

Simple Neighbors

[image: _images/simpleneighbors.svg]
 [https://travis-ci.org/aparrish/simpleneighbors][image: _images/badge.svg]
 [https://coveralls.io/github/aparrish/simpleneighbors?branch=master][image: _images/simpleneighbors1.svg]
 [https://pypi.python.org/pypi/simpleneighbors]Simple Neighbors is a clean and easy interface for performing nearest-neighbor
lookups on items from a corpus. To install the package:

pip install simpleneighbors[annoy]

Here’s a quick example, showing how to find the names of colors most similar to
‘pink’ in the xkcd colors list [https://github.com/dariusk/corpora/blob/master/data/colors/xkcd.json]:

>>> from simpleneighbors import SimpleNeighbors
>>> import json
>>> color_data = json.load(open('xkcd.json'))['colors']
>>> hex2int = lambda s: [int(s[n:n+2], 16) for n in range(1,7,2)]
>>> colors = [(item['color'], hex2int(item['hex'])) for item in color_data]
>>> sim = SimpleNeighbors(3)
>>> sim.feed(colors)
>>> sim.build()
>>> list(sim.neighbors('pink', 5))
['pink', 'bubblegum pink', 'pale magenta', 'dark mauve', 'light plum']

For a more complete example, refer to my Understanding Word Vectors notebook [https://github.com/aparrish/rwet/blob/master/understanding-word-vectors.ipynb],
which shows how to use Simple Neighbors to perform similarity lookups on word
vectors.

Read the complete Simple Neighbors documentation here:
https://simpleneighbors.readthedocs.org.

Why Simple Neighbors?

Approximate nearest-neighbor lookups are a quick way to find the items in your
data set that are closest (or most similar to) any other item in your data, or
an arbitrary point in the space that your data defines. Your data items might
be colors in a (R, G, B) space, or sprites in a (X, Y) space, or word vectors
in a 300-dimensional space.

You could always perform pairwise distance calculations to find nearest
neighbors in your data, but for data of any appreciable size and complexity,
this kind of calculation is unbearably slow. Simple Neighbors uses one of a
handful of libraries behind the scenes to provide approximate nearest-neighbor
lookups, which are ultimately a little less accurate than pairwise calculations
but much, much faster.

The library also keeps track of your data, sparing you the extra step of
mapping each item in your data to its integer index (at the potential cost of
some redundancy in data storage, depending on your application).

I made Simple Neighbors because I use nearest neighbor lookups all the time and
found myself writing and rewriting the same bits of wrapper code over and over
again. I wanted to hide a little bit of the complexity of using these libraries
to make it easier to build small prototypes and teach workshops using
nearest-neighbor lookups.

Multiple backend support

Simple Neighbors relies on the approximate nearest neighbor index
implementations found in other libraries. By default, Simple Neighbors will
choose the best backend based on the packages installed in your environment.
(You can also specify which backend to use by hand, or create your own.)

Currently supported backend libraries include:

	Annoy: Erik Bernhardsson’s Annoy [https://pypi.org/project/annoy/] library

	Sklearn: scikit-learn’s NearestNeighbors [https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors]

	BruteForcePurePython: Pure Python brute-force search (included in package)

When you install Simple Neighbors, you can direct pip to install the
required packages for a given backend. For example, to install Simple Neighbors
with Annoy:

pip install simpleneighbors[annoy]

Annoy is highly recommended! This is the preferred way to use Simple Neighbors.

To install Simple Neighbors alongside scikit-learn to use the Sklearn
backend (which makes use of scikit-learn’s NearestNeighbors class):

pip install simpleneighbors[sklearn]

If you can’t install Annoy or scikit-learn on your platform, you can also use a
pure Python backend:

pip install simpleneighbors[purepython]

Note that the pure Python version uses a brute force search and is therefore
very slow. In general, it’s not suitable for datasets with more than a few
thousand items (or more than a handful of dimensions).

See the documentation for the SimpleNeighbors class for more information on
specifying backends.

Contents

	Simple Neighbors API Reference

	Credits and Acknowledgements

	History
	0.1.0 (2020-01-12)

	0.0.1 (2018-07-13)

Simple Neighbors API Reference

	
class simpleneighbors.SimpleNeighbors(dims, metric='angular', backend=None)

	A Simple Neighbors index.

