SILF Experiment APl Documentation
Release 0.0

SILF Collaboration

Apr 18, 2018

Contents

1 device Package

2 _const Module

3 _device Module

4 API fine print

5 Power management

6 Threading considerations
7 Change device state

8 How to test the devices according to the API
8.1 UseDeviceWorkerWrapper frominterpreter o o v v v v v vt v v vt
8.2 Autoresultpooling e e e e e e e

9 Device Api examples
0.1 Enginedriver e e e e e
0.2 Engine driver i e e e e e e e e e e e e e e e
9.3 Engine and voltimeter connected L. oL e

Python Module Index

10

11
11
12

13
13
14
14

16

CHAPTER 1

device Package

It packages api for single device.

CHAPTER 2

__const Module

silf.backend.commons.device._const .DEVICE_STATES = ('off', 'stand-by', 'ready', 'running',
Touple containing all allowable device states.

CHAPTER 3

_device Module

This is a api for a device.

class silf.backend.commons.device._device.Device (device_id="default’, con-

fig_file=None)
Bases: object

Defines plugin for a particular device in the experiment.

All methods are blocking, that is should block the current thread until finished.

Note: Instances of this object don’t need to use any synchronization, they will always be called from single
thread, This instance will be constructed used and destroyed on single process.

Warning: All methods should exit relatively fast.

Warning: Both method parameters and responses should be pickleable, these will be travelling between
process boundaries.

MAIN_LOOP_INTERVAL = 0.1
Interval between invocations of main loop. Represents number of seconds as f1oat.

apply_settings (settings)
Applies some set of settings to this device.

Parameters settings (dict) — Settings to be applied, it is already validated by the
IDeviceManager.

Raises

* InvalidStateException — If device is in invalid state (that is not STAND_BY or
RUNNING)

https://docs.python.org/3.3/library/stdtypes.html#dict

SILF Experiment API Documentation, Release 0.0

* DeviceRuntimeException — If any exception occours
Returns None
Return type None
logger

Returns Logger instance attached to this device. Utility method, you may use whatsoever logger
you want

loop_iteration()
Perform an iteration of main experiment loop. Should terminate quickly,

Raises DeviceRuntimeException — If any exception occours

Returns If returned value is False or None next iteration of this method will be scheduled after
MAIN_LOOP_INTERVAL seconds, it result is true it will be sheduled earlier (after at most
one command from controller was performed);

perform_diagnostics (diagnostics_level="short’)
Performs diagnostics on the device. Can be ran if this device is OFF. or STAND_BY.

Parameters diagnostics_level (str) — Whether diagnostisc should be thororough or
not, must be in DEVICE_STATES

Raises
* DiagnosticsException — If there is error in diagnostics.
* InvalidStateException - If device is in invalid state (that is not OFF)
* DeviceRuntimeException — If any exception occours.

pop_results ()
This method returns list of recently acquired points, it should clear this list so next calls won’t return the
same result points.

Raises
e InvalidStateException - If device is in invalid state (that is not RUNNING
* InvalidStateException — If device is in invalid state (that is not READY
* DeviceRuntimeException — If any exception occours
Returns Returns results for (possibly) many points.
Return type 11ist (or any other iterable) of dict.
post_power_up_diagnostics (diagnostics_level="short’)

power_down ()
Call to this method moves this class to OFF state.

Raises
* InvalidStateException - If device is in invalid state (that is not STAND_BY
* DeviceRuntimeException — If any exception occours

power_up ()
Call to this method enables consecutive apply settings ().

It also should power up the device (if this action makes any sense for this particular device see also: Power
management).

Raises

https://docs.python.org/3.3/library/constants.html#None
https://docs.python.org/3.3/library/stdtypes.html#str
https://docs.python.org/3.3/library/stdtypes.html#list

SILF Experiment API Documentation, Release 0.0

* InvalidStateException — If device is in invalid state (that is not OFF
* DeviceRuntimeException — If any exception occours
pre_power_up_diagnostics (diagnostics_level="short’)

start ()
Starts the acquisituon on the device (that is starts the measurements).

