

 Navigation

 	
 index

 	Shrapnel 1.0.2 documentation

Welcome to Shrapnel’s documentation!

Contents:

	Installation

	Tutorial

	Reference Manual

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Sam Rushing.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Shrapnel 1.0.2 documentation

Index

 C

C

 	

 	coro.all_threads (built-in variable)

 Copyright 2012, Sam Rushing.
 Created using Sphinx 1.3.5.

 _static/down-pressed.png

_static/down.png

ref/oserrors.html

 Navigation

 		
 index

 		Shrapnel 1.0.2 documentation »

11. OSErrors

As a convenience, Shrapnel wraps all OSError exceptions that it raises with a
subclass that is specific to the errno code. For example, an OSError with an
errno of ENOENT will be raised as the ENOENT exception. All exceptions derive
from OSError, so it is compatible with regular OSError handling.

All of the exceptions are defined in the coro.oserrors module.

For example, instead of doing this:

try:
 data = sock.recv(1024)
except OSError, e:
 if e.errno == errno.ECONNRESET:
 # Handle connection reset.
 else:
 # Handle other unknown error.

You can do this:

try:
 data = sock.recv(1024):
except ECONNRESET:
 # Handle connection reset.

 © Copyright 2012, Sam Rushing.
 Created using Sphinx 1.3.5.

ref/signals.html

 Navigation

 		
 index

 		Shrapnel 1.0.2 documentation »

8. Signals

Shrapnel provides a way to handle signals. Youn can register a function to
receive signals with coro.signal_handler.register().

By default when you start the event loop, two signal handlers are installed
(for SIGTERM and SIGINT). The default signal handler will exit the event loop.
You can change this behavior by setting coro.install_signal_handlers to False
before starting the event loop.

Additionally, there is a signal handler installed for SIGINFO. It prints the
name of the coroutine that is currently running. On a typical terminal, you
can trigger this with CTRL-T.

 © Copyright 2012, Sam Rushing.
 Created using Sphinx 1.3.5.

ref/index.html

 Navigation

 		
 index

 		Shrapnel 1.0.2 documentation »

Shrapnel Reference Manual

This reference manual describes all of the basic concepts of Shrapnel along with all of the APIs.

		1. Coroutines

		2. Sockets

		3. Synchronization

		4. Clocks

		5. DNS

		6. Emulation

		7. Debugging

		8. Signals

		9. Selfishness

		10. Profiling

		11. OSErrors

 © Copyright 2012, Sam Rushing.
 Created using Sphinx 1.3.5.

_static/up.png

ref/profiling.html

 Navigation

 		
 index

 		Shrapnel 1.0.2 documentation »

10. Profiling

 © Copyright 2012, Sam Rushing.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

ref/clocks.html

 Navigation

 		
 index

 		Shrapnel 1.0.2 documentation »

4. Clocks

Shrapnel needs to keep track of time to manage scheduling of sleeps and
timeouts. Because Shrapnel is intended to support thousands of coroutines,
and each coroutine may be making many timeout calls per second, Shrapnel needs
to use a timing facility that is relatively high performance. It also needs
one that is monotonic, so it does not need to deal with system clock changes.

The clocks subpackage is intended to provide a variety of different time
facilities. Currently it only supports using the x86 TSC timer. This is a
timer built in to the CPU, and thus is very fast.

4.1. TSC Time

Support for TSC time is implemented in the coro.clocks.tsc_time module.

 © Copyright 2012, Sam Rushing.
 Created using Sphinx 1.3.5.

ref/debugging.html

 Navigation

 		
 index

 		Shrapnel 1.0.2 documentation »

7. Debugging

There are a variety of features available to help with debugging in Shrapnel.

7.1. Backdoor

A very powerful feature of Shrapnel is the ability to access a running process
via a backdoor. You can telnet to a socket (typically a unix-domain socket)
and get a Python prompt. At this point, you can interact with anything in
your Shrapnel process.

As an example of something you can do in the backdoor is call
coro.where_all(). This will return a dictionary of every coroutine that
is running with a string describing the call stack of where that coroutine is
currently blocked.

To enable the backdoor, you typically start a backdoor coroutine before starting
the event loop with the following code:

import coro.backdoor
coro.spawn(coro.backdoor.serve)

By default this will listen on all IP’s on the lowest port available from 8023
to 8033. This isn’t a very safe or secure thing to do. It’s best to specify a
unix-domain socket with the unix_path parameter. See
coro.backdoor.serve() for details.

By default, the globals available in a backdoor session is a copy of the
globals from your applications __main__ module.

7.2. Stderr Output

Shrapnel provides some functions for printing debug information to stderr. The
coro.print_stderr() function will print a string with a timestamp and
the thread number. The coro.write_stderr() function writes the string
verbatim with no newline.

Shrapnel keeps a reference to the “real” stderr (in saved_stderr) and the
print_stderr and write_stderr functions always use the real stderr
value. A particular reason for doing this is the backdoor module replaces
sys.stderr and sys.stdout, but we do not want debug output to go to the
interactive session.

7.3. Exceptions

7.3.1. Tracebacks

As a convenience, Shrapnel has a module for printing stack traces in a
condensed format. The coro.tb module has the coro.tb.stack_string()
function for printing the current stack, and coro.tb.traceback_string()
for getting a traceback in an exception handler.

7.3.2. Exception Notifications

If an exception is raised in a coroutine and is never caught, then Shrapnel
will by default display the exception to stderr. If you want to change this
behavior, use coro.set_exception_notifier().

7.4. Latency

Shrapnel will keep track of how long a coroutine runs before it yields.
This is helpful to track down coroutines which are running for too long, or are
potentially calling blocking calls. Here is an example of the output that would
be sent to stderr when this happens:

Sat Apr 14 20:55:39 2012 High Latency: (3.884s)
 for <coro #1 name='<function my_func at 0x800fd32a8>'
 dead=0 started=1 scheduled=0 at 0x801424720>

You can change the threshold that will trigger this warning with the
coro.set_latency_warning() function. However, doing this to silence
warnings isn’t a good idea. It is best to fix whatever code is causing the
warnings. You can either call coro.yield_slice() periodically to let
other coroutines run, or make sure you are not calling any blocking
operations.

7.5. Functions

The coro module defines the following functions:

 © Copyright 2012, Sam Rushing.
 Created using Sphinx 1.3.5.

ref/coroutines.html

 Navigation

 		
 index

 		Shrapnel 1.0.2 documentation »

1. Coroutines

The central concept of Shrapnel is the coroutine. You can think of a coroutine
like it is a thread. When it runs out of work to do, it yields and allows other
coroutines to run. Scheduling of coroutines is handled by the scheduler which
runs an “event loop”.

