
Signalbox Documentation
Release 2

Ben Whalley

September 10, 2014

Contents

1 Installation 1
1.1 Prerequisites . 1
1.2 Hosted installation on Heroku . 1
1.3 Local install for development . 3

2 SignalBox’s Roles and Responsibilities 5
2.1 Role and Permissions . 5
2.2 Role based permissions . 5

3 Setting up studies 7
3.1 Creating a new study . 7
3.2 Assessors and blinded studies . 11

4 Creating questionnaires 13
4.1 Editing via markdown text format . 13
4.2 A complete example . 16
4.3 Creating questions . 17
4.4 Repeating questions within a Questionnaire . 17
4.5 Approximate completion times for questionnaires . 17
4.6 Displaying previous answers or summary scores in questions . 17

5 Recruiting participants and study memberships 19
5.1 Adding participants . 19
5.2 Randomisation/allocation methods . 20

6 Collecting data from participants 23
6.1 Marking replies as canonical . 23

7 Managing data and Exporting Data 25
7.1 Exporting study data . 25

8 Resources for trial administrators 27
8.1 Creating and editing a public facing website . 27
8.2 Secured pages . 28
8.3 Usage Policies . 29
8.4 Use of Markdown formatting . 29

9 Reference for database/application structures 31
9.1 Ask application . 31

i

9.2 Signalbox application . 31

10 Glossary 33

11 Overview 35

12 Functional anatomy 37
12.1 Core components . 37
12.2 Questionnaires and collecting data . 39
12.3 Additional components which may not always be used . 41

13 Database schema 43
13.1 Technical overview . 44

14 Indices and tables 45

ii

CHAPTER 1

Installation

To run Signalbox you will need some kind of Unix with python 2.7 available. Ubuntu 12.04 LTS is currently recom-
mended, but OS X is fine too for development.

To get up and running quickly, the easiest way is currently to use Heroku_ . Heroku have a free plan which is capable
enough for even quite large studies, although self-hosting is also straightforward.

1.1 Prerequisites

For hosted installations, you just need python, and pip.

For local development, on Ubuntu 12.04, you can install everything you need for a development machine like this:

sudo apt-get install -y python-dev postgresql-server-dev-9.1 libjpeg-dev virtualenvwrapper libmagic-dev git mercurial zlib1g-dev libfreetype6 libfreetype6-dev
export WORKON_HOME=~/Envs
mkdir -p $WORKON_HOME
source /usr/local/bin/virtualenvwrapper.sh

1.2 Hosted installation on Heroku

To get Signalbox running on Heroku’s free plan (which is ideal for normal sized studies), you first need to:

1. Sign up for an account with Heroku (https://devcenter.heroku.com/articles/quickstart) and install their command
line tool. You should upload your keys to the server to avoid having to repeatedly type your password:

heroku keys:add

2. Optionally, if you want to upload images or other media for studies or questionnaires, sign up with Amazon for
an S3 storage account (uploaded image files cannot be kept on heroku; see http://aws.amazon.com).

3. Optionally, if you plan to send email, obtain the details (host, username, password) for an SMTP email server
you will use. Amazon’s ‘simple email service’, SES, is good: http://aws.amazon.com/ses/

4. Optionally, if you plan on using interactive telephone calls or SMS, sign up with Twilio and make a note of your
secret ID and key: https://www.twilio.com.

1.2.1 Installation

Install the heroku command line program and authenticate:

1

https://devcenter.heroku.com/articles/quickstart
http://aws.amazon.com
http://aws.amazon.com/ses/
https://www.twilio.com

Signalbox Documentation, Release 2

wget -qO- https://toolbelt.heroku.com/install-ubuntu.sh | sh
ssh-keygen
heroku keys:add

Clone the example project:

git clone GITHUBREPO newname
cd newname
pip install -r requirements.txt

The run the install script:

heroku_install_signalbox

At this point, your installation should be up and running on heroku:

heroku open

But you need to create the first user to login to the admin site:

heroku run app/manage.py createsuperuser

1.2.2 Scheduled tasks

Remember to add a scheduled task to send observations via the heroku control panel. The frequency is up to you -
polling more often can cost more in dyno time if it overruns the free quota (but not much), but you’ll want to add
scheduled tasks for these scripts:

app/manage.py send
app/manage.py remind

If adding through cron on your own server remember to make sure the python used has signalbox in it’s path (i.e.
activate the virtualenv first).

1.2.3 Environment variables

Note that all settings, API keys, and passwords are stored in environment variables (see
http://www.12factor.net/config).

Environment variables can be se using:

heroku config:set VAR=SOMEVALUE

The key ones you will need to set are:

AWS_STORAGE_BUCKET_NAME
AWS_ACCESS_KEY_ID
AWS_SECRET_ACCESS_KEY

TWILIO_ID
TWILIO_TOKEN

EMAIL_HOST
EMAIL_HOST_USER
EMAIL_HOST_PASSWORD

Others are listed below for reference.

2 Chapter 1. Installation

http://www.12factor.net/config

Signalbox Documentation, Release 2

1.2.4 Version control

Signalbox can use django_reversion to keep track of changes to Answer, Reply and Observation objects to
provide an audit trail for a trial. It’s not enabled by default, but to turn it on you can set an environment variable:

heroku config:set USE_VERSIONING=1

1.3 Local install for development

Once you have Signalbox installed in a virtualenv and a hosted instance running, it’s easy to start hacking on it locally
to update templates etc.

First make a database with postgres (for development, allow the local user all permissions).

createdb sbox

Then update the DATABASE_URL environment variable to match your new database. If everything works, open
http://127.0.0.1:8000/admin to view the admin site on your development machine.

Make changes in the local repo, commit them and then:

git push heroku master

1.3.1 Browser compatibility

The front-end (participant facing pages) should work in almost all browsers, including IE7.

The admin interface works best in a recent webkit browser (Safari or Chrome) but will largely function in IE7 (although
the menus are slightly broken, they are usable). Everything will work properly in IE8 onwards.

Note: It’s recommended to use Chrome-Frame if IE7 is the only available browser. See:
https://developers.google.com/chrome/chrome-frame/

Warning: Check everything works in your target browsers early in the trial setup. The health services and large
firms have some weird and wonderful stuff deployed.

1.3.2 Custom domain names

You can add your own domain name to the app, but you will need to update the ALLOWED_HOSTS
environment variable. See https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts and
https://devcenter.heroku.com/articles/config-vars.