Blocks until this device is stared.
Raises InvalidStateException — If device is in invalid state (that is not READY
Returns None
Return type None

state = None
State of this device should be in DEVICE_STATES, full state chart is avilable in: Device state chart.

stop ()
Stops the acquisituon on the device (that is stops the measurements).

Blocks until this device is stared.
Raises
e InvalidStateException — If device is in invalid state (that is not RUNNING)
* DeviceRuntimeException — If any exception occours
Returns None
Return type None
tearDown ()

tear_down ()
Called when current process is being disabled.

This method can be called multiple times.

Note: do not override this method, override _tear_down ().

Raises DeviceRuntimeException - If any exception occours
Returns None
Return type None

exception silf.backend.commons.device._device.InvalidCallToAssertState
Bases: Warning

https://docs.python.org/3.3/library/constants.html#None
https://docs.python.org/3.3/library/constants.html#None
https://docs.python.org/3.3/library/constants.html#None
https://docs.python.org/3.3/library/exceptions.html#Warning

CHAPTER 4

API fine print

SILF Experiment API Documentation, Release 0.0

perform_tTagnostics

cleanup off <
k <

"y

/M
power_up power down
W
~
cleanu stand-by perform_diagnostics
[; power down
v
apply settings
WV v ~,
cleanu
cleaned up
. ready apply_gettings

<
<

vy

M
start stop
when sefiesdone
W
(™
cleanu acquirin
P quiring pop_results
A
M

apply_settings

Fig. 4.1: Device state chart

CHAPTER B

Power management

Note: If your device does not need to power itself up or down, please just ignore power._up () and power._down ()
methods.

Devices should be powered up when we start call power_up (), but needn‘t do so, they must be powered up when
after we exit from start (). So there are three methods in which devices should power up:

* power_up (), this method is called relatively early in during the experiment, and should allow plenty of time
to initialize everyhing

* apply_settings (), use this method if your device powers up quickly.

e start (), if your device is volatile and you want to minimize the time it is powered up use this.
You can power down the device when following methods are called:

* power_down ()

* stop()

CHAPTER O

Threading considerations

Devices are accessed from single thread. All methods sould exit relatively fast, you should not use loops that are
infinite (or can be infinite — for example if hardware will not respond).

CHAPTER /

Change device state

It is quite important to change state of your device after appropriate method calls.

10

CHAPTER 8

How to test the devices according to the API

There are two ways in which you can test it: start ipython interpreter create device and manage it by hand:

8.1 Use DeviceWorkerWrapper from interpreter

Import classes:

>>> from silf.backend.commons_test.device.test_device import =«
>>> from silf.backend.commons.device_manager import start_worker_interactive

Start the device:

>>> work = start_worker_ interactive('foo', MockDevice,
configure_logging=False, auto_pull_results=False)

>>> work.state
'off!

>>> work.power_up ()
UUID(...)

Let’s setup the device:

>>> work.apply_settings ({"foo": 3, "bar": 2})
UUID(...)

>>> work.start ()
UUID(...)

This device will perform own acquisition in separete process, well wait for results to be acquired:

>>> time.sleep(1.2)

11

SILF Experiment API Documentation, Release 0.0

First pop_results () will return stale data, and schedule acquisition of new data:

>>> work.state

'running’

>>> work.pop_results () == []
True

Wait for results to get processed (will be faster on server!)

>>> time.sleep(0.5)

>>> results = work.pop_results ()

>>> results == [{'foo_result': 3, 'bar_result': 2}]
True

Kill it without waiting;

’>>> work.kill (wait_time=None)

8.2 Auto result pooling

You can configure this to auto poll for results:

>>> work = start_worker_ interactive('foo', MockDevice,
configure_logging=False, auto_pull_results=True)

>>> work.power_up ()
UUID(...)

As in last test:

>>> work.apply_settings ({"foo": 3, "bar": 2})
UUID (...)

>>> work.start ()

UUID(...)

