

Simple Header-Only Webserver

SHOW is designed to be an idiomatic library for standalone webserver applications written for modern C++. SHOW is simple in the same way the standard library is simple — it doesn’t make any design decisions for the programmer, instead giving them a set of primitives for building an HTTP web application.

Both HTTP/1.0 and HTTP/1.1 are supported. SHOW assumes a modern approach to application hosting, and is intended to be run behind a full reverse proxy such as NGINX [https://nginx.org/]. As such, SHOW will not support HTTP/2 or TLS (HTTPS). Instead, you should write your applications to serve local HTTP/1.0 and HTTP/1.1 requests.

SHOW is released under the zlib license [https://github.com/JadeMatrix/SHOW/blob/master/LICENSE]. C++11 support and a POSIX operating system (or POSIX compatibility layer) are required.

Contents:

	Tutorial
	Including & Compiling

	Creating a Server

	Handling a Connection

	Reading Requests

	Sending Responses

	Types
	Main Types

	Support Types

	Throwables

	Functions

	Constants
	Version

	Separate Utilities
	Base-64 Encoding

	Multipart Content Support

Indices and tables

	Index

	Search Page

Tutorial

This shows the basic usage of SHOW; see the examples [https://github.com/JadeMatrix/SHOW/tree/master/examples] for a more thorough introduction.

Including & Compiling

The preferred method of including SHOW is via the CMake [https://cmake.org/] package. Once installed somewhere CMake can find it, import and use SHOW in your CMakeLists.txt with:

FIND_PACKAGE(SHOW REQUIRED COMPONENTS show)
ADD_EXECUTABLE(my_server my_server.cpp)
TARGET_LINK_LIBRARIES(my_server PRIVATE SHOW::show)

You should also switch your compiler to C++11 mode with:

SET(CMAKE_CXX_STANDARD 11)
SET(CMAKE_CXX_STANDARD_REQUIRED ON)
SET(CMAKE_CXX_EXTENSIONS OFF)

For GCC and Clang, you can either link show.hpp to one of your standard include search paths, or use the -I flag to tell the compiler where too find the header:

clang++ -I "SHOW/src/" ...

SHOW is entirely contained in a single header file, you have to do then is include SHOW using #include <show.hpp>. With either compiler you’ll also need to specify C++11 support with -std=c++11.

Creating a Server

To start serving requests, first create a server object:

show::server my_server{
 "0.0.0.0", // IP address on which to serve
 9090, // Port on which to serve
};

That’s it, you’ve made a server that sits there forever until it gets a connection, then hangs. Not terribly useful, but that’s easy to fix.

Handling a Connection

For each call of my_server.serve() a single connection object will be returned or a connection_timeout thrown. You may want to use something like this:

while(true)
 try
 {
 show::connection connection{ my_server.serve() };
 // handle request(s) here
 }
 catch(const show::connection_timeout& ct)
 {
 std::cout
 << "timed out waiting for a connection, looping..."
 << std::endl
 ;
 continue;
 }

The server listen timeout can be a positive number, 0, or -1. If it is -1, the server will continue listening until interrupted by a signal; if 0, server::serve() will throw a connection_timeout immediately unless connections are available.

The connection is now independent from the server. You can adjust the connection’s timeout independently using connection::timeout(). You can also pass it off to a worker thread for processing so your server can continue accepting other connections; this is usually how you’d implement a real web application.

Reading Requests

request objects have a number of const fields containing the HTTP request’s metadata; you can see descriptions of them all in the docs for the class.

Note that these fields do not include the request content, if any. This is because HTTP allows the request content to be streamed to the server. In other words, the server can interpret the headers then wait for the client to send data over a period of time. For this purpose, request inherits from std::streambuf, implementing the read/get functionality. You can use the raw std::streambuf methods to read the incoming data, or create a std::istream from the request object for std::cin-like behavior.

