

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	simplevisor 1.2 documentation

Welcome to simplevisor’s documentation!

	Main Features

	Installation

	Configuration

	simplevisor command

	simplevisor-control command

	Supervisor Abstraction

	Service Abstraction

Getting Started

Simplevisor is a simple daemons supervisor, it is inspired by
Erlang OTP [http://www.erlang.org/doc/design_principles/sup_princ.html]
and it can supervise hierarchies of services.

Dependencies:

argparse for python < 3.2
simplejson for python < 2.6

Install it:

easy_install simplevisor
look at the installation page for details

create and edit the main configuration file:

simplevisor.conf.example available in the examples
check the configuration page for details

run it with:

simplevisor --conf /path/to/simplevisor.conf start
or as a daemon
simplevisor --conf /path/to/simplevisor.conf --daemon start

check the help page:

simplevisor help

if you want to run it as a service user simplevisor-control as init script.

Author: Massimo.Paladin@gmail.com

Copyright (C) CERN 2013-2016

 Copyright Copyright (C) CERN 2013-2016 - Author: Massimo Paladin <massimo.paladin@gmail.com>.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	simplevisor 1.2 documentation

Main Features

	
	Standalone services

	The supervisor is able to run default services like httpd,
mysql which are invoked with a command of the type:

$ service httpd start

	
	Executable

	The supervisor is able to run any executable program,
not only standard services:

/opt/whatever/instance/bin/service --option 1 --other "foo bar" --config /opt/whatever/instance/etc/whatever.cfg

	
	Dead or “hang” state handling

	Something important is to be able to handle services in an apparently
running state but which are hanging. This should be handled from
the service startup script.

	
	OTP hierarchy of services

	Inspired by OTP supervisor it support hierarchies of services.
Services should be grouped together acting as a single service
to the parent.

A supervision tree is composed by supervisors and workers:

	workers are identified by xN, yN and zN.

	supervisors are identified by sX.

[image: _images/supervisiontree.png]

	
	OTP strategies for handling services

	Inspired by the OTP platform there are different strategies
for handling group of services and their behavior.

	
	Commands: start/stop/status/restart

	Different commands can be specified to handle a service:

	start

	stop

	status

	restart (defaults to stop+start)

	
	Ensure expected state

	Each service should have an expected state.
Possible states are:

	running: expect the service to be running fine

	stopped: the service should be disabled

	
	Daemon mode

	Supervisor is able to run in daemon mode continuously checking
and applying the given configuration.

	
	One shot mode

	Supervisor can run in “one shot mode”, which means it goes
through the services handling and then exit. In order to handle the
strategies correctly the state of the services is stored
in order to be read during the next execution.

	
	Root not required

	Supervisor does not require to be run as root user, it is
able to run as any user of course limited by the user privileges.

Copyright (C) 2013-2016 CERN

 Copyright Copyright (C) CERN 2013-2016 - Author: Massimo Paladin <massimo.paladin@gmail.com>.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	simplevisor 1.2 documentation

Installation

You can install simplevisor through different sources.

pip/easy_install way

You can automatically install it through easy_install:

easy_install simplevisor

or pip:

pip install simplevisor

tarball

You can install it through the tarball, download the latest
one from http://pypi.python.org/pypi/simplevisor, unpack it, cd
into the directory and install it:

version=X
wget http://pypi.python.org/packages/source/s/simplevisor/simplevisor-${version}.tar.gz
tar xvzf simplevisor-${version}.tar.gz
cd simplevisor-${version}
Run the tests
python setup.py test
Install it
python setup.py install

rpm

RPMs are available for Fedora main branches and EPEL 5/6, you can simply
install it with yum:

yum install python-simplevisor

 Copyright Copyright (C) CERN 2013-2016 - Author: Massimo Paladin <massimo.paladin@gmail.com>.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	simplevisor 1.2 documentation

Configuration

Simplevisor has one main configuration file. The default format of this
configuration file is the Apache Style Config and the configuration parsing is
handled by the Perl Config::General module.

Alternatively, you can use JSON configuration files (via –conftype json):
this removes the need for Perl but the features listed below will not be
supported.

Here are the main features supported in the Apache Style Config syntax:

	comments

	comments are allowed through lines starting with #

	blank lines

	blank lines are ignored

	file inclusion

	file inclusion is supported to allow modularization of the configuration
file; it is possible to include a file which is in the same folder or in
its subtree with the following directive:
<<include relative_file_path.conf>>

	variable interpolation

	variable interpolation is supported in order to reduce verbosity and
duplication in the main blocks of the configuration file.

simplevisor and entry sections allow variables declaration,
variables are declared like any other fields with the only restriction
that their name is prefixed with var_:

...
var_foo = bar
...

You can use variables in the value of a field, you can not use them
inside keys and their scope is the subtree of declaration.
They can be used surrounded by curly braces and prefixed by a dollar:
${var_name}.

