
shipper

Dec 07, 2021

Contents

1 Documentation overview 1

2 Introduction 3
2.1 Shipper . 3
2.2 Getting help . 5

3 Installing Shipper 7
3.1 Step 0: procure a cluster . 7
3.2 Step 1: get shipperctl . 8
3.3 Step 2: write a cluster manifest . 8
3.4 Step 3: Setup the Management Cluster . 8
3.5 Step 4: deploy shipper . 9
3.6 Step 5: Join the Application cluster to the Management cluster . 9
3.7 Step 6: do a rollout! . 9
3.8 Namespace manager . 10

4 User guide 11
4.1 Rolling out with Shipper . 11
4.2 Troubleshooting Shipper . 14

5 Operations and administration 19
5.1 Cluster architecture . 19
5.2 Using shipperctl . 20
5.3 Monitoring Shipper . 24
5.4 Cluster fleet management . 24
5.5 Blocking rollouts . 24

6 Limitations and known issues 29
6.1 Chart restrictions . 29
6.2 Load balancing . 30
6.3 Lock-step rollouts . 30

7 API Reference 31
7.1 High-level APIs . 31
7.2 Low-level APIs . 40
7.3 Administrator APIs . 47

i

Index 49

ii

CHAPTER 1

Documentation overview

• Introduction: Brief overview of what Shipper is and why you might be interested

• Quick start: 5 minutes to a working Shipper setup

• User guide: Using Shipper to deploy your code

• Administrator guide: Production installation, monitoring, and cluster fleet management

• Limitations and known issues

• API Reference: Detailed reference on the Shipper resources

1

shipper

2 Chapter 1. Documentation overview

CHAPTER 2

Introduction

2.1 Shipper

Shipper is an extension for Kubernetes to add sophisticated rollout strategies and multi-cluster orchestration.

It lets you use kubectl to manipulate objects which represent any kind of rollout strategy, like blue/green or canary.
These strategies can deploy to one cluster, or many clusters across the world.

2.1.1 Why does Shipper exist?

Kubernetes is a wonderful platform, but implementing mature rollout strategies on top of it requires subtle multi-step
orchestration: Deployment objects are a building block, not a solution.

When implemented as a set of scripts in CI/CD systems like Jenkins, GitLab, or Brigade, these strategies can become
hard to debug, or leave out important properties like safe rollbacks.

These problems become more severe when the rollout targets multiple Kubernetes clusters in multiple regions: the
complex, multi-step orchestration has many opportunities to fail and leave clusters in inconsistent states.

Shipper helps by providing a higher level API for complex rollout strategies to one or many clusters. It simplifies
CI/CD pipeline scripts by letting them focus on the parts that matter to that particular application.

2.1.2 What is Shipper from a technical point of view?

Shipper is a collection of Kubernetes controllers that work with custom Kubernetes objects to provide a declarative
API for advanced rollouts. These controllers continuously monitor the clusters involved, and converge them on the
declared state. They act as control loops for the different aspects of a rollout: capacity management, traffic shifting,
and Kubernetes object installation.

For example, you might have a Shipper Application like this:

3

shipper

apiVersion: shipper.booking.com/v1alpha1
kind: Application
metadata:

name: reviews-api
spec:
template:
helm chart for this application
chart:

name: reviews-api
version: "0.0.1"
repoUrl: https://charts.example.com

how to select clusters to deploy to
clusterRequirements:

regions:
- name: us-east1

the rollout strategy
strategy:

steps:
- name: canary

capacity:
incumbent: 100
contender: 10

traffic:
incumbent: 9
contender: 1

- name: all-in
capacity:
incumbent: 0
contender: 100

traffic:
incumbent: 0
contender: 10

the values for the helm chart
values:

image:
repository: image-registry.example.com/reviews-api
tag: v0.1.0

In this example, we’re defining an Application named reviews-api. It uses a Helm Chart of the same name, and
deploys to a cluster in the us-east1 region. It uses a two step rollout strategy: a basic canary step with a bit of traffic
for the new version, then “all-in”. It populates the Helm Chart with values specifying the image tag.

In order to make this declared state a reality, Shipper will select a matching cluster, install the Chart objects into that
cluster, and with your guidance, progress through the rollout strategy until the new release is fully live.

2.1.3 Multi-cluster, multi-region, multi-cloud

Shipper can deploy your application to multiple clusters in different regions.

It expects a Kubernetes API, so it should work with any compliant Kubernetes implementation like GKE or AKS. If
you can use kubectl with it, chances are, you can use Shipper with it as well.

2.1.4 Release Management

Shipper doesn’t just copy-paste your code onto multiple clusters for you – it allows you to customize the rollout
strategy fully. This allows you to craft a rollout strategy with the appropriate speed/risk balance for your particular

4 Chapter 2. Introduction

shipper

situation.

After each step of the rollout strategy, Shipper pauses to wait for another update to the Release object. This check-
pointing approach means that rollouts are fully declarative, scriptable, and resumable. Shipper can keep a rollout on
a particular step in the strategy for ten seconds or ten hours. At any point the rollout can be safely aborted, or moved
backwards through the strategy to return to an earlier state.

2.1.5 Roll Backs

Since Shipper keeps a record of all your successful releases, it allows you to roll back to an earlier release very easily.

2.1.6 Charts As Input

Shipper installs a complete set of Kubernetes objects for a given application.

It does this by relying on Helm, and using Helm Charts as the unit of configuration deployment. Shipper’s Application
object provides an interface for specifying values to a Chart just like the helm command line tool.

2.2 Getting help

We’re happy to take bug reports on the GitHub repo.

For user questions or general discussion you can find us on #shipper on the Kubernetes Slack.

2.2. Getting help 5

https://helm.sh
https://github.com/bookingcom/shipper/issues
https://kubernetes.slack.com/messages/shipper

shipper

6 Chapter 2. Introduction

CHAPTER 3

Installing Shipper

3.1 Step 0: procure a cluster

The rest of this document assumes that you have access to a Kubernetes cluster and admin privileges on it. If you
don’t have this, check out docker desktop, kind, microk8s or minikube. Cloud clusters like GKE are also fine. Shipper
requires Kubernetes 1.17 or later, and you’ll need to be an admin on the cluster you’re working with.1

Make sure that kubectl works and can connect to your cluster before continuing.

3.1.1 Setting up kind clusters

How to set-up an application kind cluster and a management kind cluster:
We would like to setup two clusters, mgmt and app.

Lets write a kind.yaml manifest to configure our clusters:

:caption: kind.yaml
kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
- role: control-plane

Now we’ll use this to create the clusters:

$ kind create cluster --name app --config kind.yaml --image kindest/node:v1.15.7
$ kind create cluster --name mgmt --config kind.yaml --image kindest/node:v1.15.7

Congratulations, you have created your clusters!

1 For example, on GKE you need to bind yourself to cluster-admin before shipperctl will work.

7

https://www.docker.com/products/docker-desktop
https://kind.sigs.k8s.io/docs/user/quick-start
https://microk8s.io/
https://github.com/kubernetes/minikube
https://stackoverflow.com/a/52972588

shipper

3.2 Step 1: get shipperctl

shipperctl automates setting up clusters for Shipper. Grab the tarball for your operating system, extract it, and
stick it in your PATH somewhere.

You can find the binaries on the GitHub Releases page for Shipper.

3.3 Step 2: write a cluster manifest

shipperctl expects a manifest of clusters to configure. It uses your ~/.kube/config to translate context names
into cluster API server URLs. Find out the name of your context like so:

$ kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE

kind-app kind-app kind-app

* kind-mgmt kind-mgmt kind-mgmt

In my setup, the context name of the application cluster is kind-app.

This configuration will allow management cluster to communicate with application cluster. The cluster API server
URL stored in the kubeconfig is a local address (127.0.0.1), we need an actual ip address for our kind-app cluster. This
is how you can get it:

$ kind get kubeconfig --name app --internal | grep server

Note that app is the name we gave to kind when creating the application cluster. Copy the URL of the server.

Now let’s write a clusters.yaml manifest to configure Shipper here:

:caption: clusters.yaml

applicationClusters:
- name: kind-app

region: local
apiMaster: "SERVER_URL"

Paste your server URL as a string.

3.4 Step 3: Setup the Management Cluster

Before you run shipperctl, make sure that your kubectl context is set to the management cluster:

$ kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE

kind-app kind-app kind-app

* kind-mgmt kind-mgmt kind-mgmt

First we’ll setup all the needed resources in the management cluster:

$ shipperctl clusters setup management -n shipper-system
Setting up management cluster:
Registering or updating custom resource definitions... done

Creating a namespace called shipper-system... already exists. Skipping

(continues on next page)

8 Chapter 3. Installing Shipper

https://github.com/bookingcom/shipper/releases

shipper

(continued from previous page)

Creating a namespace called rollout-blocks-global... already exists. Skipping
Creating a service account called shipper-management-cluster... already exists.
→˓Skipping
Creating a ClusterRole called shipper:management-cluster... already exists. Skipping
Creating a ClusterRoleBinding called shipper:management-cluster... already exists.
→˓Skipping
Checking if a secret already exists for the validating webhook in the shipper-system
→˓namespace... yes. Skipping
Creating the ValidatingWebhookConfiguration in shipper-system namespace... done
Creating a Service object for the validating webhook... done
Finished setting up management cluster

3.5 Step 4: deploy shipper

Now that we have the namespace, custom resource definitions, role bindings, service accounts, and so on, let’s create
the Shipper Deployment:

$ kubectl --context kind-mgmt create -f https://github.com/bookingcom/shipper/
→˓releases/latest/download/shipper.deployment.yaml
deployment.apps/shipper created

This will create an instance of Shipper in the shipper-system namespace.

