

Silk

	Quick Start
	Other Installation Options

	Profiling
	Decorator

	Context Manager

	Dynamic Profiling

	Configuration
	Authentication/Authorisation

	Request/Response bodies

	Meta-Profiling

	Troubleshooting
	Unicode

	Middleware

Silk is a live profiling and inspection tool for the Django framework. Silk intercepts and stores HTTP requests and database queries before presenting them in a user interface for further inspection:

[image: _images/1.png]
A live demo is available here [http://mtford.co.uk/silk/].

Features

	Inspect HTTP requests and responses
	Query parameters

	Headers

	Bodies

	Execution Time

	Database Queries
	Number

	Time taken

	SQL query inspection

	Profiling of arbritary code blocks via a Python context manager and decorator
	Execution Time

	Database Queries

	Can also be injected dynamically at runtime e.g. if read-only dependency.

	Authentication/Authorisation for production use

Requirements

	Django: 1.5, 1.6

	Python: 2.7, 3.3, 3.4

Quick Start

Silk is installed like any other Django app.

First install via pip:

pip install django-silk

Add the following to your settings.py:

MIDDLEWARE_CLASSES = (
 ...
 'silk.middleware.SilkyMiddleware',
 ...
)

INSTALLED_APPS = (
 ...
 'silk'
)

Add the following to your urls.py:

urlpatterns += patterns('', url(r'^silk', include('silk.urls', namespace='silk')))

Run syncdb to create Silk’s database tables:

python manage.py syncdb

And voila! Silk will begin intercepting requests and queries which you can inspect by visiting /silk/

Other Installation Options

You can download a release from github [https://github.com/mtford90/silk/releases] and then install using pip:

pip install django-silk-<version>.tar.gz

You can also install directly from the github repo but please note that this version is not guaranteed to be working:

pip install -e git+https://github.com/mtford90/silk.git#egg=silk

Profiling

Silk can be used to profile arbitrary blocks of code and provides silk_profile, a Python decorator and a context manager for this purpose. Profiles will then appear in the ‘Profiling’ tab within Silk’s user interface.

Decorator

The decorator can be applied to both functions and methods:

@silk_profile(name='View Blog Post')
def post(request, post_id):
 p = Post.objects.get(pk=post_id)
 return render_to_response('post.html', {
 'post': p
 })

class MyView(View):
 @silk_profile(name='View Blog Post')
 def get(self, request):
 p = Post.objects.get(pk=post_id)
 return render_to_response('post.html', {
 'post': p
 })

Context Manager

silk_profile can also be used as a context manager:

def post(request, post_id):
 with silk_profile(name='View Blog Post #%d' % self.pk):
 p = Post.objects.get(pk=post_id)
 return render_to_response('post.html', {
 'post': p
 })

Dynamic Profiling

Decorators and context managers can also be injected at run-time. This is useful if we want to narrow down slow requests/database queries to dependencies.

Dynamic profiling is configured via the SILKY_DYNAMIC_PROFILING option in your settings.py:

"""
Dynamic function decorator
"""

SILKY_DYNAMIC_PROFILING = [{
 'module': 'path.to.module',
 'function': 'foo'
}]

... is roughly equivalent to
@silk_profile()
def foo():
 pass

"""
Dynamic method decorator
"""

SILKY_DYNAMIC_PROFILING = [{
 'module': 'path.to.module',
 'function': 'MyClass.bar'
}]

... is roughly equivalent to
class MyClass(object):

 @silk_profile()
 def bar(self):
 pass

"""
Dynamic code block profiling
"""

SILKY_DYNAMIC_PROFILING = [{
 'module': 'path.to.module',
 'function': 'foo',
 # Line numbers are relative to the function as opposed to the file in which it resides
 'start_line': 1,
 'end_line': 2,
 'name': 'Slow Foo'
}]

... is roughly equivalent to
def foo():
 with silk_profile(name='Slow Foo'):
 print (1)
 print (2)
 print(3)
 print(4)

Note that dynamic profiling behaves in a similar fashion to that of the python mock framework in that
we modify the function in-place e.g:

""" my.module """
from another.module import foo

...do some stuff
foo()
...do some other stuff

We would profile foo by dynamically decorating my.module.foo as opposed to another.module.foo:

SILKY_DYNAMIC_PROFILING = [{
 'module': 'my.module',
 'function': 'foo'
}]

If we were to apply the dynamic profile to the functions source module another.module.foo after it has already been imported, no profiling would be triggered.