1.3.3 Reference for all user-configurable environment variables

Each of these is loaded from an environment variable by signalbox.configurable_settings.py, and some are documented
there:

DB_URL default: postgres://localhost/sbox

LOGIN_FROM_OBSERVATION_TOKEN
SHOW_USER_CURRENT_STUDIES
DEFAULT_USER_PROFILE_FIELDS

1.3. Local install for development 3

http://127.0.0.1:8000/admin
https://developers.google.com/chrome/chrome-frame/
https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts
https://devcenter.heroku.com/articles/config-vars

Signalbox Documentation, Release 2

DEBUG

AWS_STORAGE_BUCKET_NAME
COMPRESS_ENABLED
AWS_QUERYSTRING_AUTH

SECRET_KEY
AWS_ACCESS_KEY_ID
AWS_SECRET_ACCESS_KEY
TWILIO_ID
TWILIO_TOKEN

ALLOWED_HOSTS
SESSION_COOKIE_HTTPONLY
SECURE_BROWSER_XSS_FILTER
SECURE_CONTENT_TYPE_NOSNIFF
SECURE_SSL_REDIRECT
SESSION_COOKIE_AGE
SESSION_SAVE_EVERY_REQUEST
SESSION_EXPIRE_AT_BROWSER_CLOSE

SESSION_COOKIE_SECURE=False

USE_VERSIONING=False

4 Chapter 1. Installation

CHAPTER 2

SignalBox’s Roles and Responsibilities

2.1 Role and Permissions

Signalbox defines 4 roles, each of which have set of permissions.

• Researchers

• Research assistants

• Assessors

• Clinicians

In addition, the documentation refers to:

• Participants/Patients

However participants are not a distinct group within the system - a participant just needs to be a registered User of
the site. Note researchers, clinicians etc. may also be participants. Also see Membership types .

Note: All users of the system are stored as django django.auth.User objects. We use the standard
django authentication mechnisms to log people in and track session state (this uses a cookie for identifica-
tion, but all the data gets stored in the DB). SignalBox roles are defined using Django’s Group models (see
https://docs.djangoproject.com/en/1.3/topics/auth/ for more details.)

Note: for many studies, the only types of users which will be required are Researchers and Participants.

2.2 Role based permissions

Permissions for many views within the site are determined by group memberships.

2.2.1 Researchers

Researchers have pretty much full access to data and functionality within the site. They don’t need to be a superuser
within the django auth system though. Examples of things only researchers need to be able to do are resolving duplicate
replies for observations (i.e. picking a canonical reply, see Collecting data from participants), and exporting data
(exporting_data).

5

https://docs.djangoproject.com/en/1.3/topics/auth/

Signalbox Documentation, Release 2

2.2.2 Research assistants

For large trials, Research Assistant’s help administer participants and memberships, but do not have full access to
participant data. Research assistants can:

• Add a new user to the system (e.g. enter details for a patient who has just been recruited)

• Add a user to a study (create a membership)

• See a list of observations outstanding

• Enter data for a specific observation

• Add notes to a patient (on the patient dashboard page)

2.2.3 Assessors

Assessors are responsible for collating data from patients, often in interviews, and are typically blind to the condition
a participant has been assigned to. Assessors have only limited access to the site, because much of the data stored
from participant self reports would reveal which condition a participant was in.

Assessors can:

• Find a given participant

• See that observations which are due for participants

• See observations which are overdue

• Enter data for an observation

2.2.4 Clinicians

Clinicians treating patients may use the system in several ways:

1. By adding treatment records and other clinical data

2. By taking part in sub-studies in which they record data about other participants (see Membership types).

In theory clinicians may or may not be blind to the allocation of patients (although in the Reframed study they will not
be blind).

Clinicians should have no access to research data (i.e. information about observations due/overdue). They will need
to:

• Find a particular participant

• Add a TreatmentRecord for a treatment session

• Complete an ad-hoc questionnaire attached to a TreatmentRecord

• Send messages to patients

• Add notes to patients (patient_dashboard)

6 Chapter 2. SignalBox’s Roles and Responsibilities

CHAPTER 3

Setting up studies

When using Signalbox, it’s helpful to distinguish between a Trial or Research Project (i.e. the work you are doing)
and a Study. In Signalbox, studies have a specific meaning, and a complex trial may be split across several studies
for convenience and simplicity.

To get a grip on how things are structured, see the SignalBox.

3.1 Creating a new study

Start by adding a study.

Figure 3.1: The study change view

Complete the necessary details in the Overview and Study Information Fields sections, and upload an image to repre-

7

Signalbox Documentation, Release 2

sent the study.

3.1.1 Studies with multiple conditions

Studies may contain multiple conditions, each of which may use independent schedules to followup particpants. Study
conditions can be added at the bottom of the Study change view.

Figure 3.2: Adding study conditions.

By default, participants will be randomised to study conditions in equal proportions. This can be amended by changing
the weight option of the StudyCondition. Weighted randomisation is also possible to minimise group imbalances.
These options are available under the Advanced tab on the study change view.

Figure 3.3: Advanced randomisation options.

8 Chapter 3. Setting up studies

Signalbox Documentation, Release 2

3.1.2 Capturing personal infromation from users on signup

When users register with the site (normally when they consent to take part in a study) Signalbox can request additional
profile infromation from them, including:

:: landline mobile site address_1 address_2 address_3 county postcode

By default these fields are optional, and not displayed to users. Each study can specify which of these fields should be
(a) displayed and (b) required for paticipants to complete. This is specified by the Visible/required profile fields box
on the study change view.

..note:: One current issue with the signup process is that participants are randomised to the study and observations
created as soon as the user consents, and these observation can be triggered before they provide necessary profile
information (e.g. mobile number). Be aware of this when defining study schedules.

3.1.3 User prompted data collection

In addition to observations defined by a Script, data can be collected ad-hoc, as users choose. Script specified in the
Scripts allowed on an ad-hoc basis field can be executed by users from their profile page.

..note:: Script specified as allowed for user-prompted data collected may generate more than one observation, which
may not be what is desired.

3.1.4 Using ScoreSheets for conditional or ‘responsive-mode’ data collection

Observations may also be created in a responsive fashion, based on responses users make — for example, if a partici-
pants’ questionnaire responses meet some criteria.

When collecting data in responsive mode, the study administrator needs to define the conditions to be met to create
and send additional observations. ObservationCreator, ShowIf and Scoresheet objects are used to do this.