For example, if your server is expecting the client to POST a single integer, you can use:

show::request request{ test_server.serve() };

std::istream request_content_stream{ &request };

int my_integer;
request_content_stream >> my_integer;

Please note that the above is not terribly safe; production code should include various checks to guard against buggy or malignant clients.

Also note that individual request operations may timeout, so the entire serve code should look like this:

while(true)
 try
 {
 show::connection connection{ my_server.serve() };
 try
 {
 show::request request{ connection };
 std::istream request_content_stream{ &request };
 int my_integer;
 request_content_stream >> my_integer;
 std::cout << "client sent " << my_integer << "\n";
 }
 catch(const show::client_disconnected& ct)
 {
 std::cout << "got a request, but client disconnected!" << std::endl;
 }
 catch(const show::connection_timeout& ct)
 {
 std::cout << "got a request, but client timed out!" << std::endl;
 }
 }
 catch(const show::connection_timeout& ct)
 {
 std::cout << "timed out waiting for a connection, looping..." << std::endl;
 continue;
 }

If this feels complicated, it is. Network programming like this reveals the worst parts of distributed programming, as there’s a lot that can go wrong between the client and the server.

Another thing to keep in mind is that HTTP/1.1 — and HTTP/1.0 with an extension — allow multiple requests to be pipelined on the same TCP connection. SHOW can’t know with certainty where on the connection one request ends and another starts — it’s just the nature of pipelined HTTP. Sure, the Content-Length header could be used, and chunked transfer encoding [https://en.wikipedia.org/wiki/Chunked_transfer_encoding] has well-established semantics, but if the client uses neither it is up to your application to figure out the end of the request’s content. In general, you should reject requests whose length you can’t readily figure out, but SHOW leaves that decision up to the programmer. But you should never try to create a request from a connection before you’ve finished reading the content from a previous request.

See also

	std::streambuf on cppreference.com [http://en.cppreference.com/w/cpp/io/basic_streambuf]

	std::istream on cppreference.com [http://en.cppreference.com/w/cpp/io/basic_istream]

	std::cin on cppreference.com [http://en.cppreference.com/w/cpp/io/cin]

Sending Responses

Sending responses is slightly more involved than reading basic requests. Say you want to send a “Hello World” message for any incoming request. First, start with a string containing the response message:

std::string response_content{ "Hello World" };

Next, create a headers object to hold the content type and length headers (note that header values must be strings):

show::headers_t headers{
 { "Content-Type", { "text/plain" } },
 { "Content-Length", {
 std::to_string(response_content.size())
 } }
};

Since it’s a std::map, you can also add headers to a headers_t like this:

headers["Content-Type"].push_back("text/plain");

Then, set the HTTP status code [https://en.wikipedia.org/wiki/List_of_HTTP_status_codes] for the response to the generic 200 OK:

show::response_code code{
 200,
 "OK"
};

Creating a response object requires the headers and response code to have been decided already, as they are marshalled (serialized) and buffered for sending as soon as the object is created. A response object also needs to know which request it is in response to. While there’s nothing preventing you from creating multiple responses to a single request this way, most of the time that will break your application.

Create a response like this:

show::response response{
 connection,
 show::http_protocol::HTTP_1_0,
 code,
 headers
};

Finally, send the response content. Here, a std::ostream is used, as response inherits from and implements the write/put functionality of std::streambuf:

std::ostream response_stream{ &response };
response_stream << response_content;

See also

	std::map on cppreference.com [http://en.cppreference.com/w/cpp/container/map]

	std::ostream on cppreference.com [http://en.cppreference.com/w/cpp/io/basic_ostream]

	std::streambuf on cppreference.com [http://en.cppreference.com/w/cpp/io/basic_streambuf]

Types

Main Types

The public interfaces to the main SHOW classes are documented on the following pages:

	Server

	Connection

	Request

	Response

Support Types

	
enum http_protocol

	Symbolizes the HTTP protocols understood by SHOW. The enum members are:

