgtMutate(pop, *args, **kwargs)
Function form of operator AcgtMutator

11.15.2 Function contextMutate

contextMutate(pop, *args, **kwargs)
Function form of operator ContextMutator

11.15.3 Function discardIf

discardIf(pop, *args, **kwargs)
Apply operator DiscardIf to population pop to remove individuals according to an expression or a Python
function.

11.15.4 Function dump

dump(pop, *args, **kwargs)
Apply operator Dumper to population pop.

11.15.5 Function infoEval

infoEval(pop, *args, **kwargs)
Evaluate expr for each individual, using information fields as variables. Please refer to operator InfoEval for
details.

11.15.6 Function infoExec

infoExec(pop, *args, **kwargs)
Execute stmts for each individual, using information fields as variables. Please refer to operator InfoExec for
details.

11.15.7 Function initGenotype

initGenotype(pop, *args, **kwargs)
Apply operator InitGenotype to population pop.

11.15. Function form of operators 333

simuPOP

11.15.8 Function initInfo

initInfo(pop, *args, **kwargs)
Apply operator InitInfo to population pop.

11.15.9 Function initSex

initSex(pop, *args, **kwargs)
Apply operator InitSex to population pop.

11.15.10 Function kAlleleMutate

kAlleleMutate(pop, *args, **kwargs)
Function form of operator KAlleleMutator

11.15.11 Function maPenetrance

maPenetrance(pop, loci, penetrance, wildtype=0, ancGens=True, *args, **kwargs)
Apply opertor MaPenetrance to population pop. Unlike the operator form of this operator that only handles
the current generation, this function by default assign affection status to all generations.

11.15.12 Function mapPenetrance

mapPenetrance(pop, loci, penetrance, ancGens=True, *args, **kwargs)
Apply opertor MapPenetrance to population pop. Unlike the operator form of this operator that only handles
the current generation, this function by default assign affection status to all generations.

11.15.13 Function matrixMutate

matrixMutate(pop, *args, **kwargs)
Function form of operator MatrixMutator

11.15.14 Function mergeSubPops

mergeSubPops(pop, *args, **kwargs)
Merge subpopulations subPops of population pop into a single subpopulation. Please refer to the operator form
of this funciton (MergeSubPops) for details

11.15.15 Function migrate

migrate(pop, *args, **kwargs)
Function form of operator Migrator.

11.15.16 Function backwardMigrate

backwardMigrate(pop, *args, **kwargs)
Function form of operator BackwardMigrator.

334 Chapter 11. Operator References

simuPOP

11.15.17 Function mixedMutate

mixedMutate(pop, *args, **kwargs)
Function form of operator MixedMutator

11.15.18 Function mlPenetrance

mlPenetrance(pop, ops, mode, ancGens=True, *args, **kwargs)
Apply opertor MapPenetrance to population pop. Unlike the operator form of this operator that only handles
the current generation, this function by default assign affection status to all generations.

11.15.19 Function pointMutate

pointMutate(pop, *args, **kwargs)
Function form of operator PointMutator

11.15.20 Function pyEval

pyEval(pop, *args, **kwargs)
Evaluate statements stmts (optional) and expression expr in population pop’s local namespace and return the
result of expr. If exposePop is given, population pop will be exposed in its local namespace as a variable with a
name specified by exposePop. Unlike its operator counterpart, this function returns the result of expr rather than
writting it to an output.

11.15.21 Function pyExec

pyExec(pop, *args, **kwargs)
Execute stmts in population pop’s local namespace.

11.15.22 Function pyMutate

pyMutate(pop, *args, **kwargs)
Function form of operator PyMutator

11.15.23 Function pyPenetrance

pyPenetrance(pop, func, loci=[], ancGens=True, *args, **kwargs)
Apply opertor PyPenetrance to population pop. Unlike the operator form of this operator that only handles
the current generation, this function by default assign affection status to all generations.

11.15.24 Function pyMlPenetrance

pyMlPenetrance(pop, func, mode, loci=[], ancGens=True, *args, **kwargs)
Apply opertor PyMlPenetrance to population pop. Unlike the operator form of this operator that only
handles the current generation, this function by default assign affection status to all generations.

11.15. Function form of operators 335

simuPOP

11.15.25 Function pyQuanTrait

pyQuanTrait(pop, func, loci=[], ancGens=True, *args, **kwargs)
Apply opertor PyQuanTrait to population pop. Unlike the operator form of this operator that only handles
the current generation, this function by default assign affection status to all generations.

11.15.26 Function resizeSubPops

resizeSubPops(pop, *args, **kwargs)
Resize subpopulations subPops of population pop into new sizes size. Individuals will be added or removed
accordingly. Please refer to the operator form of this funciton (ResizeSubPops) for details

11.15.27 Function snpMutate

snpMutate(pop, *args, **kwargs)
Function form of operator SNPMutator

11.15.28 Function splitSubPops

splitSubPops(pop, *args, **kwargs)
Split subpopulations (subPops) of population pop according to either sizes or proportions of the resulting sub-
populations, or an information field. Please refer to the operator form of this function (splitSubPop) for
details.

11.15.29 Function stat

stat(pop, *args, **kwargs)
Apply operator Stat with specified parameters to population pop. Resulting statistics could be accessed from
the local namespace of pop using functions pop.vars() or pop.dvars()

11.15.30 Function stepwiseMutate

stepwiseMutate(pop, *args, **kwargs)
Function form of operator StepwiseMutator

11.15.31 Function tagID

tagID(pop, reset=False, *args, **kwargs)
Apply operator IdTagger to population pop to assign a unique ID to all individuals in the population. Indi-
viduals ID will starts from a system wide index. You can reset this start ID using parameter reset which can
be True (reset to 1) or a non-negative number (start from this number).

336 Chapter 11. Operator References

CHAPTER 12

Utility Modules

12.1 Module simuOpt

Module simuOpt provides a function simuOpt.setOptions to control which simuPOP module to load, and how
it is loaded, and a class simuOpt.Params that helps users manage simulation parameters.

When simuPOP is loaded, it checkes a few environmental variables (SIMUOPTIMIZED, SIMUALLELETYPE, and
SIMUDEBUG) to determine which simuPOP module to load, and how to load it. More options can be set using the
simuOpt.setOptions function. For example, you can suppress the banner message when simuPOP is loaded and
require a minimal version of simuPOP for your script. simuPOP recognize the following commandline arguments

--optimized Load the optimized version of a simuPOP module.

--gui=None|batch|interactive|True|wxPython|Tkinter Whether or not use a graphical toolkit and
which one to use. --gui=batch is usually used to run a script in batch mode (do not start a parameter input
dialog and use all default values unless a parameter is specified from command line or a configuraiton file. If
--gui=interactive, an interactive shell will be used to solicit input from users. Otherwise, simuPOP
will try to use a graphical parameter input dialog, and falls to an interactive mode when no graphical Toolkit is
available. Please refer to parameter gui for simuOpt.setOptions for details.

class params.Params provides a powerful way to handle commandline arguments. Briefly speaking, a Params
object can be created from a list of parameter specification dictionaries. The parameters are then become attributes of
this object. A number of functions are provided to determine values of these parameters using commandline arguments,
a configuration file, or a parameter input dialog (using Tkinter or wxPython). Values of these parameters can be
accessed as attributes, or extracted as a list or a dictionary. Note that the Params.getParam function automatically
handles the following commandline arguments.

-h or --help Print usage message.

--config=configFile Read parameters from a configuration file configFile.

337

simuPOP

12.1.1 Function setOptions

simuOpt.setOptions(alleleType=None, optimized=None, gui=None, quiet=None, debug=None, ver-
sion=None, revision=None, numThreads=None, plotter=None)

Set options before simuPOP is loaded to control which simuPOP module to load, and how the module should
be loaded.

alleleType Use the standard, binary,long or mutant allele version of the simuPOP module if alleleType is
set to ‘short’, ‘binary’, ‘long’, ‘mutant’, or ‘lineage’ respectively. If this parameter is not set, this function
will try to get its value from environmental variable SIMUALLELETYPE. The standard (short) module
will be used if the environmental variable is not defined.

optimized Load the optimized version of a module if this parameter is set to True and the standard version if
it is set to False. If this parameter is not set (None), the optimized version will be used if environmental
variable SIMUOPTIMIZED is defined. The standard version will be used otherwise.

gui Whether or not use graphical user interfaces, which graphical toolkit to use and how to process param-
eters in non-GUI mode. If this parameter is None (default), this function will check environmental
variable SIMUGUI or commandline option --gui for a value, and assume True if such an option is
unavailable. If gui=True, simuPOP will use wxPython-based dialogs if wxPython is available,
and use Tkinter-based dialogs if Tkinter is available and use an interactive shell if no graphical
toolkit is available. gui='Tkinter' or 'wxPython' can be used to specify the graphical toolkit
to use. If gui='interactive', a simuPOP script prompt users to input values of parameters. If
gui='batch', default values of unspecified parameters will be used. In any case, commandline argu-
ments and a configuration file specified by parameter –config will be processed. This option is usually
left to None so that the same script can be run in both GUI and batch mode using commandline option
--gui.

plotter (Deprecated)

quiet If set to True, suppress the banner message when a simuPOP module is loaded.

debug A list of debug code (as string) that will be turned on when simuPOP is loaded. If this parameter is not
set, a list of comma separated debug code specified in environmental variable SIMUDEBUG, if available,
will be used. Note that setting debug=[] will remove any debug code that might have been by variable
SIMUDEBUG.

version A version string (e.g. 1.0.0) indicating the required version number for the simuPOP module to be
loaded. simuPOP will fail to load if the installed version is older than the required version.

revision Obsolete with the introduction of parameter version.

numThreads Number of Threads that will be used to execute a simuPOP script. The values can be a positive
number (number of threads) or 0 (all available cores of the computer, or whatever number set by environ-
mental variable OMP_NUM_THREADS). If this parameter is not set, the number of threads will be set to 1,
or a value set by environmental variable OMP_NUM_THREADS.

12.2 Module simuPOP.utils

This module provides some commonly used operators and format conversion utilities.

12.2.1 class Trajectory

class simuPOP.utils.Trajectory
A Trajectory object contains frequencies of one or more loci in one or more subpopulations over several

338 Chapter 12. Utility Modules

simuPOP

generations. It is usually returned by member functions of class TrajectorySimulator or equivalent
global functions simulateForwardTrajectory and simulateBackwardTrajectory.

The Trajectory object provides several member functions to facilitate the use of Trajectory-simulation te-
chiniques. For example, Trajectory.func() returns a trajectory function that can be provided directly to a
ControlledOffspringGenerator; Trajectory.mutators() provides a list of PointMutator
that insert mutants at the right generations to initialize a trajectory.

For more information about Trajectory simulation techniques and related controlled random mating scheme,
please refer to the simuPOP user’s guide, and Peng et al (PLoS Genetics 3(3), 2007).

Trajectory(endGen, nLoci)
Create a Trajectory object of alleles at nLoci loci with ending generation endGen. endGen is the
generation when expected allele frequencies are reached after mating. Therefore, a trajectory for 1000
generations should have endGen=999.

freq(gen, subPop)
Return frequencies of all loci in subpopulation subPop at generation gen of the simulated Trajectory. Allele
frequencies are assumed to be zero if gen is out of range of the simulated Trajectory.

func()
Return a Python function that returns allele frequencies for each locus at specified loci. If there are multiple
subpopulations, allele frequencies are arranged in the order of loc0_sp0, loc1_sp0, . . . , loc0_sp1,
loc1_sp1, . . . and so on. The returned function can be supplied directly to the freqFunc parameter of
a controlled random mating scheme (ControlledRandomMating) or a homogeneous mating scheme
that uses a controlled offspring generator (ControlledOffspringGenerator).

mutants()
Return a list of mutants in the form of (loc, gen, subPop)

mutators(loci, inds=0, allele=1, *args, **kwargs)
Return a list of PointMutator operators that introduce mutants at the beginning of simulated trajec-
tories. These mutators should be added to the preOps parameter of Simulator.evolve function to
introduce a mutant at the beginning of a generation with zero allele frequency before mating, and a posi-
tive allele frequency after mating. A parameter loci is needed to specify actual loci indexes in the real
forward simulation. Other than default parameters inds=0 and allele=1, additional parameters could
be passed to point mutator as keyward parameters.

12.2.2 class TrajectorySimulator

class simuPOP.utils.TrajectorySimulator
A Trajectory Simulator takes basic demographic and genetic (natural selection) information of an evolutionary
process of a diploid population and allow the simulation of Trajectory of allele frequencies of one or more loci.
Trajectories could be simulated in two ways: forward-time and backward-time. In a forward-time simulation,
the simulation starts from certain allele frequency and simulate the frequency at the next generation using given
demographic and genetic information. The simulation continues until an ending generation is reached. A
Trajectory is successfully simulated if the allele frequency at the ending generation falls into a specified range.
In a backward-time simulation, the simulation starts from the ending generation with a desired allele frequency
and simulate the allele frequency at previous generations one by one until the allele gets lost (allele frequency
equals zero).

The result of a trajectory simulation is a trajectory object which can be used to direct the simulation of a special
random mating process that controls the evolution of one or more disease alleles so that allele frequencies are
consistent across replicate simulations. For more information about Trajectory simulation techniques and related
controlled random mating scheme, please refer to the simuPOP user’s guide, and Peng et al (PLoS Genetics 3(3),
2007).

