

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/simpleflow/checkouts/stable/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/simpleflow/checkouts/stable/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Simpleflow documentation

This directory hosts simpleflow documentation.

Installing

The following commands will install the python libraries needed
for developing the on the docs website. You may want to activate
a virtualenv before running the commands:

pip install pip-tools
./script/pip-sync

Running for development

This command launches a live development server that is accessible
on http://localhost:9000/.

./script/run

Note that the server will reload automatically on file changes in
the docs/ folder, but it won’t refresh assets included via the
markdown-include extension (namely the “README.md” section in the
“Intro” page, and the “LICENSE” page).

Deploying

This command builds the full static site and pushes the result
to the gh-pages branch on Github, which makes the doc available
at https://botify-labs.github.io/simpleflow/.

./script/deploy

Support for https://simpleflow.readthedocs.io/ may be reintroduced
later.

 {!../README.md!}

License

{!../LICENSE!}

 {!../CONTRIBUTING.md!}

Quickstart

Let’s take a simple example that computes the result of (x + 1) * 2. You
will find this example in examples/basic.py.

We need to declare the functions as activities to make them available:

from simpleflow import (
 activity,
 Workflow,
 futures,
)

@activity.with_attributes(task_list='quickstart', version='example')
def increment(x):
 return x + 1

@activity.with_attributes(task_list='quickstart', version='example')
def double(x):
 return x * 2

@activity.with_attributes(task_list='quickstart', version='example')
def delay(t, x):
 time.sleep(t)
 return x

And then define the workflow itself in a example.py file:

class BasicWorkflow(Workflow):
 name = 'basic'
 version = 'example'
 task_list = 'example'

 def run(self, x, t=30):
 y = self.submit(increment, x)
 yy = self.submit(delay, t, y)
 z = self.submit(double, y)

 print('({x} + 1) * 2 = {result}'.format(
 x=x,
 result=z.result))
 futures.wait(yy, z)
 return z.result

Now check that the workflow works locally with an integer “x” and a wait value “t”::

$ simpleflow workflow.start --local examples.basic.BasicWorkflow --input '[1, 5]'
(1 + 1) * 2 = 4

input is encoded in JSON format and can contain the list of positional
arguments such as '[1, 1] or a dict with the args and kwargs keys
such as {"args": [1], "kwargs": {}}, {"kwargs": {"x": 1}}, or
'{"args": [1], "kwargs": {"t": 5}}'.

Now that you are confident that the workflow should work, you can run it on
Amazon SWF with the standalone command::

$ simpleflow standalone --domain TestDomain examples.basic.BasicWorkflow --input '[1, 5]'

The standalone command sets an unique task list and manage all the processes
that are needed to execute the workflow: decider, activity worker, and a client
that starts the workflow. It is very convenient for testing a workflow by
executing it with SWF during the development steps or integration tests.

Let’s take a closer look to the workflow definition.

It is a class that inherits from simpleflow.Workflow:

class BasicWorkflow(Workflow):

It defines 3 class attributes:

	name, the name of the SWF workflow type.

	version, the version of the SWF workflow type. It is currently provided
only for labeling a workflow.

	task_list, the default task list (see it as a dynamically created queue)
where decision tasks for this workflow will be sent. Any decider that
listens on this task list can handle this workflow. This value can be
overrided by the simpleflow commands and objects.

It also implements the run method that takes two arguments: x and
t=30 (i.e. t is optional and has the default value 30). These
arguments are passed with the --input option. The run method
describes the workflow and how its tasks should execute.

Each time a decider takes a decision task, it executes again the run
from the start. When the workflow execution starts, it evaluates y = self.submit(increment, x) for the first time. y holds a future in state
PENDING. The execution continues with the line yy = self.submit(delay, t, y). yy holds another future in state PENDING. This state means the task
has not been scheduled. Now execution still continue in the run method
with the line z = self.submit(double, y). Here it needs the value of the
y future to evaluate the double activity. As the execution cannot
continues, the decider schedules the task increment. yy is not a
dependency for any task so it is not scheduled.