	HTTP_1_0

	HTTP/1.0

	HTTP_1_1

	HTTP/1.1

	NONE

	The request did not specify a protocol version

	UNKOWN

	The protocol specified by the request wasn’t recognized

There is no HTTP_2 as SHOW is not intended to handle HTTP/2 requests. These are much better handled by a reverse proxy such as NGINX [https://wiki.nginx.org/], which will convert them into HTTP/1.0 or HTTP/1.1 requests for SHOW.

	
class response_code

	A simple utility struct that encapsulates the numerical code and description for an HTTP status code. An object of this type can easily be statically initialized like so:

show::response_code rc = { 404, "Not Found" };

See the list of HTTP status codes [https://en.wikipedia.org/wiki/List_of_HTTP_status_codes] on Wikipedia for an easy reference for the standard code & description values.

The two fields are defined as:

	
unsigned short code

	

	
std::string description

	

	
class query_args_type

	An alias for std::map< std::string, std::vector< std::string > >, and can be statically initialized like one:

show::query_args_type args{
 { "tag", { "foo", "bar" } },
 { "page", { "3" } }
};

This creates a variable args which represents the query string ?tag=foo&tag=bar&page=3.

See also

	std::map on cppreference.com [http://en.cppreference.com/w/cpp/container/map]

	std::vector on cppreference.com [http://en.cppreference.com/w/cpp/container/vector]

	
class headers_type

	An alias for std::map< std::string, std::vector< std::string >, show::_less_ignore_case_ASCII >, where show::_less_ignore_case_ASCII is a case-insensitive compare [http://en.cppreference.com/w/cpp/container/map] for std::map.

While HTTP header names are typically given in Dashed-Title-Case, they are technically case-insensitive. Additionally, in general a given header name may appear more than once in a request or response. This type satisfies both these constraints.

Headers can be statically initialized:

show::headers_type headers{
 { "Content-Type", { "text/plain" } },
 { "Set-Cookie", {
 "cookie1=foobar",
 "cookie2=SGVsbG8gV29ybGQh"
 } }
};

See also

	std::map on cppreference.com [http://en.cppreference.com/w/cpp/container/map]

	std::vector on cppreference.com [http://en.cppreference.com/w/cpp/container/vector]

Throwables

Not all of these strictly represent an error state when throw; some signal common situations that should be treated very much in the same way as exceptions. SHOW’s throwables are broken into two categories — connection interruptions and exceptions.

Connection interruptions

	
class connection_interrupted

	A common base class for both types of connection interruptions. Note that this does not inherit from std::exception.

	
class connection_timeout : public connection_interrupted

	An object of this type will be thrown in two general situations:

	A server object timed out waiting for a new connection

	A connection, request, or response timed out reading from or sending to a client

In the first situation, generally the application will simply loop and start waiting again. In the second case, the application may want to close the connection or continue waiting with either the same timoute or some kind of falloff. Either way the action will be application-specific.

	
class client_disconnected : public connection_interrupted

	This is thrown when SHOW detects that a client has broken connection with the server and no further communication can occur.

Exceptions

See also

	std::runtime_error on cppreference.com [http://en.cppreference.com/w/cpp/error/runtime_error/runtime_error]

	
class socket_error : public std::runtime_error

	An unrecoverable, low-level error occurred inside SHOW. If thrown while handling a connection, the connection will no longer be valid but the server should be fine. If thrown while creating or working with a server, the server object itself is in an unrecoverable state and can no longer serve.

The nature of this error when thrown by a server typically implies trying again will not work. If the application is designed to serve on a single IP/port, you will most likely want to exit the program with an error.

	
class request_parse_error : public std::runtime_error

	Thrown when creating a request object from a connection and SHOW encounters something it can’t manage to interpret into a request.