12.2. Module simuPOP.utils 339

simuPOP

TrajectorySimulator(N, nLoci=1, fitness=None, logger=None)
Create a trajectory Simulator using provided demographic and genetic (natural selection) parameters.
Member functions simuForward and simuBackward can then be used to simulate trajectories within certain
range of generations. This class accepts the following parameters

N Parameter N accepts either a constant number for population size (e.g. N=1000), a list of subpopulation
sizes (e.g. N=[1000, 2000]), or a demographic function that returns population or subpopulation sizes
at each generation. During the evolution, multiple subpopulations can be merged into one, and one
population can be split into several subpopulations. The number of subpopulation is determined by
the return value of the demographic function. Note that N should be considered as the population size
at the end of specified generation.

nLoci Number of unlinked loci for which trajectories of allele frequencies are simulated. We assume a
diploid population with diallelic loci. The Trajectory represents frequencies of a

fitness Parameter fitness can be None (no selection), a list of fitness values for genotype with 0, 1, and 2
disease alleles (AA, Aa, and aa) at one or more loci; or a function that returns fitness values at each
generation. When multiple loci are involved (nLoci), fitness can be a list of 3 (the same fitness values
for all loci), a list of 3*nLoci (different fitness values for each locus) or a list of 3**nLoci (fitness
value for each combination of genotype). The fitness function should accept generation number and
a subpopulation index. The latter parameter allows, and is the only way to specify different fitness in
each subpopulation.

logger A logging object (see Python module logging) that can be used to output intermediate results
with debug information.

simuBackward(endGen, endFreq, minMutAge=None, maxMutAge=None, maxAttempts=1000)
Simulate trajectories of multiple disease susceptibility loci using a forward time approach. This function
accepts allele frequencies of alleles of multiple unlinked loci (endFreq) at the end of generation endGen.
Depending on the number of loci and subpopulations, parameter beginFreq can be a number (same fre-
quency for all loci in all subpopulations), or a list of frequencies for each locus (same frequency in all
subpopulations), or a list of frequencies for each locus in each subpopulation in the order of loc0_sp0,
loc1_sp0, . . . , loc0_sp1, loc1_sp1, . . . and so on.

This simulator will simulate a trajectory generation by generation and restart if the disease allele got
fixed (instead of lost), or if the length simulated Trajectory does not fall into minMutAge and maxMu-
tAge (ignored if None is given). This simulator will return None if no valid Trajectory is found after
maxAttempts attemps.

simuForward(beginGen, endGen, beginFreq, endFreq, maxAttempts=10000)
Simulate trajectories of multiple disease susceptibility loci using a forward time approach. This function
accepts allele frequencies of alleles of multiple unlinked loci at the beginning generation (freq) at gen-
eration beginGen, and expected range of allele frequencies of these alleles (endFreq) at the end of
generation endGen. Depending on the number of loci and subpopulations, these parameters accept the
following inputs:

beginGen Starting generation. The initial frequecies are considered as frequencies at the beginning of
this generation.

endGen Ending generation. The ending frequencies are considerd as frequencies at the end of this gener-
ation.

beginFreq The initial allele frequency of involved loci in all subpopulations. It can be a number (same
frequency for all loci in all subpopulations), or a list of frequencies for each locus (same frequency
in all subpopulations), or a list of frequencies for each locus in each subpopulation in the order of
loc0_sp0, loc1_sp0, . . . , loc0_sp1, loc1_sp1, . . . and so on.

endFreq The range of acceptable allele frequencies at the ending generation. The ranges can be specified
for all loci in all subpopulations, for all loci (allele frequency in the whole population is considered),

340 Chapter 12. Utility Modules

simuPOP

or for all loci in all subpopulations, in the order of loc0_sp0, loc1_sp0, loc0_sp1, . . .
and so on.

This simulator will simulate a trajectory generation by generation and restart if the resulting frequencies
do not fall into specified range of frequencies. This simulator will return None if no valid Trajectory is
found after maxAttempts attemps.

12.2.3 Function simulateForwardTrajectory

simuPOP.utils.simulateForwardTrajectory(N, beginGen, endGen, beginFreq, endFreq,
nLoci=1, fitness=None, maxAttempts=10000,
logger=None)

Given a demographic model (N) and the fitness of genotype at one or more loci (fitness), this function simulates
a trajectory of one or more unlinked loci (nLoci) from allele frequency freq at generation beginGen forward in
time, until it reaches generation endGen. A Trajectory object will be returned if the allele frequency falls
into specified ranges (endFreq). None will be returned if no valid Trajectory is simulated after maxAttempts
attempts. Please refer to class Trajectory, TrajectorySimulator and their member functions for
more details about allowed input for these parameters. If a logger object is given, it will send detailed debug
information at DEBUG level and ending allele frequencies at the INFO level. The latter can be used to adjust your
fitness model and/or ending allele frequency if a trajectory is difficult to obtain because of parameter mismatch.

12.2.4 Function simulateBackwardTrajectory

simuPOP.utils.simulateBackwardTrajectory(N, endGen, endFreq, nLoci=1, fitness=None,
minMutAge=None, maxMutAge=None, maxAt-
tempts=1000, logger=None)

Given a demographic model (N) and the fitness of genotype at one or more loci (fitness), this function simulates
a trajectory of one or more unlinked loci (nLoci) from allele frequency freq at generation endGen backward in
time, until all alleles get lost. A Trajectory object will be returned if the length of simulated Trajectory with
minMutAge and maxMutAge (if specified). None will be returned if no valid Trajectory is simulated after
maxAttempts attempts. Please refer to class Trajectory, TrajectorySimulator and their member
functions for more details about allowed input for these parameters. If a logger object is given, it will send
detailed debug information at DEBUG level and ending generation and frequency at the INFO level. The latter
can be used to adjust your fitness model and/or ending allele frequency if a trajectory is difficult to obtain
because of parameter mismatch.

12.2.5 class ProgressBar

class simuPOP.utils.ProgressBar
The ProgressBar class defines a progress bar. This class will use a text-based progress bar that outputs
progressing dots (.) with intermediate numbers (e.g. 5 for 50%) under a non-GUI mode (gui=False) or not
displaying any progress bar if gui='batch'. In the GUI mode, a Tkinter or wxPython progress dialog will
be used (gui=Tkinter or gui=wxPython). The default mode is determined by the global gui mode of
simuPOP (see also simuOpt.setOptions).

This class is usually used as follows:

progress = ProgressBar("Start simulation", 500)
for i in range(500):

i+1 can be ignored if the progress bar is updated by 1 step
progress.update(i+1)

if you would like to make sure the done message is displayed.
progress.done()

12.2. Module simuPOP.utils 341

simuPOP

ProgressBar(message, totalCount, progressChar=’.’, block=2, done=’ Done.n’, gui=None)
Create a progress bar with message, which will be the title of a progress dialog or a message for textbased
progress bar. Parameter totalCount specifies total expected steps. If a text-based progress bar is used,
you could specified progress character and intervals at which progresses will be displayed using parameters
progressChar and block. A ending message will also be displayed in text mode.

done()
Finish progressbar, print ‘done’ message if in text-mode.

update(count=None)
Update the progreebar with count steps done. The dialog or textbar may not be updated if it is updated
by full percent(s). If count is None, the progressbar increases by one step (not percent).

12.2.6 Function viewVars

simuPOP.utils.viewVars(var, gui=None)

list a variable in tree format, either in text format or in a wxPython window.

var A dictionary variable to be viewed. Dictionary wrapper objects returned by Population.dvars() and
Simulator.dvars() are also acceptable.

gui If gui is False or 'Tkinter', a text presentation (use the pprint module) of the variable will be printed
to the screen. If gui is 'wxPython' and wxPython is available, a wxPython windows will be used. The
default mode is determined by the global gui mode (see also simuOpt.setOptions).

12.2.7 Function saveCSV

simuPOP.utils.saveCSV(pop, filename=”, infoFields=[], loci=True, header=True, sub-
Pops=ALL_AVAIL, genoFormatter=None, infoFormatter=None, sexFor-
matter={1: ’M’, 2: ’F’}, affectionFormatter={True: ’A’, False: ’U’}, sep=’,
’, **kwargs)

This function is deprecated. Please use export(format='csv') instead. Save a simuPOP population
pop in csv format. Columns of this file is arranged in the order of information fields (infoFields), sex (if
sexFormatter is not None), affection status (if affectionFormatter is not None), and genotype (if
genoFormatter is not None). This function only output individuals in the present generation of population
pop. This function accepts the following parameters:

pop A simuPOP population object.

filename Output filename. Leading ‘>’ characters are ignored. However, if the first character of this filename
is ‘!’, the rest of the name will be evalulated in the population’s local namespace. If filename is empty,
the content will be written to the standard output.

infoFileds Information fields to be outputted. Default to none.

loci If a list of loci is given, only genotype at these loci will be written. Default to ALL_AVAIL, meaning all
available loci. You can set this parameter to [] if you do not want to output any genotype.

header Whether or not a header should be written. These headers will include information fields, sex (if
sexFormatter is not None), affection status (if affectionFormatter is not None) and loci
names. If genotype at a locus needs more than one column, _1, _2 etc will be appended to loci names.
Alternatively, a complete header (a string) or a list of column names could be specified directly.

subPops A list of (virtual) subpopulations. If specified, only individuals from these subpopulations will be
outputed.

342 Chapter 12. Utility Modules

simuPOP

infoFormatter A format string that is used to format all information fields. If unspecified, str(value) will
be used for each information field.

genoFormatter How to output genotype at specified loci. Acceptable values include None (output allele
names), a dictionary with genotype as keys, (e.g. genoFormatter={(0,0):1, (0,1):2, (1,
0):2, (1,1):3}, or a function with genotype (as a tuple of integers) as inputs. The dictionary value
or the return value of this function can be a single or a list of number or strings.

sexFormatter How to output individual sex. Acceptable values include None (no output) or a dictionary with
keys MALE and FEMALE.

affectionFormatter How to output individual affection status. Acceptable values include None (no output) or
a dictionary with keys True and False.

Parameters genoCode, sexCode, and affectionCode from version 1.0.0 have been renamed to
genoFormatter, sexFormatter and affectionFormatter but can still be used.

12.2.8 class Exporter

class simuPOP.utils.Exporter
An operator to export the current population in specified format. Currently supported file formats include:

STRUCTURE (http://pritch.bsd.uchicago.edu/structure.html). This format accepts the following parameters:

markerNames If set to True (default), output names of loci that are specified by parameter lociNames of the
Population class. No names will be outputted if loci are anonymous. A list of loci names are acceptable
which will be outputted directly.

recessiveAlleles If specified, value of this parameter will be outputted after the marker names line.

interMarkerDistances If set to True (default), output distances between markers. The first marker of each
chromosome has distance -1, as required by this format.

phaseInformation If specified, output the value (0 or 1) of this parameter after the inter marker distances line.
Note that simuPOP populations always have phase information.

label Output 1-based indexes of individuals if this parameter is true (default)

popData Output 1-based index of subpopulation if this parameter is set to true (default).

popFlag Output value of this parameter (0 or 1) after popData if this parameter specified.

locData Name of an information field with location information of each individual. Default to None (no loca-
tion data)

phenotype Name of an information field with phenotype information of each individual. Default to None (no
phenotype)

Genotype information are always outputted. Alleles are coded the same way (0, 1, 2, etc) as they are stored in
simuPOP.

GENEPOP (http://genepop.curtin.edu.au/). The genepop format accepts the following parameters:

title The tile line. If unspecified, a line similar to ‘produced by simuPOP on XXX’ will be outputted.

adjust Adjust values of alleles by specified value (1 as default). This adjustment is necessary in many cases be-
cause GENEPOP treats allele 0 as missing values, and simuPOP treats allele 0 as a valid allele. Exporting
alleles 0 and 1 as 1 and 2 will allow GENEPOP to analyze simuPOP-exported files correctly.

Because 0 is reserved as missing data in this format, allele A is outputted as A+adjust. simuPOP will use sub-
population names (if available) and 1-based individual index to output individual label (e.g. SubPop2-3). If

12.2. Module simuPOP.utils 343

http://pritch.bsd.uchicago.edu/structure.html
http://genepop.curtin.edu.au/

simuPOP

parameter subPops is used to output selected individuals, each subpop will be outputted as a separate subpopu-
lation even if there are multiple virtual subpopulations from the same subpopulation. simuPOP currently only
export diploid populations to this format.

FSTAT (http://www2.unil.ch/popgen/softwares/fstat.htm). The fstat format accepts the following parameters:

lociNames Names of loci that will be outputted. If unspecified, simuPOP will try to use names of loci that are
specified by parameter lociNames of the Population class, or names in the form of chrX-Y.

adjust Adjust values of alleles by specified value (1 as default). This adjustment is necessary in many cases
because FSTAT treats allele 0 as missing values, and simuPOP treats allele 0 as a valid allele. Exporting
alleles 0 and 1 as 1 and 2 will allow FSTAT to analyze simuPOP-exported files correctly.