Once the decider has scheduled the task for y, it sleeps and waits for an
event to be waken up. This happens when the increment task completes.
SWF schedules a decision task. A decider takes it and executes the
BasicWorkflow.run method again from the start. It evalues the line y = self.submit(increment, x). The task associated with the y future has
completed. Hence y is in state FINISHED and contains the value 2 in
y.result. The execution continues until it blocks. It goes by yy = self.submit(delay, t, y) that stays the same. Then it reaches z = self.submit(double, y). It gets the value of y.result and z now holds a
future in state PENDING. Execution reaches the line with the print. It
blocks here because z.result is not available. The decider schedules the
task backs by the z future: double(y). The workflow execution continues
so forth by evaluating the BasicWorkflow.run again from the start until
it finishes.

Development

Requirements

	CPython 2.7 or 3.6 (recommended)

	Pypy 2.5+

NB about Pypy: all tests pass but some parts of the deciders may not work ; Pypy
support is mostly for activity workers where you need the performance boost.

Development environment

A Dockerfile is provided to help development on non-Linux machines.

You can build a simpleflow image with:

./script/docker-build

And use it with:

./script/docker-run

It will then mount your current directory inside the container and pass the
most relevant variables (your AWS_* credentials for instance).

Running tests

You can run tests with:

./script/test

Any parameter passed to this script is propagated to the underlying call to py.test.
This wrapper script sets some environment variables which control the behavior of
simpleflow during tests:

	SIMPLEFLOW_CLEANUP_PROCESSES: set to "yes" in tests, so tests will clean up child
processes after each test case. You can set it to an empty string ("") or omit it if
outside script/test if you want to debug things and take care of it yourself.

	SIMPLEFLOW_ENV: set to "test" in tests, which changes some constants to ease or
speed up tests.

	SWF_CONNECTION_RETRIES: set to "1" in tests, which avoids having too many retries
on the SWF API calls (5 by default in production).

	SIMPLEFLOW_VCR_RECORD_MODE: set to "none" in tests, which avoids running requests
against the real SWF endpoints in tests. If you need to update cassettes, see
tests/integration/README.md

Release

In order to release a new version, you’ll need credentials on pypi.python.org for this
software, as long as write access to this repository. Ask via an issue if needed.
Rough process:

git checkout master
git pull --rebase
v=0.10.0
vi simpleflow/__init__.py
git add . && git commit -m "Bump version to $v"
git tag $v
git push --tags
python setup.py sdist upload -r pypi

Installation

From the PyPI (recommended)

$ pip install -U simpleflow

From Source

simpleflow is actively developed on Github [https://github.com/botify-labs/simpleflow].

You can clone the public repo:

$ git clone https://github.com/botify-labs/simpleflow

Or download one of the following:

	tarball [https://github.com/botify-labs/simpleflow/tarball/master]

	zipball [https://github.com/botify-labs/simpleflow/zipball/master]

Once you have the source, you can install it into your site-packages with ::

$ python setup.py install

Jumbo Fields

!!! warning
This feature is in beta mode and subject to changes. Any feedback is appreciated.

For some use cases, you want to be able to have fields larger than what SWF accepts
(which is maximum 32K bytes on the largest ones, input and result, and lower for
some others, as documented here [http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-limits.html]).

Simpleflow allows to transparently translate such fields to objects stored on AWS
S3. The format is then the following:

simpleflow+s3://jumbo-bucket/with/optional/prefix/5d7191af-[...]-cdd39a31ba61 5242880

Format

The format provides a pseudo-S3 address as a first word. The simpleflow+s3://
prefix is here for implementation purposes, and may be extended later with other
backends such as simpleflow+ssh or simpleflow+gs.

The second word provides the length of the object in bytes, so a client parsing
the SWF history can decide if it’s worth it to pull/decode the object.

For now jumbo fields are limited to 5MB in size. Simpleflow will perform disk caching
for this feature to avoid issuing too many queries to S3, which would slow down
the deciders especially. Disk cache is located at /tmp/simpleflow-cache and is
limited to 1GB, with a LRU eviction strategy. It’s performed with the
DiskCache library [http://www.grantjenks.com/docs/diskcache/].

Configuration

You have to configure an environment variable to tell simpleflow where to store
things (which implicitly enables the feature by the way):

SIMPLEFLOW_JUMBO_FIELDS_BUCKET=jumbo-bucket/with/optional/prefix

And ensure your deciders and activity workers have access to this S3 bucket (s3:GetObject and
s3:PutObject should be enough, but please test it first).