As parsing the offending request almost certainly failed midway, garbage data will likely in the connection’s buffer. Currently, the only safe way to handle this exception is to close the connection.

	
class response_marshall_error : public std::runtime_error

	Thrown by response’s constructor when the response arguments cannot be marshalled into a valid HTTP response:

	One of the header names is an empty string

	One of the header names contains a character other than A-Z, a-z, 0-9, or -

	Any header value is an empty string

	
class url_decode_error : public std::runtime_error

	Thrown by url_decode() when the input is not a valid URL- or percent-encoded [https://en.wikipedia.org/wiki/Percent-encoding] string.

Note

url_encode() shouldn’t throw an exception, as any string can be converted to percent-encoding.

Server

	
class server

	The server class serves as the basis for writing an HTTP application with SHOW. Creating a server object allows the application to handle HTTP requests on a single IP/port combination.

	
server(const std::string &address, unsigned int port, int timeout = -1)

	Constructs a new server to serve on the given IP address and port. The IP address will typically be localhost/0.0.0.0/::. The port should be some random higher-level port chosen for the application.

The timeout is the maximum number of seconds serve() will wait for an incoming connection before throwing connection_timeout. A value of 0 means that serve() will return immediately if there are no connections waiting to be served; -1 means serve() will wait forever (until the program is interrupted).

	
~server()

	Destructor for a server; any existing connections made from this server will continue to function

	
connection serve()

	Either returns the next connection waiting to be served or throws connection_timeout.

	
const std::string &address() const

	Get the address this server is servering on

	
unsigned int port() const

	Get the port this server is servering on

	
int timeout() const

	Get the current timeout of this server

	
int timeout(int)

	Set the timeout of this server to a number of seconds, 0, or -1

Connection

	
class connection

	Objects of this type represent a connection between a single client and a server. A connection object can be used to generate request objects; one in the case of HTTP/1.0 or multiple in the case of HTTP/1.1.

The connection class has no public constructor (besides the move constructor), and can only be created by calling server::serve().

	
connection(connection&&)

	Explicit move constructor [http://en.cppreference.com/w/cpp/language/move_constructor] as one can’t be generated for this class

	
~connection()

	Destructor for a connection, which closes it; any requests or responses created on this connection can no longer be read from or written to

	
const std::string &client_address() const

	The IP address of the connected client

	
unsigned int client_port() const

	The port of the connected client

	
const std::string &server_address() const

	The address of the server handling the connection

	
unsigned int server_port() const

	The port of the server handling the connection

	
int timeout() const

	Get the current timeout of this connection, initially inherited from the server the connection is created from

	
int timeout(int)

	Set the timeout of this connection independently of the server; the argument is a number of seconds, 0, or -1

See also

	server::timeout()

Request

	
class request : public std::streambuf

	Represents a single request sent by a client. Inherits from std::streambuf, so it can be used as-is or with a std::istream.

See also

	std::streambuf on cppreference.com [http://en.cppreference.com/w/cpp/io/basic_streambuf]

	std::istream on cppreference.com [http://en.cppreference.com/w/cpp/io/basic_istream]

	
enum content_length_flag

	A utility type for unknown_content_length() with the values:

	Value

	Evaluates to

	NO

	false

	YES

	true

	MAYBE

	true

	
const std::string &client_address() const

	The IP address of the client that sent the request

	
const unsigned int client_port() const

	The port of the client that sent the request

	
bool eof() const

	Returns whether or not the request, acting as a std::streambuf, has reached the end of the request contents. Always returns false if the content length is unknown.

See also

	unknown_content_length()

	
request(connection&)

	Constructs a new request on a connection. Blocks until a connection is sent, the connection timeout is reached, or the client disconnects. May also throw request_parse_error if the data sent by the client cannot be understood as an HTTP request.