ObservationCreators define a Script to be run when a Reply contains answers which meet a certain criteria.
signalbox.models.ScoreSheets are used to define these criteria. A Scoresheet consists of a name and de-
scription, a list of Questions for which responses will be included and a function to be applied to answers to these
questions.

For example, a Scoresheet named ‘Beck Depression Inventory Sum Score’ might reference each of the questions in
the BDI, and use the sum function. The compute method of the scoresheet will then apply the function to Answers
provided within a given Reply (i.e. on a single occasion for a particular user) and return a single numeric value. At
present sum, mean, stdev, median, min and max functions are available.

Note: Some of the score functions will return a floating point value (including the median function), which
means direct equality comparisons with integers will not work always work as expected; e.g. if the function returns
2.000000000002 for median([1,2,3]), so comparison with the integer 2 will be False.

ShowIf objects define thresholds which scores calculated by ScoreSheets must meet before a Script can be run and
new observations created. For example, a ShowIf might specify that a BDI score in a particular reply must be > 15 for
the script to be executed.

Note: ShowIf objects are also used for conditional display of Questions and Instruments within Askers.

3.1. Creating a new study 9

Signalbox Documentation, Release 2

Figure 3.4: Creating a ShowIf.

3.1.5 Researcher Alerts

In some cases it may be necessary to alert researchers if participants make particular responses: for example, answers
to questions relating to suicide which indicate participants may be at risk. To facilitate this, it’s possible to attach
Alerting rules (signalbox.models.Alerts) to studies.

As with responsive-mode data collection, alerts use ShowIf objects to define conditions under which an alert will be
sent. Alerts also store an email address and/or mobile phone number to send email or sms-based messages when
triggered.

10 Chapter 3. Setting up studies

Signalbox Documentation, Release 2

3.2 Assessors and blinded studies

Some larger RCTs may require blinded assessments to be made, and employ assessors to interview partipants. Al-
though assessors need access to the system to enter (and perhaps double enter) data, it’s important that they don’t
encounter information which might compromise the blind. Such a situation would obviously occur if assessors could
see the condition to which a participant was added. However less obvious situations might occur, when assessments
differ between study conditions. For example, if assessors could:

• See scripts (or information from scripts) which are only relevant to a particular condition

• See observations or replies which include reference to questionnaires or instruments only shown to a particular
condition.

To prevent this, assessors have only limited access to the site, and have a specific view designed to let them safely
access observations and update client data. This is available at:

/admin/signalbox/observations/outstanding

From here, assessors can filter clients by username (which is likely to be a unique alphanumeric code rather than a
name) and list Observations which are due to be made. This view automatically filters out observations which:

1. Have a script which is marked breaks_blind

2. Have been added on an ad-hoc basis (determined by checking whether the Observation has an attached script).

From this view, assessors can select an observation and enter data for it.

Warning: Blinded Assessors and access to observations-due
Care is needed when creating scripts and questionnaires which blind assessors will access. In particular the fol-
lowing must not include content which could reveal which group a participant is in as the assessor enters data:

• label attribute of :class:‘Script‘s (this is used when listing observations for assessors)
• The content of questionnaires themselves (clearly no questions should be visible which identify study con-

dition – for example, therapy-relevant information).

3.2. Assessors and blinded studies 11

Signalbox Documentation, Release 2

12 Chapter 3. Setting up studies

CHAPTER 4

Creating questionnaires

The Ask application deals with creating and displaying questionnaires.

Questionnaires can be spread across multiple pages, and consist of questions. Questions can also be grouped into
Instruments, which can be placed in a block into a page. Questions will often refer to ChoiceSets (groups of discreet
options), e.g. for likert type responses.

4.1 Editing via markdown text format

To enable rapid editing of questionnaires, a text-based format is available in which titles, questions and choice-sets can
be specified, and which are converted into Asker, Question and ChoiceSet objects in the database. This text format is
based on [markdown](http://johnmacfarlane.net/pandoc/demo/example9/pandocs-markdown.html).

The text to edit questionnaires comes in two blocks: the header, which specifies details of the questionnaire as a whole,
and the body which contains individual questions and choicesets.

4.1.1 The questionnaire header

The header is formatted as follows:

name: "Name of the questionnaire here"
slug: "examplequestionnaire"
redirect_url: "http://www.example.com"
show_progress: false
step_navigation: true
steps_are_sequential: true
success_message: "Thanks for completing this questionnaire."

The name and slug attributes identify the questionnaire — the slug being a short identifier which can be used in url
links. The other fields are as follows:

redirect_url The page the user is sent to when the questionnaire is complete

success_message If the user is redirected to page within the signalbox site, an extra message which will appear in a
banner at the head of the page after completion.

show_progress Whether participants can see how far through the questionnaire they are

step_navigation Whether links should be included allowing random access to each page within the questionnaire.

13

http://johnmacfarlane.net/pandoc/demo/example9/pandocs-markdown.html

Signalbox Documentation, Release 2

steps_are_sequential If true, and step_navigation is enabled, then participants can only navigate ‘back’ within the
questionnaire, and cannot skip forwards.

4.1.2 The questionnaire body

Questions themselves are defined in what are called ‘fenced code blocks’ in Markdown. For example:

~~~{}
This the simplest type of ’question’ - an instruction. No responses will be collected here.
~~~

When this is saved, you’ll notice that the system adds some attributes to the block to enable it to be identified in the
database later for editing. So, the example above would get transformed into:

~~~{#ecVhsaj7889ij .instruction}
This the simplest type of ’question’ - an instruction. No responses will be collected here.
~~~

Here, a variable name has been added (ecVhsaj7889ij) and the type of question specified for clarity. To add other types
of questions you will need to manually specify the type, and optionally also the variable name for example:

~~~{#howoldareyou .integer}
How old are you, in years?
~~~

This would create an html question which requires an integer answer to be entered in a small text box. Some questions
(including integer questions) have optional attributes. For example:

~~~{#howoldareyou .integer min="12" max="120"}
How old are you, in years?
~~~

In the example above we add a min and max attribute to validate against some typos. The text of questions can itself
include markdown formatting to create headings, emphaisis or links within a questionnaire. For example:

~~~{#howoldareyou .integer min="12" max="120"}
# Demographic information

How old are you, ***in years***?
~~~

In the example above, a level-1 heading (Demographic information) is inserted, and the text ‘in years’ is formatted in
bold and italic. For more information on [markdown formatting see the guide here](XXX).