!!! warning “Warning on bucket name length”
The overhead of the signature format is maximum 91 chars at this point (fixed protocol
and UUID width, and max 5M = 5242880 for the size part). So you should ensure
that your bucket + directory is not longer than 256 - 91 = 165 chars, else
you may not be able to get a working jumbo field signature for tiny fields.
In that case stripping the signature would only break things down the road
in unpredictable and hard to debug ways, so simpleflow will raise.

Signals

!!! warning
This feature is in beta mode and subject to changes. Any feedback is appreciated.

Signals are handled via two methods: Workflow.signal and Workflow.wait_signal.
They are currently only implemented with SWF.

Signaling a workflow

The Workflow.signal method sends a signal to one or several workflows.

def run(self):
 # Send to self, parent and children
 future = self.submit(self.signal('signal_name', *args, **kwargs))

 # Send to specific workflow
 future = self.submit(self.signal('signal_name', workflow_id, run_id, *args, **kwargs))

The future will be finished, its result being *args and **kwargs, as soon as at least one workflow has been signaled
(including oneself).

Waiting for a signal

The Workflow.wait_signal returns a Future which result is the signal input.

def run(self):
 future = self.submit(self.wait_signal('signal_name'))
 result = future.result

Naturally, one isn’t forced to wait on the future result:

def run(self):
 my_signal = self.submit(self.wait_signal('signal_name'))
 if my_signal.finished:
 # Something happened
 self.process(my_signal.result)

Limitations

	signals cannot be reset; they can be overwritten though (only the latest one count)

	derive from futures.Future to add the timestamp or counter and better names? This would bypass the “reset” issue too

One way to handle recurrent signals is by using event_id‘s (available with Workflow.get_event_details). For
instance, when receiving a signal, check that a marker with the same name does not exist or is in the past (lower
event ID); if so, the signal is new, so process it and create a marker.

Implementation

The swf.executor.signal method returns a swf.SignalTask instance. Its schedule method
returns an ExternalWorkflowExecutionDecision containing the given signal, sent either to the running workflow or
the specified one.

This decision results in a SignalExternalWorkflowExecutionInitiated followed (if all’s well) by a
SignalExternalWorkflowExecutionInitiated in the sender’s history; from these events, we create first a running,
then a completed future. (It can also fail, for instance if the workflow doesn’t exist.)

The receiver gets a WorkflowExecutionSignaled with the signal name, input and external (i.e. sender) information.
We may want every known workflow to be signaled too: if propagate=True is passed to Workflow.signal, the
signal is propagated to the parent and children of the workflow.

Since we propagate using SignalWorkflowExecution, not a decision, the target doesn’t have the
externalWorkflowExecution information; so we pass __workflow_id and __run_id in the input.

Command Line

Simpleflow comes with a simpleflow command-line utility that can be used to list workflows against SWF, boot decider or activity workers (with multiprocessing), and a few other goodies.

List Workflow Executions

$ simpleflow workflow.list TestDomain
basic-example-1438722273 basic OPEN

Workflow Execution Status

$ simpleflow --header workflow.info TestDomain basic-example-1438722273
domain workflow_type.name workflow_type.version task_list workflow_id run_id tag_list execution_time input
TestDomain basic example basic-example-1438722273 22QFVi362TnCh6BdoFgkQFlocunh24zEOemo1L12Yl5Go= 1.70 {u'args': [1], u'kwargs': {}}

Tasks Status

You can check the status of the workflow execution with::

$ simpleflow --header workflow.tasks DOMAIN WORKFLOW_ID [RUN_ID] --nb-tasks 3
$ simpleflow --header workflow.tasks TestDomain basic-example-1438722273
Tasks Last State Last State Time Scheduled Time
examples.basic.increment scheduled 2015-08-04 23:04:34.510000 2015-08-04 23:04:34.510000
$ simpleflow --header workflow.tasks TestDomain basic-example-1438722273
Tasks Last State Last State Time Scheduled Time
examples.basic.double completed 2015-08-04 23:06:19.200000 2015-08-04 23:06:17.738000
examples.basic.delay completed 2015-08-04 23:08:18.402000 2015-08-04 23:06:17.738000
examples.basic.increment completed 2015-08-04 23:06:17.503000 2015-08-04 23:04:34.510000

Profiling

You can profile the execution of the workflow with::

