

    
      
          
            
  
shuffleboard2js

shuffleboard2js further lowers the barrier of entry for teams that want to build a custom HTML/Javascript dashboard by providing a Shuffleboard [https://wpilib.screenstepslive.com/s/currentCS/m/shuffleboard/l/814689-tour-of-shuffleboard] like interface built on top of pynetworktables2js [https://github.com/robotpy/pynetworktables2js].

Lots of students and mentors know how to create simple web pages to display content, and there’s lots of resources out there for creating dynamic content for webpages that use javascript. There is a lot of visually appealing content that others have created using web technologies – why not leverage those resources to make something cool to control your robot?


Documentation

Documentation can be found at http://shuffleboard2js.readthedocs.org/




Installation

Make sure to install python 3 on your computer, and on Windows you can
execute:

py -3 -m pip install shuffleboard2js





On Linux/OSX you can execute:

pip install shuffleboard2js








Usage

You can run shuffleboard2js using the following command:

python3 -m shuffleboard2js





Or on Windows:

py -3 -m shuffleboard2js





This will start a server which will serve from the current directory. You can create your custom widgets in the shuffleboard2js/widgets folder, which will automatically be created in the directory you ran shuffleboard2js.

You will want to also pass either the --robot or --team switch:

py -3 -m shuffleboard2js --robot roborio-XXXX-frc.local
py -3 -m shuffleboard2js --team XXXX





Dashboard mode currently doesn’t work, as the underlying support in
pynetworktables hasn’t been implemented yet for the newer FRC Driver Station.






Contents


Custom Widgets


	Creating a Basic widget
	Choosing a unique ID

	Folder structure

	widget.tag

	Registering your widget





	Widget Anatomy
	RiotJS

	Setting accepted types when registering your widget

	Getting NetworkTables data in your widget code

	Updating the widget

	Styling your widget

	Adding a <script></script>

	Adding properties

	Other Events












Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Creating a Basic widget


Choosing a unique ID

Every shuffleboard2js widget requires a unique ID. Valid IDs can contain lowercase letters, numbers and dashes. Your ID should be related to what your widget does.

Examples of valid IDs: basicwidget, basic-widget2

Examples of invalid IDs: BASICWIDGET, basic-widget?!




Folder structure

In the folder you ran shuffleboard2js, you should have a folder structure that looks like this:

[image: _images/folder-structure.png]
Custom widgets need their own folder inside the shuffleboard2js/widgets folder. Create a folder named after the ID you chose inside the shuffleboard2js/widgets folder. In this example we’ll use basic-widget as the widget ID:

[image: _images/folder-structure-with-widget.png]



widget.tag

The code for your custom widget goes in a file called widget.tag. This file has a special HTML like syntax which you’ll learn more about in the Widget Anatomy section.

For now create a widget.tag file in the shuffleboard2js/widgets/basic-widget folder and add the following code to it:

<basic-widget>
  <p>This is a basic widget!</p>
  <p>Value: {opts.table}</p>
</basic-widget>





Your folder structure should now look like this:

[image: _images/folder-structure3.png]



Registering your widget

Your widget doesn’t show up automatically in the shuffleboard2js interface. To register your widget you need to add an index.html file with the following code:

<!-- This includes widget.tag into this file -->
<script type="riot/tag" src="widget.tag"></script>

<script>
  /**
   * The first parameter dashboard.registerWidget takes
   * is the widget ID. The second parameter is a javascript
   * object used to configure the widget.
   */
  dashboard.registerWidget('basic-widget', {
    label: 'Basic Widget',      // This is the label the widget will take in the widget menu
    image: 'widget.png',        // This is the image the widget will show in the widget menu
    category: 'Basic',          // This is the category the widget will placed under in the widget menu
    acceptedTypes: ['string'],  // These are the types of NetworkTables values you can drag onto the widget
    minX: 3,                    // This is the minimum number of x grid spaces the widget can take up in the interface
    minY: 3                     // This is the minimum number of y grid spaces the widget can take up in the interface
  });
</script>





You can optionally put an image in your widget’s folder named after whatever you passed into the image configuration property passed into the dashboard.registerWidget function.

Your folder structure should now look like this:

[image: _images/folder-structure4.png]
Refresh the interface and your widget should be there:

[image: _images/basic-widget-preview.png]
Dragging a widget onto the interface should look like this:

[image: _images/basic-widget-dragged.png]
Drag a NetworkTables source onto the widget of type string. The widget should take on the NetworkTable value:

[image: _images/basic-widget-source.png]






          

      

      

    

  

    
      
          
            
  
Widget Anatomy


RiotJS

shuffleboard2js allows you to build custom tags using the RiotJS [https://riot.js.org/] library. To start learning about how you can create your own custom widgets it’s recommended you read RiotJS’s guide here [https://riot.js.org/guide/].




Setting accepted types when registering your widget

The value of the acceptedTypes configuration property passed into the dashboard.registerWidget function determines what NetworkTables sources can be dragged onto the widget.

dashboard.registerWidget('widget-id', {
  acceptedTypes: ['string'],
  ...
  ...
  ...
});





In the code above the acceptedTypes property is passed an array with the element ‘string’. This means that only NetworkTables keys with value type string can be dragged onto the widget.

There are two kinds of widget types that can be passed into the acceptedTypes property: The primitive NetworkTable types that each individual NetworkTable key has, and types determined by keys that end in .type.