MAP (marker information format) output information about each loci. Each line of the map file describes a
single marker and contains chromosome name, locus name, and position. Chromosome and loci names will be
the names specified by parameters chromNames and lociNames of the Population object, and will be
chromosome index + 1, and ‘.’ if these parameters are not specified. This format output loci position to the third
column. If the unit assumed in your population does not match the intended unit in the MAP file, (e.g. you would
like to output position in basepair while the population uses Mbp), you can use parameter posMultiplier
to adjust it. This format accepts the following parameters:

posMultiplier A number that will be multiplied to loci positions (default to 1). The result will be outputted in
the third column of the output.

PED (Linkage Pedigree pre MAKEPED format), with columns of family, individual, father mother, gender,
affection status and genotypes. The output should be acceptable by HaploView or plink, which provides
more details of this format in their documentation. If a population does not have ind_id, father_id or
mother_id, this format will output individuals in specified (virtual) subpopulations in the current generation
(parental generations are ignored) as unrelated individuals with 0, 0 as parent IDs. An incremental family ID
will be assigned for each individual. If a population have ind_id, father_id and mother_id, parents
will be recursively traced to separate all individuals in a (multigenerational) population into families of related
individuals. father and mother id will be set to zero if one of them does not exist. This format uses 1 for MALE,
2 for FEMALE. If phenoField is None, individual affection status will be outputted with 1 for Unaffected and
2 for affected. Otherwise, values of an information field will be outputted as phenotype. Because 0 value indi-
cates missing value, values of alleles will be adjusted by 1 by default, which should be avoided if you are using
non-zero alleles to model ACTG alleles in simuPOP. This format will ignore subpopulation structure because
parents might belong to different subpopulations. This format accepts the following parameters:

idField A field for individual id, default to ind_id. Value at this field will be individual ID inside a pedigree.

fatherField A field for father id, default to father_id. Value at this field will be used to output father of an
individual, if an individual with this ID exists in the population.

motherField A field for mother id, default to mother_id. Value at this field will be used to output mother of
an individual, if an individual with this ID exists in the population.

phenoField A field for individual phenotype that will be outputted as the sixth column of the PED file. If None
is specified (default), individual affection status will be outputted (1 for unaffected and 2 for affected).

adjust Adjust values of alleles by specified value (1 as default). This adjustment is necessary in many cases
because LINKAGE/PED format treats allele 0 as missing values, and simuPOP treats allele 0 as a valid
allele. You should set this paremter to zero if you have already used alleles 1, 2, 3, 4 to model A, C, T, and
G alleles.

Phylip (Joseph Felsenstein’s Phylip format). Phylip is generally used for nuclotide sequences and protein se-
quences. This makes this format suitable for simulations of haploid populations (ploidy=1) with nucleotide or
protein sequences (number of alleles = 4 or 24 with alleleNames as nucleotide or amino acid names). If your
population does satisfy these conditions, you can still export it, with homologous chromosomes in a diploid pop-
ulation as two sequences, and with specified allele names for allele 0, 1, 2, This function outputs sequence

344 Chapter 12. Utility Modules

http://www2.unil.ch/popgen/softwares/fstat.htm

simuPOP

name as SXXX where XXX is the 1-based index of individual and SXXX_Y (Y=1 or 2) for diploid individuals,
unless names of sequences are provided by parameter seqNames. This format supports the following parameters:

alleleNames Names of alleles 0, 1, 2, . . . as a single string (e.g. ‘ACTG’) or a list of single-character strings
(e.g. [‘A’, ‘C’, ‘T’, ‘G’]). If this parameter is unspecified (default), this program will try to use names of
alleles specified in alleleNames parameter of a Population, and raise an error if no name could be found.

seqNames Names of each sequence outputted, for each individual, or for each sequences for non-haploid pop-
ulation. If unspecified, default names such as SXXX or SXXX_Y will be used.

style Output style, can be ‘sequential’ (default) or ‘interleaved’. For sequential output, each sequence consists
of for the first line a name and 90 symbols starting from column 11, and subsequent lines of 100 symbols.
The interleaved style have subsequent lines as separate blocks.

MS (output from Richard R. Hudson’s MS or msHOT program). This format records genotypes of SNP markers
at segregating site so all non-zero genotypes are recorded as 1. simuPOP by default outputs a single block of
genotypes at all loci on the first chromosome, and for all individuals, unless parameter splitBy is specified to
separate genotypes by chromosome or subpopulations.

splitBy: simuPOP by default output segregating sites at all loci on the first chromosome for all individuals.
If splitBy is set to 'subPop', genotypes for individuals in all or specified (parameter subPops)
subpopulations are outputted in separate blocks. The subpopulations should have the same number of
individuals to produce blocks of the same number of sequences. Alternatively, splitBy can be set to
chrom, for which genotypes on different chromosomes will be outputted separately.

CSV (comma separated values). This is a general format that output genotypes in comma (or tab etc) separated
formats. The function form of this operator export(format='csv') is similar to the now-deprecated
saveCSV function, but its interface has been adjusted to match other formats supported by this operator. This
format outputs a header (optiona), and one line for each individual with values of specified information fields,
sex, affection status, and genotypes. All fields except for genotypes are optional. The output format is controlled
by the following parameters:

infoFileds Information fields to be outputted. Default to none.

header Whether or not a header should be written. These headers will include information fields, sex (if
sexFormatter is not None), affection status (if affectionFormatter is not None) and loci
names. If genotype at a locus needs more than one column, _1, _2 etc will be appended to loci names.
Alternatively, a complete header (a string) or a list of column names could be specified directly.

infoFormatter A format string that is used to format all information fields. If unspecified, str(value) will
be used for each information field.

genoFormatter How to output genotype at specified loci. Acceptable values include None (output allele
values), a dictionary with genotype as keys, (e.g. genoFormatter={(0,0):1, (0,1):2, (1,
0):2, (1,1):3}, or a function with genotype (as a tuple of integers) as inputs. The dictionary value
or the return value of this function can be a single or a list of number or strings.

sexFormatter How to output individual sex. Acceptable values include None (no output) or a dictionary with
keys MALE and FEMALE.

affectionFormatter How to output individual affection status. Acceptable values include None (no output) or
a dictionary with keys True and False.

delimiter Delimiter used to separate values, default to ‘,’.

subPopFormatter How to output population membership. Acceptable values include None (no output), a
string that will be used for the column name, or True which uses ‘pop’ as the column name. If present,
the column is written with the string represenation of the (virtual) subpopulation.

This operator supports the usual applicability parameters such as begin, end, step, at, reps, and subPops. If
subPops are specified, only individuals from specified (virtual) subPops are exported. Similar to other operators,

12.2. Module simuPOP.utils 345

simuPOP

parameter output can be an output specification string (filename, >>filename, !expr), filehandle (or
any Python object with a write function), any python function. Unless explicitly stated for a particular format,
this operator exports individuals from the current generation if there are multiple ancestral generations in the
population.

The Exporter class will make use of a progress bar to show the progress. The interface of the progress bar is by
default determined by the global GUI status but you can also set it to, for example, gui=False to forcefully
use a text-based progress bar, or gui='batch' to suppress the progress bar.

Exporter(format, output, begin=0, end=-1, step=1, at=[], reps=True, subPops=ALL_AVAIL, in-
foFields=[], gui=None, *args, **kwargs)

Usage:

PyOperator(func, param=None, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, sub-
Pops=ALL_AVAIL, infoFields=[])

Details:

Create a pure-Python operator that calls a user-defined function when it is applied. If this op-
erator is applied before or after mating, your function should have form func(pop) or func(pop,
param) where pop is the population to which the operator is applied, param is the value specified
in parameter param. param will be ignored if your function only accepts one parameter. Alth-
ernatively, the function should have form func(ind) with optional parameters pop and param. In
this case, the function will be called for all individuals, or individuals in subpopulations subPops.
Individuals for which the function returns False will be removed from the population. This op-
erator can therefore perform similar functions as operator DiscardIf. If this operator is applied
during mating, your function should accept parameters pop, off (or ind), dad, mom and param
where pop is the parental population, and off or ind, dad, and mom are offspring and their par-
ents for each mating event, and param is an optional parameter. If subPops are provided, only
offspring in specified (virtual) subpopulations are acceptable. This operator does not support
parameters output, and infoFields. If certain output is needed, it should be handled in the user de-
fined function func. Because the status of files used by other operators through parameter output
is undetermined during evolution, they should not be open or closed in this Python operator.

12.2.9 Function importPopulation

simuPOP.utils.importPopulation(format, filename, *args, **kwargs)
This function import and return a population from a file filename in specified format. Format-specific parameters
can be used to define how the input should be interpreted and imported. This function supports the following
file format.

GENEPOP (http://genepop.curtin.edu.au/). For input file of this format, this function ignores the first title line,
load the second line as loci names, and import genotypes of different POP sections as different subpopulations.
This format accepts the following parameters:

adjust Adjust alleles by specified value (default to 0 for no adjustment). This parameter is mostly used to
convert alleles 1 and 2 in a GenePop file to alleles 0 and 1 (with adjust=-1) in simuPOP. Negative allele
(e.g. missing value 0) will be imported as regular allele with module-dependent values (e.g. -1 imported
as 255 for standard module).

FSTAT (http://www2.unil.ch/popgen/softwares/fstat.htm). This format accepts the following parameters:

adjust Adjust alleles by specified value (default to 0 for no adjustment). This parameter is mostly used to
convert alleles 1 and 2 in a GenePop file to alleles 0 and 1 (with adjust=-1) in simuPOP. Negative allele
(e.g. missing value 0) will be imported as regular allele with module-dependent values (e.g. -1 imported
as 255 for standard module).

346 Chapter 12. Utility Modules

http://genepop.curtin.edu.au/
http://www2.unil.ch/popgen/softwares/fstat.htm

simuPOP

Phylip (Joseph Felsenstein’s Phylip format). This function ignores sequence names and import sequences in
a haploid (default) or diploid population (if there are even number of sequences). An list of allele names are
required to translate symbols to allele names. This format accepts the following parameters:

alleleNames Names of alleles 0, 1, 2, . . . as a single string (e.g. ‘ACTG’) or a list of single-character strings
(e.g. [‘A’, ‘C’, ‘T’, ‘G’]). This will be used to translate symbols into numeric alleles in simuPOP. Allele
names will continue to be used as allele names of the returned population.

ploidy Ploidy of the returned population, default to 1 (haploid). There should be even number of sequences if
ploidy=2 (haploid) is specified.

MS (output from Richard R. Hudson’s MS or msHOT program). The ms program generates npop blocks of nseq
haploid chromosomes for command starting with ms nsample nrepeat. By default, the result is imported
as a haploid population of size nsample. The population will have nrepeat subpopulations each with the same
number of loci but different number of segregating sites. This behavior could be changed by the following
parameters:

ploidy If ploidy is set to 2, the sequenences will be paired so the population will have nseq/2 individuals.
An error will be raised if an odd number of sequences are simulated.

mergeBy By default, replicate samples will be presented as subpopulations. All individuals have the same
number of loci but individuals in different subpopulations have different segregating sites. If mergeBy
is set to "chrom", the replicates will be presented as separate chromosomes, each with a different set of
loci determined by segregating sites.

12.2.10 Function export

simuPOP.utils.export(pop, format, *args, **kwargs)
Apply operator Exporter to population pop in format format.

12.3 Module simuPOP.demography

This module provides some commonly used demographic models. In addition to several migration rate generation
functions, it provides models that encapsulate complete demographic features of one or more populations (population
growth, split, bottleneck, admixture, migration). These models provides:

1. The model itself can be passed to parameter subPopSize of a mating scheme to determine the size of the next
generation. More importantly, it performs necessary actions of population size change when needed.

2. The model provides attribute num_gens, which can be passed to parameter gens of Simulator.evolve
or Population.evolve function. A demographic model can also terminate an evolutionary process by
returnning an empty list so gens=model.num_gens is no longer required.

12.3.1 Function migrIslandRates

simuPOP.demography.migrIslandRates(r, n)
migration rate matrix

x m/(n-1) m/(n-1)
m/(n-1) x
.....
.... m/(n-1) m/(n-1) x

where x = 1-m

12.3. Module simuPOP.demography 347

simuPOP

12.3.2 Function migrHierarchicalIslandRates

simuPOP.demography.migrHierarchicalIslandRates(r1, r2, n)
Return the migration rate matrix for a hierarchical island model where there are different migration rate within
and across groups of islands.

r1 Within group migration rates. It can be a number or a list of numbers for each group of the islands.

r2 Across group migration rates which is the probability that someone will migrate to a subpopulation outside
of his group. A list of r2 could be specified for each group of the islands.

n Number of islands in each group. E.g. n=[5, 4] specifies two groups of islands with 5 and 4 islands each.

For individuals in an island, the probability that it remains in the same island is 1-r1-r2 (r1, r2 might vary by
island groups), that it migrates to another island in the same group is r1 and migrates to another island outside
of the group is r2. migrate rate to a specific island depends on the size of group.

12.3.3 Function migrSteppingStoneRates

simuPOP.demography.migrSteppingStoneRates(r, n, circular=False)
migration rate matrix for circular stepping stone model (X=1-m)

X m/2 m/2
m/2 X m/2 0
0 m/2 x m/20
...
m/2 0 m/2 X

or non-circular

X m/2 m/2
m/2 X m/2 0
0 m/2 X m/20
...
... m X

This function returns [[1]] when there is only one subpopulation.