1.1. Event Loop

The event loop is a loop that runs forever until the program ends. Every
Shrapnel program needs to start the event loop as one of the first things it
does. A typical example would be:

import coro

def main():
 print 'Hello world!'
 # This will cause the process to exit.
 coro.set_exit(0)

if __name__ == '__main__':
 coro.spawn(main)
 coro.event_loop()

1.2. Coroutines

Every coroutine thread is created with either the new() function (which
does NOT automatically start the thread) or the spawn() function (which
DOES automatically start it).

Every thread has a unique numeric ID. You may also set the name of the thread
when you create it.

1.3. Timeouts

The shrapnel timeout facility allows you to execute a function which will be
interrupted if it does not finish within a specified period of time. The
TimeoutError exception will be raised if the timeout expires. See the
with_timeout() docstring for more detail.

If the event loop is not running (such as in a non-coro process), a custom
version of with_timeout is installed that will operate using SIGALRM so that
you may use with_timeout in code that needs to run in non-coro processes
(though this is not recommended and should be avoided if possible).

1.4. Parallel Execution

XXX

1.5. Thread Local Storage

There is a thread-local storage interface available for storing global data that
is thread-specific. You instantiate a ThreadLocal instance and you can
assign attributes to it that will be specific to that thread. From a design
perspective, it is generally discouraged to use thread-local storage. But
nonetheless, it can be useful at times.

1.6. Functions

The coro module defines the following functions:

1.7. Variables

		
coro.all_threads

		A dictionary of all live coroutine objects. The key is the coroutine ID,
and the value is the coroutine object.

1.8. Exceptions

The coro module defines the following exceptions:

 © Copyright 2012, Sam Rushing.
 Created using Sphinx 1.3.5.

ref/sockets.html

 Navigation

 		
 index

 		Shrapnel 1.0.2 documentation »

2. Sockets

Most Shrapnel programs make heavy use of sockets. The coro package
implements its own socket class, which is nearly identical to the socket class
in Python. Indeed, if you use coro.install_thread_emulation() then the
socket class will be monkey-patched into Python’s socket module.

2.1. Creating Sockets

Though you are free to directly instantiate the coro.sock object, there are
a variety of functions to assist in creating socket objects with a little more clarity.

2.2. Socket Classes

2.3. Socket Functions

The coro module offers the following functions related to sockets.

2.4. Socket Constants

The following classes provide a variety of constants often used with sockets.

 © Copyright 2012, Sam Rushing.
 Created using Sphinx 1.3.5.

ref/dns.html

 Navigation

 		
 index

 		Shrapnel 1.0.2 documentation »

5. DNS

TODO

 © Copyright 2012, Sam Rushing.
 Created using Sphinx 1.3.5.

ref/selfishness.html

 Navigation

 		
 index

 		Shrapnel 1.0.2 documentation »

9. Selfishness

Shrapnel maintains a concept called “selfishness”. This mechanism is used to
prevent a coroutine from yielding too often (or from running for too long).
This is currently only relevant to socket objects and socket I/O.

Each coroutine is given a set number of “free passes” each time it tries to do
I/O on a socket. If there is data immediately available on the socket, then
the coroutine may immediately receive that data. If Shrapnel did not
implement any “selfishness” limits, and that coroutine is in a loop repeatedly
calling read and there is always data available to the socket, then that
coroutine would run continuously without letting its fellow coroutines a
chance to run.

By default, every coroutine has a selfishness limit of 4. That means it is
allowed to do 4 I/O operations before it is forced to yield. Of course, if it
attempts to do an I/O operation that would block (such as if there is no data
available on a socket), then it will yield immediately.

You can set the default selfishness limit for all new coroutines with the
coro.set_selfishness() function. You can also change a coroutine’s
limit with the coro.coro.set_max_selfish_acts() method.

9.1. Functions

The following functions are available in the coro module:

 © Copyright 2012, Sam Rushing.
 Created using Sphinx 1.3.5.

ref/emulation.html

 Navigation

 		
 index

 		Shrapnel 1.0.2 documentation »

6. Emulation

Because Shrapnel is essentially its own threading system, code written with
the intention of using Python’s standard threads will not work. Things like
Python’s socket class will block and hang the entire program. To solve this
problem, Shrapnel includes some code that will monkeypatch some of Python’s
standard classes to work with Shrapnel. You must manually enable this
behavior by calling coro.install_thread_emulation().

 © Copyright 2012, Sam Rushing.
 Created using Sphinx 1.3.5.

tutorial.html

 Navigation

 		
 index

 		Shrapnel 1.0.2 documentation »

1 Getting Started with Shrapnel

		Date:		$Date: 2012/03/30 $

		Author:		Sam Rushing

Contents

		1 Getting Started with Shrapnel
		1.1 Intro

		1.2 Basics

		1.3 Servers and Clients

		1.4 Profiler

		1.5 The Killer Demo

		1.6 Details

		1.7 Credits

Shrapnel/Coro is a highly scalable cooperative threading facility for CPython.

1.1 Intro

Shrapnel is a library for high-performance concurrency. It uses
coroutines to implement user threads on top of either kqueue (FreeBSD,
OS X) or /dev/epoll (linux), and is written mostly in Pyrex/Cython,
supporting both 32-bit and 64-bit platforms. It is the culmination of
about 8 years of work at IronPort Systems, a provider of high-speed
mail appliances. It was open-sourced by Cisco Systems in late 2011.

1.1.1 Features

		Lightweight threads, event-driven scheduler.

		Underneath: non-blocking operations on descriptors, like sockets and pipes.

		On top, synchronous API for straight-line, simple code.

		Highly scalable - tens or hundreds of thousands of connections/threads.

		Thread synchronization primitives, like mutexes, semaphores, etc...

		Wait on kqueue events like file/directory changes, signals, processes, etc... [kqueue only]

		DNS stub resolver (full-fledged resolver may be forthcoming)

		HTTP server and client

		RPC system

		Support for TLS via tlslite (openssl interface may be forthcoming)

		other protocols/codecs: ldap, asn1, ftp, mysql, postgres, AMQP [https://github.com/samrushing/amqp-shrapnel].

		MIT License [http://www.opensource.org/licenses/mit-license.html].

1.1.2 The Name

Shrapnel is the name of the implementation. The python package that
it implements is coro. It’s actually the third implementation of
the coro package written at IronPort - previous versions were written
in C using a painful type of continuation-passing style, and relied on
variants of Stackless Python.

1.1.3 Installing

Requirements:

		Cython (>=0.12.1)

		distribute (>=0.6.16)

Install with:

$ pip install coro

or alternatively download shrapnel from
https://github.com/ironport/shrapnel and do the usual setup.py procedure:

$ git clone git://github.com/ironport/shrapnel.git
$ cd shrapnel
$ python setup.py build
$ [sudo] python setup.py install

1.2 Basics

1.2.1 Event Loop

Everything runs in the event loop. So the last thing your __main__ script will do is always:

coro.event_loop()

Calling this function starts the scheduler, which enters a loop continually running threads that are ready to run, feeding new waitable events to the operating system, and waiting for events to be triggered. When an event is triggered, the thread waiting on that event is awakened.