This class wraps backend implementations of approximate nearest neighbors
indexes with a user-friendly API. When you instantiate this class, it will
automatically select a backend implementation based on packages installed
in your environment. It is HIGHLY RECOMMENDED that you install Annoy (pip
install annoy) to enable the Annoy backend! (The alternatives are
slower and not as accurate.) Alternatively, you can specify a backend of
your choosing with the backend parameter.

Specify the number of dimensions in your data (i.e., the length of the list
or array you plan to provide for each item) and the distance metric you
want to use. The default is angular distance, an approximation of
cosine distance. This metric is supported by all backends, as is
euclidean (for Euclidean distance). Both of these parameters are passed
directly to the backend; see the backend documentation for more details.

	Parameters

	
	dims – the number of dimensions in your data

	metric – the distance metric to use

	backend – the nearest neighbors backend to use (default is annoy)

	
add_one(item, vector)

	Adds an item to the index.

You need to provide the item to add and a vector that corresponds to
that item. (For example, if the item is the name of a color, the vector
might be a (R, G, B) triplet corresponding to that color. If the item
is a word, the vector might be a word2vec or GloVe vector corresponding
to that word.

Items can be any hashable [https://docs.python.org/3.7/glossary.html#term-hashable] Python
object. Vectors must be sequences of numbers. (Lists, tuples, and Numpy
arrays should all be fine, for example.)

Note: If the index has already been built, you won’t be able to add new
items.

	Parameters

	
	item – the item to add

	vector – the vector corresponding to that item

	Returns

	None

	
build(n=10, params=None)

	Build the index.

After adding all of your items, call this method to build the index.
The meaning of parameter n is different for each backend
implementation. For the Annoy backend, it specifies the number of trees
in the underlying Annoy index (a higher number will take longer to
build but provide more precision when querying). For the Sklearn
backend, the number specifies the leaf size when building the ball
tree. (The Brute Force Pure Python backend ignores this value
entirely.)

After you call build, you’ll no longer be able to add new items to the
index.

	Parameters

	
	n – backend-dependent (for Annoy: number of trees)

	params – dictionary with extra parameters to pass to backend

	
dist(a, b)

	Returns the distance between two items.

	Parameters

	
	a – first item

	b – second item

	Returns

	distance between a and b

	
feed(items)

	Add multiple items to the index.

Supply to this method a sequence of (item, vector) tuples (e.g., a list
of tuples, a generator that produces tuples, etc.) and they’ll all be
added to the index. Great for adding multiple items to the index at
once.

Items can be any hashable [https://docs.python.org/3.7/glossary.html#term-hashable] Python
object. Vectors must be sequences of numbers. (Lists, tuples, and Numpy
arrays should all be fine, for example.)

	Parameters

	items – a sequence of (item, vector) tuples

	Returns

	None

	
classmethod load(prefix)

	Restores a previously-saved index.

This class method restores a previously-saved index using the specified
file prefix.

	Parameters

	prefix – prefix used when saving

	Returns

	SimpleNeighbors object restored from specified files

	
nearest(vec, n=12)

	Returns the items nearest to a given vector.

The specified vector must have the same number of dimensions as the
number given when initializing the index. The nearest neighbor search
is limited to the given number of items, and results are sorted in
order of proximity.

>>> from simpleneighbors import SimpleNeighbors
>>> sim = SimpleNeighbors(2, 'euclidean')
>>> sim.feed([('a', (4, 5)),
... ('b', (0, 3)),
... ('c', (-2, 8)),
... ('d', (2, -2))])
>>> sim.build()
>>> sim.nearest((1, -1), n=1)
['d']

	Parameters

	
	vec – search vector

	n – number of results to return

	Returns

	a list of items sorted in order of proximity

	
nearest_matching(vec, n=12, check=lambda x: True)

	Returns the items nearest a given vector that pass a test.

This method looks for the items in the index nearest the given vector
that meet a particular criterion. It tries to find at least n
items, expanding the search as needed. (It may yield fewer than the
desired number if enough items can’t be found in the entire index.)

The function passed as check will be called with a single
parameter: the item in question. It should return True if the item
should be included in the results, and False otherwise.

