shub-image Documentation
Release 0.2.5

Scrapinghub

Mar 30, 2017






Contents

1 Deploy a custom image to Scrapy Cloud 2.0 3
1.1 Installation . . . . . . . . . . . e e e e 3
1.2 Deployment . . . . . . . o o e e e e e e e e e e e e 3
1.3 Commands . . . . . . . . . e e e e e e e e 5
1.4 Troubleshooting . . . . . . . . . . . . e 10
2 Custom Images contract 13
2.1  Contract Statements . . . . . . . . . v e e e e e e e e e e e e e e e e e e e e e e e e 13
2.2 Environment variables . . . . . . . . ... e e e e 13
2.3 Scrapy entrypoint . . . . v v v u e e e e e e e e e e e e e e e e e e e e e e e e 14
3 Indices and tables 17







shub-image Documentation, Release 0.2.5

Warning: This package is deprecated, please use shub (>=2.5.0) instead.

Contents:

Contents 1


https://github.com/scrapinghub/shub

shub-image Documentation, Release 0.2.5

2 Contents



CHAPTER 1

Deploy a custom image to Scrapy Cloud 2.0

Warning: This package is deprecated, please use shub (>=2.5.0) instead.

Scrapy Cloud 2.0 is the newest Scrapy Cloud platform version which allows you to run Scrapy spiders in Docker
containers. This document will show you how to use the shub-image command line tool to deploy custom Docker
images for your Scrapy projects to Scrapy Cloud 2.0.

Note: If you don’t need a custom Docker image, you can continue using shub to deploy your spiders. Just make sure
to upgrade it before doing so:

’$ pip install shub —--upgrade

Installation

Install the shub-image tool via pip:

’$ pip install shub-image

Deployment

This section describes how to build and deploy to Scrapy Cloud 2.0 a custom Docker image for a Scrapy project.

Warning: Make sure you are working on a Scrapy Cloud 2.0 project before following this guide. You can migrate
your old projects via Scrapy Cloud web dashboard.



https://github.com/scrapinghub/shub
https://github.com/scrapinghub/shub-image/
https://github.com/scrapinghub/shub
http://dash.scrapinghub.com

shub-image Documentation, Release 0.2.5

1. Initialization

Open up a terminal and go to your crawler’s project folder in your local machine:

’$ cd path/to/your/project

And then run the init command:

’$ shub-image init —--requirements path/to/requirements.txt

This will create a Dockerfile for your container including requirements.txt as a dependency and using
python:2.7 as the base image for your custom image. If you want to use a different one, pass the ——base-image
option, like this:

’$ shub-image init —--base-image scrapinghub/base:12.04

In this case, it will use the image available at https://hub.docker.com/r/scrapinghub/base tagged with 12 . 04.

Warning: Make sure to include scrapinghub-entrypoint-scrapy in your requirements.txt file. It is a support layer
to pass all the job data to Scrapy inside a Mesos task. If you ignore this, your Scrapy projects won’t work at Scrapy
Cloud 2.0.

2. Define your target image

Now you need to define the Docker repository that will store the image built by this tool. To do this, open your
project’s scrapinghub.yml file and add an images section to it, like this:

projects:
default: 29629
images:
default: yourusername/repository

The settings above define that shub-image will push the image of your Docker container to https://hub.docker.com/
r/yourusername/repository. You can also specify the complete URL for your repository if you are not using the default
registry (which is https://hub.docker.com).

Tip: Your project might not have a scrapinghub.yml file, because it has been introduced with recent versions of
shub. Make sure to upgrade your shub package by running:

’$ pip install shub --upgrade

And then create scrapinghub.yml by running:

’$ shub deploy

After this, don’t forget to add the images section to it, since shub doesn’t include it for you.

3. Build the image

Once you have the Dockerfile (generated in step /) and your target image settings, run the build command to make
shub-image build the Docker image for you:

4 Chapter 1. Deploy a custom image to Scrapy Cloud 2.0


https://hub.docker.com/r/library/python/
https://docs.docker.com/engine/reference/builder/
https://hub.docker.com/r/scrapinghub/base
https://pypi.python.org/pypi/scrapinghub-entrypoint-scrapy
https://hub.docker.com/r/yourusername/repository
https://hub.docker.com/r/yourusername/repository
https://hub.docker.com
https://github.com/scrapinghub/shub
https://github.com/scrapinghub/shub

shub-image Documentation, Release 0.2.5

$ shub-image build
The image yourusername/repository:1.0 build is completed.