1.2.2 Interaction

Because everything runs in the event loop, you can’t interact with the normal python prompt. But you can interact via the ‘backdoor’. The backdoor interface is crucial to development with shrapnel. It allows you to open one or more telnet sessions into the system and interact with a python prompt there. So a common pattern in __main__ is this:

if __name__ == '__main__':
 import coro
 import coro.backdoor
 coro.spawn (coro.backdoor.serve, unix_path='/tmp/xx.bd')
 coro.event_loop()

Once this is running, open another terminal window and:

$ telnet /tmp/xx.bd

[It’s important to use the full path, you can’t cd into /tmp and "$telnet xx.bd".]

Go ahead and run shrapnel/docs/tutorial/t0.py now, we’ll use it in the following demonstration:

$ cd shrapnel/docs/tutorial/
$ python t0.py
1: Sat Mar 31 16:28:44 2012 Backdoor started on unix socket /tmp/xx.bd

In another window:

$ telnet /tmp/xx.bd
Trying /tmp/xx.bd...
Connected to (null).
Escape character is '^]'.
Python 2.7.2 (default, Mar 10 2012, 12:30:07)
[GCC 4.2.1 Compatible Clang 3.1 (trunk 149115)]
Copyright (c) 2001-2011 Python Software Foundation.
All Rights Reserved. [etc]
>>>

1.2.3 Output

Note the behavior of I/O to sys.stdout/stderr when using the back door:

>>> print "Howdy"
Howdy

and:

>>> sys.stdout.write ("Hello\n")
Hello
>>>

i.e, they print to the terminal, not the main console.

To send debugging output to the console, use coro.write_stderr() and coro.print_stderr().

1.2.4 Skullduggery

From the back door you can poke around in the internals of the system while it’s running:

>>> coro.event_map
{<kevent_key filter=-1 ident=4>: <kevent_target status=1 index=0 target=<coro #1 name='<function serve at 0x1007e1de8>' dead=0 started=1 scheduled=0 at 0x1005c1500> flags=0>, ...}
>>>
>>>
>>> coro.where_all()
{1: ('<function serve at 0x1007e1de8>', <coro #1 name='<function serve at 0x1007e1de8>' dead=0 started=1 scheduled=0 at 0x1005c1500>, '[coro/backdoor.py serve|224]'), ...}
>>>
>>> player_db['annoying_guy23'].demote()
<player annoying_guy23 id=394203 level=peon>
>>>

1.2.5 Sleeping

The sleep_relative() function allow you to put a thread to sleep for a time:

>>> coro.sleep_relative (5)
[5 second pause]
>>>

1.2.6 Starting a New Thread

Start a new thread with coro.spawn():

>>> def thing():
... for x in range (10):
... coro.write_stderr ('%d\n' % (x,))
... coro.sleep_relative (1)
...
>>> coro.spawn (thing)
<coro #5 name='<function thing at 0x10152af50>' dead=0 started=0 scheduled=1 at 0x1005f97b0>
>>>

In the main window you should see a new digit printed every second.

coro.spawn() takes a callable object, args, and keyword args:

coro.spawn (fun0, arg0, arg1, kwd0=val0, kwd1=val1)

1.2.7 Starting A Lot of New Threads

Start up 1000 threads:

>>> import random
>>> def thing():
... t = random.randrange (0, 15)
... coro.sleep_relative (t)
... coro.write_stderr ('*')
...
>>> for x in range (1000):
... coro.spawn (thing)
...
>>>

Over the next 15 seconds you should see groups of '*' characters sent to the main window.

1.3 Servers and Clients

1.3.1 Echo Server

Creating a server is easy (see docs/tutorial/t1.py):

import coro
import coro.backdoor

def session (conn, addr):
 while 1:
 block = conn.recv (1000)
 if not block:
 break
 else:
 conn.send (block)

def serve (port=9000):
 s = coro.tcp_sock()
 s.bind (('', port))
 s.listen (50)
 while 1:
 conn, addr = s.accept()
 coro.spawn (session, conn, addr)

if __name__ == '__main__':
 coro.spawn (coro.backdoor.serve, unix_path='/tmp/xx.bd')
 coro.spawn (serve)
 coro.event_loop()

You can telnet into that server:

$ telnet localhost 9000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
asdf
asdf
asdf
asdf
asdf

[Hit Ctrl-], c, <return> to close the connection]

1.3.2 Timeouts

One of the nicer features of shrapnel is with_timeout(). Use
with_timeout() around any function call:

result = thing.db.query ("SELECT * FROM CANDYBIN;")

with a 30-second timeout becomes:

result = coro.with_timeout (30, thing.db.query, "SELECT * FROM CANDYBIN;")

If the function hasn’t returned within 30 seconds, it will raise
coro.TimeoutError:

try:
 r = coro.with_timeout (30, function, arg0, arg1, ...)
except coro.TimeoutError:
 coro.write_stderr ("Hey, that took too long!\n")

Multiple layers of timeouts work as expected.

Note

Try editing the echo server from above, adding a timeout to the
conn.recv (1000) call. Make it so that it exits the loop and
closes the connection if nothing is typed within 10 seconds.

1.3.3 Exiting The Event Loop

You can tell the system to exit:

>>> coro.set_exit()
>>> Connection closed by foreign host.

[Note that this isn’t just exiting the telnet/backdoor connection, but
telling the entire system to shut down.]

Note

Try editing the echo server from above, so that it’ll exit the
event loop when it receives the string ‘quit\r\n’.

1.3.4 Echo Client

It’s difficult to really beat on that server with your own fingers (and telnet).
How about a client that’ll exercise it a little (see docs/tutorial/t2.py):

import coro

def client (ip='127.0.0.1', port=9000):
 global alive
 alive += 1
 try:
 s = coro.tcp_sock()
 s.connect ((ip, port))
 for i in range (10):
 s.send ('howdy there\r\n')
 assert (s.recv_exact (13) == 'howdy there\r\n')
 coro.write_stderr ('.')
 s.close()
 finally:
 alive -= 1
 if alive == 0:
 coro.write_stderr ('\ndone.\n')
 coro.set_exit()

if __name__ == '__main__':
 alive = 0
 for i in range (100):
 coro.spawn (client)
 coro.event_loop()

Hit Ctrl-C to exit.

You should just see a hundred dots in the main window. You might get connection reset errors if the listen() parameter in the server wasn’t high enough. If so, you could put some calls to sleep_relative() in there to stagger the creation of the clients.