Wait for results to be gathered

>>> time.sleep (2)

Notice that results are avilable at once (no need to query)

>>> results = work.pop_results ()
>>> results == [{'foo_result': 3, 'bar_result': 2}]
True

>>> work.kill (wait_time=None)
>>> results == [{'foo_result': 3, 'bar_result': 2}]

True

>>> work.kill (wait_time=None)

8.2. Auto result pooling 12

CHAPTER 9

Device Api examples

This is pseudocode

9.1 Engine driver

This imaginary device implements an engine. This is not actual experiment code, sxperiment will not be doing any

waiting!

engine = ImaginaryDriver()

assert engine.state == 'off'
engine.power_up () # Powers up the device
assert engine.state == 'stand-by'
engine.apply_settings ({"position" 5121})
assert engine.state == 'ready'
engine.start () # Start the engine

assert engine.state == 'acquiring'

Silnik ruszyt i teraz jest w stanie

.. wait

while engine.state != 'ready':
time.sleep(0.1)

Silnik doszedi do kornca 1 jest w stanie

Nastepny pukt

‘acquiring’

‘ready’

13

SILF Experiment API Documentation, Release 0.0

engine.apply_settings ({"position" : 1024})

engine.start () # Start the engine

9.2 Engine driver

Imaginary voltimeter

volt = ImaginaryVoltimeter ()
assert volt.state == 'off'

volt.power_up () # Powers up the device

assert volt.state == 'stand-by'
volt.apply_settings ({'range' : 15})
assert volt.state == 'ready'

volt.start () # Start the volt

assert volt.state == 'acquiring'

while volt.state != 'ready':
time.sleep(0.1)

assert volt.pop_results() == [{'voltage' : 243.11}]

9.3 Engine and voltimeter connected

It works that so voltimeter measures single point after position is set by the engine.

engine = ImaginaryDriver ()
volt = ImaginaryVoltimeter ()

engine.power_up() # Powers up the device
volt.power_up() # Powers up the device

engine.apply_settings ({"position" : 512})
engine.start();

while engine.state != 'ready':
time.sleep(0.1)

volt.apply_settings ({'range' : 15})
volt.start () # Start the volt

while volt.state != 'ready':
time.sleep(0.1)

9.2. Engine driver 14

SILF Experiment API Documentation, Release 0.0

assert volt.pop_results() == [{'voltage'
engine.apply_settings ({"position” : 1024})
engine.start ();

while engine.state != 'ready':
time.sleep(0.1)

while volt.state != 'ready':
time.sleep(0.1)

assert volt.pop_results() == [{'voltage'

243

123

L11}]

.123}]

9.3. Engine and voltimeter connected

15

Python Module Index

S

silf.backend.commons.device, 1l
silf.backend.commons.device._const,?2
silf.backend.commons.device._device, 3

16

Index

A S

apply_settings() (silf.backend.commons.device._device.Devsilf.backend.commons.device (module), 1

method), 3 silf.backend.commons.device._const (module), 2
silf.backend.commons.device._device (module), 3
D start() (silf.backend.commons.device._device.Device
Device (class in silf.backend.commons.device._device), 3 method), 5
DEVICE_STATES (in module state (silf.backend.commons.device._device.Device at-
silf.backend.commons.device._const), 2 tribute), 5
stop() (silf.backend.commons.device._device.Device
| method), 5
InvalidCallToAssertState, 5 T
L tear_down() (silf.backend.commons.device._device.Device
logger (silf.backend.commons.device._device.Device at- method), 5
tribute), 4 tearDown() (silf.backend.commons.device._device.Device
loop_iteration() (silf.backend.commons.device._device.Device method), 5
method), 4

M

MAIN_LOOP_INTERVAL
(silf.backend.commons.device._device.Device
attribute), 3

P

perform_diagnostics() (silf.backend.commons.device._device.Device
method), 4

pop_results() (silf.backend.commons.device._device.Device
method), 4

post_power_up_diagnostics()
(silf.backend.commons.device._device.Device
method), 4

power_down() (silf.backend.commons.device._device.Device
method), 4

power_up() (silf.backend.commons.device._device.Device
method), 4

pre_power_up_diagnostics()
(silf.backend.commons.device._device.Device
method), 5

17

	device Package
	_const Module
	_device Module
	API fine print
	Power management
	Threading considerations
	Change device state
	How to test the devices according to the API
	Use DeviceWorkerWrapper from interpreter
	Auto result pooling

	Device Api examples
	Engine driver
	Engine driver
	Engine and voltimeter connected

	Python Module Index