$ simpleflow --header workflow.profile TestDomain basic-example-1438722273
Task Last State Scheduled Time Scheduled Start Time Running End Percentage of total time
activity-examples.basic.double-1 completed 2015-08-04 23:06 0.07 2015-08-04 23:06 1.39 2015-08-04 23:06 1.15
activity-examples.basic.increment-1 completed 2015-08-04 23:04 102.20 2015-08-04 23:06 0.79 2015-08-04 23:06 0.65

Controlling SWF access

The SWF region is controlled by the environment variable AWS_DEFAULT_REGION. This variable
comes from the legacy “simple-workflow” project. The option might be exposed through a
--region option in the future (if you want that, please open an issue).

The SWF domain is controlled by the --domain on most simpleflow commands. It can also
be set via the SWF_DOMAIN environment variable. In case both are supplied, the
command-line value takes precedence over the environment variable.

Note that some simpleflow commands expect the domain to be passed as a positionnal argument.
In that case the environment variable has no effect for now.

The number of retries for accessing SWF can be controlled via SWF_CONNECTION_RETRIES
(defaults to 5).

The identity of SWF activity workers and deciders can be controlled via SIMPLEFLOW_IDENTITY
which should be a JSON-serialized string representing { "key": "value" } pairs that
adds up (or override) the basic identity provided by simpleflow. If some value is null in
this JSON map, then the key is removed from the final SWF identity.

Controlling log verbosity

You can control log verbosity via the LOG_LEVEL environment variable. Default is INFO. For instance,
the following command will start a decider with DEBUG logs:

$ LOG_LEVEL=DEBUG simpleflow decider.start --domain TestDomain --task-list test examples.basic.BasicWorkflow

SWF Object Layer

simpleflow includes a swf module that is an object-oriented wrapper for the
boto.swf library, used to access the Amazon Simple Workflow [http://aws.amazon.com/swf] service.

It aims to provide:

	Modelisation: Swf entities and concepts are to be manipulated through Models and
QuerySets (any ressemblance with the Django API would not be a coincidence).

	High-level Events, History: A higher level of abstractions over SWF events and
history. Events are implemented as stateful objects aware of their own state and
possible transitions. History enhances the events flow description, and can be
compiled to check its integrity and the activities statuses transitions.

	Decisions: Stateful abstractions above the SWF decision making system.

	Actors: SWF actors base implementation such as a Decider or an activity
Worker from which the user can easily inherit to implement its own
decision/processing model.

Settings

!!! bug
The informations in this “Settings” section may be outdated, they need some love.

Mandatory:

	aws_access_key_id

	aws_secret_access_key

Optional:

	region

Settings are found respectively in:

A credential file a .swf file in the user’s home directory:

[credentials]
aws_access_key_id=<aws_access_key_id>
aws_secret_access_key=<aws_secret_access_key>

[defaults]
region=us-east-1

The following environment variables
- AWS_ACCESS_KEY_ID
- AWS_SECRET_ACCESS_KEY
- region

If neither of the previous methods were used, you can still set the AWS credentials with swf.settings.set:

>>> import swf.settings
>>> swf.settings.set(aws_access_key_id='MYAWSACCESSKEYID',
... aws_secret_access_key='MYAWSSECRETACCESSKEY',
... region='REGION')
And then you're good to go...
>>> queryset = DomainQuery()
>>> queryset.all()
[Domain('test1'), Domain('test2')]

Example usage

Models

Simple Workflow entities such as domains, workflow types, workflow executions and activity types are to be
manipulated through swf using models. They are immutable swf objects representations providing an
interface to objects attributes, local/remote objects synchronization and changes watch between these
local and remote objects.

Models reside in the swf.models module
>>> from swf.models import Domain, WorkflowType, WorkflowExecution, ActivityType

Once imported you're ready to create a local model instance
>>> D = Domain(
 "my-test-domain-name",
 description="my-test-domain-description",
 retention_period=60
)

a Domain model local instance has been created, but nothing has been
sent to amazon. To do so, you have to save it.
>>> D.save()

Now you have a local Domain model object, and if no errors were raised, the save method have saved
amazon-side. Sometimes you won’t be able to know if the model you’re manipulating has an upstream version:
whether you’ve acquired it through a queryset, or the remote object has been deleted for example.
Fortunately, models are shipped with a set of functions to make sure your local objects keep synced and
consistent.