After doing so, you can run the fest command to make sure everything is alright for deployment:

$ shub-image test

4. Push the image to the registry

This step will push the image you just built to the repository defined in the scrapinghub. yml file. To do this, run
the push command:

$ shub-image push
Pushing yourusername/repository:1.0 to the registry.
The image yourusername/repository:1.0 pushed successfully.

In the example above, the image was pushed to https://hub.docker.com/r/yourusername/repository.

5. Deploy your image to Scrapy Cloud 2.0

Once your image has been uploaded to the Docker registry, you have to deploy it to Scrapy Cloud 2.0 using the deploy
command:

$ shub-image deploy
Deploy task results: <Response [302]>

You can check deploy results later with 'shub-image check —--id 10'.
Deploy results:

{u'status': u'started'}

{u'status': u'progress', u'last_step': u'pulling'}

{u'status': u'ok', u'project': 29629, u'version': u'l.0', u'spiders': 1}

Now you can schedule your spiders via both web dashboard or shub.

Warning: The deploy step for a project might be slow for the first time you do it.

Commands

Each of the commands we used in the steps above has some options that allow you to customize their behavior. For
example, the push command allows you to pass your registry credentials via the ~——username and —-password
options. This section lists the options available for each command.

init

The first command you have to run when migrating your projects to run on Scrapy Cloud 2.0 is shub-image init.
This command generates a Dockerfile to be used later by the build command to create a Docker container based
on your Scrapy project.

The generated Dockerfile will likely fit your needs. But if it doesn’t, it’s just a matter of editing the file.

1.3. Commands 5



https://hub.docker.com/r/yourusername/repository

shub-image Documentation, Release 0.2.5

Options for init

--project <text>

Define the Scrapy project where the settings are going to be read from.
Default value: default from current folder’s scrapy.cfg.
—--base-image <text>

Define which base Docker image your custom image will build upon.
Default value: python:2.7

—-requirements <path>

Set path as the Python requirements file for this project.

Default value: project directory requirements.txt
——base-deps <list>

Add system dependencies for your image, overriding the default ones. The <1ist> parameter should be a comma
separated list with no spaces between dependencies.

Default value: telnet, vim, htop, strace, iputils—-ping, 1sof
——add-deps <list>

Provide additional system dependencies to install in your image along with the default ones. The <11ist> parameter
should be a comma separated list with no spaces between dependencies.

——list-recommended-reqgs
List recommended Python requirements for a Scrapy Cloud 2.0 project and exit.

Example:

$ shub-image init —--base-image scrapinghub/base:12.04 \
-—-requirements other/requirements—-dev.txt \
——add-deps phantomijs, tmux

build

This command uses the Dockerfile created by the init command to build the image that’s going to be deployed later.

It reads the target images from the scrapinghub.yml file, which is generated by the deploy command from shub >=2.0.
You should add a section called images on it using the following format:

images:
default: username/project
private: your.own.registry:port/username/project
fallback: anotheruser/project

Options for build

—--list-targets
List available targets and exit.

——target <text>

6 Chapter 1. Deploy a custom image to Scrapy Cloud 2.0



https://docs.docker.com/engine/reference/builder
http://doc.scrapinghub.com/shub.html#configuration
https://github.com/scrapinghub/shub

shub-image Documentation, Release 0.2.5

Define the image for release. The <text > parameter must be one of the target names listed by 1ist-targets.
Default value: default
--version <text>

Tag your image with <text>. You’ll probably not need to set this manually, because the tool automatically sets this
for you.

If you pass the ——version parameter here, you will have to pass the exact same value to any other commands that
accept this parameter (push and deploy).

Default value: identifier generated by shub.
-d/--debug
Increase the tool’s verbosity.

Example:

$ shub-image build --list-targets

default

private

fallback

$ shub-image build --target private --version 1.0.4

push

This command pushes the image built by the build command to the registry (the default one or another one
specified with the ——target option).

Options for push

——list-targets

List available targets and exit.