3.6 Step 5: Join the Application cluster to the Management cluster

Now we’ll give clusters.yaml to shipperctl to configure the cluster for Shipper:

$ shipperctl clusters join -f clusters.yaml -n shipper-system
Creating application cluster accounts in cluster kind-app:
Creating a namespace called shipper-system... already exists. Skipping
Creating a service account called shipper-application-cluster... already exists.
→˓Skipping
Creating a ClusterRoleBinding called shipper:application-cluster... already exists.
→˓Skipping
Finished creating application cluster accounts in cluster kind-app

Joining management cluster to application cluster kind-app:
Creating or updating the cluster object for cluster kind-app on the management
→˓cluster... done
Checking whether a secret for the kind-app cluster exists in the shipper-system
→˓namespace... yes. Skipping
Finished joining management cluster to application cluster kind-app

3.7 Step 6: do a rollout!

Now you should have a working Shipper installation. Let’s roll something out!

3.5. Step 4: deploy shipper 9

shipper

3.8 Namespace manager

By design, Shipper does not create namespaces in the application cluster. Shipper requires the existence of a names-
pace in the application cluster with the same name as the namespace in management cluster where the Application
objects is installed. In case the namespace does not exist in the application cluster, and this application cluster is
selected for a Release, Shipper will continue to try and install the charts, and fail. This loop will end only when the
namespace is created in the application cluster, or this application cluster is not selected anymore (by deleting the
Release or Application objects).

To help with this, we recommend having some sort of a namespace manager tool. This can be a simple controller that
installs a namespace in all the application clusters for each namespace existing in the management cluster, or a more
complex tool, depending on your needs.

10 Chapter 3. Installing Shipper

CHAPTER 4

User guide

4.1 Rolling out with Shipper

Note: This documentation assumes that you have set up Shipper in two clusters. kind-mgmt is the name of the
context that points to the management cluster, and kind-app is the name of the context that points to the application
cluster.

Rollouts with Shipper are all about transitioning from an old Release, the incumbent, to a new Release, the contender.
If you’re rolling out an Application for the very first time, then there is no incumbent, only a contender.

In general Shipper tries to present a familiar interface for people accustomed to Deployment objects.

4.1.1 Application object

Here’s the Application object we’ll use:

apiVersion: shipper.booking.com/v1alpha1
kind: Application
metadata:

name: super-server
spec:
revisionHistoryLimit: 3
template:
chart:

name: nginx
repoUrl: https://raw.githubusercontent.com/bookingcom/shipper/master/test/e2e/

→˓testdata
version: 0.0.1

clusterRequirements:
regions:
- name: local

(continues on next page)

11

shipper

(continued from previous page)

strategy:
steps:
- capacity:

contender: 1
incumbent: 100

name: staging
traffic:
contender: 0
incumbent: 100

- capacity:
contender: 100
incumbent: 0

name: full on
traffic:
contender: 100
incumbent: 0

values:
replicaCount: 3

Copy this to a file called app.yaml and apply it to your Kubernetes management cluster:

$ kubectl --context kind-mgmt apply -f app.yaml

This will create an Application and Release object. Shortly thereafter, you should also see the set of Chart objects: a
Deployment, a Service, and a Pod.

4.1.2 Checking progress

There are a few different ways to figure out how your rollout is going.

We can check in on the Release to see the progress we’re making:

.status.achievedStep

This field is the definitive answer for whether Shipper considers a given step in a rollout strategy complete.

$ kubectl --context kind-mgmt get rel super-server-83e4eedd-0 -o json | jq .status.
→˓achievedStep
null
$ # "null" means Shipper has not written the achievedStep key, because it hasn't
→˓finished the first step
$ kubectl get rel -o json | jq .items[0].status.achievedStep
{

"name": "staging",
"step": 0

}

If everything is working, you should see one Pod active/ready.

.status.conditions

Just like any other object, the status field of a Release object contains information on anything that is going wrong,
and anything that is going right:

12 Chapter 4. User guide

shipper

This set of conditions shows that the strategy hasn’t been executed because Shipper can not contact the application
cluster called kind-app.

.status.strategy.conditions

For a more detailed view of what’s happening while things are in between states, you can use the Strategy conditions.

$ kubectl --context kind-mgmt get rel super-server-83e4eedd-0 -o json | jq .status.
→˓strategy.conditions
[

{
"lastTransitionTime": "2018-12-09T10:00:55Z",
"message": "clusters pending capacity adjustments: [microk8s]",
"reason": "ClustersNotReady",
"status": "False",
"type": "ContenderAchievedCapacity"

},
{
"lastTransitionTime": "2018-12-09T10:00:55Z",
"status": "True",
"type": "ContenderAchievedInstallation"

}
]

These will tell you which part of the step Shipper is currently working on. In this example, Shipper is waiting for the
desired capacity in the microk8s cluster. This means that Pods aren’t ready yet.

.status.strategy.state

Finally, because the Strategy conditions can be kind of a lot to parse, they are summarized into estatus.
strategy.state.

$ kubectl get rel super-server-83e4eedd-0 -o json | jq .status.strategy.state
{

"waitingForCapacity": "True",
"waitingForCommand": "False",
"waitingForInstallation": "False",
"waitingForTraffic": "False"

}

The troubleshooting guide has more information on how to dig deep into what’s going on with any given Release.

4.1.3 Advancing the rollout

So now that we’ve checked on our Release and seen that Shipper considers step 0 achieved, let’s advance the rollout:

$ kubectl --context kind-mgmt patch rel super-server-83e4eedd-0 --type=merge -p '{
→˓"spec":{"targetStep":1}}'

I’m using patch here to keep things concise, but any means of modifying objects will work just fine.

Now, if you’ve got your kind-app context set to the same namespace as your Application object in the management
cluster, you should be able to see 2 more pods spin up:

4.1. Rolling out with Shipper 13

shipper

$ kubectl --context kind-app get po
NAME READY STATUS RESTARTS AGE
super-server-83e4eedd-0-nginx-5775885bf6-76l6g 1/1 Running 0 7s
super-server-83e4eedd-0-nginx-5775885bf6-9hdn5 1/1 Running 0 7s
super-server-83e4eedd-0-nginx-5775885bf6-dkqbh 1/1 Running 0 3m55s

And confirm that Shipper believes this rollout to be done:

$ kubectl --context kind-mgmt get rel -o json | jq .items[0].status.achievedStep
{

"name": "full on",
"step": 1

}

That’s it! Doing another rollout is as simple as editing the Application object, just like you would with a Deployment.
The main principle is patching the Release object to move from step to step.

4.2 Troubleshooting Shipper

4.2.1 Prerequisites

To troubleshoot deployments effectively you need to be familiar with core Kubernetes and Shipper concepts (very
briefly explained below) and be comfortable running kubectl commands.

4.2.2 Fundamentals

Shipper objects form a hierarchy:

Application
|

Release
|

InstallationTarget
CapacityTarget
TrafficTarget

You already know Applications and Releases, but there’s more. Below Releases you have what we call “target objects”.
Each represents an important chunk of work we do when rolling out:

KindShorthandDescription
InstallationTargetit Install charts in application clusters
CapacityTargetct Scale deployments up and down to reach desired number of pods
TrafficTargettt Orchestrate traffic by moving pods in and out of the LB

The list is ordered (e.g. we can’t manipulate traffic before there are pods).

4.2.3 The universal troubleshooting algorithm

Shipper is a fairly complex system that runs on top of an even more complex one. Things can fail in many different
ways. It’s not really feasible for us to list all the possible problems and solutions for them. Instead, we’ll give you a
rough algorithm that should help you deal with commonly encountered problems.

14 Chapter 4. User guide

https://kubernetes.io/docs/concepts/

shipper

To summarise, the algorithm is roughly:

1. Find what stage you’re at by looking at Release conditions and state

2. Inspect the corresponding target object’s conditions

3. Act accordingly

In the next sections we’ll explain in more detail how to do that.