An usage example:

...
var_foo = bar
property_x = ${var_foo} the rest of the value
...

The options specified through the command line have the priority over
the options declared in the configuration file.

You can find a configuration example in the examples folder, it is called:

simplevisor.conf.example

copy and edit the file:

Simplevisor has one main configuration file. The format of the configuration
file is the Apache Style Config, the configuration parsing is handled
with Perl Config::General module for commodity.
#
Following features are supported:
#
- Apache Style Config syntax
- comments are allowed through lines starting with
- blank lines are ignored
- file inclusion is supported to allow modularization of the
configuration file. It is possible to include a file which is in the same
folder or in its subtree with the following directive:
<<include relative_file_path.conf>>
- variable interpolation is supported in order to reduce verbosity and
duplication in the main blocks of the configuration file.
simplevisor and entry sections allow variables declaration, variables
are declared like any other fields with the only restriction that their
name is prefixed with var_:
...
var_foo = bar
property_x = ${var_foo} the rest of the value
...
You can use variables in the value of a field, you can not use them inside
keys and their scope is the subtree of declaration.

<simplevisor>
 # file used to store the status
 store = /var/cache/simplevisor/simplevisor.json

 # pid file, ignored if simplevisor-control is used
 #pidfile = /path/to/pid

 # interval (sleep time) between supervision cycles, from the end
 # of one cycle to the start of the next one, in seconds
 #interval = 120

 # configure the logging system, must be one of: stdout,syslog,file
 log = stdout

 # if logging system is file you need to specify a log file,
 # check that the logfile is writable by the specified user.
 #logfile = /var/log/simplevisor/simplevisor.log

 # the loglevel is warning by default,
 # the available log levels are: debug,info,warning,error,critical
 #loglevel = info
</simplevisor>

 <<include simplevisor.services.example>>

where simplevisor.services.example could look like:

<entry>
 type = supervisor
 name = svisor1
 window = 12
 adjustments = 3
 strategy = one_for_one
 <children>
 <entry>
 type = service
 name = httpd
 expected = stopped
 control = /sbin/service httpd
 </entry>
 <<include other_service.conf>>
 </children>
</entry>

and other_service.conf could look like:

<entry>
 type = service
 name = custom1
 start = /path/to/script --conf /path/to/conf --daemon
 # If you cannot provide a status or stop command you can specify a
 # pattern which will be used to look for the process in the process
 # table, however this is supported only on linux.
 # If not specified start command is used as pattern.
 pattern = /path/to/script --conf /path/to/conf --daemon
</entry>

 Copyright Copyright (C) CERN 2013-2016 - Author: Massimo Paladin <massimo.paladin@gmail.com>.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	simplevisor 1.2 documentation

simplevisor command

simplevisor 1.2 - simple daemons supervisor

SYNOPSIS

simplevisor
[–conf CONF] [–conftype CONFTYPE] [–daemon] [–interval INTERVAL] [-h] [–log LOG] [–logfile LOGFILE] [–loglevel LOGLEVEL] [–logname LOGNAME] [-p PIDFILE] [–store STORE] [–version]
command [path]

DESCRIPTION

Simplevisor is a simple daemons supervisor, it is inspired
by Erlang OTP and it can supervise hierarchies of services.

COMMANDS

If a path is given or only one service entry is given:

	for a given X command

	run the service X command where service is the only entry provided
or the entry identified by its path

If a path is given and the root entry is a supervisor:

	restart_child

	tell a running simplevisor process to restart the child identified
by the given path; it is different from the restart command as
described above because, this way, we are sure that the running
simplevisor will not attempt to check/start/stop the child while
we restart it

If a path is not given and the root entry is a supervisor:

	start

	start the simplevisor process which start the supervision.
It can be used with –daemon if you want it as daemon

	stop

	stop the simplevisor process and all its children, if running

	status

	return the status of the simplevisor process

	check

	return the comparison between the expected state and the actual state.
0 -> everything is fine
1 -> warning, not expected

	single

	execute one cycle of supervision and exit.
Useful to be run in a cron script

	wake_up

	tell a running simplevisor process to wake up and supervise

	stop_supervisor

	only stop the simplevisor process but not the children

	stop_children

	only stop the children but not the simplevisor process

	check_configuration

	only check the configuration file

	pod

	generate pod format help to be used by pod2man to generate man page

	rst

	generate rst format help to be used in the web doc

	help

	same as -h/–help, print help page

OPTIONS

positional arguments:

	command

	check, check_configuration, help, pod, restart, restart_child, rst, single, start, status, stop, stop_children, stop_supervisor, wake_up

	path

	path to a service, subset of commands available: start, stop, status, check, restart

optional arguments:

	–conf CONF

	configuration file

	–conftype CONFTYPE

	configuration file type (default: apache)