—-—target <text>

Define the image for release. The <t ext> parameter must be one of the target’s names listed by 1ist-targets.
Default value: default

—-version <text>

Tag your image with <text >. If you provided a custom version to the build command, make sure to provide the same
value here.

Default value: identifier generated by shub.

——-username <text>

Set the username to authenticate in the Docker registry.

Note: we don’t store your credentials and you’ll be able to use OAuth2 in the near future.
—-password <text>

Set the password to authenticate in the Docker registry.

—-—email <text>

Set the email to authenticate in the Docker registry (if needed).

1.3. Commands 7




shub-image Documentation, Release 0.2.5

——apikey <text>

(beta) Use provided apikey to authenticate in the Scrapy Cloud Docker registry.
—-insecure

Use the Docker registry in insecure mode.

-d/--debug

Increase the tool’s verbosity.

Most of these options are related with Docker registry authentication. If you don’t provide them, shub-image will
try to push your image using the plain HTTP —-insecure-registry docker mode.

Example:

$ shub-image push --target private —-version 1.0.4 \
——username johndoe --password johndoepwd

This example authenticates the user johndoe to the registry your .own.registry:port (as defined in the build
command example).

deploy

This command deploys your release image to Scrapy Cloud 2.0.

Options for deploy

——list-targets

List available targets and exit.

——target <text>

Target name that defines where the image is going to be pushed to.
Default value: default

--version <text>

The image version that you want to deploy to Scrapy Cloud 2.0. If you provided a custom version to the build and
push commands, make sure to provide the same value here.

Default value: identifier generated by shub

——username <text>

Set the username to authenticate in the Docker registry.

Note: we don’t store your credentials and you’ll be able to use OAuth?2 in the near future.
——password <text>

Set the password to authenticate in the registry.

-—email <text>

Set the email to authenticate in the Docker registry (if needed).

——apikey <text>

(beta) Use provided apikey to authenticate in the Scrapy Cloud Docker registry.

——insecure

8 Chapter 1. Deploy a custom image to Scrapy Cloud 2.0




shub-image Documentation, Release 0.2.5

Use the Docker registry in insecure mode.
——async

Make deploy asynchronous. When enabled, the tool will exit as soon as the deploy is started in background. You can
then check the status of your deploy task periodically via the check command.

Default value: False
-d/--debug
Increase the tool’s verbosity.

Example:

$ shub-image deploy --target private —-version 1.0.4 \
—--username johndoe --password johndoepwd --async

This command will deploy the image from the private target, using user credentials passed as parameters and exit
as soon as the deploy process starts (-—async).

upload

It is a shortcut for the build -> push -> deploy chain of commands.

Example:

$ shub-image upload --target private --version 1.0.4 \
—--username johndoe --password johndoepwd

Options for upload

The upload command accepts the same parameters as the deploy command.

check

This command checks the status of your deployment and is useful when you do the deploy in asynchronous mode.

By default, the check command will return results from the last deploy.

Options for check

—-—-id <number>
The id of the deploy you want to check the status.
Default value: the id of the latest deploy.

Example:

$ shub-image check —--id 0

This command above will check the status of the first deploy made (id 0).

1.3. Commands 9




shub-image Documentation, Release 0.2.5

test
This command checks if your local setup meets the requirements for a deployment at Scrapy Cloud 2.0. You can run

it right after the build command to make sure everything is ready to go before you push your image with the push
command.

Options for test

—--list-targets
List available targets and exit.
-d/--debug

Increase the tool’s verbosity.

Troubleshooting

Image not found while deploying

Make sure the repository you set in your scrapinghub.yml images section exists in the registry. Consider this
scrapinghub.yml example file:

projects:
default: 555555
images:
default: johndoe/scrapy-crawler

shub-image will try to deploy the image to http://hub.docker.com/johndoe/scrapy-crawler, since hub.docker.com is
the default registry. So, to make it work, you have to log into your account there and create the repository.