Finding where you are

Before we attempt to fix anything we need to make sure we know where we are in the rollout process. The starting
point is almost always looking at your Release’s status:

$ kubectl describe rel nginx-vj7sn-7cb440f1-0
...
Status:

Achieved Step:
Name: staging
Step: 0

Conditions:
Last Transition Time: 2018-07-27T07:21:14Z
Status: True
Type: Scheduled

Strategy:
Conditions:

Last Transition Time: 2018-07-27T07:23:29Z
Message: clusters pending capacity adjustments: [minikube]
Reason: ClustersNotReady
Status: False
Type: ContenderAchievedCapacity
Last Transition Time: 2018-07-27T07:23:29Z
Status: True
Type: ContenderAchievedInstallation

State:
Waiting For Capacity: True
Waiting For Command: False
Waiting For Installation: False
Waiting For Traffic: False

...

We already looked at status.strategy.state.waitingForCommand but there are more fields there: one for every type of
target objects. If your rollout isn’t finished and not waiting for input, these fields tell you which stage you’re at.

Field Meaning
waitingForInstallationWaiting for the chart to be installed in application clusters
waitingForCapacity Waiting for the contender to scale up and/or the incumbent to scale down
waitingForTraffic Waiting for the contender traffic to increase and/or the incumbent to decrease

Release conditions and strategy conditions

Category Description
Object conditions Conditions that apply to the object itself. All objects have this.
Strategy conditions Conditions that apply to the strategy of the Release that’s being rolled out. Only

Releases have this.

4.2. Troubleshooting Shipper 15

shipper

In the example above, under .status.strategy we can find a condition called
ContenderAchievedCapacity, saying there’re still clusters pending capacity adjustments.

Target objects

The next step would be to look at the corresponding target object. Since we’re waiting for capacity, we’ll be looking
at CapacityTarget. The object will have the same name as the release but different kind:

$ kubectl describe ct nginx-vj7sn-7cb440f1-0
...
Status:

Clusters:
Achieved Percent: 0
Available Replicas: 0
Conditions:

Last Transition Time: 2018-07-27T07:23:29Z
Status: True
Type: Operational
Last Transition Time: 2018-07-27T07:23:29Z
Message: there are 1 sad pods
Reason: PodsNotReady
Status: False
Type: Ready

Name: minikube
Sad Pods:

Condition:
Last Probe Time: <nil>
Last Transition Time: 2018-07-27T07:23:14Z
Status: True
Type: PodScheduled

Containers:
Image: nginx:boom
Image ID:
Last State:
Name: nginx
Ready: false
Restart Count: 0
State:
Waiting:

Message: Back-off pulling image "nginx:boom"
Reason: ImagePullBackOff

Init Containers: <nil>
Name: nginx-vj7sn-7cb440f1-0-nginx-9b5c4d7c9-2gjwl

...

Important: For installation the command would be kubectl describe it <release name>, for traffic
kubectl describe tt <release name>.

If we inspect .status.conditions of the InstallationTarget we’ll notice a condition called Ready which
has status False and reason PodsNotReady. Further inspection will reveal that we have a pod called
nginx-vj7sn-7cb440f1-0-nginx-9b5c4d7c9-2gjwl and that Kubernetes can’t pull the Docker image
for one if its containers:

Message: Back-off pulling image "nginx:boom"
Reason: ImagePullBackOff

16 Chapter 4. User guide

shipper

The “boom” Docker tag clearly looks wrong. To fix this you can simply edit the application object and set the correct
tag in .spec.template.values.

4.2.4 Other sources of useful information

Shipper emits Kubernetes events with useful information. You can look at that, if you prefer:

$ kubectl get events
...
1m 1h 238 nginx-vj7sn-7cb440f1-0.154528eb631aac75
→˓ CapacityTarget Normal
→˓CapacityTargetChanged capacity-controller Set "default/nginx-vj7sn-
→˓7cb440f1-0" status to {[{minikube 0 0 [{nginx-vj7sn-7cb440f1-0-nginx-9b5c4d7c9-
→˓2gjwl [{nginx {&ContainerStateWaiting{Reason:ImagePullBackOff,Message:Back-off
→˓pulling image "nginx:boom",} nil nil} {nil nil nil} false 0 nginx:boom }] []
→˓{PodScheduled True 0001-01-01 00:00:00 +0000 UTC 2018-07-27 09:23:14 +0200 CEST }}
→˓] [{Operational True 2018-07-27 09:23:29 +0200 CEST } {Ready False 2018-07-27
→˓09:23:29 +0200 CEST PodsNotReady there are 1 sad pods}]}]}

4.2.5 Typical failure scenarios

While we can’t list all the possible failures we can list the ones that we think happen more often than others:

Failure Description

Can’t pull Docker image

Strategy condition ContenderAchievedCapacity is false, InstallationTarget’s
Ready condition is false and the message is something like “Back-off pulling image
“nginx:boom””

Previous release is un-
healthy

Release condition IncumbentAchievedCapacity is false and the message is
something like “incumbent capacity is unhealthy in clusters: [minikube]”. In this
case, you can try describing the CapacityTarget from the previous release to find out
what’s wrong. If you’re doing a rollout to fix that previous release, though, you can
opt for proceeding to the next step in your strategy, as Shipper does not require a step
to be completed before moving on to the next.

Can’t fetch Helm chart Release condition Scheduled is false and the message is something like “download
https://charts.example.com/charts/nginx-0.1.42.tgz: 404”

4.2.6 Make sure you’re on the right cluster!

There are cases where the user is checking on the wrong cluster and can’t see the pods etc. To make sure you’re on the
right one:

$ kubectl get release
NAME CREATED AT
myrelease-cf68dfe8-0 23m

$ kubectl describe release <your app release> | grep release.clusters
Annotations: shipper.booking.com/release.clusters=kube-us-east-1-a

4.2. Troubleshooting Shipper 17

https://charts.example.com/charts/nginx-0.1.42.tgz

shipper

18 Chapter 4. User guide

CHAPTER 5

Operations and administration

Shipper is designed to make it easier to manage a fleet of Kubernetes clusters with many teams deploying code to
them.

5.1 Cluster architecture

Shipper defines two kinds of Kubernetes clusters, management clusters and application clusters.

5.1.1 Management clusters

Management clusters are where Shipper itself runs. It has the Shipper Custom Resource Definitions installed, and is
where application developers interact with the Application or Release objects. The management cluster stores the set
of Cluster objects and associated Secrets that enable Shipper to connect to the application clusters.

Typically you have one of these per large deployment, or one with a standby.

5.1.2 Application clusters

Application clusters are where Shipper installs and rolls out user workloads. Shipper does not run any custom software
in the application clusters: it only needs a service account and associated RBAC configuration.

5.1.3 Patterns

One management, many application

This is the standard arrangement if you have a fleet of Kubernetes clusters that you would like to manage with Shipper.
The single management cluster provides application developers with a single place to interface with Shipper’s objects
and orchestrate their rollouts.

19

shipper

One-and-the-same

It is totally fine if the management cluster and the application cluster are the same. This is how Shipper is developed,
and also how you would use Shipper if you only have a single Kubernetes cluster in your infrastructure. You can
think about this configuration as using Shipper to provide a better Deployment object, but without any multi-cluster
federation.

Multiple management, each with own set of application

While Shipper fully supports namespaces as units of multi-tenancy, it does not yet have any way to limit the set of
clusters that an Application can select. So, if your organization has multiple groups of Kubernetes clusters that are
consumed by disjoint sets of users, it might make sense to create a management cluster for each group of application
clusters that need strong isolation between each other.

5.2 Using shipperctl

The shipperctl command is created to make using Shipper easier.

5.2.1 Setting Up Clusters Using shipperctl clusters Commands

To set up clusters to work with Shipper, you should create ClusterRoleBindings, ClusterRoles, Roles, RoleBindings,
Clusters, and so forth.

Meet shipperctl clusters, which is made to make this easier.

There are two use cases for this set of commands.

First, you can use it to set up a local environment to run Shipper in, or to set up a fleet of clusters for the first time.

Second, you can integrate it into your continuous integration pipeline. Since these commands are idempotent, you can
use it to apply the configuration of your clusters.

Note that these commands don’t apply a Shipper deployment. You should deploy Shipper once you’ve run these
commands.

The commands under shipperctl clusters should be run in this order if you’re setting up a cluster for a very
first time. Once you’ve followed this procedure, you can use the ones that apply to your situation.

Note that you need to change your context to point to the management cluster before running the following com-
mands.

1. shipperctl clusters setup management: creates the CustomResourceDefinitions, ServiceAccount, Cluster-
RoleBinding and other objects Shipper needs to function correctly.

2. shipperctl clusters join: creates the ServiceAccount that Shipper is going to use on the application cluster, and
copies its token back to the management cluster. This is so that Shipper, which runs on the management
cluster, can modify Kubernetes objects on the application cluster. Once the token is created, this command
also creates a Cluster object on the management cluster, which tells Shipper how to communicate with the
application cluster.

All of these commands share a certain set of options. However, they each have their own set of options as well.

Below are the options that are shared between all the commands:

--kube-config <path string>
The path to your kubectl configuration, where the contexts that shipperctl should use reside.

20 Chapter 5. Operations and administration

shipper

-n, --shipper-system-namespace <string>
The namespace Shipper is running in. This is the namespace where you have a Deployment running the Shipper
image.