	–daemon

	daemonize, ONLY with start

	–interval INTERVAL

	interval to wait between supervision cycles (default: 60)

	-h, –help

	print the help page

	–log LOG

	available: null, file, syslog, stdout (default: stdout)

	–logfile LOGFILE

	log file, ONLY for file

	–loglevel LOGLEVEL

	log level (default: warning)

	–logname LOGNAME

	log name (default: simplevisor)

	-p, –pidfile PIDFILE

	the pidfile

	–store STORE

	file where to store the state, it is not mandatory, however recommended to store the simplevisor nodes status between restarts

	–version

	print the program version

EXAMPLES

Create and edit the main configuration file:

look for simplevisor.conf.example in the examples.

Run it:

simplevisor --conf /path/to/simplevisor.conf start

to run it in daemon mode:

simplevisor --conf /path/to/simplevisor.conf --daemon start

For other commands:

simplevisor --help

Given the example configuration, to start the httpd service:

simplevisor --conf /path/to/simplevisor.conf start svisor1/httpd

AUTHOR

Massimo Paladin <massimo.paladin@gmail.com> - Copyright (C) CERN 2013-2016

 Copyright Copyright (C) CERN 2013-2016 - Author: Massimo Paladin <massimo.paladin@gmail.com>.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	simplevisor 1.2 documentation

simplevisor-control command

NAME

simplevisor-control - run simplevisor as a service

SYNOPSIS

simplevisor-control command [path]

DESCRIPTION

simplevisor-control command can be used to run simplevisor as a service.

OPTIONS

command
one of: start, stop, restart, status, check

path
look at simplevisor man page for path behavior

EXAMPLES

On linux you can look at the script shipped in the examples folder
which is called simplevisor-new-instance, it creates folders and
the configuration to run a simplevisor instance.

mkdir -p /var/lib/myinstance/bin
mkdir -p /var/lib/myinstance/data
mkdir -p /var/lib/myinstance/etc

Create a file /var/lib/myinstance/bin/service with content
and make it executable:

#!/bin/sh
#
init script that can be symlinked from /etc/init.d
#

chkconfig: - 90 15
description: my simplevisor instance

. "/var/lib/myinstance/etc/simplevisor.profile"
exec "/usr/bin/simplevisor-control" ${1+"$@"}

/var/lib/myinstance/etc/simplevisor.profile could look like:

main
export SIMPLEVISOR_NAME=myinstance
if you want to run it as another user:
#export SIMPLEVISOR_USER=games
export SIMPLEVISOR_CONF=/var/lib/myinstance/etc/simplevisor.conf
export SIMPLEVISOR_PIDFILE=/var/lib/myinstance/data/simplevisor.pid
export SIMPLEVISOR_LOCKFILE=/var/lib/myinstance/data/simplevisor.lock

Create /var/lib/myinstance/etc/simplevisor.conf according to simplevisor
documentation.

For Red Hat or Fedora you can symlink service script:

ln -s /var/lib/myinstance/bin/service /etc/init.d/myinstance

And use it as a normal service:

/sbin/service myinstance start|stop|status|restart|check

AUTHOR

Massimo Paladin <massimo.paladin@gmail.com>

Copyright (C) CERN 2013-2016

 Copyright Copyright (C) CERN 2013-2016 - Author: Massimo Paladin <massimo.paladin@gmail.com>.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	simplevisor 1.2 documentation

Supervisor Abstraction

This module implements a Supervisor class.

An example of supervisor declaration:

<entry>
 type = supervisor
 name = supervisor1
 window = 12
 adjustments = 3
 strategy = one_for_one
 expected = none
 <children>
 other supervisors or services
 </children>
</entry>

Parameters

	name

	unique name of the supervisor.

	window

	window of supervision cycles which should be considered when defining
if a supervisor is in a failing state.

	adjustments

	maximum number of cycles on which a child adjustment was needed
in the given window of supervision cycle in order to consider
it a failure.

	strategy

	
	one_for_one: if a child process terminates, only that process
is restarted.

	one_for_all: if a child process terminates, all other
child processes are terminated and then all child processes,
including the terminated one, are restarted.

	rest_for_one: If a child process terminates, the rest of the
child processes i.e. the child processes after the terminated
process in start order are terminated. Then the terminated
child process and the rest of the child processes are restarted.

	expected

	none|running|stopped

	children

	children structure.

Required Parameters

- children section is required or supervisor is not useful

Default Parameters

- name = supervisor
- expected = none
- window = 12
- adjustments = 3
- strategy = one_for_one

Copyright (C) 2013-2016 CERN

 Copyright Copyright (C) CERN 2013-2016 - Author: Massimo Paladin <massimo.paladin@gmail.com>.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	simplevisor 1.2 documentation

Service Abstraction

This class implements a Service abstraction.
As service we mean a process which runs in daemon mode.