1.3.5 Proxy Server

This is a handy little server that lets you ‘spy’ on protocols. It’s
very handy when implementing protocols. See docs/tutorial/proxy.py.

import coro
W = coro.write_stderr

class session:
 counter = 0
 def __init__ (self, conn, addr, saddr):
 self.conn = conn
 self.addr = addr
 self.saddr = saddr
 self.id = session.counter
 session.counter += 1
 self.proxy = coro.tcp_sock()
 self.proxy.connect (saddr)
 coro.spawn (self.feed, self.conn, self.proxy, '<==')
 coro.spawn (self.feed, self.proxy, self.conn, '==>')

 def feed (self, c0, c1, dir):
 try:
 while 1:
 block = c0.recv (1000)
 W ('%s %d %r\n' % (dir, self.id, block))
 if not block:
 break
 else:
 c1.send (block)
 finally:
 c0.close()

def serve (saddr):
 ip, port = saddr
 s = coro.tcp_sock()
 s.bind (('0.0.0.0', port + 9000))
 s.listen (5)
 while 1:
 conn, caddr = s.accept()
 coro.spawn (session, conn, caddr, saddr)

if __name__ == '__main__':
 import sys
 if len (sys.argv) < 3:
 print 'Usage: %s <server-host> <server-port>' % sys.argv[0]
 else:
 coro.spawn (serve, (sys.argv[1], int (sys.argv[2])))
 coro.event_loop()

Let’s say you want to spy on an HTTP connection:

$ python proxy.py 72.52.84.226 80

The proxy works by adding 9000 to the port number you’re connecting to.

Try this link: http://localhost:9080/tutorial_hello.html

1.4 Profiler

Shrapnel comes with an efficient and comprehensive profiler that
accounts for the resources used by each thread. On most platforms it
uses the RDTSC instruction to gather accurate timings with low
overhead. It profiles both Python and Cython code:

import coro.profiler
#coro.event_loop()
coro.profiler.go (coro.event_loop)

By default it collects data from the rusage() facility and RDTSC,
see the documentation for details.

When the function you are profiling has exited, it will dump a binary
file containing the results (default: /tmp/coro_profile.bin),
which you can post-process using the coro.print_profile module:

$ python coro/print_profile.py /tmp/coro_profile.bin > /tmp/p0.html

Pull that up in your browser, you’ll find aggregate and non-aggregate tables, along with a call graph.

Non-Aggregate Timings

		calls
		ticks
		ticks/call
		utime
		utime/call
		stime
		stime/call
		minflt
		majflt
		oublock
		msgsnd
		msgrcv
		Function

		0
		29552069532
		29552069532
		0.022320
		0.02232
		0.031529
		0.031529
		0
		0
		0
		0
		0
		<wait>

		4540
		299809652 (15.86%)
		66037
		0.118307 (16.70%)
		0.000026
		0.013881 (10.17%)
		0.000003
		2 (4.88%)
		0
		0
		0
		0
		python/worms.py:move:141

		0
		227071913 (12.01%)
		227071913
		0.093381 (13.18%)
		0.093381
		0.010697 (7.84%)
		0.010697
		3 (7.32%)
		0
		0
		0
		0
		<main>

		4783
		192461416 (10.18%)
		40238
		0.072527 (10.24%)
		0.000015
		0.012591 (9.22%)
		0.000003
		1 (2.44%)
		0
		0
		0
		0
		python2.7/random.py:randrange:173

		2420
		171570517 (9.08%)
		70896
		0.069622 (9.83%)
		0.000029
		0.006048 (4.43%)
		0.000002
		1 (2.44%)
		0
		0
		0
		0
		python/worms.py:draw:185

From the call graph section:

__builtin__:dict.has_key -- ticks=15234 utime=6e-06 stime=1e-06
 3/3 (100.0%) coro/__init__.py:spawn:337
 3 __builtin__:dict.has_key
__builtin__:file.write -- ticks=263623 utime=4.1e-05 stime=7.5e-05
 7/7 (100.0%) python/worms.py:status:230
 7 __builtin__:file.write
__builtin__:len -- ticks=28508261 utime=0.010467 stime=0.002547
 14/4884 (00.3%) python/worms.py:status:230
 330/4884 (06.8%) python2.7/random.py:choice:272
 4540/4884 (93.0%) python/worms.py:move:141
 4884 __builtin__:len
[...]

Example of the full profiler output. Note: each graph may be [re]sorted by clicking on a column header.

1.5 The Killer Demo

See docs/tutorial/worms.py for a fun demo. Run the script from
one terminal, and telnet into it from another terminal with a nice
large window (your terminal needs to support ANSI escape codes):

$ telnet localhost 9001

Each worm is its own thread, and each socket client has a separate
view into the shared ‘arena’. This demo can easily handle hundreds of
separate worms (though things tend to get crowded):

+===+
| **********d|
| 9 |
| 9 |
| 9 |
| 9 |
| 9 |
| 9 |
| 9 |
| 9 |
| 9 |
| 9 |
| 9 |
| |
| |
| b a |
| b a |
| b a |
| b a 1 |
| eeeeee b a 1 |
| e b a 1 |
| e b a1111111 |
| e b a1 |
| e b a |
| e b a |
| b a |
| f |
| f |
| f |
| f |
| f |
| ffffff |
+===+
 keys: [q]uit [r]edraw [n]ew [c]ull [l]engthen [h]offa

Here’s the code controlling each worm’s movement:

def go (self):
 try:
 while not self.exit:
 coro.sleep_relative (self.speed / 10000.0)
 if random.randrange (0,20) == 10:
 if not self.turn():
 return
 else:
 nx, ny = self.update()
 while self.arena[(nx,ny)] != ' ':
 if not self.turn():
 return
 nx, ny = self.update()
 self.move ((nx, ny))
 finally:
 self.arena.worms.remove (self)

To come: a separate tutorial on hardening servers against attack. I
think this would be a great example to work with.

1.6 Details

1.6.1 Exceptions

What happens when there’s an unhandled exception in a thread?:

>>> def thing():
... return 1/0
...
>>> coro.spawn (thing)
<coro #205 name='<function thing at 0x1007e6758>' dead=0 started=0 scheduled=1 at 0x1005cf040>
>>>

You should see something like this in the main window:

205: Sat Mar 31 17:29:06 2012 thread 205 (<function thing at 0x1007e6758>): error
'(\'<coro.backdoor.backdoor instance at 0x1007decf8> thing|2\',
"<type \'exceptions.ZeroDivisionError\'>", \'integer division or modulo by zero\',
\'[_coro.pyx coro._coro._wrap1 (coro/_coro.c:8821)|800] [<coro.backdoor.backdoor instance at 0x1007decf8> thing|2]\')'

The default exception handler for a thread prints a timestamp, some info about the thread that crashed, and a compact, one-line traceback.

