

    
      Navigation

      
        	
          index

        	
          next |

        	Simple Binary Search Tree 0.4.1 documentation 
 
      

    


    
      
          
            
  
Welcome to Simple Binary Search Tree’s documentation!

Contents:



	Simple Binary Search Tree
	Features





	Installation

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips





	Credits
	Development Lead

	Contributors





	History

	0.1.0 (2014-09-11)

	0.2.0 (2014-09-19)

	0.3.0 (2014-10-08)

	0.4.0 (2014-10-16)

	0.4.1 (2014-10-22)








Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2014, Adrian Cruz.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Simple Binary Search Tree 0.4.1 documentation 
 
      

    


    
      
          
            
  
Simple Binary Search Tree

[image: https://badge.fury.io/py/simplebst.png]
 [http://badge.fury.io/py/simplebst][image: https://travis-ci.org/drincruz/simplebst.png?branch=master]
 [https://travis-ci.org/drincruz/simplebst][image: https://pypip.in/d/simplebst/badge.png]
 [https://pypi.python.org/pypi/simplebst]Simple Binary Search Tree is a simple implementation of a binary search tree


	Free software: MIT license

	Documentation: https://simplebst.readthedocs.org.




Features


To use Simple Binary Search Tree in a project:

# At minimal, you'll need to import simplebst.Node
from simplebst import Node

# Create a single element tree with value of 23
# Its left and right sub-trees are set to None
tree = Node(23)





Get the value of a Node:

tree.get_value()





Get the left/right child Node of a Node:

tree.get_left()
tree.get_right()





Insert a new node into the tree:

# Import simplebst.utils.insert_node
from simplebst.utils import insert_node

# Insert a node will modify the tree you specify
# So, we'll use our previous example of "tree"
insert_node(tree, 17)

# If you were curious you should see the correct
# value if you do the following
tree.get_left().get_value()

# Let's fill the tree with values
for value in [18, 27, 53, 11]:
    insert_node(tree, value)





For more detailed usage, please see the usage documentation: https://simplebst.readthedocs.org/en/latest/usage.html










          

      

      

    


    
         Copyright 2014, Adrian Cruz.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Simple Binary Search Tree 0.4.1 documentation 
 
      

    


    
      
          
            
  
Installation

At the command line:

$ easy_install simplebst





Or, if you have virtualenvwrapper installed:

$ mkvirtualenv simplebst
$ pip install simplebst









          

      

      

    


    
         Copyright 2014, Adrian Cruz.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Simple Binary Search Tree 0.4.1 documentation 
 
      

    


    
      
          
            
  
Usage

To use Simple Binary Search Tree in a project:

# At minimal, you'll need to import simplebst.Node
from simplebst import Node

# Create a single element tree with value of 23
# Its left and right sub-trees are set to None
tree = Node(23)





Get the value of a Node:

tree.get_value()





Get the left/right child Node of a Node:

tree.get_left()
tree.get_right()





Insert a new node into the tree:

# Import simplebst.utils.insert_node
from simplebst.utils import insert_node

# Insert a node will modify the tree you specify
# So, we'll use our previous example of "tree"
insert_node(tree, 17)

# If you were curious you should see the correct
# value if you do the following
tree.get_left().get_value()

# Let's fill the tree with values
for value in [18, 27, 53, 11]:
    insert_node(tree, value)





In-order traversals


in_order_nodes generator:

from simplebst.traversals import in_order_nodes

# Use a generator to get all nodes in-order
for node in in_order_nodes(tree):
    print(node.get_value())

# You _should_ get the following:
# 11
# 17
# 18
# 23
# 27
# 53





in_order_list:

from simplebst.traversals import in_order_list

# We need to store the values in a list,
# so we'll create an empty one
ordered_list = []

# in_order_list will modify ordered_list with
# Node()'s from the tree in-order
in_order_list(tree, ordered_list)

# You can now iterate the ordered_list
for node in ordered_list:
    print(node.get_value())








Level-order traversals


level_order_nodes generator:

from simplebst.traversals import level_order_nodes

# Use a generator to get all nodes in level-order
for node in level_order_nodes(tree):
    print(node.get_value())

# You _should_ get the following:
# 23
# 17
# 27
# 11
# 18
# 53





level_order_list:

from simplebst.traversals import level_order_list

# level_order_list() returns a list
# so we can iterate it like so
for node in level_order_list(tree):
    print(node.get_value())