12.3.4 Function migrtwoDSteppingStoneRates

simuPOP.demography.migr2DSteppingStoneRates(r, m, n, diagonal=False, circular=False)
migration rate matrix for 2D stepping stone model, with or without diagonal neighbors (4 or 8 neighbors for
central patches). The boundaries are connected if circular is True. Otherwise individuals from corner and
bounary patches will migrate to their neighbors with higher probability.

12.3.5 class EventBasedModel

class simuPOP.demography.EventBasedModel
An event based demographic model in which the demographic changes are triggered by demographic events
such as population growth, split, join, and admixture. The population size will be kept constant if no event is
applied at a certain generation.

EventBasedModel(events=[], T=None, N0=[], ops=[], infoFields=[])
A demographic model that is driven by a list of demographic events. The events should be subclasses of

348 Chapter 12. Utility Modules

simuPOP

DemographicEvent, which have similar interface as regular operators with the exception that applica-
ble parameters begin, end, step, at are relative to the demographic model, not the population.

plot(filename=”, title=”, initSize=[])
Evolve a haploid population using a RandomSelection mating scheme using the demographic model.
Print population size changes duringe evolution. An initial population size could be specified using param-
eter initSize for a demographic model with dynamic initial population size. If a filename is specified
and if matplotlib is available, this function draws a figure to depict the demographic model and save it to
filename. An optional title could be specified to the figure. Note that this function can not be plot
demographic models that works for particular mating schemes (e.g. genotype dependent).

12.3.6 class DemographicEvent

class simuPOP.demography.DemographicEvent
A demographic events that will be applied to one or more populations at specified generations. The interface of
a DemographicEvent is very similar to an simuPOP operator, but the applicable parameters are handled so that
the generations are relative to the demographic model, not the populations to which the event is applied.

DemographicEvent(ops=[], output=”, begin=0, end=-1, step=1, at=[], reps=True, sub-
Pops=ALL_AVAIL, infoFields=[])

Create a demographic event that will be applied at specified generations according to applicability parame-
ters reps, begin, end, step and at. Parameter subPops is usually used to specify the subpopulations
affected by the event. One or more simuPOP operators, if specified in ops, will be applied when the event
happens. Parameters output and infoFields are currently ignored.

apply(pop)

12.3.7 class ExpansionEvent

class simuPOP.demography.ExpansionEvent
A demographic event that increase applicable population size by N*r (to size N*(1+r)), or s (to size
N+s) at each applicable generation. The first model leads to an exponential population expansion model
with rate r (N(t)=N(0)*exp(r*t)), where the second model leads to an linear population growth model
(N(t)=N(0)+s*t) and this is why the parameter is called slopes. Note that if both population size and r
are small (e.g. N*r<1), the population might not expand as expected.

ExpansionEvent(rates=[], slopes=[], capacity=[], name=”, ops=[], output=”, begin=0, end=-1,
step=1, at=[], reps=True, subPops=ALL_AVAIL, infoFields=[])

A demographic event that expands all or specified subpopulations (subPops) exponentially by a rate of
rates, or linearly by a slope of slopes, unless carray capacity (capacity) of the population has
been reached. Parameter rates can be a single number or a list of rates for all subpopulations. Parameter
slopes should be a number, or a list of numbers for all subpopulations. subPops can be a ALL_AVAIL
or a list of subpopulation index or names. capacity can be empty (no limit on carrying capacity), or
one or more numbers for each of the subpopulations.

apply(pop)

12.3.8 class ResizeEvent

class simuPOP.demography.ResizeEvent
A demographic event that resize specified subpopulations

ResizeEvent(sizes=[], names=[], removeEmptySubPops=False, ops=[], output=”, begin=0, end=-1,
step=1, at=[], reps=True, subPops=ALL_AVAIL, infoFields=[])

A demographic event that resizes given subpopulations subPops to new sizes (integer type), or sizes

12.3. Module simuPOP.demography 349

simuPOP

proportional to original sizes (if a float number is given). For example, sizes=[0.5, 500] will resize
the first subpopulation to half of its original size, and the second subpopulation to size 500. If the new
size is larger, existing individuals will be copied to sequentially, and repeatedly if needed. If the size of
a subpopulation is 0 and removeEmptySubPops is True, empty subpopulations will be removed. A
new set of names could be assigned to the population being resized.

apply(pop)

12.3.9 class SplitEvent

class simuPOP.demography.SplitEvent
A demographic event that splits a specified population into two or more subpopulations.

SplitEvent(sizes=[], names=[], ops=[], output=”, begin=0, end=-1, step=1, at=[], reps=True, sub-
Pops=ALL_AVAIL, infoFields=[])

A demographic event that splits a subpopulation specified by subPops to two or more subpopulations,
with specified sizes and names. sizes can be a list of numbers, proportions (e.g. [1., 500] keeps
the original population and copies 500 individuals to create a new subpupulation). Note that sizes and
names, if specified, should include the source subpopulation as its first element.

apply(pop)

12.3.10 class MergeEvent

class simuPOP.demography.MergeEvent
A demographic event that merges one or more subpopulation to a single one.

MergeEvent(name=”, ops=[], output=”, begin=0, end=-1, step=1, at=[], reps=True, sub-
Pops=ALL_AVAIL, infoFields=[])

A demographic event that merges subpopulations into a single subpopulation. The merged subpopulation
will have the name of the first merged subpopulation unless a separate name is supported.

apply(pop)

12.3.11 class AdmixtureEvent

class simuPOP.demography.AdmixtureEvent
This event implements a population admixture event that mix individuals from specified subpopulations to either
a new subpopulation or an existing subpopulation.

AdmixtureEvent(sizes=[], toSubPop=None, name=”, ops=[], output=”, begin=0, end=-1, step=1,
at=[], reps=True, subPops=ALL_AVAIL, infoFields=[])

Create an admixed population by choosing individuals from all or specified subpopulations (subPops)
and creating an admixed population toSubPop. The admixed population will be appended to the pop-
ulation as a new subpopulation with name name if toSubPop is None (default), or replace an existing
subpopulation with name or index toSubPop. The admixed population consists of individuals from
subPops according to specified sizes. Its size is maximized to have the largest number of individuals
from the source population when a new population is created, or equal to the size of the existing destination
population. The parameter sizes should be a list of float numbers between 0 and 1, and add up to 1 (e.g.
[0.4, 0.4, 0.2], although this function ignores the last element and set it to 1 minus the sum of the
other numbers). Alternatively, parameter sizes can be a list of numbers used to explicitly specify the
size of admixed population and number of individuals from each source subpopulation. In all cases, the
size of source populations will be kept constant.

apply(pop)

350 Chapter 12. Utility Modules

simuPOP

12.3.12 class InstantChangeModel

class simuPOP.demography.InstantChangeModel
A model for instant population change (growth, resize, merge, split).

InstantChangeModel(T=None, N0=[], G=[], NG=[], ops=[], infoFields=[], removeEmptySub-
Pops=False)

An instant population growth model that evolves a population from size N0 to NT for T generations with
population size changes at generation G to NT. If G is a list, multiple population size changes are al-
lowed. In that case, a list (or a nested list) of population size should be provided to parameter NT. Both
N0 and NT supports fixed (an integer), dynamic (keep passed poulation size) and proportional (an float
number) population size. Optionally, one or more operators (e.g. a migrator) ops can be applied to pop-
ulation. Required information fields by these operators should be passed to parameter infoFields. If
removeEmpty option is set to True, empty subpopulation will be removed. This option can be used to
remove subpopulations.

plot(filename=”, title=”, initSize=[])
Evolve a haploid population using a RandomSelection mating scheme using the demographic model.
Print population size changes duringe evolution. An initial population size could be specified using param-
eter initSize for a demographic model with dynamic initial population size. If a filename is specified
and if matplotlib is available, this function draws a figure to depict the demographic model and save it to
filename. An optional title could be specified to the figure. Note that this function can not be plot
demographic models that works for particular mating schemes (e.g. genotype dependent).

12.3.13 class ExponentialGrowthModel

class simuPOP.demography.ExponentialGrowthModel
A model for exponential population growth with carry capacity

ExponentialGrowthModel(T=None, N0=[], NT=None, r=None, ops=[], infoFields=[])
An exponential population growth model that evolves a population from size N0 to NT for T generations
with r*N(t) individuals added at each generation. N0, NT and r can be a list of population sizes or
growth rates for multiple subpopulations. The initial population will be resized to N0 (split if necessary).
Zero or negative growth rates are allowed. The model will automatically determine T, r or NT if one
of them is unspecified. If all of them are specified, NT is intepretted as carrying capacity of the model,
namely the population will keep contant after it reaches size NT. Optionally, one or more operators (e.g. a
migrator) ops can be applied to population.

plot(filename=”, title=”, initSize=[])
Evolve a haploid population using a RandomSelection mating scheme using the demographic model.
Print population size changes duringe evolution. An initial population size could be specified using param-
eter initSize for a demographic model with dynamic initial population size. If a filename is specified
and if matplotlib is available, this function draws a figure to depict the demographic model and save it to
filename. An optional title could be specified to the figure. Note that this function can not be plot
demographic models that works for particular mating schemes (e.g. genotype dependent).

12.3.14 class LinearGrowthModel

class simuPOP.demography.LinearGrowthModel
A model for linear population growth with carry capacity.

LinearGrowthModel(T=None, N0=[], NT=None, r=None, ops=[], infoFields=[])
An linear population growth model that evolves a population from size N0 to NT for T generations with
r*N0 individuals added at each generation. N0, NT and r can be a list of population sizes or growth
rates for multiple subpopulations. The initial population will be resized to N0 (split if necessary). Zero or

12.3. Module simuPOP.demography 351

simuPOP

negative growth rates are allowed. The model will automatically determine T, r or NT if one of them is
unspecified. If all of them are specified, NT is intepretted as carrying capacity of the model, namely the
population will keep contant after it reaches size NT. Optionally, one or more operators (e.g. a migrator)
ops can be applied to population.

plot(filename=”, title=”, initSize=[])
Evolve a haploid population using a RandomSelection mating scheme using the demographic model.
Print population size changes duringe evolution. An initial population size could be specified using param-
eter initSize for a demographic model with dynamic initial population size. If a filename is specified
and if matplotlib is available, this function draws a figure to depict the demographic model and save it to
filename. An optional title could be specified to the figure. Note that this function can not be plot
demographic models that works for particular mating schemes (e.g. genotype dependent).

12.3.15 class MultiStageModel

class simuPOP.demography.MultiStageModel
A multi-stage demographic model that connects a number of demographic models.

MultiStageModel(models, ops=[], infoFields=[])
An multi-stage demographic model that connects specified demographic models models. It applies a
model to the population until it reaches num_gens of the model, or if the model returns []. One or more
operators could be specified, which will be applied before a demographic model is applied. Note that the
last model will be ignored if it lasts 0 generation.

plot(filename=”, title=”, initSize=[])
Evolve a haploid population using a RandomSelection mating scheme using the demographic model.
Print population size changes duringe evolution. An initial population size could be specified using param-
eter initSize for a demographic model with dynamic initial population size. If a filename is specified
and if matplotlib is available, this function draws a figure to depict the demographic model and save it to
filename. An optional title could be specified to the figure. Note that this function can not be plot
demographic models that works for particular mating schemes (e.g. genotype dependent).

12.3.16 class OutOfAfricaModel

class simuPOP.demography.OutOfAfricaModel
A dempgraphic model for the CHB, CEU, and YRI populations, as defined in Gutenkunst 2009, Plos Genetics.
The model is depicted in Figure 2, and the default parameters are listed in Table 1 of this paper.

OutOfAfricaModel(T0, N_A=7300, N_AF=12300, N_B=2100, N_EU0=1000, r_EU=0.004,
N_AS0=510, r_AS=0.0055, m_AF_B=0.00025, m_AF_EU=3e-05,
m_AF_AS=1.9e-05, m_EU_AS=9.6e-05, T_AF=8800, T_B=5600,
T_EU_AS=848, ops=[], infoFields=[], outcome=[’AF’, ’EU’, ’AS’], scale=1)

Counting backward in time, this model evolves a population for T0 generations (required parameter).
The ancient population A started at size N_A and expanded at T_AF generations from now, to pop AF
with size N_AF. Pop B split from pop AF at T_B generations from now, with size N_B; Pop AF remains
as N_AF individuals. Pop EU and AS split from pop B at T_EU_AS generations from now; with size
N_EU0 individuals and N_ASO individuals, respectively. Pop EU grew exponentially with rate r_EU; Pop
AS grew exponentially with rate r_AS. The YRI, CEU and CHB samples are drawn from AF, EU and AS
populations respectively. Additional operators could be added to ops. Information fields required by these
operators should be passed to infoFields. If a scaling factor scale is specified, all population sizes
and generation numbers will be divided by a factor of scale. This demographic model by default returns
all populations (AF, EU, AS) but you can choose to keep only selected subpopulations using parameter
outcome (e.g. outcome=['EU', 'AS']).

This model merges all subpopulations if it is applied to an initial population with multiple subpopulation.