You can replace the default handler with coro.set_exception_notifier().

1.6.2 Latency Warnings

It’s important that no thread monopolizes the CPU for too long. This
can happen if you inadvertently call a blocking system function (e.g.,
filesystem I/O). To assist you in finding bugs that do this, the
scheduler will print out a warning like this:

Wed Apr 4 00:29:01 2012 High Latency: (5.449s) for <coro #4 name='mp4 encoder' at 0x1003ceaa0>

Any thread that holds the CPU for more than 0.2s will trigger the
warning. You can change the trigger value with coro.set_latency_warning().

1.6.3 SimultaneousError

If two threads try to perform the same I/O operation (technically,
wait on the same kevent), this will trigger a SimultaneousError:

>>> coro.x.recv (100)
Traceback (most recent call last):
 File "/usr/local/lib/python2.7/site-packages/coro/backdoor.py", line 144, in parse
 result = eval (co, env)
 File "<coro.backdoor.backdoor instance at 0x100624ef0>", line 1, in <module>
 File "socket.pyx", line 580, in coro._coro.sock.recv (coro/_coro.c:20208)
 File "socket.pyx", line 1113, in coro._coro.sock._wait_for_read (coro/_coro.c:23549)
 File "poller.pyx", line 326, in coro._coro.queue_poller._wait_for_read (coro/_coro.c:15292)
 File "poller.pyx", line 318, in coro._coro.queue_poller._wait_for_with_eof (coro/_coro.c:15204)
 File "poller.pyx", line 342, in coro._coro.queue_poller._wait_for (coro/_coro.c:15516)
 File "poller.pyx", line 304, in coro._coro.queue_poller.set_wait_for (coro/_coro.c:15056)
SimultaneousError: <SimultaneousError co=<coro #6 name='backdoor session' dead=0 started=1 scheduled=0 at 0x1003ceaa0> other=<coro #5 name='backdoor session' dead=0 started=1 scheduled=0 at 0x1003d0080> event=<kevent_key filter=-1 ident=0>>
>>>

You can easily avoid this problem by isolating particular events to
their own thread. For example, you can have one thread that reads
from a socket, while another writes to it. You can combine
identical events from multiple threads by using one of the
synchronization primitives. A common idiom uses a coro.fifo:

def writer (self):
 while not self.exit:
 data = self.fifo.pop()
 if data is None:
 break
 else:
 self.conn.send (data)

In this example we use a sentinel (None) to force the fifo to wake
up and exit the loop. This is similar to a generator’s use of StopIteration.

1.6.4 Things To Avoid

Blocking calls. Slow file I/O. Not closing descriptors. Threads. etc.

1.6.5 How it Works

Shrapnel works by using two (or more) C stacks. The first stack (the
default one from libc) runs the scheduler, which is responsible for
switching out coro threads, managing the timed-events queue, and
calling kevent (or hitting /dev/epoll). The second stack is where
coro threads run. When it’s time for a thread to run, its stack
contents are copied from the heap onto the second stack, and a small
amount of assembly code (similar to the ucontext facility)
resumes it. When a thread yields, the portion of the stack used by
that thread is evacuated into the heap.

[image:]This design allows Shrapnel to work with a completely stock CPython.
It has been used continuously with Python 2.3 to 2.7, and can usually
be linked as a shared library against the platform’s OEM install of
Python.

1.7 Credits

[Get a comprehensive list of everyone that’s contributed to shrapnel,
maybe with home page links?]

 © Copyright 2012, Sam Rushing.
 Created using Sphinx 1.3.5.

amqp.html

 Navigation

 		
 index

 		Shrapnel 1.0.2 documentation »

Shrapnel/AMQP

The AMQP [http://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol] protocol is somewhat different from most protocols in that it
uses a half-synchronous, half-asynchronous design that is difficult to
provide an interface for: most systems provide concurrency through
either blocking code, or non-blocking code; but AMQP requires a bit of
each.

Because of this, Shrapnel [http://github.com/ironport/shrapnel/] is a perfect solution: it handles both
models easily - underneath its blocking/synchronous exterior beats a
heart of pure event-driven high-performance mayhem.

Shrapnel [http://github.com/ironport/shrapnel/] makes it easy to juggle multiple connections, multiple
channels, multiple channels per connection, and unravels the hellish
complexity of managing RPCs, correlation ids, asynchronous
notifications, etc..

Using

Check out the examples in the examples/amqp directory, they show how the
client is used within the shrapnel event loop paradigm. Remember to
always run within a thread/coroutine -i.e., you can’t use this
library from the command line! [an exception to this is to use the
‘back door’ facility which lets you telnet into a python command line,
very useful for debugging].

AMQP

Example:

c = coro.amqp.client (('guest', 'guest'), '127.0.0.1')
print 'connecting...'
c.go() # i.e., connect...
print 'channel...'
ch = c.channel()
print 'confirm_select...'
ch.confirm_select()
print 'entering send loop'
for i in range (10):
 props = {'content-type':'raw goodness', 'message-id' : 'msg_%d' % (i,)}
 ch.basic_publish ('howdy there!', exchange='ething', routing_key='notification', properties=props)
 print 'sent/confirmed'
 coro.sleep_relative (1)
coro.set_exit()

RPC

Making an RPC call is easy:

ch = c.channel()
rpc = coro.amqp.rpc.client (ch)
frame, props, reply = rpc.call ({}, '19', '', 'rpc_queue')

In the above example, the properties are empty, the payload is
the string ‘19’, the exchange is set to the empty string (indicating
to use the default exchange which sends message directly to a
particular queue via...) and the routing_key is set to that queue.

Various other rpc architectures are accommodated by passing in an
already-created queue object:

ch = c.channel()
queue = ch.queue_declare (exclusive=True).queue
rpc = coro.amqp.rpc.client (ch, queue)
ch.queue_bind (queue=rpc.queue, exchange='pumpkin.exchange', routing_key=rpc.queue)
frame, props, reply = rpc.call (
 {'content-type':'application/json', 'delivery-mode':2},
 json.dumps ({'GetPumpkinData' :{}}),
 exchange='pumpkin.exchange',
 routing_key='request'
)

Internals

Taking a cue from Pika [http://pika.github.com/], the majority of the wire protocol is handled
by code that is autogenerated from the RabbitMQ machine-readable JSON
specification. The util/codegen.py script generates the file spec.py,
which uses the wire.py module to encode and decode AMQP frame data.

I plan to eventually rewrite the wire module and the code generator
to emit Cython rather than Python, which should make AMQP/Shrapnel run
at near-C speeds.