An example of service declaration:

<entry>
 type = service
 name = httpd
 expected = stopped
 control = /sbin/service httpd
</entry>

another example for a standalone script:

<entry>
 type = service
 name = custom1
 start = /path/to/script --conf /path/to/conf --daemon
 # If you cannot provide a status or stop command you can specify a
 # pattern which will be used to look for the process in the process
 # table, however this is supported only on Linux.
 # If not specified start command is used as pattern.
 pattern = /path/to/script --conf /path/to/conf --daemon
</entry>

If one of the parameters contains one or more spaces you should quote them
in url-like style, invoked commands are urllib.unquote() [http://docs.python.org/library/urllib.html#urllib.unquote]
before being launched like in this example:

...
start = /path/to/script --conf /path/to/conf --space hello%20world start
...

The stdout and the stderr of the commands executed is logged as debug level
within the configured log system.

The commands declared should provide return codes according to the default
LSB Unix return codes,
for more info visit LSB Core Specification [http://goo.gl/vQqaC]:

0 program is running or service is OK
1 program is dead and /var/run pid file exists
2 program is dead and /var/lock lock file exists
3 program is not running
4 program or service status is unknown
5-99 reserved for future LSB use
100-149 reserved for distribution use
150-199 reserved for application use
200-254 reserved

Parameters

	control

	the control of the command to run. If specified it will be the prefix
of start/stop/status commands.

	daemon

	if the service command runs in foreground and you wish to daemonize
it you can declare this option with value the pidfile path that should
be used for the daemonization.

If control is specified this option is ignored.

Given the start command:

start = /path/to/script --conf /path/to/conf

and declaring:

daemon = /path/to/script_pidfile.pid

it is like specifying the following pair of commands/values:

start = /usr/bin/simplevisor-loop -c 1 --pidfile /path/to/script_pidfile.pid --daemon /path/to/script --conf /path/to/conf

stop = /usr/bin/simplevisor-loop --pidfile /path/to/script_pidfile.pid --quit

status = /usr/bin/simplevisor-loop --pidfile /path/to/script_pidfile.pid --status

Hence, if daemon is specified stop and status command
are overwritten.

	expected

	expected state of the service.
Valid values are running and stopped.

	name

	unique name of the worker/service.

	path

	the path for executing the commands.
Multiple values should be separated by colons.

	pattern

	used to look for the service in the process table for stop and status
commands if they are not specified and control is also not specified.
Accepted values are valid python regular expressions: re [http://docs.python.org/library/re.html#module-re].

	restart

	specify a custom restart command.

If <control> is specified:

	if <restart> is not specified “<control> restart” is executed

	if <restart> = “stop+start” a “<control> stop” followed by a
“<control> start” is executed

	else “<restart>” is executed

If <control> is not specified:

	if <restart> is not specified “<stop>” followed by
“<start>” is executed

	else “<restart>” is executed

	start

	specify a custom start command.

If <control> is specified:

	if <start> is not specified “<control> start” is executed

	else “<start>” is executed

If <control> is not specified:

	“<start>” is executed

	status

	specify a custom status command.

If <control> is specified:

	“<control> status” is executed

If <control> is not specified:

	if <status> is specified “<status>” is executed

	else it will look for it in the process table either looking
for the start command or the provided pattern.

Status commands are expected to exit with return code according to
the following following:

	0: the service is running fine

	3: the service is stopped

	other: return code is interpreted as dirty/zombie/hang state

	stop

	specify a custom stop command.

If <control> is specified:

	“<control> stop” is executed

If <control> is not specified:

	if <stop> is specified “<stop>” is executed

	else it will look for it in the process table either looking
for the start command or the provided pattern and then kill it.

	timeout

	the maximum timeout for any service command, set to 60 seconds by default.

Required Parameters

- name
- one of: start, control

Default Parameters

- expected = running
- timeout = 60
- all the others are default to None

Copyright (C) 2013-2016 CERN

 Copyright Copyright (C) CERN 2013-2016 - Author: Massimo Paladin <massimo.paladin@gmail.com>.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	simplevisor 1.2 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 simplevisor	

 	
 	
 simplevisor.service	

 	
 	
 simplevisor.supervisor	

 Copyright Copyright (C) CERN 2013-2016 - Author: Massimo Paladin <massimo.paladin@gmail.com>.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	simplevisor 1.2 documentation

Index

 S

S

 	

 	simplevisor (module)

 	simplevisor.service (module)

 	

 	simplevisor.supervisor (module)

 Copyright Copyright (C) CERN 2013-2016 - Author: Massimo Paladin <massimo.paladin@gmail.com>.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_images/supervisiontree.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		simplevisor 1.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright Copyright (C) CERN 2013-2016 - Author: Massimo Paladin <massimo.paladin@gmail.com>.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