Configuration

Authentication/Authorisation

By default anybody can access the Silk user interface by heading to /silk/. To enable your Django
auth backend place the following in settings.py:

SILKY_AUTHENTICATION = True # User must login
SILKY_AUTHORISATION = True # User must have permissions

If SILKY_AUTHORISATION is True, by default Silk will only authorise users with is_staff attribute set to True.

You can customise this using the following in settings.py:

def my_custom_perms(user):
 return user.is_allowed_to_use_silk

SILKY_PERMISSIONS = my_custom_perms

Request/Response bodies

By default, Silk will save down the request and response bodies for each request for future viewing
no matter how large. If Silk is used in production under heavy volume with large bodies this can have
a huge impact on space/time performance. This behaviour can be configured with following options:

SILKY_MAX_REQUEST_BODY_SIZE = -1 # Silk takes anything <0 as no limit
SILKY_MAX_RESPONSE_BODY_SIZE = 1024 # If response body>1024kb, ignore

Meta-Profiling

Sometimes its useful to be able to see what effect Silk is having on the request/response time. To do this add
the following to your settings.py:

SILKY_META = True

Silk will then record how long it takes to save everything down to the database at the end of each request:

[image: _images/meta.png]
Note that in the above screenshot, this means that the request took 29ms (22ms from Django and 7ms from Silk)

Troubleshooting

The below details common problems when using Silk, most of which have been derived from the solutions to github issues.

Unicode

Silk saves down the request and response bodies of each HTTP request by default. These bodies are often UTF encoded and hence it is important that Silk’s database tables are also UTF encoded. Django has no facility for enforcing this and instead assumes that the configured database defaults to UTF.

If you see errors like:

Incorrect string value: ‘xCExBB, xCFx86...’ for column ‘raw_body’ at row...

Then it’s likely your database is not configured correctly for UTF encoding.

See this github issue [https://github.com/mtford90/silk/issues/21] for more details and workarounds.

Middleware

The middleware is placement sensitive. If the middleware before silk.middleware.SilkyMiddleware returns from process_request then SilkyMiddleware will never get the chance to execute. Therefore you must ensure that any middleware placed before never returns anything from process_request. See the django docs [https://docs.djangoproject.com/en/dev/topics/http/middleware/#process-request] for more information on this.

This GitHub issue [https://github.com/mtford90/silk/issues/12] also has information on dealing with middleware problems.

Index

 _static/plus.png

nav.xhtml

 Table of Contents

 		Silk

 		Quick Start

 		Other Installation Options

 		Profiling

 		Decorator

 		Context Manager

 		Dynamic Profiling

 		Configuration

 		Authentication/Authorisation

 		Request/Response bodies

 		Meta-Profiling

 		Troubleshooting

 		Unicode

 		Middleware

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_images/1.png
Requests it Patl Order: [IENTTT=INEY

200 POST 302 POST 200 POST 200 POST 200 GET 200 GET 200 GET 500 GET 200 GET
/admin/ /login/ Jadmin/ /admin/ /admin/ /admin/ Jadmin/ / /admin/
793ms overall 86ms overall 3749ms overall 969ms overall 1277ms overall 276ms overall 2063ms overall 118 overall 1248ms overall
2ms on queries 2ms on queries 2ms on queries 2ms on queries 2ms on queries 2ms on queries “Ims on queries 2ms on queries “Ims on queries
7 queries 6 queries 5 queries 5 queries 5 queries 5 queries 4 queries % queries % queries
200 GET 200 GET 200 GET 200 POST 200 POST 200 GET 200 GET 200 POST 200 POST
Jadmin/ Jadmin/ ladmin/ Jadmin/ ladmin/ ladmin/ ladmin/ ladmin/ ladmin/
1155ms overall 1226ms overall 898ms overall 1273ms overall 509ms overall 275ms overall 257ms overall 518ms overall 492ms overall
“Ims on queries “Ims on queries “Ims on queries “Ims on queries “Ims on queries “Ims on queries “Ims on queries “Ims on queries “Ims on queries
% queries % queries 4 queries % queries 4 queries 4 queries 4 queries 4 queries 4 queries
200 POST 200 POST 302 GET 200 GET 200 GET 200 GET 200 GET
Jadmin/ /admin/ /admin/ [api/github/ [api/github/ /api/github/ /api/github/
765ms overall 943ms overall 10ms overall 2298ms overall 2260ms overall A775ms overall 2157ms overall
“Ims on queries “Ims on queries “Ims on queries “Ims on queries “Ims on queries “Ims on queries “Ims on queries

3 queries 3 queries 2 queries 2 queries 2 queries 2 queries 2 queries

_static/minus.png

_images/meta.png
16:08:41.884
200 GET
/

22ms overall +7ns
Oums on queries -2n:
1 queries s

_static/up-pressed.png