Indices and tables

		Index

		Module Index

		Search Page

 © Copyright 2012, Sam Rushing.
 Created using Sphinx 1.3.5.

ref/synchronization.html

 Navigation

 		
 index

 		Shrapnel 1.0.2 documentation »

3. Synchronization

You typically do not need to use synchronization primitives with Shrapnel
because coroutines are cooperative. However, there are situations where they
can be useful. For example, if you manipulate multiple shared data structures
that need to remain consistent, and you have potentially context-switch calls
interspersed (such as socket I/O).

3.1. Synchronization Classes

 © Copyright 2012, Sam Rushing.
 Created using Sphinx 1.3.5.

coro.html

 Navigation

 		
 index

 		Shrapnel 1.0.2 documentation »

1 Shrapnel/Coro

		Date:		$Date: 2008/05/06 $

		Author:		Sam Rushing

Contents

		1 Shrapnel/Coro
		1.1 Threads

		1.2 kqueue()/kevent()

		1.3 Non-Blocking Operations

		1.4 Precious Resources

		1.5 The Back Door

Shrapnel/Coro is a cooperative thread facility built on top of Python.

Note

This document was originally written for internal use at
IronPort. It refers to several facilities that unfortunately have not
(yet) been open-sourced, (e.g., the dns resolver and sntp client).
It also references and describes things that are specific to the
IronPort mail appliance. Much of the advice in here is good, though,
and I hope to revisit it soon.

1.1 Threads

The main abstraction is the ‘coro’, or thread. A normally-configured
MGA will usually start up with 100+ threads, many of them devoted to
monitoring the system and its configuration. Others are maintenance
threads which run for a few seconds every 30 minutes or so. A system
under load can easily have 3000-4000 active threads.

For example, an SNTP (simple network time protocol) client thread will
send a few packets upon startup, until it has synchronized with a
network time server, then it may send a request every 30-60 minutes to
maintain synchronization via the kernel PLL.

Threads are cheap in Shrapnel, especially if they’re idle. The
overhead of a sleeping thread consists of a single entry in a priority
queue, and the memory for the thread object itself. Don’t avoid
dedicating a thread to some task if it’s the right abstraction.

1.2 kqueue()/kevent()

FreeBSD has a kernel facility for asynchronous events, called
‘kqueue’. It’s a generalization of select(), poll(), /dev/poll, and
other event mechanisms. Shrapnel’s main scheduler loop is built
around the kevent() system call. Whenever the scheduler runs out of
threads that are ready to run, it calls kevent() to wait for an
external event of some kind.

1.3 Non-Blocking Operations

Large-scale concurrency is achieved by avoiding ‘blocking’ system
calls, or any operation that consumes too much CPU for too long.
Shrapnel scales up by juggling thousands of such operations at the
same time. Each thread runs for a short ‘slice’ of time, usually
until it performs an operation that would block, then it yields. The
general idea is to ‘ask’ the kernel to start doing something, and
arrange for it to let you know when it’s done.

1.3.1 Non-Blocking Sockets

For a network server, the most common operation is a socket read() or
write(). A normal call to read() will disappear into the kernel,
locking up the entire process, while waiting for data to be available
for reading on the socket. But when the socket is in ‘non-blocking’
mode, it will return EWOULDBLOCK instead. Shrapnel catches this
error, and submits a ‘kevent’ to the kernel. Then it yield()s the
thread. When data eventually becomes available, the kevent will
trigger, and shrapnel’s scheduler will wake up the thread.

1.3.2 aio(), signals, etc...

Any blocking operation can conceivably be converted into a
kevent();yield();...wait...;resume() sequence. Other examples are
asynchronous disk i/o (‘aio’), signals, wait(4). There are even some
facilities that are new to Unix, like file/directory change
monitoring.

1.3.3 The Scheduler

At the heart of shrapnel is the ‘event loop’. It acts as the
scheduler for all the threads and events in the system. It looks
something like this:

while running:
 schedule_timed_events()
 while len(ready_jobs):
 run_ready_jobs()
 kevent()

The scheduler is very simple - it uses a round-robin algorithm. There
are no priorities. [In general, we have avoided adding priorities due
to the complexity and danger of thread starvation].

1.3.4 ‘Selfishness’

One subtle issue with regards to starvation needs to be mentioned.

The design of most non-blocking operations on Unix is one of ‘attempt,
maybe EWOULDBLOCK’. That is, a call to send() may succeed
immediately. Only if it cannot do so will it return EWOULDBLOCK. On
a very fast locally-connected network, it may be possible to call
send() hundreds of times before it will throw EWOULDBLOCK. Any thread
relying on the ‘non-blocking’ nature of network communication might
actually run in a tight loop, starving other threads on the system.
To avoid this problem, a simple form of ‘selfishness’ is associated
with each thread. A thread’s selfishness defaults to a small number
(say, 4 or 5). It may try and succeed immediately only that many
operations before it is forcibly yielded. This gives other threads a
chance to run. [see ap/shrapnel/coro/{_coro.pyx,socket.pyx} for the
‘try_selfish()’ method]

1.3.5 The Priority Queue

At the top of the event loop you’ll see ‘schedule_timed_events()’.
The scheduler uses a priority queue to manage timed events. The
priority queue contains two kinds of objects, threads and timeouts,
sorted by time. schedule_timed_events() pops off any events that have
‘expired’ (their trigger times have passed), and schedules either a
thread or an exception (in the case of a timeout).

There are two common ways for a thread to ‘yield’: either it’s waiting
on an external event, or it’s just waiting for a certain amount of
time. The ‘sleep’ method on a thread simply places the thread into
the priority queue and yields() itself.

1.3.6 Timeouts

The most important use of the priority queue is for timeouts,
however. This facility is probably unlike anything you’ve seen in
other thread packages. It’s designed to be very efficient, so don’t
hesitate to use it whenever appropriate. The interface is through the
‘with_timeout()’ function.

1.3.6.1 with_timeout()

Let’s say you would like to perform a network operation of some kind,
one that is usually pretty fast, but occasionally might take much
longer, or even forever. For example, a dns request:

...
ip_addrs = resolver.query (hostname, 'A')
for ip in ip_addrs:
 ...

You can transform this code to use a five-second timeout easily:

...
try:
 ip_addrs = coro.with_timeout (5, resolver.query, hostname, 'A')
 for ip in ip_addrs:
 ...
except coro.TimeoutError:
 <handle timeout here>

The first argument is the number of seconds to wait. The second
argument is the original function. The remaining arguments are the
original arguments to that function.

If the DNS query doesn’t finish in 5 seconds, the scheduler will
resume() this thread with the coro.TimeoutError exception.

1.3.6.2 with_timeout() Style... High and Low-Level Timeouts.

There are two main styles of ‘with_timeout()’ usage.

