

 Navigation

 	
 index

 	simplerouter 1.2 documentation

simplerouter

simplerouter is a simple WSGI/WebOb router partially based on
the router described in WebOB’s DIY Framework Tutorial [http://docs.webob.org/en/latest/do-it-yourself.html].

Contents

	Quick Example

	Adding Routes

	Using a Router

	Advanced Options

	Change Log

Quick Example

app.py:

from simplerouter import Router

router = Router()
view names are composed of modulename:function
router.add_route('/post/{name}', 'views:post_view')
router.add_route('/', 'views:index_view')

application = router.as_wsgi

if __name__=='__main__':
 from wsgiref.simple_server import make_server
 make_server('', 8000, application).serve_forever()

views.py:

from webob import Response

def post_view(request):
 post_name = request.urlvars['name']
 # ... process post_name
 return Response("Post output for %s"%post_name)

def index_view(request):
 return Response("Site index")

Adding Routes

The Router object is composed of mappings of paths to views
called routes, and are added using the Router.add_route()
method. The route path is matched against the Request‘s
path_info [1] variable, and the view is either a callable, or
a string indicating the location of a callable in
module_name:callable_name format.

router.add_route('/path', viewfunc)
router.add_route('/path', 'module.views:named_view')

Route paths may contain variables, which are indicated by curly braces:

router.add_route('/path/{variable}/extra', viewfunc)

By default, path variables will match any string not containing a forward
slash. Normally, a variable matches any character other than a forward
slash, but an alternate regular expression can be provided after variable
name with a colon character:

router.add_route(r'/path/{variable:\d+}', viewfunc)

Any path variables specified in the route path can be accessed in a
dictionary attached to the Request object called urlvars:

def viewfunc(request):
 return Response(request.urlvars['var1'])

router.add_route('/path/{var1}/{var2}', viewfunc)

Path variables may also be provided via the vars keyword to
Router.add_route(), which will cause them to appear in the urlvars
dictionary. This could be useful if a view expects them but the route
path doesn’t contain them:

route.add_route('/list', viewfunc, vars={'page' : 1})

Routes can be added to a router on creation without needing additional
Router.add_route() calls:

router = Router(
 ('/list', viewfunc, { 'vars' : {'page' : 1} }),
 ('/list/{page:\d+}', viewfunc)
)

	[1]	The path portion of a URL (the portion of the URL after the
domain name) is further split into two parts called script_name
and path_info. The script_name portion of URL indicates the path
that is directly associated with the web application, and the
path_info portion is the part of the URL after it. For a web
application that is associated with an entire domain, the script_name
would be blank, and the path_info would be the entire url path.
It is the path_info that the Router object matches route
paths against.

Using a Router

The Router object is a callable that takes WebOb’s Request
object. To use it, you would construct the Request object
from the WSGI environ, and then call the resulting Response
object as a WSGI application:

def application(environ, start_response):
 # create request object
 request = Request(environ)

 # invoke router
 response = router(request)

 # complete request
 return response(environ, start_response)

Alternatively, the Router.as_wsgi method may be used to do this
automatically, so long as you don’t need to do any extra processing
and aren’t using the Router object within a larger framework:

application = router.as_wsgi

Advanced Options

Default View

By default, a Router will return WebOb’s HTTPNotFound error response if
no view manages to return a valid response. This behavior can be changed
by providing a different view via the default keyword to the
Router initializer.

router = Router(default="module:error_view")

Limiting by HTTP Method

By default, view matching is not restricted by the HTTP method. The
method keyword allows a view to be limited to specific HTTP methods,
as either a single string, or a collection of strings.

Note

Views matching the GET method always also match the HEAD method.

Path Adjustment

By default, the script_name and path_info of a Request are not
adjusted when used with a view. Normally, this wouldn’t make much sense,
as a route matches an entire url path, but this also makes it impossible
to use a Router as a view within another Router.

To facilitate this, the Route.add_route() method accepts the path_info
keyword, which may be a regular expression (or True, which is a synonym for
the regular expression /.*). Matching requests are altered such that
the script_name has the route path appended to it, and the path_info
is replaced with the path_info keyword.