See also

	connection_timeout

	client_disconnected

	
request(request&&)

	Explicit move constructor [http://en.cppreference.com/w/cpp/language/move_constructor] as one can’t be generated for this class

	
void flush()

	Flushes the request contents from the buffer, putting it in a state where the next request can be extracted. It is only safe to call this function if unknown_content_length() evaluates to false.

	
http_protocol protocol() const

	The HTTP protocol used by the request. If NONE, it’s usually safe to assume HTTP/1.0. If UNKNOWN, typically either a 400 Bad Request should be returned, just assume HTTP/1.0 to be permissive, or try to interpret something from protocol_string().

	
const std::string &protocol_string() const

	The raw protocol string sent in the request, useful if protocol() is UNKNOWN

	
const std::string &method() const

	The request method as a capitalized ASCII string. While the HTTP protocol technically does not restrict the available methods, typically this will be one of the following:

	GET

	Common methods

	POST

	PUT

	DELETE

	OPTIONS

	Useful for APIs

	PATCH

	Relatively uncommon methods

	TRACE

	HEAD

	CONNECT

See also

	List of common HTTP methods on Wikipedia [https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods] for descriptions of the methods

	
const std::vector<std::string> &path() const

	The request path separated into its elements, each of which has been URL- or percent-decoded. For example:

/foo/bar/hello+world/%E3%81%93%E3%82%93%E3%81%AB%E3%81%A1%E3%81%AF

becomes:

{
 "foo",
 "bar"
 "hello world",
 "こんにちは"
}

	
const query_args_type &query_args() const

	The request query arguments. SHOW is very permissive in how it parses query arguments:

	Query string

	Interpreted as

	?foo=1&bar=2

	{ { "foo", { "1" } }, { "bar", { "2" } } }

	?foo=bar=baz

	{ { "foo", { "baz" } }, { "bar", { "baz" } } }

	?foo=&bar=baz

	{ { "foo", { "" } }, { "bar", { "baz" } } }

	?foo&bar=1&bar=2

	{ { "foo", { "" } }, { "bar", { "1", "2" } } }

	
const headers_type &headers() const

	The request headers

See also

	List of common HTTP headers on Wikipedia [https://en.wikipedia.org/wiki/List_of_HTTP_header_fields]

	
content_length_flag unknown_content_length() const

	Whether the content length of the request could be interpreted

This member may be a bit confusing because it is “un-known” rather than “know”. It’s convenient for content_length_flag to evaluate to a boolean value, but there are two possible reasons the content length would be unknown. Either

	the request did not send a Content-Length header, or

	the value supplied is not an integer or multiple Content-Length headers were sent.

In many languages (including C++), 0 is false and any other value is true; so the boolean value needs to be false for a known content length and true for anything else.

	
unsigned long long content_length() const

	The number of bytes in the request content; only holds a meaningful value if unknown_content_length() is YES/true

Response

	
class response : public std::streambuf

	Represents a single response to a request. Inherits from std::streambuf, so it can be used as-is or with a std::ostream.

SHOW does not prevent mutliple response from being created or sent for a single request. Most of the time this is something that would break the application; however, under certain conditions in HTTP/1.1 multiple 100-type responses can be sent before a final 200+ response.

See also

	std::streambuf on cppreference.com [http://en.cppreference.com/w/cpp/io/basic_streambuf]

	std::ostream on cppreference.com [http://en.cppreference.com/w/cpp/io/basic_ostream]

	
response(connection&, http_protocol, const response_code&, const headers_t&)

	Constructs a new response to the client who made a connection. The protocols, response code, and headers are immediately buffered and cannot be changed after the response is created, so they have to be passed to the constructor.

	
~response()

	Destructor for a response object; ensures the response is flushed

	
virtual void flush()

	Ensure the content currently written to the request is sent to the client

Functions

	
std::string url_encode(const std::string &o, bool use_plus_space = true)

	URL-encode a string o, escaping all reserved, special, or non-ASCII characters with percent-encoding [https://en.wikipedia.org/wiki/Percent-encoding].

If use_plus_space is true, spaces will be replaced with + rather than %20.

	
std::string url_decode(const std::string&)

	Decode a URL- or percent-encoded [https://en.wikipedia.org/wiki/Percent-encoding] string. Throws url_decode_error if the input string is not validly encoded.