Defining a list of choices

Some questions require users to select from a restrcited range of choices, for example a likert-type scale. To specify
the choices, specify a choiceset attribute on the question, and define the choiceset in a second, separate block:

~~~{#howhappyareyou .likert}
How happy are you?
>>>
1=Very happy
2=Miserable
~~~

Here the possible options are listed following “>>>” on separate lines, in the form score=label. Scores must be
integers, and are the values saved when the user provides an answer.

14 Chapter 4. Creating questionnaires

Signalbox Documentation, Release 2

Default options

To mark one option to be selected by default, insert a star in front of the value:

~~~{#range1to4 .likert}
Question text
>>>

*1=Happy is selected by default
2=2
3=3
4=Unhappy
~~~

Calculating and displaying summary scores from participant responses

For instruction questions, in place of a list of choices, it is possible to specify a score which will be computed from
previous participant responses (a ScoreSheet). For example:

~~~{#summaryscoreexample .instruction}
Your total score is: {{totalscore}}
>>>
totalscore <- sum(variablename1 variablename2 variablename3 ...)
~~~

This question will compute the sum of variable1, 2 and 3, and display it where the {{totalscore}} marker is, within the
question text. Again markdown formatting can be applied to scores.

Note: because answers must be saved in the database before being available for summary scores, be sure to specify
this type of question on a page which comes after the variables to be used.

Remapping of scores

As notes, scoresheets allow you to specify summary scores from combinations of questions which the participant has
already made. Sometimes, you might like to score responses in such a way that several of the options equate to the
same value. You can achieve this by adding [int] after the score to be stored in the database:

~~~{#remappingexample .likert}
Question text
>>>

*1=Stores 1 in the database, and in scoresheets
2=Stores 2 in the database, and in scoresheets
3[2]=Stores 3 in the database, but scores 2 as part of scoresheets
~~~

Using the Django templating language

Signalbox uses the Django template language to render the text of a question as it is presented to the user. Several
variables, including summary scores (see above) are available in the render context, and can be included with the
{{varname}} syntax. Other more advanced features can also be used, for example to conditionally display text based
on previous answers. For example:

~~~{#djangoteplateexample .instruction}
Your total score was: {{totalscore}}.
{% if totalscore > 10 %}Well done!{% endif %}
>>>

4.1. Editing via markdown text format 15



Signalbox Documentation, Release 2

totalscore <- sum(variablename1 variablename2 variablename3)
~~~

This question computes {{totalscore}} and then uses it to conditionally display extra text in the question.

Other variables available as the text is rendered are:

• Saved answers, accessed as: {{answers.variable_name}}.

• The Reply object (e.g. You started this reply at: {{reply.started}}).

• The User object (e.g. Your name is {{user.first_name}}).

4.2 A complete example

A complete example can be found in ask/fixtures/asker_text.md.

4.2.1 Other types of questions available

Different questions types can be specified as attributes on the question, similar to a css class style. Just add a period
(.) and the name of the type:

instruction No answer required, but ‘question’ text displayed.

uninterruptible-instruction Like instructions, but when using IVR systems this type prevents the user continuing
until the whole message has played.

short-text A small text input box

long-text A large <textarea> box.

likert or likert-list Discreet options selected via radio-buttons (i.e. options are mutually exclusive). likert-list produces
a vertical list as opposed to a horizontal scale. Add .rotate to rotate the option labels.

checkboxes As for likert, but options are not mutually exclusive (more than one can be selected).

integer The user can only enter an integer. Optional attributes are min and max.

decimal As for integer, but allows only (and validates) decimal numbers.

pulldown As for likert, but uses a pulldown selector instead of radio buttons.

required-checkbox Displays the question text next to a checkbox which the user must check to progress to the next
page.

slider or range-slider A slider element which allows users to pick a value between a min and a max which are specified
as additional attributes. E.g.:

~~~{#variablename .slider min=0 max=100 value=50}
Slide the slider to a value between 0 and 100 (this slider will default to 50).
~~~

Or if you want a slider with two movable points to specify a range of values:

~~~{#variablename .range-slider min=0 max=100 values=[10,90]}
Slide the slider to encompass a range of values between 0 and 100 (this slider defaults to the range 10-90).
~~~

Note that for both sliders, a default value will be given and it’s therefore impossible to specify that a response is
required (becase no response cannot be distinguished from the default response).

16 Chapter 4. Creating questionnaires

Signalbox Documentation, Release 2

date A date picker.

date-time A date-time picker.

time A time-of-day picker.

hangup This question will end an IVR call.

webcam Experimental support for webcams on user laptops. Allows capturing and sending an image to the server
(which is saved in the DB rather than a file).

4.3 Creating questions

Questions are created by using django form field elements, and extending them with additional information required
by signalbox. The types of questions which can be created are documented here: Types of questions (Field classes)

The fields and widgets are as described in the floppyforms documentation: http://django-
floppyforms.readthedocs.org/en/latest/widgets-reference.html

In addition, for IVR telephone calls, there are:

• Uninterruptible instruction (this speaks the text of the questions, but without allowing the user to ‘barge-in’and
skip the text by pressing a key, as is the case with a normal instruction question.)

• Listen (records audio of the user)

• Hangup (speaks the text of the question and then ends the current call; it is required that the asker ends with a
hangup question)

All questions can take an ‘audio’ attribute for use in IVR calls, for example:

~~~{#ivrexample .likert audio="http://www.example.com/audio.mp3"}
This text will be shown on the web, but http://www.example.com/audio.mp3 will be played over the telephone.
>>>
1=1
2=2
...
~~~

4.4 Repeating questions within a Questionnaire

Each question must have unique variable name which will be used to identify data collected. If a question is to be
repeated within a questionnaire, it should either be duplicated and given a second, different, name.

4.5 Approximate completion times for questionnaires

These are calculated by a method on the Asker (Questionnaire) model:

4.6 Displaying previous answers or summary scores in questions

Read about ScoreSheets first.

Summary scores or previous questionnaire responses can be included on later pages, using the curly brace markers
{{}}:

4.3. Creating questions 17

http://django-floppyforms.readthedocs.org/en/latest/widgets-reference.html
http://django-floppyforms.readthedocs.org/en/latest/widgets-reference.html

Signalbox Documentation, Release 2

~~~
This will include an instruction displaying the users user response to a variable named howoldareyou:

{{answers.howoldareyou}}

~~~

Or to show a summary score:

~~~
{{scores.summary_score_name}}
~~~

Be sure to enable a particular summary score for your Questionnaire on the main editing page - it won’t be available
unless you do.