The first is to wrap a simple operation tightly with a timeout, and is
meant to capture simple network problems with single operations - like
sending a query to a server that’s down. A good example of this would
be to have a timeout on getting a DNS reply from a server.

The second style wraps a complex, high-level operation with a single
‘umbrella’ timeout - this style is used more to limit the total amount
of time that the task will take, regardless of the underlying reason
for the delay (which might be network, disk, or something else like
waiting on a semaphore or other resource). An example of this would
be to have a timeout on sending an email message.

Using these two styles, you can avoid using with_timeout() in most of
your code - everything in between the low-level operations and the
outermost task.

A good example of the two styles working together can be found in
godspeed/dns. In dns_cache.py (the low-level protocol
implementation), you’ll see the query_by_ip() method uses a timeout
around a single query/response operation to a single server. This
timeout defaults to about 5 seconds.

In PrioritizedIP.injector_ip_lookup_ex(), the call to resolver.query()
is protected with a high-level timeout around the PTR lookup. Due to
the nature of DNS, the PTR query could trigger several low-level DNS
lookups, for things like nameserver and address records. The
high-level query thus uses a 20-second timeout for the outer
operation.

1.3.7 Synchronization Primitives

Also in the ‘coro’ module you will find a collection of standard
thread-synchronization primitives, including mutexes, semaphores,
condition variables, read/write locks, etc...

If you’re used to ‘real’ threaded programming, you may be tempted to
make heavy use of these to ‘protect’ your code against other threads.
In most cases you don’t need to do this. Shrapnel is a ‘cooperatively
threaded’ system, which means that even on a multi-processor system
only one thread will ever be running at a time. Only in rare cases do
you need to worry about races.

These facilities are mostly for control over resource usage. For
example, a semaphore can be used to limit the number of outstanding
requests on an RPC link or DNS socket. A mutex or read/write lock can
be used to limit access to a file or directory.

1.3.8 Exceptions

Correctly handling exceptions is relatively easy, but there are a few
critical rules that need to be followed.

1.3.8.1 coro.Interrupted

This is an exception that is used internally by shrapnel. It’s used
for the correct propagation of timeout errors, but it is also the base
class for any exception that will interrupt a thread
unexpectedly. (e.g., shutting down a thread asynchronously).
Normally, you shouldn’t need to pay attention to coro.Interrupted -
with the following caveat:

Because coro.Interrupted can be raised anywhere within any system, it
is VERY important that you not mask it through the use of an ‘except:’
blanket handler. [this issue is going to be addressed in future
versions of Python via the introduction of a ‘non-maskable’ base
class].

In general, using ‘except:’ is bad form - whether in Shrapnel, Python,
or any other language- but on the rare occasion that you need to write
a blanket handler, here’s the safe idiom you should use:

try:
 do_something()
except coro.Interrupted:
 raise
except:
 handle_unexpected_exceptions()

The clause with the ‘raise’ will allow timeouts and other
interruptions to be processed correctly.

1.3.8.2 coro.TimeoutError

When a timeout expires, an internal ‘Interrupted’ exception gets
translated into a coro.TimeoutError. You may have multiple embedded
timeouts and handlers - the system will delivery the correct timeout
to the correct handler. [see ap/shrapnel/coro/_coro.pyx for details]

1.3.8.3 coro.ScheduleError

This exception will be raised whenever an attempt is made to schedule
a thread to run when it has already been scheduled. The only way that
this will happen normally is when another thread tries to wake or
interrupt a thread unexpectedly - it’s usually the symptom of some
kind of race condition. There are a few simple techniques to avoid it:

		Use the builtin synchronization primitives. Rewrite your code to
use a semaphore or a condition variable. The builtin primitives
already deal with these issues effectively. [see
godspeed/coroutine/coro_fifo.py for an example]

		Use a dedicated thread to manage a queue. By isolating the
interaction of many threads through a protected data structure,
complex thread races can be avoided. [See
godspeed/rpc/packet_stream.py or godspeed/ldap/ldap_api.py for
examples]

1.3.9 Time Scale

1.3.9.1 User Time

Shrapnel supports two separate concepts of ‘time’. One is the real
time that users see, which is a standard Unix time_t scale, extended
to microsecond accuracy by FreeBSD. User time is under the control of
the end user, who can change it at will, including things like time
zone and DST.

1.3.9.2 TSC Time

For this reason ‘user time’ is not appropriate for internal scheduler
use. For example, if we need an event to take place once every 5
minutes, it’s important that this happen regardless of how user time
has changed around it. (If the user moves time forward by a year, we
don’t want to trigger 170,000 such events). TSC Time is named after
the internal Time Stamp Counter register which has been a feature of
the x86 processor line since the days of the Pentium. The TSC is a
simple 64-bit counter that increments once for each tick of the CPU
clock.

The internal time scale never changes - it always represents the
number of clock ticks since the machine was booted. The user time
scale is ‘pinned’ to the TSC timescale by a single value, the
‘relative tsc time’, which tells us ‘what time it was’ when the TSC
counter was at zero (i.e., when the machine booted). When the user
changes time via the OS or NTP, all that’s really changed is
coro.relative_tsc_time.

[See ap/shrapnel/coro/time.pyx for more details]

1.3.10 RPC

Shrapnel’s library includes a fast lightweight RPC system, called
‘fast_rpc’, that’s built around Python’s ‘pickle’ marshalling
facility. If you need to exchange data between two processes, this is
the preferred method. [see godspeed/rpc/fast_rpc.py]

Many of the difficult problems with RPC (or even protocols in
general), have been solved in this module, including difficult race
conditions, socket issues, etc. fast_rpc supports multiple
outstanding requests, out-of-order execution, and pipelining. Many
threads can make simultaneous requests on the same RPC connection.

Underneath the RPC layer is a simpler abstraction, the
‘packet_stream’. It uses dedicated threads for sending and receiving
packets each stamped with a unique id. It protects from
thread-related races by using a request queue. If for some reason
fast_rpc doesn’t quite meet your needs, consider using packet_stream
before rolling your own.

1.3.11 SSL

The interface to OpenSSL is through a Python extension module, called
‘sslip’ (‘SSL IronPort’). It’s a minimalist interface - rather than
trying to put all OpenSSL features in the module, we’ve added things
as needed over the years. If you need access to a feature that’s not
yet exposed, consider adding it to sslip rather than coding it up
separately. [It’s possible that over the next few years sslip will be
rewritten in Pyrex, so keep that in mind. Currently the source is in
godspeed/python_modules/sslip.c]

‘sslip’ is exposed in the coro API via ‘coro_ssl.py’ [currently in
godspeed/coroutine, but may be moved]. OpenSSL supports non-blocking
sockets directly, so the wrapper passes ssl operations through to the
library via the underlying file descriptor.