--management-cluster-context <string>
By default, shipperctl uses the context that was already set in your kubeconfig

(i.e. using kubectl config use-context). However, if that’s not what you want, you can use this option to
tell shipperctl to use another context.

shipperctl clusters setup management

As mentioned above, this command is used to set up the management cluster for use with Shipper.

--management-cluster-service-account <string>
the name of the service account Shipper will use for the management cluster (default “shipper-mgmt-cluster”)

-g, --rollout-blocks-global-namespace <string>
the namespace where global RolloutBlocks should be created (default “rollout-blocks-global”)

This is the namespace that the users or administrators of the management cluster will create a RolloutBlock
object, so that all Shipper rollouts for Applications on that cluster would be disabled.

shipperctl clusters join

As mentioned above, this command is used to join the management and application clusters together using a
clusters.yaml file. To know more about the format of that file, look at the Clusters Configuration File Format
section.

--application-cluster-service-account <string>
the name of the service account Shipper will use in the application cluster (default “shipper-app-cluster”)

-f, --file <string>
the path to a YAML file containing application cluster configuration (default “clusters.yaml”)

Clusters Configuration File Format

The clusters configuration file is a YAML file. At the top level, you should specify two keys, managementClusters
and applicationClusters. The clusters you specify under each key are your management and application
clusters, respectively. Check out Cluster Architecture to learn more about what this means.

For each item in the list of management or application clusters, you can specify these fields:

• name (mandatory): This is the name of the cluster. When specified for an application cluster,

a Cluster object will be created on the management cluster, and will point to the application. - context (optional,
defaults to the value of name): this is the name of the context from your kubectl configuration that points to this
cluster. shipperctl will use this context to run commands to set up the cluster, and also to populate the URL of
the API master. - Fields from the Cluster object (optional): you can specify any field from the Cluster object, and
shipperctl will patch the Cluster object for you the next time you run it. The only field that is mandatory is
region, which you have to specify to create any Cluster object.

Examples

5.2. Using shipperctl 21

shipper

Minimal Configuration

Here is a minimal configuration to set up a local kind instance, assuming that you have created a cluster called mgmt
and a cluster called app:

managementClusters:
- name: kind-mgmt # kind contexts are prefixed with `kind-`
applicationClusters:
- name: kind-app

region: local

Specifying Cluster Fields

Here is something more interesting: having 2 application clusters, and marking one of them as unschedulable:

managementCluster:
- name: eu-m
applicationClusters:
- name: eu-1

region: eu-west
- name: eu-2

region: eu-west
scheduler:
unschedulable: true

Using Google Kubernetes Engine (GKE) Context Names

If you’re running on GKE, your cluster context names are likely to have underscores in them, like this:
gke_ACCOUNT_ZONE_CLUSTERNAME. shipperctl’s usage of the context name as the name of the Cluster
object will break, because Kubernetes objects are not allowed to have underscores in their names. To solve this,
specify context explicitly in clusters.yaml, like so:

managementCluster:
- name: eu-m # make sure this is a Kubernetes-friendly name

context: gke_ACCOUNT_ZONE_CLUSTERNAME_MANAGEMENT # add this
applicationClusters:
- name: eu-1

region: eu-west
context: gke_ACCOUNT_ZONE_CLUSTERNAME_APP_1 # same here

- name: eu-2
region: eu-west
context: gke_ACCOUNT_ZONE_CLUSTERNAME_APP_2 # and here
scheduler:
unschedulable: true

5.2.2 Creating backups and restoring Using shipperctl backup Commands

shipperctl backup prepare

1. The backup must be created by a shipperctl command. This guarantees you can restore this backup. Acquire a
backup file by running

22 Chapter 5. Operations and administration

shipper

$ kubectl config use-context mgmt-dev-cluster ##be sure to switch to correct context
→˓of the management cluster before backing up
Switched to context "mgmt-dev-cluster"
$ shipperctl backup prepare -v -f bkup-dev-29-10.yaml
NAMESPACE RELEASE NAME OWNING APPLICATION
default super-server-dc5bfc5a-0 super-server
default2 super-server2-dc5bfc5a-0 super-server2
default3 super-server3-dc5bfc5a-0 super-server3
Backup objects stored in "bkup-dev-29-10.yaml"

The command’s default format is yaml. This will create a file named “bkup-dev-29-10.yaml” and store
the backup there in a yaml format.

2. Save the backup file in a storage system of your liking (for example, AWS S3)

3. That’s it! Repeat steps 1+2 for all management clusters.

shipperctl backup restore

1. Download your latest backup from your selected storing system

2. Make sure that Shipper is down (spec.replicas: 0) before applying objects.

3. Use shipperctl to restore your backup:

$ kubectl config use-context mgmt-dev-cluster ##be sure to switch to correct
→˓management context before restoring backing up
Switched to context "mgmt-dev-cluster"
$ shipperctl backup restore -v -f bkup-dev-29-10-from-s3.yaml
Would you like to see an overview of your backup? [y/n]: y
NAMESPACE RELEASE NAME OWNING APPLICATION
default super-server-dc5bfc5a-0 super-server
default2 super-server2-dc5bfc5a-0 super-server2
default3 super-server3-dc5bfc5a-0 super-server3
Would you like to review backup? [y/n]: y
- application:

apiVersion: shipper.booking.com/v1alpha1
kind: Application

...
backup_releases:
- capacity_target:

apiVersion: shipper.booking.com/v1alpha1
kind: CapacityTarget

...
installation_target:

apiVersion: shipper.booking.com/v1alpha1
kind: InstallationTarget

...
release:

apiVersion: shipper.booking.com/v1alpha1
kind: Release

...
traffic_target:

apiVersion: shipper.booking.com/v1alpha1
kind: TrafficTarget

...
...
Would you like to restore backup? [y/n]: y

(continues on next page)

5.2. Using shipperctl 23

shipper

(continued from previous page)

application "default/super-server" created
release "default/super-server-dc5bfc5a-0" owner reference updates with uid "a6c587cb-
→˓624e-44ec-b267-b48630b0ed1c"
release "default/super-server-dc5bfc5a-0" created
installation target "default/super-server-dc5bfc5a-0" owner reference updates with
→˓uid "9ccfd876-7f4f-4b1c-9c10-653d295e21d2"
installation target "default/super-server-dc5bfc5a-0" created
traffic target "default/super-server-dc5bfc5a-0" owner reference updates with uid
→˓"9ccfd876-7f4f-4b1c-9c10-653d295e21d2"
traffic target "default/super-server-dc5bfc5a-0" created
capacity target "default/super-server-dc5bfc5a-0" owner reference updates with uid
→˓"9ccfd876-7f4f-4b1c-9c10-653d295e21d2"
capacity target "default/super-server-dc5bfc5a-0" created
...

• The command’s default format is yaml. This will apply the backup from file “bkup-dev-29-10-from-s3.yaml”
while maintaining owner references between an application and its releases and between release and its target
objects.

• The backup file must be created using shipperctl backup prepare command.

5.3 Monitoring Shipper

5.4 Cluster fleet management

5.5 Blocking rollouts

You can block rollouts in a specific namespace, or all namespaces (if you have the permissions to do so). To do so,
you simply create a RolloutBlock object. The RolloutBlock object represents a rollout block in a specific namespace.
When the object is deleted, the block is lifted.

5.5.1 RolloutBlock object

Here’s an example for a RolloutBlock object we’ll use:

apiVersion: shipper.booking.com/v1alpha1
kind: RolloutBlock
metadata:

name: dns-outage
namespace: rollout-blocks-global # for global rollout block. for a local one use

→˓the correct namespace.
spec:
message: DNS issues, troubleshooting in progress
author:
type: user
name: jdoe # This indicates that a rollout block was put in place by user 'jdoe'

Copy this to a file called globalRolloutBlock.yaml and apply it to your Kubernetes cluster:

$ kubectl apply -f globalRolloutBlock.yaml

24 Chapter 5. Operations and administration

shipper

This will create a Global RolloutBlock object. In order to create a namespace rollout block, simply state the relevant
namespace in the yaml file. An example for a namespaced RolloutBlock object:

apiVersion: shipper.booking.com/v1alpha1
kind: RolloutBlock
metadata:

name: fairy-investigation
namespace: fairytale-land

spec:
message: Investigating current Fairy state
author:
type: user
name: fgodmother

While this object is in the system, there can not be any change to the .Spec of any object. Shipper will reject the
creation of new objects and patching of existing releases.

5.5.2 Overriding a rollout block

Rollout blocks can be overridden with an annotation applied to the Application or Release object which needs to bypass
the block. This annotation will list each RolloutBlock object that it overrides with a fully-qualified name (namespace
+ name).

For example, mending our Application object to override the global rollout block that we set in place:

apiVersion: shipper.booking.com/v1alpha1
kind: Application
metadata:

name: super-server
annotations:
shipper.booking.com/rollout-block.override: rollout-blocks-global/dns-outage

spec:
revisionHistoryLimit: 3
template:
... rest of template omitted here

The annotation may reference multiple blocks:

shipper.booking.com/rollout-block.override: rollout-blocks-global/dns-outage,frontend/
→˓demo-to-investors-in-progress

The block override annotation format is CSV.