18 Chapter 4. Creating questionnaires

CHAPTER 5

Recruiting participants and study memberships

XXX TODO XXX

Add overview here

XXX TODO XXX

Update content below A Membership links participants – a User – with Study objects. There are two types of
memberships possible within a Signalbox study:

Regular This the normal situation, where a participant is simply taking part in a study.

Related A second kind, where someone is participating in a study not on their own account, but instead to
provide data about another participants (e.g. patients, who are the real object of study). An example
of this is where a clinician might take part in a sub-study within a trial to complete assessments of
patient progress (or, in fact, report on multiple patients).

5.1 Adding participants

In clinical trials, participants may be recruited outside of the web system and added by administrators or researchers
(rather than signing up directly online). Where this is the case, participants must be added to studies manually.
Participants should be added via the add-participant wizard, available from the Research Tools menu, or at /ad-
min/signalbox/participant/new/.

Once a participant has been added via the wizard, you are redirected to their dashboard page, from where you can add
them to a study.

19

Signalbox Documentation, Release 2

Where the membership is the related type, it’s necessary to fill out the additional relates_to field on the add
membership view. To be in the normal situation:

• The participant is the object of study

• The relates_to field is blank

And in the related type of membership:

• The participant is someone providing data about the individual being studied.

• The relates_to field denotes the individual being studied

5.2 Randomisation/allocation methods

When a user signs up for a study (or are added by a researcher), then the system may automatically allocate them to a
StudyCondition

At present, allocation is made by weighted, adaptive randomisation.

5.2.1 Weighted adaptive randomisation

Participants are allocated to StudyCondition‘s within a :class:-signalbox.models.Study‘ in the propor-
tions specified by the weight property of each StudyCondition.

For example, if there are 3 Study and have weights 2, 2 and 3, then participants will be allocated accordingly.

In addition, the randomisation_probability field on studies determines how deterministic this allocation is. Where
randomisation_probability = 1 then all allocations will be made at random (respecting group weights). However,
when randomisation_probability = .5, half of allocations will be made deterministically to minimise the imbalances
between groups.

More complex adaptive randomisation schemes are not currently available.

20 Chapter 5. Recruiting participants and study memberships

Signalbox Documentation, Release 2

5.2.2 Pausing or deactivating observations for a membership

If a participant decides to leave the study, but is happy for data provided so far to be used, the best method to pause
further observations is to deselect the active checkbox on their membership page. This will prevent all further
observations being sent for that study.

.warning:: This will not stop all observations for this participant — only those due for this study (i.e. for the mem-
bership). If a participant withdraws from a trial which has multiple sub-studies, be sure to deactivate all of their
memberships.

5.2.3 Randomisation dates and date-shifting observations

In the case that a person has been randomised to a trial prior to being added to the system, it may be necessary to alter
the automatically-generated randomisation_date field on the membership. This can be done through the admin
interface: first find the correct membership at /admin/signalbox/membership/ and then edit the property directly.

In other cases a participant may be added to the study and observations added automatically. Sometimes, a par-
ticipant may need to pause participation in the study, or may not have been added to the study early enough and
may need to skip some of the observations a script creates. In these cases, a view is provided to shift the dates of
observations which already exist for a membership, to correct the dates forward or backward. This is available at
/admin/signalbox/membership/dateshift/(membership_number), or via link on the edit-membership view.

5.2. Randomisation/allocation methods 21

Signalbox Documentation, Release 2

22 Chapter 5. Recruiting participants and study memberships

CHAPTER 6

Collecting data from participants

An signalbox.models.Observation represents an occasion on which a measurement can be taken.

A signalbox.models.Reply collates a set of responses made for an Observation, on a single occasion.

Multiple replies can therefore be made for a single Observations. There may happen when:

1. A participant does not complete a questionnaire in one session, but returns to complete the observation by
clicking in a link in an email in a second session.

2. Where researchers are entering paper data, and wish to enter it twice for validation.

Where multiple replies are made for an observation it is important to distinguish which should be used — i.e. exported
for later analysis. In exported data the canonical_reply variable indicates which row should be preferred for analysis.

Note: If no Reply has been marked as canonical, multiple replies can be exported with none of them marked as
canonical.

Note: The is_canonical_reply field on the Reply determines whether a reply should be considered canoni-
cal. The signalbox.models.Observation.canonical_reply() method returns the canonical reply for
a given Observation and is used when exporting data.

6.1 Marking replies as canonical

Researchers can identify which reply should be considered canonical, using the view at: /ad-
min/signalbox/resolve/duplicate/replies/(study_id). This can be accessed from the admin page for each study.

Note: It’s probably best to keep on top of duplicate replies as they arise — resolving which was the correct response
a long time after the event might be difficult, or impossible.

6.1.1 Entering data on behalf of someone else

Sometimes participants won’t be able to enter data for themselves, and researchers will have to enter it for them.

To enter data for someone else, first find the relevant observation (probably by navigating from the user_dashboard),
and then click the Enter data for this observation link:

You will be presented with the questionnaire that the user would have seen.

Once complete, you’ll be redirected back to the Observation edit page.

23

Signalbox Documentation, Release 2

Notice that a new Reply will be listed for that observation

Note: You may need to set the originally_collected_on field of the Reply if the data was collected from the
participant sometime before you are entering it into the system. See image below:

XXX TODO replace and update with additional view

6.1.2 SMS message replies

Because of limitations of the SMS system itself, where participants reply to an SMS it’s not possible to reliably
reconnect their replies explicitly to a particular observation. For this reason, although SMS replies are stored in the
database (using the signalbox.models.TextMessageCallback model), the content of SMS replies is not stored as an
Answer.

Currently Signalbox makes an attempt to connect the inbound SMS messages with Observations in the following way:

• When an SMS is sent via twilio, an ObservationData object is stored which records the Twilio SmsSid value.

• When a reply is made within a limited period Twilio appears to return a response containing the original SmsSid
value, which is again stored and used to link the two records (see the sms_replies() method of an Observation).
However this behaviour is undocumented, and is probably not reliable.

When analysing SMS reply data, it’s probably better to rely on the sender phone number and match these with users’
numbers (e.g. using merge commands in Stata or SPSS).

..warning:: TL;DR: If users reply to SMS messages you will have to do extra work to export this data; it won’t
automatically appear in the main datafile.

24 Chapter 6. Collecting data from participants

CHAPTER 7

Managing data and Exporting Data

7.1 Exporting study data

Signalbox is able to export data to delimeted text, or to Stata (a common statistical package). When using Stata, the
system also exports syntax which label data appropriately to help with later analysis. This syntax also computes some
useful variables to help with later analyses.