Constants

All constants are const-qualified.

Version

The version sub-namespace contains information about the current SHOW version. It has the following members:

	
std::string name

	The proper name of SHOW as it should appear referenced in headers, log messages, etc.

	
int major

	The major SHOW version (X.0.0)

	
int minor

	The minor SHOW version (0.X.0)

	
int revision

	The SHOW version revision (0.0.X)

	
std::string string

	A string representing the major, minor, and revision version numbers

Separate Utilities

These are some useful utilities included with SHOW, but in their own header files so they’re optional.

Base-64 Encoding

These are utilities for handling base64 [https://en.wikipedia.org/wiki/Base64]-encoded strings, very commonly used for transporting binary data in web applications. They are included in show/base64.hpp.

	
string base64_encode(const std::string &o, const char *chars = base64_chars_standard)

	Base64-encode a string o using the character set chars, which must point to a char array of length 64.

See also

	base64_chars_standard

	base64_chars_urlsafe

	
std::string base64_decode(const std::string &o, const char *chars = base64_chars_standard, show::base64_flags flags = 0x00)

	Decode a base64-encoded string o using the character set chars, which must point to a char array of length 64. Throws a base64_decode_error if the input is not encoded against chars or has incorrect padding.

Incorrect padding can be ignored by passing show::base64_ignore_padding as the flags argument.

See also

	base64_chars_standard

	base64_chars_urlsafe

	
class base64_decode_error : public std::runtime_error

	Thrown by base64_decode() when the input is not valid base64.

Note

base64_encode() shouldn’t throw an exception, as any string can be converted to base-64.

	
char *base64_chars_standard

	The standard set of base64 characters for use with base64_encode() and base64_decode()

	
char *base64_chars_urlsafe

	The URL_safe set of base64 characters for use with base64_encode() and base64_decode(), making the following replacements:

	+ → -

	/ → _

Multipart Content Support

Multipart content [https://en.wikipedia.org/wiki/MIME#Multipart_messages] is used to send a number of data segments each with their own separate headers. As such, text and binary data can be mixed in the same message.

SHOW provides the following utilities for parsing multipart requests in show/multipart.hpp. Typically, the Content-Type header for these types of requests will look something like:

Content-Type: multipart/form-data; boundary=AaB03x

The boundary string must be extracted from the header to pass to multipart’s constructor. A simple example with no error handling:

const auto& header_value = request.headers()["Content-Type"][0];
auto content_supertype = header_value.substr(0, header_value.find("/"))
if(content_supertype == "multipart")
{
 show::multipart parser{
 request,
 header_value.substr(header_value.find("boundary=") + 9)
 };

 // Iterate over multipart data ...
}
else
 // Process data as single message ...

	
class multipart

	class description

	
template<class String>
multipart(std::streambuf &buffer, String &&boundary)

	Constructs a new multipart content parser.

The supplied buffer will typically be a request object, but because multipart content can contain other multipart content recursively it can also be a show::multipart::segment. The boundary variable is a perfectly-forwarded [http://en.cppreference.com/w/cpp/utility/forward] boundary string for the multipart data.

Throws std::invalid_argument if the boundary is an empty string.

See also

	std::invalid_argument on cppreference.com

	
multipart::iterator begin()

	Returns an iterator pointing to the first segment in the multipart content. Calling this more than once on the same multipart throws a std::logic_error.

See also

	std::logic_error on cppreference.com

	
multipart::iterator end()

	Returns an iterator representing the end of the multipart content.

	
const std::string &boundary()

	The boundary string the multipart is using to split the content

	
const std::streambuf &buffer()

	The buffer the multipart is reading from

	
class multipart::iterator

	Iterator type for iterating over multipart data segments. Implements most of input iterator functionality [http://en.cppreference.com/w/cpp/concept/InputIterator], except that its value_type (multipart::segment) cannot be copied.

	
class multipart::segment : public std::streambuf

	Represents a segment of data in the multipart content being iterated over. Cannot be copied.

	
const headers_type &headers()

	The headers for this individual segment of data; does not include the request’s headers.

	
class multipart_parse_error : public request_parse_error

	Thrown when creating a multipart, iterating over parts, or reading from a multipart::segment whenever the content violates the multipart format.