This search process might be slow; in order to make it easier to
display incremental results, this method returns a generator. You can
easily get the results of this method as a list by enclosing your call
inside the list() function.

>>> from simpleneighbors import SimpleNeighbors
>>> sim = SimpleNeighbors(2, 'euclidean')
>>> sim.feed([('a', (4, 5)),
... ('b', (0, 3)),
... ('c', (-2, 8)),
... ('d', (2, -2))])
>>> sim.build()
>>> list(sim.nearest_matching((3.5, 4.5), n=1,
... check=lambda x: ord(x) <= ord('b')))
['a']

	Parameters

	
	vec – search vector

	n – number of items to return

	check – function to call on each item

	Returns

	a generator yielding up to n items

	
neighbors(item, n=12)

	Returns the items nearest another item in the index.

This method returns the items closest to a given item in the index in
order of proximity, limiting results to the number specified. (It’s
just like nearest() except using
the vector of an item already in the corpus.)

>>> from simpleneighbors import SimpleNeighbors
>>> sim = SimpleNeighbors(2, 'euclidean')
>>> sim.feed([('a', (4, 5)),
... ('b', (0, 3)),
... ('c', (-2, 8)),
... ('d', (2, -2))])
>>> sim.build()
>>> sim.neighbors('b', n=3)
['b', 'a', 'c']

	Parameters

	
	item – a data item in that has already been added to the index

	n – the number of items to return

	Returns

	a list of items sorted in order of proximity

	
neighbors_matching(item, n=12, check=None)

	Returns the items nearest an indexed item that pass a test.

This method is just like
nearest_matching(), but finds
items nearest a given item already in the index, instead of an
arbitrary vector.

	Parameters

	
	item – search item

	n – number of items to return

	check – function to call on each item

	Returns

	a generator yielding up to n items

	
save(prefix)

	Saves the index to disk.

This method saves the index to disk. Each backend manages serialization
a little bit differently: consult the documentation and source code for
more details. For example, because Annoy indexes can’t be serialized
with pickle, the Annoy backend’s implementation produces two files:
the serialized Annoy index, and a pickle with the other data from the
object.

This method’s parameter specifies the “prefix” to use for these files.

	Parameters

	prefix – filename prefix for Annoy index and object data

	Returns

	None

	
vec(item)

	Returns the vector for an item.

This method returns the vector that was originally provided when
indexing the specified item. (Depending on how it was originally
specified, they may have been converted to a different data type; e.g.,
integer vectors are converted to floats.)

	Parameters

	item – item to lookup

	Returns

	vector for item

Credits and Acknowledgements

Lead developer: Allison Parrish <allison@decontextualize.com>.

History

0.1.0 (2020-01-12)

	Support for multiple backends. This was implemented primarily to ease
installation for users who can’t install Annoy (because of a lack of binary
packaging for their platforms).

0.0.1 (2018-07-13)

	Initial release.

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 simpleneighbors	

Index

 A
 | B
 | D
 | F
 | L
 | N
 | S
 | V

A

 	
 	add_one() (simpleneighbors.SimpleNeighbors method)

B

 	
 	build() (simpleneighbors.SimpleNeighbors method)

D

 	
 	dist() (simpleneighbors.SimpleNeighbors method)

F

 	
 	feed() (simpleneighbors.SimpleNeighbors method)

L

 	
 	load() (simpleneighbors.SimpleNeighbors class method)

N

 	
 	nearest() (simpleneighbors.SimpleNeighbors method)

 	nearest_matching() (simpleneighbors.SimpleNeighbors method)

 	
 	neighbors() (simpleneighbors.SimpleNeighbors method)

 	neighbors_matching() (simpleneighbors.SimpleNeighbors method)

S

 	
 	save() (simpleneighbors.SimpleNeighbors method)

 	
 	SimpleNeighbors (class in simpleneighbors)

 	simpleneighbors (module)

V

 	
 	vec() (simpleneighbors.SimpleNeighbors method)

simpleneighbors

	Simple Neighbors API Reference

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Simple Neighbors

 		
 Simple Neighbors API Reference

 		
 Credits and Acknowledgements

 		
 History

 		
 0.1.0 (2020-01-12)

 		
 0.0.1 (2018-07-13)

_static/up.png

_static/up-pressed.png