The override annotation must reference specific, fully-qualified RolloutBlock objects by name. Non-existing blocks
enlisted in this annotation are not allowed. If there exists a Release object for a specific application, the release should
be the one overriding it.

5.5.3 Application and Release conditions

Application and Release objects will have a .status.conditions entry which lists all of the blocks which are currently
in effect.

For example:

5.5. Blocking rollouts 25

shipper

apiVersion: shipper.booking.com/v1
kind: Application
metadata:

name: ui
namespace: frontend

spec:
... spec omitted

status:
conditions:
- type: Blocked
status: True
reason: RolloutsBlocked
message: rollouts blocked by: rollout-blocks-global/dns-outage

This will be accompanied with an event (can be viewed with kubectl describe application ui -n
frontend). For example:

Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Warning RolloutBlock 3s (x3 over 5s) application-controller rollout-

→˓blocks-global/dns-outage

5.5.4 Checking a rollout block status

There are a few simple ways to know which objects are overriding your RolloutBlock object.

.status.overrides

This fields will state all living Application and Release objects that override this RolloutBlock object.

$ kubectl -n rollout-blocks-global get rb dns-outage -o yaml

This might look like this:

apiVersion: shipper.booking.com/v1alpha1
kind: RolloutBlock
metadata:

name: dns-outage
namespace: rollout-blocks-global

... spec omitted
status:

associated because 'shipper-system/dns-outage' is referenced in override
→˓annotation
overrides:
applications: default/super-server
release: default/super-server-83e4eedd-0

output wide

This will show all information about all rollout blocks in the namsespace (default if not specify, rollout-blocks-global
for all global RolloutBlocks ,‘–all-namespaces‘ for all rollout blocks)

26 Chapter 5. Operations and administration

shipper

$ kubectl -n rollout-blocks-global get rb -o wide

This might look like this:

NAMESPACE NAME MESSAGE AUTHOR
→˓TYPE AUTHOR NAME OVERRIDING APPLICATIONS OVERRIDING RELEASES
rollout-blocks-global dns-outage DNS issues, troubleshooting in progress user
→˓ jdoe default/super-server default/super-server-83e4eedd-0

5.5. Blocking rollouts 27

shipper

28 Chapter 5. Operations and administration

CHAPTER 6

Limitations and known issues

Shipper is just software, and all software has limits. Here are the highlights for Shipper currently. Some of these are
not principal problems, just shortcuts that we took while building Shipper.

6.1 Chart restrictions

Shipper expects a few properties to be true about the Chart it is rolling out. We hope to loosen or remove most of these
restrictions over time.

6.1.1 Only Deployments

The Chart must have exactly one Deployment object. The name of the Deployment should be templated with {{.
Release.Name}}. The Deployment object should have apiVersion: apps/v1.

Shipper cannot yet perform roll outs for StatefulSets, HorizontalPodAutoscalers, or bare ReplicaSets. These objects
can be present in the Chart, but Shipper only knows how to manipulate Deployment objects to scale capacity over the
course of a rollout.

6.1.2 Services

The Chart must contain either:

• exactly one Service, or

• exactly one Service labeled with the label shipper-lb: production.

The name of the Service should be fixed: either a literal in the Chart template, or a value which does not change from
release to release.

The Service should have a selectorwhich matches the application, not a single release. A Service with release:
{{ .Release.Name }} as part of the Service selector will cause Shipper to error, as it will not be able to
balance traffic between multiple Releases.

29

shipper

If you cannot modify the Chart you’re rolling out, you can ask Shipper to remove the release selector from the Ser-
vice selector by adding the enable-helm-release-workaround: "true" label to your Application.
This workaround helps make Charts created with helm create work out of the box.

6.2 Load balancing

Shipper uses Kubernetes’ built-in mechanism for shifting traffic: labeling Pods to add or remove them to a Service’s
selector. This means you don’t need any special support in your Kubernetes clusters, but it has several drawbacks.

We hope to mitigate these by adding support for service mesh providers as traffic shifting backends.

6.2.1 Pod-based traffic shifting

Traffic shifting happens at the granularity of Pods, not requests. While Shipper’s interface specifes a traffic weight,
small fleets of Pods may find that their actual weight differs significantly from the one they requested.

6.2.2 New Pods don’t get traffic if Shipper is not working

Shipper adds the shipper-traffic-status: enabled label to Pods after they start. This allows Shipper
to correctly manage the number of Pods exposed to traffic. However, if a Pod is deleted and Shipper is not currently
running or cannot contact the cluster, the new Pod spawned by the ReplicaSet will not get traffic until Shipper is
working again.

The primary issue is that we cannot “cork” a successfully completed rollout by adding the traffic label to the Deploy-
ment or ReplicaSet without triggering a native Deployment-based rollout. We could solve this by working directly
with ReplicaSets instead of Deployments, but that’s probably working against the grain of the ecosystem (most charts
contain Deployments).

6.3 Lock-step rollouts

Shipper is good at making sure that all clusters involved in a rollout are in the same state. It does this by ensuring that
all clusters are in the correct state before marking a rollout step as complete.

However, this means that Shipper cannot perform cluster-by-cluster rollouts, like first kube-us-east1-a, then
kube-eu-west2-b. Our “federation” layer supports this, but we have not yet designed the extension to our strategy
language to describe this kind of rollout.

This cluster-by-cluster strategy is important when limiting traffic or capacity exposure to a new change is not enough
to mitigate risk: for example, perhaps the new version will change a cluster-local schema once it starts running.

30 Chapter 6. Limitations and known issues

CHAPTER 7

API Reference

7.1 High-level APIs

These objects represent the primary user interface to Shipper. They are the control and reporting layers for any rollout
operation.

7.1.1 Application

An Application object represents a single application Shipper can manage on a user’s behalf. In this case, the term
“application” means ‘a collection of Kubernetes objects installed by a single Helm chart’.

Application objects are a user interface, and are the primary way that application developers trigger new rollouts.

This is accomplished by editing an Application’s .spec.template field. The template field is a mold that Shipper
will use to stamp out a new Release object on each edit. This model is identical to to Kubernetes Deployment objects
and their .spec.template field, which serves as a mold for ReplicaSet objects (and by extension, Pod objects).

Application’s .spec.template.chart contains ambiguity by design: a user is expected to provide either a spe-
cific chart version or a SemVer constraint defining the range of acceptable chart versions. Shipper will resolve an
appropriate available chart version and pin the Release on it. Shipper resolves the version in-place: it will substitute
the initial constraint with a specific resolved version and preserve the initial constraint in the Application annotation
named shipper.booking.com/app.chart.version.raw.

The resolved .spec.template field will be copied to a new Release object under the .spec.environment
field during deployment.

Example

31

shipper

Listing 1: Application example

apiVersion: shipper.booking.com/v1alpha1
kind: Application
metadata:

name: reviews-api
spec:
revisionHistoryLimit: 1
template:
chart:

name: reviews-api
version: "~0.1"
repoUrl: https://charts.example.com

clusterRequirements:
capabilities:
- gpu
- high-memory-nodes
regions:
- name: us-east1

strategy:
steps:
- name: staging

capacity:
incumbent: 100
contender: 1

traffic:
incumbent: 100
contender: 0

- name: canary
capacity:
incumbent: 10
contender: 90

traffic:
incumbent: 10
contender: 90

- name: full on
capacity:
incumbent: 0
contender: 100

traffic:
incumbent: 0
contender: 100

values:
replicaCount: 2

Spec

.spec.revisionHistoryLimit

revisionHistoryLimit is an optional field that represents the number of associated Release objects in .
status.history.

If you’re using Shipper to configure development environments, revisionHistoryLimit can be a small value,
like 1. In a production setting it should be set to a larger number, like 10 or 20. This ensures that you have plenty of
rollback targets to choose from if something goes wrong.

32 Chapter 7. API Reference

shipper

.spec.template

The .spec.template is the only required field of the .spec.

The .spec.template is a Release template. It has the same schema as the .spec.environment in a Release object.

Application’s .spec.template.chart can define either a specific chart version, or a SemVer constraint.

Please refer to Semantic Version Ranges section for more details on supported constraints.

Status

.status.history

history is the sequence of Releases that belong to this Application. This list is ordered by generation, old to new:
the oldest Release is at the start of the list, and the most recent (the contender) at the bottom.

.status.conditions

All conditions contain five fields: lastTransitionTime, status, type, reason, and message. Typically
reason and message are omitted in the expected case, and populated in the error or unexpected case.

type: Aborting

This condition indicates whether an abort is currently in progress. An abort is when the latest Release (the contender)
is deleted, triggering an automatic rollback to the incumbent.

TypeStatusReasonDescription
AbortingTrueN/AThe contender was deleted, triggering an abort. The Application .spec.template will be overwritten with

the Release .spec.environment of the incumbent.
AbortingFalseN/ANo abort is occurring.

type: ReleaseSynced

This condition indicates whether the contender Release reflects the current state of the Application .spec.
template.

