

 Navigation

 	
 index

 	silk-deployment latest documentation

Overview

Silk is a Fabric [http://docs.fabfile.org/] based tool for setting up Python WSGI apps on what I like to
call the SNUG stack:

	Supervisord [http://supervisord.org/] for starting processes and keeping them alive.

	Nginx [http://nginx.org/] for proxying between your WSGI app and the big bad web.

	Ubuntu [http://www.ubuntu.com/] as the OS of choice, enabling resolution of system dependencies with
apt. Debian might work as well but hasn’t been tested.

	Gunicorn [http://gunicorn.org/] for serving your WSGI app.

(I suppose it could also be the GUNS stack but that sounds far less friendly.)

Key Features

	Deploy your site to one or more servers with a single command (‘silk push’).

	Automatic configuration of Nginx, Supervisord, and Gunicorn to get your site running.

	Isolation of each site into a separate Virtualenv [http://virtualenv.openplans.org/]

	Support for differing app config depending on which role you deploy to (a
different DB in staging than production, for example).

Installation

Use pip:

pip install silk-deployment

You can also install the current development version straight from bitbucket:

pip install hg+http://bits.btubbs.com/silk-deployment#egg=silk-deployment

Commands

(Almost) all of the commands below require that you specify a role name, like
‘silk dosomething -R dev’.

Commands can generally be run from the site root directory or any subdirectory
of it.

push

silk push -R rolename

This command is the main reason for Silk’s existence. It does the work required
to get your app running on a host (or set of hosts) given the configuration
specified in site.yaml and the selected role .yaml file. ‘push’ does the
following:

	SSHes to the remote server(s) specified in the role config.

	Creates a zipped up rollback archive of the old site if there’s one
there already.

	Creates a virtualenv for the site.

	Installs apt and python dependencies.

	Copies the site from your local machine to a temporary directory on the
remote server.

	Writes config file includes for nginx and supervisord.

	Moves your code from the temp dir into its production location
(/srv/<sitename> by default).

	Tells nginx and supervisord to reload their configs.

rollback

silk rollback -R rolename

This command is for when you have those ‘OMG I BROKE THE SITE’ moments. It will
SSH to the push_hosts specified in your role file and restore the most recent
archive of the site. Silk keeps 3 rollback copies of your site, so you could
potentially run ‘silk rollback’ 3 times to go back to the state from 3
deployments ago.

run

silk run -R rolename

This command runs the site from the local machine, on port 8000. (Nothing is
pushed of copied.) Static directories listed in the static_dirs section of
site.yaml will also be served. (CherryPy is used for this magic.)

install_server_deps

silk install_server_deps -R rolename

When you get a shiny new server with that fresh Ubuntu smell, it needs just a
tiny bit of setup before it will know how to serve silk-deployed sites. This
command does that. It installs nginx and supervisord, and gives each of them a
wildcard include in their configs for loading from /srv/<sitename>/conf.

pip_deps

silk pip_deps

This command wraps ‘pip install’ to install all of the python packages listed
in requirements.txt into your local python environment. It’s handy for grabbing all
the dependencies when you’re working with a new virtualenv on an existing
project.

create_virtualenv

silk create_virtualenv

Creates a virtual environment for the app to be deployed.

configure_nginx

silk configure_nginx

Configures nginx

switch_nginx

silk switch_nginx

Reloads nginx config

configure_supervisor

silk configure_supervisor

Configures supervisor

start_process

silk start_process

Starts process

stop_other_versions

silk stop_other_versions

Kills other running proccesses of this app

skel

silk skel sitename

Creates a directory with a basic Silk file and directory structure.

Layout

A silk-enabled project should be layed out something like this:

mysite.com
├── deps.yaml
├── fabfile.py
├── membrane.py
├── roles
│ ├── dev.yaml
│ ├── staging.yaml
│ └── production.yaml
├── site.yaml
└── my-django-project

Some of those files/folders are required, other are optional:

Required

	site.yaml - This is the main config file (comparable to app.yaml in Google
App Engine)

	deps.yaml - Lists Python packages, Ubuntu apt packages, and apt build
dependencies that need to be installed on the server running your site.

	fabfile.py - A Fabric [http://docs.fabfile.org/]-compatible fabfile that imports Silk’s Fabric
functions.

	roles/*.yaml - One or more ‘role’ files that contain the config to be
passed into your app depending on the deployment context.

All of the required files will be created for you with the ‘silk skel’ command.

Optional

	membrane.py - For Django projects it’s nice to have a little shim to expose
the project as a WSGI app. I like to call mine membrane.py. You can use
whatever you like, or nothing at all, depending on your setup.

	my-django-project - Silk isn’t restricted to Django; any valid WSGI app on
your Python path should be servable. But for Django projects I think it
makes sense to stick them right there.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	silk-deployment latest documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 _static/comment-bright.png

_static/file.png

search.html

 Navigation

 		
 index

 		silk-deployment latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up.png

_static/plus.png

_static/down.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

_static/comment.png

_static/minus.png

_static/comment-close.png