This is the list of primitive types acceptedTypes can be passed:


	string


	number


	boolean


	array




Here are some examples of types of the .type kind:


	Speed Controller


	Gyro


	Analog Input


	Digital Input


	Double Solenoid




[image: _images/nt-sources-examples.png]



Getting NetworkTables data in your widget code

NetworkTables data is accessible from your widget code through opts.table:

<your-widget-id>
  <p>NetworkTables data: {opts.table}</p>

  <script>
    this.on('update', () => {
      console.log('Networktables data updated:', this.opts.table);
    });
  </script>
</your-widget-id>





For example, the basic-widget we created in the last section, which accepts NetworkTable values of type string, will show whatever NetworkTables value of type string is dragged onto the widget:

[image: _images/basic-widget-drag.gif]
If the widget’s accepted types that are determined by the .type key, then opts.table will be an object containing all the keys in the subtable dragged onto the widget. For example, take the following widget that accepts types Gyro and Speed Controller:

<basic-widget>
  <p>Name: {opts.table['.name']}</p>
  <p>Type: {opts.table['.type']}</p>
  <p>Value: {opts.table['Value']}</p>
</basic-widget>





[image: _images/basic-widget-drag2.gif]



Updating the widget

Widgets are updated automatically when any NetworkTables values change. To update manually call this.update().

<your-widget-id>

  <!-- Widget HTML goes here -->

  <script>
    this.update();
  </script>

</your-widget-id>








Styling your widget

To style your widget add a <style></style> tag:

<your-widget-id>

  <!-- Widget HTML goes here -->

  <style>
    /* CSS goes here */
  </style>

</your-widget-id>








Adding a <script></script>

Scripts can be added to your tag by adding a <script></script> tag:

<your-widget-id>

  <!-- Widget HTML goes here -->

  <script>
    // Your code goes here
  </script>

</your-widget-id>








Adding properties

Getting properties

On properties update

If you want to receive updates when the widget’s properties are updated, use the propertiesUpdate event:

<your-widget-id>

  <!-- Widget HTML goes here -->

  <script>

    this.on('update', () => {
      // update event is fired when properties change
    });

    this.on('propertiesUpdate', () => {
      // propertiesUpdate event is also fired, if you want to run code specifically
      // when the the widget's properties change
  });
  </script>

</your-widget-id>





Properties modal




Other Events

If you want to receive updates when the widget is resized, use the resize event:

<your-widget-id>

  <!-- Widget HTML goes here -->

  <script>
    this.on('resize', () => {
      // code goes here
    });
  </script>

</your-widget-id>











          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _images/folder-structure4.png
v [0 shutfieboarazis

widgettag
2 widget.png

index.html





_images/nt-sources-examples.png
~ Talon SRX [2]
.name
type
Value

~ AnalogGyro[0]
.name
type
Value

~ AnalogTrigger(2]
.name
type
Value

Talon SRX [2]
Speed Controller
0

AnalogGyro[0]
Gyro
0

AnalogTrigger(2]
Analog Input
0





_images/folder-structure.png
v [0 shutfieboarazis
v B vioes





_images/folder-structure3.png
v [0 shutfieboarazis

widgettag





_static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/comment.png





_static/down-pressed.png





_images/basic-widget-preview.png
T

Sources  Widgets

v Basic

L]

AN

Basic Widget

Tab1

x

+





_images/basic-widget-source.png
» CameraServer

~ NetworkTables

Key
¥ root
~ FMSinfo
type
GameSpecificMe
EventName

MatchNumber

a basi
Value widget!

Value: sim-event

FMSInfo

sim-event
0





_images/basic-widget-drag2.gif
v LiveWindow

» .status
~ Ungrouped
» Talon SRX [1]
type LW Subsystem
~ Talon SRX [2)
.name Talon SRX [2]
type Speed Controller
Value 0

~ AnalogGyro[0]

.name AnalogGyro[0]
type Gyro
Value 0

» AnalogTrigger(2]






_images/basic-widget-dragged.png
Tab1 x +

Value: [object
Object]





_images/folder-structure-with-widget.png
v [0 shutfieboarazis





_static/down.png





nav.xhtml

    
      Table of Contents


      
        		
          shuffleboard2js
        


        		
          Creating a Basic widget
          
            		
              Choosing a unique ID
            


            		
              Folder structure
            


            		
              widget.tag
            


            		
              Registering your widget
            


          


        


        		
          Widget Anatomy
          
            		
              RiotJS
            


            		
              Setting accepted types when registering your widget
            


            		
              Getting NetworkTables data in your widget code
            


            		
              Updating the widget
            


            		
              Styling your widget
            


            		
              Adding a <script></script>
            


            		
              Adding properties
            


            		
              Other Events
            


          


        


      


    
  

_static/minus.png





_images/basic-widget-drag.gif
» status
~ Ungrouped
~ Talon SRX [1]
-name
type
Value
type
~ Talon SRX [2]
_name
type
Value

» AnalogGyro[0]

» AnalogTrigger(2]

Talon SRX [1]

Speed Controller

0

LW Subsystem

by s a basic

widget!

Talon SRX [2] Value: [object
Object]

Speed Controller

0





_static/plus.png





_static/file.png





_static/up.png





_static/up-pressed.png