Signalbox understands that within a single clinical trial there may be multiple sub-studies (each set up as a Study
object within the system). Because studies may be linked, and require joint analysis, Signalbox allows you to export
data for multiple studies at once.

If this is this case, you need to define a reference study — this will typically be the study which manages the primary
randomisation, e.g. to Treatment/Control. Selecting a reference study is useful, because Signalbox uses the date of
randomisation for that study to compute additional variables, including days_in_trial, which can be contrasted with
days_in_study and indicates the elapsed days since the user was randomised to the reference study.

Note: Additional computed variables, including days_in_trial‘ are only computed when the exported syntax file is
run using Stata, and are not present in the raw text data, data.txt.

7.1.1 To export data

1. Select Tools > Export Data

2. Select the studies you wish to export data for

3. Select a reference study (optional), and press Submit.

4. A zip archive will begin downloading, containing three files: data.txt, make.do and syntax.do.

5. Open the zip and, using Stata 11 or later, run make.do.

6. This script will generate three additional data files: data.dta, data_values.xlsx, and
data_labels.xlsx. If you have StatTransfer installed it will also convert the datafile to SPSS .sav format.

Note: Based on data held by the system about the questions used to collect the data, Signalbox will add meta data
to exported files. The data.dta file contains multiple value and variable labels and is probably what you want
to use; if needed, the StatTransfer program will convert these to an SPSS file including value and variable labels
transparently. The excel file data_values.xlsx includes the labelled values (i.e. strings for numeric variables);
data_values.xlsx contains the values themselves.

25

Signalbox Documentation, Release 2

7.1.2 Long vs. wide format

Signalbox exports data in a long-ish format. Individual Answers are grouped by Reply and saved one-reply-per-row
in the txt file.

However, because different replies will have measured different variables, the resulting file will have many columns
(one per variable measured in any of the replies) and lots of blank values (where a reply did not measure a variable, it
will be blank).

Many analyses will require you to compute summary scores and restructure the file into a wide format (e.g. the
reshape command in Stata).

7.1.3 Formats and labels

The export syntax attempts to correctly import python date/time objects as dates, and format them correctly. If this
isn’t happening for you then please file a bug report.

See also exporting_data

7.1.4 Serialising data

Before deciding to export questionnaires, try using the markdown editing feature (Creating questionnaires) and see if
that gives you enough of what you want.

If it doesn’t, read this first: https://docs.djangoproject.com/en/dev/topics/serialization/.

Then see: http://stackoverflow.com/questions/1499898/django-create-fixtures-without-specifying-a-primary-key.

So, to export use:

app/manage.py dumpdata –indent 2 –natural > data.json

Then use a regex like this to replace all pk’s with null to be sure they don’t clash with others in the db:

“pk”: (?<path>d+),

26 Chapter 7. Managing data and Exporting Data

https://docs.djangoproject.com/en/dev/topics/serialization/
http://stackoverflow.com/questions/1499898/django-create-fixtures-without-specifying-a-primary-key

CHAPTER 8

Resources for trial administrators

8.1 Creating and editing a public facing website

Alongside Signalbox, we use a content management system to create pages which are visible on the ‘front end’ or
public facing website.

You can see a list of these pages as /admin/cms/page/. In addition, once you have logged in, you can press the + icon
in the top right hand corner of most pages to edit the content on them. The icon looks like this:

Clicking it brings up an editing toolbar like this:

From which you can turn on editing, and also access the admin site. Once you have turned edit mode on, roll over
content and click the edit icon shown in the image below:

27

Signalbox Documentation, Release 2

When adding content to the website, you can use markdown syntax to style content (see markdown for more details).

8.2 Secured pages

Additional functionality has been added to the CMS app to enable some pages to be protected from public view. These
pages are only accessible by the study team (i.e. researchers, research assistants, assessors, and clinicians).

To make a page on the website protected, use the edit bar to access the page settings:

Scroll to the bottom of this page and click the ‘advanced settings link’. Then enable the ‘login required’ checkbox,
and save the page.

28 Chapter 8. Resources for trial administrators

Signalbox Documentation, Release 2

Protecting a page which has sub-pages (i.e. child pages which appear lower than it in the hierarchy of pages) will
make all sub-pages protected.

Warning: If in doubt CHECK! Logout of your account and make sure the page really is protected.

Warning: Although protected from public view, the website is NOT to be used for sensitive content (e.g. corre-
spondence, risk reports etc).

8.3 Usage Policies

8.3.1 Password policies

This system can contain confidential and often very private data. Pick a strong password, and store it in a
password locker.

See http://xkcd.com/936/.

Auto generate a password here: http://rumkin.com/tools/password/diceware.php.

8.3.2 Password lockers

The preferred solution is Keepass http://keepass.info/download.html.

..note:: If you download the portable version onto a memory stick you can use it anywhere

8.4 Use of Markdown formatting

Markdown syntax is used extensively throughout the application to format text for display. Markdown is a simple
format which allows headings, lists and links to be created without knowledge of HTML.

8.3. Usage Policies 29

http://xkcd.com/936/
http://rumkin.com/tools/password/diceware.php
http://keepass.info/download.html

Signalbox Documentation, Release 2

For more information on markdown see: MarkdownSyntax.

Examples of elements which use markdown syntax for formatting:

• Study consent information

• Question text

• Website content (within the CMS)

30 Chapter 8. Resources for trial administrators

http://daringfireball.net/projects/markdown/syntax

CHAPTER 9

Reference for database/application structures

9.1 Ask application

9.1.1 Models

9.1.2 Types of questions (Field classes)

SignalboxField stores the additional information signalbox needs to properly display and process questions.

9.1.3 Notes on all question types

• Question text: this is displayed in syntax (see ../markdown).

..warning:: Note that some characters are stripped and used to format the question text in html – for example, text
surrounded by two * characters will be italicised, and lines starting with a number and a period (e.g. “1. ”) will be
turned into a numbered list.

9.1.4 Types of question

Each of the following question classes extends the standard django form fields to allow for different types of questions:

9.2 Signalbox application

9.2.1 Models

31

Signalbox Documentation, Release 2

32 Chapter 9. Reference for database/application structures

CHAPTER 10

Glossary

user definition

researcher a specific role within the system, researchers have broad rights to configure the system, add/remove users,
and other manage data

twilio Third party service used to make automated telephone calls. See https://www.twilio.com

33

https://www.twilio.com

Signalbox Documentation, Release 2

34 Chapter 10. Glossary

CHAPTER 11

Overview

SignalBox is a web application application designed to make it easy to run clinical and other studies. Signalbox makes
it easy to recruit, take consent from, and follow-up large numbers of participants, using a customisable assessment
schedule.