TypeStatusReasonDescription
ReleaseSyncedTrueN/AEverything is OK: Release .spec.environment and Application .spec.template are in sync.
ReleaseSyncedFalseCreateReleaseFailedThe API call to Kubernetes to create the Release object failed. Check message for the specific error.

type: RollingOut

This condition indicates whether a rollout is currently in progress. A rollout is in progress if the contender Release
object has not yet achieved the final step in the rollout strategy.

TypeStatusReasonDescription
RollingOutFalseN/ANo rollout is in progress.
RollingOutTrueN/AA rollout is in progress. Check message for more details.

7.1. High-level APIs 33

shipper

type: ValidHistory

This condition indicates whether the Releases listed in .status.history form a valid sequence.

TypeStatusReasonDescription
ValidHistoryTrueN/AEverything is OK. All Releases have a valid generation annotation.
ValidHistoryFalseBrokenReleaseGenerationOne of the Releases does not have a valid generation annotation. Check message for more details.
ValidHistoryFalseBrokenApplicationObservedGenerationThe Application has an invalid highestObservedGeneration annotation. check message for more

details.

Semantic Version Ranges

Shipper supports an extended range of semantic version constraints in Application’s .spec.template.chart.
version.

This section highlights the major features of supported SemVer constraints. For a full reference please see the under-
lying library spec.

Composition

SemVer specifications are composable: there are 2 composition operators defined: - ,: stands for AND - ||: stands
for OR

In the example >=1.2.3, <3.4.5 || 6.7.8 the constraint defines a range where any version between 1.2.3
inclusive and 3.4.5 non-inclusive, or a specific version 6.7.8 would satisfy it.

Trivial Comparisons

Trivial comparison constraints belong to a category of equality check relationships.

The range of comparison checks is defined as: - =: strictly equal to - !=: not equal to - >: greater than (non-inclusive)
- <: less than (non-inclusive) - >=: greater than or equal to (inclusive) - <=: less than or equal to (inclusive)

The rest of the constraints is mainly a semantical syntax sugar and is fully based on this category therefore the fore-
coming constraints are explained using these operators.

Hyphens

A hyphen-separated range is an equivalent to defining a lower and an upper bound for a range of acceptable versions.

• 1.2.3-4.5.6 is equivalent to >=1.2.3, <=4.5.6

• 1.2-4.5 is equivalent to >=1.2, <=4.5

Wildcards

There are 3 wildcard characters: x, X and *. They are absolutely equivalent to each other: 1.2.* is the same as
1.2.X.

• 1.2.x is equivalent to >=1.2.0, <1.3.0 (note the non-inclusive range)

• >=1.2.* is equivalent to >=1.2.0 (the wildcard is optional here)

34 Chapter 7. API Reference

https://github.com/Masterminds/semver/blob/master/README.md
https://github.com/Masterminds/semver/blob/master/README.md

shipper

• * is equivalent to >=0.0.0 (one can use x and X as well)

Tildes

A tilde is a context-dependant operator: it changes the range based on the least significant version component provided.

• ~1.2.3 is equivalent to >=1.2.3, <1.3.0

• ~1.2 is equivalent to >=1.2, <1.3

• ~1 is equivalent to >=1, <2

Carets

Carets pin the major version to a specific branch.

• ^1.2.3 is equivalent to >=1.2.3, <2.0.0

• ^1.2 is equivalent to >=1.2, <2.0

A caret-defined constraint is a handy way to say: give me the latest non-breaking version.

7.1.2 Release

A Release contains all the information required for Shipper to run a particular version of an application.

To aid both the human and other users in finding resources related to a particular Release object, the following labels are
expected to be present in a newly created Release and propagated to all of its related objects (both in the management
and application clusters):

shipper-app The name of the Application object owning the Release.

shipper-release The name of the Release object.

Example

1 apiVersion: shipper.booking.com/v1alpha1
2 kind: Release
3 metadata:
4 name: reviews-api-deadbeef-1
5 spec:
6 targetStep: 2
7 environment:
8 chart:
9 name: reviews-api

10 version: 0.0.1
11 repoUrl: https://charts.example.com
12 clusterRequirements:
13 capabilities:
14 - gpu
15 - high-memory-nodes
16 regions:
17 - name: us-east1
18 strategy:
19 steps:

(continues on next page)

7.1. High-level APIs 35

shipper

(continued from previous page)

20 - name: staging
21 capacity:
22 incumbent: 100
23 contender: 1
24 traffic:
25 incumbent: 100
26 contender: 0
27 - name: canary
28 capacity:
29 incumbent: 10
30 contender: 90
31 traffic:
32 incumbent: 10
33 contender: 90
34 - name: full on
35 capacity:
36 incumbent: 0
37 contender: 100
38 traffic:
39 incumbent: 0
40 contender: 100
41 values:
42 replicaCount: 2
43 status:
44 achievedStep:
45 name: full on
46 step: 2
47 conditions:
48 - lastTransitionTime: 2018-12-06T13:43:15Z
49 status: "True"
50 type: Complete
51 - lastTransitionTime: 2018-12-06T12:43:09Z
52 status: "True"
53 type: Scheduled
54 strategy:
55 conditions:
56 - lastTransitionTime: 2018-12-06T17:48:41Z
57 status: "True"
58 step: 2
59 type: ContenderAchievedCapacity
60 - lastTransitionTime: 2018-12-06T12:43:46Z
61 status: "True"
62 step: 2
63 type: ContenderAchievedInstallation
64 - lastTransitionTime: 2018-12-06T13:42:15Z
65 status: "True"
66 step: 2
67 type: ContenderAchievedTraffic
68 - lastTransitionTime: 2018-12-06T13:43:15Z
69 status: "True"
70 step: 2
71 type: IncumbentAchievedCapacity
72 - lastTransitionTime: 2018-12-06T13:42:45Z
73 status: "True"
74 step: 2
75 type: IncumbentAchievedTraffic
76 state:

(continues on next page)

36 Chapter 7. API Reference

shipper

(continued from previous page)

77 waitingForCapacity: "False"
78 waitingForCommand: "False"
79 waitingForInstallation: "False"
80 waitingForTraffic: "False"

Spec

.spec.targetStep

targetStep defines which strategy step this Release should be trying to complete. It is the primary interface for users
to advance or retreat a given rollout.

.spec.environment

The environment contains all the information required for an application to be deployed with Shipper.

Important: Roll-forwards and roll-backs have no difference from Shipper’s perspective, so a roll-back can be per-
formed simply by replacing an Application’s .spec.template field with the .spec.environment field of the
Release you want to roll-back to.

.spec.environment.chart

1 chart:
2 name: reviews-api
3 version: 0.0.1
4 repoUrl: https://charts.example.com

The environment chart key defines the Helm Chart that contains the Kubernetes object templates for this Release.
name, version, and repoUrl are all required. repoUrl is the Helm Chart repository that Shipper should down-
load the chart from.

Note: Shipper will cache this chart version internally after fetching it, just like pullPolicy: IfNotPresent
for Docker images in Kubernetes. This protects against chart repository outages. However, it means that if you need
to change your chart, you need to tag it with a different version.

.spec.environment.clusterRequirements

1 clusterRequirements:
2 capabilities:
3 - gpu
4 - high-memory-nodes
5 regions:
6 - name: us-east1

7.1. High-level APIs 37

shipper

The environment clusterRequirements key specifies what kinds of clusters this Release can be scheduled to. It is
required.

clusterRequirements.capabilities is a list of capability names this Release requires. They should match
capabilities specified in Cluster objects exactly. This may be left empty if the Release has no required capabilities.

clusterRequirements.regions is a list of regions this Release must run in. It is required.

.spec.environment.strategy

1 strategy:
2 steps:
3 - name: staging
4 capacity:
5 incumbent: 100
6 contender: 1
7 traffic:
8 incumbent: 100
9 contender: 0

10 - name: canary
11 capacity:
12 incumbent: 10
13 contender: 90
14 traffic:
15 incumbent: 10
16 contender: 90
17 - name: full on
18 capacity:
19 incumbent: 0
20 contender: 100
21 traffic:
22 incumbent: 0
23 contender: 100

The environment strategy is a required field that specifies the rollout strategy to be used when deploying the Release.

.spec.environment.strategy.steps contains a list of steps that must be executed in order to complete a
release. A step should have the follwing keys:

KeyDescription
.
name

The step name, meant for human users. For example, staging, canary or full on.

.
capacity.
incumbent

The percentage of replicas, from the total number of required replicas the incumbent Release (previous release)
should have at this step.

.
capacity.
contender

The percentage of replicas, from the total number of required replicas the contender Release (latest release)
should have at this step.

.
traffic.
incumbent

The weight the incumbent Release has when load balancing traffic through all Release objects of the given
Application.

.
traffic.
contender

The weight the contender Release has when load balancing traffic through all Release objects of the given Ap-
plication.