352 Chapter 12. Utility Modules

simuPOP

plot(filename=”, title=”, initSize=[])
Evolve a haploid population using a RandomSelection mating scheme using the demographic model.
Print population size changes duringe evolution. An initial population size could be specified using param-
eter initSize for a demographic model with dynamic initial population size. If a filename is specified
and if matplotlib is available, this function draws a figure to depict the demographic model and save it to
filename. An optional title could be specified to the figure. Note that this function can not be plot
demographic models that works for particular mating schemes (e.g. genotype dependent).

12.3.17 class SettlementOfNewWorldModel

class simuPOP.demography.SettlementOfNewWorldModel
A dempgraphic model for settlement of the new world of Americans, as defined in Gutenkunst 2009, Plos
Genetics. The model is depicted in Figure 3, and the default parameters are listed in Table 2 of this paper.

SettlementOfNewWorldModel(T0, N_A=7300, N_AF=12300, N_B=2100, N_EU0=1500,
r_EU=0.0023, N_AS0=590, r_AS=0.0037, N_MX0=800,
r_MX=0.005, m_AF_B=0.00025, m_AF_EU=3e-05,
m_AF_AS=1.9e-05, m_EU_AS=1.35e-05, T_AF=8800,
T_B=5600, T_EU_AS=1056, T_MX=864, f_MX=0.48, ops=[],
infoFields=[], outcome=’MXL’, scale=1)

Counting backward in time, this model evolves a population for T0 generations. The ancient population
A started at size N_A and expanded at T_AF generations from now, to pop AF with size N_AF. Pop B
split from pop AF at T_B generations from now, with size N_B; Pop AF remains as N_AF individuals.
Pop EU and AS split from pop B at T_EU_AS generations from now; with size N_EU0 individuals and
N_ASO individuals, respectively. Pop EU grew exponentially with final population size N_EU; Pop AS
grew exponentially with final populaiton size N_AS. Pop MX split from pop AS at T_MX generations from
now with size N_MX0, grew exponentially to final size N_MX. Migrations are allowed between populations
with migration rates m_AF_B, m_EU_AS, m_AF_EU, and m_AF_AS. At the end of the evolution, the AF
and CHB populations are removed, and the EU and MX populations are merged with f_MX proportion for
MX. The Mexican American<F19> sample could be sampled from the last single population. Additional
operators could be added to ops. Information fields required by these operators should be passed to
infoFields. If a scaling factor scale is specified, all population sizes and generation numbers will
be divided by a factor of scale. This demographic model by default only returns the mixed Mexican
America model (outputcom='MXL') but you can specify any combination of AF, EU, AS, MX and MXL.

This model merges all subpopulations if it is applied to an initial population with multiple subpopulation.

plot(filename=”, title=”, initSize=[])
Evolve a haploid population using a RandomSelection mating scheme using the demographic model.
Print population size changes duringe evolution. An initial population size could be specified using param-
eter initSize for a demographic model with dynamic initial population size. If a filename is specified
and if matplotlib is available, this function draws a figure to depict the demographic model and save it to
filename. An optional title could be specified to the figure. Note that this function can not be plot
demographic models that works for particular mating schemes (e.g. genotype dependent).

12.3.18 class CosiModel

class simuPOP.demography.CosiModel
A dempgraphic model for Africa, Asia and Europe, as described in Schaffner et al, Genome Research, 2005,
and implemented in the coalescent simulator cosi.

CosiModel(T0, N_A=12500, N_AF=24000, N_OoA=7700, N_AF1=100000, N_AS1=100000,
N_EU1=100000, T_AF=17000, T_OoA=3500, T_EU_AS=2000, T_AS_exp=400,
T_EU_exp=350, T_AF_exp=200, F_OoA=0.085, F_AS=0.067, F_EU=0.02, F_AF=0.02,
m_AF_EU=3.2e-05, m_AF_AS=8e-06, ops=[], infoFields=[], scale=1)

12.3. Module simuPOP.demography 353

simuPOP

Counting backward in time, this model evolves a population for a total of T0 generations. The ancient
population Ancestral started at size N_Ancestral and expanded at T_AF generations from now, to
pop AF with size N_AF. The Out of Africa population split from the AF population at T_OoA generations
ago. The OoA population split into two subpopulations AS and EU but keep the same size. At the genera-
tions of T_EU_exp, T_AS_exp, and T_AF_exp ago, three populations expanded to modern population
sizes of N_AF1, N_AS1 and N_EU1 exponentially, respectively. Migrations are allowed between AF and
EU populations with rate m_AF_EU, and between AF and AS with rate m_AF_AS.

Four bottlenecks happens in the AF, OoA, EU and AS populations. They are supposed to happen 200
generations after population split and last for 200 generations. The intensity is parameterized in F, which
is number of generations devided by twice the effective size during bottleneck. So the bottleneck size is
100/F.

This model merges all subpopulations if it is applied to a population with multiple subpopulation. Although
parameters are configurable, we assume the order of events so dramatically changes of parameters might
need to errors. If a scaling factor scale is specified, all population sizes and generation numbers will be
divided by, and migration rates will be multiplied by a factor of scale.

plot(filename=”, title=”, initSize=[])
Evolve a haploid population using a RandomSelection mating scheme using the demographic model.
Print population size changes duringe evolution. An initial population size could be specified using param-
eter initSize for a demographic model with dynamic initial population size. If a filename is specified
and if matplotlib is available, this function draws a figure to depict the demographic model and save it to
filename. An optional title could be specified to the figure. Note that this function can not be plot
demographic models that works for particular mating schemes (e.g. genotype dependent).

12.4 Module simuPOP.sampling

This module provides classes and functions that could be used to draw samples from a simuPOP population. These
functions accept a list of parameters such as subPops ((virtual) subpopulations from which samples will be drawn)
and numOfSamples (number of samples to draw) and return a list of populations. Both independent individuals and
dependent individuals (Pedigrees) are supported.

Independent individuals could be drawn from any Population. pedigree information is not necessary and is usually
ignored. Unique IDs are not needed either although such IDs could help you identify samples in the parent Population.

Pedigrees could be drawn from multi-generational populations or age-structured populations. All individuals are re-
quired to have a unique ID (usually tracked by operator IdTagger and are stored in information field ind_id).
Parents of individuals are usually tracked by operator PedigreeTagger and are stored in information fields
father_id and mother_id. If parental information is tracked using operator ParentsTagger and information
fields father_idx and mother_idx, a function sampling.indexToID can be used to convert index based
pedigree to ID based Pedigree. Note that ParentsTagger can not be used to track Pedigrees in age-structured
populations because they require parents of each individual resides in a parental generation.

All sampling functions support virtual subpopulations through parameter subPops, although sample size specifica-
tion might vary. This feature allows you to draw samples with specified properties. For example, you could select
only female individuals for cases of a female-only disease, or select individuals within certain age-range. If you
specify a list of (virtual) subpopulations, you are usually allowed to draw certain number of individuals from each
subpopulation.

12.4.1 class BaseSampler

class simuPOP.sampling.BaseSampler
A sampler extracts individuals from a simuPOP population and return them as separate populations. This base

354 Chapter 12. Utility Modules

simuPOP

class defines the common interface of all sampling classes, including how samples prepared and returned.

BaseSampler(subPops=ALL_AVAIL)
Create a sampler with parameter subPops, which will be used to prepare population for sampling.
subPops should be a list of (virtual) subpopulations from which samples are drawn. The default value is
ALL_AVAIL, which means all available subpopulations of a Population.

drawSample(pop)
Draw and return a sample.

drawSamples(pop, numOfSamples)
Draw multiple samples and return a list of populations.

prepareSample(pop, rearrange)
Prepare passed population object for sampling according to parameter subPops. If samples are drawn
from the whole population, a Population will be trimmed if only selected (virtual) subpopulations are
used. If samples are drawn separately from specified subpopulations, Population pop will be rearranged
(if rearrange==True) so that each subpoulation corresponds to one element in parameter subPops.

12.4.2 class RandomSampler

class simuPOP.sampling.RandomSampler
A sampler that draws individuals randomly.

RandomSampler(sizes, subPops=ALL_AVAIL)
Creates a random sampler with specified number of individuals.

drawSample(input_pop)
Draw a random sample from passed population.

drawSamples(pop, numOfSamples)
Draw multiple samples and return a list of populations.

prepareSample(pop, rearrange)
Prepare passed population object for sampling according to parameter subPops. If samples are drawn
from the whole population, a Population will be trimmed if only selected (virtual) subpopulations are
used. If samples are drawn separately from specified subpopulations, Population pop will be rearranged
(if rearrange==True) so that each subpoulation corresponds to one element in parameter subPops.

12.4.3 Function drawRandomSample

simuPOP.sampling.drawRandomSample(pop, sizes, subPops=ALL_AVAIL)
Draw sizes random individuals from a population. If a single sizes is given, individuals are drawn randomly
from the whole population or from specified (virtual) subpopulations (parameter subPops). Otherwise, a list of
numbers should be used to specify number of samples from each subpopulation, which can be all subpopulations
if subPops=ALL_AVAIL (default), or from each of the specified (virtual) subpopulations. This function
returns a population with all extracted individuals.

12.4.4 Function drawRandomSamples

simuPOP.sampling.drawRandomSamples(pop, sizes, numOfSamples=1, subPops=ALL_AVAIL)
Draw numOfSamples random samples from a population and return a list of populations. Please refer to
function drawRandomSample for more details about parameters sizes and subPops.

12.4. Module simuPOP.sampling 355

simuPOP

12.4.5 class CaseControlSampler

class simuPOP.sampling.CaseControlSampler
A sampler that draws affected and unaffected individuals randomly.

CaseControlSampler(cases, controls, subPops=ALL_AVAIL)
Ceates a case-control sampler with specified number of cases and controls.

drawSample(input_pop)
Draw a case control sample

drawSamples(pop, numOfSamples)
Draw multiple samples and return a list of populations.

prepareSample(input_pop)
Find out indexes all affected and unaffected individuales.

12.4.6 Function drawCaseControlSample

simuPOP.sampling.drawCaseControlSample(pop, cases, controls, subPops=ALL_AVAIL)
Draw a case-control samples from a population with cases affected and controls unaffected individu-
als. If single cases and controls are given, individuals are drawn randomly from the whole Population
or from specified (virtual) subpopulations (parameter subPops). Otherwise, a list of numbers should be
used to specify number of cases and controls from each subpopulation, which can be all subpopulations if
subPops=ALL_AVAIL (default), or from each of the specified (virtual) subpopulations. This function returns
a population with all extracted individuals.

12.4.7 Function drawCaseControlSamples

simuPOP.sampling.drawCaseControlSamples(pop, cases, controls, numOfSamples=1, sub-
Pops=ALL_AVAIL)

Draw numOfSamples case-control samples from a population with cases affected and controls unaf-
fected individuals and return a list of populations. Please refer to function drawCaseControlSample for a
detailed descriptions of parameters.

12.4.8 class PedigreeSampler

class simuPOP.sampling.PedigreeSampler
The base class of all pedigree based sampler.

PedigreeSampler(families, subPops=ALL_AVAIL, idField=’ind_id’, fatherField=’father_id’, moth-
erField=’mother_id’)

Creates a pedigree sampler with parameters

families number of families. This can be a number or a list of numbers. In the latter case, specified
families are drawn from each subpopulation.

subPops A list of (virtual) subpopulations from which samples are drawn. The default value is
ALL_AVAIL, which means all available subpopulations of a population.

drawSample(input_pop)
Randomly select Pedigrees

drawSamples(pop, numOfSamples)
Draw multiple samples and return a list of populations.

356 Chapter 12. Utility Modules

simuPOP

family(id)
Get the family of individual with id.

prepareSample(pop, loci=[], infoFields=[], ancGens=True)
Prepare self.pedigree, some pedigree sampler might need additional loci and information fields for this
sampler.

12.4.9 class AffectedSibpairSampler

class simuPOP.sampling.AffectedSibpairSampler
A sampler that draws a nuclear family with two affected offspring.

AffectedSibpairSampler(families, subPops=ALL_AVAIL, idField=’ind_id’, father-
Field=’father_id’, motherField=’mother_id’)

Initialize an affected sibpair sampler.

drawSample(input_pop)
Randomly select Pedigrees

drawSamples(pop, numOfSamples)
Draw multiple samples and return a list of populations.

family(id)
Return id, its spouse and their children

prepareSample(input_pop)
Find the father or all affected sibpair families

12.4.10 Function drawAffectedSibpairSample

simuPOP.sampling.drawAffectedSibpairSample(pop, families, subPops=ALL_AVAIL, id-
Field=’ind_id’, fatherField=’father_id’,
motherField=’mother_id’)

Draw affected sibpair samples from a population. If a single families is given, affected sibpairs and their
parents are drawn randomly from the whole population or from specified (virtual) subpopulations (parameter
subPops). Otherwise, a list of numbers should be used to specify number of families from each subpopulation,
which can be all subpopulations if subPops=ALL_AVAIL (default), or from each of the specified (virtual)
subpopulations. This function returns a population that contains extracted individuals.