1.4 Precious Resources

Shrapnel programs are long-running, complex systems that may have
thousands of threads. In such a crowded environment, it’s important
that no one thread or task consume precious resources. Unlike most
Unix software, a wasteful design won’t be whitewashed when your
program exits in a fraction of a second. Think of your thread as a
single passenger on a crowded train in Tokyo.

Over-consuming any of the following resources can eventually bring the
process down. Unless you want to be the one losing sleep in order to
make the CEO of a major ISP happy after a major disaster, try to be
frugal with them!

Sometimes there’s a trade-off between these - for example, you might
be able to use less memory if you use a little more CPU. If you’re
having trouble deciding, feel free to track down a more experienced
engineer and get some help.

1.4.1 Memory

We’ve touched on this issue already. Know how much memory you’re
using. Don’t cache things unnecessarily. Avoid keeping many separate
copies of identical objects. [see godlib/shared_objects.py].

Python can make it difficult to know exactly how much memory you’re
using. Use the ‘mstats’ module to track memory consumption. It
allows you to sample exactly how much memory you’re using.

Python itself has a few builtin object caches that can confuse
your measurements. IronPort has added a function to the ‘sys’
module to clear these caches - sys.free_caches(). You may want to
call it before and after your test code.

Another useful tool is the ‘sizeof’ module [see
python_modules/sizeof.c], which can give detailed information about
the memory used by a particular object.

1.4.2 File Descriptors

In Unix, every socket and file-like object is represented by a ‘file
descriptor’. Internally, a file descriptor is simply a small integer.
Descriptors are managed by the OS, which places a cap on the total
number of descriptors at kernel build time, and descriptor tables are
managed as fixed-size arrays. [So it’s a hard limit].

Once a process or kernel starts running out of file descriptors,
things will get ugly, fast. Our system is compiled to allow up to
32K descriptors per-process and per-system. [The two limits are kept
pretty close because an MGA normally has only one process, hermes,
that consumes large numbers of descriptors].

In Python, the ‘os’ module exposes many of the standard unix system
calls that work with file descriptors. Using the functions in that
module, it’s possible to create, use, and destroy file desciptors of
various kinds. If you’re not careful, you can create a file
descriptor but forget to destroy it (this usually happens because of
an exception of some kind)... in which case the descriptor will ‘leak’
- it will consume a precious entry in the table that will not be freed
until close() is called on it.

If you find youself working with low-level file descriptors (in any
language), you should consider using a wrapper class (like the one in
hermes/qstore/gcq.py::os_file] to ensure that the descriptor gets
closed. Another good technique is to use a try/finally clause with
the call to ‘close()’ in the finally block. Most of our objects that
wrap file descriptors already use destructors to close their
descriptors, but it’s still good practice to use try/finally anyway.

1.4.3 CPU

CPU time is always a precious resource, but in this case we’re talking
about something a little more subtle. In a cooperative multi-tasking
environment, it’s important that no task monopolize the CPU for too
long, otherwise other tasks will get locked out. The shrapnel
scheduler monitors how long each thread runs, and will emit a ‘latency
warning’ if a thread runs for over 1/5 of a second without yielding.

If you’re doing something that needs a lot of CPU - usually processing
a large data structure - you can be a ‘good neighbor’ by yield()ing
every once in a while inside your main loop. [see
hermes/omh/omh.py::spawn_all_domains() for a good example of this
technique]

Python is not a good language for low-level ‘character’ processing,
it’s too slow. Examples would be things like MIME and base64
decoding, parsing, etc... . If your code needs to do this kind of
work, the recommended approach is to write everything in Python, then
identify the ‘hot’ spots and re-code only those portions in Pyrex, C,
or C++. This is exactly the approach used by Python itself [see
Python/Modules/binascii.c]

1.4.4 Coro Profiler

Shrapnel includes a simple yet powerful profiler. The ‘coro profiler’
[see godspeed/coroutine/coro_profile.py] is a Python profiler
implementation that takes samples of system resources using the
‘getrusage()’ system call. It also maintains simple call counts. You
can wrap calls to the profiler around a single function, or (more
commonly) the entire event loop. [see godspeed/hermes/hermes.py for a
sample profiler usage - the profile line is commented out, right next
to the main call to coro.event_loop()]

The profiler outputs its data into a binary file, which is then
post-processed with ‘print_profile.py’, which generates an HTML
table. For more information on the fields in the table, try ‘man
getrusage’.

1.5 The Back Door

The ‘back door’ is a externally-accessible Python prompt. Through it,
you can get into a running coro process to examine, change, or debug
any aspect of the system. It’s invaluable in all stages of
development, QA, and even deployment. Many bugs have been found
quickly and easily by using the back door to do things like dump
caches, examine and dump data structures, etc... - even in the field.

The back door is implemented as a socket server. For security
reasons, back doors are usually bound to a unix-domain socket, often
kept in ‘/tmp’ with a name like ‘/tmp/my_application.bd’. To connect
to it, simply ‘telnet’ to the full pathname, like this:

$ telnet /tmp/my_application.bd

Python 2.4.3-IronPort (#61, Jun 14 2006, 14:59:13)
[GCC 3.4.2 [FreeBSD] 20040728]
[...]
>>>

From this prompt you can interact with Python normally.

It can be convenient to store some utility functions for use via the
back door in a module that is loaded automatically. See
godspeed/hermes/service.py for such a utility file, which should also
give you an idea of the kinds of things that are possible via this
feature.

 © Copyright 2012, Sam Rushing.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		Shrapnel 1.0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Sam Rushing.
 Created using Sphinx 1.3.5.

_static/minus.png

installation.html

 Navigation

 		
 index

 		Shrapnel 1.0.2 documentation »

Installation

Supported Platforms

Shrapnel currently works on FreeBSD, Linux, and Mac OS X with x86 32- or 64-bit platforms.
It supports Python 2.7 (TODO: and 2.6?).

Prerequisites

pip

To make installation easy, you can use pip [http://www.pip-installer.org/].
This is a tool which will fetch Python packages from PyPi [http://pypi.python.org/] and install them.

Visit http://www.pip-installer.org/en/latest/installing.html for information
on how to install pip if you don’t already have it installed.

Cython

You need version 0.12.1 or newer of Cython [http://cython.org/]. If you
already have Cython installed, you can check your current version by running
cython -V.

To install Cython, run:

pip install cython

Distribute

You need version 0.6.16 or newer of distribute [http://pypi.python.org/pypi/distribute].
Distribute is a build and packaging tool for Python (a replacement for setuptools).

To install distribute, run:

pip install distribute

Shrapnel

Finally, you can install Shrapnel, run:

pip install shrapnel

Alternatively you can download it from https://github.com/ironport/shrapnel
and do the usual python setup.py install procedure.

 © Copyright 2012, Sam Rushing.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