38 Chapter 7. API Reference

shipper

.spec.environment.values

The environment values key provides parameters for the Helm Chart templates. It is exactly equivalent to a values.
yaml file provided to the helm install -f values.yaml invocation. Like values.yaml it is technically
optional, but almost all rollouts are likely to include some dynamic values for the chart, like the image tag.

Almost all Charts will expect some values like replicaCount, image.repository, and image.tag.

Status

.status.achievedStep

achievedStep indicates which strategy step was most recently completed.

.status.conditions

All conditions contain five fields: lastTransitionTime, status, type, reason, and message. Typically
reason and message are omitted in the expected case, and populated in the error or unexpected case.

type: Blocked

This condition indicates whether a Release is blocked by a rollout block or not.

type: Complete

This condition indicates whether a Release has finished its strategy, and should be considered complete.

type: Scheduled

This condition indicates whether the clusterRequirements were satisfied and a concrete set of clusters selected
for this Release.

type: StrategyExecuted

This condition indicates whether a Release has achieved a strategy step. This means the installation, capacity and
traffic specified in the .spec.environment.strategy step were achieved.

.status.strategy

This section contains information on the progression of the strategy.

.status.strategy.conditions

These conditions represent the precise state of the strategy: for each of the incumbent and contender, whether they
have converged on the state defined by the given strategy step.

7.1. High-level APIs 39

shipper

.status.strategy.state

The state keys are intended to make it easier to interpret the strategy conditions by summarizing into a high level
conclusion: what is Shipper waiting for right now? If it is waitingForCommand: "True" then the rollout is
awaiting a change to .spec.targetStep to proceed. If any other key is True, then Shipper is still working to
achieve the desired state.

7.2 Low-level APIs

These objects represent low-level commands defining the state of specific clusters, as well as the current status of those
commands. Together they provide ‘just enough federation’ to implement Shipper’s rollout strategies.

They depend on an associated Release object to work correctly: they cannot be created in isolation.

7.2.1 Installation Target

An InstallationTarget describes the concrete set of clusters where the release should be installed. It is created by the
Release Controller’s Scheduler after the concrete clusters are picked using clusterRequirements.

The Installation Controller acts on InstallationTarget objects by getting the chart, values, and sidecars from the as-
sociated Release object, rendering the chart per-cluster, and inserting those objects into each target cluster. Where
applicable, these objects are always created with 0 replicas.

It updates the status resource to indicate progress for each target cluster.

Example

1 apiVersion: shipper.booking.com/v1alpha1
2 kind: InstallationTarget
3 metadata:
4 name: api-3f498d25-0
5 namespace: service-directory
6 spec:
7 clusters:
8 - kube-us-east1-a
9 - kube-eu-west2-b

10 status:
11 clusters:
12 - conditions:
13 - lastTransitionTime: 2018-12-06T16:53:24Z
14 status: "True"
15 type: Operational
16 - lastTransitionTime: 2018-12-06T16:53:24Z
17 status: "True"
18 type: Ready
19 name: kube-us-east1-a
20 status: Installed
21 - conditions:
22 - lastTransitionTime: 2018-12-06T16:53:24Z
23 status: "True"
24 type: Operational
25 - lastTransitionTime: 2018-12-06T16:53:24Z
26 status: "True"

(continues on next page)

40 Chapter 7. API Reference

shipper

(continued from previous page)

27 type: Ready
28 name: kube-eu-west2-b
29 status: Installed

Spec

.spec.clusters

The clusters field is a list of cluster names known to Shipper where the associated Release should be installed.
Installation means rendering all the objects in the Chart and inserting them into the cluster.

1 spec:
2 clusters:
3 - kube-us-east1-a
4 - kube-eu-west2-b

Status

.status.clusters

.status.clusters is a list of objects representing the installation status of all clusters where the associated
Release objects must be installed.

1 status:
2 clusters:
3 - conditions:
4 - lastTransitionTime: 2018-12-06T16:53:24Z
5 status: "True"
6 type: Operational
7 - lastTransitionTime: 2018-12-06T16:53:24Z
8 status: "True"
9 type: Ready

10 name: kube-us-east1-a
11 status: Installed
12 - conditions:
13 - lastTransitionTime: 2018-12-06T16:53:24Z
14 status: "True"
15 type: Operational
16 - lastTransitionTime: 2018-12-06T16:53:24Z
17 status: "True"
18 type: Ready
19 name: kube-eu-west2-b
20 status: Installed

The following table displays the keys a cluster status entry should have:

KeyDescription
nameThe Application Cluster name. For example, kube-us-east1-a.
statusFailed in case of failure, or Installed in case of success.
messageA message describing the reason Shipper decided that it has failed.
conditionsA list of all conditions observed for this particular Application Cluster.

7.2. Low-level APIs 41

shipper

.status.clusters.conditions

The following table displays the different conditions statuses and reasons reported in the InstallationTarget object for
the Operational condition type:

TypeStatusReasonDescription
OperationalTrueN/ACluster is reachable, and seems to be operational.
OperationalFalseTargetClusterClientErrorThere is a problem contacting the Application Cluster; Shipper either doesn’t know about this Application

Cluster, or there is another issue when accessing the Application Cluster. Details can be found in the .message
field.

OperationalFalseServerErrorSome error has happened Shipper couldn’t classify. Details can be found in the .message field.

The following table displays the different conditions statuses and reasons reported in the InstallationTarget object for
the Ready condition type:

TypeStatusReasonDescription
ReadyTrueN/AIndicates that Kubernetes has achieved the desired state related to the InstallationTarget object.
ReadyFalseServerErrorShipper could not either create an object in the Application Cluster, or an error occurred when trying to fetch

an object from the Application Cluster. Details can be found in the .message field.
ReadyFalseChartErrorThere was an issue while processing a Helm Chart, such as invalid templates being used as input, or rendered

templates that do not match any known Kubernetes object. Details can be found in the .message field.
ReadyFalseClientErrorShipper couldn’t create a resource client to process a particular rendered object. Details can be found in the

.message field.
ReadyFalseUnknownErrorSome error Shipper couldn’t classify has happened. Details can be found in the .message field.

7.2.2 Capacity Target

A CapacityTarget is the interface used by the Release Controller to change the target number of replicas for an appli-
cation in a set of clusters. It is acted upon by the Capacity Controller.

The status resource includes status per-cluster so that the Release Controller can determine when the Capacity
Controller is complete and it can move to the traffic step.

Example

1 apiVersion: shipper.booking.com/v1alpha1
2 kind: CapacityTarget
3 metadata:
4 name: reviewsapi-deadbeef-0
5 namespace: reviewsapi
6 annotations:
7 "shipper.booking.com/v1/finalReplicaCount": 10
8 labels:
9 release: reviewsapi-4

10 spec:
11 clusters:
12 - name: kube-us-east1-a
13 percent: 10
14 - name: kube-eu-west2-b
15 percent: 10
16 status:
17 clusters:

(continues on next page)

42 Chapter 7. API Reference

shipper

(continued from previous page)

18 - name: kube-us-east1-a
19 availableReplicas: 1
20 achievedPercent: 10
21 - name: kube-eu-west2-b
22 availableReplicas: 1
23 achievedPercent: 10
24 sadPods:
25 - name: reviewsapi-deadbeef-0-cafebabe
26 phase: Terminated
27 containers:
28 - name: app
29 status: CrashLoopBackOff
30 condition:
31 type: Ready
32 status: False
33 reason: ContainersNotReady
34 message: "unready containers [app]"

Spec

.spec.clusters

clusters is a list of clusters the associated Release object is present in. Each item in the list has a name, which
should map to a Cluster object, and a percent. percent declares how much capacity the Release should have in
this cluster relative to the final replica count. For example, if the final replica count is 10 and the percent is 50, the
Deployment object for this Release will be patched to have 5 pods.

1 release: reviewsapi-4
2 spec:
3 clusters:
4 - name: kube-us-east1-a
5 percent: 10
6 - name: kube-eu-west2-b

Status

.status.clusters

.status.clusters is a list of objects representing the capacity status of all clusters where the associated Release
objects must be installed.

1 percent: 10
2 status:
3 clusters:
4 - name: kube-us-east1-a
5 availableReplicas: 1
6 achievedPercent: 10
7 - name: kube-eu-west2-b
8 availableReplicas: 1
9 achievedPercent: 10

10 sadPods:
11 - name: reviewsapi-deadbeef-0-cafebabe

(continues on next page)

7.2. Low-level APIs 43

shipper

(continued from previous page)

12 phase: Terminated
13 containers:
14 - name: app
15 status: CrashLoopBackOff
16 condition:
17 type: Ready
18 status: False
19 reason: ContainersNotReady
20 message: "unready containers [app]"

The following table displays the keys a cluster status entry should have:

KeyDescription
nameThe Application Cluster name. For example, kube-us-east1-a.
availableReplicasThe number of pods that have successfully started up
achievedPercentWhat percentage of the final replica count does availableReplicas represent.
sadPodsPod Statuses for up to 5 Pods which are not yet Ready.
conditionsA list of all conditions observed for this particular Application Cluster.