Index

 S

S

 	
 	show::base64_chars_standard (C++ member)

 	show::base64_chars_urlsafe (C++ member)

 	show::base64_decode (C++ function)

 	show::base64_decode_error (C++ class)

 	show::base64_encode (C++ function)

 	show::client_disconnected (C++ class)

 	show::connection (C++ class)

 	show::connection::client_address (C++ function)

 	show::connection::client_port (C++ function)

 	show::connection::connection (C++ function)

 	show::connection::server_address (C++ function)

 	show::connection::server_port (C++ function)

 	show::connection::timeout (C++ function), [1]

 	show::connection::~connection (C++ function)

 	show::connection_interrupted (C++ class)

 	show::connection_timeout (C++ class)

 	show::headers_type (C++ class)

 	show::http_protocol (C++ enum)

 	show::multipart (C++ class)

 	show::multipart::begin (C++ function)

 	show::multipart::boundary (C++ function)

 	show::multipart::buffer (C++ function)

 	show::multipart::end (C++ function)

 	show::multipart::iterator (C++ class)

 	show::multipart::multipart (C++ function)

 	show::multipart::segment (C++ class)

 	show::multipart::segment::headers (C++ function)

 	show::multipart_parse_error (C++ class)

 	show::query_args_type (C++ class)

 	show::request (C++ class)

 	show::request::client_address (C++ function)

 	show::request::client_port (C++ function)

 	show::request::content_length (C++ function)

 	show::request::content_length_flag (C++ enum)

 	
 	show::request::eof (C++ function)

 	show::request::flush (C++ function)

 	show::request::headers (C++ function)

 	show::request::method (C++ function)

 	show::request::path (C++ function)

 	show::request::protocol (C++ function)

 	show::request::protocol_string (C++ function)

 	show::request::query_args (C++ function)

 	show::request::request (C++ function), [1]

 	show::request::unknown_content_length (C++ function)

 	show::request_parse_error (C++ class)

 	show::response (C++ class)

 	show::response::flush (C++ function)

 	show::response::response (C++ function)

 	show::response::~response (C++ function)

 	show::response_code (C++ class)

 	show::response_code::code (C++ member)

 	show::response_code::description (C++ member)

 	show::response_marshall_error (C++ class)

 	show::server (C++ class)

 	show::server::address (C++ function)

 	show::server::port (C++ function)

 	show::server::serve (C++ function)

 	show::server::server (C++ function)

 	show::server::timeout (C++ function), [1]

 	show::server::~server (C++ function)

 	show::socket_error (C++ class)

 	show::url_decode (C++ function)

 	show::url_decode_error (C++ class)

 	show::url_encode (C++ function)

 	show::version::major (C++ member)

 	show::version::minor (C++ member)

 	show::version::name (C++ member)

 	show::version::revision (C++ member)

 	show::version::string (C++ member)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Simple Header-Only Webserver

 		
 Tutorial

 		
 Including & Compiling

 		
 Creating a Server

 		
 Handling a Connection

 		
 Reading Requests

 		
 Sending Responses

 		
 Types

 		
 Main Types

 		
 Server

 		
 Connection

 		
 Request

 		
 Response

 		
 Support Types

 		
 Throwables

 		
 Connection interruptions

 		
 Exceptions

 		
 Functions

 		
 Constants

 		
 Version

 		
 Separate Utilities

 		
 Base-64 Encoding

 		
 Multipart Content Support

_static/up-pressed.png

_static/up.png

_static/plus.png