Exists method lets you know if your model instance has an upstream version
>>> D.exists
True

What if changes have been made to the remote object?
synced and changes methods help ensuring local and remote models
are still synced and which changes have been made (in the case below
nothing has changed)
>>> D.is_synced
True
>>> D.changes
ModelDiff()

What if your local object is out of sync? Models upstream method will fetch the remote version of
your object and will build a new model instance using its attributes.

>>> D.is_synced
False
>>> D.changes
ModelDiff(
 Difference('status', 'REGISTERED', 'DEPRECATED')
)

Let's pull the upstream version
>>> D = D.upstream()
>>> D.is_synced
True
>>> D.changes
ModelDiff()

QuerySets

Models can be retrieved and instantiated via querysets. To continue over the django comparison,
they’re behaving like django managers.

As querying for models needs a valid connection to amazon service,
Queryset objects cannot act as classmethods proxy and have to be instantiated;
most of the time against a Domain model instance
>>> from swf.querysets import DomainQuerySet, WorkflowTypeQuerySet

Domain querysets can be instantiated directly
>>> domain_qs = DomainQuerySet()
>>> workflow_domain = domain_qs.get("MyTestDomain") # and specific model retieved via .get method
>>> workflow_qs = WorkflowTypeQuerySet(workflow_domain) # queryset built against model instance example

>>> workflow_qs.all()
[WorkflowType("TestType1"), WorkflowType("TestType2"),]

>>> workflow_qs.filter(status=DEPRECATED)
[WorkflowType("DeprecatedType1"),]

Events

(coming soon)

History

(coming soon)

Decisions

(coming soon)

Actors

SWF workflows are based on a worker-decider pattern. Every actions in the flow is executed by a worker
which runs supplied activity tasks. And every actions is the result of a decision taken by the decider
reading the workflow events history and deciding what to do next. In order to ease the development of
such workers and decider, swf exposes base classes for them located in the swf.actors submodule.

	An Actor must basically implement a start and stop method and can actually inherits from whatever
runtime implementation you need: thread, gevent, multiprocess...

class Actor(ConnectedSWFObject):
 def __init__(self, domain, task_list)
 def start(self):
 def stop(self):

	Decider base class implements the core functionality of a swf decider: polling for decisions tasks,
and sending back a decision task copleted decision. Every other special needs implementations are left
up to the user.

class Decider(Actor):
 def __init__(self, domain, task_list)
 def complete(self, task_token, decisions=None, execution_context=None)
 def poll(self, task_list=None, identity=None, maximum_page_size=None)

	Worker base class implements the core functionality of a swf worker whoes role is to process activity
tasks. It is basically able to poll for new activity tasks to process, send back a heartbeat to SWF
service in order to let it know it hasn’t failed or crashed, and to complete, fail or cancel the activity
task it’s processing.

class ActivityWorker(Actor):
 def __init__(self, domain, task_list)
 def cancel(self, task_token, details=None)
 def complete(self, task_token, result=None)
 def fail(self, task_token, details=None, reason=None)
 def heartbeat(self, task_token, details=None)
 def poll(self, task_list=None, **kwargs)

Execution of Tasks as Programs

The simpleflow.execute module allows to define functions that will be
executed as a program.

There are two modes:

	Convert the definition of a fonction as a command line.

	Execute a Python function in another process.

Please refer to the simpleflow.tests.test_activity test module for
further examples.

Executing a function as a command line

Let’s take the example of ls:

@execute.program()
def ls():
 pass

Calling ls() in Python will execute the ls command. Here the purpose of
the function definition is only to describe the command line. The reason for
this is to map a call in a workflow definition to a program to execute on the
command line. The program may be written in any language whereas the workflow
definition is in Python.

Executing a Python function in another process

The rationale for this feature is to execute a function with another
interpreter (such as pypy) or in another environment (virtualenv).

@execute.python(interpreter='pypy')
def inc(xs):
 return [x + 1 for x in xs]

Calling inc(range(10)) in Python will execute the function with the
pypy interpreter found in the $PATH.

Limitations

The main limitation comes from the need to serialize the arguments and the
return values to pass them as strings. Hence all arguments and return values
must be convertible into JSON values.

 _static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