Consider the following the example:

example_router = Router()
example_router.add_route('/', 'example.views:index_view')
example_router.add_route('/info', 'example.views:info_view')
example_router.add_route('/help', 'example.views:help_view')

router = Router()
router.add_router('/example', example_router, path_info='/.*')

The following table indicates which view would be called and how the
script_name and path_info would be altered:

	Initial path_info
	View
	Resulting script_name
	Resulting path_info

	/example/
	example.views:help_view
	/example
	/

	/example/info
	example.views:info_view
	/example
	/info

	/example/help
	example.views:help_view
	/example
	/help

Raising Responses as Exceptions

In addition to being returned normally, responses can be returned to
the router by being raised by the raise statement. While this isn’t
usually used, this can be useful in certain circumstances, such as to
prevent certain view decorators from running normally.

Only subclasses of webob.exc.HTTPException can be returned by
being raised. Normal Response objects do not qualify, but all
subclasses of webob.exc.HTTPException that have been predefined
by WebOB are also Response objects.

Reversing paths

The Route.reverse method allows a path to be reversed when given
the view name or the view function. If the view accepts any parameters,
they can be provided to construct the URL with them.

For example:

router = Router()
router.add_route('/', 'example.views:index_view')
router.add_route('/help', 'example.views:help_view')
router.add_route('/get/{name}', 'example.views:get_view')

print(router.reverse('example.views:help_view'))
"/help"

print(router.reverse('example.views:get_view', {'name' : 'duck'}))
"/get/duck"

Trailing Slashes

If try_slashes is passed to the Router initializer, then the Router
object will attempt to determine if a failed request would have instead
succeeded if the trailing slash on the url had instead been omitted or
provided. If an alternate matching route is found, then a HTTP temporary
redirect response will be returned that will tell the user’s browser to
use the correct URL.

router = Router(try_slashes=True)
router.add_route('/path', viewfunc)
response = router(Request.blank('/path/'))
response will be a redirect

If this option is used, it’s a good idea to make sure that any views
that are capable of returning None should opt out of this check
by setting no_alt_redir in the Router.add_route registration
function:

router.add_route('/path', viewfunc, no_alt_redir=True)

Under certain circumstances failure to handle this could result in an
infinite redirect loop, which is why try_slashes is not default behavior.

View Priority

Routes are checked in the order that they are added. While this behavior
is not likely to change, it still might be desirable set the priority of
a route without altering the order that they are originally added, which
can be done by supplying the Router.add_route method with the
priority keyword:

Router.add_route('/path', viewfunc, priority=10)

Routes with higher number priorty values are matched against before routes
with lower number priority values.

WSGI Views

A WSGI application can be provided as a view if the wsgi keyword is
provided to the Router.add_route method:

def app_view(environ, start_response):
 start_response('200 OK', [('Content-Type', 'text/plain')])
 return [b'hello, world\n']

router.add_route('/hello', app_view, wsgi=True)

Note

Most WSGI Applications do their own URL processing, so the wsgi keyword
implies the path_info keyword as described in Path Adjustment. The
implicitly enabled path_info handling can be turned off by passing
path_info=False to Router.add_route().

Further Reading

	PEP3333 (WSGI Specification) [http://www.python.org/dev/peps/pep-3333/]

	WebOb documentation [http://webob.readthedocs.org/en/latest/]

 Copyright 2013-2015, Robin Schoonover.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	simplerouter 1.2 documentation

Index

 Copyright 2013-2015, Robin Schoonover.
 Created using Sphinx 1.2.2.

 changelog.html

 Navigation

 		
 index

 		simplerouter 1.2 documentation »

Change Log

1.2 (May 2 2015)

		Add Router.reverse method for constructing URLs from view parameters.

		Allow views to be limited to specific HTTP method names.

1.1.1 (May 27 2014)

		Packaging fixes

		Update tests for newer versions of Python

1.1 (Dec 1 2013)

		Improve support for nesting Router objects.

		Catch raised error responses.

		Improve test coverage

1.0 (Nov 10 2013)

		First initial release.

 © Copyright 2013-2015, Robin Schoonover.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		simplerouter 1.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013-2015, Robin Schoonover.
 Created using Sphinx 1.2.2.

_static/comment.png

_static/comment-bright.png

_static/down.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/file.png

_static/minus.png