12.4.11 Function drawAffectedSibpairSamples

simuPOP.sampling.drawAffectedSibpairSamples(pop, families, numOfSamples=1, sub-
Pops=ALL_AVAIL, idField=’ind_id’,
fatherField=’father_id’, mother-
Field=’mother_id’)

Draw numOfSamples affected sibpair samplesa from population pop and return a list of populations. Please
refer to function drawAffectedSibpairSample for a description of other parameters.

12.4.12 class NuclearFamilySampler

class simuPOP.sampling.NuclearFamilySampler
A sampler that draws nuclear families with specified number of affected parents and offspring.

12.4. Module simuPOP.sampling 357

simuPOP

NuclearFamilySampler(families, numOffspring, affectedParents=0, affectedOffspring=0, sub-
Pops=ALL_AVAIL, idField=’ind_id’, fatherField=’father_id’, mother-
Field=’mother_id’)

Creates a nuclear family sampler with parameters

families number of families. This can be a number or a list of numbers. In the latter case, specified
families are drawn from each subpopulation.

numOffspring number of offspring. This can be a fixed number or a range [min, max].

affectedParents number of affected parents. This can be a fixed number or a range [min, max].

affectedOffspring number of affected offspring. This can be a fixed number of a range [min, max].

subPops A list of (virtual) subpopulations from which samples are drawn. The default value is
ALL_AVAIL, which means all available subpopulations of a population.

drawSample(input_pop)
Randomly select Pedigrees

drawSamples(pop, numOfSamples)
Draw multiple samples and return a list of populations.

family(id)
Return id, its spouse and their children

prepareSample(input_pop)
Prepare self.pedigree, some pedigree sampler might need additional loci and information fields for this
sampler.

12.4.13 Function drawNuclearFamilySample

simuPOP.sampling.drawNuclearFamilySample(pop, families, numOffspring, affectedParents=0,
affectedOffspring=0, subPops=ALL_AVAIL, id-
Field=’ind_id’, fatherField=’father_id’, mother-
Field=’mother_id’)

Draw nuclear families from a population. Number of offspring, number of affected parents and num-
ber of affected offspring should be specified using parameters numOffspring, affectedParents and
affectedOffspring, which can all be a single number, or a range [a, b] (b is incldued). If a single
families is given, Pedigrees are drawn randomly from the whole population or from specified (virtual) sub-
populations (parameter subPops). Otherwise, a list of numbers should be used to specify numbers of families
from each subpopulation, which can be all subpopulations if subPops=ALL_AVAIL (default), or from each
of the specified (virtual) subpopulations. This function returns a population that contains extracted individuals.

12.4.14 Function drawNuclearFamilySamples

simuPOP.sampling.drawNuclearFamilySamples(pop, families, numOffspring, affectedParents=0,
affectedOffspring=0, numOfSamples=1, sub-
Pops=ALL_AVAIL, idField=’ind_id’, father-
Field=’father_id’, motherField=’mother_id’)

Draw numOfSamples affected sibpair samplesa from population pop and return a list of populations. Please
refer to function drawNuclearFamilySample for a description of other parameters.

12.4.15 class ThreeGenFamilySampler

class simuPOP.sampling.ThreeGenFamilySampler
A sampler that draws three-generation families with specified pedigree size and number of affected individuals.

358 Chapter 12. Utility Modules

simuPOP

ThreeGenFamilySampler(families, numOffspring, pedSize, numOfAffected=0, sub-
Pops=ALL_AVAIL, idField=’ind_id’, fatherField=’father_id’, mother-
Field=’mother_id’)

families number of families. This can be a number or a list of numbers. In the latter case, specified
families are drawn from each subpopulation.

numOffspring number of offspring. This can be a fixed number or a range [min, max].

pedSize number of individuals in the Pedigree. This can be a fixed number or a range [min, max].

numAfffected number of affected individuals in the Pedigree. This can be a fixed number or a range
[min, max]

subPops A list of (virtual) subpopulations from which samples are drawn. The default value is
ALL_AVAIL, which means all available subpopulations of a population.

drawSample(input_pop)
Randomly select Pedigrees

drawSamples(pop, numOfSamples)
Draw multiple samples and return a list of populations.

family(id)
Return id, its spouse, their children, children’s spouse and grandchildren

prepareSample(input_pop)
Prepare self.pedigree, some pedigree sampler might need additional loci and information fields for this
sampler.

12.4.16 Function drawThreeGenFamilySample

simuPOP.sampling.drawThreeGenFamilySample(pop, families, numOffspring, pedSize, nu-
mOfAffected=0, subPops=ALL_AVAIL, id-
Field=’ind_id’, fatherField=’father_id’,
motherField=’mother_id’)

Draw three-generation families from a population. Such families consist of grant parents, their children, spouse
of these children, and grand children. Number of offspring, total number of individuals, and total num-
ber of affected individuals in a pedigree should be specified using parameters numOffspring, pedSize
and numOfAffected, which can all be a single number, or a range [a, b] (b is incldued). If a single
families is given, Pedigrees are drawn randomly from the whole Population or from specified (virtual) sub-
populations (parameter subPops). Otherwise, a list of numbers should be used to specify numbers of families
from each subpopulation, which can be all subpopulations if subPops=ALL_AVAIL (default), or from each
of the specified (virtual) subpopulations. This function returns a population that contains extracted individuals.

12.4.17 Function drawThreeGenFamilySamples

simuPOP.sampling.drawThreeGenFamilySamples(pop, families, numOffspring, pedSize, nu-
mOfAffected=0, numOfSamples=1, sub-
Pops=ALL_AVAIL, idField=’ind_id’, father-
Field=’father_id’, motherField=’mother_id’)

Draw numOfSamples three-generation pedigree samples from population pop and return a list of populations.
Please refer to function drawThreeGenFamilySample for a description of other parameters.

12.4. Module simuPOP.sampling 359

simuPOP

12.4.18 class CombinedSampler

class simuPOP.sampling.CombinedSampler
A combined sampler accepts a list of sampler objects, draw samples and combine the returned sample into a
single population. An id field is required to use this sampler, which will be used to remove extra copies of
individuals who have been drawn by different samplers.

CombinedSampler(samplers=[], idField=’ind_id’)

samplers A list of samplers

drawSample(pop)
Draw and return a sample.

drawSamples(pop, numOfSamples)
Draw multiple samples and return a list of populations.

prepareSample(pop, rearrange)
Prepare passed population object for sampling according to parameter subPops. If samples are drawn
from the whole population, a Population will be trimmed if only selected (virtual) subpopulations are
used. If samples are drawn separately from specified subpopulations, Population pop will be rearranged
(if rearrange==True) so that each subpoulation corresponds to one element in parameter subPops.

12.4.19 Function drawCombinedSample

simuPOP.sampling.drawCombinedSample(pop, samplers, idField=’ind_id’)
Draw different types of samples using a list of samplers. A Population consists of all individuals from
these samples will be returned. An idField that stores an unique ID for all individuals is needed to remove
duplicated individuals who are drawn multiple numOfSamples from these samplers.

12.4.20 Function drawCombinedSamples

simuPOP.sampling.drawCombinedSamples(pop, samplers, numOfSamples=1, idField=’ind_id’)
Draw combined samples numOfSamples numOfSamples and return a list of populations. Please refer to
function drawCombinedSample for details about parameters samplers and idField.

12.5 Module simuPOP.gsl

This module exposes the following GSL (GUN Scientific Library) functions used by simuPOP to the user interface.
Although more functions may be added from time to time, this module is not intended to become a complete wrapper
for GSL. Please refer to the GSL reference manual (http://www.gnu.org/software/gsl/manual/html_node/) for details
about these functions. Note that random number generation functions are wrapped into the simuPOP.RNG class.

• gsl_cdf_gaussian_P(x, sigma)

• gsl_cdf_gaussian_Q(x, sigma)

• gsl_cdf_gaussian_Pinv(P, sigma)

• gsl_cdf_gaussian_Qinv(Q, sigma)

• gsl_cdf_ugaussian_P(x)

• gsl_cdf_ugaussian_Q(x)

• gsl_cdf_ugaussian_Pinv(P)

360 Chapter 12. Utility Modules

http://www.gnu.org/software/gsl/manual/html_node/

simuPOP

• gsl_cdf_ugaussian_Qinv(Q)

• gsl_cdf_exponential_P(x, mu)

• gsl_cdf_exponential_Q(x, mu)

• gsl_cdf_exponential_Pinv(P, mu)

• gsl_cdf_exponential_Qinv(Q, mu)

• gsl_cdf_chisq_P(x, nu)

• gsl_cdf_chisq_Q(x, nu)

• gsl_cdf_chisq_Pinv(P, nu)

• gsl_cdf_chisq_Qinv(Q, nu)

• gsl_cdf_gamma_P(x, a, b)

• gsl_cdf_gamma_Q(x, a, b)

• gsl_cdf_gamma_Pinv(P, a, b)

• gsl_cdf_gamma_Qinv(Q, a, b)

• gsl_ran_gamma_pdf(x, a, b)

• gsl_cdf_beta_P(x, a, b)

• gsl_cdf_beta_Q(x, a, b)

• gsl_cdf_beta_Pinv(P, a, b)

• gsl_cdf_beta_Qinv(Q, a, b)

• gsl_ran_beta_pdf(x, a, b)

• gsl_cdf_binomial_P(k, p, n)

• gsl_cdf_binomial_Q(k, p, n)

• gsl_ran_binomial_pdf(k, p, n)

• gsl_cdf_poisson_P(k, mu)

• gsl_cdf_poisson_Q(k, mu)

• gsl_ran_poisson_pdf(k, mu)

12.5. Module simuPOP.gsl 361

simuPOP

362 Chapter 12. Utility Modules

Python Module Index

s
simuOpt, 337
simuPOP.demography, 347
simuPOP.gsl, 360
simuPOP.sampling, 354
simuPOP.utils, 338

363

simuPOP

364 Python Module Index

Index

Symbols
__cmp__() (Individual method), 264
__cmp__() (Population method), 267
__cmp__() (Simulator method), 275

A
absIndIndex() (Population method), 266
absLocusIndex() (GenoStruTrait method), 261
acgtMutate() (built-in function), 333
AcgtMutator (built-in class), 311
AcgtMutator() (AcgtMutator method), 311
add() (Simulator method), 275
addChrom() (Population method), 266
addChromFrom() (Population method), 267
addIndFrom() (Population method), 267
addInfoFields() (Population method), 267
addLoci() (Population method), 267
addLociFrom() (Population method), 267
AdmixtureEvent (class in simuPOP.demography), 350
AdmixtureEvent() (simuPOP.demography.AdmixtureEvent

method), 350
affected() (Individual method), 263
AffectedSibpairSampler (class in simuPOP.sampling),

357
AffectedSibpairSampler()

(simuPOP.sampling.AffectedSibpairSampler
method), 357

AffectionSplitter (built-in class), 277
AffectionSplitter() (AffectionSplitter method), 277
allele() (Individual method), 263
alleleChar() (Individual method), 264
alleleLineage() (Individual method), 264
alleleName() (GenoStruTrait method), 261
alleleNames() (GenoStruTrait method), 262
allIndividuals() (Population method), 272
ancestor() (Population method), 267
ancestralGens() (Population method), 267
apply() (BaseOperator method), 296
apply() (BasePenetrance method), 312

apply() (BaseQuanTrait method), 314
apply() (simuPOP.demography.AdmixtureEvent method),

350
apply() (simuPOP.demography.DemographicEvent

method), 349
apply() (simuPOP.demography.ExpansionEvent method),

349
apply() (simuPOP.demography.MergeEvent method), 350
apply() (simuPOP.demography.ResizeEvent method), 350
apply() (simuPOP.demography.SplitEvent method), 350
applyToIndividual() (BasePenetrance method), 312
asPedigree() (Population method), 272
asPopulation() (Pedigree method), 274

B
backwardMigrate() (built-in function), 334
BackwardMigrator (built-in class), 301
BackwardMigrator() (BackwardMigrator method), 301
BaseMutator (built-in class), 307
BaseMutator() (BaseMutator method), 307
BaseOperator (built-in class), 295
BaseOperator() (BaseOperator method), 296
BasePenetrance (built-in class), 311
BasePenetrance() (BasePenetrance method), 312
BaseQuanTrait (built-in class), 314
BaseQuanTrait() (BaseQuanTrait method), 314
BaseSampler (class in simuPOP.sampling), 354
BaseSampler() (simuPOP.sampling.BaseSampler

method), 355
BaseSelector (built-in class), 315
BaseSelector() (BaseSelector method), 316
BaseVspSplitter (built-in class), 276
BaseVspSplitter() (BaseVspSplitter method), 276