Participants can provide self-report data via email, telephone, or SMS message. Study coordinators can login to a
secure administration website to manage studies and check participation. The admin interface integrates online and
offline elements of a study; researchers can enter addtional datapoints collected offline or in the lab, and there is full
support for double entry and reconciling of paper-based data, and also for audit trails of changes to participant data.

Signalbox was designed to replace the numerous, ad-hoc systems which have been developed by research groups,
providing a flexible, secure, and well-tested system. The software has been independently audited, and used in many
numerous studies, including a large, MRC-funded clinical trial (http://www.reframed.org.uk).

35

http://www.reframed.org.uk

Signalbox Documentation, Release 2

36 Chapter 11. Overview

CHAPTER 12

Functional anatomy

Below is a description of the data model used by the system. In essence, all capitalised words are tables in the database;
the text below helps describe their structural and functional interrelations.

12.1 Core components

A Study is lined to a number of StudyConditions which can each use a number of Scripts. A Script links
to an Asker (a questionnaire) which includes a number of Pages that contain Questions. Questions can use a
ChoiceSet which represents a set of Choices which define the range of allowed Answers (e.g. as part of a Likert
type scale). Alternatively, Scripts may define an external url at which participants will enter data (e.g. a bespoke
experimental task, or via a third party service like SurveyMonkey).

When a User joins a Study then a Membership is created, which stores the randomisation times etc. When a
Membership is randomised to a StudyCondition then the Script is used to create Observations (scripts
use a special syntax to describe the offset at which each Observation will be created, by default counting from
when the user is randomised).

When Observations are due then they are executed by a background task, causing an email, SMS to be sent,
or a phone call to be made. In responding, users create a Reply to the Observation: A Reply consists of
multiple Answers, which represent responses to individual questions. Because a Reply might be interrupted or left
incomplete, multiple replies can be made to each Observation (which the administrator needs to remember when
the data are exported; they can chose a particular Reply to use by marking it as canonical).

The diagram below represents the core constructs within Signalbox (but is not complete... see below).

37

Signalbox Documentation, Release 2

Study

StudyCondition

has a set of

Script

has a set of

Observation

creates a set of

Email

can send an

SMS

can send an

Call

can make a

Reminder

can have a

Reply

is made in response to

will prompt a will prompt a will prompt a

User

Membership

participates in a study via a

has a set of

38 Chapter 12. Functional anatomy

Signalbox Documentation, Release 2

12.2 Questionnaires and collecting data

As noted above, Askers contain Pages which in turn contain Questions. Some questions may also refer to
Instruments, which represent a bundle of Questions which are commonly shown together (e.g. a psychometric
scale). When a questionnaire is displayed, ‘instrument’ questions automatically include this group of questions on a
single page. See the diagram below:

12.2. Questionnaires and collecting data 39

Signalbox Documentation, Release 2

Questionnaire

Pages

has a set of

Questions

has a list of Instruments

can include

ChoiceSet

can reference

has a list of

40 Chapter 12. Functional anatomy

Signalbox Documentation, Release 2

12.3 Additional components which may not always be used

Script‘‘s generate Observations, but can also generate Reminders for those Observations, and these
send an additional messages to users at intervals after the Observation falls due.

Scripts can also have ScoreSheets attached to them, which are sets of rules which describe how a set of
Answers in response to the Script’s Asker can be reduced to a single number (e.g. the mean or total for a set of
Questions). ScoreSheets create scores which can be viewed for a particular User (e.g. to check whether a user meets a
criteria for study entry from a screening questionnaire). ShowIfs are rules which evaluate to a boolean (yes/no) based
on Replies Users have previously made (or Replies that are in progress). ShowIfs can be used to determine whether a
particular Question should be shown based on previous responses. They can also be used to create new Observations
based on a Reply, using an ObservationCreator. For example, if a User completes a depression questionnaire (Asker)
and a ScoreSheet computes they have scored above a certain threshold, then an additional Observation could be created
and a followup email sent.

Users are linked to a UserProfile which can contain additional fields like a telephone number, address etc. A Study
can specify the subset of these fields which are required when a user signs up. ContactRecords are made when the
administration interface is used to send a User a message. In some studies, its necessary to collect data from some
Users (e.g. therapists) about other Users (e.g. clients); where this is the case a Membership can store an additional
field indicating which User the data is about, as well as who it has been collected from

StudySites represent different locations in a multi-site trial, can can be used to filter Memberships when viewing date.

12.3. Additional components which may not always be used 41

Signalbox Documentation, Release 2

42 Chapter 12. Functional anatomy

CHAPTER 13

Database schema

In addition to the simplified diagrams above, the database schema for the Signalbox and Ask apps may also help clarify
the structure of the application:

Download Signalbox app schema .pdf

TimeStampedModel

created CreationDateTimeField
modified ModificationDateTimeField

ScoreSheet

id AutoField
name CharField
description TextField
minimum_number_of_responses_required IntegerField
function CharField

Question

variables (varsinscoresheet)

Answer

id AutoField
other_variable_name CharField
choices TextField
answer TextField
upload FileField
last_modified DateTimeField
created DateTimeField
meta TextField

question (answer)

Reply

id AutoField
is_canonical_reply BooleanField
redirect_to CharField
last_submit DateTimeField
started DateTimeField
originally_collected_on DateField
complete BooleanField
token UUIDField
external_id CharField
twilio_question_index IntegerField
entry_method CharField
notes TextField

reply (answer)

AskPage

page (answer)

Observation

id AutoField
label CharField
n_in_sequence IntegerField
status IntegerField
due_original DateTimeField
due DateTimeField
last_attempted DateTimeField
offset IntegerField
attempt_count IntegerField
token UUIDField
n_questions IntegerField
n_questions_incomplete IntegerField

observation (reply)

Asker

asker (reply)

User

user (reply_user)