Pre-order traversals


pre_order_nodes generator:

from simplebst.traversals import pre_order_nodes

# Use a generator to get all nodes in pre-order
for node in pre_order_nodes(tree):
    print(node.get_value())

# You _should_ get the following:
# 23
# 17
# 11
# 18
# 27
# 53





pre_order_list:

from simplebst.traversals import pre_order_list

# We need to store the values in a list,
# so we'll create an empty one
pre_ordered_list = []

# pre_order_list will modify pre_ordered_list with
# Node()'s from the tree in pre-order
pre_order_list(tree, pre_ordered_list)

# You can now iterate the ordered_list
for node in pre_ordered_list:
    print(node.get_value())








Post-order traversals


post_order_nodes generator:

from simplebst.traversals import post_order_nodes

# Use a generator to get all nodes in post-order
for node in post_order_nodes(tree):
    print(node.get_value())

# You _should_ get the following:
# 11
# 18
# 17
# 53
# 27
# 23





post_order_list:

from simplebst.traversals import post_order_list

# We need to store the values in a list,
# so we'll create an empty one
post_ordered_list = []

# post_order_list will modify post_ordered_list with
# Node()'s from the tree in post-order
post_order_list(tree, post_ordered_list)

# You can now iterate the ordered_list
for node in post_ordered_list:
    print(node.get_value())








Useful utility functions


tree_height:

from simplebst.utils import tree_height

# Get the height of the tree we've been using
height = tree_height(tree)
print(height)

# You should get 2












          

      

      

    


    
         Copyright 2014, Adrian Cruz.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Simple Binary Search Tree 0.4.1 documentation 
 
      

    


    
      
          
            
  
Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:


Types of Contributions


Report Bugs

Report bugs at https://github.com/drincruz/simplebst/issues.

If you are reporting a bug, please include:


	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.






Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.




Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.




Write Documentation

Simple Binary Search Tree could always use more documentation, whether as part of the
official Simple Binary Search Tree docs, in docstrings, or even on the web in blog posts,
articles, and such.




Submit Feedback

The best way to send feedback is to file an issue at https://github.com/drincruz/simplebst/issues.

If you are proposing a feature:


	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)








Get Started!

Ready to contribute? Here’s how to set up simplebst for local development.


	Fork the simplebst repo on GitHub.



	Clone your fork locally:

$ git clone git@github.com:your_name_here/simplebst.git







	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv simplebst
$ cd simplebst/
$ python setup.py develop







	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature





Now you can make your changes locally.



	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 simplebst tests
$ python setup.py test
$ tox





To get flake8 and tox, just pip install them into your virtualenv.



	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature







	Submit a pull request through the GitHub website.








Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:


	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, and 3.4, and for PyPy. Check
https://travis-ci.org/drincruz/simplebst/pull_requests
and make sure that the tests pass for all supported Python versions.






Tips

To run a subset of tests:

$ python -m unittest tests.test_simplebst











          

      

      

    


    
         Copyright 2014, Adrian Cruz.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Simple Binary Search Tree 0.4.1 documentation 
 
      

    


    
      
          
            
  
Credits


Development Lead


	Adrian Cruz <”drincruz at gmail dot com”>






Contributors

None yet. Why not be the first?







          

      

      

    


    
         Copyright 2014, Adrian Cruz.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	Simple Binary Search Tree 0.4.1 documentation 
 
      

    


    
      
          
            
  
History




0.1.0 (2014-09-11)


	First release on Github.






0.2.0 (2014-09-19)


	Code cleanup and updated utils and traversals






0.3.0 (2014-10-08)


	
	Added the following traversals:

	
	Pre-order

	Post-order

	Level-order














0.4.0 (2014-10-16)


	Added tree_height() util

	Added insert_node() unit tests that I missed previously (yay for code coverage!)






0.4.1 (2014-10-22)


	Updated setup.py to support nose as its test suite So `python setup.py test` can be run successfully.







          

      

      

    


    
         Copyright 2014, Adrian Cruz.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	Simple Binary Search Tree 0.4.1 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2014, Adrian Cruz.
      Created using Sphinx 1.2.2.
    

  _static/minus.png





_static/comment.png





_static/comment-bright.png





_static/file.png





_static/ajax-loader.gif





_static/plus.png





_static/up.png





_static/down.png





_static/comment-close.png





search.html


    
      Navigation


      
        		
          index


        		Simple Binary Search Tree 0.4.1 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2014, Adrian Cruz.
      Created using Sphinx 1.2.2.
    

  

_static/up-pressed.png





_static/down-pressed.png