C
CaseControlSampler (class in simuPOP.sampling), 356
CaseControlSampler() (simuPOP.sampling.CaseControlSampler

method), 356
chooseParents() (CombinedParentsChooser method), 284

365

simuPOP

chooseParents() (PolyParentsChooser method), 283
chooseParents() (PyParentsChooser method), 284
chooseParents() (RandomParentChooser method), 283
chooseParents() (RandomParentsChooser method), 283
chooseParents() (SequentialParentChooser method), 282
chromBegin() (GenoStruTrait method), 262
chromByName() (GenoStruTrait method), 262
chromEnd() (GenoStruTrait method), 262
chromLocusPair() (GenoStruTrait method), 262
chromName() (GenoStruTrait method), 262
chromNames() (GenoStruTrait method), 262
chromType() (GenoStruTrait method), 262
chromTypes() (GenoStruTrait method), 262
clearChromosome() (GenoTransmitter method), 303
clone() (BaseOperator method), 296
clone() (BaseVspSplitter method), 276
clone() (Pedigree method), 273
clone() (Population method), 267
clone() (Simulator method), 275
CloneGenoTransmitter (built-in class), 304
CloneGenoTransmitter() (CloneGenoTransmitter

method), 304
CloneMating (built-in class), 286
CloneMating() (CloneMating method), 286
closeOutput() (built-in function), 291
CombinedParentsChooser (built-in class), 284
CombinedParentsChooser() (CombinedParentsChooser

method), 284
CombinedSampler (class in simuPOP.sampling), 360
CombinedSampler() (simuPOP.sampling.CombinedSampler

method), 360
CombinedSplitter (built-in class), 279
CombinedSplitter() (CombinedSplitter method), 279
ConditionalMating (built-in class), 281
ConditionalMating() (ConditionalMating method), 281
contextMutate() (built-in function), 333
ContextMutator (built-in class), 310
ContextMutator() (ContextMutator method), 310
ControlledOffspringGenerator (built-in class), 286
ControlledOffspringGenerator() (ControlledOff-

springGenerator method), 286
ControlledRandomMating (built-in class), 288
ControlledRandomMating() (ControlledRandomMating

method), 288
copyChromosome() (GenoTransmitter method), 303
copyChromosomes() (GenoTransmitter method), 303
CosiModel (class in simuPOP.demography), 353
CosiModel() (simuPOP.demography.CosiModel method),

353

D
DemographicEvent (class in simuPOP.demography), 349
DemographicEvent() (simuPOP.demography.DemographicEvent

method), 349

describeEvolProcess() (built-in function), 291
DiscardIf (built-in class), 330
discardIf() (built-in function), 333
DiscardIf() (DiscardIf method), 330
done() (simuPOP.utils.ProgressBar method), 342
draw() (WeightedSampler method), 290
drawAffectedSibpairSample() (in module

simuPOP.sampling), 357
drawAffectedSibpairSamples() (in module

simuPOP.sampling), 357
drawCaseControlSample() (in module

simuPOP.sampling), 356
drawCaseControlSamples() (in module

simuPOP.sampling), 356
drawCombinedSample() (in module simuPOP.sampling),

360
drawCombinedSamples() (in module

simuPOP.sampling), 360
drawNuclearFamilySample() (in module

simuPOP.sampling), 358
drawNuclearFamilySamples() (in module

simuPOP.sampling), 358
drawRandomSample() (in module simuPOP.sampling),

355
drawRandomSamples() (in module simuPOP.sampling),

355
drawSample() (simuPOP.sampling.AffectedSibpairSampler

method), 357
drawSample() (simuPOP.sampling.BaseSampler

method), 355
drawSample() (simuPOP.sampling.CaseControlSampler

method), 356
drawSample() (simuPOP.sampling.CombinedSampler

method), 360
drawSample() (simuPOP.sampling.NuclearFamilySampler

method), 358
drawSample() (simuPOP.sampling.PedigreeSampler

method), 356
drawSample() (simuPOP.sampling.RandomSampler

method), 355
drawSample() (simuPOP.sampling.ThreeGenFamilySampler

method), 359
drawSamples() (simuPOP.sampling.AffectedSibpairSampler

method), 357
drawSamples() (simuPOP.sampling.BaseSampler

method), 355
drawSamples() (simuPOP.sampling.CaseControlSampler

method), 356
drawSamples() (simuPOP.sampling.CombinedSampler

method), 360
drawSamples() (simuPOP.sampling.NuclearFamilySampler

method), 358
drawSamples() (simuPOP.sampling.PedigreeSampler

method), 356

366 Index

simuPOP

drawSamples() (simuPOP.sampling.RandomSampler
method), 355

drawSamples() (simuPOP.sampling.ThreeGenFamilySampler
method), 359

drawSamples() (WeightedSampler method), 290
drawThreeGenFamilySample() (in module

simuPOP.sampling), 359
drawThreeGenFamilySamples() (in module

simuPOP.sampling), 359
dump() (built-in function), 333
Dumper (built-in class), 331
Dumper() (Dumper method), 331
dvars() (Population method), 267
dvars() (Simulator method), 275

E
EventBasedModel (class in simuPOP.demography), 348
EventBasedModel() (simuPOP.demography.EventBasedModel

method), 348
evolve() (Population method), 272
evolve() (Simulator method), 275
ExpansionEvent (class in simuPOP.demography), 349
ExpansionEvent() (simuPOP.demography.ExpansionEvent

method), 349
ExponentialGrowthModel (class in

simuPOP.demography), 351
ExponentialGrowthModel()

(simuPOP.demography.ExponentialGrowthModel
method), 351

export() (in module simuPOP.utils), 347
Exporter (class in simuPOP.utils), 343
Exporter() (simuPOP.utils.Exporter method), 346
extract() (Simulator method), 276
extractIndividuals() (Population method), 267
extractSubPops() (Population method), 268

F
family() (simuPOP.sampling.AffectedSibpairSampler

method), 357
family() (simuPOP.sampling.NuclearFamilySampler

method), 358
family() (simuPOP.sampling.PedigreeSampler method),

356
family() (simuPOP.sampling.ThreeGenFamilySampler

method), 359
freq() (simuPOP.utils.Trajectory method), 339
func() (simuPOP.utils.Trajectory method), 339
function

loadPopulation, 46

G
GenoStruTrait

chromName, 23
chromType, 23

infoField, 23
infoFields, 23
locusPos, 23
numChrom, 23
numLoci, 23
ploidy, 23
ploidyName, 23

GenoStruTrait (built-in class), 261
GenoStruTrait() (GenoStruTrait method), 261
GenoTransmitter (built-in class), 303
GenoTransmitter() (GenoTransmitter method), 303
genotype() (Individual method), 264
genotype() (Population method), 268
GenotypeSplitter (built-in class), 278
GenotypeSplitter() (GenotypeSplitter method), 278
genotypic structure, 23
getRNG() (built-in function), 292

H
HaplodiploidGenoTransmitter (built-in class), 305
HaplodiploidGenoTransmitter() (HaplodiploidGeno-

Transmitter method), 305
HaplodiploidMating (built-in class), 287
HaplodiploidMating() (HaplodiploidMating method),

288
HermaphroditicMating (built-in class), 288
HermaphroditicMating() (HermaphroditicMating

method), 288
HeteroMating (built-in class), 280
HeteroMating() (HeteroMating method), 280
HomoMating (built-in class), 280
HomoMating() (HomoMating method), 280

I
identifyAncestors() (Pedigree method), 273
identifyFamilies() (Pedigree method), 273
identifyOffspring() (Pedigree method), 273
IdTagger (built-in class), 318
IdTagger() (IdTagger method), 318
IfElse (built-in class), 329
IfElse() (IfElse method), 329
importPopulation() (in module simuPOP.utils), 346
indByID() (Pedigree method), 273
indByID() (Population method), 268
index

absolute, 12
relative, 12

indexesOfLoci() (GenoStruTrait method), 262
indInfo() (Population method), 268
Individual, 261
Individual (built-in class), 263
Individual() (Individual method), 263
individual() (Population method), 268
individuals() (Population method), 268

Index 367

simuPOP

individualsWithRelatives() (Pedigree method), 273
info() (Individual method), 264
InfoEval (built-in class), 299
infoEval() (built-in function), 333
InfoEval() (InfoEval method), 299
InfoExec (built-in class), 299
infoExec() (built-in function), 333
InfoExec() (InfoExec method), 300
infoField() (GenoStruTrait method), 262
infoFields() (GenoStruTrait method), 262
infoIdx() (GenoStruTrait method), 262
InfoSplitter (built-in class), 277
InfoSplitter() (InfoSplitter method), 277
InheritTagger (built-in class), 319
InheritTagger() (InheritTagger method), 319
InitGenotype (built-in class), 297
initGenotype() (built-in function), 333
InitGenotype() (InitGenotype method), 297
initialize() (CombinedParentsChooser method), 284
initialize() (PolyParentsChooser method), 283
initialize() (PyParentsChooser method), 284
initialize() (RandomParentChooser method), 283
initialize() (RandomParentsChooser method), 283
initialize() (SequentialParentChooser method), 282
initializer, 296
InitInfo (built-in class), 297
initInfo() (built-in function), 334
InitInfo() (InitInfo method), 297
InitLineage (built-in class), 298
InitLineage() (InitLineage method), 298
InitSex (built-in class), 296
initSex() (built-in function), 334
InitSex() (InitSex method), 296
InstantChangeModel (class in simuPOP.demography),

351
InstantChangeModel() (simuPOP.demography.InstantChangeModel

method), 351

K
kAlleleMutate() (built-in function), 334
KAlleleMutator (built-in class), 308
KAlleleMutator() (KAlleleMutator method), 308

L
lineage() (Individual method), 264
lineage() (Population method), 268
LinearGrowthModel (class in simuPOP.demography),

351
LinearGrowthModel() (simuPOP.demography.LinearGrowthModel

method), 351
loadPedigree() (built-in function), 291
loadPopulation() (built-in function), 291
locateRelatives() (Pedigree method), 273
lociByNames() (GenoStruTrait method), 262

lociDist() (GenoStruTrait method), 262
lociNames() (GenoStruTrait method), 262
lociPos() (GenoStruTrait method), 262
locusByName() (GenoStruTrait method), 263
locusName() (GenoStruTrait method), 263
locusPos() (GenoStruTrait method), 263

M
MaPenetrance (built-in class), 312
maPenetrance() (built-in function), 334
MaPenetrance() (MaPenetrance method), 312
MapPenetrance (built-in class), 312
mapPenetrance() (built-in function), 334
MapPenetrance() (MapPenetrance method), 312
MapSelector (built-in class), 316
MapSelector() (MapSelector method), 316
MaSelector (built-in class), 316
MaSelector() (MaSelector method), 316
mating scheme, 157, 280
MatingScheme (built-in class), 280
MatingScheme() (MatingScheme method), 280
matrixMutate() (built-in function), 334
MatrixMutator (built-in class), 308
MatrixMutator() (MatrixMutator method), 308
MendelianGenoTransmitter (built-in class), 304
MendelianGenoTransmitter() (MendelianGenoTransmit-

ter method), 304
MergeEvent (class in simuPOP.demography), 350
MergeEvent() (simuPOP.demography.MergeEvent

method), 350
MergeSubPops (built-in class), 302
mergeSubPops() (built-in function), 334
MergeSubPops() (MergeSubPops method), 302
mergeSubPops() (Population method), 268
migr2DSteppingStoneRates() (in module

simuPOP.demography), 348
migrate() (built-in function), 334
Migrator, 300
Migrator (built-in class), 300
Migrator() (Migrator method), 301
migrHierarchicalIslandRates() (in module

simuPOP.demography), 348
migrIslandRates() (in module simuPOP.demography),

347
migrSteppingStoneRates() (in module

simuPOP.demography), 348
MitochondrialGenoTransmitter (built-in class), 305
MitochondrialGenoTransmitter() (MitochondrialGeno-

Transmitter method), 305
mixedMutate() (built-in function), 335
MixedMutator (built-in class), 310
MixedMutator() (MixedMutator method), 310
MlPenetrance (built-in class), 313
mlPenetrance() (built-in function), 335

368 Index

simuPOP

MlPenetrance() (MlPenetrance method), 313
MlSelector (built-in class), 317
MlSelector() (MlSelector method), 317
moduleInfo, 21
moduleInfo() (built-in function), 292
MonogamousMating (built-in class), 287
MonogamousMating() (MonogamousMating method),

287
MultiStageModel (class in simuPOP.demography), 352
MultiStageModel() (simuPOP.demography.MultiStageModel

method), 352
mutants() (Individual method), 264
mutants() (Population method), 269
mutants() (simuPOP.utils.Trajectory method), 339
Mutation, 307
mutators() (simuPOP.utils.Trajectory method), 339

N
name() (AffectionSplitter method), 277
name() (BaseVspSplitter method), 276
name() (CombinedSplitter method), 279
name() (GenotypeSplitter method), 279
name() (InfoSplitter method), 277
name() (ProductSplitter method), 279
name() (ProportionSplitter method), 278
name() (RangeSplitter method), 278
name() (RNG method), 289
name() (SexSplitter method), 277
NoneOp (built-in class), 331
NoneOp() (NoneOp method), 331
NuclearFamilySampler (class in simuPOP.sampling), 357
NuclearFamilySampler()

(simuPOP.sampling.NuclearFamilySampler
method), 357

numChrom() (GenoStruTrait method), 263
numLoci() (GenoStruTrait method), 263
numRep() (Simulator method), 276
numSubPop() (Population method), 269
numVirtualSubPop() (AffectionSplitter method), 277
numVirtualSubPop() (BaseVspSplitter method), 276
numVirtualSubPop() (CombinedSplitter method), 279
numVirtualSubPop() (GenotypeSplitter method), 279
numVirtualSubPop() (InfoSplitter method), 277
numVirtualSubPop() (Population method), 269
numVirtualSubPop() (ProductSplitter method), 279
numVirtualSubPop() (ProportionSplitter method), 278
numVirtualSubPop() (RangeSplitter method), 278
numVirtualSubPop() (SexSplitter method), 277

