

 [image: Build Status]
 [https://travis-ci.org/danbradham/shout][image: Coverage Status]
 [https://coveralls.io/r/danbradham/shout?branch=master][image: Latest Version]
 [https://pypi.python.org/pypi/pyshout/]
Shout!

Loud Python messaging.

Shout is a single module providing simple messaging vocabulary for small applications. Shout is NOT a distributed messaging framework.

from shout import Message, hears, shout

class WhoAreYou(Message):
 pass

@hears(WhoAreYou)
def lucky_day():
 return "We are..."

@hears(WhoAreYou)
def dusty_bottoms():
 return "The threeee..."

@hears(WhoAreYou)
def ned_nederlander():
 return "Amigos!!"

msg = shout(WhoAreYou)
print("".join(msg.results))

We are...The threeee...Amigos!!

Why Shout

	Decoupling of a GUI and it’s behavior

	PySide/PyQt signals are bound to widgets making it harder to decouple widgets. You have to explicitly connect each widget’s signals with their slots which could live deep in a hierarchy of widgets.

	Shout Messages are classes themselves, readily available to all other objects in their scope. Shout from inside, outside, top, or bottom of a widget hierarchy, Messages will still get to where they need to go!

	Shout is a single module, easily included with any package.

	It’s easy and fun to use.

Get Shout

Shout is available through the python package index as pyshout.

pip install pyshout

	Note that only the python package name is pyshout, the module it installs is simply shout.

Index

	Guide
	Creating a Message

	Who is Listening?

	Does your class have ears?

	Shout at the top of your lungs!

	Debugging

	API Documentation
	Message

	hears

	has_ears

	shout

	shout_logging

Guide

This section provides everything you need to know about using Shout.

Creating a Message

Start by importing the essentials from shout.

from shout import Message, has_ears, hears, shout

Now we can create a new type of Message.

class MyMessage(Message):
 pass

Our Message type will allow us to shout() args and kwargs around our application. But, before we can do that…

Who is Listening?

Let’s make a function that can actually hear us shout() our Message s.

@hears(MyMessage, inside="A")
def maximum(msg):
 return upper(msg) + "!!"

maximum() will hear all MyMessage shouts inside room “A”. In this case only one type of Message will be heard, but multiple Message s can be passed as args to hears(). Additionally multiple rooms can be passed as a tuple to the inside keyword argument. If you don’t pass any room names to inside, your function will listen in the default room, “void”.

Does your class have ears?

You’re every day class doesn’t have ears so it’s methods won’t be able to hear
any shouted Message s. It’s super simple to give a class ears, just decorate it with has_ears()!

@has_ears
class Volumes(object):

 @hears(MyMessage)
 def low(msg):
 return lower(msg)

 @hears(MyMessage)
 def medium(msg):
 return msg.title()

 @hears(MyMessage)
 def high(msg):
 return upper(msg)

v = Volumes()

Once we’ve given our class ears, the last thing we have to do is create an instance of it. On instantiation the bound methods are added as listeners to the appropriate Message s.

Shout at the top of your lungs!

We’ve got our Message and a bunch of listeners, now we can shout all we want to.

m = shout(MyMessage, "hello there", inside="A")

Now we’ve shouted a Message and we’ve got a Message instance bound to m. Message instances have a bunch of useful attributes.

print "args, kwargs: ", m.args, m.kwargs
print "response: ", m.response
print "success: ", m.success
print "exception: ", m.exc

args, kwargs: ("hello there",), {}
response: ["HELLO THERE!!"]
success: True
exception: None

Cool, but, judging from the response, none of our methods in Volumes heard us shout. That’s because we shouted inside room “A”. Let’s see what happens if we shout again but this time, not explicitly passing a room to the inside keyword.

m = shout(MyMessage, "hello again")

print "args, kwargs: ", m.args, m.kwargs
print "response: ", m.response
print "success: ", m.success
print "exception: ", m.exc

args, kwargs: ("hello again",), {}
response: ["hello again", "Hello Again", "HELLO AGAIN"]
success: True
exception: None

There we go! This time we’ve shouted inside the default room “void”, reaching all of our Volumes instance’s listeners. It’s important to note that while we only passed one argument in our shouts, any arg, kwarg signature is supported. Message signatures should be set by their listeners. So, if you have multiple listeners for the same type of Message, ensure that they all take the same parameters.

Debugging

Shout has extensive logging which is turned off by default.

import logging
shout_logger = logging.getLogger('Shout!')
shout_logger.setLevel(logging.DEBUG)

This will set Shouts logger level to logging.DEBUG. Printing out a ton of useful messages! You can also log to a file.

API Documentation

Message

	
class shout.Message(*args, **kwargs)

	Message s keep track of their listeners and the various rooms
they are listening to. Instances of Message hold args and kwargs
and when shout() is called these are passed to all the appropraite
listeners. All return values of listeners are collected in
response. If all listeners execute correctly success is
set to True. Any Exception raised by a listener will halt the shout after
binding exc to the offending Exception.

	Parameters

	
	args – Arguments to shout

	kwargs – Keyword Arguments to shout

	
static create(name)

	Dynamically create a new type of Message.

	Parameters

	name – The __class__.__name__ to use.

	
shout()

	Sends the instances args and kwargs to the
appropriate listeners.

hears

	
shout.hears(*args, **kwargs)

	Decorates functions and methods, adding them as listeners to the
specified Message s.

	Parameters

	
	args – Message s this function will hear.

	inside – Tuple of rooms this function will hear.

has_ears

	
shout.has_ears(cls)

	Class decorator that enables hears() decorator to be used on
class methods.

shout

	
shout.shout(msg_type, *args, **kwargs)

	A grammatically pleasant way to shout a Message.

shout(Message, “Hello”, inside=”A”) == Message(“Hello”, inside=”A”).shout()

	Parameters

	
	msg_type – The type of Message to shout.

	args – The args to pass to the Message.

	kwargs – The kwargs to pass to the Message.

	inside – The rooms to shout inside.

shout_logging

Index

 C
 | H
 | M
 | S

C

 	
 	create() (shout.Message static method)

H

 	
 	has_ears() (in module shout)

 	
 	hears() (in module shout)

M

 	
 	Message (class in shout)

S

 	
 	shout() (in module shout)

 	(shout.Message method)

 nav.xhtml

 Table of Contents

 		
 Shout!

 		
 Guide

 		
 Creating a Message

 		
 Who is Listening?

 		
 Does your class have ears?

 		
 Shout at the top of your lungs!

 		
 Debugging

 		
 API Documentation

 		
 Message

 		
 hears

 		
 has_ears

 		
 shout

 		
 shout_logging

_static/down.png

_images/badge.png
‘coverage 100%

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