Otherwise, you are going to get an error message like this:

Deploy results: {u'status': u'error', u'last_step': u'pulling', u'error': u
—"DockerCmdFailure (u'Error: image johndoe/scrapy-crawler not found',6)"}

Uploading to a private repository

If you are using a private repository to push your images to, make sure to pass your registry credentials to both push
and deploy commands:

$ shub-image push --username johndoe --password yourpass
$ shub-image deploy —--username johndoe —--password yourpass

ImportError while initializing the project

If you are getting an ImportError like this while running shub-image init:

from shub import config as shub_config
ImportError: cannot import name config

10 Chapter 1. Deploy a custom image to Scrapy Cloud 2.0



http://hub.docker.com/johndoe/scrapy-crawler
http://hub.docker.com

shub-image Documentation, Release 0.2.5

You should make sure you have the latest version of shub installed by running:

$ pip install shub --upgrade

1.4. Troubleshooting 11


https://github.com/scrapinghub/shub

shub-image Documentation, Release 0.2.5

12 Chapter 1. Deploy a custom image to Scrapy Cloud 2.0



CHAPTER 2

Custom Images contract

Warning: This package is deprecated, please use shub (>=2.5.0) instead.

A contract is a set of requirements that any crawler custom Docker image have to comply with to be able to run on
Scrapy Cloud.

Scrapy crawler Docker images are already supported via the scrapinghub-entrypoint-scrapy contract implementation.
If you want to run crawlers built using other framework/language than Scrapy/Python, you have to make sure your
image follows the contract statements listed below.

Contract statements

1. Docker image should be able to run via start—crawl command without arguments.

’docker run myscrapyimage start-crawl

2. Docker image should be able to return a spiders list via 1ist-spiders command without arguments.

’docker run myscrapyimage list-spiders

3. Crawler should be able to get all needed params using system environment variables.

Environment variables

SHUB_JOBKEY

Job key in format PROJECT_ID/SPIDER_ID/JOB_ID.

Example:

13


https://github.com/scrapinghub/shub

shub-image Documentation, Release 0.2.5

123/45/67

SHUB_JOB_DATA

Job arguments, in json format.

Example:

{"key": "1111112/2/2", "project": 1111112, "version": "versionl",
"spider": "spider—-name", "spider_type": "auto", "tags": [],
"priority": 2, "scheduled_by": "user", "started_by": "admin",
"pending_time": 1460374516193, "running_time": 1460374557448, ... }

SHUB_SETTINGS

Job settings (i.e. organization / project / spider / job settings), in json format.
There are several layers of settings, and they all serve to different needs.
The settings may contain the following sections (dict keys):

* organization_settings

* project_settings

* spider_settings

* job_settings

* enabled_addons

Organization / project / spider / job settings define appropriate levels of same settings but with different priorities.
Enabled addons define Scrapinghub addons specific settings and may have an extended structure.

All the settings should replicate Dash API project /settings/get.json endpoint response (except
job_settings if exists):

http —-a APIKEY: http://dash.scrapinghub.com/api/settings/get.json project==PROJECTID

Note: All environment variables starting from SHUB__ are reserved for Scrapinghub internal use and shouldn’t be
used with any other purposes (they will be dropped/replaced on a job start).

Scrapy entrypoint

A base support wrapper written in Python implementing Custom Images contract to run Scrapy-based python crawlers
and scripts on Scrapy Cloud.

Main functions of this wrapper are the following:
e providing start—crawl entrypoint
 providing 1ist-spiders entrypoint (starting from 0.7 .0 version)

* translating system environment variables to Scrapy crawl / 1ist commands

14 Chapter 2. Custom Images contract




shub-image Documentation, Release 0.2.5

In fact, there are a lot of different features:
e parsing job data from environment
* processing job args and settings
* running a job with Scrapy
* collecting stats
* advanced logging & error handling
e transparent integration with Scrapinghub storage
* custom scripts support
scrapinghub-entrypoint-scrapy package is available on:
e PyPI
* Github

2.3. Scrapy entrypoint 15


https://pypi.python.org/pypi/scrapinghub-entrypoint-scrapy
https://github.com/scrapinghub/scrapinghub-entrypoint-scrapy/

shub-image Documentation, Release 0.2.5

16 Chapter 2. Custom Images contract



CHAPTER 3

Indices and tables

* genindex
* modindex

e search

17



	Deploy a custom image to Scrapy Cloud 2.0
	Installation
	Deployment
	Commands
	Troubleshooting

	Custom Images contract
	Contract statements
	Environment variables
	Scrapy entrypoint

	Indices and tables