O
OffspringGenerator (built-in class), 284
OffspringGenerator() (OffspringGenerator method), 284
OffspringTagger (built-in class), 320
OffspringTagger() (OffspringTagger method), 320

operator
Stat, 45

OutOfAfricaModel (class in simuPOP.demography), 352
OutOfAfricaModel() (simuPOP.demography.OutOfAfricaModel

method), 352

P
parallelizable() (PedigreeMating method), 282
ParentsTagger (built-in class), 320
ParentsTagger() (ParentsTagger method), 320
Pause (built-in class), 332
Pause() (Pause method), 332
Pedigree, 261
Pedigree (built-in class), 272
Pedigree() (Pedigree method), 272
PedigreeMating (built-in class), 281
PedigreeMating() (PedigreeMating method), 282
PedigreeSampler (class in simuPOP.sampling), 356
PedigreeSampler() (simuPOP.sampling.PedigreeSampler

method), 356
PedigreeTagger (built-in class), 320
PedigreeTagger() (PedigreeTagger method), 320
penetrance, 311
ploidy() (GenoStruTrait method), 263
ploidyName() (GenoStruTrait method), 263
plot() (simuPOP.demography.CosiModel method), 354
plot() (simuPOP.demography.EventBasedModel

method), 349
plot() (simuPOP.demography.ExponentialGrowthModel

method), 351
plot() (simuPOP.demography.InstantChangeModel

method), 351
plot() (simuPOP.demography.LinearGrowthModel

method), 352
plot() (simuPOP.demography.MultiStageModel method),

352
plot() (simuPOP.demography.OutOfAfricaModel

method), 352
plot() (simuPOP.demography.SettlementOfNewWorldModel

method), 353
pointMutate() (built-in function), 335
PointMutator (built-in class), 310
PointMutator() (PointMutator method), 310
PolygamousMating (built-in class), 287
PolygamousMating() (PolygamousMating method), 287
PolyParentsChooser (built-in class), 283
PolyParentsChooser() (PolyParentsChooser method), 283
popSize() (Population method), 269
Population, 32, 261

Population, 45
save, 46
vars, 45

Population (built-in class), 265
Population() (Population method), 266

Index 369

simuPOP

population() (Simulator method), 276
populations() (Simulator method), 276
prepareSample() (simuPOP.sampling.AffectedSibpairSampler

method), 357
prepareSample() (simuPOP.sampling.BaseSampler

method), 355
prepareSample() (simuPOP.sampling.CaseControlSampler

method), 356
prepareSample() (simuPOP.sampling.CombinedSampler

method), 360
prepareSample() (simuPOP.sampling.NuclearFamilySampler

method), 358
prepareSample() (simuPOP.sampling.PedigreeSampler

method), 357
prepareSample() (simuPOP.sampling.RandomSampler

method), 355
prepareSample() (simuPOP.sampling.ThreeGenFamilySampler

method), 359
ProductSplitter (built-in class), 279
ProductSplitter() (ProductSplitter method), 279
ProgressBar (class in simuPOP.utils), 341
ProgressBar() (simuPOP.utils.ProgressBar method), 341
ProportionSplitter (built-in class), 278
ProportionSplitter() (ProportionSplitter method), 278
push() (Population method), 269
PyEval (built-in class), 298
pyEval() (built-in function), 335
PyEval() (PyEval method), 298
PyExec (built-in class), 299
pyExec() (built-in function), 335
PyExec() (PyExec method), 299
PyMlPenetrance (built-in class), 314
pyMlPenetrance() (built-in function), 335
PyMlPenetrance() (PyMlPenetrance method), 314
PyMlSelector (built-in class), 318
PyMlSelector() (PyMlSelector method), 318
pyMutate() (built-in function), 335
PyMutator (built-in class), 309
PyMutator() (PyMutator method), 309
PyOperator (built-in class), 330
PyOperator() (PyOperator method), 331
PyOutput (built-in class), 298
PyOutput() (PyOutput method), 298
PyParentsChooser (built-in class), 284
PyParentsChooser() (PyParentsChooser method), 284
PyPenetrance (built-in class), 313
pyPenetrance() (built-in function), 335
PyPenetrance() (PyPenetrance method), 313
PyQuanTrait (built-in class), 315
pyQuanTrait() (built-in function), 336
PyQuanTrait() (PyQuanTrait method), 315
PySelector (built-in class), 317
PySelector() (PySelector method), 318
PyTagger (built-in class), 321

PyTagger() (PyTagger method), 321

Q
quantitative trait, 314

R
r, 17
randBinomial() (RNG method), 289
randChisq() (RNG method), 289
randExponential() (RNG method), 290
randGamma() (RNG method), 290
randGeometric() (RNG method), 290
randInt() (RNG method), 290
randMultinomial() (RNG method), 290
randNormal() (RNG method), 290
RandomMating (built-in class), 287
RandomMating() (RandomMating method), 287
RandomParentChooser (built-in class), 282
RandomParentChooser() (RandomParentChooser

method), 283
RandomParentsChooser (built-in class), 283
RandomParentsChooser() (RandomParentsChooser

method), 283
RandomSampler (class in simuPOP.sampling), 355
RandomSampler() (simuPOP.sampling.RandomSampler

method), 355
RandomSelection (built-in class), 286
RandomSelection() (RandomSelection method), 286
randPoisson() (RNG method), 290
randTruncatedBinomial() (RNG method), 290
randTruncatedPoisson() (RNG method), 290
randUniform() (RNG method), 290
RangeSplitter (built-in class), 278
RangeSplitter() (RangeSplitter method), 278
recodeAlleles() (Population method), 269
Recombinator (built-in class), 305
Recombinator() (Recombinator method), 306
removeIndividuals() (Population method), 269
removeInfoFields() (Population method), 270
removeLoci() (Population method), 270
removeSubPops() (Population method), 270
reset() (IdTagger method), 319
resize() (Population method), 270
ResizeEvent (class in simuPOP.demography), 349
ResizeEvent() (simuPOP.demography.ResizeEvent

method), 349
ResizeSubPops (built-in class), 303
resizeSubPops() (built-in function), 336
ResizeSubPops() (ResizeSubPops method), 303
RNG (built-in class), 289
RNG() (RNG method), 289

S
save() (Pedigree method), 274

370 Index

simuPOP

save() (Population method), 270
saveCSV() (in module simuPOP.utils), 342
SavePopulation (built-in class), 332
SavePopulation() (SavePopulation method), 332
seed() (RNG method), 290
selection, 315
SelfingGenoTransmitter (built-in class), 304
SelfingGenoTransmitter() (SelfingGenoTransmitter

method), 304
SelfMating (built-in class), 288
SelfMating() (SelfMating method), 288
SequentialParentChooser (built-in class), 282
SequentialParentChooser() (SequentialParentChooser

method), 282
SequentialParentsChooser (built-in class), 282
SequentialParentsChooser() (SequentialParentsChooser

method), 282
set() (RNG method), 290
setAffected() (Individual method), 264
setAllele() (Individual method), 264
setAlleleLineage() (Individual method), 264
setAncestralDepth() (Population method), 270
setGenotype() (Individual method), 264
setGenotype() (Population method), 270
setIndInfo() (Population method), 270
setInfo() (Individual method), 265
setInfoFields() (Population method), 270
setLineage() (Individual method), 265
setLineage() (Population method), 270
setOptions() (built-in function), 293
setOptions() (in module simuOpt), 338
setRNG, 21
setRNG() (built-in function), 292
setSex() (Individual method), 265
setSubPopByIndInfo() (Population method), 270
setSubPopName() (Population method), 270
SettlementOfNewWorldModel (class in

simuPOP.demography), 353
SettlementOfNewWorldModel()

(simuPOP.demography.SettlementOfNewWorldModel
method), 353

setVirtualSplitter() (Population method), 270
sex() (Individual method), 265
SexSplitter (built-in class), 277
SexSplitter() (SexSplitter method), 277
simuBackward() (simuPOP.utils.TrajectorySimulator

method), 340
simuForward() (simuPOP.utils.TrajectorySimulator

method), 340
simulateBackwardTrajectory() (in module

simuPOP.utils), 341
simulateForwardTrajectory() (in module simuPOP.utils),

341
Simulator, 261

Simulator (built-in class), 275
Simulator() (Simulator method), 275
simuOpt (module), 337
simuPOP.demography (module), 347
simuPOP.gsl (module), 360
simuPOP.sampling (module), 354
simuPOP.utils (module), 338
snpMutate() (built-in function), 336
SNPMutator (built-in class), 311
SNPMutator() (SNPMutator method), 311
sortIndividuals() (Population method), 271
SplitEvent (class in simuPOP.demography), 350
SplitEvent() (simuPOP.demography.SplitEvent method),

350
splitSubPop() (Population method), 271
SplitSubPops, 74
SplitSubPops (built-in class), 302
splitSubPops() (built-in function), 336
SplitSubPops() (SplitSubPops method), 302
Stat (built-in class), 321
stat() (built-in function), 336
Stat() (Stat method), 321
stepwiseMutate() (built-in function), 336
StepwiseMutator (built-in class), 309
StepwiseMutator() (StepwiseMutator method), 309
subPopBegin() (Population method), 271
subPopByName() (Population method), 271
subPopEnd() (Population method), 271
subPopIndPair() (Population method), 271
subPopName() (Population method), 271
subPopNames() (Population method), 271
subPopSize() (Population method), 272
subPopSizes() (Population method), 271
SummaryTagger (built-in class), 319
SummaryTagger() (SummaryTagger method), 319
swap() (Population method), 271

T
tagID() (built-in function), 336
TerminateIf (built-in class), 330
TerminateIf() (TerminateIf method), 330
ThreeGenFamilySampler (class in simuPOP.sampling),

358
ThreeGenFamilySampler()

(simuPOP.sampling.ThreeGenFamilySampler
method), 359

TicToc (built-in class), 332
TicToc() (TicToc method), 332
totNumLoci() (GenoStruTrait method), 263
traceRelatives() (Pedigree method), 274
Trajectory (class in simuPOP.utils), 338
Trajectory() (simuPOP.utils.Trajectory method), 339
TrajectorySimulator (class in simuPOP.utils), 339

Index 371

simuPOP

TrajectorySimulator() (simuPOP.utils.TrajectorySimulator
method), 339

transmitGenotype() (MendelianGenoTransmitter
method), 304

transmitGenotype() (Recombinator method), 307
turnOffDebug() (built-in function), 293
turnOnDebug() (built-in function), 293

U
update() (simuPOP.utils.ProgressBar method), 342
updateInfoFieldsFrom() (Population method), 271
useAncestralGen() (Population method), 271

V
vars() (Population method), 271
vars() (Simulator method), 276
viewVars() (in module simuPOP.utils), 342
virtualSplitter() (Population method), 272
vspByName() (BaseVspSplitter method), 276

W
WeightedSampler (built-in class), 290
WeightedSampler() (WeightedSampler method), 290
WithArgs (built-in class), 289
WithArgs() (WithArgs method), 289
WithMode (built-in class), 289
WithMode() (WithMode method), 289

372 Index

	Front Matter
	Introduction
	What is simuPOP?
	An overview of simuPOP concepts
	Features
	License, Distribution and Installation
	How to read this user’s guide
	Other help sources

	Loading and running simuPOP
	Pythonic issues
	Loading simuPOP modules
	Online help system
	Debug-related functions and operators *
	Random number generator *

	Individuals and Populations
	Genotypic structure
	Individual
	Population

	simuPOP Operators
	Introduction to operators
	Initialization
	Expressions and statements
	Demographic changes
	Genotype transmitters
	Mutation
	Penetrance
	Quantitative trait
	Natural Selection
	Tagging operators
	Statistics calculation (operator Stat)
	Conditional operators
	Miscellaneous operators
	Hybrid and Python operators

	Evolving populations
	Mating Schemes
	Simulator
	Non-random and customized mating schemes *
	Age structured populations with overlapping generations **
	Tracing allelic lineage *
	Pedigrees
	Evolve a population following a specified pedigree structure **
	Simulation of mitochondrial DNAs (mtDNAs) *

	Utility Modules
	Module simuOpt (function simuOpt.setOptions)
	Module simuPOP.utils
	Module simuPOP.demography
	Module simuPOP.sampling
	Module simuPOP.gsl

	A real world example
	Simulation scenario
	Demographic model
	Mutation and selection models
	Output statistics
	Initialize and evolve the population
	Option handling

	Front Matter
	simuPOP Components
	Individual, Population, pedigree and Simulator
	Virtual splitters
	Mating Schemes
	Pre-defined mating schemes
	Utility Classes
	Global functions

	Operator References
	Base class for all operators
	Initialization
	Expression and Statements
	Demographic models
	Genotype transmitters
	Mutation
	Penetrance
	Quantitative Trait
	Natural selection
	Tagging operators
	Statistics Calculation
	Conditional operators
	The Python operator
	Miscellaneous operators
	Function form of operators

	Utility Modules
	Module simuOpt
	Module simuPOP.utils
	Module simuPOP.demography
	Module simuPOP.sampling
	Module simuPOP.gsl

	Python Module Index