Script

id AutoField
name CharField
reference CharField
is_clinical_data BooleanField
breaks_blind BooleanField
show_in_tasklist BooleanField
allow_display_of_results BooleanField
show_replies_on_dashboard BooleanField
external_asker_url URLField
redirect_url CharField
label CharField
script_subject CharField
script_body TextField
user_instructions TextField
success_message TextField
max_number_observations IntegerField
repeat CharField
repeat_from DateTimeField
repeat_interval IntegerField
repeat_byhours CommaSeparatedIntegerField
repeat_byminutes CommaSeparatedIntegerField
repeat_bydays CharField
repeat_bymonths CommaSeparatedIntegerField
repeat_bymonthdays CommaSeparatedIntegerField
delay_by_minutes IntegerField
delay_by_hours IntegerField
delay_by_days IntegerField
delay_by_weeks IntegerField
delay_in_whole_days_only BooleanField
natural_date_syntax TextField
completion_window IntegerField
jitter IntegerField

created_by_script (observation)

Membership

id AutoField
active BooleanField
date_joined DateField
date_randomised DateField

dyad (observation)

asker (script)

ScriptType

id AutoField
name CharField
observation_subclass_name CharField
require_study_ivr_number BooleanField
sends_message_to_user BooleanField

script_type (script)

user (membership)

relates_to (membership_relates_to)

StudyCondition

id AutoField
tag SlugField
display_name CharField
weight IntegerField

condition (membership)

Study

id AutoField
auto_randomise BooleanField
auto_add_observations BooleanField
visible BooleanField
paused BooleanField
slug SlugField
name CharField
study_email EmailField
blurb TextField
study_image ImageField
briefing TextField
consent_text TextField
welcome_text TextField
max_redial_attempts IntegerField
redial_delay IntegerField
working_day_starts PositiveIntegerField
working_day_ends PositiveIntegerField
show_study_condition_to_user BooleanField
allocation_method CharField
randomisation_probability DecimalField
visible_profile_fields CharField
required_profile_fields CharField

study (membership)

Reminder

id AutoField
name CharField
kind CharField
from_address EmailField
subject CharField
message TextField

ScriptReminder

id AutoField
hours_delay PositiveIntegerField

script (scriptreminder)

reminder (scriptreminder)

ReminderInstance

id AutoField
due DateTimeField
sent BooleanField

observation (reminderinstance) reminder (reminderinstance)

scripts (studycondition)

study (studycondition)

ad_hoc_scripts (study)ObservationCreator

id AutoField

createifs (study)

TwilioNumber

twilio_number (study)

ObservationData

id AutoField
key CharField
value TextField
added DateTimeField

observation (observationdata)

TextMessageCallback

id AutoField
sid CharField
post JSONField
timestamp DateTimeField
status CharField

likely_related_user (textmessagecallback)

script (observationcreator)

ShowIf

showif (observationcreator)

StudySite

id AutoField
name CharField

StudyPeriod

id AutoField
name CharField
tag SlugField
start IntegerField
end IntegerField

study (studyperiod)

UserProfile

id AutoField
uuid UUIDField
landline PhoneNumberField
mobile PhoneNumberField
prefer_mobile BooleanField
address_1 CharField
address_2 CharField
address_3 CharField
postcode CharField
county CharField
title CharField
professional_registration_number CharField
organisation CharField

user (userprofile)site (userprofile)

Alert

id AutoField
email EmailField
mobile PhoneNumberField

study (alert)

condition (alert)

AlertInstance
<TimeStampedModel>

id AutoField
created CreationDateTimeField
modified ModificationDateTimeField
viewed BooleanField

reply (alertinstance)

alert (alertinstance)

ContactReason

id AutoField
name CharField
followup_expected BooleanField

ContactRecord

id AutoField
added DateTimeField
notes TextField

participant (contactrecord) added_by (added_by) reason (contactrecord)

UserMessage

id AutoField
message_type CharField
subject CharField
message TextField
state FSMField
last_modified DateTimeField

message_to (to) message_from (from)

Download Ask app schema .pdf

QuestionAsset

id AutoField
slug SlugField
asset FileField
template CharField

Question

id AutoField
order IntegerField
allow_not_applicable BooleanField
required BooleanField
text TextField
variable_name SlugField
score_mapping JSONField
help_text TextField
audio FileField
q_type CharField
widget_kwargs JSONField
field_kwargs JSONField

question (questionasset)

AskPage

id AutoField
order FloatField
submit_button_text CharField
step_name CharField

page (question)

Instrument

id AutoField
name CharField
citation TextField
usage_information TextField

instrument (question) display_instrument (display_instrument)

ShowIf

id AutoField
values CharField
more_than IntegerField
less_than IntegerField

showif (question)

ChoiceSet

id AutoField
name SlugField

choiceset (question)

Asker

id AutoField
name CharField
slug SlugField
show_progress BooleanField
step_navigation BooleanField
steps_are_sequential BooleanField
hide_menu BooleanField

asker (askpage)

previous_question (previous_question)

ScoreSheet

summary_score (showif)

scoresheets (asker)

Choice

id AutoField
is_default_value BooleanField
order IntegerField
label CharField
score IntegerField

choiceset (choice)

Note: Required fields in the database are displayed in bold

43

Signalbox Documentation, Release 2

13.1 Technical overview

Signalbox is based on a number of excellent open source software projects. It was written using the Django
web framework (i.e. in Python), and uses either an sqlite or a postgresql database (postgresql is strongly recom-
mended). Configuration is provided to quickly host an instance using Heroku (a cloud-based application host, see
http://en.wikipedia.org/wiki/Heroku), although self hosting is also possible.

44 Chapter 13. Database schema

http://en.wikipedia.org/wiki/Heroku

CHAPTER 14

Indices and tables

• genindex

• modindex

• search

45

	Installation
	Prerequisites
	Hosted installation on Heroku
	Local install for development

	SignalBox's Roles and Responsibilities
	Role and Permissions
	Role based permissions

	Setting up studies
	Creating a new study
	Assessors and blinded studies

	Creating questionnaires
	Editing via markdown text format
	A complete example
	Creating questions
	Repeating questions within a Questionnaire
	Approximate completion times for questionnaires
	Displaying previous answers or summary scores in questions

	Recruiting participants and study memberships
	Adding participants
	Randomisation/allocation methods

	Collecting data from participants
	Marking replies as canonical

	Managing data and Exporting Data
	Exporting study data

	Resources for trial administrators
	Creating and editing a public facing website
	Secured pages
	Usage Policies
	Use of Markdown formatting

	Reference for database/application structures
	Ask application
	Signalbox application

	Glossary
	Overview
	Functional anatomy
	Core components
	Questionnaires and collecting data
	Additional components which may not always be used

	Database schema
	Technical overview

	Indices and tables