.status.clusters.conditions

The following table displays the different conditions statuses and reasons reported in the CapacityTarget object for the
Operational condition type:

TypeStatusReasonDescription
OperationalTrueN/ACluster is reachable, and seems to be operational.
OperationalFalseServerErrorSome error has happened Shipper couldn’t classify. Details can be found in the .message field.

The following table displays the different conditions statuses and reasons reported in the CapacityTarget object for the
Ready condition type:

TypeStatusReasonDescription
ReadyTrueN/AThe correct number of pods are running and all of them are Ready.
ReadyFalseWrongPodCountThis cluster has not yet achieved the desired number of pods.
ReadyFalsePodsNotReadyThe cluster has the desired number of pods, but not all of them are Ready.
ReadyFalseMissingDeploymentShipper could not find the Deployment object that it expects to be able to adjust capacity on. See message for

more details.

7.2.3 Traffic Target

A TrafficTarget is an interface to a method of shifting traffic between different Releases based on weight. This may be
implemented in a number of ways: pod labels and Service objects, service mesh manipulation, or something else. For
the moment only vanilla Kubernetes traffic shifting is supported: pod labels and Service objects.

It is manipulated by the Release Controller as part of executing a release strategy.

44 Chapter 7. API Reference

shipper

Example

1 apiVersion: shipper.booking.com/v1alpha1
2 kind: TrafficTarget
3 metadata:
4 name: reviewsapi-deadbeaf-0
5 namespace: reviewsapi
6 spec:
7 clusters:
8 - name: kube-us-east1-a
9 weight: 30

10 - name: kube-eu-west2-b
11 weight: 30
12 status:
13 clusters:
14 - achievedTraffic: 100
15 conditions:
16 - lastTransitionTime: 2018-12-06T12:43:09Z
17 status: "True"
18 type: Operational
19 - lastTransitionTime: 2018-12-06T12:43:09Z
20 status: "True"
21 type: Ready
22 name: kube-us-east1-a
23 status: Synced
24 - achievedTraffic: 100
25 conditions:
26 - lastTransitionTime: 2018-12-06T12:43:09Z
27 status: "True"
28 type: Operational
29 - lastTransitionTime: 2018-12-06T12:43:09Z
30 status: "True"
31 type: Ready
32 name: kube-eu-west2-b
33 status: Synced

Spec

.spec.clusters

1 spec:
2 clusters:
3 - name: kube-us-east1-a
4 weight: 30
5 - name: kube-eu-west2-b
6 weight: 30

clusters is a list of cluster entries and the desired traffic weight for this Release in that cluster. The Traffic controller
calculates the correct traffic ratio for this Release by summing weights from all TrafficTarget objects available.

Status

7.2. Low-level APIs 45

shipper

.status.clusters

.status.clusters is a list of objects representing the traffic status of all clusters where the associated Release
objects must be installed.

1 status:
2 clusters:
3 - achievedTraffic: 100
4 conditions:
5 - lastTransitionTime: 2018-12-06T12:43:09Z
6 status: "True"
7 type: Operational
8 - lastTransitionTime: 2018-12-06T12:43:09Z
9 status: "True"

10 type: Ready
11 name: kube-us-east1-a
12 status: Synced
13 - achievedTraffic: 100
14 conditions:
15 - lastTransitionTime: 2018-12-06T12:43:09Z
16 status: "True"
17 type: Operational
18 - lastTransitionTime: 2018-12-06T12:43:09Z
19 status: "True"
20 type: Ready
21 name: kube-eu-west2-b
22 status: Synced

The following table displays the keys a cluster status entry should have:

KeyDescription
nameThe Application Cluster name. For example, kube-us-east1-a.
statusFailed in case of failure, or Synced in case of success.
achievedTrafficThe traffic weight achieved by Shipper for this cluster.
conditionsA list of all conditions observed for this particular Application Cluster.

.status.clusters.conditions

The following table displays the different conditions statuses and reasons reported in the TrafficTarget object for the
Operational condition type:

TypeStatusReasonDescription
OperationalTrueN/ACluster is reachable, and seems to be operational.
OperationalFalseServerErrorThere is a problem contacting the Application Cluster; Shipper either doesn’t know about this Application

Cluster, or there is another issue when accessing the Application Cluster. Details can be found in the .message
field.

The following table displays the different conditions statuses and reasons reported in the TrafficTarget object for the
Ready condition type:

46 Chapter 7. API Reference

shipper

TypeStatusReasonDescription
ReadyTrueN/AThe desired traffic weight has been successfully achieved.
ReadyFalseMissingServiceShipper could not find a Service object to use for traffic shifting. Check message for more details.
ReadyFalseServerErrorShipper got an error status code while calling the Kubernetes API of the Application Cluster. Details in the

.message field.
ReadyFalseClientErrorShipper couldn’t create a resource client to process a particular rendered object. Details can be found in the

.message field.
ReadyFalseInternalErrorSomething went wrong with the math that Shipper does to calculate the desired number of pods. See the

.message field for the exact error.
ReadyFalseUnknownErrorSome error Shipper couldn’t classify has happened. Details can be found in the .message field.

7.3 Administrator APIs

These objects represent internal details of a Shipper installation. They expose tools for administrators to configure
Shipper or change how Shipper works for application developers.

7.3.1 Cluster

A Cluster object represents a Kubernetes cluster that Shipper can deploy to. It is an administrative interface.

They serve two purposes:

• Enable Shipper to connect to the cluster to manage it

• Enable administrators to influence how Releases are scheduled to this cluster.

The second point allows administrators to perform tasks like load balancing workloads between clusters, shift work-
loads from one cluster to another, or drain clusters for risky maintenance. For examples of these tasks, see the admin-
istrator’s guide.

Example

1 apiVersion: shipper.booking.com/v1alpha1
2 kind: Cluster
3 metadata:
4 name: kube-us-east1-a
5 spec:
6 apiMaster: https://10.0.0.1
7 capabilities:
8 - gpu
9 - ssd

10 - high-memory-nodes
11 region: us-east1
12 scheduler:
13 unschedulable: false
14 weight: 100

Spec

7.3. Administrator APIs 47

shipper

.spec.apiMaster

apiMaster is the URL of the Kubernetes cluster API server. Shipper uses this to connect to the cluster to manage
it. This is the same URL as in a ~/.kube/config for enabling kubectl commands.

.spec.capabilities

capabilities[] is a required field that lists the capabilities the cluster has. Capabilities are arbitrary tags that
can be used by Application objects to select clusters while rolling out. For example, one Kubernetes cluster might
have nodes provisioned with GPUs for video encoding. Adding ‘gpu’ as a Cluster capability will allow application
developers to specify ‘gpu’ in their set of Application clusterRequirements if their application needs access to
that feature.

.spec.region

region is a required field that specifies the region the cluster belongs to.

.spec.scheduler

scheduler.unschedulable is an optional field that causes clusters to be ignored during rollout cluster selection.
This allows operators to mark clusters to be drained. Default: false.

scheduler.weight is an optional field that assigns a weight to the cluster. The weight influences the priority of
the cluster during rollout cluster selection. Default: 100.

scheduler.identity is an optional field that assigns an identity to the cluster different than its .metadata.
name value. This allows operators to make one cluster ‘impersonate’ another in order to transfer all of the Applications
on one cluster to another specific cluster. Default: .metadata.name.

More information on how to use these fields to manage a fleet of clusters can be found in the Administrator’s guide.

Status

Cluster objects do not currently have a meaningful .status field.

48 Chapter 7. API Reference

Index

Symbols
–application-cluster-service-account <string>

command line option, 21
–kube-config <path string>

command line option, 20
–management-cluster-context <string>

command line option, 21
–management-cluster-service-account <string>

command line option, 21
-f, –file <string>

command line option, 21
-g, –rollout-blocks-global-namespace <string>

command line option, 21
-n, –shipper-system-namespace <string>

command line option, 20

C
command line option

–application-cluster-service-account <string>, 21
–kube-config <path string>, 20
–management-cluster-context <string>, 21
–management-cluster-service-account <string>, 21
-f, –file <string>, 21
-g, –rollout-blocks-global-namespace <string>, 21
-n, –shipper-system-namespace <string>, 20

49

	Documentation overview
	Introduction
	Shipper
	Getting help

	Installing Shipper
	Step 0: procure a cluster
	Step 1: get shipperctl
	Step 2: write a cluster manifest
	Step 3: Setup the Management Cluster
	Step 4: deploy shipper
	Step 5: Join the Application cluster to the Management cluster
	Step 6: do a rollout!
	Namespace manager

	User guide
	Rolling out with Shipper
	Troubleshooting Shipper

	Operations and administration
	Cluster architecture
	Using shipperctl
	Monitoring Shipper
	Cluster fleet management
	Blocking rollouts

	Limitations and known issues
	Chart restrictions
	Load balancing
	Lock-step rollouts

	API Reference
	High-level APIs
	Low-level APIs
	Administrator APIs

	Index

